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PART ONE

THEORY AND EXAMPLES

I. STATEMENT OF THE PROBLEM

Figure 1 snuws the problem to be considered and defines the coordi-
nates and “arameters to be used. The perfectly conducting plate covers
the entire :=0 plane except for the aperture which is rectangular in shape
with side lengths LxAx and LyAy in the x and y d'rections respectively.

Lx and Ly are positive integers and Lx > 2. The aperture is fed by a
rectangular waveguide. The excitation of the waveguide is a source which

produces one mode, of unit emplitude, which travels toward the aperture.

The general method of solution [1] is to cover the aperture with a
perfect electric conductor, to place magnetic current sheets -+M and -Y
regpectively on the left-hand and right-hand sides of this conductor, to
obtain an integral equation for M by equating the tangential magnetic
fields on both sides of this conductor, and to solve this infegral equa-
tion using the method of moments. The testing functions are the same
51' Each gi is a
triangle in the direction of current flow and a pulse in the direction

as the expansion functions for M and are denoted by
perpendicular to current flow.

1I. SUMMARY OF BASIC THEORY

The solution for M is given [1] by

M=) VM, (1)
g I

i
where the Vi are elements of a colunv vector V given by

¥ = x84 P8 3 (2)
Here,
hs 8
dre- ] omcatep e ®
apert.

[1] R. F. Harrington and J. R. Mautz, "A Generalized Network Formulation
for Aperture Problems," Scientific Report No. 8 on Contract F19628-
73-C-0047 with A, F. Carbridge Research Laboratories, Report AFCRL-
TR-75-0589, November 1975.
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Fipg. 1. A rectanpular waveguide radiating thrnugh a rectangular

aperture into half space bounded by ai electric con~
ductor.
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where gﬁsggj) is the magnetic field at ¢=0+ radiated by the magnetic

current Hﬂ in front of the perfect electric conductor. Also,

ij z Ain ¥ xjn ()
and

=2y A (5)

3 030
where

Ay = ” Myocoup gy de (6)
apert.

Here, u is a unit vector in the z direction, Ed is the jth waveguide

mode, and Y, i1s its characteristic admittance. The excited mode is &o°

3
The coefficients Pj of the reflected waveguide modes are given by
1+T1, g Ay
)

ZAiji, 140,

The gain associated with the Y component of the magnetic field in the
half-space z > 0 is given by

2
k ~ 2
G = P (8)
8mn Re(V[Yhs]*G*) | l

where n is the characteristic impedance of free space and

—jko
P‘;--Z ” yd-xme wmz“ds. (9)

apert.,

In (9), km points from the distant observation point to the aperture and
Ibml is the propagation constant k.

[YhS] is %-times the admittance matrix dealt with in [2]. P has

[2] 3. R. Mautz and R. F. Harrington, "Electromagnetic Transmission Through
a Rectangular Aperture in a Perfectly Conducting Plane," Scientific
Report No. 10 on Contract F19628-73-C-0047 with A.F. Cambridge Research
Laboratories, Report AFCRL-TR-76-0056, February 1976.




been calculated in [2] for the special case X =y = 0. % and y, are
defined in Fig. 1. From (9), we see that Xy £ 0, y; # 0 merely introduces

F ) )

the phase factor e which is subsequently masked

by the magnitude operation im (8)., Now that [YhS] and ?ﬁ are disposed of,

Ao

all that remains to carry out the calculations (1) to (9) are detailled
formulas for A,, and Y,.

13 3

II1. COEFFICIENTS A, j AND CHAKRACTERISTIC ADMITTANCES Y,
< J

Expression (6) for Aij requl.;:z3 a knowledge of the expansion

functions yi and waveguide modes gd.
The set Ei of expansion functions is split into a set‘yz of x

directed magnetic currents and a set‘yi of y directed magnetlc currents
defined by

Mx x y p=1,2,oooLx"l
or(a-D (1 -1) = Bx 0% By Gmyy) (10)
X q=1,2,...Ly

y y x ’ p=l,2,...Lx
Mo =u T’ (y-y,) P (x=x,) (11)
~pH(@-DL, sy Tq 1 Tp L q1,2,00 L1
where T:(x) and TZ(y} are triangle functions defined by
- (A;l)Ax (p-1)8x < x < pix
Xy | (pFL)AX ~ x
Tp(x) X pAx < x < (ptl)Ax (12)
0 |x - pax| > Ax
(y = (q-1)ay
Ay (q-1)ay <y < qby
Tz(y) =1 —(@%—:—1 qdy <y < (q+l)dy (13)
L 0 ly-qay| > sy

and ?:(x) and Pg(y) are pulse functions defined by




1 (p-1)8x < x < pbx
p§(x) = (14)

0 all other x

1 (g-1)dy <y < qby
Pi(y) = . (15)

0 all other y

The set ﬁj of modes for the rectangular waveguide is split into

a set ngE of TE modes given by [3]
TE \/ ab “n’n gl mirx oy m mirx nmy.
e W = [u = cos — sin -y = sin —= cos *74]
~m+n(Lm+.\) (mb)2 + (na)z ~»x b a b ™ a a b
(16)
m=0, 1’2"°'Lm m+n%0
n= 0, 1,2,0-0Ln
1 m=0
e, =
2 m= 1,2,..-
™
and a set e:l of TM modes given by
,(3;1:( DL = 2 —-—-;—b————i[u R cos EITisiup—::y--i- u %sin X cos E;—?-]
n m (mb)“+(na)~ “X 2 a ~y a
@an

m = 1’2’3’0‘.I‘In

n = 1,2,3,...Ln )

X y o
With the separation of 'lf‘id into 3‘4 and Nb‘i’i and f:j into Eﬂ and 2
Aij of (6) expands to

[3] R. F. Harrington, "Time-Haruonic Electromaguetic Fields," McGraw-
Hill Book Company, New York, 1961, Equations (8-34), (3-86), and
(3-89) and Section 4-3.
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XTE [[

>4 TR

Al } Miou xg ds (18)
apert,

[ [

yTE = y . TE hd

Aij ) };Id 4, % gj ds (19?
apert.

XM [ x ™

Aij = I Hri 4, X ,‘ij ds (20)
apert.

Yy _ y . ™

A:Lj ” H'l u X&] ds . (21)
apert.

Here, HI, y,i, 3’;’E’ and Sdm are given by (10), (11), (16), and (17)

respectively.

A tedious but stralghtforward evaluation of the integrals appearing
in (18) to (21) leads to

: mrdx \ 2 nrdy
] 2w AxTE o fbxhy €n (mn) sin 2a sin 2b
Axdy 1j ab ‘kja mrAx nndy

2a 2b

m(x, + pdx) nn(y, + (q-1/2)4y)

sin = cos T (22)
vy y— nuldy \ 2 4. mmix
[ 7x AyTE _ 4'n'AxAyem (nn) sin 75 sin a
AxAy "ij ab k,b nnAy mrAx -
J 2b 2a
mn(xl + (p-1/2)Ax) n1r(yl + qay) .
cos sin (23)
a b
6




mrdx 2

nrdy
i By un, sin 55\ [0 5%
Axby ij k b nindx nndy
2a

2b

m'-r(x1 + pbx) mr(y1

+ (a-1/2)by)

sin cos

a

nmly \ 2 mrdx
T ™ _ . [Bubxly o sin =5 sin =50
AxAy 1]j ab k.a nmAy m1tdx

3

2b 2a

mn(x1 + (p-1/2)4x)

b

nn(yl + qdy)

n = 0,1,2,...Ln
whereas in (24) and (25),

m = 1,2,...Lm
j=m+ (n--l)Lm

cos P sin 5
where
= o[ (@2 . RBTy2
k= @D+ EHP
In (22) and (24),
p = 1,2,..0Lx-1
1=p+ @D
q= 1,2,...Ly
whereas in (23) and (25),
p= 1,2,...Lx
i=p+ (q---l)Lx .
q = 1,2,..-Ly-1
In (22) and (23),
m = 0’1’2’...Lm
j=m+n (L+) mn # 0

n= 1,2,...Ln

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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If m or n is zero in (22) or (23), the resulting (51%—99 is to be replaced
by unity.

The characteristic admitta.ces Yj of the rectangular waveguide with

relative dielectric constant e_ and relative permeability unity are classi-

fied as either TE admittances Y or ™ admittances y™ given by [3]

J h|
k
- 61392 - ¢ k Ve <k
TE T T 3
—anj = (31)
k
2
-J\/er- (D ke > K,
. €y
Ei - k /E; < kj
- (k) - e.r
gy = < (32)
_je
L k /E: > kj .
k
1.2
~ e, - D

In (31) and (32), n is the characteristic impedance of free space, k is
the free space wave number, and kj is the cutoff wave number given by (26).
Strictly speaking, we should have defined separate cutoff wave numbers,

say kiE and kTM, for TE and T modes because the relatlonship between j,
m, and n in (26) is given by (29) for TE modes and by (30) for IM mcdes.

