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Discrimination, Allocatory and Separatory, Linear Aspects

by

Seymour Geisser

1. Introduction

The classification of objects is one of the hoariest and consequently

not the least primitive of scientific enterprises - certainly considerably

removed from preciser mechanisms directed towards the explanation and

prediction of natural and social phenomena. Briefly, it attempts to sort

out in some sensible manner objects belonging to two or more labeled

ises. When this involves a parsimonious and efficient criterion of

choice based on related manifest attributes, we are in the realm P4 Discrimi-

nation.

An early recorded instance appears in the biblical book, Judges, XII,

5-6. A clan of Israelites from Gilead held the fords over the Jordan to

prevent the def~ated troops of Ephraim, another Israelite tribe, from cross-

ing the river. The Ephraimites sharing race, language, customs and dress

were apparently indistinguishable in all respects from the Gileadites.

Seizing upon a dialectical variation as an eff.cient sorting device, the

guards made those attempting the ford pronounce the word "Shibboleth".

Upon hearing "Sibboleth" they were fairly certain of apprehending an

Ephraimite.



It is quite likely that their errors of classification were no greater

than many of our current weather classifiers aided by aL modern computer,

who base forecasts of snow on a large number of prucisely determined

variables. This is of course a situation where the label has in fact

not yet occurred but is predictive as opposed to the previous retro-

dictive case.

Often in the latter case the latent label of a new object can only

be ascertained with certainty by prodigeous technical effort which may

even involve the destruction or alteration of the object rendering it use-

less for further inquiry. Other cases may require an inordinate amount

of time and patience until the label eventually reveals itself. Hence

the utilization of easily assessed related attributes may be of invaluable

aid in a study if only for reasons of economics and prudence.

There is also a natural hierarchy in terms of how these problems can

be organized. In the least informative situations, the number of classes

as well as the labels are unknown, and it is hoped that clues to both

these entities will be disclosed by some set of appropriate manifest attri-

butes. Here the basic problem is determining the number of classes and of

forming clusters. In more informative cases the number of classes or popu-

lations is known or specified. Further knowledge is often also presumed

concerning certain aspects of the attribute distributions.

For the sake of clarity we set down the general problem as follows:

There are populations (or patterns) T, , j=l,...,r , with r known or
!j

unknown and IT. possibly specified by moments or by a distribution functionJ

F whose form may be known or unknown, and is the jth set of

known or unknown parameters. There may be certain relationships among the
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T1r . as well as subpopulations IT " Further there are two sets of

observationb, the fir&t denoted by X and the second by U , (either set

may be empty). FEach of the observations belonging to X is such that its

population origin or label is known with certitude, but the labels of

those belonging to U are not. These may have sane prior probabilities

attached to them before they are observed and one object of the endeavor

is to determine their origin in some optimal manner. Here allocation is

the goal. A second goal, which may be primary ri certain studies, is

basically descriptive (graphical, algebraic or some other qualitative form),

and involves initially the disclosure of the manifest differential fea-

tures of the patterns, populations or potential populations under

scrutiny. The purposes of the first are action oriented, predictive or

retrodictive while the latter is more in the realm of the speculative in

terms of possibly throwing some light on scientific or social issues.

In the first case one attempts to derive some rule which optimally

allocates new observations while in the second instance one te..ds to focus

on functions (discriminants) which tend to maximally distinguish or separate

the populations. An appropriate allocatory procedure requires prior proba-

bilities of an observation belonging to one or another population or

estimates thereof. Often they are not obtainable and one tacitly assumes

that these prior probabilities are equal. In many cases this is tantamount

to using a separatory function as an allocator and the two original distinct

goals tend to fuse or become blurred. Allocatory eptimality is basically

definable only when stringent assumptions are met while in vague situations

a separatory function may sometimes usefully serve as an allocator. Con-

versely, allocatory notions may also be used to define a separatory

functi on.
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Discrimination, in its modern guise, was founded by R. A. Fisher

(19363). le derived those linear functions of the cLass of all linear

functions that best separated populations (actually samples) in terms

of maximizinj a c Ori distance function depending on only the first

two moments.

Since then, linear discriminants have played an important role in

the theory. From uther points of view it was also found that linear

theory was preeminent in one of the most useful of di-..ributions, the

multivariate normal, Wald (1944), Welch (1939).

In this paper we shall present not only an exposition of linear

discrimination but shall also attempt to give a coherent discussion of

its twin goals - allocation and separation.

In the next few sections we review linearity in the multivariate

normal case, discuss the extent to which linearity is optimal and indi-

cate the actual use of linear discriminants. This is followed by a

section in which the distributional assumptions are dropped and the

thrust is on the separation of populations via linear functions. An

incidental feature is that some of the basic results are derived alge-

braically in a manner which differs from customary derivations. The

penultimate section is devoted to the application of sample reuse pro-

cedures to linear discriminants.
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2. Multivariate Normal Case -- Allocation and Reduction

