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Repeated Measurements on Autoregressive Processes
by

T. W. Anderson
Stanford University

1. Introduction.

Time series analysis is developed mainly for the study of a single
sequence of observations. In this paper methods of statistical in~
ference are developed for a set of several sequences of observations
from the same autoregressive vector-valued process. Having several
time series available from the same model permits investigation of
such questions as whether the process is homogeneous, that is, whether
the autoregression coefficients are constant in timej; if the coeffi-
cients vary in time they cen, nevertheless, be estimated from several
series even though there may be no pattern to the variation.

The distributions of estimates and test criteria in time series
analysis are usually asymptotic as the length of the series increases.
In the present case of repeated measurements, asymptotic theory can
alternatively be based on the number of observed series increasing.

In cases where both large-sample theories might be used they are

compatible.

e

i Wb




O A N R % PN AL 0004 5 pmes s,

There are many applications of these procedures of importance.
In a penel survey {(in which several respondents are interviewed at
more than one point in time) the responses may be guantitative, such

as answers to the question how many hours did you spend last month

reading the newspapers. In economic surveys the questions are likely

to produce numerical answers: how many hours did you work last week

T O N N T ey S - I

and how much money did you spend on groceries last month. Analysis

5.

of such data are sometimes called cross-section studies by econome-

R e e

tricians. A psychclogist may obtain a test score on several indivi-
duals at several dates; a physician may read blood pressures of his
patients on several days.

The purpose of the present paper is to develop statistical methods

tfor problems of autoregressive processes in the case of repeated mea-

e AN i B T AR5 b1 i+ 20+ PR e g <
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surements which are analogs of procedures for corresponding problems
of Markov chains treated by Anderson and Goodman {(1957). Anderson

(1976) reviewed some of these procedures for Markov chains and sug-

IR LR

b gested analogs for autoregressive processes. This present paper de-

velops those and other procedures in greeter detail and more generally

and provides Justification for scme assertions in the earlier paper.
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2. The Model.

Ir y, is & p-component vector, a Markov (first-order) vector

process with mean (fyt = 9 is defined by
(2.1) Ve = Blt)y, o+ s

where B(t) is a pxp matrix and '-pt} is a sequence of independent

(unobservable) random vectors with expected values {:ut =0, covari-

ance matrices é:utu' = Zt ’
L

Let the covariance matrix of Ye be e:XtZt = Et . Then from (2.1)

and u, independent of Yio1® Ygopr *o°

and the independence of Y1 and u,_~ we deduce

t

(2.2) F, = B(t) F,_, B(t) + I, -

If the observations are made for t =1, ..., T, the model may be

specified by the marginal distribution of ¥ and the distributions

of 32, crey ET . In particular, if Y and the Et's are normal,

the model for the observation period is specifief—gz;)

z

F., B(2), ..., B(T), L,, ...y 2o

When the autoregression matrices are homogeneous, that is,
B(t) =B, and the u 's are identically distributed with mean 0
and covariance matrice § s, the process is stationary if the charac-
teristic roots of B are less than 1 in absolute value and the process

is defined for t = ..., -1, 0, 1, ... or if Yy is assigned the sta-~

tionary marginal distribution. In this case the covariance matrix of

vy -

Iy ’w";.‘w% 0
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(2.3) Fe ) BIBC,
s=0

(2.4) d:gtg; 5" % s <t
[Note that F = gt = F, _, satisfies (2.2) for g(t) =B and §t =L,

t=2, ..., T .}
A higher-order process may be an appropriate moder. The r-th crder

inhomogeneous process is

r
(2.5) A A

and the homogeneous process is

T
(2.6 = B +
2.6) A JZ 2y Yeas T Y

In the latter case the roots of

r
(2.7) |51+ 7 A g =0
Tt B

shall be less than 1 in absolute value.
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A higher-order autoregressive process may be written as a first-
order process by suitable redefinition. For example, & second-order
autoregressive vector process with homogeneous autoregressive coeffi-
cients defined by

(2.8) =B

Yg B Ve YB Yoty

can be written as a first-order process by

(2.9) Ve =B Jpn * U »
where

It Y
(2010) Z‘t = s E-t = ’

41 0

B B

(2.11) ="t 3 .

~ I 0
The characteristic roots of B are the roots of
(2.12) |-3°T + AB. + B | = 0.

* ~ ~l ~2

For a stationary process these roots are to be less than 1 in absolute

value.
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The sutoregressive processes appropriate to several subpopulations

(strata) may be different. In the inhomogeneous first-order case the

(
matrices in the h-th process may be E'h)(t), §éh), h=1, s in

the homogeneous case they may be B(n), g(h)

s h =1, ..., s . If in-
fluencing variables are continuous, they may be taken account of by

adding them to the regression to yieid the model {in the first-order

homogeneous case)

4y is & vector of such variables and Y is a vecter of para-

meters. In particular, when Zt =1 and Y 1s & scalar, the process

{Zt} may have e mean different from O .

The autoregres:ive process is constructed from (conditional) mul-
tivarizte regsressions. In (2.1), tcr example, the vector
stitutes the "independer.. variebles" and *he vecter ¥,

"

rt.e "ierendent variatles”

in crdinary reg¢ressicn.
tie statiastical methnods £-r autoregressive mrdels asre regressicn or

leust sguares procedures.




