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cABSTRACT

Several models for predicting mean waiting times of river traffic
at a multiple chamber lock were developed and tested. Mean waiting

times predicted by the K/G/Il model differed significantly from
observed times. Analysis of possible causes of failure of this
model suggested a limited queue length M/G/il model for one chamber,
from which more accurate predictions were derived. For the two
chamber system, an M/G/l model with random batch size was developed.
This model yields a lower bound for mean waiting time. These last
two models can be used to predict system performance under variousoperating conditions

. ...... ..................



QUEUING MODELS FOR MULTIPLE CHAMBER LOCKS

by

C. Roger Glassey and Sheldon M. Ross
University of California, Berkeley

0. INTRODUCTION

The analysis of queuing delays experienced by river traffic at locks

presents a formidable challenge because of the special features of lock

operations. One early attempt [1] used the simple M/M/Il model and obtained

results that were reasonably consistent with the limited data available at

the time. However, that model does not permit an evaluation of the effects

of changes in operating procedures or capital improvements in lock configur-

stion. Furthermore, detailed studies of lock operations suggested that the

assumptions underlying the M/M/l model are not consistent with observed ar-

rival and service times. These inadequacies of simple queuing models prompted

the development of simulation models described in [2].

This paper reports on several queuing models developed to assist in the

analysis of operations at a particular lock (Number 26) in the Mississippi

River. The purposes of this analysis were, first, to predict mean waiting

times at higher traffic rates than had been experienced, and, second, to aid

in e*stiating the change in average vaiting times that vould result from

changed lock configurations or operations.
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0.1 LOCK OPERATIONS

Lock 26 consists of a pair of chambers each 110 feet wide, but of

different lengths (600' and 360'). Adjacent to the lock, and extending

across the river, is a dan which maintains the upstream water level

several meters higher than the downstream pool level. A typicel user of

the lock is a tow, consisting of a tug boat and several barges lashed

alongside and/or ahead.

A transit of the lock generally requires the following steps:

1. The lock supervisor signals the tow to begin its approach. The

gate opens.

2. The tow maneuvers into the chamber.

3. The gate closes, the water level in lock changes to match level

of the other pool, the other gate opens.

4. The tow maneuvers out of chamber.

Figure 1 shows a tow just leaving the small chamber and another about to

enter the large one.

Several variations of this procedure occur. If several small tows fit

into the chamber simultaneously and share one cycle of Step 3, this is known

an a pass through lockage. By contrast, very large tows cannot fit into

the chamber, and so are broken down into groups of barges each of which

requires Steps 2-4. If two (or three) groups are required, the procedure

is called a double (or triple) lockage. A double lockage takes more than

twice as long as a single because three cycles of Step 3 are required

instead of one and furthermore the chamber is blocked while the tow is

broken down to chamber sized groups on one side and made up on another.

Another type of procedure is known as a knock-out lockage in which a tow

rearranges its barges to fit into the chamber and blocks the approach

f 777-7
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to the chamber while doing so. A knock-out lockage effectively occupies

the lock for about twice as long as a single lockage, on the average.

Other special features of lock operations serve to complicate the

queuing analysis. There are, in fact, two queues; one on the upstream

side of the lock and the other on the downstream side. The arrival rate

of tows varies in time, (see Tables Al, A2 in the Appendix) as does the

distribution of tow sizes and hence the relative frequency of single,

double, triple and knock-out lockages. The decision process by which

a particular tow is selected from the queue for passage through one of

the chambers is complex and poorly understood.

The balance of this paper describes how some of these features were

found to be important for predicting waiting times and how representations

of the more significant ones were incorporated into the models we developed.
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1. MODEL I - INDEPENDENT M/G/l QUEUES

The simplest analysis of this system is based on the assumption

that the two chambers are independent; each is characterized by

time homogeneous Poisson arrival stream of tows and independent service

times. Further, the existence of separate upstream and downstream queues

is ignored. The waiting time in queue can be computed for each chamber

from the well known M/G/l model

WQ - XE[S 2]/2(l - AE[S])

where

X - mean arrival rate.

