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ABSTRACT

To investigate the possibility of a point of a crack front

propagating in a direction not in the normal plane of the crack

front, the three-dimensional form of the crack front stress

field is obtained. To simplify comparisons of the states of

stress at various points lying on a spherical surface centered

at a point of the crack front, a local spherical coordinate

system is used. It is found that the crack propagation will

be from each point of the crack front in a direction lying in

the normal plane.

The results are used in conjunction with the strain energy

density fracture criterion for the problem of an elliptical

crack. The plane of the flat elliptical crack makes an arbi-

trary angle with the field of uniform applied tensile stress.

Crack growth directions for various positions along the crack

front are determined, and loads required for fracture for var-

ious angles are obtained.
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INTRODUCTION

Cracks of particular shapes have been considered by sev-

eral authors. The plane strain geometry and loading always

result in the familiar plane strain crack tip stress singular-

ity established by Williams [1]. Similarly, the plane strain

geometry subjected to anti-plane loading always leads to the

form of crack tip stress singularity given in [2]. These forms

will be referred to as the two-dimensional results. They con-

tain the three stress intensity factors, k1 , k2, and k3. Ex-

amination of the two-dimensional results shows that the singu-

lar part of the crack tip stresses depends explicitly on posi-

tion relative to the crack, and implicitly on the other param-

eters (load, geometry, material) through the stress intensity

factors.

This same type of two-dimensional geometry subjected to

arbitrary three-dimensional loading was the subject of an

eigenfunction expansion investigation [3]. It was found that

the crack tip stress singularity was identical in form to the

two-dimensional results, with the exception that the stress

intensity factors depend, in general, on the position of the

point of the crack front nearest the point at which the stresses

are computed.

Irwin [4] showed that the form taken by the stress field

in [5] for a penny shaped crack is also the same as the two-

dimensional result. Progress since then has established that
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this is true for very general loads. For a review of the

problem of the penny shaped crack, see E6), which contains a

large number of stress intensity factors evaluated for vari-

ous loads.

Finally, for the cases considered, the form of the stress

field near the edge of an elliptical crack is also given by

the two-dimensional results 17]. Reference [6] contains sev-

eral examples of loading and the corresponding stress inten-

sity factors.

Although not proved, it seems quite likely that similar

results apply to arbitrary cracks. The starting point in

this investigation is the assumption that the two-dimensional

results give the form of the stress singularity for an arbi-

trary crack. The crack front is a general curve in space,

described implicitly by its curvature and torsion. It will

also be assumed that the osculating plane of the crack front

curve is tangent to the free surfaces of the crack at each

point.

A geometrical analysis provides the stress field referred

to local spherical coordinates. The strain energy density

theory [8] when applied in three-dimensions [9] requires this

result so that minimums of strain energy density on spherical

surfaces can be located. The result is surprisingly simple

when the appropriate choice of coordinate system is made. A

different choice of coordinates can lead to results as compli-

cated as those in Appendix I 16,9].
-3-

7 7--I I- ---- m m-m---m



The results are applied to mixed mode loading of a flat

elliptical crack. The stress intensity factors of [7] can

be combined to give the crack front stress singularity for a

field of uniform tension at an arbitrary angle to the plane

of the crack. The various crack growth directions and loads

are displayed in Appendix II as functions of the parameters

involved.

A future application of this result to the transverse

crack in a thick plate is anticipated. The development of a

shear lip due to the interaction of a curved (thumbnail) crack

front with the free surface will lead to mixed mode crack front

stress fields. The analysis of additional crack growth under

mixed mode loading requires further work on the finite element

numerical stress analysis. But when this is obtained, the

strain energy density fracture criterion will be available for

direct application.

Further work to include higher order terms seems appro-

priate for use in developing special crack front elements in

finite element formulations of problems involving curved

cracks. It is expected that the curvature and torsion of the

curve and their derivatives along the crack will be required.

Derivatives of the stress intensity factors may also appear

in the result.
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LOCAL STRESS FIELD

Let P be a point of the curve defining the crack front and

let n, b, and t be the normal, binormal, and tangent (unit)

vectors at P. The plane defined by the normal and tangent.

known as the osculating plane, will be assumed to coincide

with the tangent to the free surfaces of the crack at P. This

is by no means necessary, but for a naturally growing crack,

it seems reasonable. For an element in the normal plane, de-

fined by n and b, as shown in Figure 1, the appropriate form

of the stress field is the two-dimensional result,

kl

an k1 Cos 0. El - sin sin -

k sin [2 + cos cos 30

k1ab -i cos 0I+ i 0 sin 30]

+ s 1+si

k2 e 30+ - s in YCos TCos -

at vk1  k(1 0 2v Cos 0- sin

e 0 30T n -b sin -cos Cos Y_

Cos [l sin sin



nt 2 n 1

k 3

bt 2OS

ra Tn n

t n

Figure 1: Crack front stresses in the normal plane.

These stresses act on an element with edges in the n, b. and

t directions. The stresses on the plane, 8wO reduce to

T/br (

In all cases, k1 k2 , and k3 are to be evaluated at point P

of the crack front. The expressions for the stresses omit

F - --- (2

terms of 0(1). which are finite at the crack front.
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GEOMETRY

Consider two points, P0 and P, on the crack front as

shown in Figure 2. Regard P0 as fixed and P as moving. Then

bo

zQ

Po

Figure 2: Vector triads at two points.

the position of P, rp, and the unit vectors, n, b, and t may

be regarded as functions of the arc length, s, from Po to P.