3. Estimation of Autore~ressive Coefficients.

Let Yia be the p-component vector of measurements of the a-th
individual at the t-th time point, o« =1, ..., N, t =1, ..., T . The
model is a first-order autoregressive model (2.1) with U, having the
normal distribution N(9,§ ) and ¥y having the normal distribution

N(Q,E‘l) . The probability density of the sequences Yig® **** Ypo?

a=1, ..., N, is

1

N
(3.1) E T T
)2 2 |Z 2

(2w ~t’

e, |
5 R

T '
11 v -1 -1 - Bt
x exp -2{¥1a§l Yia +t£2(¥ta"§(t)¥t—l,a) Iy (re - Bltdye ) o)

N
1 L, |
expd-35 ¥ |y P ¥
2 a=1["1°‘ ~1 =la

1 ]
-1
(Wyo = BOE) ¥y g o) Zg (g = BE) Yoy o)

N
1 -1 *
exp- Fjtr F Z Y.y
%N 2[ ~1 a-'l"'la ~1lc

_1(N ' ) N .
iy \azl Yo Yoo = 2B(E 21 Ye-1,a Yta

N

1 ’
* Blt) uzl Yo-1,a Ye-1,a B8 ) '




2 grugen S TR Y

Then 1/N times the logarithm of the likelihood function is

T
1 = _ 31 L L 1 1o ¢
(3.2) % log L = -3 Tplog 2n-3 log Iljll..2 tZg log Igtl--2 {tr Fioc, (o)
T A Vo ,
+ t§2 tr Iy [gt(o) -2 gt(l) B (t) + B(t) gt_l(o) B ()1}
where
N
-1 '
(3.3) C.3) = g azl Yoa Yt-3,0

Then a sufficient set of statistics for Fl,B(2),...,B(T),ZE,...,ZT is
f (o), t =1, ..., T, and gt(l), t =2, ..., T.
The derivatives of (1/N)log L with respect to the elements c¢f

B(t) form the matrix

1 O9logl _ =1 -
(3.4) T OOy < - I () - B (0], t=2,...,7
The maximum likelihood estimates of B(2), ..., B(T) are
;
4 2 -1 \
: (3.5) B(t) = gt(1) gt_l(O) R t =2, ..., T.

Then 1/N times the logarithm of the concentrated likelihood function

is
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(3.6) - 5 Tp log 21 - > log |§l| -3 z log |§

Then {by Lemma 3.2.2 of Anderson (1958)] the maximm 1likelihood es—

timates of El, 22, cees §T are

(3.7) F. =c(0),

(3.8) 2, =¢(0) - Blt) ¢ _,(0) Ble)
= ¢, (0) - ¢, (1) ¢,_ (07 ¢ (1)
1 ¥ A '
- ﬁ'azl(Zta' §(t)yt-1,a)(yta B(t)Xt_l,a) s t=2, ..., T

The components of g(t) are least squares estimates and gt are
composed of sums of products of deviations from the fitted (auto) re-
gressions. [See Anderson (1958), Chapter 8, and Anderson (1971),
Chapter 5, for example.]

The assumption chat the autoregression matrices are homogeneous
and the disturbances identically distributed leads to considerable

simplification. Then 1/N +times the logarithm of the likelihood

function is

i S NG o

Tl 1+ Bt
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1 1 1 1
(3.9)  §logL=-5Tplog 2n - 3 log |F| - 3(T-1) 1log |Z|

T
1 -1 -1
- -é-{tr F] 91(0) +tr g [ Zz gt(o)

(1) B' % ()']]
C,(1) B + 18 0) B-
~t -~ ~ tap ~t-1 ~

1 1 1
= -5 Tp log 2m - 5 log lgll - E(T-l) log |Z|

-~

- %{tr g;l 91(0) + (T-1) tr g‘l [g(o) -2 9(1) B

1 T
OB = ACI

T
c*(0) = 2

1 c, ,(0)
T-1 4, Zt-1

1
= 9(0) + E:I [91(0) - 9 (0)]

Then a sufficient set of statistics for Fl' B, Z is

*
cl(o), c(o), c (0) and C(1) . The maximum likelihood estimate of

is (3.7), and the maximum likelihood estimates of B and L are




)7t c1)’

c(0) - ¢c(1) ¢’ (o

1

N
- B - B
Z Yeam B Vo1 ,0) Weam B Yoo 0)

An alternative model is to consider yla’ a=1, «.., N, as .

nonstochastic or fixed and treat yta’ t=2, ey, Tya=1, ..., N, >

conditionally. Then the maximum likelihood estimates of ?(t) and I, ,
t =2, ..., 7, ware (3.5) and (3.8) and of B and I are (3.12) and
(2.2%), as the cas> ray be.

is consideircid to have the marginal normal distribution

Yren y..
~4iQ

determined by the stationary process, the covariance matrix El is a
function of B and I as given by (2.3). Then the maximum likelihood
estimates are much more complicated. In the simplest case of p =1
the estimation equations involve a cubic [Sec. 6.11.1 of Anderson
(1971)); if p > 1 or the order is greater than 1, polynomial equations
of higher degree are involved. [As T » » , (3.12) and (3.13) are
asymptotically equiveaelent to the maximum likelihood estimates, but not
as N + o« ]

Estimation in higher-order processes is similar. For example, the

second-order case may be treated in the form (2.8) or (2.9). Suppose

11

s i tcantaie bt oo . ORI S
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Y10 "t Ypg? o =1, ..., N,

Then in the r-th order process the maximum likelihood estimates of

§J(t), J=1, ..., v, t=r+l, ..., T, are the solutions to
(3.1k) [?1(»:) o B ()] =[c () ... ct(i)])
-1

gt(l,l) gt(l,r)

gt(r,l) .es gt(r,r)
where

1 N '
(3.15) gt(i,J) = ﬁ (1’-2'1 z’t-i,a Xt"d »a

The covariance matrix Zt is estimated by

A~ 1 N T ~
536 gok 1w L8
=] i=

In the homogeneous case the estimates are

are considered as nonstochastic or fixed.

