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SUMMARY

A likelihood ratio statistic is proposed for testing goodness of

fit with grouped data which are subject to random right censoring. It

is shown that, under appropriate conditions, this statistic has an

asymptotic chi-square distribution which is non-central under contiguous

alternatives. Some examples are given including one on marijuana usage

which needs an extension of the test to the doubly censored case.

Some key words: Likelihood ratio; Goodness of fit test; Grouping; Random

censoring; Multinomial distribution; Kaplan-Meier product limit estimator;
Self-consistency; The EM method; Double censoring.

1. INTRODUCTION

In this paper we consider the problem of testing "goodness of fit"

when some of the data may be subject to random censoring. Single right

U censoring occurs commonly in response time data. Here each lifetime X

may be observed exactly or, alternatively, may be known only to exceed a

certain value. These situations occur, for instance in industrial life-

testing, medical follow-up and recidivism studies. Some examples are given

in Kaplan and Meier (1958). We shall concentrate on this case of single

censoring but there are obvious extensions of the methods we shall propose
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to more complicated censoring patterns such as interval or double censoring

(see respectively Peto (1973), and Turnbull (1974, 1976)).

The question of whether the observations can be explained by a particular

I mathematical model is an important problem. For instance, if an exponential

model can be accepted, then further analysis - e.g. estimation and testing 

is simplified considerably. In life-testing it becomes meaningful to employ

Standards like MIL STD 690B and MIL STD 781 B, which assume a constant

failure rate. If a goodness-of-fit test can lead the investigator to

3 accept a certain parametric mathematical or physical model, then this can

enable him to glean some information about the tail of the response time

distribution, which is often important in reliability studies. Non-parametric 4

3 methods usually reveal little about the tail behaviour.

We will consider the following random censorship model. There are

N pairs of random variables (XI,Y ), (X2,Y 2)... (X N,Y N). Usually these

represent response times. The observed data, however, consist only of

min(X,Y i) and I{X" < y.1 for 1 < i < N. (Here IA denotes the indicator
1 - 1

of the set A.) If I -Xi - y 0, we say that X. has been censored

by Y., otherwise X. has been observed exactly. Assume that XI,X 2,... ,XN

3 are i.i.d. with survivor function F(x) = P(X > x), and similarly

Y'Y2' .... YN are iid with survivor function G(y) = P(Y > y). Assume also

I that Xi and Yi are independent (I < i < N); without this assumption

3 there are identifiability problems (Tsiatis, 1975). Both F and G are

unknown. Here G is a "nuisance parameter" and the goal is to make

3 inferences about F, specifically to test some null hypothesis H0 : F = F0.

H0 may be simple or composite, i.e. F0 may be completely specified or

may depend on some parameters which are left unspecified.

I
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Goodness of fit analysis is substantially complicated by the presence

of censoring, and most researchers have only considered the singly censored

case. Among graphical methods, Nelson (1972) describes methods for

plotting the cumulative hazard function, while Barlow and Campo (1975)

have proposed "total time on test" plots. In the analysis of heart

transplant survival data Turnbull, Brown and Hu (1974) also used graphical

methods to compare the best fitting exponential and Pareto model curves

with the product-limit estimate curve as defined by Kaplan and Meier

(1958). Lamborn (1969) described a Pearson type statistic and, extending

the methods of Roy (1956) and Watson (1958), she established that this is

asymptotically distributed as a linear combination of independent X 1

3 random variables. The test is difficult to use in practice because this

asymptotic distribution is different for each problem. Greenberg, Bayard

and Byar (1974) also used a Pearson x 2  statistic but obviated the

difficulties, because for each censored obervation, it was known into which

class interval it fell. Barr and Davidson (1973) described a Kolmogorov-

Smirnov (KS) test for data which, if censored, are censored at the same

fixed point (i.e. Y1 = Y ... = Y ). This situation is common in
2 .. =N

life-testing but not in medical follow-up or recidivism data. The

asymptotic distribution of the Barr-Davidson statistic has been obtained and

tabulated by Koziol and Byar (1975). Cramer-von Mises (CM) type statistics

have been investigated by Pettit and Stephens (1976) for the case with all

Y. equal (they also consider double censoring); and by Koziol and Green
1

(1975) for the particular model G = under for some > 0. In

practice this assumption must be verified first and 8 estimated. A

limitation of these KS and CM type tests is that H must be simple,

i.e. F0 completely specified. Finally, Barlow and Proschan (1969) have

described a test for the exponential model which is unbiased against IFRA



alternatives (see also Harris (1976)). Stollmack and Harris (1974) have

applied this last test to the analysis of recidivism data.