IV. POSSIBLE DIFFICULTY AT CUTOFF FREQUENCIES OF TM MODES

If ky = /e, then Y§M of (32) tends to infinity. Assume that
k, 1s very close to ke, for § = J;, 35 1gs-++3;, and vewrite Y8 + y'%)
of (2) as

[Y¥8 + Y] = [B + C] (33)

where

LA = By ey Sty %




it

f - . ks
. [ - -

™ ™
By, W,sz Aijz , %=1,2,3,...L (34)

i _ Jhs TE ,TE ,TE , ¢' ,TM TM M
‘ cij-yijafEAin Y Ajn+2 Mg Yo A (35)

'
1 where z denotes the sum over all n except n=j1, jz, j3, jL. Also,
+ , n

| TE _ ,XIE - .
{} Ain Ain , 1=1,2,,.. (Lx 1)Ly
| (36)
l
i TE w AYVIE - _
| At DI 0 = M > 1= D2ee L (L -D)
X y
s and AI:: is given by (36) with superscripts TE replaced by TM. The
: xTE ,yTE ,xTM yTM.
. Ain » Ay s Ain , and Ain are defined by (18) to (21)
.: Substituting (33) into (2), we obtain
‘{
% V= +c T (37)
i
; Let
V=Ba+V, (38)
and choose o such that
BV, =0 (39)
‘ Next, we substitute (38) into the form
Tt = (88 + ¥ (40)
| . of (37) and use (39) to obtein
% T - 88 + ¢] Be + o, (41)
2
'5 Expression (41) 1s premultiplied by ¢t resulting in
!
j
i v, = ¢t - 1c7leE + 0] BE (42)
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where U 1s the identity matrix. To obtain a, premultiply (42) by B and
use (39).

% = (8817 Lrdc e + vl tEc it (43)
The solution for V is obtained by substituting (42) and (43) into (38).

Ve - ¢ lacts + v tac it (44)

When Y}M , L =1,2,...L, tend to infinity, all the elements of B, also
L

i,

tend to infinity., Hence we are justified in substituting the approxi-
mation

1

et + 1t % e tBy 7Y - (e ey? 4 rEcley 3 (45)

where the superscripts -2 and -3 denote respectively the square and cube
of the inverse matrix, into (44) with the result

V=l c"ln[ﬁc"lal"lﬁc'lfi + c'ln[ﬁc'lsl"zﬁc”lfi N c“ln[ﬁc'lnl“Bﬁc'lfi-
(46)

Consider the case in which the wavegulde excitation is neither the

jlth nor the jzth... nor the thh ™ mode. As Y§M, 2 =1,2,...L approach
‘A
infinity, (46) approaches
¥ = ¢t - ¢Iorselpy Lot 47)
where
D, = A}? , % =1,2,3,...L (48)
9,

Substitution of (47) into (7) gives P?E for all j and P?M for all j

except j = jl’ j2 oo jL. Here, P§E is the coefficient of the jth
TE reflected mode and PTM is the coefficient of the jth TM reflected

mode. Expression (47) gives P?M
A

manner in which PTM approaches zero, retain one more term in (46).

I

=0, = 1,2,...L. To investigate the

10
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T e

V= ¢ - o lpracley e 4t + ¢ Lpricipy 251t (49)

Premultiplying (49) by B, we obtain

# = [8c”iey e it (50)

which, in view of (7), (34), and (48), leads to

Yo r™ o (rfctn) e 1, (51)
1, "3,
where ( )2 denotes the 2th element of the column vector inside the
parentheses. From (51) we conclude that, for the case in which the
waveguide excitation is neither the jlth nor the jzth ««. DOTr the
j th ™ mode, as Yj »% = 1,2,...L approach infinity the magnetic field
2

of the jzth, £ =1,2,...L ™ mode approaches a finite 1limit and the com-
plex power associated with this mode approaches zero.

Next, consider the case in which the waveguide excitation is the
jpth, 1<p <L, ™ mode. From (5) and (48), Ti is 2Y§M times the pth
P
column of D. The column vector consisting of the first two terms in (46)

is zero because it is ZYTM times the pth column of the matrix

)

¢y - c"ln[ﬁc'ln]'lﬁc"ln

all of whose elements are precisely zero. Hence for large Y?M, 2= 1,2,...5L,
(46) becomes .

¥ = ¢ ipric ey 25c 11t (52)
which reduces to
V= 2(c"1n[f)c'11)]'1)p (53)

where ( ) denotes the pth column vector of the matrix ingide the

parentheses. Expression (53) gives P?M = 1 and Pj =0, £ ¥ p. By retain-
P b2
ing the last term in (46) we obtain the more accurate representations

11
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™ _ . . PR
Pjp 1 YTM (54)
J
P
I‘TMB—-B& L o (55)
Jz YTM ’ P
&)
where
_ =~ =1 .=1
sz = 2 ([DC "Dp] )2p . (56)

Here, ( )zp denotes the 2pth element of the matrix inside the parentheces.
From (54) and (55), %. conclude that, for the case in which the wavegu'de
excitation is the jpth ™ mode, as Y?Z, £ =1,2,...L approach infinity the
aperture electric field due to the jlth, jzth ves thh T™ modes approaches
twice the electric field of the incident mode and the aperture magnetilc
field due to these modes approaches a finite limit. The complex power
assoclated with the jpth TM wavegulde mode approaches 2B;p and that
asgociated with the jzth, % # p T™ waveguide mode approaches zero. The
following line of reasoning shows that Real (B p) > 0., From power con-
siderations [C + C*] is positive definite. Hence [C—1 + [C_I]*], [DC_lD
+ [DC-ID]*], and [[ﬁC-lD]~l + [[ﬁC-ID]-ll*] are in turn positive definite
and finally Real (Bpp) > 0.

We did not incorporate any of the logic (33) to (56) into the com-

puter program because we contend that the simple precaution of replaciug

k4.2 -6
(k) - €. of (31) and (32) by 10 e whenever the calculated value of

(2392 - €. 1s zero is adequz-2. Denoting (;})2 - €, by Gj, we justify
this contention as follows. For seven decimal digit accuracy, the calcu-
lated value of |6j[ must be exactly zero or be of the order 10-65:r or
larger. Hence, we assume that \6j| is roughly 10-68r or larger. 1in the
following numerical investigation, what appears to be a reasonably accurate

golution for V was obtained for [Gj! in the neighborhood of 10-6ar. We set

12




A

£

Lx Ly Lm Ln 4, Ax = Ay o , a=b s » X] =¥y

and €. = 1 such that Gj + 0 for the TMll mode. Successively, we let

7

§, = -2.38 x 1077, 2.5 x 1077, - 1078, 1078, 10712, -10718,

3

The first value -2,38 x 10-7 was the spontaneously calculated value of Sj.

When the waveguide excitation was the dominant TE mode, the elements of
the computed solution v for the first four values of Gj agreed to within a
fraction of a percent of the magnitude of the largest element of V. In

- 10_12, the elements of v changed by only a few percent

h| -
whereas for Gj = -~ 10 13

going tc §
, the computed solution v was absurdly inaccurate.
When the waveguide*gxcitation was the TM11 mode, the first four values of
Gj gave solutions V differing by less than one percent whereas the com-
-12 and _10—18

puted solutions v for the last two values -10 were absurdly

inaccurate,

V. SYMMETRY OF THE ADMITTANCE MATRIX

The admittance matrix
v = (18 + ¥P8)
appearing in (2) will be shown to be symmetric.
From (4), Y8 ig symmetric,

Yhs is %-tlmes the admittance matrix dealt with in [2]. One might
argue that Yhs is symmetric because of the fact that the set of testing
functions is the same as the set of expansion functions and tecause of
reciprocity. However, this argument is not strictly correct because in
{2] the integrations over source and field regions are approximnated dif-
ferently. Nevertheless, the matrix ZYhB given by [2, Egqs. (23) to (26)]
is symmetric because one can show that

13




13 = Y41
X Xy
Yi3 ™ Y41
VY oYY
Ty = Y41

The symmetry of YhB 18 not due to reciprocity but due to the fact that

of two rectangular subareas, the first as seen from the second is the

game as the second as seen from the first.

VI,

CONTINUITY OF COMPLEX POWER FIOW

It will be shown that the complex power flow associated with the

From (2),

which is the same as

T w [v8 & YPERY

Premultiplying the complex conjugate of (57) by V, we obtain

~e] ~ * * %
" = e 4 Y

LY - R - N

method of moments solution (2) is continuous across the aperture.

From [1, Eq. (27)], the right-hand side of (59) is the complex power
radiated into half space. A development similar to that of [J, Egs.

(22) to (27)] shows that the left-hand side of (59) is the complex power
flowing out of the waveguide. 1In (59), Vfi* represents the interaction of
the magnetic current with the incident magnetic field whereas ﬁng*V* repre-
gents the interaction of the magnetic current with the magnetic field due

to the magnetic current.

(57)

(58)

(59)

The above demonstration of continuity of complex power flow is based

on the assumption that Y

hs

14

is given by (3) and that Y ig given by (4). In
reality, the integration (3) is approximated in [2] and only a finite number
of terms of the infinite sum (4) are retained.

As a result, (59) i. still




e

o st i

true but the right and left-hand sides of (59) are merely approximations

to the complex power flow on both sides of the aperture. This is tolerable
because the obvious way to obtain more accurate complex powers would be to
calculate Y& and Yhs more accurately. Now, these more accurate Y8 and Yh8
should have been used in the method of moments solution and if they were used
then the right and left-hand sides of (59) would be more accurate approxima-
tions to the complex power flow on both sides of the aperture.

