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FOREWORD

In this report a higher order beam finite element is developed for

dynamic response of beams subjected to impact of elastic spheres.
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SECTION I

INTRODUCTION

In studying foreign object damage (FOD) of laminated fiber-reinforced

composites, one often encounters extremely complex material as well as

structural responses. First of all, the high velocity impact usually

results in a substantial permanent deformation in the contact region.

Secondly, the structural response is transient and it often requires a

large number of vibrational modes to ensure an adequate description of the

motion [1]. Consequently, most of the analytical work [2-3] is restricted

to the elastic response of the laminate by neglecting the plastic deformation

and by assuming that the contact force between the projectile and the

laminate is known. Even with such simplifying assumptions, none is able to

predict quantitatively the damage of the laminate due to impact.

In contrast to the small quantity of analytical work, experimental

work is abundant [4]. Various tests have been performed in an effort to

understand the failure mechanisms with the objective of developing practical

protective measures. Although testing yields quantitative results, it

is in general very restrictive and expensive. In view of the great

variety of composites, a reliable analytical method is highly desirable

in general applications, especially in optimal design.

The present work aims at developing a finite element method to

determine the dynamic response as well as the energy that causes damages

in the laminated composite due to impact of foreign objects. Such damage

energy can be used to estimate the residual strength of the composite

after impact. In this report, a higher order beam finite element is



presented complete with stiffness and consistent mass matrices.

The finite element is evaluated by considering homogeneous and iso-

tropic beams subjected to impact of elastic spheres for which ana-

lytical solutions are available. The elements are then employed

to study beams of a glass-epoxy laminated composite. Solutions

are compared with the experimental data obtained by Husman et al [5].
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SECTION II

THE FINITE ELEMENT METHOD

We will consider symmetrically laminated cross-ply composites.

Extension to unsymmetric laminates which exhibit bending-extension coupling

can be easily carried out in the same manner. In the following, we will

derive the stiffness matrix and the mass matrix for a homogeneous and

isotropic beam element for which evaluation of the element efficiency will

be made. The finite element for a symmetrically laminated cross-ply

composite can be obtained from the isotropic one by using the appropriate

stiffness coefficients. Bernoulli-Euler beam theory will be employed

in modeling the finite element.

1. Finite Element Model for Isotropic Materials

The following power series for the shape function for the beam

element in flexural deformation is taken:

v = a1 + a2x + a3x
2 + a4x

3 + a5x4 + a6x
5  (1)

With this displacement function, there are three degrees of freedom at

each nodal point, namely, the transverse displacement vi , the rotation

ei and the curvature Ki (i=l,2). The displacement function can be

expressed in terms of the six generalized nodal displacements.

Consider an elastic beam element of length L, cross-sectional area

A, moment of inertia I and the elastic modulus given by Eb. The potential

energy U and the kinetic energy T stored in this element are given by

3



E L ( I - ) d x ( 2 )

0

and

T P-A (1)2dx (3)
0

respectively. In Eq. (3), p is the mass density, and a dot represents

the derivative with respect to time.

Corresponding to each degree of freedom at the nodal point, there is

a generalized force. In this case we have Qi, mi and pi corresponding to

vi, 6i and Ki, respectively. The quantities Qi and mi are the usual shear

force and moment, and wi is a hypermoment with the dimension lb-ft2 .

The potential energy of the generalized end forces for the element

is

2
We = -1 (Qivi + mie i + Iii) (4)

Noting that the displacement function of the element is now

expressed in terms of the six nodal displacement components, we can write

U and T given by Eqs. (2) and (3) in terms of the six nodal displacement

components. The equation of motion can be obtained by applying Hamilton's

principle, i.e.,

f fttl (U-T+We )dt=O (5)

0
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with 6A 0 at to and t .

The result is a system of six equations which can be written in

matrix form as

{F} = [k] {}+ [m] {K} (6)

where {F} is the vector of the generalized forces associated with the

nodal degrees of freedom (A};[k] is the element stiffness matrix and [m]

is the element mass matrix. The explicit expression of Eq. (6) is given by

Qi 1200 600L 30L2 -1200 600L -30L 2  v1
mI1  384L 2  220 - 600L 216L2 - 8L e1

i E I 614 - 30L2 810 L 4 I

Q21200 -600L 3012 f
m 2  sym. 384L 2  -221P 62

P2 6L4 K 2

(7)

F21720 37321 28I2 6000 -1812L 18112 VI

832L2 69L2 1812L - 532L2 5212 L1

+ 6L 181L2 - 52L 5L

21720 -3732L 281L 2  v2

sym. 832L2 -690 8 2
6L K 2

From the d'Alembert's dynamic condition of equilibrium and the

condition of continuity at the nodal points, we obtain the system of

5
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[HJ( t+At fPt+At - [K] 1t (2)

where

&t2[H] = [M] + - [K] (13)

and

(b}t = t + At{ }t + _'{A (14)

The solution for {A1t+At can be obtained by inverting [H] in Eq. (12).

