Ly

=

BY

B. A. MURTAGH and M. A. SAUNDERS

ADAO30690

TECHNICAL REPORT SOL 76-15

_--PUGUST 1976 “\\\

s
f-"x“"‘b
-
- "-’
.
)”’ %
-
-
-

fﬂ"

NONLINEAR PROGRAMMING FOR LARGE, SPA: . SYSTEMS

Systems Optimization

Laboratory

Department of
Operations
Research

Stanford
University

Stanford
California

94305

-

NONLINEAR PROGRAMMING FOR LARGE, SPARSE SYSTEMS

ACCESSION for /

RIS While Section [!/

ne Bulf Swtis ()

UHARNOUNCED o by

U HILTHT: S .

B.A. Murtagh and M.A. Saunders

1 SO .

BESWITIZS /Y LSILITY CO0ES
TUEL T R

¢

T
|

i

TECHNICAL REPORT SOL 76-15

August 1976

SYSTEMS OPTIMIZATION ILABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

Stanford University
Stanford, California

Research and reproduction of this report were partially supported by the
Office of Naval Research under Contract NOOO1L-T75-C-0267; the National
Science Foundation Grants MCS71-033k1 AOL, DCRT5-O4Shh; U.S. Energy Research
and Development Administration Contract E(O4-3)-326 PA #18.

Reproduction in whole or in part is permitted for any purposes of the United

States Government. This document has been approved for public release and
sale; its distribution is unlimited.
DD C

EEELET)
0CT 13 1976 1,

"f

i

GG T L
D

; %
¢
1

-

[.

—

NONLINEAR PROGRAMMING FOR IARGE, SPARSE SYSTEMS
B. A. Murtagh and M. A. Saunders
AB3TRACT

An algorithm for solving large-scale nonlinear programs with
linear constraints is presented. The method combines efficient sparse-
matrix techniques as in the revised simplex method with stable variable-
metric methods for handling the nonlinearities. A general-purpose
production code (MINOS) is described, along with computational experience

on & wide variety of problems.

», o . R
i, v e

D R .

R —

*
NONLINEAR PROGRAMMING FOR LARGE, SPARSE SYSTEMS

B. A. Murtagh and M. A. Saunders

1, Introduction

This paper describes our efforts to develop a nonlinear programming
algorithm for problems characterized by a large sparse set of linear con-
straints and & significant degree of nonlinearity in the objective function.
It has been our experience that many linear programming problems are
inordinately large because they are atiempting to approximate, by piecewise

linearization, what is essentially a nonlinear problem. It also appears

that many real-life problems are such that only a small percentage of the

variables are involved nonlinearly in the objective function. Thus we are

led to consider problems which have the following cenonical form:

minimize F(x) = f(zN) + ng (1)
subject to Ax =D (2)
IS B (3)

where A ism X n, m < n. We partition x into a linear portion SL

. N
and & nonlinear portion x:

N
x

L
]

*An earlier version of this paper was presented at the 8th Int. Symp. Math.

Prog., Stanford, California, August 1973.

-

K

s

e s con 1 e g et i N O 1 b g 4 e

- .

The components of xN will normally be called the nonlinear variables.

Note that A and ¢ operate on all variables z. In some cases ‘the
. M, .
part of ch involving 5N may be incorporasted into f(g }; in other
. Moo .
cases ¢ may be zero, We assume that the function f(x) is continuously

differentisble in the feasible region, with gradient

%3 (5N) = g(zN) .

The research work reported here was stimulated by some of the

deficiencies in the algorithm of Murtagh anu Sargent [Ul4], [50], especislly

when applied to large-scale systems. The resulting algorithm is related

to the reduced-gradient method of Wolfe [56] and the variable-reduction

method of McCormick [41], [42]. It also draws much from the unconstrained

and linearly-constrained optimization methods of Gill and Murray [21], [22],
[25].

In essence the algorithm is an extension of the revised simplex

method (Dantzig [12]). To use some of the asscciated terminology, it

might be described as an extension which permits more than m variables

to be basic. Because of the close ties with linear programming (LP) we

have been able to incorporate into our implementation meny of the recent

advances in LP tecimology. The result is a computer progrem which has

many of the capsbilities of an efficient LP code and is also able to

deal with nonlinear terms with the power of a quasi-Newton procedure.

o e e t———- S —————

R sadiandes - [- -

e

e

[T

1.1 DNotation and Terminology

Partitioning x and F(x) into linear and nonlinear terms
is of considerable practical importance; for descriptive purposes
L vever, it is convenient to denote F(x) and <F(x) = glx) + ¢
simply by f£(x) and glx).

With & few conventional exceptions, we use upper~case letters
Tor metrices, lower-~case for vectors and Greek lower-case for scalars.
The quantity e > O represents the precision of floating-point
arithmetic.

The terms "variable-metric” and "quasi-Newton" will be‘

used synonymously, as will the adjectives "reduced" and "projected."

* " - - ~ m e e —— ——
= ! ~

2. Basis of the Method

2.1. Variable-metric projection

Before tutrning to the canonical form, consider the problem

minimize £(x) = £(x), ... , x). (k)

subject to Ax <D (5)

——

We will assume that f(?é) can be expanded in e Taylor's series

with remainder of second order:

£(%qq) = £(x) + gimgk + %Aﬁf{c;(gk +dy B (6)
where
e = Zpeyn ~ Fye

By = VI (}'sk) .

and G(ggk + Y%) is the Hessian metrix of second partial derivatives

evaluated at some point between X, and Kpes1!

constant matrix if f£(x) is a quadratic function.

Note that G 1is a

Suppose that the current point, X)) is on the boundary of m
constraints (m < n). Denoting the corresponding m rows of A by

the submatrix B we have:

Bx, =D (1)

Variable-metric projection methods (Goldfarb [30], Murtagh and

Sargent [44]) are based on two properties required of the step A?Sk:

Property 1.

B + Glg) by = B ©) ‘

i.e., the step L%, 1s to a stationary point on the surface of the n

~k

active constraints. The gradient of f(x) at x ..

is suffic’ :ntly close to the stabionary

(given by the left
hand side of equation (8) if %
point for a quadratic approximation to be valid) iz orthogonal to the

surface and thus denoted by a linear combination of the constraint normals

(given by the right hand side of equation (8)).

Property 2.
Bﬁﬁk =0 9)

i.e. the step remains on the surface given by the intersection of the m
active constraints.
The implementation put forward by Murtagh and Sargent [L4l]

used these two properties to produce a step given by

)

gy = 48 (g - By (10)

where Ak (an estimate of the Lagrange multipliers for B) is obtained
by substituting equation (9) into (8):

- Ty-1)
N = (Bs,B7)7 BS. g (11)

c& is a step-size parameter used to adjust the length of the step Ax, ,

and 8, is a variable-metric approximation to G—l(gk). A rank~-l

updating procedure is used to modify Sy each iteration. This allows
. T, ~1

the matrix (BSkB) to be updated by a rank-l correction also. Note

however that no advantage is taken of either B or @ being sparse,

since the matrices G * and (BG”lBT)'l are in general dense.

5

T ot e e —— - B i 4 2 e o = o o b ot e =

T

The procedure works well in many caeses (see [50]), but storage
limitebions prevent application to large problems, quite regardless of
numerical accuracy in the updating procedures. The motivation for the
’ present work, therefore, is to use Property 1 and Property 2 in a more
efficient manner, particularly for the case of large sparse systems with

relatively few nonlinesr variables.

} 2.2, Extension to Large Sparse Systems

We return now to the canonical form of equations (1)-(3). The
key to success with the simplex method lay in adopting such a canonical
| form and working with so-called basic feasible solutions; which are

; characterized by having n-m "nonbasic" variables equal to their upper or

Al

, lower bound. With nonlinear problems we cannot expect an optimal solution
to be of this kind. As o simple generalization we introduce the notion

‘ of "superbasic" variables and partition the set of general constraints (2)

as follows:

. m s n-m-s _
| B
|
}
| =3
e basics super- nonbasics
| basics
l
Z
§
6

&

Sl

The matrix Bl is square and nomsingular and corresponds to the usual
basis metrix of the simplex method; B, ism v s with 0<s<n-m, and
the associated variables P are called the superbasics as shown. Both

basics and superbasics are free to vary between their bounds.

The motivation for this partitioning is provided by the following:

Theorem 1. If a nonlinear program has an optimal solution and if it involves

t varisbles nonlinearly, an optimel solution exists in which the number of

superbasic veriables s satisfies s < t.

Proof (due t¢ A. Jain). Let the nonlinear variables be fixed at their
optimal veiues., The remaining problem is & linear program for which a

basic solution exists (s = 0). The result follows trivially.
Thus in many cases s can be guaranteed to remain small.

Using the partitioning given by equation (12), Property 1 becomes:

T
& 2%y By ©
& |+ ¢ Az:,a = Bg 0 M (13)
A
T ~3
JaN
g %5 B 1
and Property 2 becomes:
Bl 132 133 Azl
o o I 6%, |=0 (14)
bx
~3

where L\%k and B have been partitioned corresponding to the partitioning

of A (and the subscript k, referring to the iteration number, dropped

for convenience).

