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SUMMARY
A likelihood ratio statistic is proposed for testing goodness of
fit with grouped data which are subject to random right censoring. It
is shown that, under appropriate conditions, this statistic has an
asymptotic chi-square distribution which is non-central under contiguous
alternatives. Some examples are given including one on marijuana usage

which needs an extension of the test to the doubly censored case.

Some key words: Likelihood ratio; Goodness of fit test; Grouping; Random
censoring; Multinomial distribution; Kaplan-Meier product limit estimator3
Self-consistency; The EM method; Double censoring.

1. INTRODUCTION
In this paper we consider the problem of testing "goodness of fit"

when some of the data may be subject to random censoring. Single right

i e o S5 B B9 ap A e

censoring occurs commonly in response time data. Here each lifetime X
may be observed exactly or, alternatively, may be known only to exceed a
certain value. These situations occur, for instance in industrial life-
testing, medical follow-up and recidivism studies. Some examples are given

in Kaplan and Meier (1958). We shall concentrate on this case of single

censoring but there are obvious extensions of the methods we shall propose




to more complicated censoring patterns such as interval or double censoring

(see respectively Peto (1973), and Turnbull (1974, 1976)).

The question of whether the observations can be explained by a particular
mathematical model is an important problem. For instance, if an exponential
model can be accepted, then further analysis - e.g. estimation and testing -
is simplified considerably. In life-testing it becomes meaningful to employ
Standards like MIL STD 690B and MIL STD 781 B, which assume a constant
failure rate. If a goodness-of-fit test can lead the investigator to
accept a certain parametric mathematical or physical model, then this can
enable him to glean some information about the tail of the response time
distribution, which is often important in reliability studies. Non-parametric
methods usually reveal little about the tail behaviour.

We will consider the following random censorship model. There are
N pairs of random variables (Xl’Yl)’ (X2,Y2)...(XN,YN). Usually these
represent response times. The observed data, however, consist only of

min(X,,Y,) and I
1’73

Y.} for 1 < i < N. (Here IA denotes the indicator
i

{X. <
1 £

. =0 .
of the set A.) If I {Xi E.Yi} ,» We say that Xl has been censored
by Yi’ otherwise Xi has been observed exactly. Assume that xl,x2,...,xN

are i.i.d. with survivor function F(x) = P(X > x), and similarly

Yl,YQ,...,Y are iid with survivor function G(y) = P(Y > y). Assume also

N

that X, and Y. are independent (1 < i < N); without this assumption
there are identifiability problems (Tsiatis, 1975). Both F and G are
unknown. Here G 1is a "nuisance parameter' and the goal is to make

inferences about F, specifically to test some null hypothesis HO: F = FO.

HO may be simple or composite, i.e. FO may be completely specified or

may depend on some parameters which are left unspecified.
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Goodness of fit analysis is substantially complicated by the presence

of censoring, and most researchers have only considered the singly censored
case. Among graphical methods, Nelson (1972) describes methods for
plotting the cumulative hazard function, while Barlow and Campo (1975)
have proposed 'total time on test" plots. In the analysis of heart
transplant survival data Turnbull, Brown and Hu (1974) also used graphical
methods to compare the best fitting exponential and Pareto model curves
with the product-limit estimate curve as defined by Kaplan and Meier
(1958). Lamborn (1969) described a Pearson type statistic and, extending
the methods of Roy (1956) and Watson (1958), she established that this is
asymptotically distributed as a linear combination of independent xi
random variables. The test is difficult to use in practice because this
asymptotic distribution is different for each problem. Greenberg, Bayard
and Byar (1974) also used a Pearson x2 statistic but obviated the
difficulties, because for each censored obervation, it was known into which
class interval it fell. Barr and Davidson (1973) described a Kolmogorov-
Smirnov (KS) test for data which, if censored, are censored at the same
fixed point (i.e. Y, = Y2 = L., = YN). This situation is common in
life-testing but not in medical follow-up or recidivism data. The
asymptotic distribution of the Barr-Davidson statistic has been obtained and
tabulated by Koziol and Byar (1975). Cramer-von Mises (CM) type statistics
have been investigated by Pettit and Stephens (1976) for the case with all
Y, equal (they also consider double censoring); and by Koziol and Green

