ADAO30781

7

AFMLTR-76-87 P~

AN ANALYTICAL METHOD FOR EVALUATING IMPACT
DAMAGE ENERGY OF LAMINATED COMPOSITES

PURDUE UNIVERSITY '{/é

SCHOOL OF AERONAUTICS AND ASTRONAUTICS [~y 7]
WEST LAFAYETTE, INDIANA 47907 ' 0.24 ' 9

JUNE 1976
~
. T e
£ - o
15 Wi
FINAL REPORT FOR PERIOD MAY 1874 - MAY 1975 ©ooott

L et

Approved for public release; distribution unlimited

AIR FORCE MATERIALS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PAPTERSON AIR FORCE BASE, OHIO 45433




NOTICE ‘
- .

When Government drawings, specifications, or other data are used for any purpose
other t..an in connection with a definitely related Government procurement operation,
the United States Government theredy Iincurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (I0) and is releasable
tc the National Technical Information Service (NTIS). At NTIS, it will be
available to the general public, including foreign nations.

This technical report has been reviewed and is aspproved for publication.

. %4 =

. M. Whitney
Project Monitor

No

FOR THE DIRECTOR

S. W. Teal, Chief
Mechanics & Surface Interactions Branch
Nonmetallic Materials Division

Copies of this report should not be returned unless return is reguired dy security
considerations, contractual obligations, or notice on a specific dooument.

AR FORCE ~ 17 SEFTEMBER 70 = 173

e G




UNCLASSIFIED
SECURITY CLARIIFICATION OF THIS PAGE (When Dets Entered)

4 REPORT DOCUMENTATION PAGE BEFORE COMPLEFING FORM

N

DRF-EMAER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
[R-76-87 [ \
COVERED
AN ANALYTICAL METHOD FOR EVALUATING ;HPACT
DAHAGE ENERGY OF LAHINATED ‘OOMPOSI’I‘ES. /
. AUTHOR(s, ‘LT; CONTRACY OR GRAmuMI!R(c)
c. T. /Sun /5 fP33615-73-C-5112 ‘ v~
9. ;::at‘leula:f:g;:lfg;lon NAME AND ADDRESS 10. :.g2RCA=O!lLK!:SINTTN.U.H°lJEECT TASK
School of Aeronautics & Astronautics
West Lafayette, Indiana 47907 73420210

11. CONTROLLING OFFICE NAME AND ADDRESS
Air Force Materials Laboratory (AFML/MBM) @ Junm W75
Air Force Wright Aeronautical Laboratories 13. NUMS AGES
Wright-Patterson AFB, Ohlo 45433 53
. MONITORING AGENCY NAME & ADDRESS({f different from Controlling Oftice) 18. SECURITY CLASS. (of thie report)

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

; digtribution unlimited.

724202,

*7. DISTRIBUTION STATEMENT (of the abatract entered In Block 20, Il different from Report)

18. SUPPLEMENTARY NOTES

19. XKEY WORDS (Continue on reveree side {f necessary and (dentify by block number)

Composite Materials Finite Element
Impact Hertzian Law
Dynamic Response Damage Energy

Laminated Composites

20. ABSTRACT (Conti and 1d fy by dlock number)
A higher order bea- finite elu.nt is developed for dynamic response of beams

subjected to impact of elastic spheres. Hertzian law is used to evaluate the
contact force. A step by step finite difference method is employed to integrate
the time variasble. The finite elements are first evaluated for homogeneous
isotropic beams and excellent results are found. Impact of glass-epoxy laminates
are then considered. The total energy imparted from the projectile to the
laminate is computed and compared with experimental data. Good agreement is
found. The present finite element procedure also allows one to separate the

DD ,’ o> W73 eoimion or t wov 68 18 ossOLETE UNCLASSIFIRD

d.u-@m/

; 74 gﬁ




L

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Kntered)

1
[~ vibrational energy from the damage energy which is to be related to the
residual strength of the composite after impact.

i

IFIED
SECURITY CLASSIFICATION OF THiS PAGE(When Dors Entersd)




FOREWORD

In this report a higher order beam finite element is developed for
dynamic response of beams subjected to impact of elastic spheres.
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SECTION I

INTRODUCTION

In studying foreign object damage (FOD) of laminated fiber-reinforced
composites, one often encounters extremely complex material as well as
structural responses. First of all, the high velocity impact usually
results in a substantial permanent deformation in the contact region.
Secondly, the structural response is transient and it often requires a
large number of vibrational modes to ensure an adequate description of the
motion [1]. Consequently, most of the analytical work [2-3] is restricted
to the elastic response of the laminate by neglecting the plastic deformation
and by assuming that the contact force between the projectile and the
laminate is known. Even with such simplifying assumptions, none is able to
predict quantitatively the damage of the laminate due to impact.