However, a more efficient scheme is to solve Eq. (12) by the Gauss

elimination procedure. With Eqs. (9) and (10), the current generalized

displacement, velocity, and acceleration are obtained from those at the

previous time. If appropriate initial conditions are given, the total

response history can be generated by this step by step procedure.

We have also employed another finite difference procedure suggested

by de Vogelaere [8] in some of thE evaluative examples to be discussed

later, and compared with the present method. It was found that these two

methods were comparable.

It should be noted here that the choice of the time increment At is

very critical in assuring the stability of the solution. According to

the conclusion of Leech, Hsu and Mach [9], solution for Eq. (8) would

be stable if

At ! 2/wm (15)



equations of motion for the whole structure:

[P) = [K]{A} + [M]Al (8)

where {P) indicates the external loads, and [K] and [M] are the assembled

structural stiffness and mass matrices, respectively.

2. Integration of Time Variable

The solution for the equations of motion given by Eq. (8) can be

solved by various methods [6]. A simple finite difference form proposed

by Wilson and Clough [7] will be followed in the present analysis.

The essence of the procedure proposed by Ref. [7] resides in the

assumption that the variation of the acceleration {A} is linear in the

time interval At. Using the assumption, we have

At [*) (t
t+At t + - {lt+At (9)

and

{AI {At A~t+ At2  t
{Alt+At = {Alt + At{ t 3 {A}t + ({A}t+At (10)

Substitution of equations (9) and (10) in (8) yields

{P [K)({A}t + At{t + f At + Ai {t+2t)

(11)

+ [M] {A)t+At

from which we obtain

6
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[H] }t+At = {P}t+At - [KI{blt (12)

where

[H] = [M] + V [K] (13)

and

{bt ={A} + At{t + A-{ A}t (14)

The solution for {A}t+At can be obtained by inverting [H] in Eq. (12).

However, a more efficient scheme is to solve Eq. (12) by the Gauss

elimination procedure. With Eqs. (9) and (10), the current generalized

displacement, velocity, and acceleration are obtained from those at the

previous time. If appropriate initial conditions are given, the total

response history can be generated by this step :y step procedure.

We have also employed another finite difference procedure suggested

by de Vogelaere [8] in some of thE evaluative examples to be discussed

later, and compared with the present method. It was found that these two

methods were comparable.

It should be noted here that the choice of the time increment At is

very critical in assuring the stability of the solution. According to

the conclusion of Leech, Hsu and Mach [9], solution for Eq. (8) would

be stable if

At ! 2/wm  (15)

where wm is the highest natural frequency of the beam element. They

also suggested that At should be no greater than one-sixth of the critical

7
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value in order to obtain the fine high-frequency detail of the response.

However, we have found that to insure the stability and to contain the

higher frequencies of the higner order beam element model At should be

no greater than one-tenth of the critical value. For nonlinear problem

At should be even smaller.

3. Evaluative Example - Impulsive Loading

In order to test the efficiency of the present higher order element

we consider a simply-supported beam of length L subjected to a sine pulse

given by

P P sin for 0- t T (16)

P0 for t-t (17)

The force is located at the center of the span. An analytical solution

for the central deflection was obtained by Ref. [10] as

2P°L3  - 1 [ irt Ti

L2 11,3,5... T 4T2-T - in wit)]

for 0 t (18)

and

2PoL3  
-l [4Tt

iL 20 1 0 cos(-) sin wi(t - )
"' -o- i"1,3,5... TI-4 2  Tt

for t > T (19)

where

T 2 212 -Tl , I-1,3,5... (20)
T P M -8

,,8



The following numerical values are taken:

Po Z 1000 lb, r = 20 x 10-6 second, Eb = 30 x 106 psi and

the beam is assumed to be 1 - in x 1 - in in cross-section and 30 in.

in length.

The analytical results are obtained by retaining 1000 terms in

Eqs. (18) and (19). A check shows that there is virtually no difference

between a 250-term solution and a 1000-term solution. Accordingly, we

can practically take the 1000-term solution as the exact solution.