E[S] = mean service time.

E[S2 = mean squared service time.

The results of this calculation are shown in Table 1.

TABLE 1

A (Tows/Hr.) E[S] (Hrs.) E[S 2 ] WQ (Hrs.) W0 (Hrs.)

600' Chamber .646 1.466 2.753 16.79 6.53

360' Chamber .4865 .8523 1.320 .549 .814

The last column is the observed mean waiting time. The moments of the

arrival and service time distributions were estimated from data extracted

from the lock operating log and represent all tows arriving during the 26

week period beginning March 1, 1974, a total of 5171 observations.

f ,' .. .. .. ....
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A number of data items are recorded in the lock operating log for

each tow, including the times that the tow signals its arrival, the lock

supervisor signals the tow to begin its approach, and the tow clears the

exit gate. These times are entered into a computer data base, from which

the moments of the waiting time and lockage time distributions were calculated

by the Corps of Engineers. Unfortunately, lockage time as defined is not

the same as service time because there is always an additional interval

between exit of one tow and the time of the approach signal of the next.

If the next tow is heading in the same direction, the lock must be cycled

through Step 3; if in the opposite direction, the exiting tow must clear

the approach channel. The mean and variance of this extra lost time, which

is very small compared with lockage time, were estimated from the log records

of 160 consecutive tows and added to the lockage time mean and variance

to arrive at estimates of E[S] and EIS 2
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1.1 Analysis of Mi'/I Model Failure

It is clear that the independent M/G/1 queuing model is not a

satisfactory predictor of waiting times, and the causes of model failure

must be sought. The existence of separate upstream and downstream queues

at both chambers does not seem the likely source of difficulty since the

simple model overestimates the 600' chamber waiting time and underestimates

at the 360' chamber.

Closer analysis of the arrival data revealed that the arrival rate of

tows is not, in fact, homogeneous in time. On the average, fewer tows

arrive during the night hours and weekends than during the daylight and

week days. We shall argue that this nonhomogeneous arrival pattern can

partly explain the underestimate at the small chamber, but not the over-

estimate at the larger chamber.

Consider a system that experiences an arrival rate X for a fraction

P1  of the time and another arrival rate X 2 for a fraction P2  If a

long time elapses between change of arrival rates, so that the system spends

most of its time in "steady state" at one arrival rate or the other, the

time average wait in queue will be approximately p1 W(O1 ) + p2W(X2 ) where

W(O) is the stead state expected waiting time given the constant mean

arrival rate . On the other hand, if the time between changes of arrival

rate is very short the system behaves as if the mean arrival rate were

constant, with X P 1  + P2 X2 . It seems plausible that the mean wait-

ing time for a nonconstant arrival system lies between these bounds, i.e.

W(PI1 1+ p2 X2 ) < W < pIW(XI) + p 2W(X 2 )

While the outer inequality follows from the convexity of W(X) , we have

not been able to verify the complete inequality.
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Thus our conjecture implies that a nonhomogeneous Poisson arrival

process will give rise to a larger mean waiting than the homogeneous

process which has the same average arrival rate. Since, however, the

observed average waiting time at the large chamber is much smaller than

that predicted by the M/G/Il model, the failure of the homogeneous arrival

assumption is not the likely cause of model failure. The next candidate

for investigation is the assumed independence of chambers. It seems

clear that the larger tows would prefer to use the larger chamber,

particularly those that are too big to transit the small chamber in a

single lockage. On the other hand, when waiting times become too long

at the large chamber, the small chamber becomes more attractive. A poorly

specified but state dependence queue switching rule apparently operates,

and the next two models we describe were developed in an effort to

approximate this very complex situation.
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2. MODEL II - M/G/l WITH FINITE QUEUE LENGTH

The simplest state-dependent rule is the finite queue length rule:

if the number in the system exceeds N , the arrival does not join the

600' chamber queue, but is diverted to the 360' chamber.