Suppose there are p-dimensional multivariate populations TrI..Irr

with vector means LIL t," and common positive definite covarianc&

matrix Z . One is interested in allocating a new p-dimensional observa-

tion u to one of these various populations in some optimal fashion. Assuming
r

u has prior piobability qi uf belonging to Tip=qi=l , then the optimal

method for multivariate normal populations with regard to total posterior

probability of correct classification (PCC), c.f. Anderson (1958) is to allo-

cate u to that T i  for which

wi(P) = log qi-kD)(p) , i-l,...,r (2.1)

is a maximum where

, D ' , -( -)  (2 .2 )

the Mahalanobis distance. This is the solution which allocates u to that

which has maximum posterior probability since' wi(p) is easily shown

to be a monotone function of Pr [Tiiu) , the posterior probability that

u is from Tri

It is sometimes of interest to determine whether we can transform linearly

the set of p variables into k : p variables and preserve the allocation in

k dimensions. Let y Cu, f1  C~ i ,n CZC , for C , a k X p matrix

of rank k : p ,and

D;(k) (y.1), -. ) (u-i),c(cZ c C,)- qu- Li ) , (2.3)
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the corresponding distance in k dimensions.
r - I

Assume = (i- )(i- )' where 1= r 41 and B is of rank
i=l. i=l

r-v g p , noting that when P.,1 r are linearly independent v-I

Since is a p.s.d. matrix there exists a A such that, AA,

where A is p X r-v . If we let C - P'A " I where k - r-v and P,

the r-v X r-v -orthogonal matrix surh that P'A' - AP is diag(8 1 ,...,Ar-v)

where 6 are the non-zero roots of X- I in descending order, then

D2(k) = (u-Ui) A'A[Af A-IA'A -I(u-i) (2.4)

Further by adding and subtracting in u- i and noting that 1i-t is

in the vector space generated by AA' it is easily shown that for all i

wi(p)-wi(k) = D'(p)-DI(k) = (u-- )'[ 1'-rA[ YA'-IA]I'I(u-p) (2.5)

and hence is independent of i . Therefore allocation of y by means of

the maximum wi(k) is equivalent to the original allocation of u , thus

verifying that C = P'A' -I is a solution that preserves the original allo-

cation. The new set of coordinates y are referred to as the complete set

of linear multiple discriminants and they contain all of the dLscriminatory

power of the original set of coordinates. The set y is an orthogonal set

and forms a basis for all other solutions y = Ry where R is any real non-

singular k )< k matrix, On the other hand if k < r-v , the allocation by y ,

the transform of u , will not be the same as the alloation by u for all u ,

as can easily be verified.

The total probability that u will be correctly allocated by the procedure

is

-- 6-



rq(p) ' q4 PrtuER ITfj (2.6)

where Ri  is the region given by those u satisfying Max w.(p) wi(p)

and is a maximum with respect to all possible procedures. If y P*A' " u

then it is clear that

r
q(p) - q(r-,v) iFqiPr[yERiIrT] (2.7)

where Ri  is given by those y satisrying Max w1(r-v) wi(r-v) To

simplify matters let qi r for all i so that

q(p) q(r-v) r rI (2.8)
i=l

then Ri and Ri are given by u and y which minimize D2(p) and

D2(r-v) respectively. When k < r-v and we use the procedure, i.e., mini-

mizing D (k) of (2.3) where y = Cu , then q(k) < q(r-v) by continuity

arguments. On the other hand it might be conjectured that the best one can do

with respect to maximizing q(k) is to let C = P A'- where P(k) (PI...k)
(k))=

is the matrix of the first k columns of P , i.e., P. is the invariant vector
t2.

asociated with the ith largest root of A'T A , or equivalently AP i is the

invariant vector associated with the identical root of $ i-1. This conjecture

is in general false whenever r-v > 2 if we wish to maximize q(k), as a

counterexample will ahow. But from another point of view, i.e., optimizing

on separatory criteria which we shall discuss in Section 5, it can be best.

A further note of caution should be introduced to the effect that the PCC

4s only of value in assessing the discriminatory power of the manifest variables
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at hand prior to the observation of u . Once a set of such variables is

determined and a particular u observed, the only relevant factor is the

posterior probability, when calculable, that u belongs to one or another

of l '" Ir 1

r
Pr[rjIul = q.f. (u)/Zqifi(u) (2.9)

where fj(.) represents in general the probability function associated with

T *

We shall now describe the aforementioned counterexample. Suppose we ask

for a single linear combination that will maximize the PCC assuming the r
-I

populations all have equal prior probability r , blurring the distinction

between allocation and separation. Then c'u , under ITT is univariate

normal with mean c'** and variance c'-c . Then z - c'u/c- is

under Tri $ N(Ij,l) where nj= cAj/c'-- c • Hence we can calculate the

maximal probability of correct classification for any c

PCC = 2r" I (i)-(i+l) + (2-r)r (2.10)i= I  2

where is the distribution function of a standardized normal variate and

(i) are the ordered values of i such that (i)a (2 ) .* r

Maximization of the PCC with respect to c is troublesome, but it car. be

shown that the c that maximizes PCC is not necessarily the vector associ-

ated with the largest root of i as one might initially suspect. Such a

suspicion of course would arise from the fact that this vector does maximize

the variation amongst the . While this variation is contributory, the

PCC is also quite sensitive to the spacing amongst the T(1)
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The tollowing example demonstrates these facts: bet u be a I X I

vector with means under ri' IT- and T- , respectively

lJ11 (I,0,0) , .,: (0,1, -i) , 1 P' -1, -1,)) and , I.

