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CHAPTER 1 !
INTRODUCTION
1, Introduction and Summary ,
—*‘*":faln this dissertation we-stud® stochastic pxocesses’yhich arise out "

of a single G1/G/1 queueing system, WG—e*eagoncerncd hefgf;ith the
weak convergence of each process conditioned on an event whose probability
is converging to zero as time becomes large.<$-_~

The basic processes we are going to discuss are {Wn: nz2 0},
{o(t): t =20} and {w(t): t 2 0}, where W~ represents the time which
customer numt . n must wait before being serviced, o(t) is the number
of customers present in the system at time t, and W(t) denotes the
3 workload of the server a’ time t,
The setup for our problems is the classical one, 1in a single GI/G/l
2 queueing system, customer number O arrives at time to = 0, finds a free
server, and experiences a service time Vg The nth customer arrives at
time tn and experiences a service time Vo Let the interarrival times
tn - tn-l = un, nz21l, We assume the sequence of random vectors
((vn_l, un): n =1} ‘s independent and identically distributed (i,i.d.).

-1
Let E[un} = X ~ and E[vn] =

-1, where 0 <A, w<®, In addition, we

BN F

shall aiways assume that E{u } + E{vﬁ} < o and that the deterministic
system in which both w and v, are degenerate is excluded. The natural
measure of congestion for this system is the traffic intensity p = l/p.

In our ¢+udy we shall consider systems in which p 1is greater than, equal

to or less than unity.
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If we detfine §n =y =g then Wn can be defined recursively

by the relations

s

W = [“n +& ), nz0,

n+l

Now [§n: n 21} 1s a sequence of i.i.d, random vuriables with E{El} = n
2 2
and E{gi—uﬁ=02, 0< 0 <%, ¥Forn the random walk [Sn: nz 0} by setting

SO = 0 and Sn = §1 +oaee t §n, n=z1l, It is easy to show by induction that

W = max{f_ -8 :Kk=0,1, ,,,,n}, 130

Next, let N be the hitting time of the set (-®, x] by the random
walk:

N, = inf{n > O: Sn 2 x},

where the infimum of the enpiy set is taken to be +», Set N = NO. In
the queueing context ¥ is ihe number of customers served in the first
busy pericd.

What sort of Limiting results would ve hope to provide for {Wn: n 2 0)
and the other processes? One would like to bave results of convergence in
distribution, For example, does there sxist a random variable S# whose

b

distribution is proper, such that

1nP(S_ x| n<N<o) = p(st <
mre n g ‘

for each x 2= O when P> 1 (i,e., by > 0)? We observe that Wo=S

on (N> n}. Thus S# can be thought of as a limit law for the waiting

-2a
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time process in the first busy neriod cf
with P> 1,

Let {2] be the greatest integer 1

y by

S
nt]

X(t) = "1

where o 1s a constaut to be specified

know whether one carn obtain a functional

un|n<n<@

a general single server queue

n x. Define the random function

O ts 1,

later, Then, we would like to

central limit theorem as

==}'(,

where X 1is certain random function. Ths symbol => means weak converg-

ence in the Skorohod topology in D[0,1]
p. 137, for further discussion of this r

The limiting random function. X th
can be identified in terms of Browunian
Brownian meander or Brownian excursion d
P #1.

. o, .
Brownian meander, W , 1is firsti e

3.1, Let {B(t) - t= U} be the standa

T, T sup{t ¢ [0.1]: B(t) = 0}, Set Aﬁ

Wi(t) = [B(r, + )l

= D; see BILLINGSLEY (1968),
esult,

at we shall encounter in our study
motion B, The limit is either

epending upon whether P =1 or

ccgnized in BELKIN (1972), Theorem
rdized Brownian motion, Let

= - . Th
1 11 en

/ A%. cCgt<1,

It is & continuous, non-homogeneous Markov process and has iransition

density given by

Ir e merw me e

war

v imh

SRTHR B o
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(1.1) P(w (t) ¢ dy} = p (0,0,t,y)dy
-2 y2 y
= t °y exp(-—) |N|(-——'—-—1-)dy
2t (1-t)2
for 0<t<1landy>0; for 0<s<t<1l, and x, y > O
(1.2) POW (1) « dy | w'{s) = x)
lNI(-———gy
+ (1-1)
= p (s,x,t,y)dy = g(t's)x,Y) dy ,

(axt)H [ exp(- {22 Gy y""’ L) y) g

It

where g(t.x,y)

WX 2
INl(x) = 2,/1()% 5 exp(- ;—-)du, x20,
0

For the derivation of this transition density, see BELKIN (1972), p. 61,

Note that for x =2 O,

X
+
P(W (1) < x) = s R(y)dy
0
2
where R(x) = x exp(- x /2), x = 0, is the density cf the Raleigh distri-
bution,

Another procesy which we wi*i be interested in is the Browman excur-

+
ns £ . = = -
sion, wo. Let T, = inf{t2 1: w(t) = 0). Set &, =7, -1, and

v;(t) = |B(T1 ¥ t&z)l / A% , s ts1,

Brownian cxcursion is also a continuous, non~homogeneous Markov

process witn trangition density given by
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(1.4) P{W,(t) € dy) Po(0,0,t,¥)dy

2y e"p( _F(T_i)dy

)3

2t (1-t

for 0<t<1 and y>0; for 0<s<t<1 and x, y> 0O

(1.5) P[Wg(t) ¢ dy | Wy(s) = x)
yZ
| ot
= po(S:x:t:Y)dy = g(t"'s) X’Y)(l ‘t) 2

X exni=-
* 1 s

see ITa-McKEAN (1965), p. 76, for this resulc, Clearly, the distribution
of WS(O) and Wg(l) are degenerate at O,

In (hapter 2 we shall show that,if P % 1, the finite-uimensionzl
distributiors (f.d.d.'s) of (Xn ' n < N < ®) converge weakly to thos> oif
W

Because of the degeneracy at point t =1, the limiting behavior
an n < N <o) is rot revealed. When £ > |, the existence ot

1m (W | n<N<e)
e

will be esilablished and ii. disteibution funciion will be exhibited,
This is carried out in Chapter 3.

In Chapter 4 we restrict our attention to the case that P =
We establish results for the workload process, w(t), and the queue~
length process, Q ). Results for ceriain multiple channel queues are

also ziven,

e VAT bR« Sy et
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To close this section, we make a comment regardirg the notation in
this thesis, 7%he basic notation adhered throughout the paper is devel~
oped in Chapter 1 and the first sections of Chapters 2 and 4, Bracket ,

{ ], refers to the bibliography.

2, Relatecd WQEE

The history of conditioned 1imit results for various stochastic pre--
cesses does not extend over the past twenty years, The existence of con~-
tioned limit distributions in both discrete and continuous time Markov
chains is extensively discussed by MANDEL (1959, 1960), DARROCH and SENETA
(1965, 1967), SENETA and VER:-.1ONES (1967),

Results on cnnditioned random walks have been obtained by DWASS
and KARLIN (1963), LIGGETT (1968), DALEY (1969), BELKIN (1970, 1972),
KAIGH (1974), and IGLEHART (1974a,b).

For the M/G/1 queueing system KYPRIANOU (1971) firsi established

the existence of
1im P{W(t) s x | t < T{a)<®}, O<x<
{ ?

where T{a) = inf{t : W(t} =0, W(0) =a} for a# 0, It is further
demonstrated by KENNEDY (1974, that as time becomes large W(t), suitably
scaled and normed, converges to Brownian excursion or Brownian meander
depending upon whether P # lor P =1,

The first conditioned limit result for the GL/G/& queue is contained

in IGLEHART (1974a ;. In [17] he established the following result,




(1.6) THEOREM. [IGLEHART (1974a), Theorem 3,4]. If W =0, 0< o? < «,

3
E{ |§1| } <e, and £y is nonlattice or- integer-valued with span 1, then

& | N>n) = W,

The third moment condition was later removed, see DURRETT (1976).