It is shown in differential geometry lO] that

drp dn

(3)
db dt
T - n - m Kn

The sign of the curvature, K, is opposite that in [10] because

! here points to the convex side of the curve when K is posi-

tive. When the torsion, T, is positive, n and b turn in the

direction of a right-handed screw about t as P moves in the

-7-
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direction of t.

If s is small, Taylor series expansions of the vectors

about s=0 are

n + d9 s + O(s2 ) =o + (Kojo + ob0o)s

0

+ O(s 2 )

+ do S + o(s 2 ) = o " tono s + 0(s2)

b ~ I §+ + t_§ - KTOfl0 s + 0(s2 )
0 (4)

t 10 + dj s + o(s' 1  t Ko "ono s + O(s2)

drpl
tp rp + -- O(s2) = Sp + t°s + O(S2)r p = r P0 s += rP0 -ot

where equations (3) have been used. The zero subscript in-

dicates that the term is evaluated at P0.

The position of an arbitrary point Q may be expressed in

two ways. In terms of its coordinates, n0 , bo, and to, in

the reference frame at Pop

rQ = rpo + no o + bob o + to o  (5)

Using the coordinates, n, b, and t, in the reference frame

at P,

rQ - rp + nn + bb + tt (6)ij -8-
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Equating (5) and (6) and using equations (4) the relation be-

tween the two sets of coordinates is found to be

no = n - (Kot + Tob)s + O(s 2 )

bo = b + T 0ns + O(s) (7)

to = t + (1 + Kon)s + O(s2 )

The direction cosines needed for transforming the stress

components from one reference frame to the other may be ex-

pressed as in Table 1. The elements in the table are cosines

Table I: Direction cosines of the transformation

n b t

n 1 0os  Ko s

-ToS 0

t -Kc0s 0 1

of the angles between the two sets of unit vectors. These

are easily obtained from equations (4). Note that terms of

O(s 2) have been omitted from Table I.

S9
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TRANSFORMATION OF COORDINATES

Suppose the point Q of Figure 2 is the location of the

elements shown in Figures 1 and 3. From Figures I and 3, the

coordinates of Q, which are related by equations (7), may be

< 7r/2 b

IOoli b
0 -

t T 0

tn0TP-o

Figure 3: Crack front stresses in an arbitrary
position.

written as

n = r cosO n0 = r0 cOS 0 cosO 0

b = r sine bo = r0 coso 0 sine 0  (8)

t - 0 to a r0  sln o0

~ gThen equations (7) become
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r0 cosp 0 cose0o = r cosO 0r sine s + 0(s2 )

r0 cos~ o sin 0o = r sine + Tor cose s + 0(s2) (9)

r0 sin~ o = (1 + K0 r cose)s + 0(s 2 )

For the present investigation, P0 and the spherical co-

ordinates, r0, 0 , and *o0, are regarded as given. Equations

(9) are then used to determine r, e, and s. That is, the po-

sition of the point P such that Q lies in the normal plane at

P is to be determined. The first two of equations (9) give

r sine = r0 coso [sine - T 0 case0 s] + 0(s2 )

(10)

r cose = r0 cOSo (cose 0 + To sine0 s] + 0(s2)

and the third becomes

r0 sin o = (1 + K0 r0 cos o cose0 )s + 0(s2) (11)

Equation (11) has the solution

s = r0 sineo + 0(r 2 ) (12)0 0 0

and equations (10) become
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r sine = ro cos$o sine0 + O(ro2)

(13)

r cose = ro cos o coseo + O(r2)

In view of equations (13), the coordinates r and e are

r = ro coso + O(r2 )
0 0 0

(14)

e = eo + o(ro)

From these, one obtains such results as

I _ 1 [1 + O(ro)]
/F v2r oCOS 0

(15)

sine = sine 0 + O(r0 ), cosO = cose 0 + O(r0 )

for use in equations (1).

TRANSFORMATION OF STRESS

The two sets of stress components shown in Figures 1 and

3 both describe the state of stress at the same point Q.

Thus they are related by the standard transformation formulas

for stress. For example,
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{0

= t2 a + Z2 a + 2 a + 2 n 'rn
n  nnn nb b nt t nn nb

+ 21nnntT nt + 2nbntT bt

(16)
To a d +II
nb Lnn bn n + JnbJbb b +  fnt bt t

+ 2Unnbb' nb + 2nntbt~ nt + 2nbbt bt

where tab = ao"b is the cosine of the angle between the ao

direction and the b direction. These are shown in Table I,

where the first subscript on tab indicates the proper column

and the second, the row.

The result for ao is given to show the order of approxi-

mation involved in the stress transformation due to neglecting

terms in the direction cosines.

