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PART ONE

THEORY AND EXAMPLES

I. STATEMENT OF THE PROBLEM

Figure I snows the problem to be considered and defines the coordi-

nates and larameters to be used. The perfectly conducting plate covers

the entirL =0 plane except for the aperture which is rectangular in shape

with side lengths Lx Ax and L yAy in the x and y d'.rections respectively.

L and L are positive integers and L > 2. The aperture is fed by ax y x-
rectangular waveguide. The excitation of the waveguide is a source which

produces one mode, of unit amplitude, which travels toward the aperture.

The general method of solution (1] is to cover the aperture with a

perfect electric conductor, to place magnetic current sheets +M and -M

respectively on the left-hand and right-hand sides of this conductor, to

obtain an integral equation for M by equating the tangential magnetic

fields on both sides of this conductor, and to solve this integral equa-

tion using the method of moments. The testing functions are the same

as the expansion functions for M and are denoted by M. Each M is a

triangle in the direction of current flow and a pulse in the direction

perpendicular to current flow.

II. SUMMARY OF BASIC THEORY

The solution for M is given [I1 by

M 1 VIM (1)

where the Vi are elements of a colun- vector V given by

[ywg + yhs]-i . (2)

Here,

Y hs M-Hhs( Q d (3

ij f ;.i .j ds(3
apert.

[1] R. F. Harrington and J. R. Mautz, "A Generalized Network Formulation
for Aperture Problems," Scientific Report No. 8 on Contract F19628-
73-C-0047 with A. F. Cazbridge Research Laboratories, Report AFCRL-
TR-75-0589, November 1975.
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Fig. 1. A rectangutlar wavegiiide radiating through a rectangular
apertture into half space bounded by d:i electric con-
duct or.
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where Hhs ( ) is the magnetic field at ju0 radiated by the magnetic

current M in front of the perfect electric conductor. Also,

YiWj8 Ain Yn 'jn (4)
n

and

I - 2Y A (5)
j 0 jO

where

ft u % x(6)
apert.

Here, u is a unit vector in the z direction, e, is the jth waveguide

mode, and Y is its characteristic admittance. The excited mode is e

The coefficients r of the reflected waveguide modes are given by

,i'- i + r0 m Ai0Vi'A V

(7)
rS  A AiV i , 0.

The gain associated with the u component of the magnetic field in the

half-space z > 0 is given by

k2

G- k hs * wil2 (8)

81rrj Re(V[Yha V

where n is the characteristic impedance of free space and

Pm -2 M "u e s (9)

apert.

In (9), k points from the distant observation point to the aperture and

IkmI is the propagation constant k.

[Y S is I times the admittance matrix dealt with in [2]. f has

[2] J. R. Mautz and R. F. Harrington, "Electromagnetic Transmission Through
a Rectangular Aperture in a Perfectly Conducting Plane," Scientific
Report No. 10 on Contract F19628-73-C-0047 with A.F. Cambridge Research
Laboratories, Report AFCRL-TR-76-0056, February 1976.
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been calculated in [2] for the special case x y1 = 0. x1 and yl are

defined in Fig. 1. From (9), we see that x # 0, yl # 0 merely introduces
-jx 1 (k -u) x jy 1I(k -u )

the phase factor e - l '* ) which is subsequently masked

by the magnitude operation iv (8). Now that ([hs] and m are disposed of,

all that remains to carry out the calculations (1) to (9) are detailed

formulas for A and Y
ii

III. COEFFICIENTS A AND CHAraCTERISTIC ADMITTANCES Y
jJ

Expression (6) for Aj requl.s= a knowledge of the expansion

functions M and waveguide modes e

The set M of expansion functions is split into a set M of x

directed magnetic currents and a set M of y directed magnetic currents

defined by
p=l,2,...L -1

MxC T x(x-.x )yY- (10)p+(q-)(L -1) ' -q=,2,...L
y

-p+(q-l)L u (y-y ) p 1 1) q . (11)

q q1,(2,.-Ly -1

y

where T (x) and TY(y) are triangle functions defined by
p q

x - ((-p)Ax (p-l)AX < x < pAxCAx
T (x) +)Ax - x pAx < x < (p+l)Ax (12)

0 Ix -pAxi > Ax

"y - (a-1) Ay (q-l)Ay < y < qAy
Ay

,Y(y) - (q+l)Ay I y (q+l)Ay (13)
qA qAy y

0 ly-qAyl > Ay

and Px(x) and PY(y) are pulse functions defined by
p q

4



1 (p-1)Ax < x < pAx

P X(x) =(14)

(0 all ither x

1 (q-1) Ay :< y < qAy

py(y) l<(15)

0 all other y

The set ej of modes for the rectangular waveguide is split into
TE

a set , of TE modes given by [3]

aba

TE ab Cmn [n r cos -- sin -u sin mx cos
1 (b) (na)2 a b y a a

(16)

m= 0, 1,2,...L m + n 0
m

n 0, 1,2,...L
n

m 2 m: 1,2,...

and a set e of TM modes given by

TM 2 ab f, m cos mTrx sin ny + u sin m- cos J]
!m+(n-)LV (b) 2+(na) 2 xa a b Xy b a b

(17)
m 1,2,3,...L

m

n 1,2,3,...Ln

With the separation of M into x and W and ! into E and TM

Aj of (6) expands to

[3] R. F. Harrington, "Time-Harmonic Electromagnetic Fields," McGraw-
Hill Book Company, New York, 1961, Equations (8-34), (3-86), and
(3-89) and Section 4-3.
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A 4 u x eT ds (18)
apert.

Ai" = fxU × ds (19)

apert.

A7 = Jf °.u x ds (20)

apert.

AyM f I My u xeTM ds.(1

apert.

Here, , , e , and e2 are given by (10), (11), (16), and (17)

respectively.

A tedious but straightforward evaluation of the integrals appearing

in (18) to (21) leads to

Asn 2 "sin q
r2 xE. yyn (m) IT M2a2b

V x Ay iiab "k a mitAx J Jy
2a / 2b /

MIT(x I + pAx) nir(y I + (q-1/2)Ay)
sin cos b (22)

ab

Ivxy (sin MI) 21 A~ yyTE .J4IAxAY_ n .ny ,2(Bn

2b 2a

mI(x I + (p-1/2)Ax) nst r(y I + qy)
COa sin b(23)

6



/ mvAx sin 2 nir

M _ _ _ 
2s in 2b

V -A e -- 8irx (flT)b 47 niTAy )xAy ij - ab k2a 2b

imr.(x1 + pAx) nir(y I + (q-1/2)Ay)
sin a COSb (24)

a b

-AAy(yTMm i n 2b sin

2b 2a

mTr(x I + (p-1/2)Ax) nir(y I + qAy)
Cos a sin b (25)

where

A.~~~ b~-&- (~- (26)

In (22) and (24),
Sp =1,2,...Lx-1

i = p + (q-1)(Lx-1) (27)
q =,2..y

whereas in (23) and (25),

Sp
x

i = p + (q-l)Lx  (28)

q ,2,

In (22) and (23),
M 0,j,2,...L1 m

j m + n (L +1) m+n 0 (29)

n 0,1,2,...L

whereas in (24) and (25),
SM= 1,2,...L 

m

J im + (n-l)Lm . (30)

n =1,2,*..Ln

7



If m or n is zero in (22) or (23), the resulting gin 0) is to be replaced
by unity.

The characteristic admittuwces Y of the rectangular waveguide with

relative dielectric constant £ and relative permeability unity are classi-

fied as either TE admittances YT or TM admittances Y given by [3)

j

TE k" C r k r kj

-JnY (31)
k

A-)(2k  k Vr > k
k rk r (1

r
k /er <j

-k M =(32)

j
- r

k €r kj
r j

r k,

In (31) and (32), n is the characteristic impedance of free space, k is

the free space wave number, and k is the cutoff wave number given by (26).

Strictly speaking, we sfiould have defined separate cutoff wave numbers,

say kTE and k TM  for TE and TM modes because the relationship between J,

m, and n in (26) is given by (29) for TE modes and by (30) for I1 modes.