In contrast to the small quantity of analytical work, experimental
work is abundant [4]. Various tests have been performed in an effort to
understand the failure mechanisms with the objective of developing practical
protective measures. Although testing yields quantitative results, it
is in general very restrictive and expensive. In view of the great
variety of composites, a reliable analytical method is highly desirable
in general applications, especially in optimal design.

The present work aims at developing a finite element method to
determine the dynamic response as well as the energy that causes damages
in the laminated composite due to impact of foreign objects. Such damage
energy can be used to estimate the residual strength of the composite

after impact. In this report, a higher order beam finite element is




presented complete with stiffness and consistent mass matrices.

The finite element is evaluated by considering homogeneous and iso-
tropic beams subjected to impact of elastic spheres for which ana-
lytical solutions are available. The elements are then employed

to study beams of a glass-epoxy laminated composite. Solutions

are compared with the experimental data obtained by Husman et al [5].
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SECTION II

THE FINITE ELEMENT METHOD

We will consider symmetrically laminated cross-ply composites.

Extension to unsymmetric laminates which exhibit bending-extension coupling

can be easily carried out in the same manner. In the following, we will
derive the stiffness matrix and the mass matrix for a homogeneous and
isotropic beam element for which evaluation of the element efficiency will
be made. The finite element for a symmetrically laminated cross-ply
composite can be obtained from the isotropic one by using the appropriate
stiffness coefficients. Bernoulli-Euler beam theory will be employed

in modeling the finite element.

1. Finite Element Model for Isotropic Materials

The following power series for the shape function for the beam
element in flexural deformation is taken:

VEaptax + a3x2 + a4x3 + asx4 + a6x5 1)

With this displacement function, there are three degrees of freedom at
each nodal point, namely, the transverse displacement Vis the rotation
8, and the curvature Ky (i=1,2). The displacement function can be
expressed in terms of the six generalized nodal displacements.

Consider an elastic beam element of length L, cross-sectional area

A, moment of inertia I and the elastic modulus given by Eb. The potential

energy U and the kinetic energy T stored in this element are given by




U= T
0
and
L
T=e3 | e (3)
0

respectively. In Eq. (3), p is the mass density, and a dot represents
the derivative with respect to time.

Corresponding to each degree of freedom at the nodal point, there is
a generalized force. In this case we have Qi’ my and M corresponding to
Vis 85 and «;, respectively. The quantities Q; and m. are the usual shear
force and moment, and My is a hypermoment with the dimension Tb-ftZ2.

The potential energy of the generalized end forces for the element
is

(Q

p Qv migy uic) (4)

X
L]
[}
eI

i

Noting that the displacement function of the element is now
expressed in terms of the six nodal displacement components, we can write
U and T given by Eqs. (2) and (3) in terms of the six nodal displacement
components. The equation of motion can be obtained by applying Hamilton's

principle, i.e.,

Y
8 [ (U-T+W, )dt=0 (5)

t
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with 6Ai = 0 at to and t].

The result is a system of six equations which can be written in

matrix form as

{F} = [k] {a}+ [m] {4}

(6)

where {F} is the vector of the generalized forces associated with the

nodal degrees of freedom (a};[k] is the element stiffness matrix and [m]

is the element mass matrix.
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The explicit expression of Eq. (6) is given by
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From the d'Alembert's dynamic condition of equilibrium and the

condition of continuity at the nodal points, we obtain the system of




[ ah, e = Py = [KIEBY (12)

where
(4] = [M] + 48 1) (13)
and
. 2 -
(bhy = (81, + atid), + 2= (), (18)

The solution for {a} can be obtained by inverting [H] in Eq. (12).

t+at
However, a more efficient scheme is to solve Eq. (12) by the Gauss
elimination procedure. With Eqs. (9) and (10), the current generalized
displacement, velocity, and acceleration are obtained from those at the
previous time. If appropriate initial conditions are given, the total
response history can be generated by this step by step procedure.