0an = an - 2(KoTnt + ToTnb)s + 0(S' )  (17)

Similar results can be written for the other stress compo-

nents, but since s is given by equation (12), the linear terms

in s are of the same order of magnitude as the terms neglected

in equations (1). Therefore, to the order of accuracy required,

a 0 . an + O(s) Tnb Tn + O(s)n n nb Tnb

t + O0(s) (18)
b  nt bt +0

at at +bt 0(s)s
-13-



LOCAL STRESS FIELD IN SPHERICAL COORDINATES

IThe stress components in Figure 3 can be evaluated after

one additional consideration. The stress intensity factors

in equations (1) are to be evaluated at point P. However,

I Taylor series expansions can be used to relate these values

to the values at point P0  Thus,I
k = k 0+ o(s)

Sk2 = ko + O(s) (19)

k = ko + O(s)

By assembling together equations (1), (12), (14), (15)s

(18), and (19), the desired result is obtained.

ooko o  0o  30o

a 0 cos - [1 - sin 3-0 sin Tf
n 12rsoOS °

o0 o  eo  3e0
20 

0kr_____ sin 2- [2 + cos .- cos T

I
o o 0 o  3

a b=2 cos - [1 E + sin r sin T

k o 0 o  3B0
+ k 2r 0 cos 0sin cos COS

i2r~oS-

I
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k _ ko e

at = 2v 1  os 2 sin 0
t/2roCO o  t/2roS o  e

0 ko 00 00 380
Tn 0 1 -sin -cos 0 Cos 0
Tnb Y' =s 2 T

0 0+ k cos - [1 - sin 80 sin (20)

/2roCOS o

Ts i sin (
nt (2 0 0o~ o

k 8

nt '2rocoso

0 0

In equations (20), terms which remain finite as r0 O are

omitted.

Thus, the spherical coordinates of Figure 3 result in a

simple form for the crack front stress singularity. It should

be noted that, to the order of approximation used, the stresses

on the element of Figure 3 are the same as those on an element

in the normal (nobo) plane located a distance ro cos*o from

P0 and an angle 0 from n0 " The more complicated form re-

sulting from the choice of coordinates used in [6,9] is given

in Appendix I.

STRAIN ENERGY DENSITY

For plane problems, the strain energy density fracture

criterion [8) states that crack growth is toward the point

-15-
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on a circle centered at the crack tip which has the smallest

strain energy density. Furthermore, the growth begins when

this smallest value of the strain energy density reaches the

allowable value for the material.

A similar criterion has been stated [9] for three-dimen-

sional problems. Each point of the crack front must be con-

sidered separately. A small sphere, centered at a particular

point of the crack front, is used to replace the circle in

the two-dimensional case. The criterion states that crack

growth is directed along the line from the center of the

sphere to the point on the sphere with the smallest strain

energy density. The collection of these lines, one for each

point of the crack front, defines the new crack surface.

Growth along these directions begins when the value of mini-

mum strain energy density reaches the maximum which the ma-

terial will tolerate.

In use, since some points fail before others, it is con-

venient to imagine an increment of crack growth proportional

in length to the value of minimum strain energy density at

each point. Thus, the points failing first have more new

crack surface adjacent to them. The usual warning [11,12]

that the calculations apply only to the first crack growth

from the initial geometry is appropriate. For very brittle

materials, It has been noted ll) that predictions based on

the initial crack geometry agree well with experiment for

large amounts of crack growth.
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Since the form of equations (20) is so much like the

two-dimensional result, much use can be made of [8]. The

strain energy density can, in fact, be written easily as

dW S + o0) (21)
dV r0cos o0

where

S = all(k/)2 + 2al 2 kk2 + a 2 2 (k )2 + a3 3 (k )2 (22)

The coefficients in equation (22) are exactly the same as in

[8].

16 Gall 1 (3 - 4v - coseo)(1 + coseo)

16 Ga12 = 2sneo0 (cosO0 - 1 + 2v)
(23)

16 Ga2 2 = 4(1-v)(l - cosO ) + (3coseo - I)(I + cose )

16 Ga3 3 = 4

where G and v are the shear modulus and Poisson's ratio, re-

spectively.

When dependence on the angle *o is analyzed, it is seen

that the minimum of equation (21) occurs in the normal plane,

I
o 0 (24)

-17-
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The remainder of the analysis is similar in some ways to

that in [8]. Given the stress intensity factors, one computes

the angle, B0 which minimizes equation (22). The minimum
*

value is denoted by S . Then crack growth occurs when

* c 1-2v (25)
lcr c

* *
in the direction defined by 00 = 00 = 0 and eo =e . The

plane strain fracture toughness denoted here by klc is equal

to that defined by ASTM divided by Fw.

The results differ from two-dimensional analyses by vir-

tue of the fact that the stress intensity factors, in general,

vary from point to point along the crack front. Thus, the

new crack surface is generally a warped surface of the type

shown in [6,9].

The problem of uniform tension of an embedded elliptical

crack is presented as an example in Appendix II. This prob-

lem has been discussed in [6,9], but Appendix II contains

several results correcting the details of [6,9].

I

I
I

-18-
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APPENDIX I

Suppose the point Q at which the stresses of Figure 3 are

to be determined is located by the spherical coordinates shown

in Figure 4. The ranges of the angles e1, ,l are not the con-

I1 1 < ir/2
fell

P O0

r1

Figure 4: Alternative spherical coordinates.

ventional ones, but are chosen so that in the normal (nob o)

plane the two-dimensional form of the stress singularity is

(recovered.

In the transformation of coordinates, equations (8) are

replaced by

no a r, cose 1 coso 1

bo = r sine1  (26)I
to = r1 cose 1 sino 1

-19-



Then it is found that

s = r1 cose 1 sin@ 1 + O(r)

r sine = r1 sine1 + O(r2) (27)

r cosO = r, cose 1 coso1 + O(r)

Therefore,

tane = 
tane

(28)*

r = rIAK cose 1

where

X = cosfl

(29)

sgn(cose I ) /1 + (1)

The definition of A in equations (29) differs from that in

[6,9) because of an error in determining the relationship be-

tween the elliptical coordinates and the spherical coordinates

The terms omitted in this and subsequent equations are all
one order of magnitude smaller than the last term written.

