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Abstract

A methodology is presented for analyzing periodic autoregressions

which is also applicable when inferring the second order properties of

periodically correlated processes. In addition, capitalizing on the duality

between periodic and multiple autoregressions, a method is set forth for

analyzing the latter, which overcomes the usual requirements of a large

number of both parameters and computer storage locations.
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1. Introduction

Given a time series (Y(t) ; t - O, ± 1,...) whose second order moments

exist, define its mean function, m(t) - EY(t) , and its covariance kernel,

R(st) - E (s) - m(sDJC(t) - m(t3 A class of nonstationary processes

which readily lends itself to analysis, and is of practical importance

(see [91, [5], [181) is that of periodically correlated processes (see [21).

Definition. The process Y(-) is said to be periodically correlated of

period d , if for some positive integer d and for all integers s,t

m(t) - m(t + d) , R(s,t) - R(s + d,t + d)

Since we propose dealing with the second order properties of the

process, without loss of generality take m(t) - 0 .

Periodically correlated processes are not only of interest in their

own right, but, because of their duality with multivariate covariance

stationary time series, they also provide insight into and modeling facility

for these series. This claim is based, in the main, upon the following con-

struction: define the Jth component of the d-dimensional vector X(t) by

(see [21),

(1.1) Xj) i M ¥Y + d(t - 1ID

and the covariance kernel of X(.) by

Rjk(6,t) - E1 1(a) Xk(t) , I J Jk d , st 0,± 1,...



By noting that

(1.2) Rjk(S,t) - R(J + ds,k + dt)

we nave,

Theorem (Gladyshev [2]). The process Y(*) is periodically correlated of

period d if, and only if, the process X(.) is covariance stationary.

This theorem shows that, although not covariance stationary, the

process Y(-) , nonetheless, does not deviate too much from stationarity;

and, in fact, its second order properties may be deduced from those of

X(-) . We can further capitalize on this duality but in the other direction;

given a covariance stationary process X(.) define the associated periodi-

cally correlated process, Y(.) , by (1.1). This is especially useful when

X(-) is a multiple autoregression. For then by investigating Y(-) , we

actually effect an easily calculated orthogonal decomposition of the process

X(.) , thus achieving the usual gain in simplicity and power associated with

orthogonalization. This point is amplified in the remainder of the paper.
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2. Autoregressions

Given a sample X(1),...,X(T) from a d-dimensional zero mean covar-

iance stationary time series with spectral density matrix f(w) ,

-T ! W - TT , the problem is to estimate f(.) . Under some very mild

restrictions on f(-) , [71, it can be written as the spectral density of

an infinite order autoregression. Parzen [13] thus proposes treating the

sample as one from a £th order autoregression,

p
(2.1) X(t) + Z A(j) X(t - J) - C(t)

J-1

where cov (e(t)) - , and by choosing p large enough, f(') can be

arbitrarily closely approximated. Parzen [151 gives a method for choosing

p which accomodates both the numerical approximation, which argues for a

large p , and the requisite statistical estimation, which argues for a

small p . The autoregressive approximants have been used in practice

with success, (see (41, [141 and references therein, also in geophysics

[161 where a closely analogous method, the method of maximal entropy, is

used). For these reasons it seems important to study autoregressive

processes.

The periodically correlated analogue of an autoregression is given

by (see [5)),

Definition. A process Y(-) is said to be a periodic autoragression of

period d and order (p,....,pd) if for all integer t

Pt
(2.2) Y(t) + 7I a(j) Y(t - J) F M(t)

j-

- . .... :' , r*.eT---- l. - l I!I 
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. 2(t 2
where the C(-) are uncorrelated with mean zero and (t) at and,

2 2
Pt - Pt4d t a 0 t+d , and, a t(J) -' t+d(J) , - l,...,pt

Theorem 1. If X(') and Y(.) are associated by (1.1), then, X(.) is

an autoregression of order p with positive definite E if, and only if,

Y(*) is a periodic autoregression of period d and order (pl....,Pd)

with positive 2 2 and,

11 ~..*ad , nd

p [ [max(pj - J)/dj + 1

where, for integral j, [x] - j for j ! x < j + 1.