Then 2 -= and

J=l > 2

with characteristic roots 3 + j3, 0, 3 - Z3 The normed vector associated
: 6 

' 
,- I ,-) Uig'uw

with the largest root is c (6 - 2' F (3 1, 1, -1. Using c u we

find that (1(j), 1(2), 1(3) = (6 - 2A/) "  (2, F3 -I, -I - F/) and compute

the PCC to be .67757. On the other hand the simple normed vector

-0 = (0, I __I yields ( '() (2)' '(3)) 0(d, O,-,), e, 11y spaced,

and results in a PCC of .663033, which is just a trifle larger than that at-

tained by the vector associated with the maximum root of 0 . In actual fact

the normed vector c* (.173, .69[, -.697) leads to ("]()1 '(2)' '1(3)) =

(1.394, .173, -1.567) and yields a PCC of .69139 which is the maximum attain-

able here for a single linear combination. It is well known that the dis-

r
persLon, (TLi-)Y attains its maximum, 3 + 4 h.732 in this case,

I=I

when the vector associated with the largest root is utilizt i, while the same

measure of dispersion for the vector c is 4 - considerably less, and for0

the vector c we obtain 4-42.

Another way of viewing this problem is to realize that we are

basically maximizing two quite different functions of the otdered values of

Tj = i jl, ... , r with respect to the arbitrary vector c . One
-9-



function is given by (2.1O) while the other is

2 (2.11)

'Iat the characteristic vector associated with the largest root maximizes (2.11)

results from the fact that (2.11) is invariant with rega& to the

ordering of the mj so that from the definition of Il we obtain

r r 2j~~]j)") 4,a lj ) . (2.12)
j=l .C'

As is well known, the quantity on the right of (2.12) is maximized when c

is set equal to the characteristic vector associated with the largest root of

-l -i Hence there is really no reason to expect the same solution for both

cases,

We note that when r = 2, the optimal allocatory procedure yieldR the

single linear discriminant

U = (u - '(11 + P2) )  (PI P2) + log- (2.13)
* 2

such that U > 0 assigns u to l and U < 0 assigns u to 2

Insertion of the usual estimates for ',' p2 and 5 when they are unknoc'n

and estimable from data yields the plug-in rule

A + log-(2 )(u "4(01 1 + + 01- (2.14)
q2

with V > 0 assigning u to Tl and T2 otherwise.

'it will be shown, however, that fromf certain points of view, even

in this most stractured of cases, linear theory, strictly speaking, may be

inappropriate though approximately correct and certainly convenient.
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3. The Limit0 of Linear Theory - Allocatory Aspects

For the remainder of our discussion we shall restrict ourselves to

the two population case; i and T2 with density function f(.101 ) and

f('I 02 ) respectively. Optimal allocation for a new observation u with

regard to the PCC involves assigning

ql f (u le@

u to Tr if p(e,u) fui) > (3.1)
1 ( u)q0 f (u1)

uto iT otherwise

where e = 0 1 U 8 is the entire set of distinct parameters of the problem.

Equivalently any monotonic increasing function of p , say h(p) for every

fixed u will also do, so that any h(p) may be denoted as an allocatory

population discriminant. "Linear" theory is then surely optimal whenever

there exists an h(p) which is linear in u, although there are other cases

as well. The multivariate normal distribution with equal covariance matrices

is an examp>le of the logistic class which always yields a linear population

discriminant because of the form of

aO+x u
p(0,u) = e (3.2)

where a' = (c x p... ckp) and consequently log p(G,u) is linear in u

J. A. Anderson [1973] points out that nultivariate independent dichoto-

mous variables as well as several other interesting cases also belong to the

logistic class. In fact this type of linearity remains valid for a special

case of the general exponential family where 0i is the set of parameters

(0 i , r) and

f(uli ) = g(0 i , "r)h(u,r)e ju (3.3)

-11-



where 0, is a p-dimensional vector and r is a set of extraneous

parameters. But there are also other possibilities for linearity, e.g.,

two multivariate "student" distributions that differ in their location

but have the same covariance matrices and equal prior probabilities Geisser

(1966]. Here the rule (3.1) is equivalent to a rule linear in u derived

from a positive root of p(e,u) . The rules conform exactly even though

the positive root of p(8,u) is nonlinear. For a slightly wider class

of which the above is a special case see Enis and Geisser [1974). Exact

linear theory is then only strictly appropriate for restricted sets of

distributional assumptions though somewhat wider than the logistic family.

However, it is generally hoped that it will give reasonably robust, if less

than optimal, solutions to many other cases. There are situations, however,

where it certainly should not be applied, e.g., where two normal populations

have the same mean but differ in their covariance matrices. Here linear

discriminants will be quite inappropriate. This model reflects to a degree

the situation arising in discriminating between fraternal and nonfraternal

twins, see e.g., Richter and Geisser [1960], Okamoto [1961], Geisser and

Desu [1968], Desu and Geisser (1973], Geisser [1973a].

However, except for special situations as just described, it is usually

assumed or piously hoped that linearity will be at least 4 not unreasonable

first approximation. By this is implied that the rule (3.) can be replaced

by a rule linear in u without great loss. For a contrary view in taxonomy

see Reyment [1973]. In the classical frequential paradigm often an estimate

of a is plugged into (5.1) while co is resolved into its constituent sum

log qlq + a with an estimate for ao plugged in and log qlq1 assumed

-12-



to be a particular value, often 0 for convenience resulting in a discrimina-
-1

tory blur. Sometimes qlq,1 is derived fro a model, Geisser (1973a], or

es imated from previous data or from the data at hand, when the situation

permits Geisser [19641. Now when a and 01 are known any h(p) , of course,

will do as well. However, depending on which h(p) and what is used for

its estimation wihen the parameter values are only estimable from data, the

sample discriminant or rule for allocation will in general vary. One way

around this is to use maximum likelihood or any other estimator which will

preserve the invariance of the rule. For a discussion of some of these and

related points see Geisser (1969,1970] and Desu and Geisser £1973). To do

otherwise reqires that the statistician decide on whether the rule is para-

mount or the estimation of a particular discriminatory function h(p) is

crucial. Of course for large samples the discrepany may be quite neglible.