The symbol for curvature is also used here to make compari-
sons with [6.9) easier. There should be no confusion because
curvature is contained nowhere in Appendix I.

-20-
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near the crack front. Equation (29) is the correct form to

use.

Equations (28) and (29) allow one to compute the terms

required in equations (1). Thus, one has

tanO = sgn(tane1 ) V7rT

sine = sgn(tan81 ) K
K

cose = -
K

sin = sgn(slnel)

~7 e -/K (30)

sin sgn(sine l) K

os2-. 2-K /

2 K 2 K

I ) si sgn(sinel) / --sin 0= 1 _____cse

CosTV2co0
1 1 i __ _I_

COSr FK7 T nT 2Co 7S 0

The stress field obtained by substituting equations (30)

into equations (1) and using equations (18), (19), and (27) is

-21-
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* 0 = (IC' - K - 2)A (- K + c + 2)B

n k/ 1 2 k (

* = - (K 2 + K - 2)A - 2  (K2 - K - 2)B
b v2r, 

2-r

[ 0
1 q- Tr 

(31)

k 0 k02
Tn 0 - k (K 2 

-K -2)B + 2 K K + 2)A

T = k0 2K 2 B

To . 3 2KIA

where

A / K+1 B -sgn(sine) 

(32)A B 2cos = 2c0S 1

Except for the correction of A (equation (29)) and a more pre-

cise treatment of signs, equations (31) agree with those of

[6,9).

The complicated form of equations (31) makes it difficult

to find, except by numerical analysis, that the minimum strain

energy density occurs when = The form of equations (20)

makes the result obvious.

-22-
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APPENDIX II: ELLIPTICAL CRACK

The mixed mode loading of an infinite elastic body con-

taining a flat elliptical crack is accomplished as in Figure

5 by inserting the crack at an angle to the direction of a

z

a fao

ab

Figure 5: Elliptical crack at an angle to
a field of uniform tension in an
infinite material.

field of uniform tension. The coordinates of point P0 on the

ellipse are given in terms of the parametric angle, a, by

-23-
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x = a cosa, y = b sin (33)

The stress intensity factors at point P [7] are0

o e ~ 2

kl = E-Fk s in26

aV-k'k 2 a sina cos[ sina sinw
e ae s(kz+vk,)E(k)_vkhLK(k)

+ k' cosc COSw k (34)
(kz v)E(k)+vkKlk]

k = (l-) av'ek'k2 a sina s k' cosa sinw

3 e ae (kL+vk' )E(k)-vk' K(k)

+ sina cosw(k v)E(k)+vkZK(k)]

where a e = b/l-kcosE

k' =a ka=/77

and K(k) and E(k) are complete elliptic integrals of the first

and second kinds, respectively.

These stress intensity factors can be substituted into

equation (22), and the fracture angle eo determined for vari-

ous angles of loading, a and w, crack diameter ratios, b/a,

and positions on the crack front, a. The point of the crack

-24-



front with the largest value of the minimum S will control

the load required to cause failure, acr" The value of this

critical applied stress is obtained from equation (25).

Several results in [9] are modified by these calculations.

Table 9-1 is no longer applicable since the minimum value of

energy density occurs in the normal plane Table 1, con-

taining corrected values of Table 9-2, shows the direction of

minimum strain energy density corresponding to tensile loading

for various points along the crack front. Also given are the

normalized minimum values of the strain energy density and its

distortional (Sd) and dilatational (Sv ) parts. Corrected val-

ues for Table 9-3 are given in Table 2. Since the correct

values of the minima, S , are larger than those reported in

[9], the failure loads will be smaller than In [9].

Figure 6 shows the direction of crack growth at various

points of the crack front (specified by a) for b/a = 0.5. The

loads are applied symmetrically with respect to the xz-plane.

As a result, the ends of the minor axis (a = 900) are under-

going Mode I and III deformation only, and the crack grows

straight ahead under tension. Other values of the fracture

angle are given as functions of the angle of inclination of

The labels, Table 9-1, Figure 9-1, etc., will be used to
designate Table 1, Figure 1, etc., in reference [9]. Labels
without the 9-prefix refer to tables and figures in this Re-
port.

In the notation of [9, *o = 0.

-.25-
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Table 1. Fracture angles, eo , and S for b/a = 0.5,

v = 0.33, w=0, and a = 600. (Tensile load-
ing)

o  16GS /C 2b 16GSd/a 2b 16GSv/02b

0 -47.550 0.4613 0.1208 0.3405

150 -44.850 0.5015 0.1535 0.3480

300 -38.50o 0.5991 0.2291 0.3701

450 -30.580 0.7144 0.3144 0.3999

600 -21.560 0.8171 0.3890 0.4280

750 -11.290 0.8870 0.4394 0.4476

900 0 0.9118 0.4572 0.4545

Table 2. Fracture angles, ao, and S for b/a = 0.5,

v = 0.33, w=0, and B 600. (Compressive
loading)

e 16GS / 2 b 16GSd/G 2 b 16GSv/02 b

0 124.780 0.0884 0.0778 0.01056

15=  128.240 0.1168 0.1095 0.00730

300 136.470 0.1851 0.1823 0.00272

450 146.560 0.2648 0.2643 0.00059

600 157.350 0.3355 0.3355 0.00006

750 168.550 0.3835 0.3835 0.00000

900 180.000 0.4004 0.4004 0

-26-
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the load to the plane of the crack. As expected, the frac-

ture angle is zero when the load is perpendicular to the crack

(a= 9 0 ). Figure 6a should be contrasted to Figure 9-4, and

6b to 9-14. The curves in [9] show very different behavior

near the ends of the minor axis. Similar statements can be

made about Figure 7 in comparison to Figures 9-5 and 9-15.