When by < 0, which corresponds to a2 stable queue, the random walk
{Sn: n 2 0} is strongly actracted to the origiu and the limit results in
this case do not denend only on Hy and 02 but on the entire distribu~
tion of Eye Assuming that the distribution of £ satisfies the follow-

ing couaditions:
(1.7 - < By <0;

(1.8) §(s) = E exp(s- §1) converges for real sg{0,a),
for some a > O

(1.9) ¢(s) attains its infimum at a point 1, 0 <1 < a,
where ¢(1) = Y<1 and 6'(1) =

and

(1,10) if §1 is lattice, then P{§1 =0}> 0,

IGLEHART (1974b) established the following result:

(1,11) THEOREM. [IGLEHART (1974b), Theorem 2.3, If conditions (I,7} -

(1.10) hold and u 2 0, then

!/ &
= T
-_T+u expin};] L E{exp(- us” } j-1]

|1

(1.12) 1im E{exp{-u¥ ){N > n)
n - o n

f(u)
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The distribution function of the limit random variable S* 1s
[--]
later given by VERAVERBEKE and TEUGELS (1975). Let U(s, %) =3I, P{S_ =

x, N> n]An and
x

(1.13) V(x) = 1-¢ "+ TS U, x-71e” ™Y
o+ !

dy-

Then under the same conditions, (1.7) - (1.10), it is shown in [30], p, 283,

that
w 'Y-n
s = - —_— Pl > 0}y -
(1.14) Lim P(W x|N > n) exp 2;1 — Pl O;J v(x)

Acknowledgment: We close this introductory chapter vy axnowlieiging a

heavy debt to the two above-mentioned papers of IGLEHART (1974a, b) on

conditioned limit theorems for random walks
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CHAPZER 2

LIMITING DIFFUSION FOR RANDOM WALKS WITH DRIFT
CONDITIONED TO STAY PCSITIVE

1.  Introduction and Probability Space

Let {gk: k 2 11 be a sequence of independent, identically distributed
(i.i.d,) random variables with E(gl} = “1 and E{gl - ul}z = 02,
0 < o2 < ®», Form the random walk {Sn: n 2 0] by setting S0 = 0 and

sn =gy oot £y 21, Let Nx be the hitting time of the set

(-=,x] by the random walk:
Nx = inf{n > O: Sn = x},

where the infimum of the empty set is taken to be 4+, Set N = No.
Thiroughout this chapter, we shall assume that the distribution of

gl satisfies the following conditions
(2.1) by # 0

(2.2) 6(s) = E expl gl) converges either for real s&[0,a),

if u, <0, or for real A€(-a,0], if », > O, for some a > O;

1

(2.3) ¢(5) attains its infimum either at a point 1, if Wy <0,
or at a point -7, if Y >0, where O0< 1< a, and
8(+ 1) =Y<1 and 6'(* 1) = 0;

and

(2.4) §1 is nonlattice .

Define the random function xn by

~9-
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t
- x (1) .-.-—[f—], 0sts1,

T o
2 "
where @ =6 (T)/Y, 0<g<® and [x] is the greatest integer in x,
Our goal in this chapter is to prove that the finite-dimensional
discributions (£.d,d,*'s) of the random function xn, conditioned on
g n <N < «, conrerge weakly to those of Brownien excursion, w;.
To be more specific, we assume that {gk: k 2 1) are the coordinate
functions defined on the product space
o
(@, 5,2 = X (r % ),
- n=1

where R = (~», @), ] is the o-field of Borel sets of R, and n is
the common prchability measure of the gk's. It A= {r < N<»}, then
we let (An, Ny Ny, Pn) be the trace of (0, §, P) on A, Where A neg

= A, N¥, Fe§) and pn(A) = P(A) p(/\n) for AeA n§g.

Our result has anh application to queueing theory, as well as the

obvious interpretation as the fortune of a gambler or insurance companry

prior to ruin, If Wn is the waiting time of nth customer in a general
single server queue, then the £'s 1in this application are differences
of service and interarrival times, In this context N is the number
of customers served in the first busy period, Observe that wn = Sn
on (N > n}, Thus conditioning on {n < N < ®} will yield limit theorems
for the waiting time process, given that the first busy period has not
ended but will end eventually,

We close this section by noting a well known fact that P{N < o} =1

when p, <0 (see CHUNG (1968) p. 244]. In this case we can write

(N >n} instead of {n < N < o},

~10-
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2, Some Asymptotic Results

Conditions (2,1) through (2,4) imply that as n - o,

(2.5) P(s, = 0} ~ (Zym)"é V’(on)"l, T <0,
and

-3 n -1
(2.6) P(s = 0) ~ (21n) % Y (ar) 7, if p >0,

These results are contained in BAHADUR and RAO (1960); also see IGLEHART

(1974b),

Our analysis relies heavily on two lemmas, which appear in IGLEHART

(1974b),

(2.7) LEMMA [IGLEHART (1974b), Lemma 2,1]. Let
b n = n
Z dnA = expgz bnA i
n=o n=1
3

for |4l s 1, 1f b =0@™%), then

-
d = O(n*) as no o,

(2.8) LEMMA [IGLEHART (1974b), Lemma 2,2]., Let c,d 20, ¢ ~cn“95

n-1

~1
=d < @ and d = 0 . = d
nZo % s ! n (n ™) 1f an jéo cn_J Y then
an ~ cdn~b as n - o,

Let f. = P{N = n) and r = P{n < N < @}, Our first result yields

the asymptotic bhehavior of the sequence of (fn: n 21} and [rn: nz1},

-11-
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(2.9) THEOREM, 1f conditions (2.1) - (2.4) hold, then as n =«

(2,10) £~

(2.11) rn

A

(2o¥ar

3%

n) et

[=4

A
n? (Zﬂ)ga'r(‘)’-l - 1)

d-e

® n
where Y ]
exp-Z -—I;—P[Snso} s if p,1>0,
n=1
A = ~
1 o0 -T11 T
(Y™ -1) expl ) L—n p(s, > 0)| , if w <O,
n=1 A
Proof, When Hy < 0, the asymptotic relation (2,11) is proved in
IGLEHART (1974b), Theorem 2,1, Because fn =T 1" T it follows

immediately that given ¢ > 0, there exists n

>
n no

(171-1)n

where f = (Zﬂ)-%(aT)~lA.

Hy <0,

To obtain (2,10) and

0 such that for all

3
2

f __')’;, 7‘}(-9_1_)%_1 +o(€) £ £ < ...i l’;_. [7'1(;1-1:-1-) -1|+ o(e),

Y -1 n?

Since ¢ is arbitrary, we obtain (2,10) for

(2,11) for Ky » 0, we use en identity from

random walk theory {see CHUNG (1968), p, 256-258],

(o8]
n
1-3 4 5 exp(itsn)dP

n=lL {N=n}

0 n
ol £ £ |

exp{itS_})dpP
n=l " (5 50) n

-12~
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for lAl <1, Setting t = 0 yields

oo 0 n
(2.12) 1-2, ¢ B o el 2 A ps < 0.
n n n
n=1 n=1

3 Differentiating both sides of (2.12) with respect to 4 yields

0O 00 ~n 00

-n n Y n -n n
(2.13) 2_“‘ nt 7 = exp|- ) —»(s, S0} > v p(s <0)4,
n=

n=1 n=1

n -n
where |A| <1, Set a = nfny y S, = P(Sn < 0}, and

(2] o0 -1
d" = exp|l- Y Y—rp(s s 0|,
n n n

n=o0 n=1

= - -1
Then from (2.13), we see that a = nzl c _.d. Now c ~(2sm) %(QT) ,

j=o mn-j J
because of (2.6). So b = 2" te =o0(n"%). Also,
[s] ,Y-n
; ¢, = exp|-2 TR{S S0} <=
n=o0 n=1

PR N LRS-

Hence we can apply Lemmas 2,7 and 2.8 to obtain (2,10),

Now for any ¢ > 0, there exists 1 such that for all n 2 no,

(2,14) (1 - e)t 12 <f sS(1+e)f—
= e} =
n? n2

‘}J\; K

Mo
i
L

i

At
POV

B

Hence

-13~
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k=n+1
oo
s (1+6€)f Y, e

k=1

letting n - ®, we obtain
‘3_ -1 \ "1 "1
(2.15) 1im sup n? ¥ £ < (1 + e)f(v " ~-1) ~ .
>0 n

Similarly, using the first inequality of (2,14), we have

3 - -1 -1
(2.16) lim inf n2 v ¢ 2 (1 - e)f(y ~ ~1) ~ .
n-»e n

Combining (2,15) and (2,16), we obtain (2,11), since ¢ is arbitrary.

Our problem is closely related to the asymptotic analysis of the
distribution function of Mn' where Mn = max{Sk: 0 £k <n}, This
subject has been treated extensively by BOROVKOV (1965)., The following
two theorems are immediate  results of BOROVKOV (1965), Theorem 7,

Denote M = sup{Sk: k = 0},

(2.17) THEOREM . 1f conditions (2,1) - (2,4) hold, then for x > ¢ as

n = o
{4, Y R(x) .~1

(2.18) Pl——— S x ”';- exp(xaTJ;) —é—l A for oy > 0,
d/n. iS4 3

and

=14~
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H
z
H
H
H
3
£
M
t
- 1
i
H
H

M
(2.19) p{--’-‘-— < x} -p%i—'}—_ < x} ~ %’2 expi ~xa /1) Eﬁ-’i)- A'l,

n F 1o o

for p1< 0.