R A




(3.27) [?31 ?r] = [9(1|r)

(1,1]r)

A A

w2t R -

i
:
:
3
:
i
3
i
1

1 T
(3.19) g(i,3|r) = )
=r+

t=r+l

The exact distributions of these estimates are, in general, too
complicated to be useful. Hence, we turn to asymptotic theory. For

fixed T by the law of large numbers

1
(3.20) Plim €, (0) =€?ft Ve = F o

N

]
(3.21) plim (Jt(l) —6Zt Ve i T ?t }it

Noco

Hence, as N »> o gt(o) is & consistent estimate of Ft , t =

(t) 1is a consistent estimate of B(t), t=2, ..., T, and I,
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consistent estimate of I .
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consistent estimate of Et, t=2, .., T. It follows from (3.20) t %
and (3.21) that in the homogeneous case ; :
1 7T s
(3.22) plim ¢(0) = 55 ] F, ,
N-soo t=2 ~ P
Lé
vhich is F in the stationary case [F; = F given by (2.3)], 5
i
1 :
(3.23) plim C(1) = == B 2 Fiq o
N-oo t=2 ;
o
-4
which is B F in the stationary case, and :
1 T
(3.24) plim C*(0) = 5= ] F, .,
N+ 7 t=2 ~
which is F in the stationary case. It follows that in the homogeneous
case, as N » o ﬁ is a consistent estimate of B and ﬁ is a

For fixed T as N + ® the elements of Jﬁ[ct(o) -dSCt(o)] .

t=1,...,7, andof W(C (1) -dgt(l)] have a joint limiting nor-

mal distribution with means O if it is assumed that yl is random

) are identically distributed (with

and the set ( u

~Ta
It follows that Jﬁ[fvl-Fl], AIB(+)-B(¢)],

EEQ’
., N)

Y10°
respect to a =1,

and vﬁIZ -Zt] has a joint iimiting normal distribution with means O.

The limiting distribution of

It remains to find the covariances.
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$ .
2 1
N . 0 ' 1 1
(3.25) AIB(t) - B(t)] = y- a£1 Yo Yooy Cpo1(0)
}
%
% is the limiting distribution of :
2
N
; 1 ' -1
_- (3.26) e azl Sta Yt-1,0 Te-1
1 . ) _ . . .
1 since plimg | gt—l(o) = F,_, . The covariance matrix of the i-th .
1 and jJ-th rows of (3.26) is
_f o
15 3 -1 ' -1
(3.27) 7 & 1 Wi Wy Foo Yeora Yoot,y Fom 1
o,Yy=1
38 N
. 1 (t) -1 ! -1
L - =
3 ¥ %3 Fta azl Yt-1,0 Yt-1,0 ft-1
g 3
:'; - (t) '-l 3
=05y Fyy o 4
X
where ):t = [0%)] . The covariances of the elements of /ﬁ[ﬁ(t)-}}(t)]
in the limiting distribution constitute the Kronecker product
4 S Fot o F1
11 “t-1 Y12 Zga1 t Y1p Zeal b
-1 -1 -1 ;
: . %21 Lear 922 Fea v Tp I
(3.28) £Qr, - . -
. . -
s.- Gpl gt-l 0p2 Et-l te 0pp gt-l L 
i b4
im 3
1 !
iE
[

15

i

4
5




O . .

The eiements of (2,20, tor qifrerent v . 0t e e AN . E
3 the covariance matrix o the i-th row with t 0 ey She =) ¢ oy with g
3 t replaced by s is g

N
) - _ 1
{5 A0 1 \ ; BN ' - R
P - - 1, - Ly 5 o = { N s

V3 /) N L it ‘—'..:; t=l Lol g Vel oy e Yo CF B
§ N =1 1oLl Juy 1 RPN § 1y~ i ~
. oL, Y= g v 3
1 5 3
. K 3
3 it L > s | then NP o Yoo o cannlsts r guadratl o Jomis o in eome ’
E ~L=" g Loy

ponents of uvu, Y= i, aae, b-l, ond Vg and the exyected value or ' k

such a tern multiplied by u, i is

When 7 i3 tixed un! N - w &

X " o
; \ A . 1 = l\! 1 * . \-1 )
‘ (3.30) (B - k) = YooY ou, v, (o) ' 3
b b —_ . . o~ta Lt-l,a ~ 3
VI(T-1) t=& o=: 3
has the same limitine distritution as
1 ) " N $
3,31 | ~ N ¥
1 =1 Sty Yte1,a b ? :
] VN(T=1) =0 a=1 7~ ’

where ;

4 ; g
* 1 . N

(s.42) s s oo . A

i

44

‘\

The covariance matrixz f the i-th and J-th rows of (30310 is o

4 [I/(T‘—L)]O}.j F*‘J . Thus the limitins distribution of VN(B - B) is

: , . . T -1 o
] normel with mean 0  and covariance malrix ).C)(z}_” F l> B
-~ Pl e =

E the proress is stationary F* = ¥ and /N{TV(E - B) pas the
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limiting normal distribution with mean 9 and covariance matrix
TQF .

Limiting distributions when N 1is fixed and T =+ « are of in-
terest only in the homogeneous case. For N = 1 the limiting distri-
bution of ﬁ(;ﬁ - §) was proved in detail [Anderson (1971), Section
5.5, for example], and the method aolds for any fixed N . Regardless
of the distribution of Zla’ if the u, are identically distributed
(t = 2,3,...), /TrT(Es - 1~3) has a limiting normal Adistribution with
mean 9 and covariances )E@E‘-l as T » o ,

It will be noted that the limiting distribution of /N(T-1)(B - E)
in the stationary case is the same for T fixed and N » « and for
N fixed and T + = . We shall denote this situation as N and/or
T - o , Precisely this means that given an € > 0 there exists an
N and a TO such that the normal distribution differs from the exact

0

distribution by no more than € if N > N for any T or T2T

0 0

for any N . Of course, the difference is less than € 1if both N > N

> .
and T_TO

17

0
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4. Tests of Hypotheses.

faer

4.1. Introduction. There are various hypotheses abcul the wutn-

regressicn matrices that one micht want to test. Becaise the asymp-

totic distributions of the estimates of aut-regression matrices are

TV SR O < T ¥ AR TR

the same as the distributions of estimates of repressicn matrices when

SE G e Y MRS W O -

the dependent variables (analogous tno yr) gre normally distrituted

and the independent variables (analepous to art nonstcchastic,

py S A

A
7 !
“t-l
we can take over agppropriate test procedures from normal regression
theory [Chapter 8 of Anderson (1958)].