It shows fracture angles for a longer elliptical crack, b/a

0.1.

Figure 8 shows the influence of the length of the ellipse

on fracture angle at the location, a = 300. The longer el-

lipses approach tunnel cracks (two-dimensional) which for w=0

are under Mode I and III loading only. As would be expected

for this case, the fracture angles approach zero for tensile

loading. Again, the curves in Figure 8 are distinctly dif-

ferent from Figures 9-6 and 9-7 for the smaller values of b/a.

Fracture angles for several values of the angle, w, between

the xz-plane and the plane of symmetry of the loading are shown

in Figure 9. These angles give the direction in which fracture

occurs if it occurs at the ends of the minor axis as is the

case for Figures 13 and 14. Figures 9-7 and 9-17 show the same

curves as Figure 9 because [9] chose to put *o equal to zero,

which, to be consistent with other calculations in [9], should

have been zero only for w=0 and 90. As verified in this Re-

port, the fracture always occurs in the normal plane, and there-

fore, inadvertently, Figures 9-7 and 9-17 are correct.

-28-
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Figures 10, 11, and 12 give the values of minimum strain

energy density for various values of the parameters. These

curves may be interpreted as giving

S - F aob (35)

where S is the minimum strain energy density, and F, as shown

in the figures, is a function of a, 8, w, v, and b/a.

The case of a narrow ellipse (b/a = 0.1) with load applied

so that w=O is shown in Figure 10. The curves in Figure 9-8

and 9-18 are qualitatively similar, but, except for a=0 and

900, there are large differences. The case of tensile loading

shows peaks for B 55'. This indicates that failure is more

likely to occur when the crack and load make this angle than

when they are perpendicular. This type of result, already

pointed out in [8,9], requires rethinking of conventional de-

sign procedures which consider the worst case to be the one

for 8 = 900. Compressive loading produces peak values of S

at a 450 and zero values at 8=0 and 900. This implies that

extremely large loads (which would cause general yielding and/

or crushing) would be required to cause failure in the latter

two cases.

Figure 11 shows the effect of b/a on S . For nearly circu-

lar cracks, there is no peak under tension until 8 - 900.

Therefore, penny-shaped cracks are in the most detrimental po-

sition when normal to the load. When the loads are compressive,
-32-
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the peaks are exactly at 6 = 45, and the curves are symmetric

about 8 = 450 because at a = 900 only Mode I and III loading

are present when w=0. Figures 9-9 and 9-19 are identical to

Figure 11 because of this symmetry.

As discussed in connection with Figure 9, Figures 9-10 and

9-20 are the same as Figure 12 because of an inconsistency in

[9] which inadvertently led to the correct result. Figure 12

shows values of S at a = 900 for a long ellipse (b/a = 0.1)

and several orientations of the load. The curve for w=O is

associated with Mode I and III only, while w = 900 produces

Mode I and II only at a = 900. For intermediate values of w,

there is a mixture of all three modes of crack deformation.

The curves show a decrease in S as the load changes from a

mixture of Modes I and III to one of Modes I and II.

Failure loads can be obtained from Figures 10, 11, and 12

by applying equations (35) and (25). Solving for the failure

load, acr' gives

16GScr 1/2
Ocr = (36)

or

acr a klc I (37)

where F is the function of a, 8, w, v, and b/a shown in Fig-

ures 10, 11, and 12. The form used in equation (37) was chosen

-36-
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for plotting Figures 13 and 14.

Figure 13 is obtained from Figure 11 with one exception.

For most cases, it was found that the largest value of S

occurs at a = 900. However, for nearly penny-shaped cracks,

it sometimes occurs at a=0 instead. Therefore, the case of

tensile loading shows two curves for b/a = 1.0. The upper,

solid curve shows the load required to cause failure at

a = 90° , and the lower, dashed curve gives the load at which

failure actually occurs (at a=0). It is only in the inter-

mediate range of a that the dashed curve is lower, and so it

is not shown outside this range. In all other cases plotted

in Figure 13, the failure occurs at a = 900 at the load shown.

It is difficult to compare Figures 9-12 and 9-22 with Figure

13, but, by symmetry, they should give the same result. Note

that the ordinates in [9] are 2/7 times those in Figures 13

and 14.

Failure loads for the various mixtures of the three modes

of crack deformation are shown in Figure 14. This was obtained

from Figure 12 by using equation (37). In all cases, the fail-

ure occurs at a = 900 for this long elliptical crack (b/a

- 0.1). It can be verified from Figure 10 that for w-0 the

largest value of S occurs at a = 900.

-37-



0-1,

q3q

L41~

ZI-

Zy



o s)

t-

N.

0 /f .'



REFERENCES

1. M. L. Williams, "On the stress distribution at the base

of a stationary crack", Journal of Applied Mechanics,

Vol. 24, pp. 109-114, 1957.

2. G. C. Sih, "Stress distribution near internal crack tips

for longitudinal shear problems", Journal of Applied Me-

chanics, Vol. 32, pp. 51-58, 1965.

3. R. J. Hartranft and G. C. Sih, "The use of eigenfunction

expansions in the general solution of three-dimensional

crack problems", Journal of Mathematics and Mechanics,

Vol. 19, pp. 123-138, 1969.