The limits in (2,18) and (2,19) are uniform for x in compacti sets,

(2,20) THEOREM. If conditions (2.1) ~ (2,4) hold, then for x > 0 as

n - o
, ] " R(x A
Pn<N_x0A/-£<°°$ ~ -;l-expéxce'u/;) 3.
a1 (Y7 - 1)
(2,21)
for u1>0,
and
PN <o/n > n} ~— exp(xa%/n) % _lA
- YO -1
(2,22) ot ( )
for By < 0,

The limits in (2,21) and (2,22) are aniform for x in compact sets,

2
Recall that R(x) = x exp(~x /2), x 2 0, is the density of the
Raleigh cistribution, Theorem 2,17 enables us to understand the asymp-

totic behavior of S, conditioned on (N >n} as n o e,

(2.23) THEOREM , 1If conditions (2,1) - (2.4) hold, then for x > 0 as

|

(2.24) lm/;

~ R
< x, N> nl‘ ~ —'Y-‘—nl-cxp(xcn\/n)éﬂ, if p.1>0,
’ QT

and

-15-
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S Vn R(x)
(2.25) BPl-B->x, N>n; ~ — exp(-xaw/n) ~—, iftp <O
n n hid*'43 1

The limits in (2,24) and (2,25) are uniform for x in compact sets,

Proof, We shall prove (2,24) first, Recall that S =W on (N > n},
So if we can show (2,24) with Sn replaced by Wn, the result will be

established, A simple path decomposition yields

Using the fact that N 1is an optional random variable and that W, = 0,

N

we can rewrite (2,2v) as

w
(2.27) p{—!‘— < x, N> n}
n

i
)
— e,
, =
=]
wn
]
e
3
M=
h
=
o
P,
=}
L
Ly
n
L
N

For n21 and x 2 0, let

- w
h(n,x) = nY n exp( -xaw/n) P{~2— < x; .
n

For € > 0 and a fixed 0 < n, < [n(1 - ] we can write, because of

(2.27),
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(2,28) ny exp(-xoz'th;) p{-2- < X, N> n

n
n-1r _ o .

= h(n,x) - Z [’Y ki'}' « h{n-k, x";ﬁ:) . (_ﬁ_il_k_)]_ 27 e xaw/n £
k=1 * '
ng [n(1-¢)] n-1 -

= h(n,x) - Z ' Z - Z - nY e £
k=l ken_+1 i=[n(1-¢) J+1

= a{n,x) - % ~-J_ -K - n'Y-ne-th“/; .
n n n n

Now
R -1
(2.29) lim h(n,x) = éi{lA
00 ot
and
nO
-k (x) -~
(2.30) 1= | 3 Ve, ) HEAT
o0 k=1 2t
2.

because of (2.18). Since R(x) = xe-": /2 is bounded, relation (2,18)
also implies that h(n,x) s G (0 <G <®) for all n 21 and x 2 0, Using

this fact, we can conclude that

(n(1-€)1 _ - N
o f— S 3 ’Y f -
(2.31) Jn s 6 Z R fk(n--k) Ge —2-1 k
k:n +1 k—no
o
-0 3

Because of (2.10), ¥ fn < Hn

(D <H<® for n=21, Thus we have




T

£
-
£
H
£
I
2
z
=
L
£
3
£
z
%
i3
:
i
:
:

A -t X

BRE .

b

Sy e kSR AN R SR

n-1

3
2. < e [.n
(2.32) K_ GH z K (n_k)

k=[n(1-€) j+!

n-1

! Z (n-k)"!
[n(1 ~ €)]? k=[n(1-¢) J+1

n

< GH

‘nel

= GH(1 - e)"% n': Z

k=1

=l

-2 -
< GH(1 - €) 2 n %(1 +1n € + 1n n) .

Finally,

-n -
(2.33) 1im nY e xarw/n £ = 0
o n

because of (2,10) and * being positive, Using (2,28) - (2.33), and

selecting n0 sufficiently large we can make

~n  ~xaw/n Y l Sk
nY e p-R-<x, N>n} -1~ 7 £ |R(x) ,-1
a/n ) k A

n k=1
T ot
arbitrarily small for large n, Since
[ 7~n o
AEexp-E-—n—-P{SnSO} = 1- Y'kfk
n=1 k=1

by virtue of (2,12), this completes the proof of (2,24), Because (2,24)
is a direct consequence of (2,18), that the limit in (2,24) is uniform for

x in compact sets follows immediately from Theorem 2,17,

-18-
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To establish (2,25) for the case Hy < 0, we can write from (2,26)

Wn Wn n W_k
(2.3¢) Py——>x, Nong = Pi——>xp - ) £ P-2—>x

n n k=1 k n

+ En: £ P‘%—fﬁ SX} -p‘(ﬁ—;s x} + ng}—; >X}P{N>n} .

For x 20 and n2>1, let

Pkl g g
NI D S YR VTN 1SN
Sk
—
=

- M
g(n,x) = nY ! exp(xom/;)[P L« xl -pP ._M:s x)] .

Then from (2,19)

-1
(2.35) 1im g(n,x) = Ryx) a7h

o ot

I

Multiplyving both sides of (2,34) by ny—n exp(xat ,\/'rT), we have




SRR A T RISy T T
f‘gﬁj:@%ﬁi& ERESETESRE

F R R Y 4 rem e

W
(2.36) nY " exp(xaw/n) P 337_5> x, N>n

k=1

-1
= -g(n,x) + nz 7K £, + &(n-k, »/n/o-k) (-5’:‘?)
- 07" exp(xaw/n) P{a% > x}P{N >nl},

To estimate the last term appearing in (2.36), let K be the nontrivial

solution of 6(4) = 1. Then for x> 0 as n—»

(2.37) P(M > xa/n} ~ D exp(-xax/n)

where D 1is a positive constant whose precise value need not concern

us; see IGLEHART (1972), Lemma 1 for this result, Hence,

(2.38) im0 " exp(xawh) P{—E=>xi PN > n) = O

n
because of (2.11), (2.37), and Kk >t > 0, The summation term in (2,36)
can be broken into three parts and be taken care of in the same manner as

we have done in (2,28) - (2,32), And we can conclude this time that

(2.39) -n ¥ |
1 n
ni.‘)mmn'Y exp(xan/n) P P > x, N> nj
= (-1 + Z Y fk).é.ﬁ A'l .
k=1 “at
© 5n -1
The power series ngl —n— P{Sn >0) hasY ~ > 1 as radius of converg-

@ -n
ence and T - P(s > 0} 1is finite; see VERAVERBEKE and TEUGELS

(1975), p. 281, for a discussion of this result, Therefore, from (2,12)

we have




0t SN XD 5

T T T T

[+ ] n
(2.40) ST ’)’nfn = ("1 -1) exp ZIT P{s_>o}} -

n=1 n=1

A

Combining (2,39) and (2.40) we obtain (2.25), Uniform convergence is a

direct consequ«ice of Theorem 2,17, This completes our proof,

LAy

For x 20 and n > 1, we define

(2.41) Fn(x) = (nn s —-—“dy, N> n‘exp(+yamJ—)

X

1 1y
—

where the sign is taken for iy >0, and the "+" sign is taken

for Hy < 0,

(2.42) COROLLARY, For all x = 0,

2
, x
g Fn(x) = 1 - exp(— -—2-) R

the Raleigh distribution,

Proof, Integration by parts yields

Fn(x) = (nﬂ)% 0 "—— £x, N>n
n

exp{-xat/n)

s
+ nim'n‘)’r' Pg—n-Sy.N>n
(o, x

a/n

exp(-yawn)dy ,

if pl > 0., Hence, by Theorem 2,23, we have

» ‘2
Fix) = o(1) « 5 y exp(- -;—-)dy .
(o,x

21~




[ 4 5= ST |

[

where

ey o

If 4, <0, integration by parts will yield

w
Fn(x) = (nn)é‘Y P{N>n} - P/=——>xN>n exp(xorc\/;)]
n 4
b, Y ,
+ wqTny P{—=> y, N> n} exp{yow/n)dy
(o,x] n
yZ
= ©o{1) 4 y exp(- 7) ay
(o,x)

because of (2,11) and Theorem 2,23 .

The next . -sult is needed in proving the convergence of high dimen-

sional distributions,

(2.43) THEOREM, Assume conditions (2,1) - (2,4) are satisfied, For

X, y>0 as no®

S
2.44 B<x -
( ) P = x-y, N Q\/;l-> n}

~ i{ exp{(x - y)ou/n} &(1, v, x),

atn

o )2 |2
g(t,y,x) = (2gxt) s‘%np[— y=X ] - exp[— ﬁﬂ)_] .
i

The convergence in (2,44) is uniform for x in compact sets,

Proof, Let M; = max{-S

K 0<k Sn)} and M = sup{-—Sk:k =z 0}, If

we set

alle

FOVEL TR




FALEE, TR - . N

e e bR RAAER S WA s A- _mame

g f
3 ‘
£ s ’
£ i . - n_ . _ > nj.