2.1 Derivation of an Approximate Formula for Average Wait in the M//l
Queue with Finite Capacity N

Let

X = Poisson arrival rate of all potential customers

W - average amount of time an entering customer spends in the system

P = proportion of time there are n customers in the system

n - 0,1, ..., N

Now

W = W + W2

where

W1 = average remaining service time of customer in service (if any)

when the new customer arrives

W2 - average additional time (to Wl) an entering customer spends in

the system, i.e. his service time plus the service time of the

customers ahead of him in queue.

t
By conditioning on the state of the system when the customer arrives we obtain

S1- P - PNES 2

IZ ~P N 2EjS]

P N-i P
W - - ES] + . 1 P iE[S

2 1 N i-I N

where S is a service time random variable. Hence,

For a justification of this approximation, see Nozaki and Ross [5].
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E[S][L - NPN + E[SIP 0 + [1 - PO - PN]E[S 2 ]/2E[S ]

W N 1i - P N 0 N

N
where L - [ iPi = average number of customers in the system.

i-i

By using the well known queuing identity L A e We

A effective arrival rate - X(1 - PN) , we obtaineN

XE[SI(1 - PN)W - NP E[S] + E[S]P + (1 - P - P )E[s 2 1/2E[s]
W N 0 N

1 N

or

P[S2]E[S]P 0 (1 - P - PN) - NP NE[S]0 2E[S] 0 N 1
w (I - PN)(I- XE[S])

By noting that the average arrival rate of customers must equal the

average departure rate we obtain

M - PN) = (1 - P )/E[S] (2)

Hence the only unknown is P0 This, however, may be approximated by

using its value obtained in the special case when the service distribution

is exponential. In this case we have (see [3], p. 146)

P0 . (1 - XE[S])/[l - (XE[S]) N+ 1 (3)

and W is thus obtained from (1), (2), and (3).

. . .... . . . , .-.., .. _ I li -- a .-. A

'5"
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2.2 Computation for Finite Queue Model - 600' Chamber

1) Assume all tows with 2 or more barges would use the 600' chamber if

possible.

Total arrivals 5171 (in 6 months)

less 0,1 barge tows - 1357

3814 Total - .873 Tows/hr. -

2) Tows observed arriving at 600' chamber (not counting pass through) -

2822 (in 6 months) X e .646 (see Table 1).e

3) The difference between these arrival rates is the diversion rate to

the smaller chamber. Let PN be the probability that an arrival sees

(N - 1) waiting plus I in process. Hence

I - PN - A/A - .740

4) Computation of busy fraction: effective arrival rate - service rate x

busy fraction

1 - P0
e E[S]

1 - P0 e eE{S] - .947

where E[S] and E[S 2 ] are from Table 1.

5) Estimate N the maximum number of tows in system (using as an approxi-

mation the proportion of time the equivalent M/M/1 queue is empty, i.e.

Equation (3)). This yields

(XE[S]) N+ I 
- 1 + (XE[S] - I)P0 - 6.329

(N + 1) log XE[S] & log 6.329

N 6.46
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6) Compute W from Equation (1) and obtain W - 8.403 , the predicted

mean time in system. By comparison, W0 + E(S] from Table 1 gives

the observed average time in system as 7.904 hrs.

The simple M/G/l model with arrival rate X can be viewed as ae

queue switching model in which customers arrive at rate X , but switch

to the small chamber at random with constant probability p 1 - X /Ae

In practice, switching is much more likely to occur when the large chamber

queue is long, thus reducing the tail of the waiting time distribution.

This analysis explains why the M/G/Il model overpredicts the waiting time,

and why the finite queue model provides much better agreement with observed

waiting times.

It should be noted that we did not choose N so that our analytical

expression for W [Equation (1)] would be in agreement with the observed

value of W . Had we done so, there would be no independent verification

of the model from the data. Rather, N was estimated from the observed

effective arrival rate, Equation (3), and the assumption that all tows

with 2 or more barges prefer the large chamber. This last assumption is

a somewhat subjective interpretation of the data in Table 2.