4. G. R. Irwin, "Analysis of stresses and strains near the

end of a crack traversing a plate", Journal of Applied

Mechanics, Vol. 24, pp. 361-364, 1957.

5. I. N. Sneddon, "The distribution of stress in the neigh-

borhood of a crack in an elastic solid", Proceedings of

the Royal Society of London, Series A, Vol. 187, pp. 229-

260, 1946.

6. M. K. Kassir and G. C. Sih, Three-Dimensional Crack Prob-

lems, Noordhoff International Publishing, Leyden, 1975.

7. M. K. Kassir and G. C. Slh, "Three-dimensional stress

distribution around an elliptical crack under arbitrary

loadings", Journal of Applied Mechanics, Vol. 33, pp.

601-611, 1966. -40-



8. G. C. Sih, "A special theory of crack propagation",

Methods of Analysis and Solutions of Crack Problems, pp.

XXI-XLV, G. C. Sih, editor, Noordhoff International Pub-

lishing, Leyden, 1973.

9. G. C. Sih and B. C. K. Cha, "A fracture criterion for

three-dimensional crack problems", Engineering Fracture

Mechanics, Vol. 6, pp. 699-723, 1974.

10. G. A. Korn and T. M. Korn, Mathematical Handbook for

Scientists and Engineers, pp. 561-584, McGraw-Hill, 1968.

11. M. E. Kipp and G. C. Sih, "The strain energy density

failure criterion applied to notched elastic solids",

International Journal of Solids and Structures, Vol. 11,

pp. 153-173, 1975.

12. R. J. Hartranft and G. C. Sih, "Three-dimensional growth

characteristics of a plane crack subjected to concentrated

forces", Journal of Applied Mechanics, Vol. 41, pp. 808-

809, 1974.

-41-

, . .= mmmmmmmmm __ _ u_ ___m__ ___m _m_ __m __



DISTRIBUTION LIST

PART I - GOVERNMENT

Administrative and Liaison Activities Headquarters
U.S. Marine Corps

Chief of Naval Research Washington, D.C. 20380
Department of the Navy Attn: MC-AX-2 (2)
Arlington, Virginia 22217 MC-AX-4E2
Attn: Code 439 (3) MC-AAP-3

461
444 Commander

Naval Air Systems Command
Director Department of the Navy
ONR Branch Office Washington, D.C. 20360
495 Summer Street Attn: NAVAIR-320N
Boston, Massachusetts 02210 NAVAIR-5302

NAVAIR-531
Director NAVAIR-531IJ
ONR Branch Office NAVAIR-5314
536 South Clark Street NAVAIR-5325A
Chicago, Illinois 60605

Commuander

Director Naval Air Development Center
Naval Research Laboratory Warminster, Pennsylvania 18974
Attn: Library, Code 2029 (ONRL) Attn: Mr. M. Schulman
Washington, D.C. 20390 (6) Crew Systems Department

U.S. Naval Research Laboratory Naval Air Development Center
Attn: Technical Information Division Philadelphia, Pennsylvania 19112
Washington, D.C. 20390 (6) Attn: Dr. E. Hendler

Crew Systems Department
Commanding Officer
ONR Branch Office Director
207 West 24th Street Naval Research Laboratory
New York, New York 10011 Washington, D.C. 20390

Attn: Code 8440 (Dr. F. Rosenthal)
Director
ONR Branch Office Commanding Officer
1030 E. Green Street Naval Ship Research and Develop-
Pasadena, California 91101 ment Center

Bethesda, Maryland 20034
Defense Documentation Center Attn: Code 745 (Mr. B. Whang)
Cameron Station
Alexandria, Virginia 22314 (12) Commanding Officer

Naval Civil Engineering Labora-
Navy tory

Port Hueneme, California 93041
Chief of Naval Operations Attn: Dr. Warren Shaw, Structures
Department of the Navy Department
Washington, D.C. 20305
Attn: NOP-05F

NOP-506N
NOP-098T

I_ A. . . . . .. .



Commander Department of Transportation
Naval Safety Center
Naval Air Station Mr. R. F. ChandlerNorfolk, Virginia 23511 Code AC 119

CAMI, FAA Aeronautical CenterCapt. Channing L. Ewing Mclusn P.O. Box 25082Naval Aerospace Medical Research Oklahoma City, Oklahoma 73123
Laboratory

Michoud Assembly Facility Mr. H. SpicerNew Orleans, Louisiana 70129 Federal Aviation Administration
(DS-41)Amy 800 Independence Avenue, S.W.

Washington, D.C. 20590Commanding Officer
U.S. Army Aviation Material Mr. H. Dalutolo

Laboratories Federal Aviation AdministrationFort Eustis, Virginia 23604 NAFEC (NA541)Attn: VDLEU-SS Atlantic City, New Jersey 08405
(Mr. G. T. Singley, III)

Mr. D. BeyerDirector Federal Aviation AdministrationU.S. Army Board for Aviation (RD-730)
Accident Research 800 Independence Avenue, S.W.