Due to the symmetry, the higher order beam element model is generated

for only one-half of the beam. The solution is carried out for N = 5,

10, 20, and 50, where N is the number of elements used for the half beam.

For the purpose of comparison, the solution of the conventional 4 x 4

element [11] is also carried out. The central deflections at various

times are shown in Table 1. It can be seen that the higher order element

is superior to the 4 x 4 element. To manifest the far more superiority

of the higher order element in obtaining stresses, the bending stress at

the central span of the beam is carried out and shown in Table 2. It is

easy to recognize that the accuracy of the 20-higher-order-element solution

is about the same as that of the 50- 4 x 4 element. It takes CDC 6500

105 seconds central processor time for the former and 320 seconds for

the latter. Thus, for the same degree of accuracy, the higher order element

model uses about one-third the time as would be used by the 4 x 4 element

model.

4 . Elastic Impact

When subject to the impact of a mass, the beam receives an Impulsive

force which is the contact force between the mass and the beam. The

9
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calculation of the contact force depends crucially on the local deformation

at the contact region. The local deformation in turn is affected by the

deflection of the beam. Timoshenko 112] initiated a basic approach in this

area by combining the Hertzian contact force with the Bernoulli-Euler

beam theory to analyze the transient dynamic response of a beam subjected

to the impact of an elastic sphere. Several investigators later continued

Timoshenko's work by either simplifying the computational procedure or

employing the Timoshenko beam theory in the analysis [13-14]. Many ex-

perimental works nave also been conducted [15-16]. In all the previous works,

it was assumed that the vibration of the striking mass could be neglected.

This assumption is supported by the result obtained by Rayleigh that very

little vibration is induced in an oscillating system under the influence

of forces of duration long in comparison with its natural periods.

Consider an elastic sphere striking the beam in the transverse

direction. If the velocity of the sphere is not too high, the local de-

formation between the sphere and the beam can be regarded elastic, and,

as a consequence, the Hertzian law of contact can be employed. Let F be

the contact force and a be the relative appi-oach, then the Hertzian law

is given by

F = k2ca
3/2  (21)

where the contact point spring constant k2 is given by

k 4 Rs/22)2 1-v 2 1- b2

Es + r-)

12
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In Eq. (22), Rs is the radius of the sphere; vs' Es and vb, Eb are the

Poisson's ratios and the Young s moduli of the sphere and the beam, re-

spectively. A derivation of Eq. (21) can be found in Ref. [17). The

relative approach a can be expressed in terms of the displacements of the

mass and the beam as

a = w - v(x0) (23)

where w is the displacement of the sphere measured from the position of the

initial contact and v( .) is the displacement of the beam at the point of

contact x = xo.

The equation of motion governing the mass is given by

msw = -k2[w - v(x0]3/2  (24)

Thus, the motion of the sphere is nonlinearly coupled with that of the

beam.

From Eq. (24) we have at time t + At

mswt+At =-k2[wt+At - vt+At(xo)] 3/2  (25)

and

Ft+At = mswt+At (26)

where Ft+&t denotes the contact force at t+At. As a first estimate, we

assume that the values of wt+At and vt+At (xo) can be approximated by

wt+&t wt +t + At2 Wt (27)

13
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and

vt+At (Xo) vt (xo) + At t (xo) + j &t 2vt (xO) (28)

respectively. Substituting Eqs. (27) and (28) in Eq. (25), we obtain

wt+At in terms of the known results at the previous time t. The contact

force Ft+At can subsequently be obtained from Eq. (26). Using this

expression for the contact force in the established beam program, the

displacement, velocity and acceleration at each nodal point can be computed.

However, more accurate values of wt+At and vt+At(xo ) can be obtained

from the first approximate values. Using the formula given by Eq. (10),

we can write

w+ w~ + At + - At~ + At2 w(29)

v t+A(x) = vt (x ) + At vt(x0) + fAt2vt (Xo) + -6At2Vt+At(x ) (30)

where wt+At and vtt+At are obtained from the first round solution. Sub-

stituting Eqs. (29) and (30) in Eq. (25) and subsequently in Eq. (26) we

obtain a modified contact force Ft+At, which, in turn, is used to yield

a more accurate solution for the beam. Such iterative procedure can be

carried on till the convergence criterion is met.