E an(b, x) P{Qfﬁ S x-y, N-yavn

§ then

: W (-s,) ‘
% an(y, x) = K——<y, = 2 y-xp,

E av/n a/n ;

MR

Using the simple identity P(A N B) = P(A) + P(A N B) - P(8), we can write

o o ol | M., S | {(-S,J |
a (y,x) = P{-E-<yt + P2y, < yexy ~P < y-
n” = N s s T e T

(2.45)

= I +J - K -
n n n

E
4 But we have
: M Y’
(2,46) 1 = p{-——-a y} + o(1) exp(-yor/n) ,
g n CX/I_I- 3 i

W o , ) 2
(2.47) J_~ tP(‘;?f J)‘ mrexp[xyq)aﬂc\m-ﬁ—y—g—’i]}[1+o(1)] '

Y
(2,48) K_ {1 - -(-;-—%;rexp[—(y-x)m\:’n - _Y_;_‘EL]} {1+ 0(1)] ;
m

Combining (2.45)

see BOROVKOV (1965), Theorem 7, for the above results,

to (2.48), we obtain (2,44), Uniform convergence also follows directly

from BOROVKOV (1963), Theorem 7,

3. The Main Limit Theorems

Having obtained various asymptotic results in the last section, we

are now able to establish the main result of this chapter, We shall show

the convergence of one~dimensional distribution of (Xn ‘ n <N < ®), then

extend the result to higher dimensions, First, we state a standard result

b, Co
Bl -

-23-
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in the theory of weak convergence used by IGLEHART (1974a), Lemma (2,18),
Alternatively, see BELKIN (1972), p. 54, or BILLINGSLEY (1968), Theorem

§.5.

(2,49) LEMMA, Let {un: n=1} be a sequence of finite measures on g§,

the Borel sets of R = (-®, + ®), Suppose b, =W finite, If {f :

n

n 21} 1is a sequence of uniformly bounded, Borel measurable functions

converging uniformly on compact sets to an everywhere bounded continuous

limit £, then

un § 1 Gou(en) = (0ua)
=T B B

for B ¢ 8 provided p(oB) = 0,
The following two results are the main objective of this chapter,

(2,50) THEOREM, If conditions (2,1) -~ (2.4) are satisfied, then for all

X20 and 0st<1l as n=-o

(2.51) (x (t) | n<N<o) = Wg(t) .

Proof. The claim (2,51) is trivial for t = 0, Next, consider t =1,

and take 0 < a < b, We want to estimate

s
(2.52) Pla<-E-<b | n<N<wy,
n

which is equal to

)




ottt B

P N 5 2ty Fe e J . AR e S SR

1 S, (
(2.53) r Pla<—=——=<b, n<N<<®
n )
S
-1
= r S P{—= ¢dx, N> n PXM{NQ”X’}.
(a,b] n
1f b > 0, then (2,52) is furthermore equal to
n S
(2.54) ——%—{— S (nn)é'y'“. exp(-xm/H)-P{—n— €dx, N > n}
(ﬂn ) rn (a;b:} CX/;

« n exp(xown) P{N-xa/ﬁ < 0}

3
m”)4r
n
Now

(2.55) n exp(xot/n) P{N_x% <®} = n exp(xawn) P{M > xa/n}

~ Den exp[-xa{«k-TWn ],

Combining (2,11), (2.,52) - (2,55), and using Corollary 2,42 and Lemma

2.49, we conclude that for By >0

(2.56) 1:mesa<L5b|n<N<oo
1-dee I "

If By < 0, then (2,52) 1s less than or equal to

-1 n
r

L P{——>a, N>n
a/n

which is asymptotically as n -+ = equal to

(E)& exp(~xom/m) R(x) + (r+ -1)a7"

n

because of (2.1il) and (2,25). This shows that (2,56} also holds when

<
ul 0'
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Next, consider 0 <t <1 and take 0 < a < b, For all choices of

a, b, and t it will suffice to show that

s
(2.57) tinPla< =2 < b | n <N <
n—x n

= P{a<wg(t) < b},

£ u >0,
Stat

(2.58) Pa<—-[-x-l—15b|n<N<°°$
&/n

S
is equal to ot P%-LEEJ dx, N > [nt IPXOJ; - P
A (a,sb) o edx [nt] {n-[nt) < N < o}

L 3, -nt
[ﬂt(l-t)nslirn (a,jb] (nt)%y " exp(-xorif)

. p{ﬂlt_]eﬂ, N>[nt]}
a/nt Wt

. n(1-t)7'“(l't)exp(xafnfﬁ)P{n-[nt] <N i < o} ,

Appealing to Corollary 2,42, we see that (2,57) equals further to

(2.59) n%:n . (nt)il’(pt)(a,gb] F[nt](%)'y: i:: exp(xarr«/ﬁ)P{n-[nt]<N_xa/ﬁ<w}.
Because of (2,21),

( " =)
(2,60) P{n-[nt]qv-xq/;<m} ~-7%-i-:%) exp(~xam/n) I Ji-t . __A .

ot (v"1a1)

Combining (2,11), (2,41), (2.59), (2,60) and using Lemma 2,49, we obtain

26
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e

11mp{a<—[—‘ﬁ°—-5b}p<n< %

n
2
2 b
- ——— expl -~ =
der(ya) 3 5 af.e o I (zu-t)) S
A (nt)J"(l-t) (a,b rréa‘T('Y-l-l) (v SR
2x” exp( 7———,"2 )
s x exp(~ gryooy)ox j .
= 3 53 = PO(O,O,t,x) dx |
(a,0]  [2xt°(1-t)7] (a,b
which nroves (2,57) for by >0,
Similarly, if By < 0, the term (2,58) becomes
{_ 5[t]
pla < <b | N>n},
' oA&
which is equal to
Y 1 n(1-t)
2,61 dx -
M N P Lo (X Fns S AED) (DR on-tod]
n a,b

Using the same argument, we see(2,61) converge as n 3 ® to

j Pg(o, 0, t, x)dx .
(a,b]

This completes the proof,

Finally, we can plunge into the proof of convergence of the f,d.d,’'s,

{(2,62) THEOREM, If conditions (2,1) -~ (2,4) hold, then for k >1

< < 4o < .
and 0 = tl tz <t 1l as no

»

2,63  (x(t), ..o, X (t) | n <N <) = (W(t,), ..., wy(t)) .

s s e

[P A

R

o
a

g -

S,
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Proof., Theorem (2,50) takes care of the case k = 1, Now suppose (2,63)
is true for k = m~1, we show next that it can be extended to k =m,

We begin by writing

Slnt, ] Snt ]
(2,64) P—'-"'"""'le, -.-,'—-""'"Sxm‘n<N<°°
a/n a/n
X x S S
3 ml “mo {“[nt ] [nt,_,]
= rn S S P w_ < x1, csey < xm_z 3
o+ O+ n o/n
S
S[ntm_l] [ntm] )
e edym_l, edym; n<N<K cnj
o/n a/n
S
1 el " S0nt ) [nt__,]
= r P S Xy ees, =————edy ., N>[nt ]
n Ol/r-l 1 0(/1-1 m-1 m-1l
o+ O+
S
ym_la/ﬁ! [nty)-lat, ;] 5,
* P edy min (=) >o0
( &/n m OSkS[ntm]-[ntm_l] a/n
! ym%
. e P {n-[ntm]<N<w}
b X L X (S
3 m-l m [ntl} S[ntm~1]
1, = S S P le, ssey edym_l n<N<Q
: O+ O+ ( a/n &/n
3 S
} [nt_J-[nt_ ]
: . P n m-1 edy , N > [ntm] - [ntm_l]
m -y CX/E
4 a&/n m=1
3
1
3 }ne
2 ) Pln [ntm] <N_qu/—<m’
1 P’n-[ntm_l) < N_y «/n < co!
m-1

28—




From (2.6C) we

]

es that the quotient term in the last preduct term is

asymptotically equal to

2

y
3 m
1et 2y exp|~ ~
@) (Tl L TR ),
1-t_ ) 5 Y exp{#(y =y ___Jom/n{ .
m y m “mel
Yp-15%P |- m-1
ZZ].--tm"1
Let
i (S[nt_J-[nt ]
G(y ) = S D — gdx, N ,=>[nt J-[nt ]
nnm O+ 0&/-1‘1- -ym_lcm/x_l- n M1
nt, |-int
7{ m] {n m-l] exp{_—t (x-ym__‘)a‘r\/r-) .
Integration by parts yields
(2.66) ("
.66 - § -
138 Gn(ym) 5 g“’m tne1? Y-’ x)dx,

because of Theorem (2,43), Finally, by our induction assumption

lim P{—= < Ky ssey S x n<N<w®

§1 §m-1

+ + . +
= RN 2 t L X I ]
2 0 pO(O’O’tl’yl)pO(tl’yl’ 2:y2) pO(t

dy, _1--- dy; .