From (1k) we have

i

Bgy = 0 (25)

and by, = WX, (16)
-8 (

where W= 8"8, (17)

Thus)

>
"
n

W
I |Ox

Equation (13) simplifies when multiplied by the matrix
I 0 9O
W I 0 (28)

First it provides an expression for estimates of the Lagrange multipliers for

the general constraints: W .

g *[Toola I|ox . (19)
0

D
BNy %

Note that when [Px |

%5 0 (which-will mean x 1s stationary) we have

Iy o
B = & (20)

i_n which case 51 is analogous to the pricing vector T in the revised
simplex method. (From now on we shall denote the solution of (20) by T .)

Next we have from (13) that

-W
- T
b2~53-33bl+[ooxls I |y, (21)
0
and again when ||A;ge|| = 0 this equation reduces to

R e

R

=

P+ T (22)

vhich is analogous Lo the veclor of reduced costs in linesr vrogramming.

The third result from equation (13), following Lre-multiplication

by the matrix (18), is an expression for the approprist~ step:

-
B e I A (23)
0
where
. R S,
p=[-W I Olg=g,-Wg =g -BT . (24)

The form of equation (23) suggests that

: I'T [W }
% I ole| I (25)
0

can be regarded as a "projected" (or "reduced") Hessian ana h = [-WT I 0lg

e projected gradient, with (25) giving alNewton step in the independent

varisbles Ox,. Note that Inll = 0 vecomes a necessary condition for a

stationary poinl in the current set of active constraints, which, if
the projected Hessian is nonsingular, implies that HSEQ” = 0.

While the above derivation is based on the two properties which
characterize variable-metric projection algorithms, the resultant relations
could be equally regarded as a reduced~gradient method in which

the number of independent variables is reduced to s, the dimension of
A%é' We will not spend time here discussing thezxelationship between

the two seemingly different approaches, but refer the reader to two review

papers by Fletcher [17] end Sargent [49].

Recently Gill and Murray [25] have considered a class of algorithms

in which the search direction along the surface of active constraints is

characterized as being in the range of a matrix Z which is orthogonal
"~

A
to the matrix of constraint normals. Thus, if Ax = b is the current

set of n-s active constraints, Z is an n X s matrix such that

AZ =0. (26)

In the notation of [25], the main steps to be performed each iteration

are as follows. (They generate a feasible descent direction D.)

A. Compute the projected (reduced) gradient gy = ZTg.

B. Form some approximation to the projected Hessian, wviz.

76z

@
oJte

C. Obtain an approximate solution to the system of equations

7'6zp, = -2'g (27)
by solving the system
GpRa = &

D. Compute the search direction p =

10

o

KN

*
E. Perform a line-search to find an approximation to o , vhere

* .
f(}£ + o p) = min f(],’:, + OR)
0/
{x+op feasible}

Apart from having full column rsnk, equation (26) is (algebraically)
the only constraint on Z and thus Z mey bake several forms. The

particular Z corresponding to our own procedure is of the form

-W -B;_lBe) m
7 = I|= I }s (28)
0 0 } n-m-s

This is a convenient representation which we will refer to for exposition
purposes in later sections, but we emphasize that computationally we work
only with B, =and a triangular (LU) factorization of B,.
For many good reasons Gill and Murrey [25] advocate & 2 whose
columns are orthonorma.. (ZTZ = I). The principal advantage is that
transformation by such a Z does not introduce unnecessary ill-conditioning
into the reduced problem (see steps A through D above, in particular
equation (27)). The approach has been implemented in programs described
by Gill, Murray and Picken (e.g. [27]) in which 2 is stored explicitly

as & dense matrix. Extension to large sparse linear constraints would

be possible via an LDV factorization (see Gill, Murray and Saunders [29])

of the matrix [Bl BQ]:

[Bl 132] = [L ojDv

11

o § T

where 1 ie sriangular, D is diagonal and Dl/zv is orthonormal, with

I and V being stored in product form. However if B2 has more than

1 ar 2 columns, this factorization will always be substantially more dense
than an LU factorization of Bl' Thus on the grounds of efficiency we
proceed with the 2 in (28). At the same time we are conscious (from

the unwelcome appearance of Bll) that Bl must be kept as well-conditioned

as possible.

B . - P

P - [

&

e

3, Implemenhation

The basic ideas were presented in the previous section; their
actusl implementation in a computer code requires a good deal more effort.
The code itself is a Fortran program called MIyos® vwhich is designed
to be almost machine-independent and to operate primarily within main
memory. The central part of MINOS is an efficient implementation of the
revised simplex method which incorporates several recent advances in
linear programming technology. These include:

1. Fast input of the constraint date in standard MPS format** using

hash tebles (in particular, the method of Brent [61) for storing

row-names and distinet matrix coefficients.

2. Compact in-core storage of the constraint matrix A wusing an elementary
version of Kalan's super-sparseness techniques [36].

3. Upper and lower bounds on all variables.

4, A version of Hellermun and ZHarick's "bump and spike" algorithm P'!‘L [33]
for determining a sparse LU factorization of the basis matrix Bl.***

5. Imbedding of non-spike columns of L within A.

6. Stable updating of the LU factors of Bl by the methed of Bartels

and Golub [2], [3] as implemented by Saunders [52].

An improved "CHUZR" proceduré# for phase 1 of the simplex method,

following ideas due to Rarick [48] and Conn [10].

*
MINOS (my'-noss) = a Modular In-core Nonlinear Optimization System.

W
This is the CONVERT data format described in user's manuals for the
IBM systems MPS/360, MPSX and MPSX/370.

FH %
The block~triangular structure of By is currently being found using

subroutines MC13 and MCL6 from the Harwell Subroutine Iibrary (Duff [14],
Duff and Reid [15]). Hellerman and Rerick's P> [32] is then
applied to each block,

#

Jmplemented by J. A. Tomlin.
15

For optimizotlon of the reduced fuanction we have implemented
8 guasi-Newton procedere using the factorization GA = RTR (R upper
triangular) to agpproximate ZTGZ. This parallels the methods described
by Gill and Murray (21}, [22], Gill, Murray and Pitfield [28] which are based
on the Cholesky factorization QA = LDL? (L lower triangular, D diagonal).
Stable numerical methods based on orthogonal transformations are used for
modifying R during unconstrained steps and for certain other modifications
to R whenever the bhasis matrices Bl and 32 change. (Operations on
R rather tham L and D are somewhat easier to implement and involve
little loss of efficiency in this context.)

Another module whiéh is fundamental to the success of the present
algorithm is an efficient and reliable line-search. The particular routine
used is a Fortran translation of Gill and Murray's Algol 60 procedure
delinsearch, which uses successive cubic interpolation with safeguards
a5 described in [2h]. This routine evaluwates the objective function and
its gradient simultaneously when required. We have left just one parameter
available to the user to change at his/her discretion, namely, eta

(0.0 < eta < 1.0) which controls the accuracy of the search. This

flexibility has proved to be very satisfactory in practice.

1k

P e U P R J e NSNS

T

50 l.

Summary of procedure

An outline of the optimization algorithm is given in this section;

some of the finer points of implementation are discussed in later sections.

Assume we have the following:

C

(a) A feasible vector x =[x, %, }53]T satisfying [B, B, B;lx =D,

L

A

X
~

A

2 3w
20

(b) The corresponding function value £(x) and gradient vector

E(ﬁ) = [5]_ o 5,3

‘]T

.

(¢) The number of superbasic variables, s (0 < s < n-m).

(@) A factorization, LU, of the m X m basis matrix B

~

1°

(e) A factorizaiion, erR, of s varieble-metric approximation to the

s X 8 mabrix ZTGZ.

o T
(f) A vector T setisfying BT = g -

(g) ‘The reduced gradient vector h = g - ng.

(h) Small positive convergence tolerances TOLRG and TOLDJ.

Step 1.

Step 2.

B e

(Pest for convergence in the current subspa.ce)

Ir

”1;3" > TOLRG go to step 3.

("PRICE", i.e. estimate Lagrange multipliers, add one superbasic)

(a)
(v)

s e

m

Calculate) = B3 - Bg'r,g .

Seleot Ay < -TOLDJ (xqa > + TOLDJ), the largest elements of
al

A corresponding to varisbles at their lower (upper) bound.
If none, STOP; the Kuhn-Tucker necessary conditions for an

optimal solution are satisfied.

15

o g bt e e

oy e e e - UV,

N

s

(c) Otherwise,
(1) Choose q = q; or gq-= 9% corresponding to
Al o= max|A A .
I, | qll’l o
(ii) ada g, @S & new colum of By
(iii) aad A, 8 @ new element of h;

(iv) 2dd a suitable new column to R.

(@) Increase s by 1.

Step 3. (Compute direction of search, p = Zp)
.~ ~2

(a) solve RTR;QQ = -h,

(b) Solve IUp, = -B.p,.

(-4

R
(c) sSet R=|n] -
0

Step 4. (Ratio test, "CHUZR")
viep 4

(a? Find o > O, the greatest value of « for which x + op

is feasible.

() 1f O ox = 0 go to step 7.