We have assumed homogeneous Poisson arrivals at the 600' chamber in

this analysis. A close inspection of the arrival data showed that the

larger tows (3 or more barges) exhibited no significant difference in mean

arrival rate among hours of the day or days of the week. The smaller tows

showed significantly higher arrival rates during the day than at night,

and during the week than on weekends. These results support the idea that

the large tows represent long distance traffic and operate around the clock

seven days a week. Local traffic, by contrast, is predominantly small

tows. Since most of the small tows use the small chamber, the assumption

of homogeneous Poisson arrivals at the large chamber is consistent with

the data.
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TABLE 2

Tow Size Number Transiting % Transiting

(Barges) 600' Chamber 360' Chamber 600' Chamber

0 41 737 5

1 19 536 3

2 119 445 21

3 241 264 48

4 352 170 67

5 il 32 78

6 216 50 81

7 73 8 90

8 198 14 93

9 179 9 95

10 98 100

11 109 100

12 401 4 99

13 71 100

14 103 100

15 475 1 100

16 or more 52 100

The total tows in this table is less than the number 
arriving during

the 26 week period beginning March 1, 1974 because 
the number of barges

was not recorded correctly for all arriving tows.

____ -- ml , 
m'. . . .
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2.3 Use of Model II to Analyze Changes in Operating 
Procedure

Suppose that mooring facilities clear of the approach channel were

provided so that tows that require reconfiguration before transiting as

a single lockage could do so prior to making their approach. The effect

of this change would be that knock-out lockages would be converted to

single lockages. The resulting shift in the service time distribuiton

can be computed from the data below:

Lockage Type Number Fraction E[S] E[S 2

600' single 522 .185 .736 .645

600' double 1550 .550 1.902 4.165

600' knock-out 744 .264 1.109 1.141

2816 1.466 2.753 (weighted average)

If all knock-out lockages become singles, the singles would then be 45%

of the total, and doubles would still be 55%. The new weighted average

values for E[S] and E[S 2 ] would then be 1.378 and 2.583.

This change in operating procedure will thus increase the service

rate of the 600' chamber and presumably reduce the waiting tire for tows

using it. To estimate the new mean waiting time some assumption must be

made about the behavior of the tow boat captains in electing which chamber

to use under the new conditions.

Suppose, for example that this decision is based only on the large

chamber queue length, and hence N , as estimated under the old conditions,

remains constant (as does X). Then we obtain 1 - P0 " .932 from Equa-

tion (3), using the new value of E[SJ , and then compute 1 - PN - .774

from Equation (2). The effective arrival rate, A. .676 , and W - 7.96

hrs. from Equation (1).

U-...- -"
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In contrast, assume that the same fraction of tows elect the small

chamber, so that X remains constant. Then the busy fraction,e

1 - P " .890 and N - 4.66 (see steps 4 and 5 of the last section).

Equation (1) then yields W = 5.93 hrs.

It can be argued that these estimates bracket the true value since

presumably the queue length at the small chamber is also considered in

the decision process. If fewer tows are diverted to the small chamber

in consequence of the first assumption, that queue is shorter and hence

less unattractive. Consequently, the value of N should be somewhat

smaller under the new conditions. However, under the second assumption,

the average queue at the large chamber is substantially shorter, thus

making it less likely that tows will be diverted, so Xe should increasee

somewhat. Further analysis is limited by lack of detailed understanding

of the queue switching behavior.

Adam_
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3. MODEL III - M/G/l BATCH ARRIVALS

Model II is based on one approximation of customer behavior in

switching from one queue to another, i.e., that all customers, who would

otherwise like to use the 600' chamber, choose the 360' when the number in

queue at the large chamber equals N - 1 . This parameter is estimated from

an assumption about who prefers the large chamber and from the observed

arrival rate. Under vastly different conditions of arrival rate and

waiting times for the two chambers, it is not all clear what customer

behavior would be.