Combining (2,64) - (2,67) and using lLemma (2,49) twice, we obtain

=5

m—2’ym-2’tm-1’ym-1)

It S e
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nt_ ] S[ntm3
< x., ...,-———-——sxmln<N<eo

8 a/n

TR AT (AT T8 i TR T A T ST P O ey

=

T

X X
m-1 m 1 m-=2 + +
\ * e
e g R U TR R YRR PV MPYLNETE APy

R SO PRRRTTS
i
om
ot’i

g( tm - tm_].) y

m_l, ym>

2
ym
-t \3 n e"p(‘ 2(1—th>
[ ] ) ) 2
exo| - ym-l
ym—l P 2(1-tm_15
dy

dy s (xy ° dym «

m=1 "m~2 1

Relation (2,63) follows immediately, which completes the proof,
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CHAPTER 3

CONDITIONED ! fMIT THEOREMS FOR RANDOM WALKS
WwITH POSITIVE DRIFT

1, }ntroduction

Let {Xk: k =2 1} be a sequence of independent random variables, iden-

ticslily distributed with common distribution F(x) on (-, +»), Let

. 2 2 2
thl} = and E{Xl - pl} =g, 0<g <w, Form the random walk

L

[Sn: n = 0} by setting S, =0 and S =X + -o + X,nz1, Next

0 1

let Nx be the hitting time of the set (-, x} by the random walk

N = inf {n>0:S_<x} .
x n

where the infimum of the empty set is taken to be +w, Set N = NO.
When Ky > 0, the random walk is drifting to +4e and asyﬁptotically

the conditioning N > n plays no role: the random walk does not feel

the barrier at the origin, In fact, we have

limP-r-l-—5x|N>n) =0, x> 0
o f

because of Theorem 2,23 and P{N = o)} > 0O [see CHUNG (1968), proof of
Theorem 8.4.4], In this case it is more meaningful to examine, instead,
the limit distribution of S , conditioned on (n < N <®), From Theorem

2,50 we have, for 0 st <1,

8 G
limP—LI-ll"'len<N<w) = P{wg(t)sx} .
-3 - {
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But p(w;(l) € x} = 1 and this result does not tell us thc limiting be-

%

havior of Sn’ because normalization by n kills it, It suggests that
we need not normalize Sn by n% to get convergence to a non-degenerate
limit,

The main result in Section 2 is to show (Sn l n < N < ) converges

#

to a non-degenerate random variable 5", and to identify the distribution
function of S#, As we have pointed out before, this problem is closely
related to the asymptotic analysis of the distribution function of Mn’

where Mn = max{Sk: 0 £ k €< n)}, We shall get the asymptotic result of

P(M_ < x} in Section 3,

2. Limit Theorem For (S_ | n <N <o)

Throughout this chapter, we shall assume that the distribution of

X1 satisfies the following conditione:
(3.1 0<p S

(3.2) 8(s) = E exp(sxl) converges for real s ¢ (-a,0), for some
a> 0;

(3.3) 6(s) attains its infimum at a point -1, 0 < 7 < a, where
o(t) =v<1, and 0'(7) = O;

and

(3.4) if X, is lattice, then p[x1 =0}>0.

The proof of the main result in this section requires us to intro-
duce the so-called associated random variable to xl; see FELLER (1971),

p. 406, for a discussion of this concept,

32
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The distribution function ﬁ(x) of the associated random variable
21 is given by
b4

P(x) = exp(-ky) F(dy) .

[

-0

Let {22, 23, ...} be a sequence of i,i.d, copies of ?1. Form the

associated random walk {@n: n2 0} by setting §O = 0 and §n =

ﬁl 4 eee 4 ﬁn, n =1, Also, define the stopping time § accordingly, If

£(»)

E exp(Aﬁl) is the moment generating function of ?1, then

() 8(h -~ K). Note that 6'(-x) < 0 implies that the associated

random walk (§n: n 2 0} has a negative drift, Furthermore, the distribu-
tion function % of 21 satisfies conditions (1,7) ~ (1,10), Hence, we
have from (1,14)
(3.5) 1imp{8 <x| f>n} = ¢ . ¥(x),
mo B

where ¢ is a constant and ¥(x) is a known function solely depending
on x; see Ch, 1, Sec, 2, for this result,

To get the limit result for (S_ | n <N <w), we first estimate

P(Sn < x, n <N<w} for x >0,

(3.6) p{sn <x, n<N<«} = f P{s e dy, N> n} PY{N < o}
(0yx]

= gaf Lo, x] (¥t t+ 9, F(ay,) - - -Fay,) P{M™ >y, +oeoty ]

n

le
= e : < 3 iti
where Ah [(yl, ,yn) i§1 yf> 0, 1S k< n} . Exploiting the concept

-53_




3 of associated random variable to 21’ we can write {(3,6) as L

| i A R

3§ ggl (v, + *==+y ) P{M >y +#-ee+y Yexp[k(y +-+ety )IF(dy )...F(dy )

b 1 n 1 n 1 n 1 n

E A, 7 (o,x]

: N

3 = S P{M >y} p{sn e dy, N>n} .

(03] |

E: !
Hence

P{Snsx, n <N < )}

P{s_ < x|n < N <}
n P{n < N < «}

1 g

4 ) (Q,X]P{M > yhe"'P(S e dy|N > n}

j p{M > y}e'P{S_ € dy|N > n}
(0;%) .

A It follows from (3,6) and Lemma 2,49 that s

- K
f P{M Ve Y ¥ay)
(3,7) linm P{s < x|n < N <0} = “’)_"] ® H(x) . ?
n- =

(OL] P(M >y (ay)

It is easy to see that H({x) 1is nondecreasing and right continuous with

H(0) = 0, H(+») = 1. Thus H(x) is a distribution function.

Hence, we arrive at our main result in this section:

(3,8) THEOREM, 1I1f conditions (3,1) - (3.4) are satisfied, then ag n =

(3.9) (Sn|n<N<°°) =>s#,

L]
where ‘s a non-degenerate random variable,
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One application of this result 1s in terms of the waiting time of the
nth customer, Wn, in a general single server queue with traffic intensity
p > 1, In this case, W= Sn on the set (N > n) and N is the number
of customers served in the first busy period, Thus S# can be thought
of as the limiting waiting time given that the first busy period has not
ended yet but will eventually terminate,

For illustration, we take as example X1 = v- u, where v(u) has

an exponential digtribution with parameter u(A), This corresponds to

M/M/1 queue, If P = L/u, we need to assume Ff > 1 in order to insure

Ex1 = ul > O. Then, it is well-known that

(3,10) PM > y) = O exp(- ky) ;

see, for example, FELLER (1971), p, 199, Because of (3.,5), (3.7),

(3.10) and ¥(w) = ¢ %, we have

H(x) = cV(x),

which is the distribution function of %im(gn | R > n). One ¢ a calculate
L)

its Laplace transform and find

2
(3.11) E exp(ust) = —Azp)(utd)
AM2u + X - o

)2

see IGLEHART (1974b), p, 750, for details,

3. The Asymptotic Analysis of the Distribution Function of M

Following the exposition of the last section, we shall go on to estab-

lish the following

~35~
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are satisfied, then for all

(3,12) THEOREM. If conditions (3,1) - (3.4)

x 20

o 2 e
._ﬁg—_ exp Z —%—P[Sks 0}l ,
(2n)%ar k=1

where G(x) is a known function solely depending on x,

Rrol 35

(3.13) P(Mn < x] ~

as n - o,

Proof, For x 20 let Gn(x) = P(Mn £ x} and un(x) = P{Sn < x, N > n},
n 2 1, Employing the same argument that is used in deriving (3,7), we
obtain

s Y P{§n ¢ dy, N> n}

un(x) =
(0,x]

P{§n s x, N> n}e - « P(s_< v, & > n)eYay.