In this paper we present a likelihood ratio statistic for testing

goodness of fit of hypothesis H0, which may be simple or composite, and

is applicable when the ranges of the random variables X,Y are discrete

or when the observations are grouped into discrete intervals. Using the

general results of Weiss (1975) concerning the likelihood ratio in non-

2
standard cases, the statistic is shown to have an asymptotic x distribution.

I Specifically we assume that X is discrete with finite range

t < t < ... < t , which occurs, for instance in response time data1 < 2 < . m ,

if there wepe a natural discrete time scale, e.g. see Klotz (1976).

Alternatively we can assume that the data are grouped and the lifetimes re-

corded only as belonging to one of the m intervals (t0,t1 3, (tit 2],...,

I m-l,t m], where usually to = 0 and often t = + -. Further we assume

3 that the range of Y is {tl+,t2 +,...,t +), i.e. any right censored

observation (or "losses") at t. occur immediately after any observed

3 deaths. This setup is often appropriate in studies with periodic inspection

(or "snapshots") - see the discussion in Section 1.4 of Kaplan and Meier

U (1958). Essentially the two problems (X discrete, or X continuous with

grouped observations) are the same with slight mcdifications, but it is

easier to think of X taking on discrete values and we shall do this in

3 our further discussion. In Section 3 we will give examples of both situations.

!.

U
I
U
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2. THE LIKELIHOOD RATIO TEST

For 1 < i < m, define F. F(t.) = P(X > ti), si 
= Fi - Fi,I - -- m m

G. G(t.+) P(Y > t.), u G Gi, with s. = u. = ,

O. Following the notation of Kaplan and Meier (1958), we define

frequencies 6.,X ( < i < m) where there are 6. pairs with X = t. ]

and Y > t. (exact observations at t.) and X. observations with

iX > t. and Y = t.+ (losses at t.) Note that since F = 0, we must =

have A m = 0. (The assumption F = 0 is no loss of generality; if
m~.: (lse at ) 1 oe.tsne F 0 ems

F m> O, X m> 0 we can add an extra "bin" or time point, tm+1  say.) NoteIm m m

also that Y (6. + X.) = N.

Define ( = i' (,.. l), = (Ul,...,U 9 . Then the likelihood

L is given by

6 m-1 6. X.
U(s,) U s m [s.(l - u. -... _- Ui )] [u.(l - S - ... -

L( m 1~

1 1n umilg (1)

where s s - - s and u 1 - . Definewhr1m~ - - m 1 - ' m-l":
m-l= .m-1.l

-

L is maximised in 0 by s I 'sm.'s =- (), where si = i-1 Fi and

m3F =F i [- {6. (6. + X (i < i < m) with F0 = 1. (2)

Suppose we wish to test the hypothesis

H s. Q( ) for 1 < i < m-1

for some unspecified a 'a )  e a where 1 < a < m-2 and the

{Q.i are given functions from Ra  into Rm -l .

We assume that si = Qi(t) for 1 < i < a defines a 1-1

relation between t and (S1,S2 ,.Sa). We can cater for the case of

H0 simple i.e. wher the si are completely specified by formally allowing
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the case a = 0. For example if we wish to test that X is geometrically

distributed we have Q = 4(I W¢) for 1 < i < m-l. Here a = 1 if

* is unspecified, while a = 0 if * is specified by H0.

The hypothesis H0 implies that belongs to some subspace, S0

say, of the parameter space 0. Let denote the MLE of t under H0

and thus = () will maximise the likelihood (1) under the restriction

E Q" The problem of calculating and s can be quite difficult

computationally (except of course when H0  is simple, a = 0) and there are

many papers in the literature concerned with estimating parameters with

grouped and censored data in special cases e.g. Weibull or Poisson;

perhaps the best general references are to Blight (1970) and to Dempster,

Laird and Rubin (1976). Once we have obtained s, we can form the

generalised likelihood ratio:

max

max L(C 0) L(Q, )

L2 A

N ( ) say. (3):

In (3), we have defined sm  1 - ... - Sm_ and similarly s • ot
mam

that AN does not depend on ii"

SFurther, define a+l,¢a+2,...,m_1 by the relations

I s. = €i~~* + Qi(i€ ' ' ' aSM (4)

3 for i a+l,.. . ,m-l.