Step 5. (Line-search)

*
(a) Find @, an approximation to ¢ , where

#
fg+ap)= min £(x+ep).
0<6-<-O§nax

(b) Change x to x + op and set £ and g to their values

at the new x.

16

e A T oatmrree e TS o ot atonctone =t e RO I g 0 S IR Ao s wmri e

ey v e e T T

Al

ARy, ™"

Step €. (Compute reduced gradient, ?;i.; V,‘ré)
() Solve UTLTTL =g

(b) Compute the new reduced gradient, h = g, - BTI.

2
(¢) Modify R to reflect some varisble-metric recursion on R'R,
using o, R, and the change in reduced gradient, i~ h.
(@) Set h = h.

(e) If a<x O oy B° to step L. MNo new constraint was encountered

so we remain in the current subspace.

Step 7. (Change basis, delete one superbasic)
Here ¢ = amax and for some p (0 < p < mts) a variable

corresponding to the p-th column of [Bl Be] has reached one of

its bounds.
(&) If a basic variable hit its bound (0 < p < m),

(1) interchange the p-th and g-th columns of

B B

1 and 2]
}’T :rT
% % |

respectively, where ¢q 1is chosen to keep Bl non-
singulax (this requires a vector 'ﬂ'p which satisfies
I.T
VLT = e);
o ~p’
(1i) modify %, U, B and T to reflect this change in B3

(iis) compute the new reduced gradient h = £ - Bgﬂ; .

(b) If a superbasic variable hit its bound (m < ¢ « mts), define

q = p-m.

17

-~ - - B bt S S

=

(c) Make the g-th varizble in 82 nonbagic at the appropriate
bound, thus:

(1) delete the g-th columns of

and

Fg ™
ing

M

»

2

(ii) restore R to triangular form.

(d) Decresse s by 1 and go to step 1.

3.2 Work per iteration

The work involved in one pass through the above procedure is
roughly equivalent to
(a) one iteration of the revised simplex method on a linear program of
dimensions m X n, plus
(b) one i%eration of a quasi-Newton algorithm on an unconstrained

optimization problem of dimension s.

Note that the PRICE operation (Step 2) is performed only when "2” is
sufficiently small, which means an average of sbout once very 5 iterations.
This is a typical frequency in commercial LP systems using multiple pricing.
The extra work involved in the quasi-Newton steps is somewhat offset by

the fact that a basis change (Step T(a)) occurs only occasionally, so the
growth of nonzeros in the IU factors of Bl is minimal. Thus if s

is of reasonable size and if f£(x) and g(x) are inexpensive to compute,
iterations on a large problem will proceed at about the same rate as if

the problem were entirely linear.

18

e mnm ask At it = & s .. - - .

e —— . w————— [

T e e o L L

2.3 Updating the Matrix Facltorizations

As in the simplex method, 5 stable factorization of the basis
matrix B, is important for solving equations of the form Brx =Dbh or
BEZ = ¢. Here we use an implementation of the method of Bartels and
Golub [2], [3] for updating the factorization By = L. Details are
given in Saunders (52]. We normally re-factorize Bl every 50 iterations
regardless of the number of modifications that have been made to L and
U.

The remainder of this section is devoted to the methods used for
modifying R in the approximation RTR = ZTGZ vwhenever x and/or %
change. 'The notation R will be used to represent R after any particular

modification. To ensure stsbility, all modifications to R have been

implemented using elementary orthogonal matrices Q,j (plane rotations)

whose non-trivial elements are

where c‘_j + s% = 1,

3.3.1. Varisble-metric updates

Any of the usual updating formulas (e.g. Davidon [13}, Fletcher
and Powell [18], Broyden [7]) can be used to account for a nonzero change

in the superbasic variables (Step 6). The two we have experimented with are:

The Complementary DFP formula

COMDFP: RIR = RUR + —— SRR

The Rank-one Formula:

RAKL: RR = KR+ —=— wf'
LR
where y = h-h, the change in reduced gradient, and W =)y *+ oh.
19

K

&

S e e e o <ty e -

The COMDFP formula can be used on both constrained and unconstrained

steps (o = 0oy 204 A<, resp.). An alternative is to use RANKL

on constrained steps as long as it results in a positive definite recursion,

otherwise COMDFP. Systematic testing may perhaps reveal a slight advantage

for one strategy over another, but in the interest of simplicity we now
use COMDFP in either case.

If o= O ax and ahax is very small it 1s possible that the

computed value of y will be meaningless. Following the suggestion of

M. J. D. Powell (private communication) we allow for this by monitoring
the change in directional derivative and modifying R only if

5?&2 > 0.9 E?RQ .

The same test is used even if < A Since Q?pe < 0, this means

that R 1is modified if

ﬁTRQ

'q = "_NT' — < 009 3

n7g, |
which will normally be true if a value eta < 0.9 is given to the
parameter of procedure delinsearch, which uses |n| < eta as one criterion

for a successful search. (Note that ﬁ?R = ﬁ?ZEn = hTRQ')
‘ ~

Both COMDFP and RANK1 are implemented by means of the following

rontines:

RIADD: RIR = ROR + vv-

RISUB: R'R = R°R - vvb

These use forward and backward sweeps of plane rotations respectively,
as described in Saunders [51, Ch. 7], Gill, Golub, Murray and Saunders [20].

20

h e o

b TR

3.3,2 Basis change (Step T\a))

Suppose bthat the p-th basic variable is interchanged with the q-th
superbasic variable, Once R has been updated to account for the move
which is causing the basis change (Step 6), a further "static" update is
required to allow for a corresponding change in the definition of Z.

The relationship between the new null-space matrix and the old is given by

(29)

vwhere ,gq is the g-th unit vector and ¥ 1is defined by the equations

T
BT =
1 = 3p
T
X Bglrp
Y =3’Te
4 ~~q
1
x=-=Ggre)
Yq q

Derivation of this result is ratber lengthy but the quantities involved
are easily computed and they serve several purposes:

1. The j-th element of 1y, viz.

T T T -1
= = = B
yj Xij TrBeg eBl (2%)

is the pivot element that would arise if the j-th column of 132 were

selected for the basis change. Hence y can be used as a guide for

dev=rmining q. Broadly spesking, the condition of B, will be

1
pregserved as well as possible if yq is the largest available pivot

21

=

element (assuming the columns of B,c, have similar norm). In
practice it is reasonable to relax this condition slightly in favor

of choosing a superbasic variable that is away from its bounds. Thus

we define gq by the following:

maxlyjl

e
it

max

d, = min IX.J' - JZJ.[, |XJ' - ujl

J (xJ. superbasic)

o
i

max(d, | ly,l >0y)

This rule is numericslly more relisble than that suggested by Abadie [1],

vwhich in the above nobation is equivelent to maximizing |yj|dj.

m_ can be used to update the vector T that is computed in Step 6(a).

~D

(after the last move but before the current basis change). Thus

T=1m+ (h .
7=+ B/yy)m,

where ﬁq is the appropriate element of the reduced gradient h in
Step 6(b). This is the updating formula suggested by Tomlin [54

for use within the simplex method. Nonlinearity is irrelevant here

since the basis change is simply a redefinition of 2.

lrp can also be used to update the IU factors of B, (see Tomlin [54],

Goldfarb [31]).

The modification to R corresponding to equation (29) is

accomplished as follows:

22

b e e e e e dean e e m e C et metian e

—r

- Ty oI T
. = (1 + RR(I + e v')
RIPROD: R R = (I +ve) RR(I +ev

If rq is the q-th column of R, this expression mey be written

=T= T T T
RR= R +ve)R+zv)
A partial backward sweep of plane rotations Qj (3 =aq g-1, ..., 1)

reduces £q to a multiple of g and then a full forward sweep restores

R to triangular form.

3.3.5 Removal of one superbasic variable (Step 7(c))

Removel of the g-th superbasic variable implies deletion of the
corresponding column of R. The resulting upper-Hessenberg matrix is
restored to triangular form R by a partial forward sweep of plane

rotations (5= g+, ... , 8):

R with f R
DELCOL: Q *°* qQ ..Q X | q~th column{ =
S qra g+l _deleted [0

23

o —mune e

3.3.4 Addition of one superbasic variable (Step 2(c))

When a vector '%q is added to B2 the new null-space matrix is

-1,
1 ~q
Z=1[2 gl where z = e,

-B

0

Following Gill and Murray (251, pp. 76-7T) we approximate the vector
Gz by finite differences, thus:

~

glx + 8z) - glx) .
= 5 = Gz + 0(8[|g/*)

v
~

where & is a small step in the direction 3z, for example, b = el/ 2/ lzll .

The following procedure can then be used to generate & new column for R:

(-
Solve RT;;, = ZT;L
ADDCOL: < Compute 0= ,%Tx - "1;"2 , o= Ic[l/ 2

- R ¢
\‘I'ake R=
P

(Note that gTy, is best computed as the last element of ZT)L rather than

from z and Y directly.)