B under H_. for some B > 0. 1In

0 0

practice this assumption must be verified first and B estimated. A

(1975) for the particular model G = F

limitation of these KS and CM type tests is that H, must be simple,
i.e. Fo completely specified. Finally, Barlow and Proschan (1969) have

described a test for the exponential model which is unbiased against IFRA




alternatives (see also Harris (1976)). Stollmack and Harris (1974) have

applied this last test to the analysis of recidivism data.

In this paper we present a likelihood ratio statistic for testing
goodness of fit of hypothesis HO, which may be simple or composite, and
is applicable when the ranges of the random variables X,Y are discrete
or when the observations are grouped into discrete intervals. Using the
general results of Weiss (1975) concerning the likelihood ratio in non-
standard cases, the statistic is shown to have an asymptotic x2 distribution.

Specifically we assume that X is discrete with finite range
TSty < e <t which occurs, for instance in response time data
if there wecre a natural discrete time scale, e.g. see Klotz (1976).
Alternatively we can assume that the data are grouped and the lifetimes re-
corded only as belonging to one of the m intervals (to,tl], (tl,t2],...,
(tm_l,tm], where usually t. = 0 and often tm = + o, Further we assume

0

that the range of Y is {tl+,t +,...,tm+}, i.e. any right censored

2
observation (or "losses") at ti occur immediately after any observed
deaths. This setup is often appropriate in studies with periodic inspection
(or "snapshots") -~ see the discussion in Section 1.4 of Kaplan and Meier
(1958). Essentially the two problems (X discrete, or X continucus with
grouped observations) are the same with slight mcdifications, but it is

easier to think of X taking on discrete values and we shall do this in

our further discussion. In Section 3 we will give examples of both situations.
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2. THE LIKELIHOOD RATIO TEST

ek 1 on e

For 1 <i<m, define Fi = F(ti) = P(X > ti)T;x s; = F%-l - Fi, 3
G, = G(t,#) = P(Y > t;4), u, =6, , -G, with igl s = igl u, =1,

Fm = Gm = 0. Following the notation of Kaplan and Meier (1958), we define

Al e

frequencies 5i,xi (1 <i<m) where there are Gi pairs with X = t,

TIPS

and Y > ti (exact observations at ti) and Ai observations with

N

X >t and Y = t.+ (losses at ti). Note that since F = 0, we must
have Am = 0. (The assumption Fm = 0 is no loss of generality; if

Fm > 0, Am > 0 we can add an extra "bin" or time point, t say.) Note

m+l

also that (8, + A,) = N.
i i

" ~13

i=1

Define g = (sl,...,sm_l), R = (ul,...,um_l). Then the likelihood

L is given by

6m m-1 Gi Ai
L(g,p) = [u_ s ] lr_ll (s, (2 - uy ~oo-wy 17 [u, A -5y - - s;)]
(1)
where Sh =1 - slm:l... - Sm-l and um =1 - ul S eeeu g Define
@=1{g: s; 20, ) s, < 1} S:Rm—l. Kaplan and Meier (1958) show that
i=1

L is maximised in Q by S8 (Sl""’sm—l)’ where S5 = Fi—l - Fi and

. - m -

F, = F, 01 - {611.2. (6, + 2} QA <ism) with Fj= 1. (2)