For many hypotheses there are chcices of test criteria that have
the same limiting distributions under the respective null hypotheses.
In the normal regression with tixed independent variables a test pro-

cedure is based on a pxXp matrix G which has a Wishart distribution

with covariance matrix I and degrees of freedom n and a pxXp matrix

~

H which has a noncentral Wishart distribution with covariance matrix

~

, degrees of freedom k , and a matrix-valued noncentrality para-

meter which is O under the null hypothesis. The matrix G is pro-

~ ~

A

portional to the maximum likelihcod estimate L of ¥ when the null

o) N

hypothesis is true, and G + Il is proportional to the maximum like-
J¢ ’ i P

lihood estimate gw of wher: the null hypothesis iz not assumed
true, Some criteria are a monotonic function of the Wiiks likelihood
ratio criterion [G[/|G + 1] , the Lawley-Eotelling criterion tr gg“l,
the Fillail criterion tr H(G + U)—l, and the Roy meaximum characteristic

~ o~

root of H gL (or equivalently of K(G + H)-]). in this paper we
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shall present tr H G

1

as the criterion because it seems most

analogous to the corresponding criterion for Markov chains, but any

of the others could be used.

xg—distribution when the null hypothesis is true.

L.,2, Specified Autoregression Matrices.

variate regression model treated in Chapter 8 of Anderson (1958)

where the vector xa

for testing the null hypothesis B =P

(4.1)

and

(4.2)

L}

is from N(Bza,

» PO
aZl(fa- g Ea)(fa—'g Ea) -

g

®-p)

]

o

H e~

depend on the matrices

All the criteria have the same limiting

In the normal multi-

Z),a=1, ..., N, criteria
*
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In testing the null hypothesis that B(t) = B°(t) for a given

~

t (¢

2, ««., T), where Bo(t) is a completely specified matrix,

o 2 is C, _(0) , the analogue of ‘5 is

the analogue of z:0‘=]_ % 2o ~t-1

g(t) , and the analogue of ZQ is Et . The trace criterion for

testing the null hypothesis is

(.4) N r[B(t) - B°(£)1c, ,(0)[B(¢) - B2(6)] E;F .

t-1
2
Under the null hypothesis this criterion has a limiting X -distribu-
tion with p2 degrees of freedom as N » » ,
Theorem. If X (pxp) has the distribution N{0, Z® F ) , then

-1

tr X has the x2-distribution with p2 degrees of freedom.

]

'
X I

Proof. Let F =K 5', vhere K is pxp and nomsingular, and

~

let V=XK. Then
(L.5) tr XFX T =trvviIt vty

and V is normally distributed with mean O ; the covariance between

1

~

the i-th and j}-th rows of V is "FTK = The columns

ciJ § oij I .

of V are independently distributed, each according to N(Oo, I) .

' - -1
Thus tr Y § lY = Z§=l YJ § ZJ » Wwhere V = (Xl’ ceey Yp) s has a

x2-distribution with p2 degrees of freedom. Q.E.D.

Because the quantities VR[B(t) - B°(t)] are independent in the

1imit for 4ifferent t , the criteria (4.,L4) for different t are

20

o :"ﬁ%iﬁWMW{M‘W L S

o g




independent. Hence, to test the null hypothesis B(t) = go(t) .
t=2, ..., T, the sum of (k.l4) on t from t =2 to t =T can be
used. Under the null hypothesis this has a limiting x2-distribution
with (T-2)p2 degrees of freedom.

If the autoregressive matrices are the same, that is,
§(l) = ... g(T) = B, one can test the null hypothesis that § is a

specified pxp matrix B° by use of the criterion

(4.6) N tr(8 - B%) ¢*(0) (

L oh

- o)t

As N+ o gnd/or T > ® , this criterion has a limiting x2-distribu-
tion with p2 degrees of freedom.

A set of test procedures can be inverted to obtain confidence
regions; a confidence region for § consists of all mutrices B° such

~

that (L.6) is less than a suitable number from the xg-tables.

4.3. Equality of Autoregression Matrices given Equality of Covar-

iance Matrices. In case a process is not assumed stationary it may be

of interest to ask whether the autoregression coefficients vary over
time. We shall assume the distributions of the disturbances are the
same, that is, gt = g, t=2, ..., T, for some covariance matrix § .
Consider testing the null hypothesis ?(t) =B, t=2,..,T, for

gsome matrix B . The criterion

e




T ~ A ~ VA
(L.7) Ntr § [B(t) - B]Ct_l(o)[B(t) -B] L 1
t=2 ~ o ¥ R
T/\ ~ ] ~n#® ~las]
=N tr [ ] B(t) c,_;(0) B(t) - B C(0) B ]2'
t=2" ~T ~ R ~dT

has a limiting Xg—distribution with (T-2)p2 degrees of freedom as
N » © when the null hypothesis is true.
To justify the criterion, again consider the normal multivariate

regression model where x o i from N[B(t) Zea? Zl,a =1, ..., N,

t =2, ..., T . Then maximum likelihood estimates are

A N , (X Syt
(4.8) E(t) = azl ta fta(azl %ta Eta) ’ t=2, e T
) , TN . A \
(9) L=y L, L Do PO 2gdlingg ~ B 2] -
1r B(2) = ... =B(T) =B , say, the maximum likelihood estimate of
B 1is
SN S R R AP
(k.10) = X,z ( z, 2 )
e T I = R

In this case

T 4 N o ,
(4.11) i= 3 (Bt) -B] " IB(t) - Bl
e DB BTz, B -B
T . N ny ~ T N P
= tZE g(t) azlfta fta g (t) "g t£2 uzlfta Etu.g

e
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has a Wishart distribution with covariance matrix I and (T-2)p2 ?

-~

degrees of freedom. The justification of this statement follows from

Anderson (1958), Section 8.3, in a manner similar to Section 8.8. Then

-1 2 .. . R R
the trace of (4.11) times I has a ¥ -distributicn with degrees of
freedom equal to T-1 times the number of components in x o times
the number of components in 2., + The criterion (L.7) is asymptotic- ;

ally similar.