Proof. If Y(e) is a periodic autoregression of order (Pl"'"'Pd) then

it may be written as (see Lemma 2)

P
(2.3) LX(t) + E A'(J) X(t - J) a el(t)

J-1

where L is a unit lower triangular matrix, p satisfies tbe condition of

the theorem, and the el(.) are uncorrelated with a diagonal covariance

T2 2matrix, EC (t) C (t) - D - diag Q 1,...,ad). Therefore,

p
X(t) + Z A(J) X(t - J) - C(t)

J-1

where

A(J) L'A(J) J 1...,p

(t) -t

:: 

.tn
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-l -T
and the C(-) are thus uncorrelated and have covariance matrix -L D L

which is positive definite since D is.

Conversely, suppose

p
X(t) + Z A(J) X(t - J) -~t

where the C(-) are uncorrelated with positive definite covariance matrix

E Define the unique modified Cholesky decomposition of 2; by Z& - LD L T

where L is unit lower triangular and D is positive definite diagonal,

2 2 - ID - diag (a ,..rt) d Then L is unit lower triangular and X(o)

satisfies

L X(t) + r, A'(J) X(t - J) - 't

where

A .0(J) - L- A(J) ,

and the ;--(t) - L- e(t) , and are thus uncorrelated with diagonal positive

definite covariance matrix, and the theorem is proved.

Note that without too much difficulty we could accoxnodate a process

for which E~ is not of full rank.

Definition. A process Y(e) is said to be a covariance stationary Derio(Iic

autorearession if it is a periodic autoregression and, furthermore, the

associated vector process X(-) ,(1.1), is covariance stationary.

._._._._.._._._.
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By a stationary multiple autoregression, we mean a process X(.)

which obeys (2.1) and admits to a solution, in the mean square sense, in

terms of the "past" ( , i.e.

W
E~)-(t) + E B(k) c(t - k).

k-I

For this to be true, the zeroes of the determinental polynomial,
P

detlI d + E A(J) zJ) must lie outside the unit circle. This does not
Jul

translate into the intuitively expected conditions for the periodic auto-

regression. For example, suppose d - 3 and Pl - P2 
= P3 

= 1 , then

for stationarity we require k 1 (l)cL2 (1)cL3 (1)I < 1

One of the values of an autoregressive process is, of course, the

facility with which one may perform linear prediction. It can easily be

shown, see (18], that the least squares predictor of Y(t + h) , for

positive integer h , on the basis of Y(t),Y(t-l),..., is

h-I Pt+h
Y(t+h/t) - ( thJ) Y(t+h- J/t) - E %L (J) Y(t +h- J)

j l j h

if Y(.) is a covariance stationary periodic autoregression. The one-

step-ahead (h - 1) prediction error is simply,
E(Yt ll) Yt I)2 2

E[Y(t +l/t) - Y(t +1)2 2+ , For h> 1 one must formally

solve (see (3.8)),

Pt+h

Y(t+h) - t-th(J) Y(t+h-J) +e(t+h)
Ju

, r 5t+h(k) c(t +h- k)
k-0
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with 8t+h (0) - 1 , in which case

2 h-I

EtY(t +h/t) - Y(t +h))a h -i2  2(k) 2
k 0

A side benefit is that the above method yields a solution to the

problem of predicting only a subset of X(t + 1),X(t + 2),..., in terms of

X(t),X(t - 1),... , for an autoregressive X(-)

,i , " ", -
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3. Parameter Estimation

Given a sample Y(l),...,Y(T) from a zero mean Gaussian covariance

stationary periodic autoregression of order (pl,.',pd) and period d

we wish to make inference about the parameters () and Cy

j - 1,...,p k , k = 1,...,d . We show that the results of Mann and Wald [6]

extend to this case.

To simplify the notation we take T - Nd , where N is a natural

number. Then the problem is equivalent to having a sample X(l),...,X(N)

from a stationary autoregression, where X(-) and Y(-) are related by

(1.1).