Since the left-hand side of (59), henceforth denoted by Pw

P i Rl (60)

is the complex power flow on the waveguide gide of the aperture, Pw should
be expressible solely in terms of the coefficientsl‘j of the reflected wave-
guide modes and the characteristic admittances Yj‘ Substituting (4) and (5)
into (60), we obtain

*

Poe = %% § 5075 E v (z A (Z Ay M. (61)

With the help of (7), (61) becomes

I ety k12
Pog = Yo +Tg) (1 -Tp) ngoynirnl (62)

which, in view of [1, Eqs. (22), (45), and (48)], is not surprising.

VII. NUMBER OF WAVEGUIDE MODES REQUIRED

The nth term in (4) represents the contribution of the nth waveguide
mode to Y'®, The contributions of the TE and Tan waveguide modes are
governed by the (8 2 x) type factors appearing in (22) to (25). Hence,
these contributions begin to fade away gradually as soon as

mAx
2a > 1

ndy .
7 > L

15
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From (44), (34), and (7), it is evident that if a solution V gives

or 1+ Pj =0, 3 =0

then the jth term in (4) has no influence on V and therefore may be
neglected.

If the aperture is centered about x = a/2 or y = b/2 or both,
then it will be shown that several of the Pj are zero. The operator
equation [1, Eq. (4)]

a b i .
HeQW) + B QD = - B, (63)

preserves certain symmetry properties of the transverse component H: of

the incident magnetic field. For instance, 1f the aperture is centered

about x = a2 and if Ei has one of the symmetry properties

1) x component even about x = a/2, y component odd about x = a/2

2) x component odd about x = a/2, y component even about x = a/2

then the magnetic current M has the same symmetry property. Also, if the

aperture is centered about y = b/2 and if,&t has one of the symmetry
properties

3) x component even about y = b/2, y component odd about y = b/2
4) x component odd about y = b/2, y component even about y = b/2

then M has the same symmetry property. The above symmetry relations

between M and ﬂi will be verified later on in this section. It follows

that 1f the aperture is centered about x = a/2 and if‘Hi has symmetry
property 1) then Pj = 0 for all modes which have symmetry property 2) whereas
1f ﬂz has symmetry property 2) then Pj = 0 for all modes which have symmetry
property 1). Likewise, if the aperture is centered about y = b/2 then

Pj = 0 for ail modes which have either symmetry property 4) or 3) gepending
on whether ﬂt has symmetry property 3) or 4). Moreover, because Ht is the
transverse magnetic field of one of the waveguide modes defined by [1, Eq.

(45)1, (16), and (17), ﬂ: has either symmetry property 1) or 2) as well as

either symmetry property 3) or 4).
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The symmetry relations between M and ﬁi will now be verified. As

far as symmetry propuviies 1Y%, 2), 3), and 4) are concerned, ﬂ:(ﬂ) has
the same symmetry properties as M because the operator B: merely alters
the coefficients of the expansion of M in terms of the transverse mag-
netic fields of the waveguide modes and can not introduce any new modes.

From [Z, Section III],

gj’(y) = ~ 23uF - 2V¢ (64)
where | |
~ik|-r
= ” ME—""ds (65)
apere X
-k z-x'|
b= g ” p & (66)
apert. IETEJ'

where r and 5: are respectively the vectors to the field and source
points in the aperture, w is the angular frequency, ¢ is the capacitivity
of free space, u is the permeablility of free space, and k = w/ﬁg is the
propagation constant in free space. We form a table of symmetry proper-

ties of p versus those of M.

SYMMETRY PROPERTY OF M SYMMETRY PROPERTY OF p
1) odd about x = a/2
2) even about x = a/2
3) even about y = b/2
4) odd about y = b/2

If the aperture is centered about x = a/2 then ¢ of (66) 1s either even

or odd about x = a/2 depending on whether p is even or odd about x = a/2.
Similarly, 1if the aperture is centered about y = b/2 then ¢ is either even
or odd about y = b/2 depending on whether p is even or odd about y = b/Z.

Hence ¢ has the same symmetyy properties as p. Therefore, as regards

17
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symmetry properties 1), 2), 3), and 4), V¢ has the same symmetry proper~
ties as M. Since the x and y components of F are integrals of the same
form as the integral which ¢ is, E?Ex has the same even or odd properties
about x = a2, y = b/2 as ﬁ;gx while E:Ey has the sage even or odd proper-
ties about x = a/2, y = b/2 as %Hy. Thus Ez(k_t) +Ht(}1~) has the same
symmetry properties as M. From this, it follows that H has the same sym-
metry properties as ﬁi.

VIII. SAMPLE COMPUTATIONS

A computer program using the formules derived in the preceding
sections has been written. It is described and listed in Part II of this
report. In this section we give some examples of the computations that

can be made using the general program,

Figure 2 shows the equivalent magnetic current for a rectangular
waveguide of dimensions A by A/2 radiating into half space through a narrow
centered rectangular slot of dimensions A by A/10. Figure 2(a) shows the
x-component of equivalent magnetic current, which is also equal to the y-
component of tangential E field in the slot. Ne y-component of magnetic

current was obtained because only one pulse in y was used. g_is normalized

with respect to
1 1,2
\Lb” |E41? ax ay (68)

wg

where the integral is over the wavegulde cross section. In other words,
the normalization factor is the root-mean-square value of the incident E
field. The phase of M is with respect to that of the incident electric
field at the aperture. All computations are for dominant TElO mode ex-
citation. Figure 2(b) shows the radiation gain patterns in the two planes
x =0 and y » 0, The notation Gey denotes the gain pattern due to He in
the y = 0 plane. The notation Gxx denotes the gain pattern due to Hx in
the x = 0 plane, The horizontal axis in Figure 2 is the z axis.

18
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Radiation gain patterns for an open~-ended

rectangular waveguide of dimensions a/b =
2.25 radiating into half space.
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COHEN, CROWLEY, LEVIS
0 COMPUTER PROGRAM

G
.002 "3"’—’_’___,_.——————
o B
r -00l
=
ol/i l/ i | ] |
=001 | 1 | | l |
0.4 0.5 0.6 0.7 0.8 0.9 1.0
o/
Fig. 7. The equivalent aperture admittance seen by the dominant mode

for an open-ended rectangular waveguide of dimensions a/bL =

2,25 radiuting into half space. Our computed results are com-

pared to those of Cohen, Crowley, and Levis [4].
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Fig. 8. The equivalent aperture admittance seen by the dominant mode

for an open-ended square waveguide of width a radiating into
half space. Our computed results are compared to those cal-
culated and measured by Cohen, Crowley, and Levis {4].
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Figure 3 shows the equivalent magnetic current for an open-ended
rectangular waveguide of dimensions a/b = 2.25 radiating into half space,
for two different wavelengtha. Figure 3(a) 1s for a = 0.6\, and Figure 3(b)
is for a = 0.8\, Although the aperture is now relatively wide, the y-
component of magnetic current is still small, and thus 1s not shown. The
top Figure 3(a) shows magnitude and phase of the x-component of M at y = b/2,
and the bottom Figure 3(a) shows them for the x-component of M at x = a/2,
The top Figure 3(b) shows the magnitude and phase of the x-com; 2nt of M at
y = 3b/8, and the bottom Figure 3(b) shows them for the x-component of M at
x = a/Z. Note that Mx 18 zero at x = 0 and x = a, and it is large near both
y =0 and y = b, This is to be expected from theory. Again the magnetic
current is normalized according to (68). Figure 4 shows the principal plane
radiation patterns for the same waveguide-fed apertures, 4(a) for a = 0.6
and 4(b) for a = 0.8\, Again Ge
plane, and Gxx denotes the pattern due to Hx in the x = 0 plane.

y denotes the pattern due to He in they = 0

Figure 5 shows the equivalent magnetic current for an open-ended
square waveguide of side length a radiating into half space, for two dif-
ferent wavelengths., Figure 5(a) is for a = 0.61, and Figure 5(b) is for
a = 0,8\. The top figures show the magnitude and phase of Mx at y = 5a/12, and
the bottom figures show them for Mx at x = a/2, Again Mx is zero at x = 0 and
x = a, and Mx is large near both y = 0 and y = a. Figure 6 shows the principal
plane radiation gain patterns for the same waveguide-fed apertures, (a) for
a= 0,6\, and (b) for a = 0.8\, Again Ge
y = 0 plane, and Gxx denotes the pattern due to Hx in the x = 0 plene.

y denote. the pattern due to He in the

Finally, Figures 7 and 8 show plots of the equivalent aperture admit-
tance seen by the dominant mode for an open-ended waveguide radiating into

half space. This aperture admittance is defined by

1- Po
Yap "TE Po Yo (69)

where Po 18 the reflection coefficient and Yo is8 the characteristic wave
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impedance, both for the dominant mode, Our computations are compared to

some previously obtained by Cohen, Crowley, and Levis [4]. Figure 7 shows
the results for a rectangular waveguide of dimensions a/b = 2.25, and

Figure 8 shows the results for a square waveguide of side length a. Measured
results were found only for a square waveguide, and these are also shown in
Figure 8.

IX. DISCUSSION

A general purpose computer program has been developed for rectangular
waveguides radiating into half space through a rectangular aperture. When the
aperture dimensions are small compared to the waveguide dimensions, many wave-
guide modes may be required to accurately obtain the waveguide admittance matrix.
In this case it would be advantageous to have an analytic approximation to the
sum of higher-order mode contributions. However, we have not investigated this
possibiliity. Our program appears to give accurate results even for relatively

small apertures, although large numbers of higher-order modes may be required.