L,4, Independence. The stochastic process {yt} consists of

independent random vectors if B(t) = 0 for all t in the inhomogeneous

case and if B = 0 in the homogeneous case, In the two cases inde-

~

pendence corresponds to certain autoregression matrices being equal to

0 . Hence, appropriate criteria are the special cases of the criteria

of Section 4.2 when B°(t) = 0 and E® = 0 . To test the null hypo-

~ ~

thesis B(t) = 0 the trace criterion is

~

(4.12) ¥otr B(t) C

To test B(t) =0,t =2, ..., T, one can use the sum of (4,12) for

~

t=2, ..., T can be used. If §2 = .. = gT is assumed Et may be
replaced by g .

To test the null hypothesis of independence in a homogeneous ;#
process, that is, ? = 0 one can use the criterion :;

~ &

(4.13) N tr B CY(0) B

23 r




Note that the criterion for testing FE(2) = ... B{T) = 0 given

22 = ... = ZT is the sum of the criteria ror testing B(t) = B ,

; t =2, ..., T, for some matrix ¥ and the criterion (Lk.13) for test-

~

ing that B = 0 .

4.5, Test of a Given Order. The grester the order of an auto- ]

|

regressive process the further Lack in time is tre dependence. In the

s e rithe U

interest of parsimony an investigator may ask whether tlie ~rder of

dependence is one integer, given that the order is not greater than

ancther, which is larger. In Section L.l we considered a test of the 3
nypcthesis that the order cf dependerice was O given that the order 4

was not greater than 1. In general, the hypothesis that a process is

of a specified order given that it is of an crder not greater than a

s v 2

certain integer is a hypothesis that the higher-order autoregression

matrices are O

To develop the procedures and (asymptotic) distritution thecry

PRYPRUEE TORsgty X

we refer to the case of nonstochastic independent variuhles {(Chapter

3

8 of Anderson (1958), for example). In the normal regression model 1
3

N(Bza, ), =1, ..., N, partition |

(L.1b) B = (@l Q?) , 2

: (1) f

. (b.15) 2 =% . ;
N ~ Z(?) Iy

NG ]

]
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Consider testing the null hypothesis w : B = 0 . The criterion de- ?

pends on the two matrices

(4.16) G = NT

!
e}
I
Nl e~
1h
Q
|
P =03
=
IN
Q
1,
Q
00>
o)
Q

- aE1 O ~C
N L
A _ A (l) ~ (l)
(L.17) NEw = Zl(fa - Elw Za X TPy Za
r 0‘— « :j
- 4
N A N 'a §
TV W Y
{ acl ~0 <0 ~1w 0=1 "~ ~0 1w ? 3
| 4
i{ where ]
« ﬁ 15\:1 [ 1§ ' -1
, (h.l8) = X Z ( Z Z »
?\ A9/ am1 ~¢ ~O\ 2 ~o s
i N Yo -1
. (1) (1) (1))
(4.19) @lw = ] Xy %o OLZI 2o Zg .

Then
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A A g
(h.go) H = NZw - NZQ i
#
A N ~ ~ N ' i
=P "B (1) (1) g° ;
~ QZ Za Za PQ 1w g 20 Za E1m :-5
4
: ( ! Aty *
= Z 2z z x
a=1 ~@ ~el Sy ~a Ja agl ~a ~a 4
oow w @) ' ;
- E N X 2\t 2\t Z z(l) x . ‘
a=1 T 7 - @=L ¢ -0 5;
: i
N N ' 1 -1 i
_ (2) () @ §. @ @]
) o M ) 25" g ) 29"z z .o
=) =1 P =B B [ o §
. ',4
N N 1 ] -1 !
(2) @ (¥ @ WY a ;
) 2, - yz zg 1 2 z z i
‘1=l ~ B=l~ ~ 8=l“’8 “'B ~0 i
-1 ry-1 g
N ‘N !
E(5‘2) -3 zéz) Zél) ) Zél) () ) (1) :
g=1~"" - g=1~f -8 e : i
N N "N 1 ‘
(2) _ (2) (1) (1) (1) ()], !
z A Z z z Z 4 z 2 x -
a=1|"% ps1~b B g8 B Rl
' ' )
B OISO S ICD I S CORNES
26 L% la T Ly la =y G ”O‘)
a=1 a=1 o=
P L e
e <0 28
a=1
!
Let us treat specifically the homogeneous case. we assume the ]
order «f dependence is r and we test the null hyp-thesis that the 53

rrder is nl<r);  that is, the null hypothesis is

20




1 (4.21) §q+1 = ...=B =0.
Y The regression matrices are estimated bty (3.17) and I is estimated

by

N

T r
(k,22) = ﬁTfL;j- ) ) [yta - 2 B(i) Yis ]
T t=r+l =1L i=1 ~ ~ -i:i_;:>

J [y ) le Y Xt‘J’“]

FURP SIS -

o1

Vig 2
r ~ ~ ] -ql
= c(ofr) - [ B(i) c(i,§|r) B(Y)
4517 ° i
9 The criterion then is
i i
| (4.23) ]
’s| r ~ LIPN 1 g
N(T-r)tr § B(i)[c(i,Jlr) - % c(i,gir)ﬁ(g,hlr)c(h,J1r)]B(J) T, 1
| 1,3=q+1 ~ g,h=1" - - T -
,-' j
1 where i
3 ;
‘ - 1
c(1,1 r) . Cl,e 1) c(1,l r) c(l,e r)
€ - - J
(L.2ok) : : = . X . i
. . . . 4
Clg,ir) ... Clgee r) Clg,l vr) ... clg,g r) j{
1 - . s 2 .. . , . 2 i 3
: The criterion has a limiting v -distribution with (r-q)p degrees i3
of freedom under the null hypothesis as N and/or T + = .
‘! x

! o7

B

Y S




L .6. Seversl Processes Identical. BSeveral pepulations may be

sampied. There may te different socicv-econoric statuses, different
income levels, or individuals subject to different treatments. The
investigator may ask wheth=: the several processes are identical.
Frequently it is reascnable to treat the error terms as distributed
similarly in the different populations.