Define

m

(3.1) R%(k,v) = N"  1 Y(k + dJ) Y(k + v + d j)
j-0

where m - N -[(k +v)/d] , for k = l,...,d , v - 0,1,...,T- k-1

Lema 1. If Y(') is a periodically correlated Gaussian process, then,

with RN(k,v) defined by (3.1), as T-i, w , the RN(k,v) converge almort

surely and in mean square to R(k,v) , and

(3.2) N Cov CN(kl,vl), RN(k2 ,v 2 ) C (R(kl,k 2 +du) R(v ,v 2 +du)
urn -CO

+ R(kl,v2 +du) R(vl ".2 +du)]

ill .
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Proof. By using (1.1) and (1.2) and Gladyshev's theorem, we see that this

is merely the extension of Slutsky's result; see [31, pp. 209,210.

In a periodic autoregression, the a and a are related to the

covariance kernel R in a modified Yule-Walker form;

Theorem 2. If Y(-) is a covariance stationary periodic autoregression

of order (pl,..,'pd) with covariance kernel R(-,-) , then for

k w 1,...,d

Pk2 2

(3.3) R(k,k-v) + E a.k(j) R(k- Jk-v) v v Z 0
.1vO Ck ' v0

where we use the Kronecker delta.

Proof. We must first show that

Pt

Y(t) - - E CLt(j) Y(t- J) + P_(t)
j-l

- C(t) + E Ot(k) f:(t -k)

k-1

This result is immediately available from Theorem 1. Therefore, for posit.',e

v , Y(t - v) is uncorrelated with e(t) . Multiplying both sides of (2.2)

by Y(t - v) and taking expected values yields the theorem.
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We are thus immediately led to Fisher-consistent estimators of the

CL and o ; in (3.3) replace the R by the appropriate RN and solve

the resulting linear equations. Indeed, one can show after some laborious

algebra that these estimators are the same as those one would obtain by

solving the appropriately constrained multivariate Yule-Walker equations.

Thus, the above suggests a possible method for finding the properties of

the estimators, but, since the constraints are unpleasant, we prefer to

proceed directly.

If Y(.) is a periodically correlated process, denote by .9 the

Fisher information matrix, and by J(C,9) the element in this matrix

corresponding to the parameters C. and .

Lemma 2. If Y(.) is a Gaussian covariance stationary periodic auto-

regression of order (pl,...,pd , then the information matrix is block

diagonal,

( c k~ j , O m ( ) " 6 k R ( k - J , k - t , ) / 2

2. 2 0kn/204
fo k, . )

for J in1,...,Pk , C =l,...,p , k,m - l,...,d .



Froof. Using (1.1) then,

L X(t) A A(j) X(t - j) c-= -

where

Lki = (J) ,j<

A kj(v) =c (dv -k + J) ,v 12,.

-n!2 2
nd p as in Theorem 1. Then, defining D =diag, (ff.. I a d and,

p
G(7-) = L E A(j) z z=

j =1

wu have that the spectral density matrix of the X(-) proccss is

f 1)= G- (z) OG *(z)/2-

where the asterisk denotes thle complex conjugate transpose. We have,

see [ 171 , that

(3.4) 7T(~ 7 f (if di

Let Ej denote the d-dimensional square matrix with a one in the (j,k)

component and zeroes elsewhere. Now

(3.5) b I f nE JkG* - + G*D jf zv
AKJ-(-V)

- .'M 'tMI'
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(3.6) 6f - Ejk-* +jD jf , <k
Lk j ~ Ek GD.

7 f-l f* -* 2

(3.) 2  kk k
'k

Using the formula,

(3.8) G l(z) - L' + F B(k)z

k-l

where the B(.) decay exponentially to zero because of the assumption on

the zeroes of det (C(z)) , we see that the terms of the form

TTtr fEG'E Ge. -0

for all k,J,m,n if v + u / 0 , and for k > j or m> n if v + u = 0

(see (101). Upon substitution of the appropriate (3.5), (3.6) and, or, (3.7)

into (3.4), and some straightforward algebra, the lemma follows.