The numerical examples given in Section VIII gserve to illustrate the
types of computations that can be made with the general program. The program
is written so that the excitation may be any mode desired, not necessarily the
dominant mode. The aperture can be located anywhere within the waveguide cross
gection. The principal limitation to the use of the program is one set by the
cross~gectional size (in square wavelengths) of the waveguide and aperture.

As with most moment solutions, when the size of the aperture becomes tvo large
then too many expansion functions are required for a solution. As a rule of
thumb, for reasonable accuracy we need at least 5 expansion functions per
wavelength for each component of current, or 50 expansion functions per square
wavelength. Hence, even on large computers, one is limited to apertures of

the order of a few square wavelengths in size,

[4] M. Cohen, T. Crowley, K. Levis, "The Aperture Admittance of a
Rectangular Waveguide Radiating into Half-Space," Antenna Lab.
Rept. ac 21114 S.R. No, 22, Ohio State University, 1953.
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PART TWO

COMPUTER PROGRAMS

I. DESCRIPTION OF THE MAIN PROGRAM

The main program computes the complex coefficlents Vi which deter-
mine the magnetic current M according to (1), the amplitudes Pj of (7)
of the reflected waveguide modes, the equivalent aperture admittance
{1, Eq. (67)] seen by the incident mode, the complex power flowing out
of the aperture, and four gain patterns. The four gain patterns are
written on the first record of direct access data set 6 so that they
may be plotted by the program on pages 43 and 44 of {2]. The main
program calls the subroutines AY, YMAT, PLANE, DECOMP and SOLVE which
are described in Sections II, IYI, and IV,

The data cards are read early in the maln program according to
READ(1,11) LX, LY, LM, LN, LI, NTH, DX, DY, AL, BL, X1, Y1, ER
11 FORMAT(613, 3E14.7/4E14.7)

The variables LX, LY, DX, DY, AL, BL, X1, and Y1 are respectively Lx’
Ly’ Ax/\, Ay/A, a/Xx, b/A, xl/A and yllk where A is the free space
wavelength, See Fig. 1. The variables IM and LN are respectively Lm
and Ln appearing in {16) and (17). We require that

The excitation of the waveguide is the LIth waveguide mode where, in

the program, of (16) is called the (m+n(Lm+1))th waveguide

Ry

~m+n(Lﬁ+1)
d d e'rM

mode an Smt(n-1)L_ of (17) is called the (L +L (L +1) + m + (a-1)L )th

waveguide mode., FR is the relative dielectric constant €. of (31) and
(32) inside the waveguide. The four gain patterns are generated by
evaluating the plane wave measurement vectors [2, Eqs. (55) to (58)] at
angles (6 or ¢) equal to (J-1)*180./(NTH-1) degrees, J=1,2,...NTH.
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PART TWO

COMPUTER PROGRAMS

I. DESCRIPTION OF THE MAIN PROGRAM

’~ ;ﬁj___;_."w_Nm_,w,ﬁ_“”m«

The main program computes the complex coefficients Vi which deter-

mine the magnetic current M according to (1), the amplitudes Fj of (7)
of the reflected waveguide modes, the equivalent eperture admittance

{1, FEq. (67)] seen by the incident mode, the complex power flowing out
of the aperture, and four gain patteris. The four gain patterns are
written on the first record of direct access data set 6 so that they
may be plotted by the program on pages 43 and 44 of [2]. The main
program calls the subroutines AY, YMAT, PLANE, DECOMP and SOLVE which

are described in Sections II, III, and IV,

The data cards are read early in the main program according to
RFAD(1,11) 1X, LY, LM, LN, LI, NTH, DX, DY, AL, BL, X1, Y1, ER
11 TFORMAT(613, 3E14.7/4E14.7)

The variables LX, LY, DX, DY, AL, BL, X1, and Y1 are respectively Lx’
Ly’ Ax/x, ay/x, a/X, b/}, xl/k and yl/x where A is the free space
wavelength, See Fig, 1. The variables LM and LN are respectively Lm
and Ln appearing in (16) and (17). We require that

X > 2
LY > 1.,
The excitation of the waveguide is the LIth waveguide mode where, in
the program,ngn(Lﬁ+l) of (16) is called the (m+n(Lﬁ+l))th waveguide
™

mode and 5m+(n—1)Lm of (17) 1s called the (L +L (L +1) + m + (n-1)L )th

waveguide mode. FER is the relative dielectric constant €, of (31) and
(32) inside the waveguide. The four gain patterns are generated by
evaluating the plane wave measurement vectors [2, Eqs. (55) t¢ (58)] at
angles (6 or ¢) equal to (J-1)*18C,/(NTH-1) degrees, J=1,2,...NTH.
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Minimum allocations are given by

COMPLEX TI(N), GAM(NT), P(4*N), YHS(N*N),
Y(NT), V(NT), V(N), YWG(N*N)
DIMENSION GA(4*NTH), A(NT*N), IPS(N)

the main program, by

COMPLEX Y (NT)
DIMENSION A(N*NT), S1(IMP), S2(LMP), SM(LMP*LX),
CM(LMP*LX), CN(LNP*LY), SN(LNP*LY)

the subroutine AY, by

COMPLEX TC(J1), TX(J1), TY(J1), YXX(J2), Y(N*N)
the subroutine YMAT, by

COMPLEX P (4*N)
the subroutine PLANE, by

COMPLEX UL (N*N)
DIMENSION SCL(N), IPS(N)

the subroutine DECOMP, and by

COMPLEX UL(N*N), B(N), X(N)
DIMENSION IPS(N)

the surboutine SOILVE., Here,

N = (IX-1)*LY + LX*(LY-1)
NT = 2*IM*LN + LM + LN
P = IM+1
LNP = LN+1
J1 = (LX+1)*(LY+1)
J2 = MAX((LX-1)*LY, LX*(LY-1))

Referring to (22) to (25), statement 41 stores
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XTE
Aij

Axh in A(L + (4-1)™N),

<

%?nxum+1+udﬂm.

£
<

Ax'I'M

1]

|

%
[
<1

in A(N®NTE + 1 + (j-1)*N), and

27 AyTM

qg in AGNK + NANTE + 4+ (-1)4N)

|~

%

(=4
«<

where
N = (LX-1)*LY + LX*(LY-1)

NX = (LX-1)*LY

NTE = IM*IN + IM + LN

With regard to (31) and (32), statement 41 also stores -an;‘E in Y(3)

and -an;M in Y(NTE+j). Statement 42 stores ?i—;r-(ﬂ—y— Yhs by columns in

YHS where the set of expansion functions appearing in the definition

%

(3) of Yha is };%’ of (11) appended to ﬂdx of (10).
~-  vning (2), nested DO loops 13 and 15 store the (I,J)th and (J,I)th
elew . assumed to he equal, of fﬁ; [ng + Yh8] in YWG(J2) and YWG(J3).

DO loop 14 puts YIAJI of (4) in V(I). In DO loop 16, K is the summation

index n in (4). Just after exit from DO loop 15, the Jth element of

"5”1/7132?%; Ti is put in TI(J). Statements 43 and 44 store ]/9-2"-%1$ in V.

Inner DO loop 20 accumulates the left-hand side of (7), namely

1+I‘I »y I =11

I‘I y I ¥ LI
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LTI

in Ul where the subscript 0 in (7) is being interpreted as LI. Outer

DO loop 19 accumulates

2 2
~jnj1+ 1 | Y.-jn} Y. |r.|
! T L

in U2, Statement 45 puts nng where ng is given by (62) in U2,

From {1, Eqs. (45) and (48)],

” |Et|%4s = 1

guide

where E: is the transverse electric field of the forward traveling
(incident) mode at z = 0, Hence expression (68) reduces to 1 .
Yab

The V which is printed upon exit from DO loop 34 is /ES'?. State-~
ment 46 puts Yap of [1, Eq. (67)] in Ul.

Concerning (59), Nested DO loops 23 and 24 accumulate szzsb
~ hekak ~ hgkk
VYhs V" in U2. Statement 47 puts nVYhs V' in UL.

Do loop 26 stores G of (8) in G(K). Statement 27 uses

1 m . m
n -1 % - —— -1}*N) .
TH = (J-1*n/(NTH-1) radians to store 2%y Pi in P(1 + (K-1)*N) Pi is
given by [2, Eq. (54 + K)] where 6 or ¢ is TH. For the 2A1!y B™ stored

in P(1 + (K~1)*N) through P(K*N), DO loop 29 accumulates 2255; "% in Ul.

Next, G of (8) is stored in both G(X) and GA(J + (K~1)*NTH).