Fort Rucker, Alabama 36360 Washington, D.C. 20590
Attn: BAAR-PP (Mr. J. Haley)

HeadquartersCommanding Officer U.S. Coast GuardU.S. Army Research Office Durham 400 7th Street, S.W.Attn: Mr. J. J. Murray Washington, D.C. 20590
CR0-AA-IP Attn: DAT/62
Box CM, Duke Station EAE/63Durham, North Carolina 27706 ENE-5/64

IGS-1/61Air Force NMT-t/82
OSR-2/73Air Force Office of Scientific

Research Mr. J. G. Viner1400 Wilson Boulevard Protective Systems Group (RS-12)Arlington, Virginia 22209 Federal Highway AdministrationAttn: Mechs. Div. 400 7th Street, S.W.
Washington, D.C. 20590Commanding Officer

6571st AMRL Mr. W. H. CollinsHolloman Air Force Base, Computer Technology Group (DV-lI)New Mexico Federal Highway AdministrationAttn: Mr. C. C. Gragg 400 7th Street, S.W.
Washington, D.C. 20590

NASA
Mr. Kenneth Batcheller, ChiefMr. C. Kubokawa Safety Programs Division (RS-20)N239-3 Federal Railroad AdministrationNASA Ames Research Center 400 7th Street, S.W.Moffett Field, California 94035 Washington, D.C. 20590

-. .... .. . . .. i~ 
' ,

... .. ....... . .. . . . ...



Mr. E. Ward, Chief Part II - CONTRACTORS AND OTHER
Engineering Research and Development TECHNICAL COLLABORATORS

Division (RT-20)
Federal Railroad Administration Mr. S. P. Desjardins
400 7th Street, S.W. Dynamic Science
Washington, D.C. 20590 1800 West Deer Valley Drive

Phoenix, Arizona 85027
Dr. J. A. Edwards
Associate Administrator for Research Dr. A. A. Ezra, Chairman

and Development Department of Mechanical Sciences
National Highway Traffic Safety and Environmental Engineering

Administration University of Denver
400 7th Street, S.W. Denver, Colorado 80210
Washington, D.C. 20590 Dr. Albert I. King

Mr. C. D. Ferguson Bioengineering Center
Office of Crashworthiness (41-40) Wayne State University
National Highway Traffic Safety Detroit, Michigan 48202

Administration
400 7th Street, S.W. Dr. R. C. DeHart, Director
Washington, D.C. 20590 Department of Structural Research

Southwest Research Institute
Mr. L. L. Bradford P.O. Drawer 28510
Office of Vehicle Structures Research San Antonio, Texas 78284

(43-50)
National Highway Traffic Safety Professor J. B. Martin
Administration Division of Engineering

400 7th Street, S.W. Brown University
Washington, D.C. 20590 Providence, Rhode Island 02912

National Transportation Safety Board Dr. J. L. Tocher
800 Independence Avenue, S.W. Boeing Computer Services (72-80)
Washington, D.C. 20590 P.O. Box 24346
Attn: Mr. A. L. Schmieg, NS-1O Seattle, Washington 98124

Mr. H. L. Morgan, NS-20
Mr. B. C. Doyle, NA-87 Mr. D. G. Harding, Manager

Survivability Staff
Dr. H. E. vonGierke Boeing Company - Vertol Division
Aerospace Medical Research Philadelphia, Pennsylvania 19142

Laboratory
Aerospace Medical Division Dr. H. E. Lindberg, Manager
Air Force Systems Command Engineering Mechanics Program
Wright-Patterson Air Force Base, Stanford Research Institute

Ohio 45433 Menlo Park, California 94025

Sal Davis Mr. John W. Freyler
Fairchild Industries, Inc. Beta Industries, Inc.
Fairchild Republic Division 2763 Culver Avenue
Farmingdale, New York 11735 Dayton, Ohio 45429

Dr. L. E. Hulbert, Chief
Advanced Solid Mechanics Division
505 King Avenue
Columbus, Ohio 43201

4.



I

Professor George Sih Dr. Francis Cozzarelli
Department of Mechanics Division of Interdisciplinary Studies
Lehigh University and Research
Bethlehem, Pennsylvania 18015 School of Engineering

State University of New York
Dr. Harold Liebowitz, Dean Buffalo, New York 14214
School of Engineering and
Applied Science Dr. George Herrmann

George Washington University Stanford University
725 23rd Street Department of Applied Mechanics
Washington, D.C. 20006 Stanford, California 94305

Professor S. B. Dong Professor J. D. Achenbach
University of California Technological Institute
Department of Mechanics Northwestern University
Los Angeles, California 90024 Evanston, Illinois 60201

Professor A. J. Durelli Professor J. Kempner
Mechanics Division Department of Aero. Engrg. and
The Catholic University of Applied Mech.

America Polytechnic Institute of Brooklyn
Washington, D.C. 20017 333 Jay Street

Brooklyn, New York 11201
Professor H. H. Bleich
Department of Civil Engineering Dr. Nicholas J. Hoff
Columbia University Dept. of Aero. and Astro.
Amsterdam & 120th Street Stanford University
New York, New York 10027 Stanford, California 94305

Professor A. M. Freudenthal Professor Norman Jones
George Washington University Massachusetts Institute of Tech-
School of Engineering and nology
Applied Science Department of Naval Architecture

Washington, D.C. 20006 and Marine Engineering
Cambridge, Massachusetts 02139

Professor P. G. Hodge
Department of Mechanics Professor Werner Goldsmith
Illinois Institute of Technology Department of Mechanical
Chicago, Illinois 60616 Engineering

Division of Applied Mechanics
Professor D. C. Drucker University of California
Dean of Engineering Berkeley, California 94720
University of Illinois
Urbana, Illinois 61801 Professor W. D. Pilkey

Department of Aerospace Engineering
Professor N. M. Newmark University of Virginia
Department of Civil Engineering Charlottesville, Virginia 22903
University of Illinois
Urbana, Illinois 61801 Dr. H. N. Abramson

Southwest Research Institute
Library (Code 0384) 8500 Culebra Road
U.S. Naval Postgraduate School San Antonio, Texas 78206
Monterey, California 93940

.w, ~ ~~~~~... ...........