(o]

The last equality is due to integration by parts, VERAVERBEKE and TEUGELS

(1975) have shown that
f’{SnSx, N>n} ~ %j’ ix).
n? {2r)%qr

n - oo, Hence

as
(3.14) u (%) ~ lﬁ._v(.’_‘.i_
n® (27)%q1
where V{x) = ‘\‘I(x)e"<x - K(ofx1 ff(y)eKydy. Form the generating function
b J

for [un(x): nz20}:

u(s,x) = 3, un(x)/Jn .

n=l1

~36~




e =

Then we have the following Spitze. Jentity

[os] o« n
n .
(3.15) G (x) = {1+ U(Ax)]).exp “-pfs s 0
. n . (s, }
-— n:

(see [30], p. 280). Differentiating with respect to 5 yields

oc oc
Zn'y’ngn(x)/_',n = exp[z "ZE_ P(Sn s O}/Jn}
n=1

n=1
oc o]
~-n n . -
(3.16) . Z Y p{snSO}/,« }{1+U(%x)j + Env nu (x)An
n=l ! n=1 n 3
As we had in (2.6},
(3.17) P{(s = 0j ~ (2:) 2P(am) ™!, as o o,
If we set
l’ — -0 n r 4
(3.18) a (x) = Lzl Y P{s_ = 0): ll Culs K,
n= )

then, beczuse of (3.14), (3.17) and Lemma 2,8,
an(x) ~ a(x;n_é, as n o @

he R, -& \'1 ol -1 ., .

where a(x) = {2x) *(qrj = [1 + (Y 7, x)i, Thus

(3,19) an(x) i n‘Y.'nun(x) ~ (2nn)-"’(a1)-1§1 + U‘(Y-l,x) + v(x)]
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by virtue of (3,14). Let
(o9 n [e's] 'Y-n
n
(3.20) n);o asb = exp[nf;l — P(s_s 03/3]

Then, because of (3,17) and Lemma 2,7,

(3.21) d = 6{n2),

And it is obvious that

[o]
(3.22) E d < =,
n=o

Combining (3,16), (3,18), and (3,20), we have

o] o0

-1 n n =, -
Z nY Gn(x)A - Z ds| e Z [an(x) + nY nun(x)]/sn .
n=o0 n=o n=0

Because of (3,19) - (3.22) and Lemma 2,8, we obtain

o0, () (e e ol - enp| T B w5, 5 0)

-1
where G(x) =1 + UC(Y 7, x) + V(x), This completes our proof,
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CHAPTER 4

CONDITIONED FUNCTIONAL CENTRAL LIMIT THEOREMS FOR QUEUES
WITH TRAFFIC INTENSITY EQUAL TO UNITY

1. Introduction

We shall first study a general single-server queueing system with
traffic intensity, p, equal to 1, and then excend the result to
multiple-channel queues, The GI/G/l queueing system is constructed
in Section 1 of Ch, 1, We shall follow the exposition there,

Section 2 of this chapter is concerned with studying the behavior
of the workload process, W(t), conditioned on the fact that the first
busy period has not ended by time t, as t becomes large, A func-
tional central limit theorem in D[0, 1] 1is our goal, In Section 3,
the queue-length process, @Q(t), is treated,

In Section 4 we shall extend the results for the Wn and W(t)
processes to a variation of Gl1/G/1 queueing system, where there are
several initial customers instead of only one at time t = 0, This simple
generalization enables us to establish results for our multiple~channel

queueing systems, which is the subject of Section 5,

2, The Workload Process {W(t): t = 0)

For t 20 let A(t) = n+l orn {tn St< tn+ }, where as previously

1

defined in Section 1 of Ch, 1, tn = U+ e +u , n z 1, and to = 0,

For convenience let A(0-) = O, Clearly’ {A(t): t 2 0) is a renewal

process which represents the number of arrivals in the interval [0, t],




Set I(t) = A + see + aty-1 " t. The workload process, W(t),

represented as

(4.1) w(t) = I(t) - inf{I(4): 0= 4 = t} .

with W(O0+) = VO > 0, Define the random function

w(ut)
?
oA u

v (t) oSt<

Next, define a stopping time L = inf(t > 0: W(t) = 0], where L repre-
sents the length of the first busy period, Our goal in this section is

to obiain a central limit theorem for (YulL >u) as u =, The first
step toward this goal is to understand the asymptotic behavior of

d, = P{L > u}.

(4.2) LEMMA, For u > 0, P{L> u} ~c(} u)-% as u-»>®, where c¢ is

a constant,

Proof:

(4.3) (L > 4]

i}

(w(t) >0, 0<t su}

)

{w(t) > 0,w(t,) > 0,...,W(A(u)-1) > 0, W(u)>0)

{s1 > o,...,sA<u)_1> 0, sA(u)+ tA(u)-u >0},

-40~
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and

(4.4) {s,>0:1=1x A(u)} c{L<u)c {si > 0: 12 1 < A(u)-1} .
It has been shown that

(4.5) P[si >0:1=is=<A(u)) ~ c(ku)'%, as u - o

see IGLEHART (1974a), Lemma 4,2, The desired result follows from (4.4)
and (4,5),

The proof of the main theorem requires a standard result in the

theory of weak convergence, Let (Xn: nz1} and {Yn: nz1l} be two

sequences of random elements of a separable metrix space such that Xn
and Yn have a common domain, Let p{x,y) = sup{|x(A) - y(A)|:0 S AS 1]

for any x, y ¢ D[O, 17.

(4.6) THEOREM, If Xn =X and p(Xn, Yn) =0, then Yn =X,

See BILLINGSLEY (1968), Theorem 4,1, for this result,

S
7 ( ) - Alut , 0
wt (xu)%

g

Let

IA
ct
1A
ot
*

(4,7) LEMMA, If p =1, and 0 < o2 < e, then 43 u 4 o

(Zu|L>u) = W .

41~
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Proof, It follows from Lemma 4,2 and IGLEHART (1974a), Lemma 4.3, that,

i 0<t, <t, <. <t S,

(2,(t), 00,2 (£ )L > 0) = (W+(t1),...,w+(tk)) .

Thus we have the convergence of f,d.d,'s of (Zu|L > u). It remains to
show that the family {(ZulL > u): u2 0} is tight, Since Zu(o) = 0,

it suffices to show that, for every ¢ > 0,

(4.8) 1im 1im Pl{e (8) 2e | L>u} = o,
60 wrw zu

where wx(é) = sup {‘x(s)-x(t)l: s, t ¢ [0, 1], ls-t| < §}; see
BILLINGSLEY (1968), Theorem 15,5, for this result,

We have from (4.4)

0 = Play, (8) 2¢ | > w
u
< 2> A(w-1) Pla, (8) z ¢ | N> A(u) - 1) .

P(L > u) u

IGLEHART (1974a), Lemma 4,6, has shown that

1im T P(w (8) 2 ¢ | N> A(u) - 1) = oO.
6lo wo  Z,

—49~
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Hence (4.8) follows immediately, This completes the proof,

Now we are able to establish our main result,

(4.9) THEOREM, If p =1 3

—_— ’

2
0 <7 <o and E{ Uy ) <o, then as u = =

(v, | >u) = v .

Proof, On the set (L > u},

A(u)-1

W(u) = 2: Vi -u = SA(u) + (tA(u) - u).

i=o

Let p(x,y) = sup[lx(t) - y(t)l: 0st<1} for any x, y in pfo, 1].

Then

it

p(Yu, Zu>

1
s SupﬂtA(uA) -~wl:oss51)

1A

1
s 1
-z;-;i sup{uA(uA). 0 =<4 =1}

glAu

IA

>
PN

[«
~
fon
L]

1
= 3 sup{u : 1=k
a(Au) k

Thus P[p(Yu, Zu) >¢ | L>u) is less than or equal to

~43=
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P

k

d-1 P{ sup u > € c(Xu)él

Y (1sk=a(u)+1

1A

-1 A(u)+1
% E{kz:; 1{uk>ec()\u)%}}

a’ E{A(“)ﬂ} . P{ul P> c(?\u)%} ‘

u

The last equality holds because of Wald's identity, It follows from

Lemma 4,2 that

(4.10) P(P(Y,, 2,) > ¢ | L> )

-1 E{A(u)+1}

= {1+ o(u)] u%P(uf>ec(Xu)é].

u

The elementary renewal theorem says that

E(A(u)]}

u

(4.11) lim .
2 Yoo)

3
Our assumption E{ul} < w implies that

1im t3P{u >t} = 0 ,

(4.12) 300 17

—44~
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Combining (4.10) ~ (4,12), wa have

(4.13) tig)P{p(Yu, z)> e | > u} =0 .

Finally, the result follows immediately from (4,6), (4.7), and (4,13),

Now let us suppose that at time t there are "Q(t) - 1]+ cus-

tomers waiting in the queue and the server is serving some customer, say

jth customer, whose residual service time v' is part of VJ' Then,

we can rewrite the workload process, W(t), in the following way:

A(t)
w(t) = v, + v!
i=A(t)-[Q(t)-1]*

b

i,e,, the sum of [Q(t) - l]+ complete service times and a residual
service time,

Let V(t) = W(t) - v', Since the difference of V(t) and W(t)
is dominated by max(vk: 0 <k < A(t)), it is easy to see that V(t),
properly normalized, has the same weak limit (see the proof of Theorem

4,9), For 0<tsl, let Vu(t) = V(ut)/U(xu)%.

(4.14) THEOREM, If p =1, 0< cz < » and E[uf+vf] < ®, then as

u - ®

(v lL>u) = who.

—45—
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3, The Queue-length Process {Q(t): t > 0}

We now turn to the queue~length process, (Q(t): t > 0], which
represents the number of customers in the system at time t, including
the one being served, This process is a random step function on the
positive half line with jumps of + 1, We may define Q(t) <formally

by introducing the departure epochs {dn]:

‘t + v+ W, ifnz21,
n n n

n
0 s if n

0
e

The departure process (D(t): t > 0}, which records the number of depar~

ture in (0, t], is defined as

max{nzl : dnst], if 4 =t
o(t) =

G , itd >t

Clearly Q(t) = A(t) - D(t), where of course A(t) and D(t) are highly

dependent, We observe that A(t) = D(t) for all t > 0 and
(4,15) (N> Dp(t)} D (N> aA(t)}, for all t =0,
Let us consider another renewal process (D'(t): t > 0},

. LR Y
max{n21: v1+ +v_s<t}, if v1 < t,
D'(t) =

0 s if v1>t.