Statement 32 writes GA on the first record of data set 6 for
possible input to the plot program listed in [2, pages 43-44].
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LISTING OF THE MAIN PROGRAM AND SAMPLE DATA

/] SXEC WATFIV

//GO.FT06F001 DD DSNAME=EE0034.REV1,0ISP=0QLD,UNIT=3330,
DCR=(RECFM=VS,BLKST ZE=2596 , LRECL=2592)

//GO.SYSIN DD *

/1

$403

¢

C

¢
11
12
61
42
14
16
15
13
43
44

MAUTZ ,TIME=1,PAGES=40

MAINMN PROGRAW

THIS PRAGRAM CALLS THE SUBROUTINES AY,YMAT,PLANE,DECOMP,SQOLVE
COMPLEX TI(50),GAM(40C),P(200),CONJG

COMPLEX YHS (2500),Y(400),U2,V{400)yUls YWG{2500)

DIMENSION 5(4) ,GA(1168),A{2500),IPS(50)

REWIND 6

READ(Lly11) LXoLYyUMyLN,LTJNTH,DXcDY ALyBLoXL Y1,ER

FORMAY (613,3F14.7T/4E14.7)

WRITE(3412) LXoLYUMyLNJLI JNTHoDXoDY9ALsBLoX1sY1,yER
FORMAT {* LX LY LM LN LI NTH',5X, 'DX*y 12Xy 'DY?y 12Xy*AL"/1X,613,
13 L4e T/ TX g *BLY 912Xy * X1* 912X V1! 412Xy * ERY /1Xy4E14.T)

PI=3.141593
P2=2.%P1
DX=DX*P2
DY=DY%P 2
X1=X1%p2
Y1i=Y1%pP2
AL=.57AL
BL=.5/BL

CALL AY (LX,LYoLMyLNyDX4DY,AL»BLe X1y Y1sERyA,Y)

CALL VMAT(LXyLY+DX4DYyYHS)
N=(LX=1 )*LY +LX*(LY~1)
NT=2%LM*LNe LN+LM
U2=2.*Y(LI)

J2=1
JS=N*(L I-1)
DO 13 J=1,N
Jl=J

D0 14 I=1,NT
VIt)=Y{I1*xAa{J 1)
J1z=J1+N

CONY INUF

J3=42

DO 15 I=JyN
Ul=YHS(J2)

Ja=1

DO 16 K=1,NT
Ul=Ul+A{J4) %V (K)
J4=J4+N

CONT INUE

YWG{J2) =Ut
YHG(J43)=Ul
J2=J2+1

J3=J3+N

CONTINUF

J2=J2+4J

J5=J5+1
TI(L)=U2%A(J5)
CONTINUE

CALL DECNMP (N, IPS,YWG)
CALL SOLVE(N,IPS,YWGTI V)
Jl=0
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20

19
45

34
35
33
46
36

40

24

23
47

39

25

27

29

o ST

U2=0.

DO 19 [=1,NT

Uti=0.

D0 20 J=1,N

Ji=Jd 1+ 1

Ul=Ul+AIL ) *V (J)

CONTINUE

U2=U24U1 xCONJG (UL DXV (1)

GAM(T)=U1

CCNT INUE

U2=( 0.9 1. ) * (CONJG(U2)-2. %GAM( LI} %CONJG(Y(LI)))
GAM(LI)=GAM(LI)}-1.
CV=PI*SQRT(P2/(AL*BL*D X*DY))

De 34 I=1,N

VI1)=CV&y(T)

CONTINUE

WRITE( 3350 V(I I=1sN)

FORMAT{¢ COFFFICIENTS V DIVIDED BY RMS INCIDENT E QVER?',

1* GUIDE CROSS SECTION'/({1Xy6EL1lle4))

WRITF(3+33) (GAM(T), I=1,NT)

FORMAT( *QAMPLITUNDES OF REFLECYED WAVEGUIDE MOCFSY'/(1X6ElL %))
UL={1./376730)%(04ol e PRV (LTI*{1~GAM(LI})/(1.4GAMILT)})
WRITE(3,36) VU1

FORMAT ('OEQUIVALENT APERTURE ADMITTANCE OF INCIDENT MODE= ‘%, 2E11. 4)

WRITE{3,40) U2
FORMAT{*0O(COMPLEX WAVEGUIDE POWFR J*ET A=, 2El1l.4)
U2=0.

DO 23 1=1,N

Ul=0.

J1=]

DO 24 J=14N

Ul=UL+YHS (J1)%V(J)

Ji=J 14N

CONTTINUE
U2=2tV(T)*CINJIG(UL)
CCNYINUE
Ul=-1./7(CVXCV)*{0a.,p1.)*U2
WRITF(3,39) Ul
FORMAT { *O{COMPLEX HALF SPACE POIWER)®ETA=¢,2F11.4)
Co=NXxDY/ATMAG(U2)
DTH=P [/ (NTH-1)

P8=180./P1

WRITE(3,25)

FORMAT (PO ANGLE® +SXyt'GL? 99Xyt G2"+9X 0 1G3 7, 9Ky *G4')
DO 26 J=14NTH

TH=(J-1)*DTH

CALL PLANE( TH,LXyLYDX,DY,P)
TH=TH%P§

J1=0

J2=J

DO 28 K=1l44

Ul=0.

DO 29 I=14N

Ji=Jd1+1

Ul=UL+P(J1)%xV(])

CCNT INUF-

H=U1*CINJG( UL)

G (K) =CG*H

GA(S2)=6G(K)

= J27+NYH
J2=J7+N 33
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28 CONTINUE
WRITE(3 430} THH{G{1) oI =1,4)
30 FORMAT {IXyF7e2¢4E11.4)
26 CONTINUE
KA=J2-NTH
32 WRITE(O)(GA(J) yJ=1,KA)
sTnp '
END
$NAT A
S 1 9 0 1 19 0.5000000E~-01 0.5000000E~01 0.2500000E+00
N0.5000000F-01 0.000N000E+00 0.0N000000E+CD 0. 1000000E+01
$STIP

] x
/!
PRINTED QUTPUT %L
LX LY LM LN LI NTH DX DY AL
5 1 9 0 1 19 0.5000000E-01 0.5000000E~01 0.2500000E+00
AL X1 Yl ER

0. 5000000F~-01 0, 0000000E+ 00 0,0000000F+00 0,1000000E+00
COFFFICIENTS V DIVIDED RY RMS INCIDENT & OVER GUIDE CRDOSS SECTION
0.1336E+01-0,2699E-01 0.2079€E+01~0.,3602E-01 0.2079E+01-0.3602F-01
0.1336E+01-0,2699E-01

AMPLITUDES OF REFLECTED WAVEGUIODE MODES
0.5121F+00~0.2743FE-C01~04s 41 72E-06 0.1863E-07 0.2043E-01~0.1874€E~02
NeT153F~-06-0,1211E=-07-0.6584E~06 0.1307E~-07 0. 4098E-06-0, 9080E~08

~0e37526-02 0.3443E-03-0,4098E~07 0.2328F-09-0.,1867TE~01 0.3387E~-03

EQUIVALFNT APFRTURE ADMITTANCE OF INCIOENY MODE= 0.1103E-03-0.1481iF-02

(COMPLFX WAVEGUINE POWERI*ETA= 0.9504E-01 0.1268€E+01
(COMPLE X HALF SPACE POWER)*ETA= 0.9504€-01 0.1268E+01

ANGLE Gl G2 G3 Ga
2.00 0,0000E+00 0.0000£+00 0,0000E+00 0, 1530E+01
10,00 0.4144E-01 Q.0N000F+00 0,0000E+00 O0.L53LE+0L
27,00 0.1625E400 N.0000E+00 0,0000E+00 0, 1532E+01
30.00 0.3528F+00 0.0000F+00 0.,0000E+00 0.1533F+01
4) ,00 0.5945E+400 0.0000F+00 0,0000E+00 0., 1536E+401
50.00 0.8621F+00 C.0PNOE+00 0,0000E+00 0.153BE+01
60.00 0,1123E401 0.0 " t£E+00 0,0000E+00 0,1540E+C1
70.00 0,1344F¢01 0,00UCS+00 0,0000E+00 0.1541E+¢01
8,00 0,1491F4+01 0 .0NNOE+00 0.N000E+00 0, 1543E+01
90.00 0, 1543F+01 0.COO0O0F+00 0,0000E+00 C.1543E+01
100.00 0.1491F+D1 0.,0000E+00 0.0000E+00 0. 1543E+01
110.00 0.1344F+01 0.00007+00 0.0000E+00 0.1541E+01
120.00 0,1123E401 0.,0000E400 0.0000E+00 0. 1540F+01
130.00 0, 8621F+00 G, N000E+00 0,NOQ0E+0N0 0.1538E+01
140.00 0.,5945€+00 0.2000£+400 0,0000E+00 0. 1536E+01
150.00 0,3528F¢00 0. 0000E+G0 0.0000E+00 0.1533F+01
160,00 0.,1625E400 0.,0000€E+00 N NC00E+00 0. 1532E+01
370.00 Q.4144F-01 0.0000E+00 0,0000F+00 0.153LE+OL
190.00 N.5398E~12 0.0000E¢00 0,00006+¢00 0.1530E¢01

34
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II, DESCRIPTION OF THE SUBROUTINE AY

The subroutine AY(LX, LY, IM, LN, DX, DY, AL, BL, X1, Y1, ER, A,Y)
stores the submatrices defined by (22) to (25) in A and the admittances
defined by (31) and (32) in Y. More precisely,

2r
AxAy

A§§E is stored in A(1 + (§-1)*N),

/ 2w yTE V&
Axhy Aij is gtored in A(NX + 1 + (J-1)*N),

27 xT™

% ~1) %
Axhy Aij ig stored in A(N*NTE + 1 + (§-1)*N), and

'\/K:%'E;' ™ 4o stored in ANX + NMNTE + 1 + (-1)*N)

1]
where
NX = (LX - 1)*LY
N = NX 4 LX*(LY~1)
NTE = IM*LN + IM + IN.
Also,

-an§E is stored in Y(j) and

T

j is stored in Y(NIE + j).

