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Repeated Measurements on Autoregressive Processes

by

T. W. Anderson
Stanford University

1. Introduction.

Time series analysis is developed mainly for the study of a single

sequence of observations. In this paper methods of statistical in-

ference are developed for a set of several sequences of observations

from the same autoregressive vector-valued process. Having several

time series available from the same model permits investigation of

such questions as whether the process is homogeneous, that is, whether

the autoregression coefficients are constant in time; if the coeffi-

cients vary in time they can, nevertheless, be estimated from several

series even though there may be no pattern to the variation.

The distributions of estimates and test criteria in time seriesF

analysis are usually asymptotic as the length of the series increases.

In the present case of repeated measurements, asymptotic theory can

alternatively be based on the number of observed series increasing.

In cases where both large-sample theories might be used they are

compatible.



There are many applications of these procedures of importance.

In a panel survey (in which several respondents are interviewed at

more than one point in time) the responses may be quantitative, such

as answers to the question how many hours did you spend last month

reading the newspapers. In economic surveys the questions are likely

to produce riumerical answers: how many hours did you work last week

and how much money did you spend on groceries last month. Analysis

of such data are sometimes called cross-section studies by econome-

tricians. A psychologist may obtain a test score on several indivi-

duals at several dates; a physician may read blood pressures of his

patients on several days.

The purpose of the present paper is to develop statistical methods

for problems of autoregressive processes in the case of repeated mea-

surements which are analogs of procedures for corresponding problems

of Markov chains treated by Anderson and Goodman (1957). Anderson

(1976) reviewed some of these procedures for Markov chains and sug-

gested analogs for autoregressive processes. This present paper de-

velops those and other procedures in greater detail and more generally

and provides justification for some assertions in the earlier paper.
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2. The Model.

If Yt is a p-component vector, a Markov (first-order) vector

process with mean dyt = 0 is defined by

(2.1) Y+ = B(t)Yti+ut

where B(t) is a pcp matrix and " t is a sequence of independent

(unobservable) random vectors with expected values = 0 , covari-

ance matrices eutut = Z , and ut independent of Yt-l' Yt-2....

Let the covariance matrix of Yt be ytt= F Then from (2.1)

and the independence of zt-1 and Ut we deduce

(2.2) F =B(t)FtI B(t) +

If the observations are made for t 1, ..., T, the model may be

specified by the marginal distribution of y and the distributions

of u2 , ... , uT . In particular, if Zi and the ut's are normal,

the model for the observation period is specified b y

~E, ~B(2), .. ,B(T), 2 ''' T "

When the autoregression matrices are homogeneous, that is,

Bt -B, and the us are identically distributed with mean 0

and covariance matrice E , the process is stationary if the charac-

teristic roots of B are less than 1 in absolute value and the process

is defined for t = ... , -1, 0, 1, ... or if y is assigned the sta-

tionary marginal distribution. In this case the covariance matrix of

3



yt is

(2.. ) °
S0
s=O - --

and the covariance matrix of t and y is

(2.4h) JY , s <t

[Note that F F= F satisfies (2.2) for B(t) = B and t

t 2, ...,T

A higher-order process may be an appropriate modei. The r-th order

inhomogeneous process is

r
(2.5) Yt B i B(t) Yt-J + ut

and the homogeneous process is

r(2.6) Yt XBj yt-A + t "

In the latter case the roots of

r

(2.7) Ir _ + r-j 0

shall be less than I in absolute value.



A higher-order autoregressive process may be written as a first-

order process by suitable redefinition. For example, a second-order

autoregressive vector process with homogeneous autoregressive coeffi-

cients defined by

(2.8) t = B1 Yt - 2 Yt-2 + ut

can be written as a first-order process by

(2.9) +t -

where

(2.10) =t

(2.11) 
B j

The characteristic roots of B are the roots of

(2.12) I-X2, + XB1 + = 0

For a stationary process these roots are to be less than 1 In absolute

value.
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The autoregressive processes appropriate to several subpopulations

(strata) may be different. In the inhomogeneous first-order case the
B(h) (h)

matrices in the h-th process may be B (t) th) h=1, ... , s ; in

the homogeneous case they may be B ( I A ( h ) , h 1 1, ... , s . If in-

fluencing variables are continuous, they may be taken account of by

adding them to the regression to yieid the model (in the first-order

homogeneous case)