The difficulties arising from customer queue switching can be avoided

by taking a different point of view, i.e., regarding the lock, which consists

of two chambers, as a service facility for processing barges (and tow

boats). Thus, we treat the barges as customers and suppose they arrive in

batches of random size. The individual barges are allowed then to be

serviced in either the large or small chamber depending on which one is

free. If neither is free, they wait in a common waiting line which feeds

into either chamber. Since this model allows a tow with many barges to be

served in the small chamber and assumes a constant mean arrival rate of

barges, it will underestimate the average waiting time of a barge.

Since the analysis of M/G/2 systems is complicated when service rates

are unequal, we seek an "equivalent" M/G/l system that has approximately

the same service characteristics. We are thus led to consider an M/G/il

queue with random size batch arrivals. The batch size distribution can be

estimated from the tow site data. The remaining problems are to derive the

formula for the mean waiting time of a customer (nov a barge, not a tow)

and a method of estimating the service time distribution of a single

channel equivalent system.
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3.1 Derivation of Mean Waiting Time in a M/G/l Model with Random Batch
Size

Define:

W = average amount of time a customer (a barge) spends waiting in

queue.

V = average amount of work in the system - average amount of time

it would take the server to complete service of all customers

(barges) presently in the system.

X= Poisson arrival rate of batches.

N = random variable representing the number of customers in a batch.

We have the well-known result (see, for example, [61) relating WQ and VQJ

namely,

(4) V - XEINE[SIWQ + EI$ S XE[N]

However, if a batch arrives when the current workload is V , then the

average amount of time an average customer from the batch will spend in

queue is

WQ - V + E[waiting time due to those in his batch]

- V + E[WB]

Now E[WB] can be computed by conditioning on the number in the batch.

If an is the proportion of batches of size n , then a customer chosen

at random (from among all customers) will come from a batch of size n

with probability equal to n / ji , and thus

Li I



18

E[WB] = E[S] (n 2 1) na n/

(6) 
n

= E[S](E[N 2] - E[N])/2E[N]

because if there are n in this batch then the average customer will see

n customers from his batch in front of him. Hence, from (4), (5),2

and (6), we obtain

2 2
(E[SI(E[N2I - E[N])/2E[N]) + XE[N]E[S ]/2

(7) WQ . 1 - XErN]E[S]

3.2 Approximating a Two Server System by a Single Server System

Consider a 2 server system in which S1 and S2 represent service

random variables for the respective servers. If both servers are

continuously busy, then the output stream would be a superposition of 2

renewal processes and thus

E (number departures by time t) - E + t
E[ 1] E(S 2]

t Var [S ]  t Var [ 2

Var (number departures by time 
t) - +

(E[S 1 I)3 (E[$21)3

(see Reference (3]). Hence, to approximate by a single server system, the

service distribution would need to be such that

t/E[S] - t/E[S 1] + t/E[S 2]

and

4 In
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t Var [S]/(E[S]) 3 . t Var [S ]/(E[S ])3 + t Var [S2]/(E[S2])
3

or, in other words,

(8) E[S] - (1/E[S 1] + I/E[S 2 ])-i

(9) Var [S] = (E[S])3(Var [SI]/(E[SI])3 + Var [S2]/(E[S2])3)

3.3 Calculations for Two Server Random Batch Model for Barges

The first step is to estimate the mean and variance of equivalent

barge service time at each chamber. This can be done based on the

assumption that the service time observed for a tow of size j (where

j - number of barges + 1) is the sum of j independent random variables,

2
each with mean W and variance G

Let S = service time of the ith tow of size j

Then ESij -J1 ,

Var (Sij) a Jo2

and E[S2ij jo2 + j2 2

Let n - number of tows observed of size j

Then E n S, - njj

an E 2~ njio2+nji 2 2

i-l

Summing over all tow sizes, we obtain

Adam.
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19 n 19
E 7 Si = I i nj

1=1 = i- i 31=1119 n 2  2 19  
2 1 2E I S. ' 0 Z jnj + L J nj,

j=l i=l 'i J-1l j

which give rise to the estimators

= ij /I Jnj ; a2 . [ ii - I i nj/j in

It can be shown that these estimators are biased, but that the bias is

negligibly small for the sample sizes available to us.