If, with the RN defined in (3.1), we define the 0. and CT as

solutions to the normal equations,

Pk ,^^

(3.9) %(k,k-v) + E %(J) %(k-J,k -v) - 6 C Pk

for v - 0'.0.,k and k a 1,...,d , and the vectors T

then,
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Theorem 3. If Y(l),...,Y(T) is a sample from a covariance stationary

Gaussian periodic autoregression of order (pl,...,Pd) , then the a and

(7 defined by (3.9) are almost surely consistent estimators (T-. ) . And

1W_ (k - k 1, l,...,d have an asymptotic distribution which is

Gaussian with mean zero and covariance matrix _"I , where J is the appro-

priate block of the information matrix given in Lenmma 2. Thus the estimators

are, in this sense, asymptotically efficient.

Proof. The consistency follows from Lemma 1 and Theorem 2. To show the

asymptotic distribution, as in [121, we have from (3.3) and (3.9) for

k = l,...,d and V = 1...,p k  v

Pk PkE3o % (k - J,k - . ak(j) -O%(j)' E %(j) ((k -J,k -v) -R(k - J,k -v):
(3.10) " -

A

defining ak(O) M a,(0) = 1 . From Lemma 1 the random variables on the right

of (3.10) are asymptotically Gaussian with mean zero. To find their asymptotic

covariance matrix, consider for v1 and v2 positive,

,r
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P'"1 Pk2

N i 0 l(J1 ) CI. (j 2 ) Coy RN(k - Jl,kl - v1 ) ,, (k 2 -2 2- v2 )J
j1 =0 j 2=0 1

Pk 21P

-1 jl) a (j 2 ) IR(k I - j _,k2 - j 2 ) R(kl - vl,k 2 V2 )j1 =oJ=0 j2  1(  2( -Jk2- _ )

+ R(k 1  v l k2 - j 2 ) R(k 2 - v2 ,kI - jl )

-" ( hR(k1 - lk 2 " J2+du) R(k l -v l ,: 2 -v 2 +du)
u=1

+ R(h 2 - j 2 '1I1 - J1 +du) R(k 2 - v2 ,k 1 -v 1 -- du)

"" R(k1 -vl.- 2 " J 2 +du) R(k 2 -v 2 ,k 1 - Jl-du)

+ R(k 1 - V 2- J 2 - du) R(k 2 - v 2 ,kl -j 1 -du)f!

2 R(k . Vi l v
k1 Ilkl,k 2  1  v 2 )

from Lemma 1 and a repeated application of (3.3). Now, from Lemma 1 and

Cramer's theorem, ([1] p. 254) the random variables on the left of (3.10)

have the same joint asymptotic distribution as

.F, , -- _ -- nnnlnn --- II I ...-

-I-
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PitE 1,- ,,- i ( )) v $,.. PIC

and the theorem is proved.

A noteworthy result contained in the theorem is that, asymptotically,

the . , k = l,...,d , are independent. Thus, when analyzing a multivariate

autoregression, the parametrization in terms of the , , as opposed to the

A(J) in (2.1), allows us to analyze each channel separately. In addition,

since the different orders of the channels are not necessarily such that

dp - pk- Ic + 1 , k = 1,...,d , we can model a multivariate autoregression of

order p (with A(p) - 0) with fewer than d2p + (d(d +1)]/2 parameters,

and we thus have a general methodology for systematically reducing the number

of parameters required. The number of parameters in terms of the A(J) can

be sizable; for example, if d - 12 (monthly data), to fit a zero order multi-

ple autoregression requires 78 parameters; a first order, 222 parameters.

We have thus overcome the difficulty expressed by Whittle (171], "... of

analyzing a d-tuple series [which] may be said to increase roughly as d2

(the number of auto- and cross-correlograms which must be calculated, and the

order of the number of parameters to be estimated), while the number of

observations increases only as d ." It could be said that we have defined

multiple autoregressions of non-integer orders.
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4. Deciding the Order

When using autoregressions to model data, an important question has

been what order to use. To answer this for periodic autoregressions, we

expand the notation in (2.1) and (2.2) to make explicit the orders, by using

) and 2 (Pk) . Parzen [15] has introduced the CAT criterion

to decide the order of a fitted multiple autoregression,

CAT(m) - tr -1
p=I tJp

which measures the mean square error (plus a constant) of approximating the

infinite order autoregressive transfer function by a fitted mth order auto-

regression. The chosen order is that which minimizes an estimate of CAT(m)