(2.13) Yt = B t-] + 7 z +

where L is a vector of such variables and Y is a vector of para-

meters. 7n particular, when z = 1 arid Y is a scalar, the process

{y t} may have a mean different from 0

The autoregres:ive process is constructed from (cconditional) mul-

tivariLate regressions. In (2.1), f'cr exanrsle, the vetor yt- en-

st'totes the "independer.. varieales" and the ;eet4or const:tutes

.. e enient variatles" in crJinary revressi,_n. P a large e::tent

t ie otat'!itical meths f'-r autoregrressive rrdels are regresI".I 'rr

;t :quar s pro cedure.-
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3. Estimation of Autore~ressive Coefficients.

Let y t be the p-component vector of measurements of the a-th

individual at the t-th time point, a = 1, ..., N, t = 1, ..., T. The

model is a first-order autoregressive model (2.1) with ut  having the

normal distribution N(O, t) and y having the normal distribution

N(O,FI ) . The probability density of the sequences y la' " Ta'

=i, ... , N, is

N

(31) T 1 .
1 -T

t21 2 - t2 H st ]}

x xpta -B a t(Yta-Bt)Y)t-l,t )  t

n I~tlct:

~ t=2

fTy =-N T

+ I ( Yt) !

t=2 . ..t.

T N ,N ,+Itr f ( Yt t- 2B(t) I Ytl t
! t=2 t la ~t t a-1-l O tl

+ B(t) I Yt-l aYt-l~a B(t)

Or-7



Then 1/N times the logarithm of the likelihood function is

(3.2) ylog L - Tplog 2Tt-lo JElo I

t=2

+jTrEtc (0 -2C (1B()+ B(t) C t 1(0) BIt)

where

(3.3) Ctw y t~

Then a sufficient set of statistics for F ,B(2),. .. ,B(T),E . is

C 0,t =1, ... , T , and C t (1), t = 2, .. ,T

The derivatives of (l/N)iog L with respect to the elements of

B(t) form the matrix

(3.14) 1 9 E4~ [C- (1) B(t) et- (0)] t t2,..T.
N aBTt) -t -t z-

The maximum likelihood estimates of B(2), .. ,B(T) are

Then 1/N times the logarithm of the concentrated likelihood function

is



(. - Tp log 21 L log 2 - log

(36)lo slg ' I
t=2

iC - 0 + I t C BS)C 0

- ~{tr F11 c1 (0) [ tr Et[ t(o) - B(t) t~l() t)2t=2 ~

Then [by Lemma 3.2.2 of Anderson (1958)] the maximum likelihood es-

timates of F 2 . T are

(3.7) F C (0)

(3.8) 2t = Ct(O) - B(t) Ct 1 (0) B(t)

C = t ( 0 ) - C t ( I ) C t-1(0) -1 C t ( 1 ) ,

1 Y"1 N A ~ ( B~tY t =2, . ,T.

The components of B(t) are least squares estimates and Zt are

composed of sums of products of deviations from the fitted (auto) re-

gressions. [See Anderson (1958), Chapter 8, and Anderson (1971),

Chapter 5, for example.]

The assumption chat the autoregression matrices are homogeneous

and the disturbances identically distributed leads to considerable

simplification. Then 1/N times the logarithm of the likelihood

function is

* 9ii



. 9) I-logL - -Tplog 2W -!log IF1 I T-1) log I1
N 2 2 -1l 2

-1 T
.- tr F c,(o) +t - E_

St=2

T T
-2 C t(1 ) B +B I C_ (0)B

t=2 - t=2

Tp log 2r -log IFI - T-1) log I 1

- It F 1 Cl(O) + (T-l) tr -1 [C(O) - 2 C(1) B

+ B C (0) B

where

T
(3.10) CO ' 1  t (

T

(3.11) C*(O) Tt 2 .tl(O)

= C(O) + T-1 [C1(0) - CT(O)]

Then a sufficient set of statistics for FI, B, and E is

,IC() , C(O), C* (0) and C(l) . The maximum likelihood estimate of F

is (3.7), and the maximum likelihood estimates of B and E are

10



(3.12) B = C() C (0)-I'

(3.13) = c(O) - c(o) B^'

= c(O) - c(1) c (O -l c(i)

T N

t=2 a=l

An alternative model is to consider yla = 1, .... N , as

nonstochastic or fixed and treat y tO' t = 2, ..., T, a = 1, ..., N ,

conditionally. Then the maximum likelihood estimates of B(t) and Et

t = 2, ... , T, are (3.5) and (3.8) and of B and E are (3.12) and

(3.1.K, as r.e caa- may be.