We have also employed another finite difference procedure suggested
by de Vogelaere {8] in some of the evaluative examples to be discussed
later, and compared with the present method. It was found that these two
methods were comparable,

It should be noted here that the choice of the time increment At is
very critical in assuring the stability of the solution. According to
the conclusion of Leech, Hsu and Mach [9], solution for Eq. (8) would
be stable {f

At = 2/u, (15)



equations of motion for the whole structure:

{P} = [K]{a} + [M]i4} (8)

where (P} indicates the external loads, and [K] and [M] are the assembled
structural stiffness and mass matrices, respectively.

2. Integration of Time Variable

The solution for the equations of motion given by Eq. (8) can be
solved by various methods [6]. A simple finite difference form proposed
by Wilson and Clough [7] will be followed in the present analysis.

The essence of the procedure proposed by Ref. [7] resides in the

assumption that the variation of the acceleration {2} is linear in the
time interval At. Using the assumption, we have

. at o At - (9)
hyy + 55 @y, + 55 1ady,

"

{8}y 4t

and

- : at? - at? v
{Bg,p = (8)y + AL{AY, + 5= {8}y + T5= {adyy,y (10)

Substitution of equations (9) and (10) in (8) yields

- o Atz . At2 .
{P} [KI({a}y + atialy + 55— (8}, + Sg— {B)y,0,)

t+at

(1)
+ [M] (8)ep,e

from which we obtain

o - o
s
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[HJ18Y e = (Plyy,e - [KJIBY, (12)
where
2
[K] = (] + 4 [K] (13)
and
(b}, = {a}, + atia}, + &% (&) (14)
t t t 3 t

The solution for {K}t+At can be obtained by inverting [H] in Eq. (12).
However, a more efficient scheme is to solve Eq. (12) by the Gauss
elimination procedure. With Eqs. (9) and (10), the current generalized
displacement, velocity, and acceleration are obtained from those at the
previous time. If appropriate initial conditions are given, the total
response history can be generated by this step *v step procedure.

We have also employed another finite difference procedure suggested
by de Vogelaere [8] in some of the evaluative examples to be discussed
later, and compared with the present method. It was found that these two
methods were comparable.

It should be noted here that the choice of the time increment at is
very critical in assuring the stability of the solution. According to
the conclusion of Leech, Hsu and Mach [9], solution for Eq. (8) would
be stable if

at = 2/ (15)

where " is the highest natural frequency of the beam element. They

also suggested that At should be no greater than one-sixth of the critical
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P -

value in order to obtain the fine high-~frequency detail of the response.
However, we have found that to insure the stability and to contain the
higher frequencies of the higner order beam element model At should be
no greater than one-tenth of the critical value. For nonlinear problem
At should be even smaller.

3. Evaluative Example - Impulsive Loading

In order to test the efficiency of the present higher order element
we consider a simply-supported beam of length L subjected to a sine pulse

given by

it
T

P =P, sin for 0t S+ (16)

P=o for t >« (17)

The force is located at the center of the span. An analytical solution

for the central deflection was obtained by Ref. [10] as

Vo, ® 2Pt E ! [—513—7'(sin LATN i sin wt)]
L2 " w BT &35 T r2.T, % i
for 03t ¢ (18)
and
2P0L3 E 1 4Tit (ﬂt) ( T 1
v = cos{—) sin w,(t -
b2 " 7T 4y 55 T Tj4:2 T, o2
for ts> (19)
where
2n _ 2L2 T
T, = —= / A= "1, 1=1,3,5... (20)
8
.W“,m.::j - ——

B i NP - -




Baach ol

The following numerical values are taken:

P° = 1000 1b, * = 20 x 10" second, Eb = 30 x 106 psi and
the beam is assumed to be %-- in x % - in in cross-section and 30 in.
in length.

The analytical results are obtained by retaining 1000 terms in
Eqs. (18) and (19). A check shows that there is virtually no difference
between a 250-term solution and a 1000-term solution. Accordingly, we
can practically take the 1000-term solution as the exact solution.