Note .tat D<t: -; D'(t) and they are equal if there are no idle periods

46—
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in (0,t]. We observe that the renewal process (D'(t): t > 0} has
the same rate as f{A(t): t > 0} because p =1, Using the same argument

as in IGLEHART (1973), Lemma 4,2, we have

(4.16) LEMMA, P{N>D'(w)}~ c(uu)-% as u-> ® where c 1is a constant,
The precise value of c is not our concern here; see FELLER (1971),
p. 415, for its value,

-2

(4.17) COROLLARY, P{N> D(u)} ~ c(®du) as u=®
Using relation (4,15), (4.17) and the same proot employed in

IGLEHBART (1973), Lemma (4.2), we have the following two results,

3
(4.18) LEMMA, ;_f;p=1,0<02<oo and E{u3+v]<eo, then as

(Yﬂl_; | ~> D(t)> = w(1) .
a(At)

t oo

(4.19) COROLLARY., If p =1, 0<0° <o, and E{u’v3) <o, then for

x>0

ggp{v(t) <x | N> D(t)} = O,

Corollary 4,19 enables us to show that, as time goes to infinity, the
queue length will also become large, conditioned on the event that the

first busy period never ends, For the unconditioned case, a similar

-4 7=




Wi ki)

HaZipass

result is first proved in WHITT (1968), pp. 149-151,.

(4.20) LEMMA, For any M > O,

lim P{Q(t) <M | N> A(t)) = ©O.
to0

Proof, Let (At, At ns, Pt) be the trace of (i, ¥, P) on At = {8 > D(1)}.

We can write, for any x and M,

P(V(t) sx) = Eo PIV(t) = x, [a(t) - 1] =k} .
Let
A(t)
E = (v(t) =x} = ‘ ; v.le,
[1=a(t)Ta(e)ar 1
F o= ([t) -1 =1},

and let 0(x1, coey xn) denote the sigma-field generated by random vari-
ables X)» ++ey X . Then on the set fa(t) = itk, D(t) = i}, for any

i, k> 0,

)

Ee G(Viﬂ, ceer Yk

),

oy

Fe G(VO) ceey V., U

u
i’ 1’ itk

and

At € U(VO, seey Vi-l, ul’ es e, ui) .

~48~
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Therefore, P(EFlAt) = p(E) « R(Fla), i.e.,

A(t)

PR }E: v, < x}o Pt{[Q(t)-1]+ = k}

i

Pt{V(t) < x}
k=o [i=[A(t)-k]+

" A(t)
2: P :E: v, S %0 Pt{[Q(t)-l]+ = k} .
k=0 Fi-[A(t)-k]*t

[\

For any M, choose x sufficiently large so that for all k S M,

A(t) ) A(t) )
: i=[A(Zt)-kJ+ e xf S i=[AZ(1::)-M'J+Vi ] xf al

The choice of x 1is independent of t, because the last inequality
involves only at most m vi's, which are independent and identically

distributed, Thus we have

p(V(t) sx) 2¢p,({et) 11" =m) .

Since the left side goes to zero as t goes to infinity by Corollary

4,19, so does the right side, The theorem follows from the inequality

P{N>D(t))
P{Q(t) < M|N > A(t)) s p {a(t) = M},
P{N>A(t)}

Using essentially the same proof employed in (4,20) we have the

following generalization,




(4.21) COROLLARY, For any M> 0 and 0<t S1,

1im P(Q(ut) <M | N> a(uw)} = o.
wroeo

Our main object of interest is

A
[
A
]
*

9

Q. (t) =—i—)—§“‘° , 0
“ (x3u)

We are interested in the limiting behavior of (QulL > u). The next
lemma is helpful in establishing the convergence of the f.,d,d,'s of

@ lu>w.

(4.22) LEMMA, For any € > 0 and O0< t <1,

llmPgl-'EB—t% ze‘L>u = 0,

Proof. Set E(u) = (k : %- ‘\—ll < ¢} and F(u) its complement, Let

pu(,\) = p(A|N> A(u)) for Ae (N> AW} NF and r, = P(N > A(u)). ve

shall first consider

(4.23) IM e N> A
Q{ut) ,
Probability (4.23) is less than or equal to

pu{lgi(-z—:% - .\'ll > ¢, A(ut)eE(ut), D(ut)eE(ut), Q(ut) = M}

+ Pu[Q(ut) < M} + r;l{P{A(ut)GF(ut)}+D(D'(ut)eF(ut))]
= I +J +K .
u u u

-50-
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As u-~» o, K
u

au%P[A(ut) ¢ Flut)}] =

which will converge to zero because the numerator is finite; see SMITH

(1958), pp. 248-249, Because of Corollary 4,21, Ju

zero, It remains to estimate

u ;1 :E::
< -
I = r P

k, £€E(ut)
k~L2M

Since

{A(ut) =k, D(ut) = ¢, N> z} €0(V.y eee, V

and

((E ()

is asymptotically equal to

2E{ [A(ut) - kut]e}

2 = '
€2t u®

also converges to

Iu' Because of (4,13),

k "1\
‘ g (v.-A7)
| i=g+2 ‘ . .
_Q’
l K - 4

A(ut) = x, D(ut) = £, N> z} .

ge1d 9t Yen)

{ | i=0+2
k - 2

the two events are independent,

1 £ rt Z Jl

It follows

k / ‘1
T (v, )|
i=£+2

" Yo, geE(ut) I
k-£>M

By Chebyshev's irequality we have

> ¢ P(\>L, A(ut)=k, D(ut)=t} ’

SR

-51-
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P{N >[n(r-€) ], Alut)=k, D{ut)=¢}

Putting the estimates of I , J and X
u’> u u

to infinity in (4,23), we have

14 p IV(ut) _1l
e e Rl

Since M is arbitrary, we have

V(ut) -1
1lim p{lq(ut) Nkt S

Using the basic relation {4.4), we have

e Q(uti)

Proof, Since

-52~

(4,24) COROLLARY, For any € > 0 and

I s
u u
2, k, bcE(ut)
€M ke £2M
E{(vl-x'l)z} P{N> [n(r-€) 1}
_<_ L]
GZM r
u

together, and letting u go

3

E{(v,-A"T)2
e}s ™ e

ezM

e |N> A(u)} = 0.

the result,

0 < t, < ooo s
<ty < tk 1,

v(ut,)
1im p{[___~3_ - 1| >¢; 1 <isklL> u} =0,
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v(ut,) _
Pl 2 M > 151k L>u)
Q(ut, ) s
k V(ut,) _
< P 1-]\1]>ejL>u1,
3 (efuty) |

result follows immediately from Lemma 4,22,

Now, we are in the position to show the convergence of the f,d.d,'s

ot (@ lL>w.

(4.25) THEOREM, If p =1, 0 < 0° <® and E(uv?) <w, and if

0<t1<-“<tk$1, then as u 2o

((t))s wewr QAL > 0w) = (W (t), 0,07 (2))

Proof, First, suppose k = 1, We shall show that for any x > 0 and

0<ts1,
Al | (W (1) = x)
(4.26) lim P sx | L>up = PW (L) =x} ,
W |g(33u)F

Let Pu(/\)z P(A|L > u) for any A g {L>u} N ¥ Then

i A

TR




Fmty 3 e e g AT T

o {Q(ut) - x} e 5V(ut) - v(ut) Rx}
wla(Pu)? Yo()® ~ qut)

qg

< p d¥ut) _¥(ut) o M) -l
u{c(}\u)£ Q(ut) IQ ut | <e

v(ut -1
+ Pu{'Qit - A |ze}

A

V{ut
Pu{;f;;§£ < (1 + ke)x} + g,

because of Lemma 4,22, Since € 1s arbitrary

(4.27) 1lim sup P ‘_9&221_ < xl < liml>‘ v(ut) < x' = P{W+(t)5x}.
S ECHS B 2= ) |

On the other hand,

, { Q(ut) } { Qut) | V(ut) }
£xp, 2 P < x, - A >
o BIPCIRY R W)s(230)} o(ut) >

Again, because g 1is arbitrary,
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(4.28) lim inf P s Aue) < xl 2 lim P ‘ Vst < X) .
D S Bl o

u= % u

Equality in (4,26) follows from (4,27) and (4.28),

Exactly the same argument can be employed to establish the result

for k > 1, This time we use Corollary 4,24 instead, And Theorem 4.25

follows,

In order to get the full weak convergence in D{0, 1], we need
to show that the family {(Qu'L >uy): ur 0} is tight, To do so it

suffices to show that for any € > 0,

(4.29) lim 1im P{a; (8, 0, 1) 2¢ | N> A(u)} =0,
dlo we UQ, ’

see BILLINGSLEY (1968), Theorems 15,1 and 15.5 for this result,

The first step in demonstrating (4.,29) is the next lemma,

(4.30) LEMMA, For every ¢ > O,

(4,31) 1im Tim r;1 P{ sup gb ze, N> A(ur)} = 0,
TIO U0 ogsst o(A”u)