IV. POSSIBLE DIFFICULTY AT CUTOFF FREQUENCIES OF TM MODES

If k k475, then Y of (32) tends to infinity. Assume that

k is very close to k/er for J = Jl' J2' J3'".JL and rewrite [ywg + yhs

of (2) as

[yWg + yha] - [B9 + C] (33)

where

8



YAE ATM. = 1,2,3, .L (34)

i nnin(

where 'denotes the sum over all n except n=-Jl , J2 3 ' L Also,

ATE Ax T E x-1(36i n =  Ai n I i -1 , 2 , .. ( L x 1 )

(36)

i+(Lx-1)Ly,n in ' 1 l,2,...L (L -1)
A Lx -ILy n nx y

and A TMn is given by (36) with superscripts TE replaced by TM. The

AxTE yTE xTM and AYTM, are defined by (18) to (21)in in in' in

Substituting (33) into (2), we obtain

V [BE + C] (37)

Let

- + 2 (38)

and choose a such that

B 2 
= 0 (39)

Next, we substitute (38) into the form

[BR + C] (40)

of (37) and use (39) to obtain

= [BE + C] B + 2 (41)

Expression (41) is premultiplied by C 1 resulting in

V c2 - I - [C-BE + U] BU (42)

19



where U is the identity matrix. To obtain a, premultiply (42) by B and

use (39).

-1 -ilc-1
E BB]B -( B + U]-Bc-I~ (43)

The solution for V is obtained by substituting (42) and (43) into (38).

c-1 1' - C-B[BC-IB + U) 'I- i  (44)

WhenY , Z = 1,2,...L, tend to infinity, all the elements of B also

tend to infinity. Hence we are justified in substituting the approxi-

mation

[BC-1 B + U]-1 Z (iCB]- - [C-IB] -2 + [BC-IB] -3  (45)

where the superscripts -2 and -3 denote respectively the square and cube

of the inverse matrix, into (44) with the result

=C-11 - C-IB[C-IB]BI-Ii + C-IB[BC-IB] -2 C-I'- C-IB[BC-IB] -3C- Ii.

(46)

Consider the case in which the waveguide excitation is neither the

th nor the j2 th... nor the JLth TM mode. As YT, k. 1,2,...L approach

infinity, (46) approaches

=c-li - C-1 D[bC- 1 D]1 IC- 1T (47)

where

D A T Z 1,2,3,...L (48)

TE TM
Substitution of (47) into (7) gives r for all j and r for all j
except j =H , t e coefficient of the jth

TE reflected mode and is the coefficient of the jth TM reflected
TMmode. Expression (47) gives r = 0,2 = 1,2...L. To investigate the

manner in which rTM  approaches zero, retain one more term in (46).

10



C-0 li - C-B(cB-I B C - II i + C-IB[BC-IB]-2BC- Ii (49)

Premultiplying (49) by B, we obtain

=[BC-IB]-BC~ c(50)

which, in view of (7), (34), and (48), leads to

yTM r . (£c-lD]- c-lIb (51)

where ( )£ denotes the kth element of the column vector inside the
parentheses. From (51) we conclude that, for the case in which the

waveguide excitation is neither the jlth nor the J2th ... nor the

iLth TM mode, as Y TM k = 1,2,...L approach infinity the magnetic field

of the J2 th, 2 = 1,2,...L TM mode approaches a finite limit and the com-
plex power associated with this mode approaches zero.

Next, consider the case in which the waveguide excitation is the
Jpth, 1 < p < L, TM mode. From (5) and (48), 1 is 2YTM times the pth
p _p
column of D. The column vector consisting of the first two terms in (46)

is zero because it is 2Y TM times the pth column of the matrix
ip

all of whose elements are precisely zero. Hence for large Y 2TM  = 1,2,...L,

(46) becomes 2.

CB[BCB] 2 BCIi (52)

which reduces to

- 2(C-D[DC-1 D]-l (53)
p

where ( ) denotes the pth column vector of the matrix inside the
PTM TMparentheses. Expression (53) gives r 1 and r =0, Z p. By retain-

ip
ing the last term in (46) we obtain the more accurate representations

11



r TM = - p (54)
pi y TM

yip

r TM - ! . p (55)
J yTM

where

$R 2 ([C-ID 1 )p • (56)

Here, ( )£p denotes the Zpth element of the matrix inside the parentheses.

From (54) and (55), k, conclude that, for the case in which the wavegu.'de

excitation is the j pth TM mode, as Y,, 1 - 1,2,...L approach infinity the

aperture electric field due to the jlth, J2th ... JLth TM modes approaches

twice the electric field of the incident mode and the aperture magnetic

field due to these modes approaches a finite limit. The complex power

associated with the j th TM waveguide mode approaches 28* and that
p pp

associated with the J~th, Z p TM waveguide mode approaches zero. The

following line of reasoning shows that Real (a ) > 0. From power con-
pp -1 -1 -

siderations [C + C*] is positive definite. Hence [C + [C 1]*], [bC-ID

+ [C D]*], and [[hC D]- + [[DC D]-]*] are in turn positive definite
and finally Real ( pp) > 0.

We did not incorporate any of the logic (33) to (56) into the com-

puter program because we contend that the simple precaution of replacing
k 2 -6
k- C of (31) and (32) by 10 c whenever the calculated value ofk -r r

(.I)2 - C is zero is adequv-a. Denoting (J)2 - Cr by 6j, we justify

this contention as follows. For seven decimal digit accuracy, the calcu-

lated value of [ 1 must be exactly zero or be of the order 10-6 e orli r

larger. Hence, we assume that 16 is roughly 10- Cr or larger. in the

following numerical investigation, what appears to be a reasonably accurate
-6

solution for V was obtained for 16 1 in the neighborhood of 10-6C We set

12



Lx- Ly L m L n 4, Ax Ay---, a- b Y, Xly = 04 6 n2

and cr = 1 such that 6 + 0 for the TM mode. Successively, we let

6 = -2.38 x 10 - , -2.5 x 10 10, 10 -6 -102 -10

The first value -2.38 x 0- was the spontaneously calculated value of 6J

When the waveguide excitation was the dominant TE mode, the elements of

the computed solution V for the first four values of 6 agreed to within a

fraction of a percent of the magnitude of the largest element of V. In

going to 6 - 1012 the elements of V changed by only a few percent
10 -18 ,+h

whereas for 6 - 10- , the computed solution V was absurdly inaccurate.

When the waveguide excitation was the TM mode, the first four values of
4. 12

6 gave solutions V differing by less than one percent whereas the com-
1 41

puted solutions V for the last two values -10 -  and -10 - 8 were absurdly

inaccurate.

V. SYMMETRY OF THE ADMITTANCE MATRIX

The admittance matrix

Y [w~ hs]y yWg + Yhs

appearing in (2) will be shown to be symmetric.

From (4), ywg is symmetric.

YhS is 1 times the admittance matrix dealt with in [2]. One might
2

argue that Ys is symmetric because of the fact that the set of testing

functions is the same as the set of expansion functions and because of

reciprocity. However, this argument is not strictly correct because in

[2] the integrations over source and field regions are approximated dif-

ferently. Nevertheless, the matrix 2Yhs given by [2, Eqs. (23) to (26)]

is symmetric because one can show that

13



yxx yxx
ij ji

Yyy ~YY

The symmetry of YhS is not due to reciprocity but due to the fact that

of two rectangular subareas, the first as seen from the second is the

same as the second as seen from the first.

VI. CONTINUITY OF COMPLEX POWER FIW

It will be shown that the complex power flow associated with the

method of moments solution (2) is continuous across the aperture.

From (2),

i. wg + yhs] (57)

Premultiplying the complex conjugate of (57) by ', we obtain

*= yWg* + yhs* (58)

which is the same as

Si*_ ywg* * . yhs* * (59)

From [1, Eq. (27)], the right-hand side of (59) is the complex power

radiated into half space. A development similar to that of [I, EqS.

(22) to (27)] shows that the left-hand side of (59) is the complex power

flowing out of the waveguide. In (59), represents the interaction of

the magnetic current with the incident magnetic field whereas Y V repre-

sents the interaction of the magnetic current with the magnetic field due

to the magnetic current.

The above demonstration of continuity of complex power flow is based

on the assumption that Yhs is given by (3) and that ywg is given by (4). In

reality, the integration (3) is approximated in [2] and only a finite number

of terms of the infinite sum (4) are retained. As a result, (59) i. still

14



true but the right and left-hand sides of (59) are merely approximations

to the complex power flow on both sides of the aperture. This is tolerable

because the obvious way to obtain more accurate complex powers would be to

calculate yWg and Y'6 more accurately. Now, these more accurate YWg and YhS

should have been used in the method of moments solution and if they were used

then the right and left-hand sides of (59) would be more accurate approxima-

tions to the complex power flow on both sides of the aperture.

Since the left-hand side of (59), henceforth denoted by Pwg

Si - y Vwg*j* (60)
wg

is the complex power flow on the waveguide side of the aperture, P shouldwg
be expressible solely in terms of the coefficients 1' of the reflected wave-

guide modes and the characteristic admittances Y Substituting (4) and (5)
J.

into (60), we obtain

Pw 2Y0  A 0V~ Y ( A V~)( A V). (61)wg--j- o n n i jnV

With the help of (7), (61) becomes

P Y + r (1- r I jr1 (62)
wg 0' noon

which, in view of [1, Eqs. (22), (45), and (48)], is not surprising.