J=1

Suppose we wish to test the hypothesis
tos, = Q, f < i <m-1l
H S5 Ql(Q) or 1<i<m

a
for some unspecified’ * = (¢l,...,¢a) € R where 1 <a<m-2 and the

. m-1
{q.} are given functions from R® into R .
i
We assume that s; = Qi(Q) for 1 <i<a defines a 1-1

relation between % and (31,52,...,sa). We can cater for the case of

HO simple i.e. wher the s, are completely specified by formally allowing




¢
]

i
6
' the case a = 0. For example if we wish to test that X 1is geometrically
' distributed we have Q,(¢) = $(1 —(p)i'l for 1 <i<m-1. Here a =1 if
¢ is unspecified, while a = 0 if ¢ 1is specified by Ho.
' The hypothesis H0 implies that ) belongs to some subspace, QO
l say, of the parameter space . Let % denote the MLE of $ under HO .‘ 1
and thus % = Q(%) will maximise the likelihood (1) under the restriction ; ;
I g€ QO. The problem of calculating % and % can be quite difficult * .
computationally (except of course when HO is simple, a = 0) and there are
a many papers in the literature concerned with estimating parameters with
, grouped and censored data in special cases e.g. Weibull or Poisson; ;
I perhaps the best general references are to Blight (1970) and to Dempster, :
;' Laird and Rubin (1976). Once we have obtained %, we can form the
- generalised likelihood ratio:
i x
T A
L. R ;azn Lz L(gp) 5 A
. 4" N
v ] E ii N mﬁl l-fl—...—fi
: i=1 s i=1 l—sl—...—sl ;
l' = Ay (%,é), say. (3) ‘

~ - ~

In (3), we have defined s, = 17 e el

[
'

(2]
)
t

(7]

and similarly gm. Note

>

that I\N does not depend on 1.

Further, define

o=
»
i

LNRELPTEEY ’¢m—l by the relations

i Wb

Si = ¢i + Qi(¢l’¢29"',¢a)

(4)

- K

for i = a+l,...,m-1.

.l e =3 M
o
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We have now reparametrized: our new parameters are LT REREL SR

¢l’¢2""’¢m—l' Of these ul,uQ,...,um_l,¢l,...,¢a are nuisance parameters

and the hypothesis HO which we wish to test becomes

P

0 . . . 0 0 0
* Let 2 denote a particular configuration (ul,...,um_l,¢l,...,

¢2, 0,...0). We assume that throughout a neighborhood of (¢i,...,¢g),

all third derivatives of Qi(¢l,...,¢a) are bounded in absolute value, and

that throughout a neighborhood of QO, the 2m quantities Upseeesl 98 50008

are all bounded away from zero. Here and in Appendix, when we speak of a

point Q = (ul""’um-l?¢l""’¢m—l)’ it is understood that si is given

by Qi(¢l...,¢a) for i =1,...,a; by ¢i + Qi (% .,¢a) for i=a+1,...,

8
L
0

1-(s + ... +s ). Then when % is the true parameter

m-1; and s el

tends stochastically to a limit, VGB (20) say,

vector, =~

2
and - %. B¢l§%L tends stochastically to a limit, WQB(QO) say, for l<o<m-1,
a B 0

9
A

1 < B <m-1. These define (m-1)x(m-1) matrices X(Qo) and H(QO). The .

Ty

details of this and expressions for the {V ,} and {W _} are given in

aB af

the Appendix. We are now ready to state the following: f{

§
;
£

THEOREM: Suppose X(QO) and E(eo) are both non-singular, and
v

SRS b o e i

consider the contiguous alternative where the true parameter values are

0 0 0 0 . . s .
(ul,...,um_l,¢l,...,¢a,ca+l//ﬁ;...,cm_l//ﬁ). Then the asymptotic distribution

2

m-a-1 (52). Here the non-centrality parameter 62 is

of -2log AN is X

-1 0 '
(c . sC ) % (2 )(c .,cm_l)

a+l1’"’ m-1 a+l’"’

where %(20) denotes the (ma-1)x(m-a-1) matrix derived by deleting the

i ot Ba i s e e i
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The proof is given in the Appendix. !
REMARK 1. The asymptotic distribution of -2log AN under HO is . j
Xi—a—l’ which is as might be expected. Thus knowledge of V,W, or Z is -

not required to carry out a test of significance. An asymptotically level
a test of HO will reject when -2log AN exceeds the (1 - a) quantile

of the Xi-a—l distribution.
REMARK 2. Generally, the matrices X(QO), E(go) are non-singular as
long as it is known that none of the true {Si} or {ui} (1 <i<m) are
zero. However if it is known that some of these parameters must be zero,
then the analysis can go through with the appropriate reduction in
dimensionality. For instance, as in the second example of the next section,
the experiment may be designed so that all but a certain number, b say,
of the ug (1 < i <m) are constrained to be zero. These zero u, are
jue* omitted from 20 and L; Yy 1isa (b-1)x(b-1) matrix, and otherwise

the statement of the theorem is unchanged.