"r..en Y_ is considtriad to have the marginal normal distribution

determined by the stationary proness, the covariance matrix F is a
-~1

function of B and Z as given by (2.3). Then the maximum likelihood

estimates are much more complicated. In the simplest case of p 1

the estimation equations involve a cubic [Sec. 6.11.1 of Anderson

(1971)]; if p > 1 or the order is greater than 1, polynomial equations

of higher degree are involved. [As T - , (3.12) and (3.13) are

asymptotically equivalent to the maximum likelihood estimates, but not

as N - .]

Estimation in higher-order processes is similar. For example, the

second-order case may be treated in the form (2.8) or (2.9). Suppose

Iw
11 v1



1lo '' ira' ct = 1, ... , N, are considered as nonstochastic or fixed.

Then in the r-th order process the maximum likelihood estimates of

Bj (t), j =1, ..., r , t = r+l, ..., T , are the solutions to

Wt(,l) ... C t (,r)

Ct~r,1 t .. t(r,r)

where

N

a=l - t-J,a

The covariance matrix Et is estimated by

!1 N
(3.16) Et [ ta- B1t (=i) Yt-i,

r
' C(0) 1 B^ t (i ) Ct(iJ B(J)

; i ,J=l ~

In the homogeneous case the estimates are

12



(3. ') B 1 r]= [ c(Ir) ... C(rtr)]

C(1,11r) ... C(,rlr)

c(r,zjr) ... C(r,rjr)

where

T

(3.18) c(jjr) = 1Tr I Ct(J'J)
t=r+l

T-- c 0,

t=r+l-j

(3.19)C(ijlr) - (ij )

t=r+l

The exact distributions of these estimates are, in general, too

complicated to be useful. Hence, we turn to asymptotic theory. For

fixed T by the law of large numbers

(3.20) plim Ct(0) = (Yt Y t = Ft, T
N--

(3.21) p]im Ct (1) = tYt-i =-B t Ft  t = 2, ... , T
N-'o

Hence, as N -+ -' , C (0) is a consistent estimate of Ft , t = 1, ..., T

B(t) is a consistent estirvate of B(t), t=2, ... , T, and E is a

13



consistent estimate of Et. t = 2, ... , T . It follows from (3.20)

and (3.21) that in the homogeneous case

(3.22) plim c(o) = T
N t=2 4

which is F in the stationary case [FI  F given by (2.3)],

T
(3.23) plim C(1) T 1 B I Ft_,

N-o t=2

which is B F in the stationary case, and

T
(3.24) plim C*(O) - Ft

N ~ t=2

which is F in the stationary case. It follows that in the homogeneous

case, as N oo 0 , B is a consistent estimate of B and Z is a

consistent estimate of Z

For fixed T as N - the elements of A'[Ct (0) -4C()]

t = 1, ..., T, and of vN[Ct(1) -4Ct(l)] have a joint limiting nor-

mal distribution with means 0 if it is assumed that y. is random

and the set (y u "" u ) are identically distributed (with

respect to a = 1, ..., N) It follows that vff[F -F], YN[B(t)-B(t)],

and V[-Wt ] has a joint limiting normal distribution with means 0.