VII. NUMBER OF WAVEGUIDE MODES REQUIRED

The nth term in (4) represents the contribution of the nth waveguide

mode to ywg. The contributions of the TE and TM waveguide modes are
mn mnsin x

governed by the ( -) type factors appearing in (22) to (25). Hence,

these contributions begin to fade away gradually as soon as

max

2a

nAy> 1
2b

15



From (44), (34), and (7), it is evident that if a solution V gives

rjmo, jjo

or i+ r o, j o

then the jth term in (4) has no influence on and therefore may be

neglected.

If the aperture is centered about x a/2 or y b/2 or both,

then it will be shown that several of the r are zero. The operator

equation (1, Eq. (4)]

a b (63)

preserves certain symmetry properties of the transverse component Hi ofof

the incident magnetic field. For instance, if the aperture is centered

about x = a/2 and if H has one of the symmetry properties

1) x component even about x - a/2, y component odd about x = a/2

2) x component odd about x = a/2, y component even about x = a/2

then the magnetic current M has the same symmetry property. Also, if the

aperture is centered about y = b/2 and if Hi has one of the symmetry
W~t

properties

3) x component even about y - b/2, y component odd about y = b/2

4) x component odd about y - b/2, y component even about y - b/2

then M has the. same symmetry property. The above symmetry relations

between M and Hi will be verified later on in this section. It follows
-t

that if the aperture is centered about x - a/2 and if H has symmetry

property 1) then r = 0 for all modes which have symmetry property 2) whereas
i j

if H has symmetry property 2) then r 0 for all modes which have symmetry

property 1). Likewise, if the aperture is centered about y = b/2 then

r 0 for all modes which have either symmetry property 4) or 3) depending

on whether H has symmetry property 3) or 4). Moreover, because H is theAt M

transverse magnetic field of one of the waveguide modes defined by [1, Eq.

(45)], (16), and (17), H has either symmetry property 1) or 2) as well as

either symmetry property 3) or 4).

16



The symmetry relations between M and Hi will now be verified. As

far as symmetry proporties li, 2), 3), and 4) are concerned, 11t(MD has
the same symmetry properties as M because the operator H a merely alters

the coefficients of the expansion of M in terms of the transverse mag-

netic fields of the waveguide modes and can not introduce any new modes.

From [2, Section III],

j(M, () 2jwF - 2V (64)

where

F - (( e ds (65)
apert

- .
M  J p (66)

apert.

V-M (67)
-jw

where r and r' are respectively the vectors to the field and source

points in the aperture, w is the angular frequency, e is the capacitivity

of free space, p is the permeability of free space, and k = w pi is the

propagation constant in free space. We form a table of symmetry proper-

ties of p versus those of M.

SYMMETRY PROPERTY OF M SYMMETRY PROPERTY OF _

1) odd about x - a/2

2) even about x = a/2

3) even about y - b/2

4) odd about y = b/2

If the aperture is centered about x = a/2 then of (66) is either even

or odd about x a/2 depending on whether p is even or odd about x = a/2.

Similarly, if the aperture is centered about y = b/2 then 4 is either even

or odd about y b/2 depending on whether p is even or odd about y - b/2.

Hence * has the same symmetry properties as p. Therefore, as regards

17



symmetry properties 1), 2), 3), and 4), V has the same symmetry proper-

ties as M. Since the x and y components of F are integrals of the same

form as the integral which is, Fu has the same even or odd properties

about x = a/2, y = b/2 as M.u while F.u has the same even or odd proper-

ties about x = a/2, y b/2 as M.u . Thus H (M) + H GO has the sameow AAlty. .. ta tsymmetry properties as M. From this, it follows that M has the same sym-

metry properties as Hi.

VIII. SAMPLE COMPUTATIONS

A computer program using the formulcs derived in the preceding

sections has been written. It is described and listed in Part II of this

report. In this section we give some examples of the computations that

can be made using the general program.

Figure 2 shows the equivalent magnetic current for a rectangular

waveguide of dimensions X by X/2 radiating into half space through a narrow

centered rectangular slot of dimensions X by X/10. Figure 2(a) shows the

x-component of equivalent magnetic current, which is also equal to the y-

component of tangential R field in the slot. No y-component of magnetic

current was obtained because only- one pulse in y was used. M is normalized

with respect td

wg

where the integral is over the waveguide cross section. In other words,

the normalization factor is the root-mean-square value of the incident E

field. The phase of M is with respect to that of the incident electric

field at the aperture. All computations are for dominant TE mode ex-10
citation. Figure 2(b) shows the radiation gain patterns in the two planes

x = 0 and y - 0. The notation G y denotes the gain pattern due to He in

the y - 0 plane. The notation G denotes the gain pattern due to H inxxc x

the x - 0 plane. The horizontal axis in Figure 2 is the z axis.
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(b) o.8X

Fig. 4. Radiation gain patterns for an open-ended

rectangular waveguide of dimensions a/b

2.25 radiating into half space.
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.003 - - COHEN, CROWLEY, LEVIS
0 COMPUTER PROGRAM

G
.002-

-.001
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Fig. 7. The equivalent aperture admittance seen by the dominant mode
for an open-ended rectangular waveguide of dimensions a/b
2.25 radiating into half space. Our computed results are com-
pared to those of Cohen, Crowley, and Levis (1
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Fig. B. The equivalent aperture admittance seen by the dominant mode
for an open-ended square waveguide of width a radiating into
half space. Our computed results are compared to those cal-
culated and measured by Cohen, Crowley, and Levis (41.
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Figure 3 shows the equivalent magnetic current for an open-ended

rectangular waveguide of dimensions a/b - 2.25 radiating into half space,

for two different wavelengtha. Figure 3(a) is for a - 0.6X, and Figure 3(b)

is for a - O.8M. Although the aperture is now relatively wide, the y-

component of magnetic current is still small, and thus is not shown. The

top Figure 3(a) shows magnitude and phase of the x-component of M at y = b/2,

and the bottom Figure 3(a) shows them for the x-component of HI at x = a/2.

The top Figure 3(b) shows the magnitude and phase of the x-com; ant of M at

y = 3b/8, and the bottom Figure 3(b) shows them for the x-component of M at

x W a/2. Note that M is zero at x - 0 and x - a, and it is large near bothx

y - 0 and y - b. This is to be expected from theory. Again the magnetlc

current is normalized according to (68). Figure 4 shows the principal plane

radiation patterns for the same waveguide-fed apertures, 4(a) for a - 0.6X

and 4(b) for a = 0.8. Again G denotes the pattern due to H in the y = 0
der t

plane, and Gxx denotes the pattern due to H in the x - 0 plane.

Figure 5 shows the equivalent magnetic current for an open-ended

square waveguide of side length a radiating into half space, for two dif-

ferent wavelengths. Figure 5(a) is for a - 0.6X, and Figure 5(b) is for

a = 0.8. The top figures show the magnitude and phase of M at y = 5a/12, andx

the bottom figures show them for M at x - a/2. Again M is zero at x - 0 andxx

x - a, and M is large near both y - 0 and y - a. Figure 6 shows the principalx

plane radiation gain patterns for the same waveguide-fed apertures, (a) for

a - 0.6, and (b) for a = 0.8%. Again Gey denotb the pattern due to H in the

y - 0 plane, and G denotes the pattern due to H in the x - 0 plane,
xx x

Finally, Figures 7 and 8 show plots of the equivalent aperture admit-

tance seen by the dominant mode for an open-ended waveguide radiating into

half space. This aperture admittance is defined by

l-ry .1 (69)
ap 1-r 0o

where r is the reflection coefficient and Y is the characteristic wave
0 0
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impedance, both for the dominant mode. Our computations are compared to

some previously obtained by Cohen, Crowley, and Levis [4]. Figure 7 shows

the results for a rectangular waveguide of dimensions a/b = 2.25, and

Figure 8 shows the results for a square waveguide of side length a. Measured

results were found only for a square waveguide, and these are also shown in

Figure 8.

IX. DISCUSSION

A general purpose computer program has been developed for rectangular

waveguides radiating into half space through a rectangular aperture. When the

aperture dimensions are small compared to the waveguide dimensions, many wave-

guide modes may be required to accurately obtain the waveguide admittance matrix.

In this case it would be advantageous to have an analytic approximation to the

sum of higher-order mode contributions. However, we have not investigated this

possibility. Our program appears to give accurate results even for relatively

small apertures, although large numbers of higher-order modes may be required.