REMARK 3. The contiguous or "challenging" alternatives in the theorem
are commonly used in large sample theory in order to keep Type I and Type II
error probabilities bounded away from nought and one. For finite sample sizes,
we should modify our test as in Weiss (1975) to guard against non-contiguous
alternatives. We do this by also rejecting HO if, for any i (atl < i < m-1)

. )
- &% .
|si 0;(x )] >k« N

where k > 0, 2/3 <A < 1 and (when a # 0) t* ¢ R® satisfies
K

s; = Qi(x*) (1 <i<a). This modification will not affect the asymptotic




properties of the test under HO or contiguous alternatives.

3. EXAMPLES
Example 1. Suppose we consider the geometric example mentioned

earlier. Here

HO: s; = «1 - ¢)i-l (1 <i<ml) Sp = (1 - ¢)m-l,

for some O < ¢ < 1 wunspecified. Such an HO would be applicable to test-

ing a constant hazard rate with tl,tQ,...,t all equally spaced.

m~1’

(Gm represents those items still alive at t l.)

Under H,, the likelihood is proportional to

. 6. m-1 i\,
o1 - 11 1 o(1-¢) *
1 i=1

L‘-':(¢) =

=9

i

Setting the derivative of L¥*(¢) equal to zero, we see that the maximising
m m
\
value of ¢ is é= ] 6,/ ]
. i .
i=1 j=1

j(xj + Gj)]. Then we can obtain the

~

likelihood ratio AN by substituting in (3) for $ by (2) and for

s, by s - $)1 (1 <i<ml1). Here a=1, and so the cutoff point

will be based on the percentage points of the x2k—2 distribution. (Of

v
course, if H also specified the value of ¢ we would take ¢ as that

0

value and then a = 0).

Example 2. Consider the following grouped data taken from Table

465 of Kaplan and Meier (1958).
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TABLE 1.
i 1 2 3 4 S 6 7 8
ti 1 1.7 2 3 3.6 4 5 T
61 3 5 Y 10 9 6 15 16
Ai 0 20 0 0 12 0 0 0

Take to =0, T>5., Thus m=8 and N = 100, Here we could say that

losses could only occur at times 1.7 and 3.6 because of the design of the
experiment. (Actually, the 68 deaths at T were really reported as losses
at 5t. Clearly it makes no difference how we apportion the 16 losses at

time 5+ between ¢ and o) By Remark 3 however, the fact that only

8 7
U, and ug can be non-zero does not affect the test. In Table 1,
Si is interpreted as the frequency of observed response times occurring

: 1
in (ti_l,tiJ.
Consider the hypothesis HO that X 1is exponentially distributed.

Thus
H.: s. = e - e (1 <i i_m—l).

Under HO, the likelihood is proportional to

AT T A T S A

where we have used the convention tm = 4+ and thm = 0. Setting

§£§%£:-= 0, we have that $ satisfies

—ti exp(—¢ti_l) +t, exp(—¢ti)

8 exp (—¢ti_l) - exp(-¢t£Y

o
Solving numerically we obtain $ = .1638 and using s, = exp(-&ti_l)—expégti)

R ’ MR s, RS S i i

RO AU SV
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!
n
I
1
1

11

we have % = (.151, .092, .036, .109, .057, .035, .078, .441). From
Kaplan and Meier (p. 465) we have
$ = (0.3, .05, .05, .13, .11, .11, .25) and s = .27,

Tvaiuating  -2log AN(%’E) = 46.1, and comparing this with the tables of
X., we see that HO is rejected at any reasonable significance level.