It remains to find the covariances. The limiting distribution of

14



N

(3.25) A[B(t) - B(t)] l t t t- ()-1

is the limiting distribution of

(3.26) 1 Nc-

since plimN +. Ct~i(0) = F .t The covariance matrix of the i-th

and J-th rows of (3.26) is

(3.27) N Uita ujty f t-i,a , y
ct,y=l

= 1 (t) 1 N

a=1

= (t) F-1

ij Ft-l

where Et = [it). The covariances of the elements of rN[B(t)-B(t)]
ij

in the limiting distribution constitute the Kronecker product

a 1  F ar F 1 - F

a11  F-
1  a 1  

..I ap F 1

21 !t-l G 2 Ft-_ ... t- 2p Ft-l

t1
(3.28) E _ ,!.:

-1 -
-

pl Ft-i Op2 Ft-l pp -t-ll

15



~Teerit~ ut' ( o or~' t :i !!e'x.~.

the _2ovainiance matri :.- ':xw i- W~

t rep-laced by s ~

it ets of hny .. j.-

parirtsof r ... ,t-- , la:~ anid t he e;tc!,6-d va-I ue

suurI a term mu"ltipli i l i..Y uj u1  0u

Whn is t'ixd-, atxi1 i

rT T -1 t, a

has the swe lirnitins- distributi-un as

where

iro m U _j ~ iatriz Y the i -I 1 and~ J-t b i- w f'(3 i s

nri-%rail with mean 0 and r'ov ar irrce matrix 0 ( F F) . if

the prcess is staticinary 'F Y and --F--]( B) has the



limiting normal distribution with mean 0 and covariane'e matrix
E® F- 1

Limiting distributions when N is fixed and T are of in-

terest only in the homogeneous case. For N = 1 the limiting distri-

bution of VT(B - B) was proved in detail [Anderson (1971), Section

5.5, for example], and the method nolds for any fixed N . Regardless

of the distribution of yla, if the u t  are identically distributed

(t = 2,3,...), VTIT(B - B) has a limiting normal distribution with

mean 0 and covariances Z 0 F-  as T - o

It will be noted that the limiting distribution of A7-&T-(B - E)

in the stationary case is the same for T fixed and N and for

N fixed and T We shall denote this situation as N and/or

T w Precisely this means that given an c > 0 there exists an

N and a T such that the normal distribution differs from the exact
0 0

distribution by no more than c if N >_ N0 for any T or T Z. TO

for any N Of course, the difference is less than E if both N > NO

and T> T

17
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4. Tests of Hypotheses.

4.1. Introduction. There are !ariss qncheses abcut the auto-

regression matrices that one might wan', to test. Because the asymp-

totic distributions of the estimates of aut',rewression matrices are

the same as the distributions of estimates of rerression matrices when

the dependent variables (analogous tr, ) are n,,rmal lv distributed

and the independent variibles (analogous to yt I ar( nonstechastic,

we can take over appropriate test procedures from normal regression

theory [Chapter 8 of Anderson (1958)].

For many hypotheses there are choices of test criteria that have

the same limiting distributions under the respective null hypotheses.

In the normal regression with fixed independent variables a test pro-

cedure is based on a pxp matrix G which has a Wishart distribution

with covariance matrix Z and degrees of freedom n and a pxp matrix

H which has a noncentral Wishart distribution with covariance matrix

degrees of Preedoom k , and a matrix-valued nonccntrality para-

meter which is 0 under the nu-l hypothesis. The matrix G is pro-

portional to the maxiriimu likelihood estimate Y, of Z when the null

hypothesis is true, and 1, + II is proportionil to the maximum like-

lihood estimate E of Z when the null hypothesis i2 not assumed

true. Some criteria are a monotonic function of the Wilks likelihood

ratio criterion IGI/IG + III , the Lawley-Hotelling criterion tr HG

the F'illai criterion tr H(G + i) - ]
, and the Roy ms<imnm characteristic

root of H G -  (or equivaLently of 1(0 + H)). in this paper we

18



shall present tr H G-1  as the criterion because it seems most

analogous to the corresponding criterion for Markov chains, but any

of the others could be used. All the criteria have the same limiting

X -distribution when the null hypothesis is true.

h.2. Specified Autoregression Matrices. In the normal multi-

variate regression model treated in Chapter 8 of Anderson (1958)

where the vector x is from N(z E% /., a = 1, ..., N, criteria

for testing the null hypothesis depend on the matrices

(41 deen on $h -Ptrice

and

(4.2) G= = a (xa a)( -

N AN

= X X - -"
at=l _a _a alaa

N * ~ *N ,,

al a a 011 !

where

NN -i N
(4.3) a x za~(~l~ a

19



In testing the null hypothesis that B(t) = B°(t) for a given

t (t = 2, ..., T), where B°(t) is a completely specified matrix,

the analogue of EN z is C (0) , the analogue of is
a A

9(t) , and the analogue of E is Et The trace criterion for

testing the null hypothesis is

130(t) ted tr buto)1®'l) he
, (4.4) N tr[B(t) -- °()tl(O)[B(t) -° tt

Under the null hypothesis this criterion has a limiting X -distribu-

2
tion with p degrees of freedom as N -o

Theorem. If X (pxp) has the distribution N(0, E F-1 ) , then

tr X F X has the with p degrees of freedom.