Comparison of

R R r] [RR 2z
P _ B
= o -

r oell o l¥z 2y

ang,

2k

N

kY

_T Z 7z nlvg
2G4 = ZT G [Z f%] = p 0y

262 76z

shows that if RTR provides a good approximation to ZTGZ
then R'R has some chance of being a useful approximation to AT

The mein work involved here is in computing Bll%q’ the gradient vector
g(x + 52) and the projection ZTg. This work is essentially wasted if
the expression for J is not positive, which may happen for many reasons,
e.g. if 7%6Z is not positive definite at the current point, if R is
a poor spproximation or if R is very ill-conditioned. In such cases we

set r =0 and take p to be either (g?x)l/e or 1.0, thus:

R O
(30) R = { 0 (30)

One advantage, at least, is that the subsequent search direction will
move the new superbasic variable X, avay from its bound, so there is
no danger of cycling on xa.

With many problems the condition 0 < 0 occurs only occasionally
or not at all. Computing r and p as shown then leads to significantly
fewer iterations than if (30) were used all the time. On the other hand,
0 > 0 is not a sufficient condition for success. In particular if the
current point is near a singularity in g(x) the difference approximation
to Gz is unlikely to be good. (An example is when f(g) has terms of

the form Xy log X and the constraints include bounds such as x, > 10'10.)

J

In such cases, r and p prove to be consistently very large, resulting

a5

e e — <

in sn R which is much more ill-conditioned than R. Subsequent iterations
make little progress until the associated quasi-NewbLon updates restore

the condition of R. In contrast, use of (30) with p = 1.0 gives rapid
progress.

Let dmax and d.min be the largest and smallest diagonals of R.
As a heuristic means of detecting the above situstion we monitor [|vf|
and resort to (30) whenever |lv| is significently large than d .. oF
smaller than dmin' (As a side benefit, the erpense of compubting 53&
end r is then avoided.) A final similar test is made on 0.

In contrast to all previous discussion, the ADDCOL procedure just
described embodies & discernible level of ad hoec strategy. However our
experience with it has been good in general, and the combined use of
R1FROD, DELCOL and ADDCOL is almost certainly better than resetting R=1I

at every change to the set of active constraints.

26

s iy e o e

T W s ek e s e e s o

“ e e g — e L

Aalas)

g st

- o i

3.k Convergence tests

Another ares in which strategy plays an important practical role
is in deciding when to stop optimizing in the current subspace and consider
moving away from one of the active constraints. Here we must enlerge on
the use of TOLRG in Section 3.13 recall that in Step 1 of the algorithm,
TOLRG was tested to determine if it was time to compute Lagrange multipliers
(reduced costs, A) and add one more superbasic variable.

Suppose that after a particular iteration we have

A§2 = the change in the superbasic variables

Of = the change in T

=
i

the new pricing vector

h ZTg, the new reduced gradient

€2 €p) TOLRG, eg positive scalars

n

€ = machine precision

and let T, be a set of tests (with values true or false) defined as

follows:
: bl < (e, + 2@ gl
Tyt lag| < (ep+ €)1+ l£})
Ty Il < ToLRG
1, Il < el
27

s A e ek s < D -~ e

. o m e

AR

-

In place of the simple test

if T5 then compute A ,
the following combined test is used:

if (T, and T, and T3) or T, then compute) .

The general form of this test follows that used in the algorithm lcmna

of Gill, Murray and Picken [27], in which the scalars identified here by

€1 €p TOLRG and eg are fixed at certain "loose" wvalues initially and

are then reset to "tight" values once it appears that the optimal set of

active constraints has been identified. Use of ex and ef in this

wey 1is justified in the sense that it seems reasonable to remain on the

present set of active constraints as long as significant progress is

being made. Use of ¢_ in Th allows for the possibility that the

last step, though significant, may have moved x very close to an

optimum in the current subspace (e.g. the quasi-Newbton procedure should

achieve this regularly if f(x) is quadratic).

In adopting the above strategy we have found it beneficial to vary

TOLRG dynamically. In the current version of MINOS this is done as

follows. Suppose that the "best” Lagrange multiplier at some stage is

kq = gq - g?gq. If the corresponding variable xq becomes superbasic,

the reduced gradient for the expanded subspace will be

h
=

M

Now recall from equation (21) that unless h 1is reasonably small, even

one further iteration could change T and hence A significantly.

28

L&

.o

R

Therefore as a safepuard (which is admittedly heuristic) we accept Kq

and move into the new subspace only if "Q”w < O.9=Aq|, vhich implies

I, < o-Sliall,-

We then reset TOILRG for the new subspace to be

TOIRG = [l

where ng € (0,1) isa parameter which is available to the user to set

at his own will (and peril!). A typical value is ng = 0.2 and its function

is analogous to that of the parameter eta in procedure delinsearch. For

example a small value of N_ allows the user to insist on an accurate
&

optimization within each subspace.

29

- =)

ST

i, Use of first and second derivatives

We have assumed throughout thet the gradient g(x) is available

and we have avoided explicit use of the Hessian matrix G(g). Some

discussion of alternatives is in order. The principal factor here is

the expense of transforming even one vector by Z or ZT. In fact if
the constraint matrix A has many rows, most of the work per iteration
lies in computing p = ZEE and h = ZTg. (These calculations are

analogous to the FTRAN and BTRAN operations in linear programming.)

1. When g is not available it would often be practical to form an
A

approximation g wusing finite differences along the coordinate

dircections, e.g.,

. £l +8e.) - £(x)
g' —3 J Q-‘g. »
J & J

(The number of Ej's to be computed this way is equal to the nurber of
nonlinear variables.) Just one transformation with ZT is then

. . T
required, viz. h = 27g.

2. An slternative which is normally viable would be to difference f(x)

along the directions gj:

A Tl +8z.) - £x)
h, = J == zTg = h,
J 5 ~J J
where §j = Zgﬂ, J=21, ... , s. Unfortunately this approach is not

practical for large problems, since storage limitations prevent saving

all s wvectors gd, and the work involved rules out recomputing

them when required.

30

Rl R e o
T e g e s e e e

e et e e e mme =

5.

If g(x) and perhaps G(x) are available, the system of equations

z""'cle)2 = . g (31)

could sometimes be treated by a modified Newton method (Gill and
Murray (23], Gill, Murray and Picken [27]). This involves either
computing ZTGZ directly:

7la = [Z?GZ.]
R1 R

or differencing g(x) thus:

glx + 8z.) - glx)
v, = g EVQ. s
fi J

2'6z ~ él- %y + viz) .

However the need for the vectors Zj again presents severe diffi-

culties for large problems.

If G is large and sparse, equation (31) could sometimes be solved
iteratively by the method of conjugate gradients (e.g. see Gill and
Murray [25, ». 133]). Storage is minimal since the method avoids

forming the matrix ZTGZ or any approximation to it. However if Z has

s columns the method usually requires O(s) products of the form

7 (6(zy)).

A final (more promising) alternative is to abandon equation (31)
and to generate a search direction by a nonlinear conjugate-gradient
type method such as that of Fletcher and Reeves [19] (e.g. see Gill

and Murray ([25), p. 134)). This takes the form

31

o

o wncomen +|

b o s s o b o ey = oo =

(@) &= -2 -

(b) if restart then = -

i

else

-+ BB,

ngdl

(¢) p=2p,
where 22’ ﬁe are the previous and current search directions for the

superbasics. Several methods have been suggested for determining the

scalar 8, e.g.

Fletcher and Reeves [19]: g = "E"e/ﬂgue
Polak and Ribiere [46]: B =5 (5 - n)/nl?
Perry [451; g = E?(ﬁ -h - age)/gg(i - h)
In MINOS, a switch is made to one of these methods if the number of ’

superbasics s becomes larger than the dimension specified for the
matrix R. A restart occurs whenever the set of active constraints
changess also every s+l iterations in the (rare) event that more than
s consecutive steps are unconstrained. More refined restart procedures
(e.g. Powell [47]) will require future investigation. In the present
environment the ebove formulas for A have all performed rather similarly
(though seldomly as well as quasi-Newton). An example is given in §5.2.4.
To summarize: the reduced-gradient approach allows meximum efficiency
in dealing with large sparse linear constraints, but at the same time it
alters our perspective on the relative merits of Newton, quasi-Newbton and
conjugate gradient methods for handling the nonlinear objective. Strangely

enough, even if the exact Hessian matrix were available (no matter how sparse)

32

T ooy o b s .

we could not afford to use it. In this context we find thet quasi-Newton
methods take on & new and unexpected importance. The storage required for
the Hessian approximation is often moderate even when there are many linear
or nonlinear varisbles, as long as the total number of superbasic variables
is of order 100 (say) or less. Otherwise, a conjugate-gradient method

remeins the only viable alternative.

4,1, Quadratic prograus

The above statements do not hold if G happens to be a constant

matrix, In this case the relation

R = 7262 (32)

can often be maintained exactly without recomputing ZTGZ every iteration,

Sweh a specialization has been described by Gill and Murray [26], along

~th the measures required to allow for ZTGZ being indefinite., The
present quasi~Newton algorithm could be specialized as follows:

1. Initialize R at the start of a run to satisfy (32). (This is trivial
if there are no superbasics; it may not be possible for an arbitrary set
of superbasics gince 2762 could be indefinite.)

2, In procedure ADDCOL (§3.3.4) compute the vector v =Gz directly
rather than by differencing the gradient.