5. The Timoshenko Problem

In 1913, Timoshenko [12] investigated a 0.394 - in x 0.394 - in x

6.05 - in (1-cm x 1-cm x 15.35 cm) simply-supported beam subjected to the

transverse impact of a steel ball of 0.394 in radius. The initial

velocity of the sphere was 0.394 in/sec. The material constants taken

were

14



p= 0.0089 slug/in 3 , Eb = 31.3 x l0 psi, v 0.289 (31)

In Timoshenko's solution, the resulting nonlinear integral equations were

solved by a stepwise numerical integration procedure.

Due to the symmetry, only half of the beam is taken in the present

analysis. The time step At = 5 x 10- second is used. The contact force

history, the central deflection of the beam and the displacement of the sphere

are computed till the contact ceases. The results are shown in Fig. 1.

It is found that the present solutions aqree very well with those obtained

by Timoshenko. The rebound velocity of the sphere at the end of the

contact is -0.1192 in/sec as compared with -0.1198 in/sec obtained by

Timoshenko.

A similar problem can be found in Ref. [17], where a central transverse

impact of a 1/2-in-diameter steel ball on a 1/2-in x 1/2-in x 30-in simply-

supported steel beam was studied. The initial velocity of the ball was

assumed to be 150 ft/sec. The material constants were

Es = Eb = 30 x 106 psi, vb = 0.3, Ps = Pb = 0.0088 slug/in 3  (32)

In Fig. 2, the contact force obtained by using 65 harmonics and time

Increment At = O.lp sec is reproduced from [17].

The solution according to the present finite element is obtained by

employing 50 elements for half of the beam. The time step tt is chosen

to be 5 x 10-8 sec. The results are also shown in the figure for the

sake of comparison. The agreement between these two solutions is excellent

over a wide range of time. However, the maximum force obtained from the

15
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o TIMOSHENKO
A t=5.55 6 MuSEC.

- PRESENT SOLUTION
1.2 -0.3

Fz
z

M 1.0 0 - 0

0.80 .2 z

U 0.6

Z U)

U 0.4 0.1
La..

0.2 V( -

0 10

0 40 80 120 160

TIME AFTER CONTACT, )J SEC.

Fig. I. Contact Force and Displacements of the Timoshenko Problem
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0 GOLDSMITH

15 - PRESENT SOLUTION 1.5

0_ '

10 - 1.0
WWU)

I0 -1 z

Laa.

zW
5 -0.5

La.

0 0
0 2 46 8012 4 16 1820

TIME AFTER CONTACT, P SEC.

Fiq. 2. Contact Force and Displacements of the Goldsmith Problem
(with ,, o .1 sec and 65 Harmonics).
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finite element method is about 2,i higher than that obtai,,-d by [7]. It

was revealed in [17] that if :.t was taken to be 2.735 j sec, then the

maximum contact force would be reduced by about 9". Thus, the foregoing

discrepancy could have been reduced if smaller time steps were used by

Gc dsmj ith.

6. Impact with Permanent Indentation

Permanent craters can be qenerated even at relatively low impact

speeds. According to Davis [18], a permanent crater formed when a 3/8-

in-diameter steel sphere dropped from a height of 0.15 inch onto an armor

plate which had a Brinell hardness 321. Therefore, it is more realistic

to use a dynamic plastic force-indentation law instead of the Hertzian

law of contact for the impact problem.

One of the approaches in obtaining the dynamic plastic force-

indentation law was proposed by Barnhart and Goldsmith [19]. A sphere

was dropped onto a steel block from heights of 1 to 13 feet. Initial

velocity, rebound velocity and permanent crater depth were measured in each

test. It was assumed that (1) the initial kinetic energy was completely

transformed into the kinetic energy of rebound and the energy needed to

form the permanent crater, (2 ) the rebound energy of the sphere was

derived solely from the elastic strain energy stored equally in the sphere

and the block during the indentation process, ( 3 ) the force law could be

derived from the modified Hertzian law of contact: for indentation process,

F = Nqn 0 - O m (33)

and for recovery process,

F : Fm[. r]j
m - r m r

18



where subscript m denoted the state of maximum relative aoproach, ,r

was the permanent crater depth, q could be taken as 3/2 as in the Hertzian

law, and N and n were determined from iterations of the following equations:

n+l 1 - ' - ms w- (35)n+l m : ms 0 4 .s

F
1 M, 2 M m, (36)
4 s f q+T m "r)

In Eqs. (35) and (36), ms was the mass of the sphere, w0 and wf were the

initial and rebound velocities of the sphere, respectively.