With a little more numerical work, one could, in a similar fashion,
investigate the hypothesis that X was Weibull or Pareto distributed, for
< xample. In the Weibull case s; = exp[-(nti_l)s] - exp[—(nti)e] where

H

n» while under the Pareto model 5. = (n/(n + ti_l)]e—[(n/(n + tj)]8

where $ = (n,8) 1is unspecified. In both cases a = 2, and the percentage

[Ga2 ]

points of x. dre applicable.
Example 3. (Doubly censored data). The techniques described in this

paper can be extended analogously to handle doubly censored data. Here

in iddition the fre-ucncies {6§.} and {Xi}, there are frequencies {ui},
i

Wloepe by (1 <1 <m) represents the number of observations left censored
A (For a more detailed discussion of double censoring see Turnbull
{1474).) A= an example consider Table 2 below which summarizes the answers
Chr oaultrenda hilph school students to the question "When did you first use
oD enat" (This was part of a large study on the Stanford-I'alo Alto Peer

cunseling Pregram, which has been reported by Hamburg, Kraemer and Jahnke
(1475).) Any direct answer such as "12,14,15,..." gives rise to an
~Xuct opbservation. If the student answered: "I have never used it" then
this gives rise to an observation which is censored on the right at his/her
rresent age.  The final possibility was somecne who answered "I have used
but cannot recall just when the first time was.'" This gives rise to a
et cencsored observation where ape of {irst use is known only to be

cricr to the student's current age.

of
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TABLL 2 12
i b 2 3 b 5 6 7 8 9 10 3
i ti 10 11 12 13 1% 15 16 17 18 > 18 |
ﬁ 61 4 12 19 24 20 13 3 1 O n
Ai 0 0 2 15 24 18 14 b 0 0
; vy 0 0 0 1 2 3 2 3 1 0
i Now many of the frequencies in the table are zero or very small
? +~i so the asymptotic X2 distribution is unlikely to be a meaningful
1 approximation to the distribution of the likelihood ratio. Nevertheless
we shall proceed in order to show how the calculations are carried out ‘é

in the doubly censcred case.

Let us consider the problem of testing goodness of fit of a negative
binomial distribution: (This hypothesis was suggested to us by one of the
investigators and is based on a model in which opportunities to start
taking drugs occur at random times and that different children have

varying susceptibilities. This theory leads to mixture of Poissons of

which the negative binomial is a particular example.) Thus

X
[%4]
1}

8 i-1 IR\ i-2
o 5; 7 (&) wD 1 0 Gzico ;

10

72}
i
—
{
~10
“
P

(The empty product is defined to be unity.)

Using the method of self-consistency (Turnbull 1974) or equivalently

n, .

4"
the EM algorithm (Dempster et al., 1976) one obtains n = 6.75, B = 0.979

V)

%

and o

(.010, .033, .064, .092, .111, .118, .1l4, .103, .088, .267)

(.023, .070, .112, .143, .136, .l24, .047, .027, .00l, .307) v

S
4"
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Noting that there is now an extra factor

", LY\ TIN
m S, + ... +s.\1
1 i
n A -
i=1 S, + ... + 8
1

in the e=xpression (3) for A due to the left censored observations we

N
calculate the value of —2logAN to be 32.5.
Comparing this with the percentage points of xs » wWe see that the

negative binomial does not fit the observed data, (that is assuming that

the asymptotic approximation is valid, which assumption we make only for

pedagogic reasons).
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APPENDIX

This appendix is devoted to a proof of the Theorem. The proof
consists of a verification that the assumptions of Weiss (1975) hold in the

present case.