-inY

The values of the variables in (22) to (32) are specified by the first

eleven arguments of AY,

35
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ARGUMENT OF AY VARIABLE IN (22) TO (32)

LX L

x
LY L

y
M L

m
LN L

n
DX kax
)¢ kAy
AL w/ (ka)
BL 7/ (kb)
X1 kxl
Y1 kyl
ER £

T

Minimum allocations are given by

COMPLEX Y(NT)
DIMENSION A(N*KT), S1(IMP), S2(IMP), SM(IMP*LX)
(M(LMP*LX), CN(LNP*LY), SN(LNP*LY)

where
N = (LX-1)*LY + 1X * (LY-1)
IMP = IM + 1
INP = IN + 1
NT = 2%IM*LN + LM + LN ,

Statement 32 stores '\/ %}L in C. DO loop 10 stores

sin MITAR
’81:AxA1 2a 2 mnm
ab ( mrAX ) ke in S1(wtl), and
2a
4nAxAyem 81 -mjz-'-?-
\/ P () in S2(m+ 1)
2a

36
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whereas nested DO loops 10 and 12 store

m'n(xl 4+ pAx)
sin — in M(m+l + (Lm + 1)*p), and

mn(x, +(p - -]é‘-)Ax)

cos a inCM (m+ 1+ (Lm + 1)*p).

In DO loops 10 and 12, .IM corresponds to mtl and JP to p. Nested DO loops
13 and 14 store

nn(yl + qhy)

sin — in SN(n + 1 (Ln + 1}*q), and
1
nn(y, + (a - 5)4y)
cos y in CN(n + 1 + (Ln + 1)*q).

In DO loops 13 and 14, JN corresponds to nt+l and JQ to q.

DO loop 16 stores (22) to (25) in A. The DO loop indices JN, JIM,

JP, and JQ are equal to nt+l, ml, p, and q respectively. Just before DO
loop 20 is entered,

en sin n——MX-

2b
¢l = 2 nndy
2b
sin nndy y 2
cz= RE| ___2b
kb nndy *

2b

Statement 27 or 29 stores ~anTE of (31) in Y. 1If the calculated value of
kyo2
('19') - £ is zero, then statement 28 replaces

k2 -6
(9 - e, by 10" e_. Just before DO loop 21 is entered,

37




mnAx

4mhxbye Bin 2
C 3 - n (mﬂ b
ab k 3 a mﬂAx nAz

4rdxAye sin nrdy (2, ain mrAx
ch = nn ) 2b 2a )
ab k jb nrdy mrAxX
2b 2a

Nested DO loops 21 and 22 store Ki—g—}; AxTE of (22) in A. Negted DO

loops 23 and 24 store WIAiZy AyTE of (23) in A. Statement 33 stores

™ 27 xT™
~4nY  of (32) in Y. DO loop 25 stores -‘/m A of (24) in A. DO

™ e (25) dn A

e

.if.é

27
loop 26 stores -" Axby

38




LIST ING OF THE SUBRJUT INE AY

SUBRQUTINE AY(LXyLYsLMyLNyDX DY AL, RLsXLs¢Y1yERyA,Y)
COMPLEX U,Y (400)
DIMENSION A(2500) 4S1(40) 4S2(40) 4SM(400),CM(400),CN(L00),SN(100)
U=(00'lo)
32 C=SQRT(2.5464T9DX¥DY*ALXBL)
DX5= 4 5% DX
LMP =L M+
St{l)=0.
S$2(1) =, 7071 068%C
D0 10 JM=1,LMP
AM=(JM=-1)%AL
DXM=DX5 *AM
IF{JM.EQ.1l) GO TO 11
C1l=S IN{DXM)}/DXM
S2{JM) =Cx(l
S1{IMI=S2(IM) *C 1XAM
11 Jl=JgM
DD 12 JP=1,LX
CL={ X1+ JPXDX)*AM
C2=C1-DXM
SM{J1)=SIN(Cl)
CM(J1)=COS(C2)
3 Jl=Jl+LMP
' 12 CONT INUE
o 10 CONTINUE
AT DYS=.5¥DY
LNP=LN+1
! DO 13 JN=1,LNP
! BN={JIN-1)*BL
DYM=DY 5 *BN ‘
J1=JN ;
DO 14 JO=1,LY
Cl=(Y1l+JQ*DY)*BN
C2=C1-DYM
SN(JLY=STN(CL)
CN({J1)=CNS(C?2)
Ji=J1l+LNP
14 CONTINUE
13 CONTINUFE
g LXM=L X-1
! LyM=LY-1
NA=LXM%LY
MY=L X% L YM
N=NX +NY
JTE=0
. JTM=Nk{ LNP*| MP~1)
KTE=0
KT M=LNP*LMP -1
£1=.7071068
C2=0.
DO 16 JN=1,LNP
BN={ JN~-1)%BL
BN2 =RAN%* BN
[F(JN.ED, 1)} GO TO 19
X=AN%NYH
Cl=SIN(X)}/X '
C2=C1*C1%*BN !
19 DN 20 JM=1,LMP 39
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[F{CIN+IM) LEQe2) GO TO 20

AM= (JM=1)%AL

C7=BN2+AMRAN

C8=SQRT (C7)

C7=C 7=-ER

KT E=KT F+1

IF(CT) 27+28,29

27 Y(KTE}=-UXSQRT{=CT)
GO 10 30

28 C7=1.E~6%ER

29 Y(KTE)=~SQRT(CT)

30 C3=S1(JM)*C1/C8
C4=S2(JM)*C2/C8
J1=JN
DO 21 JQ=1,LY
C5=C3%CN(J1l)
J1=J1+LNP
J2=JM
DO 22 JP=1l,LXM
JTE=JTE+]
A(JTE) =CS%xSM{ 42)
J2=J2 +LMP

22 CONTINUE

21 CONTINUE
GO 1O (31), LY
J1=JN
DO 23 JQ=1,LYM
C5=C4%SN({(J1)
J1=J1+LNP
J2=JM
DO 24 JP=1,LX
JTE=J1 E+]
A(JTE) =C5%C M( J2)
J2=J2 +LMP

24 CONTINUF

23 CONTINUF

31 IF(UUN-1)%( UM~1),ENR. 0} GO TO 20
KTM=KTM+1

33 Y(KTM)}==FR/Y(KTE)
CS=BN/ AM
J1=JTF=-N
D0 25 J=1,NX
JTM=JTM+ L
Jl=J1+1
A{JTM) =~C5*%A(J])

25 CONTINUE
GO TO (20), LY
CS=AM/ BN
00 26 J=1,NY
JTM=JTM+]
Ji=Jd1i+1l
A(JTMI=CS*A(JL)

26 CONTINUE

20 CONT INUE

16 COMTINUE

RETURN

FND
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Itl. THE SUBROUTINES YMAT AND PLANE
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THE SUBROUT INES YMAT AND PLANE ARE DESCRIBED ON
PAGES 30 TO 41 DOF REFERENCE 2.

c LISTINGS OF THE SUBROUTINES YMAT AND PLANE

r
SUBROUTINE YMAT(LX,LY,DX:DY,Y)
COMPLEX U,Ul'UZoUB'UQ'EX.TC(IOO)oTX(lOO)oTY(lOO).YXX(lOO).7(2500)
DX2=1,/7(DX*DX)
DY2=1./ (DY*DY)
DXDY=NX*DY
NX= {LX=1)%LY
NY=(LY-1)%LX
N=NX +NY
LXP=zLX+ 1
LYP=LY +]
LXM=L X-1
LYM=LY~1
U=( Qe lo)
U4=.1666667T%)
JST=LX+1
00 15 JT=1,LY
JST=JST+1
YL=(JT=~1.5)*DY
YU=YL+DY
YL2=YL*YL
YU2=YU*YU
Yi=(JT=1)%DY
Y2=Y1*Y1l
PO 16 JS=1,LX
XL=(JS-1.5)*DX
XU=XL+DX
XL2=XL* XL
XU2 =XU%XU
X1=(JS-1)*D X
X2=X1%X1
R2=X2+Y2
R1=SOQRT {R2)
RUl=1,~.5%R2
Ul=RUL+R1*(1.~.166666T*R2)*Y
U2=R1=-RU1%*U
U3==,5~.5%R1%Y
£ X=COS(RP1)-UxSIN(RL)
JST=JST+1
RS=XL2+YL2
R6=XU2+Y12
R 7= XL 2+ YU?
REB=XU2+YU2
R1=SART(RS)
R2=SQRT (RS)
R3=SQRTI(RT)
R4=SQRT (R8)
AYL=YL*ALOG ({ XU#R2) /( XL+R1})
AYUsYU#ALDG ({(XU+R4)/ (XL+R3))
AXL=XL*ALOG( ( YU+R3) /(YL#R]1))
AXUSXURALNG ((YU+R4 )/ (YL+R2))
S1=AXU~-AXL+AYU-~AYL

AYL=YL*AYL
41




N P

16
15

44

45

17

18
46

AYU=YU *AYU

AXL=XL¥AXL

AXU=XU*AXU

S3=XUF AXU=XL*k AXL+YUx AYU=-Y LkAY L

XY l=XL %YL

XY2=XUxYL

XY 3=XL *YU

XY4=XUk YU

§$52¢3333333%( XY4*R 4~ XY IkR 3~ XY2kR 24+ XYL%P 1} +,1666667%53
TCOISTY={S1*xUL +DXDY* U2 +55%U3 +,3333333%(XY4L4*¥RB-XYI%*kRT~XY2*R 6+XY1*R 5
1)M)4)*EX