Due to the symmetry, the higher order beam element model is generated
for only one-half of the beam. The solution is carried out for N = 5,
10, 20, and 50, where N is the number of elements used for the half beam.
For the purpose of comparison, the solution of the conventional 4 x 4
element [11] is also carried out. The central deflections at various
times are shown in Table 1. It can be seen that the higher order element
is superior to the 4 x 4 element. To manifest the far more superiority
of the higher order element in obtaining stresses, the bending stress at
the central span of the beam is carried out and shown in Table 2. It is
easy to recognize that the accuracy of the 20-higher-order-element solution
is about the same as that of the 50- 4 x 4 element. It takes CDC 6500
105 seconds central processor time for the former and 320 seconds for
the latter. Thus, for the same degree of accuracy, the higher order element
model uses about one-third the time as would be used by the 4 x 4 element

model.

4. Elastic Impact
When subject to the impact of a mass, the beam receives an impulsive

force which is the contact force between the mass and the beam. The
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calculation of the contact force depends crucially on the 1ocal deformation
at the contact region. The local deformation in turn is affected by the
deflection of the beam. Timoshenko [12] initiated a basic approach in this
area by combining the Hertzian contact force with the Bernoulli-Euler

beam theory to analyze the transient dynamic response of a beam subjected
to the impact of an elastic sphere. Several investigators later continued
Timoshenko's work by either simplifying the computational procedure or
employing the Timoshenko beam theory in the analysis [13-14]. Many ex-
perimental works have also been conducted [15-16]. 1In all the previous works,
it was assumed that the vibration of the striking mass could be neglected.
This assumption is supported by the result obtained by Rayleigh that very
little vibration is induced in an oscillating system under the influence
of forces of duration long in comparison with its natural periods.

Consider an elastic sphere striking the beam in the transverse
direction. If the velocity of the sphere is not too high, the local de-
formation between the sphere and the beam can be regarded elastic, and,
as a consequence, the Hertzian law of contact can be employed. Let F be

the contact force and a be the relative appwoach, then the Hertzian law

is given by
F = kyo/2 (21)
where the contact point spring constant k2 is given by
1/2
Kk, =2 s (22)
2 3 2 2
1-v 1-vb
(——+ )
s b

12

R




In Eq. (22), RS is the radius of the sphere; Vg Es and Vb Eb are the
Poisson's ratios and the Young's moduli of the sphere and the beam, re-
spectively. A derivation of Eq. (21) can be found in Ref. [17). The
relative approach a can be expressed in terms of the displacements of the

mass and the beam as
a =W - v(xo) (23)

where w is the displacement of the sphere measured from the position of the
initial contact and v(xo) is the displacement of the beam at the point of

contact x = L
The equation of motion governing the mass is given by

ms; = —kz[w - v(x°J3/2 (24)

Thus, the motion of the sphere is nonlinearly coupled with that of the
beam.

From Eq. (24) we have at time t + At

W - 3/2
MeWerat = ~KoDWerpe = Verat(%p)] (25)

and

F (26)

teat = " Ms¥ieat

where Ft+At denotes the contact force at t+at. As a first estimate, we

assume that the values of Weint and Vt+At(xo) can be approximated by

. . ] 5
Wepat * W +Atwt + 3 at? Wy (27)

13




and

_ . 1 v
Vet %) = v (xg) + otvy (xo) + 7 at?vy (x)) (28)

respectively. Substituting Eqs. (27) and (28) in Eq. (25), we obtain

“t+At in terms of the known results at the previous time t. The contact

force F can subsequently be obtained from Eq. (26). Using this

t+at
expression for the contact force in the established beam program, the

displacement, velocity and acceleration at each nodal point can be computed.

However, more accurate values of w and v t(xo) can be obtained

t+at t+a
from the first approximate values. Using the formula given by Eq. (10),

we can write

1

. . 'I .
LY Ly
w, At W+ 3 at LR At? w (29)

Weent = "t t+at

_ ‘ . 'I e " .o
Vieat (xo) = v, (xo) + at vt(xo) + §-At2Vt (xo) tE Atzvt+At(x0) (30)

where W and v are obtained from the first round solution. Sub-

t+at t+at
stituting Eqs. (29) and (30) in Eq. (25) and subsequently in Eq. (26) we

obtain a medified contact force F,, ., which, in turn, is used to yield

t+A
a more accurate solution for the beam. Such iterative procedure can be

carried on till the convergence criterion is met.