3, Suppress the variable-metric updates to R (COMDFP and RANKL in §3.3.1).

33

et g e e

= o

o

However it is worth noting that the difference approximetion to v = Gz
will be essentially exaét, so that if (32) ever holds at any stage then
ADDCOL will maintain (32) almost exactly when a column is added to %.
A step O =1,0 ealong the next search direction will then move x %o the
new subspace minimum. Now it is easily verified that the subsequent
variable metric updates will cause no net change to R (ignoring slight
rounding error in the case of COMDFP). The scene is therefore set for
another exact minimization during the next iteration.

The above sequence will be broken if a constraint forces some
step @ to be less than 1,0. The variable-metric updateg will then alter
R slightly, (32) will cease to hold and the next subspace minimization
mey require more than one iteration. In certain applications this could
be undesirable, but more generally the robustness and self-correcting
properties of quasi~Newton methods offer compensating advanteges, including
the ability to start with any matrix R (such as I). Suffice to say
that the general algorithm comes close to being "ideal" on quadratic programs,

without undue inefficiency or any specialized code,

34

o et % et st — .- - e AT

. A gt e

-

R——————
.

-

+» Compubational Experisnce

Although the prime application of this research is to large-scale
linear programs with a nonlinear objective function, we have endeavored

to attack a comprehensive range of problems to aid development of the

algorithm. It is unforbtunate that large-scale nonlinear problems are not

widely reported in the literature, so that many of the results discussed
here refer to problems which are solely within the authors! own purview.

A brief description of each problem is given. Fuller details of

constraint data, starting points, etc. must be left to a fubure report.

Three of the starting options provided in MINOS are as follows:

1. (crasH) A triangular basis matrix is extracted from the matrix A,
without regard to feasibility or optimelity. The number of superbasic
variables is set to zero.

2. (Initialization of nonlinears) The user specifies values for any number
of the nonlinear variables. These are made superbasic. CRASH is then
applied to the linear variables in A.

3,

(Restart) A previously-saved bit-map is loaded (specifying t.e state
of all variables), along with values for any superbasic variables.
This allows continuation of a previous run, or an advanced start on a
different but related problem (for example the bounds £ <x <u
may be changed).

Options 2 and 3 normally reduce run time considerably, but the

results reported here were obtained using the "cold start" option 1 unless

otherwise stated. A normal phase 1 simplex procedure was used to obbtain

an initial feasible solution.

35

]

|
L . s P - - - -

i > gguemes W

e

e e i et e oo,

5.1. Description of Test Problems

1. Colville No. 1. This is problem no. 1 in the Colville series of test

problems [9]. The objective is a cubic function of 5 variables.

2. Colville No. 7. This is a quartic function of 16 variables.

3, Chemlcal Equilibrium Problem. This particular example of the chemical

equilibrium problem was obtained from Himmelblau [34], problem 6. The

objective is of the form
= +
£ (x) E [? xjk(cjk zn(xjk/E X))

(Note. Slight corrections were made to the constraint data in [34, p. L01],
The group of coefficients {-1,-2,-3,-4} in column 13 was moved to

column 14, and a similar group in column 12 was moved to column 13.)

4, Weapon Assignment Problem. This problem appeared originally in Bracken

and McCormick's book on nonlinear progremming applications [5], and

more recently in Himmelblau (3L4], problem 23. The objective function is

20 5 X, 5
) = & w (1 sl
j=1 9 =)

with unknowns xi.

3 > 0. Ve have ignored the requirement that the xij

be integers.,

5. Structures Optimization (Q.P.). This is a series of quadratic

programming problems in structures design [58].

6. 0il Refinery Investment Model. This is typical of many linear programming

based oll refinevy models, but has the added feature that nonlinear
returns to scale of capital equipment costs are defined explicitly.
The particular problem cited in the results has 15 nonlinear variables

of this kind. 36

s

7.

Energy Submodel. A related research project on the development a

national. energy model [43] nhas given rise to a fairly complex submodel

of the electricity sector. The 24 nonlinear variables are mainly the

capacities of the different types of generating equipment.

Expanded Energy System Model.

An expanded model which covers all aspects
of energy production and distribution on a national level has been

developed [53]. This is a medium-scale linear program with 91 nonlinear

varigbles in the objective; again these are mainly nonlinear reburns

to scale of capital equipment costs of the form

91 Py
Y c.x with 0 < p, < 1 (around 0.6 to 0.7).
sy L i

Energy Model RS8. This is a 16-period energy model which was formulated

from the outset as a nonlinear programming problem (see Mamne [%81, [39]1).

The objective is of the form

16 a,
z 12 4+ 1linear terms
=3 %,

with one pair of nonlinear variables xi, yi for each time period

(those for the first two periods being known). This was the first large

problem aveilible to us and is of interest for several reasons. In
particular it provides a comparison with a (considerably larger) linear
approximation to the problem, in which each term ai/kiyi was discretized

over & two-dimensional grid. Further details are given in 85.2.2.

37

AN

10. Energy Model ETA (Manne [40)). This is & further development of the

previous model. The objective is the same as ia KRS8 with the addition

of Zl§ 22 for 16 variables z,.
i=l “i i

5.2. Results

The results summarized in Table 1 were obtained on a Burroughs
B6700 compuber using single-precision arithmetic (e ~ 10-11). The standerd
time ratios quoted are relative to tne processor time required for a standard
timing program given in Colville [9]. The standard time for unoptimized
B6700 Portran is 83.07 seconds.

The results in Table 2 onwards were obtained using double precision
arithmetic on an IBM 370/168 (e =~ 10-15). The standard time for this
machine with the IBM Fortran IV (H extended) compiler with full optimization

is 3.92 seconds. A fairly accurate line-searcl: was normally used (gﬁg = 0,01)

and the quantity [[ll/lzll wes reduced to 107 or 1ess at optimality.

38

o

SUOT38I9AT T 9SBUJ Sapuioul
*

39

oolog sydnoaing U0 Q- f2-1 swaTqoxd JO UOTANTOS 1 9TA4BE

g 9 €°ges 0 g1 gne 16 gen heg 8

16°0 onteq Y 2L £01 72 vs 002 4 L

sq'o | colg 14 o 03 ST 6235 ¢ wl 9

910 et 6% 12 12 gl 2oHT gl 61 og

gloto | 129 49 €T ¢1 25 90 28 T as

610°0 91 g 8 8 1t o3 He ot 8¢

gG°0 0¢°8h 8t 962 €CT 001 LKT 001 ct i

¢10°0 05°1 ¢ 9T S1 ot 08 91 g 2

8000 | ¢9°0 T 6 3 4 in 4 ot T

: oT9RI A.mommv soTsrgaadns Aw\vm\ ¢ C.m.v.ﬁ SUOTYBI29I{ SOTQBRTIBA |SqUAWITd | suumio) | smoy ‘ou
aWTY SWIT T, Jo °*ou Jo * IBSUTTUON 0X3ZUON WaTqoxd]

PIEDUBLS ULy suotyBnTBAL
B) T - T ¥ = e e et e
¥ Daan
et e

POZTIBIUTT ‘gSy = B6 %
"89T/0LE WAL U0 OT-6 ‘#-¢ SwdTLoxd JO UOTNIOS 2 STGBL
6°9 6°92 92 26 | osc - 6152 6lo | oec| oot
SR Sl 62 0Ls 9¢e L 6152 6.9 oz< Q0L
741 9'95 12 89.1 Q46 1H 6162 6.9 (0719 BOT
¢ 1e 9°¢Q i 2982 16¢T g2 AR 149 HIE o6
g o¢ S 61T 154 9¢Sh L2028 Qe 3312 1€9 1< a6
g ¢ ce o} 0 6¢S 0 031 HETT 9¢¢ 86
39°0 G2 g1 444 6¢1 00T PATas 00T gT f
7L°0 6°c 1S 26 ¢ot S 66 aq 91 ¢
0T98X {-300s) |[sotseaaedns} (X)F ¢(¥)3 | suoryeaeqI | SOTqRTIIRA| SIUSWSTS| SUWMTOD| smoy ‘ou
JdWLY JULY, Jo ‘ou S0 JBIUTTUON OXIZUON EWHnbam
PIepUB3S Teutd SUOTFBNTRAY
e e g T T et
e T . . WP, = .-

QOT WOXJ 3I83S3X ‘HI0ESH
BOT WOIJ I83SIX ‘TIOND

3a838 PIOO ‘ENOND =

PaTBOS ‘qXBYS PIOY ‘@™

saNaog
SaNnod
sannod

‘YId = 20T

‘ViE = 901

‘¥Id = 80T
= Om

qaB3s P00 ‘@Y = @b

40

5.2,1, The chemical equilibrium problem (problem 3)

This example provided useful experience in dealing with logarithmic

singularities in g(ﬁ). The objective consists of functions of the form

f = % X,8;

vhose gradient components are

If some x; is zero, the corresponding term in f may be correctly
programmed as (xigi) = 0. However, g; itself is then analytically minus
infinity (unless all xj = 0), and any particular numerical value given
to it in the gradient subroutine will result in a disconbinuity in g;

as X, moves (even slightly) away from zero. To avoid this difficulty
we ran the problem with a uniform lower bound € E 1.0"k on all
variables, for various values of k .n the range 4 to 10. (The problem
is infeasible with xj 2.10"5.) Results are summarized in Table 3,

where each run continued from the run before using starting option 3.