However, as was noted, the logistic model itself encompasses a variety

of possible distributional assumptions. While presumably robust for its class

when its parameters are estimated it is not expected to yield as efficient a

procedure when compared to one that is based on the true member of the class.

For a logistic and normal comparison see Efron (1975].

Another classical approach, Wald [1944), Anderson [1958, 141-2], is via

the testing of hypotheses. Here one computes the likelihood ratio test of

the hypothesis that the new observation belongs to either of the two popula-

tions under scrutiny. More specifically if X is the set of observations

known to be from TTi , then

Mxf(Xlle } fu I
M 1 1(X1 ) f(x2102) f(ule) (34)
Max f(X 1101) f(X2jA2 ) f(u182)-e

and u is assigned to TI if X > ! r2 otherwise. Hence qlq
ql

-13-



be termed the likelihood ratio allocatory discriminant.

For the multivariate normal case with equal covariance matrices,

I + N 2 _ +) (u-x 2)S ~-x 2)
X I + N 1 l (N1+l)-l (u _xl) S(u-xl)J (3-5)

where x. is the sample mean of Ni independent observations represented

by Xi and known to have originated from IT. and S is the usual unbiased

estimate of Z with v = NI + N2-2 degrees of freedom, v > p

It is interesting to note that it is no longer necessarily possible to

recover a linear discriminant from this procedure except under the rather

restrictive assumption that qI2/(V+3)N2 (N2+l)
" = q2 /(v+3)N I (N1 +1) I  Of

course satisfaction is guaranteed if both ql=q, and NI=N . Although
2 2* ltoh

this may be disconcerting, it is not surprising as the thrust here is essenti-

ally on a rule (or test) rather than on the estimation of a true underlying

linear population discriminant. Although the likelihood ratio discriminant

for this paradigm is equivalent to a rule based on a quadratic discriminant

it approaches linearity for large NI and N so that for large enough
1 2

samples there will be virtually little difference between it and the "usual"

plug-in estimate (rule)

[1)j' s-l(x- 2)+ log (3.6)

q2o

for the true population discriminant (rule)

U = [u-f (jl+,)] (.-I) + log -- (37)

The rule indicated by (3.5) was shown to be an admissible Bayes rule

by Kiefer and Schwartz [19rA and also Das Gupta [1965] for this allocation

problem. However, the proper prior distribution which is utilized to prove

the admissibility is one that most Bayesians would consider grossly deficient

-14-



in that it depends on the sum of the sample sizes and only assigns non-zero

density to functions of ,l' g2 in a space restricted to p-dimensions

whereas the aet , i p) ostensibly contains (1/2)p(p+5) parameters.

This does not say too much for the Bayes admissible character of the rule.

Whether a proper prior can be obtained which does not have these drawbacks is

an open question, but it is not likely.

Another Fayesian derivation given by Geisser (196t] uses the simple im-

proper prise density

P+l

g>1 l' L9)c aI 2 (3.8)

.x.
and also results in a quadratic rule in general. Hence V is not recoverable

for arbitrary values of NV N,, P' q, and q. , Geisser 1196r], but it is re-

coverable except for an additive constant depending on a particular relation-

ship existing among these values, Enis and Geisser (1974). It is only fully

recoverable for the special case N =N2  and ql=q . Hence on a strictly

allocatory basis the linear discriminant V has not been found to be admissible.

A semi-Bayesian justification, Geisser (1967], based on the aforemen-

tioned improper prior, focuses on the Bayesian estimation of U , rather than

on allocation. This approach yields for the posterior expectation of U

EUu) = V*+ (N -N 1 (39)

which all but recovers the linear rule (5.6) and completely so whenever N1=N.

Elaborations of the use of this method are presented by Enis and Geisser (1970].

Another Bayesian, approach Enis and Geisser (1974), which stresses linearity also

yields results close to the rule V. Here one determines that linear function

which maximizes the PCC with respect to the predictive distribution of the obser-

vation to be classified. Here an allocatory notion is utilized as the separa-

-15-
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tory criterion with discriminants restricted to a linear class. This attempts to

"optimally" o0Qromise the allocatory needs with the desirability of linearity.

In both normal and non-normal applications, V is often utilized

although it is not clear whether this emanates from the fact that the nor-

mal population discriminant U is linear and both allocatory and separatory

and V is a good estimate of U , or that V for q, = q. can be derived

as the "best" separatory linear discriminant in a distribution free setting

utilizing the sample, Fisher [1936]. Basically it appears that for many less

sophisticated users of the technique it is both the simplicity of linearity

combined with the authority of Fisher that is compelling. At any rate, there

seems to be a bias in applications (as well as theory) for focusing on

linear discriminants rather than a quest for overall optimal allocation

/ irrespective of the goal. One has only to peruse the discriminatory litera-

ture to observe that almost all applications are linear and much theory

devoted to the "improvement" of linear estimates of linear discriminants.

We also note that even for the particular normal distribution setup dis-

cussed here there has as yet not been any completely frequentist rule that

guarantees optimal allocation when the parameters are unknown nor a

Bayesian rule which yields V for all values of ql q 2 N1  and N .