Consider testing the null hypothesis that the matrices of auto-
regressive coefficients of s first-crder homogeneous autoregressive
processes with identical ccvariance matrices § are equal on the basis

of N observed time series of length T from the h-th process,

h
h=1, ...,s . If 3(n)

~

is the estimate of the matrix for the h-th

process, B is the pooled estimate -7 the hyrothetically equal matrices,

and I 1is the ponled estimate of L

& criterion for testing the

Y

null hypcthesis is

S aik)
(4.25) tr § (B
=71 ~ t

D
<
11 e

Ur.der the null hypothesis tnis has a limiting Xe—distribution with

o




(s - l)p2 degrees c¢f freedom as N and/or T + o . The justifica-

tion of the procedure is similar tc that of Section 4.3.

In the inhomogenecus case we can test the null hypothesis

(2)(t) for & given t by use of (4.25) with %(h)

~

§(l)(t) =...=B

replaced by B(h)(t) and B replaced by B(t) ; the sums on t
are deleted., To test the hypothesis “or &all t =2, ..., T, the

criteria are summed over t .

(1) (2)‘)'

4,6, Independence of Two Subprocesses. Suppose yt= (yt yt
where y(l) and y(z) consist of p, and p.(p,*+ p, = p) components
~t “t 1 271 2 i

(1)

(2)
N }

respectively. We ask whether the two subprocesses {y, '} and {y

are independent. Since the Joint distributions of all random variables

are normal with means O , the subprocesses are independent if and

only if }i

14

' ., -

i 2 F

(4.26) 5;,é )yl V= ¥

é'ﬁ

P

for all t and s . Let M

i

S Rar: Ly I j

(L.27) B = , L= . i
P By Iy I

The two subprocesses (in the Gaussian case) are independent if

(L4.28) = 0,

Bip=0,08,,=0,




1
(4.29) Lo,=14, =0,
because then
1 L 0 i 0] B O :
N ] . @ <4 z 2l = ~11 ,,,
el |, @ ! !
F = y, ly. )= ) 9
- ()] ~ 5=0\ ¢ 5o\ z J B, .
4 Zt . ~C ~ ~ Sy
N [v o]
; S '3
! LBy, T By 0 :
K = { s=0 77
e+ 1
K S - s
; o 20522 Los Bsp .
3 Ell Q
5 .
i 9 fgg

and for t 2 s

(1)
y sy ~
Lt ( 2
ey & CARUE I
4(2)
ot
t-s,
g 2\ B 0
0 E 3
~ 1~:12 0 E2’2 4
t-s ~ 5
B I < 3
0 3775 g o3
~ ~ep w02 L
i
. (1) (2) . P
On the other hand if yt and It are to be independent P
F., =F _ =0 and if y(l) and v(g) are to be independent and A
~12 21 ~ ~t+l k9
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|
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(2) (1)

Zt+l and Xt are to be independent, then
Zf(;i:i (l)' (2)' gll ?]_2 -F'll 9
(4.32) () (y, " vy ) =
2 ¥ - B B 0 F
Yerl Po1 Tof \2 Z22
B1Fn Bip Eop
B Iy Byo %02
By Ty 2
F
9 ?22 ~22
Hence, (4.28) must hold. Then
S ]
gll 512 o 1311 9 §11 §12 1311 9
(4,33) F = = 3 ,
For Fopl 5%0\0  Boof \Iyy In/\0 By
(2] (o]
s 'S S 18
z L
Z P11t B ) 211 1o oo
s=0 s=0
= o [o's]
S 's S 's
B
z I322 221 E-511 Z 2’22 z':22 ~22
s=0 s=0
Fq @
0 Ey

implies (4.29). (See Section 5.3 of Anderson (1971).)
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To test the hypothesis (4.29) we use

~ ~

z L

. 11 212
(L.3L) L=1. A
Loy Inp

We develop the test criterion in analogy to the usual normal regressicn

' ~ 1
case. If X, = (xél) xé“) ) has the distribution N(U, Z),

oa=1, .., n, where I is partiticned according to (L.27), then the

L , . i (1) . (2) . (R (2)
conditional distribution of X given x is A(Bza . 211-2) .
where B =L _ il and 3. =3, -5 -3 _ 31tz 1f

~ 12 222 <11.2 ~11 ~11 <12 <z 210 °
n , ﬁ]l %lQ
L, A = =
(£.35) ~ agl fu fa A A ’
~20 22
. . -1 . .
then the estimate of g is 512 622 and the estimate of 511.2 is
-1 _ .
(l/n)(é11 - A, 622 521) . The trace test for E’— 0 is

| -1 -
(4.36) notr A A A (A - A Ay A

since (1/n) 0 when the null

is a consistent estimate of 212 =

%12

hypothesis is true, the criterion can be simplified to

-1 -1
(4.37) ntrA), A Ay A

To return to testing the hypothesis (L.29) for the autoregressive

process, we can use the criterion
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(4.38) N(T - 1) tr Lo %,

2 .- . .
which has a limiting ¥ -distribution with PyP, degrees of freedom

as N andfor T » « .

Now consider testing the null hypothesis B12 = 0 when
212 = 221 . As a guide we look again to the usual regression model
L @y W @
N@Ea’ E) » where )fo!. - (J.Ea > }fu. ) s 2n (Ea > Za )
éll él2 Ell §l2
(4.39) B - , L= “
' ~ .-
E2l §22 §21 §22 ?
t . . 03 3
and §12 =1L = 0. Then the estimate of (Ell gl2) is distributed

l A
; independently of Q§21 EEE) . In particular, 512 is normally dis-
; tributed with mean Bl2 and covariances constituting §11.C>t%2 1
where ' g
S

@@ Y oot ooy Y o
% (L.Lo) Dyp y = L Ea“ 2, - Z z T (az z 'z’ ) Yz "z .

o1

The test criterion is an appropriate multiple of tr Bl° Dyn g le 11

For the autoregressive process we use

(2) (2) g 2 (2) (1)'

‘ (L.41)  tr B z Z y .
) Pof 2, & Yot el T L L) Teda e i:f_:::J

Yt-1,0 Yt-1,0|~22 211 °

~t 1,0 yt-l sQ

W W TE Y @ ey e
; R 1] i, ¢
t=2 o=l t=2 =1
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[}

its limiting distribution as N and/or T » « is a y“-distribution

with PPy degrees of freedom. A criterion to test the nall hypo-

thesis B, = 0 1is (L.kl) with 1 and 2 interchanged; its limiting

distribution is als: a xy—distribution with E4P, degrees of freedcm.