Rewriting CAT we see that it equals

m d k c.1(j,p 1) d I 2(0 m)
dN E 2 2

pl k1 ji0 (PI) kl j=0 a(mk)

where dp = p k -1- 1 , dm = mk - k + 1 , .l,...,d

To remove these constraints on the individual orders, and thus allow for

noninteger order multiple autoregressions, we can define

d
(4.1) P CAT (2) Z PCAT (mI)

where m (ml,..,,md) , and,

(4.2) [Ni E1 = 2 2
m -0 p-l ak(p) 2()

mk = 0,1,....
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We see that PCAT (m) is minimized when each PCAT (mk) is minimized. The

PCAT (mk) may be estimated by replacing the a by the a in (3.8) and the

2 r 2
k(p) by LN/(N - p)J ak(p) obtained in (3.8). In this form, we can use

PCAT to decide the order of a periodic autoregression.

An alternative is to use the Akaike criterion [41, which presupposes

that the sample is indeed from a multiple autoregression of order m

AIC (m) - log det + (2d 2m/N)

and minimize it with respect to m . This function can be rewritten as

d ^22

AIC (m) log ak(mk) + (2d2 m/N)
k=l

with dm - ik - k + 1 , k = l,...,d . This leads to the generalization,

d
(4.3) PAIC ( E) = PAIC (mk)

kI:=

where m - (mil,...,md) , and,

(4.4) PAIC (in) log k(mk) + 2mk/N , mK f 0,1,...

which is a straight generalization of the univariate AIC This is indeed

approximately proportional to,

- 2 In (maximum likelihood function) + (2 number of parameters) /1

agreeing with the definition given in (4].

*!
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We note that, as for scalar autoregressions, the periodically correlated

autoregression allows us to put a prediction theoretic interpretation on the

multivariate AIC . If we let

-2 ^2
k(jk) = Na k( mk)/(N - mk) , k - 1,...,d

i.e., introduce the "unbiased" estimator of the residual variance, then

d -2( -i 1 2- 2=2

&IC(m) = log c7k(mk) (1 +mkN + 0(i N)
k-I

with dm - mk - k + 1 , k = l,...,d . Thus, asymptotically, AIC is the

sum of the logs of the estimated one-step-ahead prediction variances of

X1 (t+1) given X(t),X(t-l),..., plus that of predicting X2 (t+l) given

X1 (t +I),X(t),X(t-l),..., plus that of predicting X3 (t +1) given

X2 (t +)),X, etc.

...I-- " i ' " ,' -.
m m . .. . .. . . .. ... . .. ... .... ... .... . .. ....... .. . ... . *
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5. Discussion

Viewing a multiple autoregression as a periodic autoregression clearly

displays the effects of prewhitening each channel before doing a joint analysis.

If the prewhitening is done with an autoregressive filter on each channel, then

this can be viewed as, first, fitting a periodic autoregression with

&k(d),ak(2d),... , k - 1,...,d , as the only nonzero coefficients, and,

second, performing a periodic autoregression on the residuals. An alternative

approach would be to include a subset regression option when fitting the

periodic autoregression (such as in [8), for example) and this would obviate

the need for prewhitening.

In analyzing atmospheric data, Jones and Brelsford [5] achieved a

reduction in the number of parameters by expanding the a in Fourier series,

m
(5.1) CLk(J) = Z (cjn cos(2Tnk/d) + s jnsn(2-Tnk/d))

taking m small (relative to d/2 ), arguing that the a were slowly varying

(with respect to k ) and periodic of period d . Using the asymptotic dis-

tribution in Theorem 3, one can obtain efficient estimators of the c's and

sts by performing a weighted regression of the Q , in (3.9), on the c's and

sis (as in (11). Indeed, these estimators are not too different from those

in [51, but this approach would provide a method for systematically testing

the hypothesis exhibited in (5.1).

The Gaussian assumptions made in Section 3 can clearly be relaxed.

Another generalization can be achieved by considering periodically correlated

q-dimensional vector processes Y(-) , in which case X(.) would be a

dq-dimensional covariance stationary time series (2].
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