A a. 3
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We have now reparametrized: our new parameters are ulu 2,... ,Uml,

0190 29 .' 'om-l " Of these ulu 2 9'.. Um-l9.9"' 'a are nuisance parameters

and the hypothesis H0 which we wish to test becomes

I
H O: atl :a+2 M-1 0.

00 0 0
Let 8 denote a particular configuration (Ul,...,U0_l,0l ,...,

, 0,...0). We assume that throughout a neighborhood of (00, .... 0),
a 1 a

all derivatives of Qi(Ol,... ,0a) are bounded in absolute value, and
h 0

that throughout a neighborhood of 0 , the 2n quantities ul,...,Um Sl,...sm

I are all bounded away from zero. Here and in Appendix, when we speak of a

3 point , = (Uls"''Um1 il ... 11 )  it is understood that si  is given

by Q (01 ) for i 1,...,a; by *. + Q . ' ) for i = a + 1,...,

. a o a.

m-i; and sm = 1 - (s + ... + s ml). Then when 80 is the true parameter
1 '?ogLi 0

vector, - - tends stochastically to a limit, V (Q) say,

and - 1 a 2logL tends stochastically to a limit, W (0) say, for l<a<m-l,

0

1 < 8 < m-i. These define (m-l)x(m-l) matrices V( 0) and (0). The

details of this and expressions for the {V } and {W } are given in

3 the Appendix. We are now ready to state the following:

THEOREM: Suppose V( 0) and W(80 ) are both non-singular, and

consider the contiguous alternative where the true parameter values are

0 0 0
(ul, ... ,Umuil .  ,a,ca+i//',... Cmj./v ). Then the asymptotic distribution

I 2 2 2

of -2log AN is X a-i (6 ). Here the non-centrality parameter 6 is

where Z(e0 ) denotes the (r-a-l)x(m-a-l) matrix derived by deleting theII
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U The proof is given in the Appendix.

REMARK 1. The asymptotic distribution of -2log A N under H0  is

x -a-i' which is as might be expected. Thus knowledge of V,W, or Z is

not required to carry out a test of significance. An asymptotically level

a test of H0 will reject when -2log AN exceeds the (1 - a) quantile
0

of the X 2 distribution.

REMARK 2. Generally, the matrices V(80 ), W(0) are non-singular as

I long as it is known that none of the true fs.} or {u.} (I < i < m) are

zero. However if it is known that some of these parameters must be zero,

then the analysis can go through with the appropriate reduction in

dimensionality. For instance, as in the second example of the next section,

the experiment may be designed so that all but a certain number, b say,

I of the u. (l < i < m) are constrained to be zero. These zero u. are

I just omitted from 0 and L; X is a (b-l)x(b-l) matrix, and otherwise

the statement of the theorem is unchanged.

REMARK 3. The contiguous or "challenging" alternatives in the theorem

3 are commonly used in large sample theory in order to keep Type I and Type II

error probabilities bounded away from nought and one. For finite sample sizes,

we should modify our test as in Weiss (1975) to guard against non-contiguous A

alternatives. We do this by also rejecting H0  if, for any i (a+l < i < m-1)

Q ( )l > k • N -A

where k > 0, 2/3 < A < 1 and (when a 0) k* e Ra  satisfies

s Q i ( < i < a ). This modification will not affect the asymptotic



I properties of the lert under 11 or, contiguous alternatives.
0

13. EXAMPLES

Example 1. Suppose we consider the geometric example mentioned

~earlier. Here

HO0 s. I - )- (1 < i < m-1) s = (i l )-

for some 0 < < I unspecified. Such an H would be applicable to test-

ing a constant hazard rate with tl,t2,.. .,t I, all equally spaced.

(6 represents those items still alive at t M_.)
m r-

Under H09 the likelihood is proportional to1 !0'

m i i m-1 ix.