On the other hand, when allocation is actually not the goal, linearity may

be inherently more useful (certainly descriptively) because of its

simplicity in discussing certain issues, and in the normal case both

frequentist and Bayesian estimation procedures will yield linear sample

discriminants,

I -16-



4. Using Linear Discriminants--Normal Case.

As in the previous section let X i = 1, 2 represent a set of

Ni observations known to be from TV a N(i, ) population. The ob-

ject is to optimally allocate a new observation u which has prior

probability q, of being from Ti" We then assign a prior proba-

bility g(tl, a2' ) to the unknown set of parameters. Hence

Prfil.TTu qlf(UjX, i]
Pr[T 2 u] = q2 f(UlX ' I 2) (-.T)

where X = (X1, Xe) and

f(uIX' Tri d ff(U I i, )P(61' 42, J X)dpidI12d E,(4.2.)

the predictive density of a future observation where

P(l ' E Ix) L(j 1 ', F Ix) ( 41' D. (4.3)

This then provides the solution for the allocation of the next

observation and can be used on all further observations. This

latter use is not optimal as the predictive distribution of a set of

new observations is dependent and here it would be utilized as if

they were independent (for the optimal solution see Geisser (1966)).

At any rate the solution is optimal for the next observation u.

However one is in quandary as how to calculate a joint prior distri-

bution for l,' "2 and E that realisticlly reflects prior know-

ledge one may have about them. One way out of this dilemma is to

-17-



use the improper prior g( l1  B, I )cj 3 j 2 which tends to mini-

mize the effect of the prior distribution. The results for this case

were given by Geisser (1964) and yields for the posterior probability

ratio

p N I+N2 -- p N +N 2-

2 )(N+N22)N2(u-x2) s-l(u-x2 
2

so that when R > 1 assign u to 11 and to T otherwise. This

1 72

rule is in general quadratic and is linear only for very special cases

among which is N 2=N2 and ql=q2 , but tends to linearity as the

sample sizes increase.

All evidence to date indicates that this procedure is superior for

allocation than the plug-in rule V* of (3.6). In this regard admis-

sibility was previously discussed. From the point of view of density

estimation the predictive density, as generally suggested in Geisser

(1971), is shown by Aitchison (1975) to be a better estimate of the true

density in this case than what results from plugging in the maximum

likelihood estimates into the known normal density (which is basically

the rule V*) by a "frequentist" goodness of fit criterion based on the

Kullback-Leibler (1951) directed measure of divergence.

On the other hand the use of V (V* with q, = q2 ) as a separatory

function can be made compelling or approximately so even when based

probabilistic criterion of the kind discussed in (2.10), Enis and

Geisser (1974). Neither in its form nor its interpretation, is (4.4)

very appealing for separatory purposes, while using V as a separa-

tory function seems to be very attractive for many applications.

-18-



If one then were satisfied with V as a separatory function and deuided

to use V* as well in the allocatory mode as in most applications, what

can we say about its properties, i.e., how good an allocator is it. Be-

fore answering this let us examine the allocatory prowess of U* when

the parameters are known--the best possible situation. Then, letting 0

stand for ti I- and Z,

P00 Y('O) =qlY 1 (O) +q 2y()

where

..' yl( ) = Pr[U* > 01,TI, ] (1

"( = Pr[U* < O1Tf2, 8,

Yi(G) being the probability of U* correctly classifying an observa-

tion emanating from lT" It is easily shown, Geisser (1967), that

lY

= 1 - (47)

Y2(e) = 0(72)

where TI  (log q2q " - p)/u, T2 = (log qql +

' -1
and .- ' (,and =(al P 2 ) rd (PI " 2 )

Hence a "plug-in" estimate of the best one can do is

- )A
Y(6) = ql(1 §(-i ) ) + qO( 2) and TI and T2  are estimated by em-

2 T2

ploying Q = (xI - x) s-(x 1 - ) as an estimate for u where

i' 2 and are unknown. For a Bayesian estimate of y(O) which employs

E6Y(G) _Y, see Geisser (1967, 1970). It must be noted that this is an
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estimate of the best that can be done in terms of Y(O) and not an

estimate of what may be achieved with a given V* when the parameters

are unknown. When one actually uses V* then we have the conditional

or Actual PCC(APCC)

APCC = , e)= ql8l(e, e)+ q2o2(,) (.)

where

61(0, e) Pr(V* > OT1 1 - (

6(8 e) Pr[V* < Ol1 2, e, e) 2 2)

where

(((,: -i S Xl-X )+ log q ql" x Y' FS .9)x

i = 1, 2. A naive estimate g(, e) = 6( , ) turns out to be y(B), so

that the estimate for APCC is the same as for the PCC which is most un-

satisfactory and has led to much effort by frequentists in attempting to

correct that estimate of APCC or its peculiar, companion E[APCC] = E-(6(8, 0)I,

Hills (1966). In fact for a long time the various possible probabilities of

correct classification were confused and the subject in somewhat of a chaotic

state until Hills (1966) presented a careful analysis of the various fre-

quentist allocation error rates. For some further remarks see Geisser (1969,

1970). From a Bayesian point of view the problem as such completely

disappears by using as estimators for 6 8) its posterior expectation

Si = E8(6i(8, 0)) which yields Geisser (1967)