On the set (N > A(ur))}, {Q(us): 0S 5 = 1] is a stationary
process with independent increment, In fact, Q(us) = A(up) -~ D'(us),
0< A< 1, i,e., the difference of two standard renewal processes, Based

on this observation, the proof of Lemma 4,30 follows the argument of

~55-
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BELKIN (1972), p, 49, and will be omitted,

rp. 19~24,

with this

(4,32) THFOREM, If p =

(QulL >u) W, as u- o,

Proof,

e>0and 06 <7

(4.33) Plw. (8,0,1)z€e} = =l (3,0,1) 2 ¢, N >A(u'r)§
Q, u g,
= r;lpng (8,0, 1)2€, sup Qluh < ¢ N>A(UT)§
b4
u OSA=T O'()\3U)§
" ; Q(us) ( )i
+ r = P{ sup ——————; 2 €, N> A(ur
u OSAST U(Kau)
= I +J .
u u
Now, Iu is bounded above by
(4.34) r;l pzmq (8, 1-8, 1) = ¢, N> A(ut)
u
< r;l P “ (B, ©-%, 1) =¢ N> D(u(T-S))% .
u
On the set {A(u(7t-8))= k, D(u(1~8))= £}, k> g = 0, we see that two
events

lemma in hand it is an easy matter to show

2
1, 0<0” <o and Efudv’) <w, then

As remarked above, it suffices to show (4,29),

*L>'*%§§%§Q§Eﬁ%§§§$§

Also see IGLEHART (1973),

For every 1 ¢(0,1]},
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{N > p(u(7-8))} ¢ d(vo,...,vz_l; Uy eess uz)

eer)

ey u

Visr?

{(DQ (5;T“5;1> 2 6} e o k1’

u

are independent, Thus, (4,34) is further less than or equal to

P{N > D](Putvb))} P{‘”Qu(a’f'sil) -
u
P{N > D(u(1-3))}
< P{w_ (5,0,1) 2 €}
r Qu
u

Since Qu = f£(B) and P{f(B) € C} =1 where B is the standard

Brownian motion in [0, 1], it follows

(4.3%) %_i,tg Lim P{mQu(b, 0, 1) 2¢} = 0;

see WHITT (1968), Theorem 8,11, for this result, Combining (4.31) - (4.35),

we obtain (4,29)., This completes the proof,

4, A Single Server System With Several Initial Customers

In this section we shall consider a simple variation of the standard
GI/C/I queue with p = 1, We assume that at time O, instead of one
initial customer, there are m (m > 1) initial customers. Thus our
queueing system is defined by the two sequences {un: n21) and (vn:
nx-m+ 1}, where u represents the interarrival times between the

st
nth and (n+l) customers, and v the service time of nth customer,
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Let X =V -u,nz21, Form the random walk (S : n> 0
n n-m n n

setting S0 =0 and Sn = X1 + ees Xn’ n =1, And define the other

quantities, e,g. N, L, Wn, W(t), accordingly, Then the next

theorem is an immediate result of Theorems 1,6 and 4.,9.

(4.36) THEOREM, If o0 =1, 0<C> <o and E{u’)<w, then

w

(4,37) .
—%—I‘N>n =>W+, as n » ®
on

and

W
Ue
(4.38) <—?i:;%— | &> u) - w+, as U= o .

a

We observe that N represents the total number of customers
being served during the first period for which there are always at least
m customers in the system, The purpose of deriving (4.37) and (4,38)
is that these results will be helpful in establishing conditioned weak
This is dealt with

limit theorems in multiple channel queueing systems,

in the next section,

S, Multiple Channel Queues With Identical Servers

In this section conditioned limit theorems for queues with traffic
intensity equal unity are extended to multiple channel queueing systems,
The systems are defined by two basic sequences of independent and identi-

cally distributed random variables (un: n=1l} and (vn: nz-mn+ 1},

00 et
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where u ~ represents the interarrival time between the nth and (n+1)St
customers, and v the service duration of nth customer, There are m
identical service channels and one initial customer for each service
channel, The queueing discipline is first come first served,

Let E{ul} = x-l and E{vl] = le. We assume that p = }/hu =1,
Let A(t) be the arrival process associated with {un: n =1}, We shall
define the gross input G(i) and net input I(t) of the systems as

follows: for t =2 0

A(t)
G(t) = Vn ’
n=-ml
1I(t) = G(t) - mt .

Let H(t) denote the total workload of the systems at time ¢,
Define the workload at time t in the jth channel, Hj(t), to be the

total work that is eventually done by server j in time t, So

H(t) = H (t) + +o« + H (1), 1= 0,
1 m
If we define the virtual waiting time W(t) as
w(t) = min{Hj(t): 1cjsm, tz0,

then W(t) represents the time that a hypothetical customer arriving at
time t would have 'y .ait before being served hy the first available

server, Define a siopping time

L = dinf{t> 0: w(t) =0} .
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So before time L all the servers are busy,

For the moment consider a single server system 4 with m initial

customers, System A is described by the basic information {(v; 1 ué) =

. . NN . .
n =1}, where ur = u, vio= vn_m/h and the traffic intensity is unity,

From a workload point of view, the multiple channel systems behave exactly

like system 4 on the set (L > u), Based on this observation, we have

the following result by virtue of (4,38):

(4.39) Hlu ‘L>\.>=> W,
c(\u)

o%(v,)]3
m

where c

1]

On the set (L >u} for any i, Jand 0<t < 1, Hi(ut) and
HJ(ut) may differ at most by the service duration of one customer who

arrives before time u, that is to say, for 0 < t <1,
lHi(ut) - Hj(ut)l = max{v,: - ml Sk < A(t)]}

Following the argument used in proving (4,13), we see that for every

e> 0,

1lim Ps
=

p(ni<u-) B (us)

, >e|lL>u} = 0.,
c(ru)’? c<xu>%)
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Hence all processes

(-9
L>uj, L&=i=m,
(2u)

c
have the same weak limit, if there 1s one, But H(t) = Hl(t) + eee + Hm(t).

Using the triangular inequality, we have

A(u) u.(u-}> . <“k<u’> n.<u-)>
(4.41) y , < = ,
p<cm(ku)‘ cowi/ Tom :L;‘J \eou? cim)?

Combining (4.39) ~ (4.41), we obtain

H,(u-)
(4.42) < > = W+, as u- ®

—~———¥lL>u
cmnl(ku)

for any j = 1’ 2, LX) m,

Since W(t) = min(HJ(t): 1< jsm), it is easy to see that
m
(4.43) p(w(m), Hj(u-)) < kz=:1 p(Hk(u'), Hj(u~)) .

Combining (4,42) and (4,43) and appealing to Theorem 4.6, we establish

the following,

A
M

o

2
=1, 0<g <« and

(4.44) THEOREM, If 0 E{u’}<= then

=]

- ’ as
cm l(ku)

<M£‘L>u)$w+ as u- o« ,

~61-




g 23 g s, * R e PRI, L PR TH AR WA R

where

2
(v.) |3
c = cz(ul)+i—m—1— .

We shall complete this section with a weak limit theorem for the
process [Wn: n 2 1), the waiting time of nth customer, Note that L

can be obtained by the random scaling

(4.45) o= Wit ),
where t = u + +¢« +u . Define
n 1 n

N = sup{n > 0: W(A) >0 for all 4 < tn}

where the supremum of the empty set is taken to be + o, Then we have

the following

2 3
(4.46) THEOREM, If p =1, 0<0 <w and E{ u ") <, thenas

n - o,

W
b
T 8>n) = W,
cm

Proof, First we define a random change of time e, by

—-62-
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K

W[n/b] .

W = 8! -
But ») S AGS) + (tA(A) A) on the set En’ where
n
S' =% ] _- ]
n k21 (vk uk). Hence
t
) LI S A(ne (4})
(4,47 _.L_g_ = — 6 ()
cm 1n cm-1 n n
S!
nb
- ~1 + en(A) }
cm “n
on the set En’ where
(4.48) (e, | N>n) = 0.

We can assume E(un} =27t < (if this were not the case, a
linear rescaling of time will make ) = < 1), Using Chebyshev's inequality,
we can easily show that for 0 < 54 51

t A
(4.49) 1imp—£“—1>1|N>n =0,
oo n

Combining (4,37), (4,47) to (4.49), and Theorem 4,6, we prove the result,
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systems,
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