Proof. Let F = K K', where K is pxp and nonsingular, and

let V = X K . Then

(4.5) tr X F X'E -I = tr V V'E -I = tr V'F -I V

and V is normally distributed with mean 0 ; the covariance between

the i-th and J-th rows of V is Gij KF'F-K = j I . The columns

of V are independently distributed, each according to N(O, E) .

Thus tr = P= j -1 , where V = (vl, ..., I has a

2 2
x -distribution with p degrees of freedom. Q.E.D.

Because the quantities A[B(t) - B°(t)] are independent in the

limit for different t the criteria (4.4) for different t are

20



independent. Hence, to test the null hypothesis B(t) = B°(t)

t = 2, ..., T, the sum of (4.4) on t from t 2 to t = T can be

2used. Under the null hypothesis this has a limiting x -distribution

with (T-2)p2 degrees of freedom.

If the autoregressive matrices are the same, that is,

B(l) = ... B(T) = B , one can test the null hypothesis that B is a

specified pxp matrix B by use of the criterion

(4.6) N tr(B - B0 ) C*(O) (B - B)E 1 .

As N and/or T - , this criterion has a limiting x -distribu-

2
tion with p degrees of freedom.

A set of test procedures can be inverted to obtain confidence

regions; a confidence region for B consists of all mutrices B such

2_that (4.6) is less than a suitable number from the X2-tables.
I.

4.3. Equality of Autoregression Matrices given Equality of Covar-

iance Matrices. In case a process is not assumed stationary it may be

of interest to ask whether the autoregression coefficients vary over

time. We shall assume the distributions of the disturbances are the

same, that is, Zt = E, t = 2, ..., T, for some covariance matrix E

Consider testing the null hypothesis B(t) = B , t - 2, ... , T , for

some matrix B . The criterion

H 21
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(4.7) N tr l [B(t) - (O[r[(t) -]

t=2 ~

T 1
tr B() (0) (t)'- ^B C*(O) B.1Z

lt2... 2.

has a limiting x -distribution with (T-2)p2  degrees of freedom as

N - when the null hypothesis is true.

To justify the criterion, again consider the normal multivariate

regression model where xta is from N[1(t) z 1, •.•, N

t = 2, ... , T . Then maximum likelihood estimates are

N tN -
(4.8) (t) zt z t 2, *.., T;

a~l a= at

T N
(4.9) 1 1 [[xtc - A(t) zt]t( -X (t) zt ] d

~ t=2 '1-t -ta -"

If R(2) ... (T) , say, the maximum likelihood estimate of

B is

4.T N T N

In this case

N

t=2 a -t§t

TN ~ , .T N

• = 1 t Zt e zp

t=2 a=l t2 t=2 .=l

22



2I
has a Wishart distribution with covariance matrix E and (T-2)p2

degrees of freedom. The justification of this statement follows from

Anderson (1958), Section 8.3, in a manner similar to Section 8.8. Then

the trace of (4.11) times Z- 1 has a X-distribution with degrees of

freedom equal to T-1 times the number of components in xta times

the number of components in z t The criterion (4.7) is asymptotic-

ally similar.