5. The Timoshenko Problem

In 1913, Timoshenko [12] investigated a 0.394 - in x 0.394 - in x
6.05 - in (1-cm x 1-cm x 15.35 cm) simply-supported beam subjected to the
transverse impact of a steel ball of 0.394 in radius. The initial
velocity of the sphere was 0.394 in/sec. The material constants taken

were

14




o = 0.0089 slug/in3, Ep = 31.3 x 10% psi, v = 0.289 (31)

In Timoshenko's solution, the resulting nonlinear integral equations were
solved by a stepwise numerical integration procedure.

Due to the symmetry, only half of the beam is taken in the present
analysis. The time step at = 5 x 10"8 second is used. The contact force
history, the central deflection of the beam and the displacement of the sphere
are computed till the contact ceases. The results are shown in Fig. 1.

It is found that the present solutions agree very well with those obtained
by Timoshenko. The rebound velocity of the sphere at the end of the
contact is -0.1192 in/sec as compared with -0.1198 in/sec obtained by
Timoshenko.

A similar problem can be found in Ref. [17], where a central transverse
impact of a 1/2-in-diameter steel ball on a 1/2-in x 1/2-in x 30-in simply-
supported steel beam was studied. The initial velocity of the ball was

assumed to be 150 ft/sec. The material constants were

Eg = Ey = 30 x 106 psi, vp = 0.3, pg = op = 0.0088 slug/in? (32)
In Fig. 2, the contact force obtained by using 65 harmonics and time
increment At = 0.1: sec is reproduced from [17].

The solutfon according to the present finite element {s obtained by
employing 50 elements for half of the beam. The time step at is chosen
to be 5 x 10'e sec. The results are also shown in the figure for the
sake of comparison. The agreement between these two solutions is excellent

over a wide range of time. However the maximum force obtained from the
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finite element method is about 2 higher than that ohtain:d by [17]. It
was revealed in [17] that if .t was taken to be 2.735. sec, then the
maximum contact force would be reduced by about 9%. Thus, the foregoing
discrepancy could have been reduced if smaller time steps were used by
Geldsmith,

6. Impact with Permanent Indentation

Permanent craters can be generated even at relatively low impact
speeds. According to Davis [18], a permanent crater formed when a 3/8-
in-diameter steel sphere dropped from a height of 0.15 inch onto an armor
plate which had a Brinell hardness 321. Therefore, 1t is more realistic
to use a dynamic plastic force-indentation law instead of the Hertzian
law of contact for the impact probiem.

One of the approaches in obtaining the dynamic plastic force-
indentation law was proposed by Barnhart and Goldsmith [19]. A sphere
was dropped onto a steel block from heights of 1 to 13 feet. Initial
velocity, rebound velocity and permanent crater depth were measured in each
test. It was assumed that (1) the initial kinetic energy was completely
transformed into the kinetic energy of rebound and the energy needed to
form the permanent crater, (2 ) the rebound energy of the sphere was
derived solely from the elastic strain energy stored equally in the sphere
and the block during the indentation process, { 3 ) the force law could be
derived from the modified Hertzian law of contact: for indentation process,

F = ern 0 z « - (lm (33)

and for recovery process,

a - u.r Q

F =F [_.._‘__J > -
m - - -

am rrr um 1 qr
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where subscript m denoted the state of maximum relative aoproach, 4
was the permanent crater depth, q could be taken as 3/2 as in the Hertzian

law, and N and n were determined from iterations of the following equations:

Noomel 1 e 1.

T tm T Mg W - g Mg W (35)
F

! (36)

am w2 =0 -
g Mg V¢ aIT'(“m i)

In Eqs. (35) and (36), m was the mass of the sphere, W, and we were the
initial and rebound velocities of the sphere, respectively.

Using the force-deformation laws given by Egs. (33) and (34), we
consider a 1/2-in-diameter steel ball striking at the mid-span of a simply-
supported beam. The steel beam has the dimensions 1/2-in x 1/2-in x 30-in
and the material constants are given by Eq. (32). The initial velocity of
the sphere is 150 ft/sec.