The minimal. change in f(g) is typical of dual geometric programs,

but values X = 10"6

and Xy = 10710 (say) have very different
physical interpretations and therefore warrant mere than the usual
degree of resolution,

In Table 4 we list the largest solution value X3 and the
8 smallest values in the order by which they became superbasic. The

most significant variation is in xhs. Most values have stabilized

by the time k reaches 10.
b1

‘d JO STBUOTBTD 92SSTTEWS Puw 4S3aJIBT 38Uz JO OIIBI ayz JO

axenbs 9yq ST Y¥.¥ uorgeurxoxdde urTssal pajosloxd oyl Jo Jsqumu UOTZTPUOD YL U0 PUNOQ ISMOT <..x.*

"

‘una sNOTASId 03 TeUOTITPDVy

ko

B TP

e
.Mw < X spunoq snoTaea yars ¢ warqoxd Jo uoranios ¢ 91qBE
2ls 091
0T X 8 le g 19118838 ¢ 0161~ He ot-9T
moa X q 6 ce TOTI8R2REL " OT6T- e 6-0T
0T X9 06 22 20t 0382g¢ * 0161~ ¢e m-oH
gt X T 88 2e 06124823¢ " 0161~ 61 -0T
wo.m X1 A g2 090cLLlegs OT6T- Lt m..oa
wo.ﬁ X g Gl 12 HEGTCSTQS “OT6T~ 7T ¢-OT
0T X9 o<t of 2¢667299¢ * OT6T~ ot :-oa
(gz8)> g ‘3 30 _SUOT9BIT ¥z soTsBqIadns RS
JO 29B'WT4SH suotTyenTsAy * Jo °‘oN punoq-o7]
*x *
] ~ = g T T e e S
- it -

-y punoq aqeIadoxdds aus
48 DTSBAUOU SBM £ X Uuesw S9TIUS Juelq
*¢ WweTqoXd XOJ SanTeA UOTINTOS Pagjodldag ‘i STABL
9-99476 T 0°0 | 9-o192°¢ | 9-930T° ¢ | 9-oK6L 2 | 9-3lgn ¢ 9-OTHi "G | 9-°9L%°C 8% “hi A0S
6-0295°2| 6-929%°6 | g-2860°2 | g-2TH2 2 | g-°80L ¢ | L-9¢CO T | L-326T 4 | 63294 "G | SHOGHT "ty or-°T
, 6-292y 2| 6-966T°¢ | g-9691°2 | g-oTqe 2 | §-9g0L ¢ | [-9¢CO T | L-926T 1 | 6-3¢6h "L | SHIOLHT "fh g-0T
Q-9T60°T | 8-920¢° € | g-21he 2 | §-980L°¢C | [-9¢C0 T | L-226T 'y | 8-9309 2 | {HOThT ity w-oH
L=9¢¢0°T | L-936Tq | L-3192 2| €HITHT "1y 40t
9-9T92°2 | 92¢LH™ "ith m-OH
G-alge 2| 90COET i -0t
' f-9622°2 | TT0960 4y :-S
4 '4 ﬁq . 4 4 I'4 =¢ [4 &
. L
12 oq 49 22 8 ge 6 Sh ¢r=C X
U - e e e s —- 5T E— e —_—

For interest, the last row of Table) shows the values obtained
by the program SUMI as reported by Himmelblau | 34). There s)pear to be
no accurate significant digits in the 8 smallest xj. (This mey be due
to differences in the constraint date, errors in satisfying the general
constraints, or simply different mechine precisious.)

Note that when x'j is small the diagonal elements of the
Hessian matrix ure ng/axj = O(l/kj). However these large elements
affect the reduced Hessian only when xj is basic or superbasic.

The safest strategy for these problems therefore appears to be the

following:

(a) Solve the problem with relatively large lower bounds, e.g. xj > 10-h.

A near-optimal objective value will be obtained quickly because
the reduced Hessian remains reasonably well-conditioned,

(b) Reduce the lower bounds, perhaps in stages, to O(el/é) or 0(62/3).
There will be essentially no further basis changes, and in roughly
descending order the small xj will leave their bounds one by one
to become superbasic,

Solution of problem 3 with x, > 107% folloved by X, 2 107 required

a total of 103 iterations and 452 function/gradient evaluations as

shovn in Table 2., Solution with Xy > 10710 directly required 188

itevations and 886 evaluations, primarily because the Hessian approxima-

tion became very ill-conditioned before a near-optimel point was reached,
As a netural precaubion against rounding error the linesearch
procedure delinsearch avoids evaluating f(g + ap) with values of

o« that are very close together. On the IBM 370/168 this prevented

10, although for this special cuse f(x) could

Lk

resolution below 10

P U S -
e e oy

o,

& v

%

easily be evaluated using higher precision arithmetic. The limiting

factor would then become the condition of the reduced Hessian.

5,2.2, Energy model RS8

Problem 9a in Table 2 refers to the original linearized version

of the energy model, in which each term of the form

f(x: y) = _%
Xy

was approximated over a 6 X 6 grid. It has twice as many columns and
matrix coefficients as the nonlinear version 9b. DNote that construction
of the small bub reasonebly fine grid required good prior estimates
of the optimal values for the 14 (x,y) pairs.

Run 9b is included to illustrate the rather poor performance

that could be encountered during early "de-bugging" of a nonlinear problem,

Some relevant facts follow.

(a) The bounds on nonlinear variables were conservative in the sense
that the lower bounds were far removed from the optimal solution

values and there were no upper bounds.

(b) No attempt was made to initialize the nonlinears at reasonable

values between their bounds.
(e) The y variables proved to be badly scaled.

To enlarge on the last point, the Hessian matrix of £(x,y) above is

45 |

L —————earr | el st

)

and it follows from the diagonal elements of the triangular factor that
G has a condition number k(G) > ye/éxa. Now the optimal values for
the x and y variables are all O0(1) and 0(100) respectively,
which might normally be considered well-scaled; however it means that
k(G) 1is at least 0(104), which in this case is unnecessarily large.

Replacing each y by a varisble y = y/100 gave a significant improve-

ment as shown hy run 9c in Table 2,

5.2.3. Energy model ETA

I+t is in runs 10a-10c that the real benefits from a nonlinear

optimizer become apparent. This is an example of the model-builder's

stendard mode of operation wherein numerous runs are made on a sequence
of closely related problems with the solution from one run providing

e starting point for the next., Here, problem 10a (the base case) was
solved “rom a cold start with certain varisbles fixed at zero; for

mn 10b the bounds were relaxed on 16 of these variables, and for run

10c & further 10 variables were freed. (In this particular sequence

the starting solutions for 1l0b and 10c were clearly feasible. This is
desirable but not essential.)

46

— ot e s
s

Compared to solving linearized approximations by standsrd linear
programming, some of the obvious advantapges are:
1. reduced problem size;
2, reduced volume of output (in the absence of a report writer);
5. ability to prepare data for several runs in advance, since there
are no grid variables to be moved or refined;

L, the solution obtained actually solves the correct problem,

5.2.4. Comparison of Quasi-Newton and Conjugate Gradients

The weapon assignment problem (no. 4) was chosen here as a
reasonably small but nontrivial example. About 60 changes in the
active constraint set occur during the iterations.

' The parameters being varied are

1 = linesearch accuracy tolerance (eta in §3);

Mg the tolerance for minimization within each subspace (see §3.k4).
Recall that small values of these parameters mean accurate minimization.
For Table 5 we set ng = 0.5 and compared the normasl Quasi-Newton
algorithm with each of the conjugate gradient algorithms for various
values of n. We find that Quasi-Newton is consistently superior and

is quite robust with respect to diminishing linesearch accuracy, in

contrast to the conjugate gradient (cg) algorithms. Unfortunately

there is no discernible trend that singles out one cg algorithm over

another.

47

~

o
- »
;

e

For Teble 6 the same runs were made with n_ = 0,01, (A more

accurate subspace minimization makes the sequence of constraint
changes more consistent between runs.) This smoothed out the iteration

and function-evaluation counts, but agein there is no evidence to favor

any particular cg algorithm.