The numerical examples given in Section VIII serve to illustrate the

types of computations that can be made with tbe general program. The program

is written so that the excitation may be any mode desired, not necessarily the

dominant mode. The aperture can be located anywhere within the waveguide cross

section. The principal limitation to the use of the program is one set by the

cross-sectional size (in square wavelengths) of the waveguide and aperture.

As with most moment solutions, when the size of the aperture becomes too large

then too many expansion functions are required for a solution. As a rule of

thumb, for reasonable accuracy we need at least 5 expansion functions per

wavelength for each component of current, or 50 expansion functions per square

wavelength. Hence, even on large computers, one is limited to apertures of

the order of a few squat.e wavelengths in size.

[4] M. Cohen, T. Crowley, K. Levis, "The Aperture Admittance of a
Rectangular Waveguide Radiating into Half-Space," Antenna Lab.
Rept. ac 21114 S.R. No. 22, Ohio State University, 1953.
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PART TWO

COMPUTER PROGRAMS

I. DESCRIPTION OF THE MAIN PROGRAM

The main program computes the complex coefficients Vi which deter-

mine the magnetic current M according to (1), the amplitudes r of (7)

of the reflected waveguide modes, the equivalent aperture admittance

[1, Eq. (67)] seen by the incident mode, the complex power flowing out

of the aperture, and four gain patterns. The four gain patterns are

written on the first record of direct access data set 6 so that they

may be plotted by the program on pages 43 and 44 of (2]. The main

program calls the subroutines AY, YMAT, PLANE, DECOMP and SOLVE which

are described in Sections II, III, and IV,

The data cards are read early in the main program according to

READ(I,lI) LX, LY, LM, LN, LI, NTH, DX, DY, AL, BL, Xl, Yl, ER

11 FORMAT(613, 3E14.7/4E14.7)

The variables LX, LY, DX, DY, AL, BL, Xl, and Y1 are respectively Lx,

Ly, Ax/X, Ay/X, a/X, b/X, x / and yl/X where X is the free space

wavelength. See Fig. 1. The variables LM and LN are respectively Lm

and L appearing in (16) and (17). We require that
n

LX > 2

LY > 1

The excitation of the waveguide is the Lith waveguide mode where, in
TEthe program, %rmnn(L +1) of (16) is called the (m+n(L m+l))th waveguide

mmTM

mode and e~+(n-l)L of (17) is called the (L +L (L +1) + m + (n-l)L )th
m m n m m

waveguide mode. ER is the relative dielectric constant c of (31) andr

(32) inside the waveguide. The four gain patterns are generated by

evaluating the plane wave measurement vectors (2, Eqs. (55) t9 (58)] at

angles (6 or *) equal to (J-l)*80./(NTH-l) degrees, J-I,2,...NTI.

28
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PART T14O

COMPUTER PROGRAMS

I. DESCRIPTION OF THE MAIN PROGRAM

The main program computes the complex coefficients V which deter-
i

mine the magnetic current M according to (1), the amplitudes r of (7)

Lj

of the reflected waveguide modes, the equivalent aperture admittance

(1, Eq. (67)] seen by the incident mode, the complex power flowing out

of the aperture, and four gain pattervs. The four gain patterns are

written on the first record of direct access data set 6 so that they

may be plotted by the program on pages 43 and 44 of (2]. The main

program calls the subroutines AY, YMAT, PLANE, DECOMP and SOLVE which

are described in Sections II, III, and IV.

The data cards are read early in the main program according to

of t RhAD(,ll) LX, LY, IM, LN, LI, NTH, DX, DY, AL, BL, X1, Yl, ER

11 FORMAT(6I3, 3E14.7/4E14.7)

The variables LX, LY, DX, DY, AL, BL, Xl, and Y1 are respectively L

Ly, Ax/, Ay/, a/ , b/, x A , and y 1 LANwhere X is the free space

wavelength. See Fig. 1. The variables LM and L are respectively Lm

and L appearing in (16) and (17). We require thatn

LX > 2

LY > 1

The excitation of the waveguide is the LIth waveguide mode where, inTE
the program, %+ (Lm+1) of (16) is cslled the (m+n (L +1)) th waveguide

TM

mode and eMnm+(n-l)L of (17) is called the (L +L (L +1) + m + (n-l)L )th

waveguide mode. ER is the relative dielectric constant e of (31) and
r

(32) inside the waveguide. The four gain patterns are generated by

evaluating the plane wave measurement vectors [2, Eqs. (55) t9 (58)] at

angles (0 or 4) equal to (J-l)*180./(NTH-l) degrees, J-l,2,...Nnh.

28



Minimum allocations are given by

COMPLEX TI(N), GAM(NT), P(4*N), YHS(N*N),

Y(NT), V(NT), V(N), YWG(N*N)

DIMTNSION GA(4*NTH), A(NT*N), IPS(N)

in the main program, by

COMPLEX Y(NT)

DIMENSION A(N*NT), Sl(LMP), S2(LMP), SM(LMP*LX),

CM(LMP*LX), CN(LNP*LY), SN(LNP*LY)

in the subroutine AY, by

COMPLEX TC(Jl), TX(Jl), TY(Jl), YXX(J2), Y(N*N)

in the subroutine YMAT, by

COMPLEX P(4*N)

in the subroutine PLANE, by

COMPLEX UL (N*N)

DIMENSION SCL(N), IPS(N)

in the subroutine DECOMP, and by

COMPLEX UL(N*N), B(N), X(N)

DIMENSION IPS(N)

in the surboutine SOLVE. Here,

N (IX-l) *LY 4. X* (LY--1)

NT 2*LI*LN + LM + LN

U4-1 = LM+l

LNP = LN+l

Jil = (LX+l)*(LY+l)

J2 = MAX((LX-1)*LY, LX*(LY-I))

Referring to (22) to (25), statement 41 stores

29



AiE in A(i + (J-I)*N),

AiT in A(NX + i + (J-1)*N),

F2 e in A(N*NTE + i + (J-)*N), and

jx AYjh in A(NX + N*NTE + i + (J-!)*N)

where

N = (LX-1) *LY + LX* (LY-1)

NX = (LX-1)*LY

NTE - LH*LN + IM + LN

With regard to (31) and (32), statement 41 also stores -JnYT E in Y(j)
2TM yhs

and -jnY in Y(NTE+J). Statement 42 stores J7A- - hs by columns in
JAXAy

YHS where the set of expansion functions M appearing in the definition

(3) of Yhs Is of (11) appended to 4. of (10).

" ning (2), nested DO loops 13 and 15 store the (I,J)th and (J,I)th

elem - assumed to be equal, of 1 [ywg + YhS] i YWG(J2) and YWG(J3).
jAxAy

DO loop IA puts Y1Aj1 of (4) in V(I). In DO loop 16, K is the sumnation
index n in (4). Just after exit from DO loop 15, the Jth element of

2i £
-j 2 x is put in TI(J). Statements 43 and 44 store "' in V.

Inner DO loop 20 accumulates the left-hand side of (7), namely

l+r 1  , I LI

r Iy, LI
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in UI where the subscript 0 in (7) is being interpreted as LI. Outer

DO loop 19 accumulates

-inill + rLI12 YLI - j ItI l
2

in U2. Statement 45 puts nPwg where Pwg is given by (62) in U2.

From [1, Eqs. (45) and (48)],

fJ 1 112s 1
guide

whare L is the transverse electric field of the forward traveling!-- 1
(incident) mode at z = 0. Hence expression (68) reduces to

The V which is printed upon exit from DO loop 34 is /i . State-

ment 46 puts Y of [1, Eq. (67)] in Ut.ap

Concerning (59), Nested DO loops 23 and 24 accumulate 2rrjnab
AxAy

sYh* in U2. Statement 47 puts nhs"  in Ut.

Do loop 26 stores G of (8) in G(K). Statement 27 uses

TH - (J-1*7r/(NTH-1) radians to store --- P in P(i + (K.1)*N). Pm is
2Ax~y

given by (2, Eq. (54 + K)] where 6 or 4 is TH. For the ---- "m stored
* 2dxAy

in P(l + (K-I)*N) through P(K*N), DO loop 29 accumulates AT--- in Ul.

(K-1)*N)2txAy
Next, G of (8) is stored in both G(K) and GA(J + (K-I)*NTH).