From Ref. [17] we found that the F-u law assumes the form
F=1.29 x 10% g1.128 0 aa (37)

and from Ref. [16], we found that the average crater depth was
a, = 0.0123 in. Thus, Eq. (34) takes the form

a2 5

Fer 20818 o, = a 2 0.0123 (38)

The computer program developed earlier for the elastic impact can

be readily extended to the present case. During the indentation period,

19
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the Hertzian law of contact used in the elastic impact is simply replaced
by Eq. (37), and during the recovery process Eq. (38) is used. It should
be noted that F_ and o  appearing in Eq. (38) can be obtained from the
results for the identation process when the maximum relative approach

is reached.

The results obtained based on 50 finite elements and at = 0.05u
second are shown in Fig. 3. The contact force given by Goldsmith [17] is
also plotted for comparison. Again, the agreement is good over the whole
period except in the vicinity of the maximum contact force. This dis-
crepancy can be explained in the same manner as in the elastic case

described in Section 1I1.5.

7. Finite Element for a Laminated Composite
If the Bernoulli-Euler beam theory is employed to model the symmetric
cross-ply laminated composite, then its stiffness matrix can be obtained
from Equation (7) by replacing EbI by the bending stiffness of the laminate
given by h/2
Db = J bE ; z? dz (39)
-h/2
where b is the width of beam, E, is the Young's modulus of the ith lamina
in the x-direction, z is the thickness coordinate, and h is the thickness
of beam. It is noted that Ei = EL(the longitudinal Young's modulus) if the
fibers direction in the '.h lamina is parallel to the x-axis. If the fi-
bers are transverse to x-axis, then E; = ET ( the transverse Young's
modulus).
The indentation law for an elastic isotropic sphere on the laminated

composite is assumed to have the same expression given by Eq. (21). Such
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formula was found to be valid by Willis [22] for a rigid sphere pressed on

a transversely icotropic halfspace. In the present work, the spring

constant is taken as

1/2
=4 s : (40)
23 j-vs‘ 1 )
\—F— t =—
ES ET
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SECTION 111
IMPACT RESPONSE OF COMPOSITE MATERIALS

We now proceed to use the finite element and the modified Hertzian
contact law to study the dynamic response of a laminated beam and the
energy imparted from the striking mass to the beam. It is clear that
our main objective is to predict the work done by the projectile on the
beam. It should be noted that the total amount of energy of the mass
is, in general, absorbed in two forms, namely the vibrational energy
stored in the form of vibration of the laminate and the energy dissipated
in the contact zone. For a hard projectile, damage generally occurs
in the contact area and the vibrational energy which, in this case, does
little damage to the beam will be damped out. In view of this, it is
desirable to separate these two types of energies received from the
striking mass and relate the "damage energy" to the reduction of strength

of the jaminate.

1. The Elastic Response.

Consider cantilever beams of laminated composites subjected to the
impact of a mass at the midpoint of the length. By using the finite
element method described in Section Il, the entire response history of the
beam and mass can be obtained. In Figs. 4-14, results for various approach
velocities are presented for Scotch ply/1002 laminated composites. The
elastic constants are

E = 5.7x 108 psi, E; = 1.7 x 10% psi, p = 0.00202 slug/ir?

T

The projectile is a steel ball of diameter 0.177 in. Twenty-four

elements are used with At = 0.1 . second. The same dimensions of
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specimens and materials were also used by Husman et al in their experiments

[5].

The energy imparted from the sphere to the laminate during the period
of contact can be evaluated in several ways. We can either compare the
initial and rebound velocities of the mass or the contact force and dis-
placement histories. We have

KE = 7 m (W2 - wg) (42)

i

or
e
KE = J F dw (43)
]
where We is the displacement of the mass when the contact ceases.
Of course, one cannot expect these elastic solutions to compare
favorably with the experimental results. The reason is obvious: The

inelastic response in the contact zone is too substantial to neglect.