( (log q -' l) N" PNjI
I N hi+ _ 1N - p (NI +N,.-)( l)Q J

(log q2qlj l + Q)(NI + N,, - i - p)N (1
N LI + N 1 - [(N1 + N2 2)(N2, + 1)Q]1

where tN . is the student "t" random variable with
1 N 2 I p

N1 + N - I - p degrees of freedom. Clearly then y < since

6(0) < Y(O) as required. Actually the Bayesian estimate of Y(O)

is rather difficult to compute explicitly but Y O (O), for a better

approximation see Geisser (1970). Note also that 8 < y(O). At any
A

rate a clear interpretation emerges-y or Y(O) is an estimate of

what potentially could be achieved with sample sizes very much larger

than those in hand whilst T is what is actually achievable with the

data in hand. In other words if say y(6) is large enough, then the

discriminatory variables are satisfactory. However the user may not

be satisfied with an appreciably lower value of 6. But then the

remedy is clear, one needs larger sample sizes until S is close

enough to y(O) to be satisfactory. If y(0) is not large enough to

suit the purposes of the allocation then one must find other discrimin-

atory variables.

While = q1 61 + q 6o is an estimate of the APCC, it turns out

that 6 is exactly the predi.ctive probability of correct classification

(PP CC) uslng V., though not optimal unless ql q2 and Nlt N2 . Even

when these conditions do not hold it should not be too far from optimal as it

approaches optimality for large N1 and N2 . Further - is also a useful

guide in determining which variables may be omitted in measuring future obser-

vations. For example it can happen for economic or other reasons that

-21-
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only a subset of r of the p original variables can be utilized for

allocating future observations. Then one could compute 6 weighted by

an appropriate cost or utility factor for each subset of r out of the

p variables in order to make an optimal determination.

At any rate this approach yields sensible answers when one uses

the usual" linear discriminant for allocation. Slight improvements can be

made by some adjustment of V within the Bayesian framework as noted by

Geisser (19b7) and Enis and Geisser (1974), but it's not likely the

effect will be significant. Extension to r > , populations through-

out or qi unknown presents no intrinsic difficulty, see Geisser

(l96h, 1967).



5. Maximizing Measures of Spread for Linear Discriminatory Forms.

When there are no appropriate distributional assumptions one can pro-

ceed by both choosing a class O(u) of discriminatory functions, linear,

quadratic, etc. and defining either a distance between any two populations,

Fisher (1936], or a more general measure of spread amongst all of the popu-

lations. A minimal set of "best" discriminants then presumably would be

selected from all of those solutions that maximize the spread with respect

to the parameters of the discriminatory functions given the constraints

under consideration. These discriminants then can be used to completely

characterize the differential aspects of the populations with respect to

the manifest variables.

Let us further assume all of the distributions of the r populations

are roughly the same in that they enjoy approximately the type of clustering

and symmetry about their mean vectors exhibited by a set of naltivariate nor-

mal densities with equal covariance matrices. Basically then the important

differences are in the location of these central vectors. Fisher (1936) then

found it sensible for r populations, to find the set of linear combinations

c'u which maximized pairwise the distance functions- (c'(i-pj)] 2/c" Zc

iAJ=l, ..., r where Z was assumed to be the common covariance matrix. This

generates tho optimal reduced set of linear discriminants previously obtained

where multivariate normal theory was assumed. The technique used by Fisher

was essentially differentiation with Lagrange multipliers. An alternate geo-

metric derivation is given by Dempster (1969) .

There are other methods of obtaining these linear discriminants, which

involve maximizing some measure of spread, Wilks (1962). The technique used
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for the maximization by Wilks also involved Lagrange multipliers. We now

present an alternate derivation, Geisser (1973b) which is completely algebraic

and somewhat more general. Again, suppose there are r p-dimensional multi-

variatL populations with means pi, "*'r and common positive definite covariance

matrix Z . Further let 0, of rank r-v < p be defined as previously in Section 2.

Assume that g()', g is any scalar measure of the spread

of these r populations that is increasing in the non-zero roots of -

t ... a8 0 Suppose further we transform these r p-dimensional

populations into a k g p space by a real transformation matrix Ckp

which is of rank k . Hence CLi , i=l,...,r , C = CFC

r C C" and the measure of spread in k dimensions is gk(O -), i.e.,

-I
the same scalar function of the non-zero roots d1> ... dt>O of M_

where t a min(k,r-v) . Then we shall show that

Max gk(o P) = 9(,...,6t) . (5.1)
C

As the maximum spread is attained for k - r-v , there is no interest in the

discriminatory situation in considering k > r-v . An orthogonal basis

solution for C , when k i r-v , would then be

( 0 'Y(5.2)

where P is as previously defined. Consequently APj is the characteristic

th Ivector associated with che j largest root of 0 -. Hence the conjecture

made previously in Section 2 has a basis in fact if optimization depends

on maximizing every scalar measure of spread which is an increasing function of

the non-zero roots of . One can also define the fraction of total loss

sustained in the measure of spread when k < r - v as
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L g(61) .. }6r -g(6 81 -6k)(53
" *= ~ h""' r-vi 53

For example, if we are using either the "Hotelling" or "Wilks" measure

of spread:

r-v r-v

g=TrZ '1 o, ' + ' j = r(l + 6) (5.4)
i=l i=I

then

r-v r-v r-v
L 6/ ' Lwi " - (8+F')"1 (5.5)

i-k+l i-l i-k+l

The algebraic derivation of the aforementioned results is basically an

application of the following matrix theorem.