Statement 32 writes GA on the first record of data set 6 for

possible input to the plot program listed in (2, pages 43-44].
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C LISTING OF THE MAIN PROGRAM AND SAMPLE DATA

// = XEC WA TF IV
//GO.FTO6FOOl DO OSNAME=EE0034.REVLDISP=OLD,UNIT=3330I X

/1 DCP=(RECFM=VSBLKSI ZE=2596,LRECL=2592)
//GO.SYSIN DO *
SJ03 MAUTZtTIME=1,PAGES=4O
c
c MAIN PROGRAM
c THIS PROGRAM CALLS THE SUBROUTINES AY9 YMAT, PLANEtDECOMPSOLVE

CnMPLEX TI ( 50) 9GAM(40C) ,P(2001 tCONJG
COMPLEX YHS(2500)tY(400)tU2,V(400),UlYW0( 2500)
DIMENSION G(4),GA(1168),A12500),IPS(50)
REWIND 6
RFAD(lol1) LXLYLM,LNLiNTHDXrDYALBL,X1,YlEP

11 FORMAT (613,3F14.7/4E14.7)
WR[TE( 3vl2) LXLYLMLNFLINTHDXDYAL,BLXlYlER

12 FORMAT (I LX LY LM LN LI NTH,15X,'DX,12X'DY'12X'AL'/IX,613,
13FI4.7/7X,'B1,l12X,'Xl1,12X,'Y',12X'E-R/LX,4EI4.7)
P 1=3 .14 1593
P ?=2.*PT
DX=DX*P2
DY=DY*P2
X1=XL*P2
YI=Yl*P2
AL=.5/AL
BL=. 5/BL

41 CALL AY (LX,LYLMLNDKDYAL,BL,X1,YIERAY)
42 CALL YMAT(L~vLYvOXDYtYHS)

N=(LX-l )*LY+LX*(LY-1)
NT=2*LM*LN.LN+tM
U2=2.*Y(L I)
J2=1
J5=N*(L 1-1)
DO 13 J=1,N
JltJ
DO 14 I=lNT

J 1-J 1+4
14 CONT INU F

O 15 I=JN
Ul=YHS( J2)
J4=1I
DO 16 K=lNT
IU 1lJ A (J4 )*(K )

J4=J4i.N
16 CONT INU E

YWG( J2) =U'l
YWG(J3)=Ul
J2=J2+ I
J3=J3+N

15 CONTINUF
J2=J2+J
J5=J5+1
T I(J )=U2*A(J5)

13 CONTINUF
4 3 CALL DEC()MP(N, IPS,YWG)
44 CALL SOLVF (N,91PSIYWG IT IV)

Jl~a 32



019 I=lNT
U 1= 0.
00 20 J=1,N
J 1=J 1+* 1

20 CONTINUE
UU221J+UI*Cl1NJG(Ut l*Y (I)
CAM4(I)=UI

19 CCNTTNUF
45 U2=(0., .)*(CONJG(U2)-2.*GAM(L[)*CONJG(Y(L!1))

GAN(LI )=GAM(L 1)-I.
CV=PI *SORT( P2/(AL*BL*DX*DY)
Dfl 34 I=t,N
V (1I) =CV*V( I

34 C ONT INU E

35 FORMAT11 COFFFICIENTS V DIVIDED BY RMS INCIDENT E OVER',
1' GUIDE CROSS SECTION'/(lt6Ell.4))

WRI TE(3.3 )(GhM( I)0=lo ,NT )
33 FORMAT( 'OAMPLITUnES OF REFLECTED WAVFGUIDE MOC-Sl/(IX,,6E11.4))
46 Ul=(l./376.730)*(O.9 1.d*Y(L1)*(I.-GAM(LI))/(l.+GAM(LI))

WRITF3*36) Ut
36 FnRMAT'IOEQUIVALENT APERTURE ADMITTAN4CE 3F INCIDENT MODE=',2Ell.4)

WRITF(3,40) U2
40 FORMAT (00(COMPLEX WAVEGUIDE POWF-R)*ETA=1,2EI1.4)

U2=0.
DO 23 1=19N
U 1= 0.
J1=I
DO ?4 J=11N
Ul=UI.+YHS (JI)*V(J)
J 1=J +N

24 CONTTNUF
U 2= J2-V ( I ) *C)NJGt Ut1)

?3 C ONT INU E
47 Ul=- 1./(CV*CV)*( 0.,1.) *U2

WRITF(3,39) Ul
39 FnRMAT('O(COMPLEX HALF SPACE P3WER)*ETA~l,2El1.4)

CG=rDX*DY/AI MAG(U2)
DTH=P1/ (NTH-I)
P8=180. IP!
WRITEC 3t25)

25 FORMAT(1O ANGLE' 5Xi'Glf99XvC2' O,XG3',9X, G41)
DO 26 J=1,PNTH
TH=( J-1 )*DTHI27 CALL PLANE( THLXLYDXDYP)
TH=TH* P8
J1=0
J2=J
DO 28 K=I,4
U 1=0.
DO 29 1=1,N
Jl=Jl+.
U1=Ul+P(Jll*V( I)

29 C CNT INU F-
H=t1*CONJG( Ul)
G (K) =CG*H
GA(J2)=G(K)I: -J2=?4 N TIIi 33



28 CONT INU E

30 FORMAT (lX9 F7.2s4E 11. 41
26 CON TI NUE
32 KA=J2-NT H
32WRI TF (6) (GA (AJul , KA)
STOP
E ND

$OAT A
5 1 9 0 1 19 O.5000000E-01 0.5000000E-0. 0.2500000E+O00

0.5000000F-I. 0.OOOOOOOE+O0 0.OOOOOOOE+00 0, LOOOOOOE+0I

PRI1ITED OUTPUT

LX LY LM LN LI NTH DX DY AL
5 1 9 0 1 19 O.50OOOOE-01 0.5000000E-01 0.2500000E+ 00

XI VI Y ER
0.5000000F-0. 0. OOOOOOOEfOO O.OOOOOOOF400 0.1000000E+00

COFFFIC[ENTS V DIVIDED) BY RMS INCIDENT E OVER GUIDE CROSS SECTION
0.1336Ei-01-O. 2699E-O1 0. 2079E*OI-0.3602E-0I 0.2079E4+01-0.3602F-O1
0.1336E+01-O .2699E-01

AMPLITUDES OF REFLECTED WAVEGUIDE MODES
a .5 12 1F +00- 0. 274 3 F-O0I1-0.*4 17 2 E-06 0,1863E-07 O.?043E-OI-O.1874E-02
fl.7153F-O6-0.1211E-07-fl.65)84E-O6 0,1307E-07 0.409BE-06-019080E-O8

-0.3752F-02 0.3443E-03-0.4098E-07 0.23?8F-09-Ool867E-01 0.3387E-03

EQUIVALFNT APFATRW ADMITTANCE OF INCIDENT MODE= 0.1103E-03-0.14B!F-02

(COMPLFX WAVEGUIDF PfWER)*ETA= 0.9504E-01 0.1268E+01

(COMPLFX HALF SPACF PnWER)*ETA= 0.9504E-01 0.1268E+01

ANGLE Gl G2 G3 G4
D.00 O.OOOOE+00 0.O000E+00O,0OOOOE+00 0.1530E+01
10.00 0.4144F-0l 0.0000F+00 0.OOOOE+00 0.1531E+01
21,00 0.1625E+oo fl.ooooc+oo 0.OOOOE+00 0,1932E+Ol
30.00 0. 3528F+00O0.OOOOF+OO O.0000E400 0.1533F+01
4) .00 0.5945E*n0.FD0 O ,OOOOF+0O 000E0f 0. 1536E+01
'50.00 0.8621F+00 C. OrO0E+0O 0O00004+0O 0. L538 E+01I
60.00 0.1123F+01 O00 (E+00 0,0000EtO0 0,1540E+01
70.00 0. 1344r 0 1 0. 00UUC+00 0).OOOOEiOO 0.1541E+01
80,00 0.1491F+01 0.OOOOE+00 OOOOOE*00 0.1543E+01
90.00 0.1543rF+01 O.CO0OFI-00 0.OOOOE*O0 0,1543E+01.
100.00 0.1491F+01 0.OOOOUE*D0 0.OOOOE+00 0.1543E+01
110.00 0.1344F-01 0.OOOOF+O0 O.OOOOE+00 0.1.541E+01
120.00 0.1123F+01 0.O0000 O*0OOOOE+00 0.1540F+01
130.00 0.8621F+00 0.OOOOE+00 0.OOOOE-400 0.1538FE+Ol
140.00 n,5945F+0O 0.0000E+00 0.OOOOE+OO 0.1536E+01
15n.00 0.3528F+00 O.OOOOE+00O0.OOOOE+OO 0.1533F+01
1.60.00 0.162)E-on 0.0000E4-00 00000OE+00 Oi532E+0I.
i.70.00 0.4144F-01. O.OOOOE+00 0.O00OF+00 0,1531E+01
103.00 ().5398E-12 0.00(OE+00 0.0000F'-00 0.1530F+01
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II. DESCRIPTION OF THE SUBROUTINE AY

The subroutine AY(LX, LY, LM, LN, DX, DY, AL, BL, Xl, Yl, ER, A,Y)

stores the submatrices defined by (22) to (25) in A and the admittances

defined by (31) and (32) in Y. More precisely,

21T xTE

-VA Aj is stored in A(i + (i-I)*N),

2 yTE
A IJ is etored in A(NX + i + (J-l)*N)

2 xTMA7 is stored in A(N*NTE + i + (J-I)*N), and

V Ay ij

r A is stored in A(NX + N*NTE + i + (J-1)*N)

where

NX = (LX - 1)*LY

N - NX + LX*(LY-I)

NTE - LM*LN + LM + LN.