The three criteria are asymptotically independent.
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5. Multiple Decision Prcblems. E

5.1. General Comments. In a statistical irnvestigation it fre-

quently occurs that several problems are investigated simultaneocusly

on the basis of one set of data. The designation of distinet hypo-

theses to test is a convenient division of a statistical study. There

are some other aspects which are more conveniently viewed as making a f

choice or decision among several alternatives, 3

5.2, Selection of the Order of an Autoregressive Process. Suppose

the maximum assumed order of an autoregressive homogenecus process is

r and the minimum is q (<r) . It is desired to determine whether

the order is q, q+tl1, ..., r . A possible procedure is to test whether
the order is r-1 against the alternative that it is r at signifi-
cance level er . If this null hypothesis is accepted, then test the
next null hypothesis that the order is r-1 against the alternative that
it is r-2 at significance level Er—l » etc. If the orders

r-1, r-2, ..., q@ are accepted in sequence, then the order gq 1is de- ;

termined. For more discussion of this type of procedure see Anderson

{1971), Section 6.4,

5.3. Fguality of Regression Matrices over Intervals of Time. In -4

the case cf an inhomcgeneous autoregressive process it is possible : ff
that the autoregression matrices are not equal over the entire range
of time t =2, ..., T , but are equal over intervals of time while
being unequal between different intervals. The intervals may be pre- -

assigriei. The method of Section 4.3 can be used to test simultanecusly
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the hypotheses

]

(5.1) B(2) = ... = B(t ), B(t,+1) = ... = g(tg), cees

Bt g+ 1) = ... = Bltg)
The q criteria are asymptotically independent.

In T. W. Anderson (1954) are examples of the statistical analysis
of panel data where the responses were discrete and the Markov chain
served as a model. The transition probability matrix expressed the .
probability of a political party preference at one interview given
the preference at the preceding (monthly) interview. One matrix
fitted the data for May to July (before the Democratic convention),
one for July to August (between the two conventions), and one for
August to October (after the Republican convention).

If the autoregressicn matrices are not constant for t=2, ..., T ,
there may be other patterns to them. If the characteristic roots
of § are different (or if the elementary divisions are simple),
then B = 969—1 , Where Q is the diagonal matrix of characteris-
tic roots and g is a matrix of characteristic vectors. In a homo-
geneous autoregressive process the conditional expectation of Y
is

given yt 5

, 2 2 =1
D = = .
(5.2) 6yt|gt_2 B" v, , = QA QY
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If a process is not homogeneous, we can ask whether 1

B(t) = Q I\E"(t)Q-l for some Q , diagonal A |, and suitable

-~ ~ o~ ~

numbers a(2), ..., a(T) . The sequence 1, a(2), a(2) + a(3), ...,

could denote an "inherent'" time.

AT

.

Lo




<, ‘L , e sk iy
i N R AR b i N s o

" il ’ A
e g " o Py s, T A oads ve o -
sl g ex i A0 Wt ik Wkt et P e hnd S PPRs— Y

6. Further Discussion. The model for the Kalman filter is

usually a generalization of the inhomogeneous process considered here.

The vector yt is an unobservahle state vector. The observed mea-

surement vector is

(6.1) z, = Hlt) y, + v

where vt is a random vector. In engineering applications the matrices

~

B(t;, Zt’ H(t) and the covariance matrix of v, are usually known.
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Appendix

This technical report gives the mathematical Justification for
assertions in Technical Repert No. 2k, elaborates on some aspects, and
presents some new methods. This cpportunity is taken to mske some

corrections and add an Addendum.

Corrections to Technical Report No. 2L, Panels and Time Series

Analysis: Markov Chains and Autoregressive Processes.

page 11, line 1 Replace [pij(t) by pij(t)[

page 16, line 1 Peplace B(1) by B(2)

under {3.7) h -

page 1T, line 6 Ad3 ZT ZN 3 '

page L1, t=2 “0=1 Yt-1,0 Jt-1,a
22, (k.6) i

page , | ) Replace pijk by Bi 5k

page 25, line 7 Replace B(1) by B(2)

page 25, (4.15), line 2 Replace B by B UL times-

page 26, line L Delete "given L. = ... = ZT" .
page 26, line 6 After "criterion" add "(given
R A
o
page 27, line 2 from Insert "limiting" bvefore x°
bottom

Addendum: Technical Report No, «h was written for a volume to
celebrate the Seventy-fifth Birthday of Paul F. lazarsfeld. Tragically,
Professor Tazarsfeld died before the organization and publication of
this volume was cémpleted. The current technical report as well as

the preceding are dedicated to his memory.

ey




Ka L e e s A A

10.

11.

12.

13.

14,

15.

16.

TECHNICAL REPORTS

OFFICE OF NAVAL HRECSARCH CONTRACT NOOO1h-£T7-A-0112-0030- (NR-OL2-034)

"Confidence Limivs for the Expected Value of an Arbitrary Bounded Random
Variable with a Continuous Distribution Function," T. W. Anderson,
October 1, 1969.

"Efficient Estimaticn of Regression Coefficients in Time Series," T. W,
Anderson, October 1, 1970.

"Determining the Apprupriate Sample Size for Confidence Limits for e
Proportion," T. W. Anderson and H. Burstein, October 15, 1970.

"Some General Results on Time-Crdered Classification," D. V. Hinkley,
July 30, 19T71.