Theorem: Let Z be a real p X m matrix of rank s - min(p,m) and Ek

be the class of p X p real symmetric idempotent matrices of rank k . Then

for all -Ek the maximum attainable values of the first t ordered roots

ai of Z'FZ are , i=l,..,t , t - min(k,m) , where the ot 's are the

non-zero ordered roots of Z'Z . Further, the totality of solutions for F

where the maximum values of the roots are attained is given by

kDl* f or k :! m

Fo Y(k)k'I k) (5.6)
Z(Z'Z)" Z"+ Gk- m  for k t m

where Y(k) "(Y1'""Yk) . represents the first k columns of Y ZP

and P is the orthogonal matrix such that P'Z'ZP Dm  where
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0.. 0

and Gk-m is any idempotent matrix of rank k-n orthogonal to Z.

Proof:

Given the definitions of P and Y above then

D = P'Z'ZP = P'ZFZP + P*Z*(I-F)ZPm

(5.7)
D = Y'Y = Y'FY + Y"(I-F)Y.m

Hence the roots of Z"FZ are the roots of YOFY and by virtue of (5.7) the

ordered roots of Y'FY , a 1 >. > a >0 are not greater than the ordered

roots of Y*Y , i.e., ai > ai , i - 1, ... , m , Bellman (1960, p. 113].

Now let Q be a p X p orthogonal matrix such that Q - (Y(s)Ds ' Q2 )

where Y(s) consists of the first s columns of Y . Then

Y"FY - Y"QQ"FQQ"Y = Y"QF Q'Y

where F is obviously idempotent since F is assumed to be. Further

s p-s

s ... -0
Y--Q m- = --- 0 (5.8)

M-S 0

so that
s M-S

m-rn-
Y'FY WQF Q-Y --------o (5-9)
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and F is the a x a matrix in the upper left hand corner of F . Now
11

the maximum rank of Y'FY is t - min(k,m) or t - min(k,s) . Hence all

solutions, for which aj = i2 la,, ... , t are such that the rank of

Y'FY must be t . Further the first t diagonal elements of FII are then 1

since = cifii , 0 <f < 1 and Z m k must be
i=li - i

satisfied. This implies that the off diagonal elements in those rows and

columns are zero since we are dealing with idempotent matrices. Therefore,

all solutions for F are

k p-k

k/ o
*I 'k 0

F M --_--- ) for t-k, i.e., k.m

p-k\O 0 0

or r p-r (5.10)
m p-

1m  0

F -----.. .. for t-m, i.e., u~k

where G is any idempotent p-m X p-m matrix of rank k-m . Hence the

totality of solutions for F are F QFQ' , so that

F0 = Y(k)klY k) for k--m (5.11)'

which is unique if ol,...,ck are distinct and

F Y Q for - k (5.12)

- 22-
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Note that from (5.12) and ZP - Y that

Fo= ZPDI P Z' + Q .GQ2" = Z(ZZ)'i1 Z QGQ+ for mntk (5-13)

Hence set Q2GQ = .m ' Since G is an arbitrary idempotent matrix of

rank k-m and Q is orthogonal to Z being it is orthogonal to Y , then
2

Gk-m  is an arbitrary idempotent matrix orthogonal to Z and the theorem is

established.

As an immediate consequence of the theorem and the fact that ai r 01

we have the following:

Corollary

If g(Z'FZ) = g(al,...,at) is a scalar non-decreasing function of the

roots ai , then

Max g(al,...,a g( V,..,) (5.14)
FEEk

In order to apply the theorem and corollary we first note that the

non-zero roots of fM'I= (c C * ')I are the same as the non-zero roots

of A'C'(C ) C)CA where = AA" and A is p X r-v . Set C - H

where is the positive definite symmetric square root of Z so that

the non-zero roots of M -I are the same as the non-zero roots of

A'"iHHH')IH T A . Set r-v = m , Z and the idempotent matrix

H#(HH**)' H = F . Hence as by our previous corollary

m gk(rM1 Max gk(Z'FZ) = g(61,.., t )
C F

To find solutions for C we note that there is an orthogonal matrix

P such that ( °M
P'A" 1AP  A 28 -
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and in the theorem set Y--2 AP and Y()-- Ap() where Pof

(PI... ,P) is the matrix consisting of the first j columns of P.

Note also that APi  is the invariant vector of corresponding to

the root b1, i = i, ..., in and the calculation of Y(j) does not

depend on A Hence from the theorem

F Y (kA (k) for k < r - v. (5.15)

From H'(11') IH = F we obtain H = HF and noting from (5.15) that

y' F =Y' then 110 ~Y ' and Co = Y' ~P' A'7, for(k~ () (), (-) (k)A,-

k < r - v , as required.

The derivations in this section and in Section P have been presented

in terms of population parameters. But obviously if sample estimates based

on data at hand, and - are utilized there need not be, from one point

of view, any essential change other than "optimization" now takes place with

regard to sample estimates. The problem then is to decide on the "plug-in"

estimators. The substitution of unbiased sample moments for the population

moments results in the same set of sample discriminants as is used in the

normal ;ase where maximum likelihood estimates corrected for bias are uti-

lized. Of course the simplifying assumption that the multivariate populations

differ mainly in their locations and relative to this, variations in the

dispersion matrices were unimportant as exemplified explicitly in the previously

discussed multivariate normal model, was our guide. This latter model gave

rise to linear theory in terms of population discriminants and consequently,

it is no surprise that focusing on linear theory can yield the same results.
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6. Sample Reuse Techniques -- Allocatory and Separatory