Fix a value A in the open interval (O, é), and define JN(QO) as
( 3
0 1/6 -A
log -ugl < 92270 5 g e
N
1/6-4
Y N -
{ (ul""’um~l’¢l""’¢m—l) |¢i‘¢i‘ i /ﬁ- » 1= 1...,a ?
1/6 -A
logl e we0 o |
N
N )

It is easily verified that

1 32
- ﬁ- u a¢ lOgL(g) =0 for (1,8 = l,. ,m—l,
a "B
2 m 8 m-1 [X.
1 3 i i
~ = ———— logL(8) = T .(8) + -=| D .(8) for a.B = 1,..
N &1a8u8 g 2 igl N a,B,i "~ izl N G,B,l(Q
1 a2 ? ) mil Ai o
- T arag logL(®) = - | T* L(8) + D .(8) for a,B = 1,...
N 8¢33¢B v 151 N a,8,1 QI i1 N a,B,1 N

o

3
3
ra,B,i(Q)’ Da,B,i(Q) do not depend on N,

where Fa,B,i(g)' Da,B,i(Q)

and are rational functions of R’Q’ and first and second derivatives of
{Qi(¢l...,¢a)}, all the denominators being first and second powers of

sumg of one or more of (u RS ,...,sm). Thus these denominators

1’

1
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are bounded away from zero if the derivatives are taken for g's in
0
JN(Q ).

. 0
Define vae(g ) as

m-1

0 0 0 o. ™1 o 0 0 0
Z [s;(1 -upeecus DIT -, (80 + § [9;(1 = 5100503 D o ((87)
=1 i=1l
0 0 0
* (um Sm) a,B,m(Q )
0
and waB(Q ) as
m-1 m-1
0 0 0 * 0 0 0 0 * 0
LT -upeemugy DIT 5080+ ] [y (- speems )T D, o (90
1=1 i=1l
0 * 0
+ (g sp )T g (8D)

for o, 8 = 1,...,m-1.

Suppose the true parameter point depends on N, and is Q*(N) in
58" . Define o (N) as l—sNi - s, (g a0 [ -y Gom-..u, g a1,
for iz lomnl 0,00 as - um<g'*<m)sm<g*<n)>l, o, as
J 7%-- ui(g*(N)) [ - sl(gh(N))-...-si(izN))] |  for i=1,...,m-1.

By the properties of the multinomial distribution, VN ci(N), /N oi(N)

are all finite with probability one. It follows that we have

S, 1/6 -A
G -
e N A G (1= 1,...,m1)
/N

s - Nlj6-A

m_ = — >
¥ ° Un Spt 0, (N) /N

A . 1/6 -4

i_ .0 0 0 _% N .
N ui(l - Sl -...-si) + Ui(N) — (i=1,...,m-1)

/N

L Mg K P8 b el

i o il o DA - Ay e

B e L R L
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- = 0 -3 =, 0 . 0
where Pe?u){l oi(N)[ <o(g) 0 |c;(N)I <o(g); all i} > 1~ 9 (875

where 5(20) is finite, and lim qN(go) = 0. Also, by our assumptions
N

about Qi(¢l,...,¢a), we have, for any Q(N) in JN(QO), that

N 1/6 - A
- 0 - 0
lra,s’i<g(N)) - ra,B,i(g o< a(®?) = :
y 18- A :
- 0 -, 0 ”
lDa,B,i(Q’(N)) - Da,&i(g )| < q('?, ) -—-"-fl_"_\;_'- .
. 1/6 - A
* - LS 0 -, 0
ITG’B’i(Q(N)) -T a,s,i(Q ) < alg) =
N 1/6 - A
% - % 0 -, 0
IDG’B,i(g(N)) - DQ,B,i(g )< aleh) =

for all a,8,i, where a(go) is finite.
The verification that the assumptions of Weiss (1975) holds is now
immediate: the matrix g(go) in Weiss (1975) is the 2(m-1) by 2(m-1)

matrix written in partitioned form as

e R
2 A

The continuity of R(QO) follows from our assumptions about {Qi(¢l....,¢a)},

and the positive definiteness from the nonsingularity of X(Qo) and g(go).

Ki(N) and Mi(N) of Weiss (1975) are in our present case /N, N /6 - A

respectively.
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