Using the force-deformation laws given by Eqs. (33) and (34), we

consider a 1/2-in-diameter steel ball striking at the mid-span of a simply-

supported beam. The steel beam has the dimensions 1/2-in x 1/2-in x 30-in

and the material constants are given by Eq. (32). The initial velocity of

the sphere is 150 ft/sec.

From Ref. [17] we found that the F-a law assumes the form

F 1.29 x 106 Q1.128 0 m a -m (37)

and from Ref. [16], we found that the average crater depth was

r = 0.0123 in. Thus, Eq. (34) takes the form

a-0.0123 33/2 > >

F = F cmL m0.0123 3/ m - - 0.0123 (38)

The computer program developed earlier for the elastic impact can

be readily extended to the present case. During the indentation period,

19



the Hertzian law of contact used in the elastic impact is simply replaced

by Eq. (37), and during the recovery process Eq. (38) is used. It should

be noted that Fm and am appearing in Eq. (38) can be obtained from the

results for the identation process when the maximum relative approach

is reached.

The results obtained based on 50 finite elements and At = 0.051

second are shown in Fig. 3. The contact force given by Goldsmith [17] is

also plotted for comparison. Again, the agreement is good over the whole

period except in the vicinity of the maximum contact force. This dis-

crepancy can be explained in the same manner as in the elastic case

described in Section 11.5.

7. Finite Element for a Laminated Composite

If the Bernoulli-Euler beam theory is employed to model the symmetric

cross-ply laminated composite, then its stiffness matrix can be obtained

from Equation (7) by replacing EbI by the bending stiffness of the laminate

given by h/2

Db= I bEi z
2 dz (39)

-h/2

where b is the width of beam, Ei is the Young's modulus of the ith larina

in the x-direction, z is the thickness coordinate, and h is the thickness

of beam. It is noted that Ei = EL(the longitudinal Young's modulus) if the

fibers direction in the Lh lamina is parallel to the x-axis. If the fi-

bers are transverse to x-axis, then Ei = ET ( the transverse Young's

modulus).

The indentation law for an elastic isotropic sphere on the laminated

composite is assumed to have the same expression given by Eq. (21). Such

20
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formula was found to be valid by Willis [22] for a rigid sphere Pressed on

a transversely isotropic tialfspace. In the present work, the spring

constant is taken as

k2 4 s 11 (40)
s I
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SECTION III

IMPACT RESPONSE OF COMPOSITE MATERIALS

We now proceed to use the finite element and the modified Hertzian

contact law to study the dynamic response of a laminated beam and the

energy imparted from the striking mass to the beam. It is clear that

our main objective is to predict the work done by the projectile on the

beam. It should be noted that the total amount of energy of the mass

is, in general, absorbed in two forms, namely the vibrational energy

stored in the form of vibration of the laminate and the energy dissipated

in the contact zone. For a hard projectile, damage generally occurs

in the contact area and the vibrational energy which, in this case, does

little damage to the beam will be damped out. In view of this, it is

desirable to separate these two types of energies received from the

striking mass and relate the "damage energy" to the reduction of strength

of the laminate.

1. The Elastic Response.

Consider cantilever beams of laminated composites subjected to the

impact of a mass at the midpoint of the length. By using the finite

element method described in Section II, the entire response history of the

beam and mass can be obtained. In Figs. 4-14, results for various approach

velocities are presented for Scotch ply/l002 laminated composites. The

elastic constants are

EL = 5.7 x 106 psi, ET = 1.7 x 106 psi, p = 0.00202 slug/ir 3

The projectile is a steel ball of diameter 0.177 in. Twenty-four

elements are used with At = 0.1 p second. The same dimensions of

23
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specimens and materials were also used by Husman et al in their experiments

[5].

The energy imparted from the sphere to the laminate during the period

of contact can be evaluated in several ways. We can either compare the

initial and rebound velocities of the mass or the contact force and dis-

placement histories. We have

KE = 1 ms(Wo2_ - 2) (42)

or

KE = f F dw (43)
0

where wf is the displacement of the mass when the contact ceases.

Of course, one cannot expect these elastic solutions to compare

favorably with the experimental results. The reason is obvious: The

inelastic response in the contact zone is too substantial to neglect.

2. Estimate of the Imparted Energy

The finite element procedure can be used for any kind of inelastic

contact law. In the future, if such laws are established, the finite

element solution should be aile to yield more accurate response histories.

However, for the FOD of composites problems, we are mainly concerned

with the energy absorbed by the laminate rather than its dynamic response

history. With this in mind, we are able to utilize the special material

properties of the fiber-reinforced composite to estimate this energy with

surprisingly accurate results.