When precise distributional assumptions are untenable or abandoned

entirely so that theoretical calculations are precluded, one is then

obliged to provide some other means for rendering discriminants and

assessing their quality. In this section we shall discuss how sample

reuse notions can be directed towards an evaluation of discriminants

and their further refinement. Again for simplicity let us focus on the

two population case. Let the usual single linear discriminant be

V - V(u). By substituting each of the p-dimensional observations xii

for j =, ... , Ni and i = 1, 2, in V we obtain V(xij) =vi or

two sets of univariate observations. These may now be plotted on a
.

single axis distinguishing them only by their population origin. If

there are a great many of them a histogram for each set is visually in-

formative in indicating the quality the linear separation induced. If

V* is to be used for allocatory purposes then some assessment of the

APCC is in order. It has long been clear that the naive assessment of

the APCC, by merely calculating qln N 1 + q n N- where ni represents

the number of xiiis that are correctly classified by V*, will be too

large - just as in the normal case y(O) was generally too large as dis-

cussed in section 4. A sample reuse technique for correcting this flaw

was proposed by Lachenbruch (1965). He proposed calculating V*i(u) the

linear discriminant with xiS omitted and then computing V* (xij) -

and classifying xij on the basis of whether uij exceeded or fell short

of 0. An adjusted estimate of APCC, q1
n N + q2n2N , is obtained

where nI represents the number of xi s, i = 1, 2, correctly classi-

fied. Note that if Ni/(NI +N 2 ) is appropriate as an estimator of

-30-
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when it is unknown, that the estimator for the APCC becomes (n + n,.)/

(N1 + N.). This is reasonable in situations where the initial sample of

size N = N + N2  is drawn at random from Tf If1 U 1, so that the ran-

dom frequency N i  provides information on q

This method may also be of value in the determination of which vari-

ables couid be eliminated or which subset of r out of the p would be

optimal in future measurements as discussed in section 4.

One could attempt a finer tuning, as it were, by applying the predic-

tive sample reuse (PSR) method, Geisser (1975). A criterion applicable

here would be to maximize

P(uO ) = qlnl(u 0 )N 
1 + q2 n2 (uo)N2 1  (6.1)

with respect to uO, where ni(u0 ) represents the number of xij s

correctly allocated by V-F such that x.. is allocated to Tll if

V*j(xi.) = ul. > u0  and to IT otherwise. One would order the scalar
A

values uij and find that cutoff point u0 which maximizes P(uo), This

can easily be done numerically as it is esseatially a counting procedure.

Convenient algorithms can be found to shorten the process. While it is

also clear that u0  need not be unique, it can be made so by arbitrarily
A

selecting a particular one of them, e.g. the maximizer u0  closest to

zero. Then for future allocation one uses V*(u) < u0  as the allocatory

discriminant. One could also alter the criteria when qi is unknown and

maximize P(uo) = qlnl(uo)N I + q n2 (uo)N- . If Ni(Nl + N) can be used

as an estimator for q, then the new criterion effectively maximizes the

total number of x S correctly classified by V* < Uo, and again one

would use V*<u) u as the allocator where Vt. and V*(u) are merely

Vj and V*(u) respectively with qlq I replaced by NN1
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An appropriate assessment of the new discriminant would require a

two-deep cross-validatory assessment i.e. of the Lachenbruch (19,5) type.

There are obviously ways of applying the PSR approach to linear discrimi-

nants other than the cut-off point allocatory approach illustrated here, e.g.

estimating by PSR thu linear regression coefficients.

If one is concerned mainly with the reliability of a discriminant in

its separatory role, then Mosteller and Tukey (1968) and Lachenbruch and

Mickey (1968) suggest jackknifing V. First one calculates the set of

pseudo-discriminant functions V=j . (NI + N2 )V - (N+ N2.- l)vi.

j = i, ... , Ni, i = 1, 2, and then V' = (N1 + N 2)l V'i, which is

i,j
termed the jackknifed discriminant. One can compute the reliability of

V' in terms of the variation of the regression coefficients of the Vj

the individual values averaged to compute V'. Examining the ratio of a

regression coefficient in V' to its sample standard error permits a

judgement on the significance of its deviation from zero. The main point

of this exercise is to assess to some degree the reliability of the jac-

knifed discriminant function in its separatory role. Again if one decides

to use V' (or V*') as an allocator one can assess it by using a

two-deep cross-validatory approach.
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7. Remarks.

I have attempted to carefully delineate two distinct purposes of

discriminatory analyses and to examine the linear aspects involved.

However linearity has been surveyed, as it were, from a personal (not

to be contused with personalistic) point of view, in that much work

on the linear aspects of normal parametric discrimination has not

been mentioned chiefly because it involves the generation of modest

improvements with regard to certain frequency properties by some

slight alteration of the linear discriminants. It is my contention

that here the Bayesian approach, or when adjustments are indicated,

a Bayesian type of adjustment will yield better results than fre-

quential tinkering. When parametric assumptions are fuzzy or non-

existent, sample reuse methods, which are frequency oriented predictive

simulation techniques, should serve.

Finally it must be borne in mind that Discrimination is a technique

which is often most useful in the early history or soft stage of a

discipline when notions are fuzzy, measurements crude or indirect and

relationships vaguely understood at best. Hence it is generally an

appreciable improvement of whatever has gone before--theoretical

niceties notwithstanding. No doubt Linear Discrimination fulfills

the role played by Barnard's (1972) "midwife" in fostering the parturi-

tion of pertinent distinctions, probabilistic or classificatory, during

the birthpangs of a scientific discipline--but soon abandoned or its

focus shifted as the discipline hardens.
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