To illustrate that the cg methods are not to be discarded

immediately, in Figure 1 we have plotted the value of f£(x) against
iteration number for the second row and first two columns of both

Tables 5 and 6. Thus a reasonably accurate linesearch was used for

all cases (n = 0.01). Curves 1 and 2 compare Quasi-Newton with

Fletcher-Reeves using g = 0.5, and curves 3 and 4 do the same with

= 0.0L.
Mg

The first two curves show smooth progress for both methods.
Note that slthough the cg method lags behind it has essentially

identified the final set of active constraints by the time the Quasi-

Newton method converges (iteration 139)., The step-function shape of

curves 3 and 4 illustrates the work that is wasted in converging to

minime within each subspezce. Otherwise these curves effectively pleace

e magnifying glass on the tail end of the other runs. The terminal

convergence of the cg method is clearly very slow and it is here that

better restart procedures such as in Powell (47 1 should prove to be

most valuable,

48

1 Quasi-Newton ||Fletcher~Reeves Polak-Ribiere Perry
0.001 | 123 375 226 8ho " 220 806 | 198 713
0.01 | 139 255 223 728 237 770 259 8hg
0.1 122 281 227 671 238 709 | 228 665
0.2 137 300 250 721 252 7h9 | 218 578
0.3 18 201 239 648 248 688 | 307 814
0.h4 156 289 282 Th2 296 853 | 309 762
0.5 153 2h2 275 695 394 1079 | 612 1411
0.9 207 256 69k 987 >999 >2748 | 818 968

Teble 5, Iterations and function + gradient evaluations
for the weapon assignment problem; ng = 0.5;
various linesearch tolerances 1,

1 Quasi-Newton |{|Fletcher~Reeves Polak-Ribiere Perry
0.00L | 220 615 | 493 1628 Lo 151k | Lho 1495
0.01 | 219 548 | ko8 1520 k71 1520 | 466 1476
0.1 209 461 560 1597 508 1461 | 530 1568
0.2 218 hhs ; 582 1589 531 1517 585 1626
0.3 229 1 || 612 1557 634 1752 | 6Ll 1625
0.4 262 W | 748 1831 69L 1821 | 752 1788
0.5 | 262 377 | 691 1633 818 1995 | &k 197k
0.9 288 345 F>999 >1855 >99y 1658 [>999 >1156

Table 6. Iterations and function + gradient evaluations

- o A 15 S e e . o bt

for the weapon assignment problem; 1 g = 0.01

(more amccurate minimization within each subspace),

49

Bl e

SweTqoad IBWUFTSS® uodnam U3 x0x UoTYBISYT

Eo.&mmmmc,.n.m mﬂm&:oowv I0°0= Lt

"SA SnTBA 2AT3020qq ‘T ®EnbTg

A e e

004 05¢ 00¢ 052 ooc 0ST 0/014 oS O
< T ¥ Y T Y T T T . 00gT-
uorgBIsgT
G O l""‘ll,’",
—“oolt~
009t~
005 T~
R
~, 2 A - -
(85695 °S¢iT- = (x)z Tewtadp) : m i 00T
‘ i
3 SeA9~ToYDgeTy = _ - @ 3 .
Aqo,.ﬂ.mw..ne..nnﬂs aoedsqns wpwﬂsoomv T0°0 = "4 :
HoMeN-TSeNY = @ t - oogt-
Y
i
[|
SSAsvy-xaqogeTy = _—— - @ 1
5'0 = % 1 I
UOHON-TSBNY = e, @ 1
Pl
il %
Vil(X) s
{
, T T T T T T e J.“\,.. J e i T T T w =
— i — Z

P e

€. Comparison with other algorilhms

Many of the ideas discussed here were either implicit in or
anticipated by the work of Wolfe [56], [57], Faure and Huard {16} and
McCormick [hl], [42]. However there have since been such significant
advances in implementation techniques for the numerical methods involved
that there is little point in meking detailed comparisons. Algorithmically,
one important difference is our emphasis on keeping the number of super-
basic variables as small as possible and changing that number by at
most 1 each iteration.* With the quasi-Newton approach, this strategy
retains maximum information about the projected Hessian. Even though
the proof of convergence [U41] for the varieble-reduction method depended
on regular resetting of the Hessian approximation, we never set R =1
except at the start of & run or in the rare event that the linesearch
fails to f£ind an improved point (in which case both R and the true
Hessian are normally very ill-condition). GZig-zagging is controlled
effectively by the tolerance ng and the logic described in § 3.L.
Rates of coavergence within each subspace follow from analeogous proofs
for unconstrained algorithms.

Since the present algorithm jpossesses superlinear convergence
properties and can hardle rather arbitrary sized problems, it should

be competitive with other algorithms designed specifically for quadratic

%
In the original reduced-gradient algorithm the set of superbasics was
effectively redefined each iteration as being the current set plus
those nonbssic veriables whoge reduced costs were of the correct sign.

51

R R SR -

programming (e.g. Wolfe [55], Beale [4], Cottle [11], Lemke [371]).
In particular a comparison with Beale's meth(1 would be relevent,
since it is reported that his method is efficient for prchblems which
have & small number of quadratic terms, On generel (unstruciured)
problems with m and n large it is doubtful that Wolfe's algorithm
or the linear complementarity methods would compare well tecause they
work with linear systems of order m + n rather then n.

A finel comment on problems which have a large sparse set of
general constraints Ax > Db in relatively few variables (thus A is
mXn with m>n). Ideally, methods designed specifically for this
case use an acbive-constraint strategy and avoid transforming the whole of
A eoch iteration (e.g. the version of the reduced-gradient algorithm
in Wolfe [57]), and the implementation of Buckley [8]). The improved
efficiency of these methods is analogous to the benefit that might be
reglized in the purely linear case if the dual simplex method were applied
to the dual linear program. Nevertheless, given the use of sparse-
matrix techniques, solution by the present (canonical form) method will
be quite efficient unless m >> n. 1In any event, with n moderate by
assumption, this i one class of problems where the number of superbasic
varigbles (and hence the dimension of the reduced hessian) will always

remain manageably small.,

52

o TP i i i e o = - Lo B eI T .- -

7. Conclusion

Our primery aim has been to combine the simplex algorithm with
quasi-Newton techniques in an efficient and relisble computer code
for solving large, linearly constraeined nonlinear programs. The full
potential of conjugete-gradient methods in this context remains to be
explored, but the necessary framework now exists; this framework will
also accommodate extension to problems with a moderate number of non-
linesar constraints (e.g. Jain, Lasdon and Saunders [35]). In the
meantime the code is applicable to an importent class of potentially
very large problems, viz. dusl geometric programs, and more generally
it should provide a new dimension of utility to an already substantial

body of large~scale linear programming models,

Acknowledgments

Work of this nature is necessarily a gathering together of
methods and ideas from many sources. Where possible we have acknowledged
the contribution of others within the text, and we wish to thank the
individuels concerned. We are also grateful Lo J. Abadie, S. J. Byrne,
A. Jain, L.S. Lasdon, A.S. Manne, J.A. Tomlin and M.H, Wright for
assistance in various ways. 1In particular our thanks go to P. E. Gill
and W. Murray for providing their linesearch procedure and for their

valuable comments on the draft.

3

N e A N b e o . _me % S eigmal — o

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

o cam ——— - BN "
N o i 1 o e o 1

REFERENCES

J. Abadie, "Application of the GRG elgorithm to optimal control
problems," in: J., Abadie, ed., Integer and nonlincar programming
(North Holland, Amsterdam, 1970), pp. 191-211,

R. H. Bartels, "A stebilization of the simplex method,” Num, lath.
16 (1971) bik-L3h,

R. H. Bartels and G. H. Golub, "The simplex method of linear progremming
using LU decomposition," Comm, ACM 12 (1969) 266~268.

E. M. L, Beale, "Numerical methods," in: J. Abadie, ed., Nonlinear
programming (North-Holland, Amsterdam, 1967) po. 132-205.

J. Bracken and G. P. McCormick, Selected applications of noniinear
programming (Wiley, New York, 1968).

R. P. Brent, "Reducing the retrieval time of scatter storage
techniques,” Comm. ACM 1€ (1973) 105-109,

C. G. 3royden, "Quasi-Newton methods,” in: W. Murray, ed., Numerical
methods for unconstrained optimization (Academic Press, London and
New York, 1972) pp. 87-106.

A. Buckley, "An alternate implementation of Goldfnrb's minimization
algorithm,” Math. Prog. 8 (1975) 207-231.

A. R, Colville, "A comparative study on nonlinear programming codes,"
IBM New York Scientific Center Report 320-2949 (1968).

A. R, Conn, "Linear programming via a non-differentisble penalty
function," SIAM J, Mumer. Ansl. (to appear).

R. W. Cottle, "The principal pivoting method of quadratic programminé,"
in: G.B. Dantzig and A.F, Veinott, Jr., eds., Mathematics of tle

decision sciences, Part 1 (American Mathematical Society, 1960)
pp. 1&“‘"162.

G. B. Dantzig, Linear programming and extensions (Princeton University
Press, New Jersey, 1963),

W. C. Davidon, "Varisble metric method for minimizetion," AEC Research
and Development Report ANL-5990 (1959).

I.8. Duff, "On algorithms for obtaining a maximum transversal,” to
appear (1976).

5k

-~

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

(2h]

[25]

(26]

[27]

I.8. Duff and J.K, Reid, "An implementation of Tarjan's algorithm
for the block triangularizetior of a matrix," AERE Report C.S.S.
29 (1976), Harwell, England.

P, Faure and P. Huard, "Resolution de programmes mathematiques a
fonction nonlineaire par la methode du gradient reduit," Revue
Francaige de Recherche Operationelle 36 (1965) 167-206.

R. Fletcher, "Minimizinggeneral functions subject to linear constraints,"
in; F. A, Lootsma, ed., Numerical methods for nonlinear optimization
(Academic Press, London and New York, 1972) pp. 279-296.