These estimators, for the 28,246 barges and tow boats that transited

the 600' chamber, are 0 = .1476 and a 2 02597 . The results
600 600

for the 360' chamber are w360 3164 2 = .1600 based on tows36 . 360

containing 5940 barges and boats. From (8) and (9), we calculate

E[S] = .10065 and E[S 2  = .02352

From the lock log data, we calculate the moments of the tow size

distribution: E[N] - 6.600 E[N 2 70.447 , and the average arrival

rate of units - 7.884 . Substituting these values in (7) yields

WQ ' 2.78 hrs. From the lock log data, we calculate the observed average

waiting time as 5.97 hrs. To obtain the average time in system, the

average time spent by a barge during a transit of the lock must be added.

This numuer is the average tow service time, weighted by the tow size,

and is 1.360 hrs. The model mean time in system is 4.14 hrs. while the

observed average time is 7.33 hrs. The model thus provides a lower bound

on time in system, as expected.

M "
M m .. . . . . ... . . . .. . .. . ... . .. .. ..
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4. SUMMARY AND CONCLUSIONS

The simple M/G/i model of independent channels is not consistent with

observed mean waiting times. Possible causes of failure of this simple

model were examined. The complex behavior of tows in selecting the small

chamber when the large chamber queue is long was identified as the most

significant aspect of lock operations not captured by this model.

The M/G/l finite queue size model was developed as an approximation

to this queue switching behavior. The time in system predicted by this

model was quite close to that observed at the 600' chamber. We expect this

model to give good results for the 600' chamber i.nless operating conditions

change substantially.

A lower bounding model was de-yeloped for the two chamber system. This

model implicitly assumes that barges will join a common queue and be

processed at the next available chamber. It will underestimate barge

waiting times since, in fact, large tows will wait for the 600' chamber

even when the 360' chamber is idle. This model development required

derivation of the mean wait for a M/G/ queue with random size batch

arrivals and also the appropriate service time moments for a single channel

queue that approximates a system of parall.l channels having different

service times. We feel this model will provide useful lower bounds on

average time in system even under operating conditions very different from

the current mode.

Models II and III require essentially the same data that would be

required for a simulation model, i.e., the moments of the tow size distribu-

tion, and the service time distribution conditional on tow size, and the

arrival rate for each tow size. From such data, unconditional service



22

time moments and other parameters required by the model can be caculated,

and waiting times estimated. At least for preliminary analysis of policy

options, these models represent a very inexpensive alternative to simula-

tion models.
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APPENDIX

The two tables in this appendix show the nature of the time dependence

of the mean arrival rate. The data includes all tows arriving at the

lock for the 26 weeks beginning at midnight (hour i) on Friday (day I),

March 1, 1974.
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TABLE Al

NUMBER OF TOWS ARRIVING BY DAY AND NUMBER OF BARGES

NUMBER OF DAY SUM OF

BARGES 1 2 3 4 5 6 7 SUM SQUARES

0 129 112 88 106 135 115 95 780 88,640

1 76 69 46 101 105 90 90 577 50,079

2 85 66 69 92 83 95 82 572 47,444

3 68 75 72 66 81 65 78 505 36,659

4 74 77 93 70 69 80 59 522 39,596

5 22 17 21 32 20 13 18 143 3,131

6 36 3,5 35 36 44 41 39 266 10,180

7 12 13 9 9 14 11 13 81 961

8 31 24 30 30 39 34 24 212 6,590

9 22 36 25 32 22 22 29 188 5,238

10 19 13 17 8 19 10 12 98 1,488

11 17 19 16 15 16 15 11 109 1,733

12 46 50 64 56 59 61 69 405 23,811

13 11 9 9 13 9 7 13 71 751

14 18 21 12 10 18 11 13 103 1,623

15 65 56 79 74 59 81 62 476 32,964

16 0 4 7 4 7 7 5 34 204

17 3 0 1 1 0 2 4 11 31

18 2 2 2 0 1 1 1 9 15

19 or more 1 1 0 2 4 0 1 9 23

SUM 737 699 695 757 804 761 718 5,171

SUM OF
SQUARES 50,461 43,479 42,887 52,673 60,048 55,417 46,096
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TABLE A2