4.4. Independence. The stochastic process {y t} consists of

independent random vectors if B(t) = 0 for all t in the inhomogeneous

case and if B = 0 in the homogeneous case. In the two cases inde-

pendence corresponds to certain autoregression matrices being equal to

0 . Hence, appropriate criteria are the special cases of the criteria

of Section 4.2 when B°(t) = 0 and Bo = 0 . To test the null hypo-

thesis B(t) = 0 the trace criterion is

(4.12) N tr B(t)~ Ct (0) ~B(t)'Z

To test B(t) = 0, t = 2, ..., T , one can use the sum of (4.12) for

t=2, ... , T can be used. If E = " T is assumed t may be

replaced by E

To test the null hypothesis of independence in a homogeneous

process, that is, B = 0 one can use the criterion

(4.13) N tr B C (0) BE -

23



Note that the criterion for testing E(") = B(T) =0 given

2 =  " = T is the suni of the criteria for testing B(t) = B

t = 2, ... , T, for some matrix B and the criterion (L.13) for test-

ing that B = 0

4.5. Test of a Given Order. The greater the order of an auto-

regressive process the further Lack in time is the deperrdence. In the

interest of parsimony an investigator may ask whether the -rder ef

dependence is one integer, given that the order is not greater than

another, which is larger. In Section 4.4 we considered a test of the

hypothesis that the order of dependence was 0 given that the order

was not greater than 1. in general, the hypothesis that a process is

of a specified order given that it is of an order not greater than a

certain integer is a hypothesis that the higher-order autoregression

matrices are 0

To develop the procedures and (asymptotic) distribut±on theory

we refer to the case of n,,nstochstic independent varibles (Chapter

8 of Anderson (1958), for example). In the normal regression model

N(Rz, ~), = 1 ..... N, partition

(th.15)z=~

L

-OL z ( 2..

Ot

d4



Consider testing the null hypothesis w = 0 The criterion de-

pends on the two matrices

(.6) G = N OL ( -a )( -,zO

(4 Ni
N x N

where

(I N(^:~ N z(1Ni

(4.18) N xz z ~ )

N N '^

*(4.19) 1 = N z~) N (1 z1

t XC -CC -L _

Tel ~ a ~I =i ~ - i

Thene

,. = x ( I



(4.20) H NE N

N z( 1 N

j, ~ ~ I' X -OL - l -a -CciL1 cil

O a - -/cc~ a -

N N 'Nx (2 z(2) Zl (1) z(1)

[(2) z (2) ( ) '(1) ~
(2)~ a ~ I-C -X

N
(2) (2) j1)

r~~
4

- us tr a sp c fi a l th . h

N (2) N (2) (1),e

crier~~ f deeuec is r n ets h ux1hi ita

rieris'Kr); taitenl yoesss

z 2) 2b I z(- ~



(4.21) B q = B = 0~q+l. " r ~

The regression matrices are estimated by (3.17) and E is estimated

by

(4.22) NTr [Y hi)y l
rr

a _ (J y( j (I
C tm J~l I ,

C(Ojr) - [ E(i) C(i,jfr) B(J)
i,j=l

The criterion then is

(4.23)

N(T-r)tr r B(i) C(i,jlr) C(i,gjr) (.,hjr)C(h,Jr

i,J-q+l ghl

where

.. C r) rK) .. (,r

(4.24) ".

V(g,i r) ... C(g,g r) (,J r) ... C(g,g r)

The criterion has a limiting y2 -distribution with (r-q)p2  degrees

of freedom under the null hypothesis as N and/or T
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4.6. Several Processes lcentical. Several populations may be

sampled. There may be different socio-econoic statuses, different

income levels, or individuals subject to different treatments. The

investigator may ask whether the several processes are identical.

Frequently it is reasonable to treat the error terms as distributed

similarly in the different popuiation.

Consider testing the null. h-pothesis that the matrices of auto-

regressive coefficients o s first-order homogeneous autoregressive

processes with identical ccvariance matrices Y are equal on the basis

of Nh  observed time series of length T from the h-th process,

h = 1, ... , s . if ( is the estimate of the matrix for the h-th

process, P) is the poolel estimate -f the hyzotheticaliy equal matrices,

and Z is the nooled estimate c-f ] , a criterion for testing the

null hypothesis is

N

(4.25) tr ( - ) T (h v ( h)
h=l t L t= I OC t lC

- T h \) V Ahtr y 0) Yt

t -I tir

ST h

Unde t t = hX=u

~Under the null hypothesis this has a limiting X2-distribution with



2(s - l)p degrees of freedom as N and/or T '!he justifica-

tion of the procedure is similar to that of Section 4.3.