Mr. John Scowcroft
Automobile Manufactures Association
330 New Center Building

i Detroit, Michigan 48202

Dr. R. D. Young
Texas Transportation InstituteTexas A & M UniversityCollege Station, Texas 77840

Professor J. A. Collins
Mechanical Engineering Department
Arizona State University

I Tempe, Arizona 85281

I
I
I
I
I

I

I

I

I

I



Uncl assi fied
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPOR N I2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) -4, TYPE OF REPORT I PERIOD COVERED

Stress Singularity for a Crack with a n Technical epOt.
Arbitrarily Curved Front. 6. PRFORMINOG. RTPORTaNUlBER

R. J. Hartranft 4-"76-C- '4G . C / S i h .A-- -"

PERFOIMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, tASK
Lehigh Uni y m I 1,AREA & WORK UNIT NUMBERS

Institute of Fracture & Solid Mechanics. 0
Bethlehem, Pennsylvania 18015 N0014-76-C-0094

11. CONTROLLING OFFICE NAME AND ADDRESS 12._REPQT.DAT9

Department of the Navy
Office of Naval Research " .//  11Ar.111 PAG

Arlington, Virginia 22217 43
14. MONITORING AGENCY NAME I ADDRESS(If different from Conroiling Offlce) 15. SECURITY CLASS. (of this report)

- ISa. DECL ASSI FI C ATI ON/ DOWN GRADING
SCHEDULE

i. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

18. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse aide if neceeeary end identify by block number)

strain energy density
crack front stress field

\,crack path
tree-dimensional analysis

20. ADStR T (Continue on revaree side If necessary mnd identify by block number)

To investigate the possibility of a point of a crack front
propagating in a direction not in the normal plane of the crack
front, the three-dimensional form of the crack front stress field
is obtained. To simplify comparisons of the states of stress at
various points lying on a spherical surface centered at a point o
the crack front, a local spherical coordinate system is used. It
is found that the crack propagation will be from each point of th

DD FOAN% 1473 EDITION OF I NOVSI ,OSOLETE Uncass if ie d
( SECURITY CLASSIFICATION OF THIS PAGE (Whe Date Entered)

_________________________...._______ .. ,. .~,~n . .



Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(Wheu DMa ftlt,.)

crack front In a direction lying in the normal plane.

The results are used in conjunction with the strain energy
density fracture criterion for the problem of an elliptical crack.
The plane of the flat elliptical crack makes an arbitrary angle
with the field of uniform applied tensile stress. Crack growth
directions for various positions along the crack front are deter-
mined, and loads required for fracture for various angles are
obtained.

1

I
I
I
1

I

1

I
1

~1

II

UnclassifiedISCUAITY C6ASSIFICATION OF THIS PAOITIHM Dwa M1



INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

REMOS LT. The controlling DoD office will be responsible f,,r compleiion of the Report Documentation Page, DD Form 1473. in
all technical reports prepared by or for DoD organizations.

CLASSIFICATION Since this Report Documentaion Page. DI) Form 1473, is used in preparing announcements, bibliographies, and databanks, it should be unclassified if possible. If a classification is 'quired, identify the classified items on the page by the appropriate
symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7. II, 13. 15, and 16 agree with the corresponding information on the report cover. Leave
Blocks 2 and 3 blank

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in tutur'-
retrieval o-Fte-aocument.

Block 4 Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should beunclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see
"Abstracting Scientific and Technical Reports of Defense-sponsoredRDTE,"AD-667 000). If the report has a subtitle, this subtitle
should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized If a publication has a
title in a foreign language, translate the title into English and follow the English translation with the title in the original language.
Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, in, lusqi
dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, su-h
as series numbers for in-house reports or a contractor, grantee number assigned by him, will be placed in this space. If no such numbers
are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional
order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that
of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number/. ) under
which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol.
of the performing activity, For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the
report and identify the appropriate corporate division, school, laboratory, etc , of the author. List city, state, and ZIP Code.

ilock 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable
Department of Defense form, such as the DD Form 1498, '-Research and Technology Work Unit Summary" or the DD Form 1634
"Research and Development Planning Summary," which identifies the program element, pro)ect, task area, and work unit or equivalent
under which the work was authorized.

Block i. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the
controlling office. (Equates to funding/sponsoring agency. For de-finition see DoD Diretive 5200.20. "Distribution Statements on
Techn ica Documents.")

Block 12. Report Date. Enter here the da,, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block-JI Monitoring Agency Name and Address (it different from Controlling Office). For use when the controlling or funding
office does not directly administer a pro)ect, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15
the highest classification of the report. If appropriate, enter in ISa the declassification/downgrading schedule of the report, using the
abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200. I-R.

Block_)§. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD
Directive 5200.20, "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstrat ( entered in Block 20, if different from the distribution statement of the report).
Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Doc-
uments."

B lock 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with
Translation of (or hy) . . . Presented at conference of . . . To be published in .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are
sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus
of Engineering and Scientific Terms" ( TST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to ex( ,'ed 200 words) factual summary of the most significant informa-
tion contained in he report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified
report should consist of publicly- releasable information. If the report contains a significant bibliography or literature survey, mention
it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E,"
AD-667 000.

GPO 850.6as