Setting the derivative of L*(W) equal to zero, we see that the maximising
m m

value of 4 is 1 6.! io. + 6.)]. Thenwe can obtain thei= 1 l

likelihood ratio AN by substituting in (3) for s by (2) and for

s. by (l - ) (1 < i < m-i). Here a 1, and so the cutoff point

will be based on the percentage points of the X distribution. (Of
k-2

course, if H0 also specified the value of * we would take * as that

value and then a = 0).I
Example 2. Consider the following grouped data taken from Table

3 465 of Kaplan and Meier (1958).

*1
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TABLE 1.

1 2 3 4 s  6 7 8

t.1 1.7 2 3 3.6 4 5 T

6. 3 5 4 10 9 6 15 16

X. 0 20 0 0 12 0 0 0

I Take t o  0, T > 5. Thus m 8 and N = 100. Here we could say that

losses could only occur at times 1.7 and 3.6 because of the design of the

experiment. (Actually, the 68 deaths at T were really reported as losses

I at 5+. Clearly it makes no difference how we apportion the 16 losses at

time 5+ between 68 and A 7) By Remark 3 however, the fact that only

u u£ and u8  can be non-zero does not affect the test. In Table 1,

S6. is interpreted as the frequency of observed response times occurring

in (t t

Consider the hypothesis H that X is exponentially distributed.

Thus

-et -6t.
H0 : si : e - e (1 < i < m-l).

0'
I Under Hot the likelihood is proportional to

L*( = E(e i- e ) e i
i=i

where we have used the convention t + and t m = 0. Setting
mmomL*

= 0, we have that satisfies

I m-1 m 1 -t. exp(-it. ) + t. exp(- t.)

L i~ ilexp x(t

.olv .L (-t.16) - exp(-uti) J =

Solving numerically we obtain * - .1638 and using a. = exp(-$ti-)-exp(-ti)
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we have s (.151, .092, .036, .109, .057, .035, .078, .441). From

Kapian and Meier (p. 465) we have

I s z (0.3, .05, .05, .13, .Il, .1, .25) and s = .27.

I '5,

Fv lu-tiri7  -21og A (s,s) = 46.1, and comparing this with the tables of

we see tht H0  is rejected at any reasonable significance level.

With a little more numerical work, one could, in a similar fashion,

investigate the hypothesis that X was Weibull or Pareto distributed, for

,xample. In the Weibull case s. : exp[-(nt i i - exp[-(nt.) ] wherei x~i i- )]_ 1i ]

while under the Pareto model s. = [En/(n t (n/(n + t.)

,l-r, (r), ) is unspecified. In both cases a 2, and the percentage

2
Poifntl; of X5 dr5 e applicable.

IExample 3. (Doubly censored data). The techniques described in this

papsr can Le extended analogously to handle doubly censored data. Here

in ddition the fre-ucncies {6.) and {A.}, there are frequencies {i.,1. 1 1 '

(I < i < m) represents the number of observations left censored

it t.. (Por a more detailed discussion of double censoring see Turnbull

S 7+4. ) As an example consider Table 2 below which summarizes the answers of

'Ish school students to tihe question "When did you first use

, n " 2" (T'it wa; part of a larpe study on the Stanford-Pilo Alto Peer

ulin, Prcgrari, which has been reported by Hamburg, Kraemer and Jahnke

175). ) Any direct answer such as "12,14,l5,...' gives rise to an

I ,.xt ooservation. If the student answered: "I have never used it" then

t ,ive -ise to an observation which is censored on the right at his/her

psert age. The final possibility was someone who answered "I have used

7 Itbut cannot recall lust when the fir,-t time was." This gives rise to a

ef sesobrnsrvatien where( ap+- of fir'st use is known only to be

I, > to the iludont' current age.

meo
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TABLE 2

i 1 2 3 4 5 6 7 8 9 10

t. 10 11 12 13 14 15 16 17 18 > 18

6. 4 12 19 24 20 13 3 1 0 4
1

X. 0 0 2 15 24 18 14 6 0 0

3i  0 0 0 1 2 3 2 3 1 0

l NWow many of the frequencies in the table are zero or very small

3 so the asymptotic X distribution is unlikely to be a meaningful

approximation to the distribution of the likelihood ratio. Nevertheless

3 we shall proceed in order to show how the calculations are carried out

in the doubly censored case.