YR1=YL*R]

YR2=YL %R 2

YR3=YU%R3

YR4=YU*R 4

$5=2,8333333 -1 *(YR4 KRB =YRI*RT~YR2*RE+YRLI*RS )+, 125%(XU2* (YR 4=YR2)~X
1L 2%{YR3=-YR 1 )}+XU2*%AXU~XL 2%AXL)

SbH= 25%DY¥ L XU2*xXU2 X L2*¥X L2 ) +e3333333 %X 1 %kDXR(YU2%YU=-YL 2%YL )
TX(IST )= Sk YR4~YRI-YR24YR1+AXU=-AXL) « UL+ X1%D XDY* U2+ S5%U3+S6%U4
TX4JIST) =TX{JSTI®XEX/DX

XR1l=XL*R1

XR2=XU%R2

Xk3=XL*R3

XR4=XU* R4

$5=.8333333F~ 1*%( XR4*¥RB-XR 3%kR T=-XR2*¥R 6+ XR1*RS5) +,125*% (YU2% (XR4~XR3) ~Y
IL2% { XR2 ~XR1 ) +YU2 *AYU-Y L2%AY L)

S6=,25%DXk{ YU 2%YU2-YL 2% YL 2)+,3333333% YL kD Y&( XU2& XU~XL2*¥XL)
TY{JSTE=.5% ( XR4-XR3I~XR2+XR1L+AYU-AYL)*U 1 +YL%OXDY*U2+S5*U3I+S6*U4
TY(JSTI=TY(JSTI*EX/DY

CONTINUF

CONTYT INUFE

IF{LYM) 644,44 ,45

J1l=LXP+1

J2=J1+2

TC{J1)=TC(J 2}

TX(JL)==TX( J2)

TYWI1)=TY (J 2)

GO TO 46

J1=2*%LXP+1

00 17 JS=2,LXP

J1=jl+1

TCL4S)=TCLJ1)

TX{JS)=TX(4 1)

TY(JS)==TY( J1)

CONT INUE

J1=1

DN 18 JT=1,LYP

J2=J1+42

TClJ1)=TC(J2)

TX(J1)==TX( J2)

TY(JLl)=TY(J2)

J1=J1+LXP

CONT INUF

Ja=L X+ 2

Jy=0

DO 19 JT=2,LYP

DO 20 JS=2,LX

J3=J4

Ja=J4+]

J5=J4+1 42
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20

19

21
22

23
24

26

25

27
28

29
30

32

JY=JyY+l

YXX(JY )= SR(TC(IAL)+{ JS=eS)RTC(I5)=1JS=3a5)&TCUI3)~TX(JI5)¢TX(J3))+D

LX2%({TC(J5)~2.*TC(J4)+TCLI3))
CONTINUE

Ja=J4+2

CONTINUE

JY=0

D0 24 JT=1,LY

D0 23 JS=1,LXM

DO 22 JOQ=1,LY
JTR=LXM*TABS (JT~JQ)+1
0N 21 JP=1,LXM
J1=JTQ+1ABS (JS=-JP)
JY=JVY+]

YY) =YXX{J1)

CONT INUE

CONTINUF

JY=JY+NY

CCNTINUE

CONT INUE

TF(LYM.EQ.0) RETURN
Ja=2*L XP+1

JY=0 .

D0 25 JT=3,LYP

D0 26 JS=2,LX

JY=JdY+1]

Je=J4+1

J3=J4-L XP

YXX{JY ) =(=TC({JG) +TC(J3I+TC(I4+1)-TC(J3+1))/DXDY
CONT INUF

Ja=44+2

CONTINUE

JY=NX

DD 30 JT=1,LY

DO 29 JS=1,LXM

no 28 J0=1,LYM
JTQ=2% { JT-4 Q) -1
J2=LXM*{ JARS{ JTQI~1) /2
00 27 JP=1,LX
JSP=2%{JS-JP)+1
J1=J2¢ (TABS (JSP)+1)/2
JY=JY+1

YJY) =YXX{J1)
IF(ITORJSP.LT.0) Y(JY)==Y(JY)
CONTINUF

CONT INUE

JY=JY+ NX

CONT INUE

CONTINUF

JY=0

Je=LXP+2

00 31 JT=2,LY

NDe 32 JS=3,LXP

J3=J44

1,4'—'\,44‘1

J5=44+.XP

JY=JY+1
YXX(JY)=(=TCOIa)+TCLI3I+TC(ISI~TC(I5-1))/DXDY
CONTINUF

J4=J4+2

43




‘EF

31

i3
34

35
16

38

37

39
40

41
42

89

CONTINUE

JY=N*NX

DO 36 JT=l,LYM

0BG 35 JS=1,LX

DO 34 JQ=1,LY
JTQ=2%(JT=-JQ) +1
J2=LUXM*{TABS(JTQ)-1) /2
DO 33 JP=1,L XM

JY=JY+ 1
JSP=2%(JS-JP)~1
J1=J2+¢(TABS{JSPI+1) /2
YUY )=YXX(J1)
IF{JTQ*JSPLLT. Q) Y{JY) ==Y(JY)
CONY INUE

CONTINUF

JY=JY+NY

CONTINUE

CONT [INUE

JY=0

J4=LX+2

D0 37 JT=2,LY

DO 38 JS=2,LXP

J¥=JY+l

J4=J4+]

J5=J4¢LXP

J3=J4~-LXP

YXXCJY) = Sk (TCUJG) # L IT=e5IRTC (IS5 )= (ST=3 5 IRTC (I3 1-TY (J5)4TY(I3))+D
1Y2%(TC(JUS)-2.%TC(J4)4TCLI3))
CONTINUE

Jaz=J4+1

CONTINUE

JY= (N+1 ) %NX

DN 42 JT=1,LYM

DO 41 JS=1,LX

DO 40 JQ=1,LYM
JTQ=LX*TABS{ST~-JQ 1+l
DO 39 JP=1,LX
J1=JTQ+TABS (JS~-JP)
JY=JY+1

YUY Y=YXX {41}

CONTINUF

CONT INUE

JY=JY+NX

CONT INUF

CONTINUF

RETURN

FND

SUBROUT INE PLANE(TH,LX LY DX ,DY,P)
COMPLEX U,UL,P(200)
Uz(Oeyled

LxM=UX-1

LYM=LY~-1

NX={ XM* Y

N=NX +LYM*| X

N4=N*4

D0 89 J=1,N4

P(J) =0,

CONT INUF ’
SN=SIN({ TH)

CS=COS (TH) 44




X2=DX*CS

X3=,5%X2
S1==SIN(X3) /X3
S2=S1%S1%SN

DO 81 JP=1,LXM
$5=JP%X2

ULl=S52%{CNS{ S5)+UxSIN(SS))
Ji=JpP

DO 87 JQ=1,LY
P{Jl)=Ul

J1=J1+L XM

CONT INUF

CONTINUE

IF{LYM.EQ.0) GO TO 90
DO 82 JP=1,LX
$S5={JP~.5)*X2
U1=S1%{COS( S5)+ Uk SIN(SS5))
Jl=N+NX +JP

bl 88 JQ=1,LYM
P(Jl)=U1

J1=J 1+L X

CONT INUF

CONTINUE

Y2=DY*(CS

Y3=,5%Y2
S1=~SIN(Y3)/Y3
$2=S1*S 1% SN

J1 =2 %N+ NX
IF(LYM.FR.0) GO TO 91
DO 8'- JQ=1,LYM
SS5=JQ%Y2
U1=S2*{CCS (S5 I +U*SIN(SS5))
DO 84 JP=1,LX

Ji=Jl+l

P(ul)=U1l

CONT INUF

CONTINUF

N 85 JQ=1l,LY
$5={JQ-.5)*Y2
U1=S1%(COS(SS Y+U*STA(SH))
NO 86 JP=1,LXM
Jl=Jd1+1

P(Jl)=UL

CONT INUF

CONTINUF

REYURN

FND
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IV. DESCRIPTION OF THE SUBROUTINES DECOMP AND SOLVE

The subroutines DECOMP (N, IPS, UL) and SOLVE (N,IPS,UL,B,X) use the
method of Gaussian elimination aud LU decomposition describad in [5,
Section 9] to solve a linear system of equations with complex coefficients.
DECOMP and SOLVE, based on the FORTRAN programs on pages 68 and 69 of [5],
require roughly %? multiplicative operations to solve a system of n linear
equations wherecas the subroutine LINEQ on pages 28 and 29 of {2] requires

roughly n3 multiplicative operations to solve the same system,

The input Into DECOMP is N and the matrix [A] of coefficients of the

set
[A)x = B (69)

of N linear equations stored by columns in UL. N > 2, The output from
DECOMP is IPS and UL. DECOMP does not change N. SOLVE uses N, IPS, UL,
and the elements of b stored in B to calculate and store in X the elements
of the solution vector X. SOLVE does not change any of the input variables
N, IPS, UL and B, Minimum allocations are given by

COMPLEX UL (N*N)
DIMENSION SCL (), IPS(N)

in DECOMP and by

COMPLEX UL(N*N), B(N), X(N)
DIMENSION IPS(N)

in SOLVE.