Also,

-JnY 'E is stored in Y(J) and

714
-JnY j is stored in Y(NTE + J).

The values of the variables in (22) to (32) are specified by the first

eleven arguments of AY.
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ARGUMENT OF AY VARIABLE IN (22) TO (32)

LX L

LY LY

LM L
m

LN Ln

DX kAx

DY kAy

AL r/(ka)

BL 1/(kb)

Xl kx1

Yl ky1

ER

Minimum allocations are given by

COMPLEX Y(NT)

DIMENSION A(N*NT), Sl(LMP), S2 (LMP), SM(LMP*LX)

CM(LMP*LX), CN(LNP*LY), SN(LNP*LY)

where

N = (LX-l)*LY + LX * (LY-l)

LMP = LM + 1

LNP = LN + 1

NT = 2*LM*LN + LM + LN

Statement 32 stores V a in C. DO loop 10 stores

~~sin -
xA 2a )2 m in Sl(m+l), and

ab mnA_.x k
2a

. mirAx
41TAAYE i A47rAxAyc m  sin --

) in S2(m + 1)
ab 1~

2a
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whereas nested DO loops 10 and 12 store

mir(x + pAx)
sin a in SM(m+l + (Lm + l)*p), and

am(x +(P - AX)

mCos + in CM (m + I + (L + l)*p).

In DO loops 10 and 12, JM corresponds to m+1 and JP to p. Nested DO loops

13 and 14 store

ni(y + qAy)
sin b in SN(n + 1 (L + l)*q), andb n

n r(y I + (q -t lAy)
Cos in CN(n +1 + (L + l)*q).

In DO loops 13 and 14, JN corresponds to n+l and JQ to q.

DO loop 16 stores (22) to (25) in A. The DO loop indices JN, JM,

JP, and JQ are equal to n+l, m+l, p, and q respectively. Just before DO

loop 20 is entered,

sin 2b

2b
nl 2 n7rAy

2b

I'sin n ~ )2

C2= nr 2b
kb nnAy

2b

Statement 27 or 29 stores -JnY
TE of (31) in Y. If the calculated value of

(k) 2 
-r is zero, then statement 28 replaces

-42 - c by 10-6 c. Just before DO loop 21 is entered,

k r
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m f4 A n~ff -Y

ab 2a 2b

a LrAI 2 si mirAx
c~ sin 2b

a M all-~ mTAX/
C4u A k (Tl &_a-

2 ATEo 2 3b 2nA.atmn 3soe
2 -T TE f(2inA NetdD

Nested DO loops 21 and 22 store 
o() A N e

loops 23 and 24 store r 2 AYTE of (23) in A. Statement 33 stores

-Jn¥
TM of (32) in Y. DO loop 25 stores X A'V of (24) in A. DO

loop 26 stores -Fx- AYTM of (25) in A.

.'
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C LIST ING OF THE SUBRRUT INE AY

SWRCIUTTNE AY( LXLYLMLNDXtoyALI.RLXltYlt ER AY)
COMPLFX IJY(400)
DIMENSION A(2500),Sl(40),S2(4OhtSM(400),PCM(400),CN(100),SN(100)
U=(0.1 1.)

32 C=SQRT(2.546479*DX*DY*AL*3L)
OX5= .5* DX
LMP=LM*1
Sl( 1)=O.
S2( 1 )=. 7071 068*C
00 10 JM=1,LMP
AM=(JM-1)*AL
DXM=DX5*AM
TF(JM.EQ.1) GO TO 11
C=S INC DXM)/DXM
S2(Jm) =C*Cl
S l(JM)=S?(Jm) *C 1*AM

11 Jl=JM
00 12 JP=1,LX
C 1=( X14JP*DX) *APO
C2=C l-OXM
SM(Jl) =SIN(C1)
CM(J 1)=COS (C?)
JI=JlfLMP

12 CONT INU E
10 CONTINUE

0Y5=.5*OY
LNP=LN-
D0 13 JN~=lLNP
BN= IJN-1 )*BL
DYM=DY5*BN
Jj=JN
DO 14 J0 1, LV
Cl=(Y1+JQ*OV)*BN
C2=C 1-DYM
SN(J1) =SIN(Cl)
CN(J l)=CoS (C?)
JI=J4LNP

14 CONTIN~UE
13 CONTINUE

L XM=L X- I
LYM=LY-1
NX=LXM*LY
NY=L X* LYM
N=NX +NV
J TE=O0
JT M=N*( LNP*LMP- 1)
KTE=O
KTM=LNP*LMP-I.
C1=. 7071068
C 2=0.
D0 16 JN=1,LNP
RN=(JN- 11*BL
BN2=SN* RN
IF(JN'.F). 1) GO TO 19
X=RN*DY5
Cl1-S IN( X)/X
C2=CI.l*rl*BN

19 Dof 20 JM=1,LMP 3



IF{(JN4JM).EQ.21 GO TO 20
AM= (JM-1 )*AL
C 7=BN2 A M*Am
C8=SQRT (C'7I
C 7=C 7-ERP
KT E=KTF+1
IF(C7) 27,28,29

27 Y (KT El=-U*SQRT (-C7)
GO TO 30

28 C7=l.E-6*ER
29 Y( KTE) =- SQR T(C 7)
30 C3=S I(J M) *CI/ C8

C 4=S 2( J M) *C 2/C 8
J1=JN
DO 21 JQ=19LY
C5=C3*CN(Jl
J 1=J I+LNP
J2=JM
DO 22 JP=1,LXM
JT E=JT E+1
A ( J TE) =C 5*SM( J2)
J2=J2+LMP

22 CONTINUE
21 CONT INU E

GO TO ( 31)9 LY
J1=JN
DO 23 JQ=19LYM
C5= C4*S N(J I
J 1=Jl14LNP
J2=JM
DO 24 JP=19,.X
JTE=Jl E+l
A(JTF) =C5*CM( J2)
J2=J2+LMP

24 CONTINUF
23 CONT INU F
31 IF ( (JN-1)*(JM- 1) .E Q. 0 GO TO020

KTM=KTM+.
33 Y( KTM) =-FR /Y(KTE)

C5= BN/ AM
J I=JTF-N
00 25 J=1#NX
JTM=JTM4I
JlJt+l
Af JTM) =-C5*A( JI)

25 CONT INU E
GO TO (20)9, LY
C5=AM/BN
DO ?6 J=1,NY
JTM=JTM+1
JI=J 1+1
A WT M)= C5*A (W 1)

26 CONTINUE
20 CONT INU F
16 CONTINUE

RETURN

F ND
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IlIlI THF SUBROUTINES YMAT AND PLANE
-----------------------------

THE SUBROUTINES YMAT AND PLANE ARE DESCRIBED ON
PAGE S 30 TO 41 OF REFERENCE 2.

C LISTINGS OF THE SUBROUTINES YMAT AND PLANE
r

SUB3ROUTINE YMAT(LXtLYDXtDY,Y)
COMPLEX I1JUIU2tU3,U4,EXTC( I.0O),TX( 100),TY( tOO) YXX( 100) ,V,(2500)

0X2=1. /IDX*OX)
DY2=1./(DY*DY)
D XDVYDf)X*D Y
NX=IX-l)*LY
NY= LY- 1)*L X
N=NX +NY
LXP=LX+ I
LYP= LV+1
LXM=LX-1I
LYM=LY-1
U=( 0.9,1.)
U4= .1666667 *(U
J ST= LX+ 1
DO 15 JT=l,LY
J ST =JST+ I
YL=1JT-1.5)*OY
YU=YL4DY
YL2=YL*YL
YU2=YU* YI
Yl=(JT-1)*U)Y
Y2=Yl*Yl
D0 16 JS=1,LX
XL=( JS- 1.5) *0X
XU XL +DX
XL 2=XL* XL
XU2=XtU*XU
XI=( JS- 1)*DX
X2=XI*X.
R 2=X2+Y2
Rl=SQRT (R2)
RUI= I.-. 5*P 2
U1=RU1+Rl*(l.-.1666667*R2)*U
U2=R I-P U1*U
U3=-.5-.5*R1*U
E X=COS( P 1) -U* SIN(Rl)
JST=JST+1
R 5= XL 2+ YL 2
R6=XU2 +YI.2
R 7=XL 2+YU2
R8=Xt2+YU2
R 1=SQRT(R5)
R2=SORT(R6)
R 3=SQR T(R 7)
R4=SQRT (R8)
A YL=YL*AL OG( )cU+R 2) /XL+R1))
AYU=YU*ALOG((XU+R4)f (XL+R3))