In the inhomogeneous case we can test the null hypothesis

B (t) = B (t) for a given t by use of (4.25) with (h)

replaced by B (t) and B replaced by B(t) ; the surs on t

are deleted. To test the hypothesis for all t = 2, ... , T , the

criteria are summed over t

4.6. Independence of Two Subprocesses. Suppose yt = (y(l) (2)'
t t -

where y() and yt consist of pp and p2(P1+ P2 = p ) components,

respectively. We ask whether the two subprocesses yt ) } and {yt

are independent. Since the joint distributions of all random variables

are normal with means 0 , the subprocesses are independent if and

only if

(4.26) (Y () (2)

j for all t and s Let

(4.27) B = ,2 Z~ 1l
\)1 -?2 -21 -221

The two subprocesses (in the Gaussian case) are independent if

(4.28) B 12 0, 2 =0

,; 29 .



because then

(a.3o)
(-- )') L[

Y/N -t'. , 2

\y =) S IV

0 )

E-s

(4=( .) ( y 2)

~21~ ~~ ~ 0 s f Y~ n t-s et eideedn n

t-s - -~~~ -s r

03, F,

On the other hand ify(I) and (2) are to be independent

F =~l 0 and (2f

-12 d fy21 ady are to be independent and

30



(2) (1)
(2) and W are to be independent, then

YI 2) ~ tB21 22 22

(4 1 +l 
1 f~ 9

-\21 '11 22 E22)

-22

Hence, (4.28) must hold. Then

IFi Fi2 o i Zi i Bil 0o

(4 .3 3 ) F = 1l ! 12 ( l 2s2 '( 1 1 2 -dl -

\ -22/ O 2/721 22 -2

s0 =0~ii -12 -22

s=O 2 2 -11 s1 0-22 -22

( F 22)

implies (4.29). (See Section 5.3 of Anderson (1971).)

3.

31. 
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To test the hypothesis (4.29) we use

(4.34) (:: :)-z21 -'22)

We develop the test criterion in analogy to the usual normal regression

case. If x = (x(1)x (2 )') has the distribution NWO, Z),

a = 1, .. , n, where E is partitioned according to (4.27), then the

conditional distribution of x (I ) given x(2) is N(r,(2 )' )~a -(1 11 ZI.2

where - and F if22 22122

then the estimate of is AA1 and the estimate of Eii2 is

(-/n)(A A A1 A The trace test for =0 is
11 -1 -l

(4.36) n tr A (A -A A22 A"

since (1/n) A1 2  is a consistent estimate of Z12 = 0 when the null

hypothesis is true, the criterion can be simplified to

A-I -i

(4.37) n tr A A A
~~-12 A21 11

To return to testing the hypothesis (4.29) for the autoregressive

process, we can use the criterion

32



(4.38) N(T- i) tr 2
12 22 21 11

which has a limiting x 2-distribution with p1P2  degrees of freedom

as N and/or T - w

Now consider testing the null hypothesis B = 0 when

12 = 21 = .0 As a guide we look again to the usual regression 
model

N (a, Z) , where x = = ( ,

(4 39) 1 12 ,1 12 ;:

and Z1 = 2 Then the estimate of (Ai 12)  is distributed

indepnddently of 0-21 2)  In particular, 12 is normally dis-

tributed with mean 12 and covariances constituting E ( -1P-12-11 D22.1'

where

_ (1) (2)
(4.4o) D . N ~ ( N :l-2.~- Ua - a le -a - 0 = ~C a _a

A *

The test criterion is an appropriate multiple of tr Pl2 22.l 2l 11

For the autoregressive process we use

A r T  N (2) (2)' T N (1)'(441 ttr, Itl, I y (2)J. , 1)
!1 _t-1lC9 _t-la - = ~ t-l ,a _t-l'cx

:,i'(4.bl) r B 2 awsl t=2 a=l ,i

T N' -i T N () y '
, (1) (1)} ! ZOL),h (2) B'

Yt-1, YtI, t-i ,a -

t=2 0a 1 t=2 awl
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its limiting distribution as N and/cr, T -~is a X -distribution

with p 1P degrees of freedom. A criterion to test the null hypo-

thesis B =0is (14.41) with 1 anid 2 interchanged; its limiting

distribution is als, a X-distributir with p p2  degrees of freedom.
fr

The three 2riteria are asymptotically independent.
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5. Multiple Decision Problems.