"Tests for Randomness of Directions against Equatorial and Bimodal
Alternatives," T. W. Anderson and M. A. Stephens, August 30, 1971.

"Estimation of Covariance Matrices with Linear Structure and Moving
Average Processes of Finite Order,” T. W. Anderson, October 29, 1971.

"The Stationarity of an Estimated Autoregressive Process," T. W.
Anderson, November 15, 1971.

"On the Inverse of Some Covariance Matrices of Toeplitz Type," Raul
Pedro Mentz, July 12, 1972.

"An Asymptotic Expansion of the Distribution of "Studentized" Class-
ification Statisties,” T. W. Anderson, September 10, 1972.

"Asymptotic Evaluation of the Probabilities of Misclassification by
Linear Discriminant Functions," T. W. Anderson, September 28, 1972.

"Population Mixing Models and Clustering Algorithms," Stanley L.
Sclove, February 1, 1973.

"Asymptotic Properties and Computation of Maximum Likelihood Estimates
in the Mixed Model of the Anelysis of Variance," John James Miller,
November 21, 1973.

"Maximum Likelihood Estimation in the Birth-and-Death Process,” Niels
Keiding, November 28, 1973.

"Random Orthogonal Set Functions and Stochastic Models for the Gravity
Potential of the Earth," Steffen L. Lauritzen, December 27, 1973.

"Maximum Likelfhood Estimation of Parameters of an Autoregressive
Process with Moving Average Residuals and Dther Ccvariance Matrices
with Linear Structure,"” T. W. Anderson, December, 1973.

"Note on a Case-Study in Box-Jenkins Seasonal Forecasting of Time Seri.s,"”

Steffen L. Lauritzen, April, 197h.

q
il s

PR FER P U I ¥ 1 R U




|
k' |
|
-
4

17.

18.

19.

20.

21,

22.

23.

2k,

25.

SRR S Y T I P _ i D -~ G e

TECHNICAL REPORTS (continued)

"General Exponential Models for Discrete Observations,"
Steffen L. Lauritzen, May, 1974,

"On the Interrelatiouships among Sufficiency, Total Sufficlency and
Some Related Concepts,'" Steffen L. Lauritzen, June, 1974,

"Sratistical Inference for Multiply Truncated Power Series Distributions,"
T. Cacoullos, September 30, 1974,

Office of Naval Research Contract N0OOO14~75-C-0442 (NR-042-034)

"Estimation by Maximum Likelihood in Autoregressive Moving Average llodels
in the Time and Frequency Domains," T. W. Anderson, June 1975.

"Asymptotic Properties of Some Estimators in Moving Average Models,"
Reul Pedro Mentz, September 8, 1975.

"On a Spectral Estimate Obtained by an Autoregressive Model Fitting,"
Mituaki Huzii, February 1976.

"Estimating Means when Some Observations are Classified by Linear
Discriminant Function," Chien-Pai Han, April 1976.

"Panels and Time Series Analysis: Markov Chains and Autoregressive
Processes,” T. W. Anderson, July 1976,

"Repeated Measurements on Autoregressive Processes,”" T. W. Anderson,
September 1976,

oy,

P




-
y L 4 . - PR N #
Unciassitied ‘
SECURITY CLASSIFIZATION OF THIS PAGE /When Data Entered) E |
RE AD INSTRUCTIONS k
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM )
+-REPORY NUMBLR 2. GOVTY ACCESSION NOJ ) RECIPIENT'S CATALOG NUMBER 3
’ / - 25
- 4 TITLE (and Subtitle) e 5. TYPE OF REPORY 8 RERIOD COVERED
. — ) e e et e e W T
1 REPEATED MEASUREMENTS ON AUTOREGRESSIVL Technical Report p
1 . PROCESSES. e .
’ 6. PERFOARMING ORG. REPORT NUMBER
z 2 . ——— - ~ - “
A 7. AUTHQR(e) -~ s ? CONTRACT QR GRANT NUMBER(e)
3 /K -
43 /Y  Theodore W. Anderson HO0014-T75-C~0LL2
3 9. PERFORMING ORGANIZAYION NAME AND ADORESS 10. PROGRAM ELEMENT PROJECT, TASK
) . AREA & WORK-UNtT NUMNENRS
Department of Statistics f - _
' Stanford University ' (NR h2-03h}'« Y
1 Stanford, California 94305 ;
" 4 11, CONTROLLING OFFICE NAME AND ADDRESS 2. W "“Dm ) -
38 Office of Naval Research /) eptember 1976 ‘
s Statistics & Probability Program Code 436 8- NUMBER OF PAGES T ) . 4
k. & . I - o - 3
E Arlington, Virginia 22217 Lo o) | .
I T&. MONITORING AGENCY NAME 8 ADDRESS(I{ different from Controlling Office) | 18. SECURITY CL ASS. rmﬁ-...m& ¥
. "
; Unclassified p
3 i 1Sa. OECL ASSIFICATION/DOWNGRADING
& SCHEDULE
{
3 " 6. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRISUTION STATEMENT (of the abstract sntered in Block 20, i1 different from Report) -, -

SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side I/ neceseary and {dentify by block number)

!
fg‘ Autoregressive processes, time series analysis, repeated
i measurements, chi-square tests.

i
TRV T
.

20. ABSTRACY (Continue on reverse elde If necessary and identity by block number)

1 4 ——Dystimation of parameters and tests of hypotheses are studied in ’
3 first-order autoregressive processes where the process is observed :
several times over a given time interval. The process may be homogeneous

k (that is, the parameters may be constant over time) or inhomcgeneous

1 (time-varying parameters). OSutTicient statistics under normality are

‘ obtained for various cases and several tests of hypotheses are gi\/en.\:;;~\~

R it oo

| DD ,jf:",, 1473 eoiTION OF | NOV 8813 CBSOLETE
% | $/N 0102-014- 6601

Unclassitied
SECUMITY CLASSIFICATION OF THIS PACGE (Phen Do'n’\.nfﬂtd)

-

5,