2. Estimate of the Imparted Energy

The finite element procedure can be used for any kind of inelastic
contact law. In the future, if such laws are established, the finite
eiement solution should be ahle to yield more accurate response histories.
However, for the FOD of composites problems, we are mainly concerned
with the energy absorbed by the laminate rather than its dynamic response
history. With this in mind, we are able to utilize the special material
properties of the fiber-reinforced composite to estimate this energy with
surprisingly accurate results,

From all the available experimental data, the stress-strain relations

of fiber-composite composites behave almost linearly up to failure. Only

35




the Jongitudinal shear exhibits somewhat nonlinear behayior. Since in the
present consideration the longitudinal shear deformation is negligihle, the
linear relations are valid in the loading stage. Only when the indentation
reaches its maximum depth and starts to recover, the linearly elastic
relations should be subject to reexamination. If we assume that the elastic
recovery of deformation is negligible as in rigid plasticity, then the
relation of the contact force and the indentation « can be represented by
the curve shown in Fig. 15. In other words, the contact force will drop

to zero after it passes the maximum value of o in the elastic solution; and
in the subsequent time, the mass does no work to the beam. The total

amount of work done by the projectile becomes
W
KE = I maX F dw (44)
o]

where Woax is the displacement of the sphere at F = Fmax' It should be
noted that Woax is not the maximum value of w.

Using Eq. (44), we compute KET and tabulate the results in Table 3.
Our analytical results are excellent as compared with the experimental

results obtained by Husman et al [5].

3. The Damage Energy

Since not all the work done by the projectile can be converted to
energy dissipated in the damage zone, the total imparted energy KET
cannot be used to account for the amount of damage received by the laminate.

A more pertinent quantity is the damage energy defined by

a
KE, = J mX F da (45)

0
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The rest of the work done is stored in the form of vibrational energy

given by
v
= - max
KEv = KET - KED = Jo F dv (46)
where Vmax is the displacement of the beam at the contact point when
F = Fmax' The results are also shown in Table 3.
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SECTION 1V

DISCUSSIONS AND RECOMMENDATIONS

Damages of turbine fan blades of advanced composites due to impact
of foreign objects are to be related to their residual strengths. In this
report, an effort is made to develop a finite element method for determin-
ing the amount of energy that causes damages in the area of impact. The
model is derived based upon linear stress-strain relations and a modified
Hertzian contact law. The results are excellent in comparison with
existing experimental data for glass-epoxy laminated composites. With
this analytical procedure, more general type of laminates can be con-
sidered and optimal design with respect to impact strength of blades is
feasible. The greatest advantage of this model resides in its simplicity
and without using inelastic material behaviors which have been deemed
necessary in solving FOD problems.

However, in adopting this model, several restrictions must be
imposed. First, the blade can only be modeled as a beam. Second, the
projectile should be relatively hard so that the damage zone is confined
in the vicinity of the contact region. The applications are more suitahle
for impact of hailstones and gravels rather than birds. The response of
blades to impact of birds is substantially different from that of the
hard objects. A soft body such as a bird usually leads to a longer
contact time and is able to produce larger amplitude stress waves in the
blade. Such waves with high stress levels could produce failure of the
blade at distant regions such as the root, and the local damage might be

less significant. Furthermore, the bird itself could absorb a substantial
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amount of energy during its destruction. In using fiuite element for soft
body impact, the finite element for the blade must be modeled to account
for large deflection and the soft body be modeled by viscoplastic finite
elements. This part of the work is underway and will be reported in the
future.

In order to model more realistically an actual turbine fan blade, a
plate finite element should be used. The two-dimensional plate element
can describe the twist geometry of the fan blade by using the usual co-
ordinate transformation for finite elements.

Finally, although it is of less practical interest, the elastic
unloading can be incorporated in the present analysis in a crude manner.
As mentioned previously, unloading occurs after the contact force passes
its maximum value as shown schematically in Fig. 16. Exact unloading
path is unclear at this stage. We propose to estimate the elastic strain

to be recovered as

€a T Y/ET (47)

where Y is the transverse strength of the Tiber-reinforced composite.

The total recovery displacement at the js given by
=1y
ag = 7 h eg (48)

The one-half factor is used to account for the fact that the compressive
strain over the thickness of beam is not uniform and the average value
{s taken. With this consideration, the projectile remains in contact with

the beam ti11 the value of a passes Amax and reaches Amax %" Thus, the
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total work done by the projectile becomes

W
- max 1
K Jo Faws LF  w (49)
where Wo is the displacement of the projectile corresponding to

L after passing a = % ax” It is noted that one-half is

added to the second term to approximately account for the fact that the

contact force should drop from Fmax to zero in the region of unloading.

The damage energy KED can be corrected in a similar manner. We have
(50)

In the calculation, we choose Y = 4 x 103 psi. Both KET* and KED* are

presented in Table 3. Some improvement is noted.
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