NUMBER OF TOWS ARRIVING BY HOUR OF DAY AND NUMBER OF BARGES

NiUBER OF HOUR

BARGES 1 2 3 4 5 6 7 8 9 10 11 12 13

0 27 19 26 24 28 27 31 39 48 54 40 28 45

1 11 11 17 13 8 13 15 33 22 46 36 47 45

2 17 13 17 22 17 15 21 52 22 22 19 24 24

3 19 24 18 15 21 11 20 26 23 27 22 32 28

4 23 25 24 15 18 32 20 24 25 20 21 24 19

5 9 10 11 8 7 5 3 7 5 5 5 6 4

6 8 12 15 7 5 15 7 10 13 12 10 4 9

7 6 2 6 1 4 2 4 2 3 2 4 2 1

8 6 7 4 7 10 8 16 9 13 5 6 7 10

9 3 8 10 6 9 9 16 9 7 9 4 5 6

10 6 4 6 5 6 2 1 4 4 3 3 5 3

11 5 5 4 2 6 5 1 4 5 4 4 6 3

12 20 17 14 20 20 20 14 23 15 18 15 17 12

13 1 5 4 8 5 0 2 3 3 1 2 1 2

14 3 1 2 2 3 4 5 5 4 6 5 4 4

15 19 16 21 18 26 20 13 18 21 24 27 30 19

16 1 2 1 0 3 4 1 0 1 2 2 1 1

17 0 0 0 2 0 0 0 0 0 1 1 1 0

18 0 0 0 0 0 1 0 0 1 0 1 0 1

19 or more 0 0 0 0 1 0 0 0 1 1 0 0 1

SUM 184 181 200 175 197 193 190 268 236 262 227 244 237

SUM OF
SQUARES 3,088 2,829 3,362 2,703 3,365 3,529 3,410 7,800 5,582 7,892 5,389 6,568 6,551
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TABLE A2 (Continued)

NUMBER OF HOUR SUM OF

BARGES 14 15 16 17 18 19 20 21 22 23 24 SUM SQUARES

0 41 35 44 30 24 42 24 30 28 25 21 780 27,374

1 29 28 31 25 26 24 29 29 16 5 18 577 17,127

2 41 34 30 24 22 23 24 25 23 25 16 572 15,308

3 21 9 26 15 15 24 30 16 20 20 23 505 11,383

4 23 21 17 18 22 23 26 20 24 17 21 522 11,660

5 3 2 4 6 8 5 9 10 4 2 5 143 1,005

6 8 8 14 12 13 13 16 12 20 11 12 266 3,262

7 5 8 3 2 1 5 1 4 5 5 3 81 355

8 9 11 11 13 8 9 7 10 8 8 10 212 2,044

9 11 12 10 8 3 4 6 11 7 7 8 188 1,688

10 6 7 2 5 5 2 3 4 2 4 6 98 462

11 5 4 2 4 4 6 4 7 6 8 5 109 553

12 16 9 15 23 8 18 17 15 17 23 19 405 7,189

13 2 4 4 3 6 1 4 3 3 2 2 71 287

14 6 2 2 7 5 4 6 5 6 7 5 103 507

15 16 17 12 19 15 19 27 21 22 13 23 476 9,946

16 1 2 1 1 1 1 1 2 3 2 0 34 70

17 1 0 1 0 0 1 1 0 2 0 0 11 15

18 1 0 3 0 0 0 0 0 0 0 1 9 15

19 or more 0 1 1 0 0 1 0 0 1 0 1 9 9

SUM 245 214 233 215 186 225 235 224 217 184 199 5,171

SUM OF
SQUARES 6,089 4,544 5,613 4,057 3,144 5,035 5,089 4,272 3,971 3,062 3,315