A XL=XL*AL0G( YU+R 3) /YL+Rl))
AXtUXU* ALOGUYIJ+R4)/ (YL +R2)l
S 1=A XU- AXL +A YU-AYL
AYL=YL*AYL 41



AYU2YU *AYU
AXL=XL*AXL
AXUJ=XU *AXU
S3=XLr4AXU-XL*AXL+YU*AYU-YL*AYL
XYI.=XL*YL
XY2=XU* YL
XY3=XL *YU
XY4=XU* YU
S5=3333333*(XY4*R4-XY3*R3-XY2*R2+XYI*PlH..1666667*S3
TC(JST) =(S1*Ul44)XOY*U2+S5*U34.3333333*(XY4*R8-XY3*R7t'-Y2*R6+XYl*R 5

1 )*tJ4)*EX
YPI =YL* Rl
YR2=YL *R 2
YR3=YU* P3
YR4=YU*R4
S5=.8333333E-1*(YR4*R8-YR3*RT-YR2*R6.YR1*R5)+.125*(XU2*(YR4-YR2)-X

UL 2*(YQ3-YRL1)+XU2*AXU-XL 2*AXL)
S6=.?5*DY*a(XU2*XU2-XL2*XL2)4..3333333*Xl*DX*(YU2*YU-YL2*YL)
TX(JST )=.5*( YR4-YR3-YP 2+YR 1+A XU- AXL)*Ul+X1*DXDY*U2+S5*U3+S6*U4
TXIIJST) =TX( JST)*EX/DX
XR1=XL*Rl
XR2=XU* R2
XR3=XL*R3
XR4=XU* R4
S5=.8333333F- 1*( XR4*R8-XR3*R 7-XR2*R6+XRl*P5)4.125*(Y(2* (XR4-XR3) -Y

1L2* (XR2-XR I )+YU2*AYU-Y12*AYL I
S6=.25*DX*(YU2*YU2-YL2*YL2)+.3333333*Y*DY*(XU2*XU-XL2*XL)
TY(JSTI=.5* (XR4-XR3-XR2+XR4-AYU-AYL)*Ul+Y I *)XDY*U2+S5*U3-S6*U4
TY(JST )=TY(JST )*FX/DY

1.6 CONTINUF
15 CONTINUE

IF(LYM) 44944,45
44 Jl=LXP+l

J2=J 142
T C(J 1)=TC(J 2)
TX( JI) =-TX( J2)
TY(J l)=TY(J 2)
GO TO 46

45 Jh=2*LXP+l
D0 17 JS=2,LXP
Jlzj1+1
TC( JS) =TC( Ji)
T X(JS )=TX U 1)
TY( JS)=-TY( Ji)

17 CONT INU E
J1=1
DO) 18 JT=1,LYP
J2=JL+2
T CW 1 )T C(J 2
TX{JI)=-TX( J2)
TV(Jl)=TY(J2)
JlI=J 1*LXP

18 CONTINUF
46 J4=LX42

Jy=o
DO 19 JT=2,LYP
DO 20 JS=2,,LX
J3=J4
J4=J4+I.
J5=j4+t 42



Jy=Jy+1
YXX(JY)=.5*(TC(J4)+(JS-.5)*TC(J5)CJS-3.5)*TC(J3I-TX(J5)+TX(J3))+D
1X2* (TC( J5)-2.*TC(J4) +TC(J3))

20 CONTINUE
J4=J4+2

19 CONTINUE
Jy ::
DO 24 JT-tLY
DO 23 JS=l ,LX M
DO 22 J0=1,LY

* JTQ=LXM*1 ABS (JT-JQ)+1
DO 21 JP=1,LXM
Jl=JTQ4 lABS (JS-JP)

* J Y=J V *
Y(JYI =YXXIJ1)

21 CONTINUE
22 CONTINUE

JY=JY+NY
23 CONTINUE
24 CONTINUE

TF(LYM.FQ.l) RETURN
J4=2*LXP+l
Jy=0
DO 25 JT=3,LYP
DO 26 JS=2,LX
JY=JY+1
J4=J4+l
J 3= J4-L XP
YXX(JYI=(-TC(J4)*TC(j3)+TC(j4+1)-TC(J3+I))/DXDY

26 CONTINUF

25 CON'T INUE
JY=NX
DO 30 JT=1,LY
DO 29 JS=1,LXM
00O ?8 J0=lLYM
JTQ=2* (JT-JGC -1
J2=LXM*( iAI1S(JTQ)-1)/2
DO 27 JP=1,LX
JSP=2*(JS-JP) +l
Jl=J2* (lABS (JSP)+1 )/2
JY=JY+1
S( JY) =YXX (I)
I F(WJTO*J SP. LT.O0) Y( JY) =-Y( JY)

*27 CONTINUF
28 CONTINUE

JY=JY+NX
29 CONTINUE
30 CONTTNtJF

JY=0
J4=LXP+2
DO 31 JT=2,LV
Dr 3? JS=3,LXP
J3=J4
)4J4+1
j 5=j4.XP
Jy=JY+l
YXX(JY)=(-TC(J4)*TC(J3)+TC(J5)--TC(J5-1))/DXDY

32 CCNT!NUF
J 4= J4*2
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31 CONTINUE
JY=N*NX
DO 36 JT=1#LYM
DO 35 JS=19LX
DO 34 JQ~l,LY
JTQ=2*(JT-JQ) +1
J2=LXM*( IAB S( JTQl -1) /2
Or) 33 JP-1,LXM
JY=JY*
J SP=2 *(J S-J P ) -
Jl=J2+( I ABS( JSP)+1) /2
Y (JY )hYXX WJ 1)
IF( JTQ*JSP. LT. 0) Y(JY) m-Y(JY)

33 CONT INU E
34 CONTINUF

JY=JV+NY
35 CONTINUE
36 CONT INU E

JY=0
J4=LX+2
DO 37 JT=-2,LY
DO 38 JS=29LXP
JY=JY4-I
J4=J4+1

J5=J44-LXP

1Y2*(TC(JS)-2.*TC(j4)tTCtJ3))
38 CONTINUE

J4=J4+1
37 CONTINUE

JY= (N+1 )*NX
Dn 42 JT=I,LYM
DO 41 JS=Itt.X
00 40 JQ=1,LYM
JTQ=LX* JABS (JT-JQ)+l
DO 39 JP=ltLX
J1=JTQ+ TABS (JS-JP)
JY=Jy+ 1
Y (JY )=YXX (J 1

39 CONTINUE
40 CONTINUF

J Y=JY+N X
41 CONTINUF
42 CONTINUF

RETURN
E-ND
SUI3ROUT INE PLANE(THLXtLYtDXDY,P)
COMPLEX UUlP(200)
U=(0.9I .1
LXM=LX-1
LYM=LY-1
NX=LXM*LY
N=NX+LYM*LX
N4=N*4
DO 89 J=lN4
PC J) =0.

B9 CONTINUF
SN=SIN( TH)illCS=COS(TH) 44



X 2=0 X*C S
X3=*5*X2
SI=- SI N (X3) /X3
S2=S1*SL*SN
DO 81 JPzltLXM
S5=JP*X2
U 1=S2*(COS( S5)+U* SIN( S5))
Jl=JP
DO 87 JQ=11LY
P(J1 )=UI
J L=J I+L XM

87 CONTINUF
81 CONTINUE

I F(LYM.FQ.0) GO TO 90
00 82 JP=1#LX
S5=( JP-,5)*X2
U1= S 1*(COS( S5) +U* SIN( S5))
I =N+NX +JP

DO 88 JQI,9LYM
PJl )=Ul
J 1=J [+L X

88 CONTINUF
82 CONTINUE
90 Y2=DY*CS

y3=. 5*Y2
S1 -SIN(V3 )/Y3
S 2= S I* S 1* SN
JI =2*N+NX
IF(LY'4.FQ.0) GO TO 91
DC 8'. JQ=1,LYM
S 5= JC0* Y2
tlJ1S2*(CCS(S5 )+U*SIN(S5))
DO 84 JP=ILX
J1=Ji.+1
p(J 11 U 1

84 CONTINUF
83 CONJTINUF
91 DO, 85 JQ=1,LY

S5={JQ-.5)*Y2
U1=sI*(COS (S5)+lJ*Sy.A(55))
DO 86 JPI.,LXM
I =Ji *4
P(J 1)=U1

86 CONTINUE
85 CONTINUF

RETURN
FND
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IV. DESCRIPTION OF THE SUBROUTINES DECOMP AND SOLVE

The subroutines DECOMP(N, IPS, UL) and SOLVE(N,IPS,UL,B,X) use the

method of Gaussian elimination aid LU decomposition described in [5,

Section 9] to solve a linear system of equations with complex coefficients.