Let us consider the problem of testing goodness of fit of a negative

3 binomial distribution: (This hypothesis was suggested to us by one of the

investigators and is based on a model in which opportunities to start

3 taking drugs occur at random times and that different children have

varying susceptibilities. This theory leads to mixture of Poissons of

I which the negative binomial is a particular example.) Thus

I /_ i .1 i )2
I H0: si \8+j=0 -

3 (The empty product is defined to be unity.)

Using the method of self-consistency (Turnbull, 1974) or equivalently

the EM algorithm (Dempster et al.,1976) one obtains 6.75, 0.979

I S(.010, .033, .064, .092, .111, .118, .114, .103, .088, .267)

Iand
(.023, .070, .112, .143, .136, .124, .047, .037, .001, .307)
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.3 Noting that there is now an extra factor

m S + + s

i~l + +s

in the expression (3) for AN  due to the left censored observations we

U calculate the value of -21ogAN  to be 32.5.

Comparing this with the percentage points of X , we see that theI7
negative binomial does not fit the observed data, (that is assuming that

the asymptotic approximation is valid, which assumption we make only for

pedagogic reasons).

IK
I

I
'I

I

I
'I
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1 APPENDIX

IThis appendix is devoted to a proof of the Theorem. The proof

3consists of a verification that the assumptions of Weiss (1975) hold in the
present case.

I Fix a value A in the open interval (0, -) and define J (E) asI
II i u < N11 . . M-

I N

1/6 -A

It is easily verified that

1 ___2_S- u1 logL(8) = 0 for a, = ,...,

N a, u logL(i) r F ,i ( O ) +  -N  Dai(Q) for a, 1,...,cx ~ i~i \
a2 m m- N

NlogL(O)= N D , (6) for cB 1,...

N~ at a, ig()=~. c5,1i

I

where r D (), r* D do not depend on N,3 ro,i8, ' D, 8 ,

and are rational functions of , and first and second derivatives of

I {i(tl a )}, all the denominators being first and second powers of

sums of one or more of (U1 ,... ,ums,... sm). Thus these denominators
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are bounded away from zero if the derivatives are taken for O's in

q0

Define v (k0) as

M1 0 0 0 0 M1 0 0 00

[s(l -u ... ur)] e . ) + [u (l -s ...- s D )

+ (u s )r' (Q
m r c,a,m

and w (0) as

0 0 0 * 0 0 0 0 * 0
i 1 1 

[(s ~ ~ ( u ... -u 0 ) r 0 ) [ u i - s . . s ) (

m m ,,m%(0)

for a, 8 = 1,...,m-l.

Suppose the true parameter point depends on N, and is 0 (N) in

J.(60) . Define a (N) as - s (0 (N)) [(1 -_1(6(N))-.. ( (N))]j,

for i 1,... ,m-l, a (N) as - - u(6 (N))s ((N))j, .(N) as

- - u (8*(N)) [(i - s.(0 (N))-...-s.(Q(N))] for i = 1,...,m-l.

By the properties of the multinomial distribution, /N c.(N), r"Ni (N)

are all finite with probability one. It follows that we have

N- ... _u. ) + a,(N) (i :)i

i 0 0 0-N

N m m 1-N . .

0 0 
IN -/ 

A
-: i~ -s -.. si + i(N) I _ i:1 .. ml
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a > 1 -q (0)

where P . fl .(N)1 < a(ll) Iot(N) < a i ,

O0N)

where o(6O ) is finite, and lim q (0O) 0. Also, by our assumptions

~Noabout Qi(#l,... , a  we have, for any i(N) in JN(00), that

(o)N 1/6- A3 r (8N) -r (ON < rw

1/6 - A
N| D .~(e(N))- D () < (e) NT

1/6 - A
0 /N

U rni(ON)) D i(O)I q(e )-

I IV ,- N
ID * (6(N)) - D ,i(0°l <  (

for all %,,i, where q(86) is finite.

The verification that the assumptions of 
Weiss (1975) holds is now

I immediate: the matrix k(e ) in Weiss (1975) is the 2(m-l) by 2(m-l)

matrix written in partitioned form 
as

I.

The continuity of 
0 )  follows from our assumptions about {Q l .

and the positive definiteness from 
the nonsingularity of t( O) and 0

K.(N) and M(N) of Weiss (1975) are in our present 
case 1IN, N 1/6

respectively.

U
U
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