Assuming that the reader is familiar with [3, Section 9], we will
attempt to explain interchanging rows and scaling by rows [5, Sections 10
and 11]. Interchanging rows is necessary to avoid pivots which are close
to zero. The divisors 8y1s a§§> and a§§> of [5, Section 9] are cailed
pivots. Scaling the matrix by rows facilitates the seasrch for pi.ots by
insuring that the number with the largest magnitude is most 1likely the
best pivot,

It will be shown that interchanging the ith and jth rows of th-
array UL in storage at any stage of the computation is equivalent tc

{5] G. E. Forsythe and C. B, Moler, "Computer Solution of Linear Albegraic
Systems," Prentice-Hall, Inc., Englewocd Cliffs, New Jersey, 1967.
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interchanging the ith and jth elements cf g. The above statement is
certainly true if the row interchange occurs at the very beginning when
[A] resides in L. After zeros have been introduced in the below the

main diagonal positiéns of the first m columas of A,

Jest A12
UL = (70)
21 222

wvhere All is an m by m submatrix. The elements of All on and above the
12 2

o]
main diagonal and all the elements of A™" and A" are elements of

M Mm—l .o MlA] where H1 is defined in (5, Section 9]. The elements of
al strictly below the main diagonal and all the elements of a2t are ele-
-1
ments of [MmMm_1 ces Ml] . Hence,
Bll 0 Cll A12 ..
x=b' (71)
A2 uitlo a2?

where Bll is a lower triangular matrix whose main diagonal elements are

equal to unity and whose elements below the main diagonal are equal to

those of All, C11 is an upper triangular matrix whose elements on and

above the main diagonal are equal to those of All, U 18 an identity
matrix, and ﬁ* is g with its elements permuted in accordance with any

previous row interchanges which may have occurred. From (71),

Bll Cll Bll A12
X =B (72)
A21 C11 A21A12 + A?Z
At the stage i whi!a ' fu w«iven by (70), the row interchange is limited

to the last mtl rou~: nr L ur-l hence only affects A?l and A?z. From (72),

an interchange of two rows of Azl and A?Z is equivalent to interchanging

o>
the corresponding two elements of b',

T DB, the row interchanges are not dons physically, but wmentally
by meane of the vwsriable IPS. The Ith row of the row interchanged array
18 the IPS(I)th row stored in UL.
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Scaling by rows consists of multiplying all the elements of the jth
row of A, 3=1,2,...N, by the reciprocal, called SCL(j) in DECOMP, of the
magnitude of the largest element in the jth row. In DECOMP, the rows of A
are not scaled physically. The effect of physical scaling would, as de~
duced from the algorithm in {3, Section 9], be to multiply any jth row
element involved in a gearch for a pivot by SCL(j). DECOMP obtains the
effect of scaling by incorporating SCL into the searches for pivots.

A verbal flow chart of DECOMP{N,IPS,UL) is as follows. DO loop 5
initializes IPS and obtains SCL. In DO loop 2, the operation consisting
of the sum of tho abeolute values of the real and imaginary parts ought to
be more efficilent than the usual magnitude involving the square root of

the sums of the squares of the real and imaginary parts.

N0 loop 17 performs the premultiplication by MK where MK is defined
in [5, Section 9]. DO loop 1l decides that the (IPS(IPV),K)th element of
UL will be the pivot. If we were using the method of physical row inter-
changes we would, at this point, interchange the Kth and IPVth rows
physically. Statements 14 and the two statements following it carry out
the corresponding mental row interchange by interchanging IPS(IPV) and
IPS(K). Nested DO loops 16 subtract mpg times the TPS(K)th row of UL
from the last K+l columns of the IPS(I)th row of UL. See {5, Section 9]
for the definition of Miye Note that Myg is such that the previous row
operation extended to the Kth column would annihilate the (IPS(I),K)th
element of UL, Statement 18 stores Moy in the (IPS(I),K)th position of
UL.

The subroutine SOLVE(N,IPS,UL,B,X) obtains the solution % to
[L][U]% = B (73)

where [I.] 1s a lower triangular matrix whose diagonal elemenis are all
unity and [U] is an upper triangular matrix. Here, Uij’ j > 1, is stored
in the (IPS(1), j)th position of the input array UL. Also, Lii = 1 and

Lij’ i > j is stored in the (IPS(i),j)th position of UL. The ith element

of b' is stored 1z B(IPS(1)). As ia [5, Section 9], we let
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[U}x =y (74)
such that (73) becomes

[Lly = & (75)
The solution to (75) is given by

¥, =b (76)

= K
y;=b

- L y 'Y 1‘2’3’000N
170 %y

The solution to (74) is given by

? an
y, - U, .x
R = -

b
i Uii

iaN-1, N-2,...1

A verbal flow chart of the gsubroutine SOLVE(N,IPS,UL,B,X) is as
follows. DO loop 2 stores Yy of (76) in X(I). The index J of inner
DO loop 1 is the summa: ‘on index j appearing in (76). DO loop 4 stores
x, of (77) in X(1) for 1 = *+1 - IBACK. The index J of inner DO loop 3

i
is the summation index j appearing in (77).
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LISTINGS NF THE SUBRQOUTINES DECOMP AND SOL VE

SUBROQJT [NF DECAMP (M, [PS,UL)
COMPLEX UL(2500) 4PIVOT,EM
DIMENS TON SCL (50, IPS(50)
0 5 IT=1,N

IPS{1)=1

RN=J.

Ji=1

DN 2 J=1,N

JLM=ARBS (FEAL (UL (J1)) ) +ABSCATIMAGIUL(I L))

Jl=J1+N
TF(RN=-JLM) 1,2,2
RN=ULM

CONY INUF
SCL{T) =1./RN
CONT INUF
NM1i=N-1

K2=0

DO 17 K=1,MML
BIG=0,

DO 11 T=K,N
[P=1PS({T)

1 PK=1 P+ K2

SIZE=(ABS{REALIULUIPK) I )+ABSTATMAG(UL(TPK) ) )%SCL (IP)

IF(SIZE-RIG) 1l1,11,10
BIG=SIZE

IPV=1

CONT INUE

IFLIPV=K) 14,15,14
J=IPS(X)
[PS(KY=IPS(IPV)

IPS{1PV )=y
KPP=T1PS (K} +K?
PIVOT=JL(KPP)

KPl=K+]

DO 16 1=KP1,N

KP=KPP

IP=IPS({1}+K?
EM=~UL({TIP)/PIVOT
UL(IP)==FM

DG 16 J=KPL1,N

[P=1P4+N

KP=KP+N
ULCIP)=ULLTIP)+EM*UL (KP)
CONTINUE

K2=K24+\

CONTIMIC

RETUPN

END

SURRNDIT INF SOLVE(N, [PS,ULyByX)
TOMPLEX ULL2500) +B(50) ¢X(50) ,SUM
DIMENS IPM TIPS (S50)

NP 1=N+1

[P=1PS (1)

X{1)y=8(1P)

DO 72 1=2,N

IP=IPS(T)

{PR= [P

Ml=]~

IMl=]~{ 50

o
ot




=S - =)

i R S o T
Lo - o P *

QUM':O .
DO 1 J=1,1IM1
SUM=SUM+UL (TP )%X (J)
IP=IP+N
2 X(i)=B(IPB)-SUM
K 2=N*(N-1)
[P=1PS(N)+K2
X{N)=X{N) Z7ULLTIP)
DO & IBACK=?2,N
[=\P 1-1RACK
K2=K2-N
IPI=IPS{T)+K2
IPL=1+1
SUM=0.
[P=1PIl
DO 3 J=1P1,N
[P=1P+N
3 SUM=SUM+UL{IP)XXUJ)
4 X(1)=(X(1)=SUM)/7UL(IPI1)
RETURN
END

.t

51




REFERENCES

[1] R. F. Harrington and J. R. Mautz, "A Generalized Network Formulation
V for Aperture Problems," Scientific Report No. 8 on Contract F19628-
: 73-0~0047 with A.F. Cambridge Research Laboratories, Report AFCRL-
TR-75-0589, November 1975.

1 {2] J. R. Mautz and R. F, Harrington, "Electromagnetic Transmission
Through a Rectangular Aperture in a Perfectly Conducting Plane,"
Scientific Report No. 10 on Contract F19628-73-C-0047, with A.F.

Cambridge Research Laboratories, Report AFCRL~TR-76-0056, February
1976.

[3] R. F. Harrington, "Time~Harmonic Electromagnetic Fields," McGraw-
Hill Book Company, New York, 1961, Equations (8-34), (3-86), and
(3~89) and Section 4-3.

f (4] M. Cohen, T. Crowley, K. Levis, "The Aperture Admittance of a
\ Rectangular Waveguide Radiating into Half-Space," Antenna Lab.
| Rept. ac 21114 S.R. No, 22, Ohio State University, 1953.

" [5] G. E. Forsythe and C. B. Moler, "Computer Solution of Linear Algebraic
RN Systems," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1967.

52




WW )

MISSION
of

Rome Air Development Center

RADC plans and conducts recearch, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the C° areas of information 5ciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control, ,
surveillance of ground and aerospace objects, intelligence 2
data collection and handling, information system tachnology, gg

ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and

compatibility. E%
N

3

o

Printed by
United States Air Force
Hanscom AFB, Mass. 01731

e (i S e A