DECOMi and SOLVE, based on the FORTRAN programs on pages 68 and 69 of [5],
n3require roughly T multiplicative operations to solve a system of n linear

equations txersas the subroutine LINEQ on pages 28 and 29 of [2] requires

roughly n3 multiplicative operations to solve the same system.

The input into DECOYP is N and the matrix (A] of coefficients of the

set

[A x - b(69)

of N linear equations stored by columns in UL. N > 2. The output from

DECOMP is IPS and UL. DECOMP does not change N. SOLVE uses N, ITS, UL,

and the elements of b stored in B to calculate and store in X the elements

of the solution vector x. SOLVE does not change any of the input variables

N, IPS, UL and B. Minimum allocations are given by

COMPLEX UL(N*N)

DIMENSION SCL(N), IPS(N)

in DECOMP and by

COMPLEX UL(N*N), B(N), X(N)

DIMENSION IPS(N)

in SOLVE.

Assuming that the reader is familiar with (5, Section 91, we will

attempt to explain interchanging rows and scaling by rows [5, Sections 10

and 11]. Interchanging rows is necessary to avoid pivots which are close
(2) and (3)to zero. The divisors a,,, a22  a 33 of [5, Section 9] are called

pivots. Scaling the matrix by rows facilitates the search for pivots by

insuring that the number with the largest magnitude is most likely the

best pivot.

It will be shown that interchanging the ith and jth rows of the

array UL in storage at any stage of the computation is equivalent to

[5] G. E. Forsythe and C. B. Moler, "Computer Solution of Linear Albegraic
Systems," Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1967.
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interchanging the ith and jth elements of b. The above statement is

certainly true if the row interchange occurs at the very beginning when

[A] resides in UL. After zeros have been introduced in the below the

main diagonal positions of the first m columas of A,

UL 21(70)
A 2 1  A 2 2

11
where A is an m by m submatrix. The elements of A11 on and above the

main diagonal and all the elements of A12 and A22 are elements of

(MM .... MIA] where Mj is defined in (5, Section 9]. The elements of
1T1- 21A strictly below the main diagonal and all the elements of A are ele-

ments of (Mm Mm_ ... Hence,

11 A12 1

1A1 :1 : A2 - ' (71)

where B is a lower triangular matrix whose main diagonal elements are

equal to unity and whose elements below the main diagonal are equal to

those of A11 , C11 is an upper triangular matrix whose elements on and

above the main diagonal are equal to those of A 1, U is an identity

matrix, and b' is b with its elements permuted in accordance with any

previous row interchanges which may have occurred. From (71),

[11 11 11 12 1
A2 1 C A2 1 A12 + 22

At the stage Li it2."2 . A-ven by (70), the row interchange is limited

to the last m+l rou,-z ti ,. ar.- hence only affects A and A . From (72),

an interchange of two rowo orf A 21 and A2 2 is equivalent to interchanging

the corresponding two elements of

In DDOl~V, the row interchanges are not done physically, but mentally

by means of the variable IPS. The Ith row of the row interchanged array

is the IPS(I)th row stored in UL.
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Scaling by rows consists of multiplying all the elements of the jth

row of A, J=I,2,...N, by the reciprocal, called SCL(J) in DECOMP, of the

magnitude of the largest element in the jth row. In DECOMP, the rows of A

are not scaled physically. The effect of physical scaling would, as de-

duced from the algorithm in (3, Section 9], be to multiply any jth row

element involved in a search for a pivot by SCL(J). DECOMP obtains the

effect of scaling by incorporating SCL into the searches for pivots.

A verbal flow chart of DECOMP(N,IPS,UL) is as follows. DO loop 5

initializes IPS and obtains SCL. In DO loop 2, the operation consisting

of the sum of the absolute values of the real and imaginary parts ought to

be more efficient than the usual magnitude involving the square root of

the sums of the squares of the real and imaginary parts.

DO loop 17 performs the premultiplication by 14 where MK is defined

in [5, Section 9]. DO loop 11 decides that the (IPS(IPV),K)th element of

UL will be the pivot. If we were using the method of physical row inter-

changes we would, at this point, interchange the Kth and IPVth rows

physically. Statements 14 and the two statements following it carry out

the corresponding mental row interchange by interchanging IPS(IPV) and

IPS(K). Nested DO loops 16 subtract mIK times the IPS(K)th row of UL

from the last K+l columns of the IPS(I)th row of UL. See (5, Section 91

for the definition of mIK. Note that mIK is such that the previous row

operation extended to the Kth column would annihilate the (IPS(I),K)th

element of UL. Statement 18 stores mIK in the (IPS(I),K)th position of

UL.
-4.

The subroutine SOLVE(N,IPS,UL,B,X) obtains the solution x to

[L][U]' " (73)

where [L] is a lower triangular matrix whose diagonal elemenLs are all

unity and [U] is an upper triangular matrix. Here, Uij, J > i, is stored

in the (IPS(i), J)th position of the input array UL. Also, Lii - 1 and

Lij, i > j is stored in the (IPS(i),J)th position of UL. The ith element

of b' is stored ii- B(IPS(i)). As in (5, Section 9], we let
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(U]= y (74)

such that (73) becomes

[L]y" = b' (75)

The solution to (75) is given by

Y= bl (76)

i-i
Y. b' - I L = 2,3,...Ni= bi im I - y j '

The solution to (74) is given by

YN

N (77)

Yi - ijx j
J-i+lXi = -Uii  ,i=N-l, N-2,...l

i ii

A verbal flow chart of the subroutine SOLVE(N,IPS,UL,B,X) is as

follows. DO loop 2 stores yj of (76) in X(I). The index J of inner

DO loop 1 is the summa- ton index j appearing in (76). DO loop 4 stores

x of (77) in X(i) for i - "+l - IBACK. The index J of inner DO loop 3

ii

is the summation index j appearing in (77).
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C LISTINGS OF THE SUB~OUTINES OECOMP ASID SOLVE

C L~qPOJT IN r OF Cr4P (NJ I1PS9UL)
'CnMPLr-X UL( ?500) ,PI VOT ,IE4
DIMPP~S TON SC 5n) IRS( 50)
10 5 1 I ,N
IPS ( I) I~

Jl= I
Qfl 2 J= I9N
JLM=AFS (PEAL(U0,11- I)ABS (AIM~AG( i(J J 11)
J1 J 4N
I F( AN-JLM ) l 2, 2

I RN=UL'4
2 C#NT INU F

SC L ( 1 1. /R N
5 CONT INU F

NM I.=N- 1
K2=0
00 17 K=lM1
BIlG=O.
Df TlI ITI=K, N
IP= ip",I )
I PK=I N- K2
S Q E=( ABS( R fAL UL( IPKI +-AB S AlIMAG(UL(I PK)) )SCtI UP)
IFSI7E-111G) 1,911,10

IN 10 !3IG=SIZF.
I PV=I

11 CONIT TNJUS
IF(IPV-K) 14,15,14

14 J= IPS (K)

IPS ( IPV )=j
15 KPP=TPS;(K)+K?

P JV0T=JL(KPP)
KPI K-1
Dr 16 I=KPl,N
KP=KPP

C:M=-tiL( TP)/"PIVOT

00 16 J=KP1,Nl

KP=KP+NJ

Ul. I P I.A( TP +EM*UL KP)
16 nNlIT IN1J)

K 2=K2+,N
17 cFrNTI N J r

PFTUPN
F No
SU.RPf),)T INF SO)LVF(Nt IPSIUL,R,X)
'lOMP IFX tJL ( 2 5 00) 11(5 0) ,X (50) ,SUJM
DT1M14FNSIPON I P S(50)
NP 1=N4 I
I P= IPS (1
X( 1) =(TIP)

IP=IPS( I
TPRA- IP

TMII-I50



SUM=O
00o 1 J=l,IMI

SIJM:SM+u (I P)*X (J

2X(!)=B(1PS)-SLJM
K 2N *(N- 1)
IP::I PS(CN) *K2

00 4 IBACK::?,N

K2=K2-N
lpl=IPS(T )4K2
TPI=I+.
SUM:: 0.

Do 3 J:IP[,9N
I P= I P+N

3 SUM= SUM+UL ( IP)X(JA
4 x (I )(X (I )-SIJM)/UL(I PI)

RETUPN~
END
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