From all the available experimental data, the stress-strain relations

of fiber-composite composites behave almost linearly up to failure. Only
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the longitudinal shear exhibits somewhat nonlinear behavior. Since in the

present consideration the longitudinal shear deformation is negliglble, the

linear relations are valid in the loading stage. Only when the indertation

reaches its maximum depth and starts to recover, the linearly elastic

relations should be subject to reexamination. If we assume that the elastic

recovery of deformation is negligible as in rigid plasticity, then the

relation of the contact force and the indentation a can be represented by

the curve shown in Fig. 15. In other words, the contact force will drop

to zero after it passes the maximum value of a in the elastic solution; and

in the subsequent time, the mass does no work to the beam. The total

amount of work done by the projectile becomes

KET= J wmax F dw (44)
0

where wmax is the displacement of the sphere at F = F max . It should be

noted that wmax is not the maximum value of w.

Using Eq. (44), we compute KET and tabulate the results in Table 3.

Our analytical results are excellent as compared with the experimenta

results obtained by Husman et al [5].

3. The Damage Energy

Since not all the work done by the projectile can be converted to

energy dissipated in the damage zone, the total imparted energy KET

cannot be used to account for the amount of damage received by the laminate.

A more pertinent quantity is the damage energy defined by

KED J a max F dQ (45)

0
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The rest of the work done is, stored in the form of vibrational energy

given by

KEv = KET - KED flax F dv (46)
0

where vmax is the displacement of the beam at the contact point when

F = F . The results are also shown in Table 3.
max
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SECTION IV

DISCUSSIONS AND RECOMMENDATIONS

Damages of turbine fan blades of advanced composites due to impact

of foreign objects are to be related to their residual strengths. In this

report, an effort is made to develop a finite element method for determin-

ing the amount of energy that causes damages in the area of impact. The

model is derived based upon linear stress-strain relations and a modified

Hertzian contact law. The results are excellent in comparison with

existing experimental data for glass-epoxy laminated composites. With

this analytical procedure, more general type of laminates can be con-

sidered and optimal design with respect to impact strength of blades is

feasible. The greatest advantage of this model resides in its simplicity

and without using inelastic material behaviors which have been deemed

necessary in solving FOD problems.

However, in adopting this model, several restrictions must be

imposed. First, the blade can only be modeled as a beam. Second, the

projectile should be relatively hard so that the damage zone is confined

in the vicinity of the contact region. The applications are more suitable

for impact of hailstones and gravels rather than birds. The response of

blades to impact of birds is substantially different from that of the

hard objects. A soft body such as a bird usually leads to a longer

contact time and is able to produce larger amplitude stress waves in the

blade. Such waves with high stress levels could produce failure of the

blade at distant regions such as the root, and the local damage might be

less significant. Furthermore, the bird itself could absorb a substantial
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amount of energy during its destruction. In using filite element for soft

body impact, the finite element for the blade must be modeled to account

for large deflection and the soft body be modeled by viscoplastic finite

elements. This part of the work is underway and will be reported in the

future.

In order to model more realistically an actual turbine fan blade, a

plate finite element should be used. The two-dimensional plate element

can describe the twist geometry of the fan blade by using the usual co-

ordinate transformation for finite elements.

Finally, although it is of less practical interest, the elastic

unloading can be incorporated in the present analysis in a crude manner.

As mentioned previously, unloading occurs after the contact force passes

its maximum value as shown schematically in Fig. 16. Exact unloading

path is unclear at this stage. We propose to estimate the elastic strain

to be recovered as

Ce = Y/ET (47)

where Y is the transverse strength of the fiber-reinforced composite.

The total recovery displacement at the is given by

e h Ee (48)

The one-half factor is used to account for the fact that the compressive

strain over the thickness of beam is not uniform and the average value

is taken. With this consideration, the projectile remains in contact with

the beam till the value of a passes amax and reaches amax-ae. Thus, the
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total work done by the projectile becomes

KE*= j a F dw +-F w (9T 02 max e

where we is the displacement of the projectile corresponding to

max - ae after passing a = amax' It is noted that one-half is

added to the second term to approximately account for the fact that the

contact force should drop from Fmax to zero in the region of unloading.

The damage energy KED can be corrected in a similar manner. We have

KED*= KED - F F e (50)

In the calculation, we choose Y = 4 x 103 psi. Both KET* and KED* are

presented in Table 3. Some improvement is noted.
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