5.1. General Comments. In a suatistical investigation it fre-

quently occurs that several problems are investigated simultaneously

on the basis of one set of data. The designation of distinct hypo-

theses to test is a convenient division of a statistical study. There

are some other aspects which are more conveniently viewed as making a

choice or decision among sereral alternatives.

5.2. Selection of the Order of an Autoregressive Process. Suppose

the maximum assumed order of an autoregressive homogeneous process is

r and the minimum is q (<r) It is desired to determine whether

the order is q, q+l, ... , r . A possible procedure is to test whether

the order is r-l against the alternative that it is r at signifi-

cance level c r If this null hypothesis is accepted, then test therI
next null hypothesis that the order is r-1 against the alternative that

it is r-2 at significance level 6 etc. If the ordersisr--a igifcac lve

r-1, r-2, ..., q are accepted in sequence, then the order q is de-

termined. For more discussion of this type of procedure see Anderson

(1971), Section 6.4.

5.3. Equality of Regression Matrices over Intervals of Time. In

the case cf an inhomcgeneous autoregressive process it is possible

that the autoregression matrices are not equal over the entire range

of time t - 2, ... , T , but are equal over intervals of time while

being unequal between different intervals. The intervals may be pre-

assigne i. The method of Section L.3 can be used to test simultaneously
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the hypotheses

(5.1) B(2) .... = B(t), B(t 1+1) 2B(t2

B(t + i) = ... = B(tq)

The q criteria are asymptotically independent.

In T. W. Anderson (1954) are examples of the statistical analysis

of panel data where the responses were discrete and the Markov chain

served as a model. The transition probability matrix expressed the

probability of a political party preference at one interview given

the preference at the preceding (monthly) interview. One matrix

fitted the data for May to July (before the Democratic convention),

one for July to August (between the two conventions), and one for

August to October (after the Republican convention).

If the autoregression matrices are not constant for t= 2, ..., T

there may be other patterns to them. If the characteristic roots

of B are different (or if the elementary divisions are simple),

1
then B = QAQ-  , where A is the diagonal matrix of characteris-

tic roots and Q is a matrix of characteristic vectors. In a homo-

geneous autoregressive process the conditional expectation of t

given yt-2 is

9F2 2 -1y
(5.2) GytlYt_2 B ~t-2 A
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If a process is not homogeneous, we can ask whether

B(t) Aa ()Q1 for some Q , diagonal A , and suitable

numbers a(2), ... , a(T) . The sequence 1, a(2), a(2) + a(3),.

could denote an "inherent" time.
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6. Further Discussion. The model for the Kalman filter is

usually a generalization of the inhomogeneous process considered here.

The vector yt is an unobservable state vector. The observed mea-

surement vector is

(6.1) t H(t) +

where v t is a random vector. In engineering applications the matrices

B(t', EtV H(t) and the covariance matrix of vt are usually known.
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Appendix

This technical report gives the mathematical Justification for

assertions in Technical Report No. 24, elaborates on some aspects, and

presents some new methods. This opportunity is taken to make some

corrections and add an Addendum,

Corrections to Technical Report No. 24. Panels and Time Series

Analysis: Markov Chains and Autoregressive Processes.

page 11, line 1 Replace [p ij(t) by p ij(t)[

page 16, line 1 iPeplace B(I) by B(2)
under (3.7)

page 17, line 6 Add ET  EN,t=2 a~=l Yt-i ,oc Yt-lio

page 22, (4.6) Replace piJk by iJk

page 25, line 7 Replace B(I) by B(2)

page 25, (4.15), line 2 Replace B by P 4 times.

page 26, line 4 Delete "given E._ = Z

page 26, line 6 After "criterion" add "(iven

page 27, line 2 from Insert "limiting" before X
bottom

Addendum: Technical Report No. L ) was written for a volume to

celebrate the Seventy-fifth Birthday of Paul F. Lazarsfeld. Tragically,

Professor Lazarsfeld died before the organization and publication of

this volume was completed. The current technical report as well as

the preceding are dedicated to his memo~ry.
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