R. Fletcher and M, J, D. Powell, "A rapidly convergent descent method
for minimizstion," Computer J. 6 (1963) 163-168.

R. Fletcher and C. M. Reeves, "Function minimization by ccnjugate

gradients," Computer J, 7 (1964) 149-15k,

P. E. Gill, G. H, Golub, W. Murray and M. A. Saunders, "Methods for
modifying metrix factorizations,” Math., Comp. 28 (197h4) 505-535.

P, E. Gill and W. Murray, "Quasi-Newton methods for unconstrained
optimization," J. Inst. Maths. Applies. 9 (1972), 91-108,

P, E. Gill and W. Murray, "Quasi-Newton methods for linearly constrained
optimization," Report NAC 32 (1973), National Physical Laboratory,
‘feddington.

P. E. Gill and W. Murray, "Newton-type methods for unconstrained and
linearly constrained optimization,” Math. Prog. 7 (197%) 311-350.

P. E. Gill and W, Murray, "Safeguarded steplength algorithms for
optimization using descent methods,” Report NAC 37 (1974), National
Physical Laboratory, Teddington,

P, B, Gill and W. Murray, eds., Numerical methods for constrained
optimization (Academic Press, London, 197L).

P. E, Gill and W. Murray, "Linearly constrained optimization including
quadratic and linear progremming," in: Jacobs and Scriven, eds.,
Modern numerical analysis (Academic Press, London, 1976), Proc. of
conference on "State of the art of numerical analysis," University

of York (April 1976).

P. E. Gill, W. Murray and S. M. Picken, "The implementation of two
modified Newton algorithms for linearly constrained optimization,”
to appear,

55

- N ot

TR

(28]

(29]

(30]

(31]

[32]

[33]

[54]
[35]

(36]

[37]

[38]

(39]

(ko]

(]

P. E, Gill, W, Murray eand R, A, Pitfield, "The implementation of
two revised quasi-Newton elgorithms for unconstrained optimization,"
Report NAC 11 (1972), National Physical Laboratory, Teddington,

P. E, Gill, W. Murrey and M. A. Saunders, "Methods for computing and
modifying the LDV factors of a matrix," Math. Comp. 29 (1975) 1051-1077.

D. Goldfarb, "Extension of Davidon's variable metric method to
maximization under linear inequality and equality constraints,"
SIAM J. Appl. Math. 17 (1969) 739-76k.

D. Goldfarb, "On the Bartels-Golub decomposition for linear programming
bases," AERE Report C.S.S. 18 (1975), Harwell, England.

E. Hellerman and D, C. Rarick, "Reinversion with the preassigned
pivot procedure,” Math, Prog. 1 (1971) 195-216.

E. Hellerman and D, C. Rarick, "The partitioned preassigned pivot
procedure," in: D.J., Rose and R.A. Willoughby, eds., Sparse matrices
and their applications (Plenum Press, New York, 1972) 67-76.

D. M. Himmelblau, Applied nonlinear programming (McGraw-Hill, 1972). ,

A, Jain, L.3. Lasdon and M.A. Saunders," An in-core nonlinear
methematical programming system for large sparse nonlinear progrems," !

to be presented at ORSA/TIMS joint national meeting, Miami, Florida
(November, 1976).

J. E. Kalen, "Aspects of large-scale in-core linear 'programming,"”
Proceedings of ACM conference, Chicago (1971) 304-313,

C.E. Lemke, "Bimatrix equilibrium points and mathematical programming,"
Manasgement Sei. 11 (1965) 681-689.

A, S. Manne, "Waiting for the Breeder," The review of economic studies

symposium (1974) 47-65,

A. S. Menne, "U.S. options for a transition from oil and gas to
synthetic fuels," presented at the World Congress of the Econometric
Society, Toronto (August 1975).

A, 8. Manne, "ETA: a model for Energy Technology Assessment," Vorking
paper (1975), John Fitzgerald Kennedy School of Government,
Harvard University, Cambridge, Mass.,

G. P, McCormick, "The Varisble-Reduction Method for nonlinear programming,"
Management Sei. 17, 3 (1970) 1k6-160,

56

4
|
|

Ao oy

(k2]

(43]

[Lh]

(k5]

(46)

(7]

(48]

(k9]

[50]

[51]

(52]

(53]

(54

G. P. McCormick, "A second order method for the linearly constrained
nonlinear programming problem," in: J. B, Rosen, O, L. Mangasarian and

K. Ritter, eds., Nonlinear programming (Acedemic Press, New York, 1970)
pp. 207-243,

B. A. Murtagh and P. D. Lucas, "The modelling of energy production
and consumption in New Zealand," IBM (N.Z.) 5 (1975) 3-6.

B. A. Murtagh and R. W. H., Sargent, "A constrained minimizaticn

method with quadratic convergence," in: R, Fletcher, ed., Optimization
(Academic Press, New York, 1969) pp. 215-2L46,

A. Perry, "An improved conjugate gradient algorithm," Technical note
(March 1976), Dept. of Decision Sciences, Graduate School of
Manegement, Northwestern University, Evanston, Illinois.

E. Polek, Computational methods in optimization: a unified approach
(Academic Press, 1971).

M. J. D. Povell, "Restart procedures for the conjugate gradient method,"
AERE Report C.S.S. 24 (1975), Harwell, England.

D. C. Rarick, An improved pivot row selection procedure, implemented

in the mathematical programming system MPS III, Management Science
Systems, Rockville, Maryland.

R.W.H. Sargent, "Reduced-gradient and projection methods for nonlinear
programming,” in: P, E. Gill and W. Murray, eds., Numerical methods
for constrained optimization (Acedemic Press, London, 197h) pp. 1h9-17hL.

R. W. Sargent and B. A, Murtagh, "Projection methods for nonlinear
programming," Math. Prog. 4 (1973) 245-268.

M. A. Saunders, "Large-scale linear programming using the Cholesky
factorization," Report STAN-CS-72-252 (1972), Computer Science Depst.,
Stanford University, Stanford, Calif,

M. A, Saunders, "A fdst,stable implementation of the simplex method
using Bartels-Golub updating,” in: J, R. Bunch and D. J. Rose, eds.,

Sparse Matrix Computations (Academic Press, New York and London, 1976)
pp. 213-226,

B, R, Smith, P, D, Lucas and B, A, Murtegh, "The development of &
New Zealand energy model," N,Z2.0,R. Journal, to appear.

J. A, Tomlin, "On pricing and backward transformation in linear
progremming," Math. Prog, 6 (197k4) L2-k7.

51

~esmnn

[55] P. Wolfe, "The simplex method for quadratic programming," Econometrica

27 (1959) 382-398.

(56] P. Wolfe, "The Reduced Gradient Method," unpublished manuscript,
The RAND Corporation (June 1962),

[57] P, Wolfe, "Methods of nonlinear progremming," in: J. Abadie, ed.,
Nonlinear programming (North-Holland, Amsterdam, 1967) pp. 97-13L.

M. T, Wood, "The February 1975 state of BUILD," Ministry of Works
and Development report (February 1975), Wellington, New Zealand.

(58]

58

- —_ TR A

~.‘

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enfered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

‘1l REPORT NUMB 2. GOVT ACCESSION NOJ X AECIPIENT'S CATALOG NUMBER
SOL=76-15 —

4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD CQVERED
NONLINEAR PROGRAMMING FOR }‘@RGE, @ .
SPARSE SYSTEMS ' / Technical }(ep&t 1
7 T e L MING ORG, RT NUMSER
2o ALLLRORLA) 8. CONTRACT OR ORANT NUMBER(s)
\ B. A./Murtegh a@ M. A./Saunders Iy - ‘
/! / \ V) T

EpH#-3)-326

ssNT. PROJECT, TASK

Department of Operations Kesearc IT NUMBERS

S. PERFORMING ORGANIZATION NAMZ O ADDRESS KU'

11, CONTROLLING QFFICE NAME AND ADDRESS

Operations Research Program b Auvgwst 1976 5

Stanford University ’6
Stanford, CA 94305

Orfice of Naval Research 3. NUMBER GF PAGES T
Arlington, VA 22217 58
T4 HORITORING AGENCY NAME A ADORESS(I! diffetent from Controlling Office) | 18, SECURITY CLASS, (of thls tepori)
Unclassified
Tia, DECLAISIF
4 DECE AIGIFICATION/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of thle Reporl)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of the abatract enteced In Block 20, If dilferent fren Report)

10. SUPPLEMENTARY NOTES

18, KEY WORDS (Continus on reverse alde Il necesssry and ldentity by bleck numbder)
linear programming

nonlineer -programming

optimization

sparse matrix

20. ABSTRACT (Centinue on reverae ¢lde If ary and identity by bleeck mumber)

An algorithm for solving la.ge-scale nonlinear progrems with linear
constraints is presented. The method combines efficient sparse matrix tech-
niques as in the revised simplex method with steble varisble-metric methods
for handling the nonlinearities., A general-purpose production code (MINOS)
is described, along with computational experience on & wide variety of

problems, K

DD ‘:f:"” 1473 }omon OF 1 NOV 68 13 OBSOLETE

S/N 0102-014+ 6601 1 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Whon Data Bntered)

Hog 765

8

0

