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CHAPTER I

INTRODUCTION

Markov and semi-rkov decision processes have been studied exten-

sively since their initial develop-nt in the late 1950's and early

1960's. They provide the natural framework for the study of a plethora

of problems arising in the areas of queueing, inventory, maintenance

and replacement, etc. Many useful results about Markov and semi-Markov

decision processes are available now under a variety of assumptions.

A common assumption has been the assumption of bounded costs. Although

bounded costs is an appropriate assamption for many problems, there are

also many situations, especially in the context of queueing and inventory,

fc- which it is not appropriate. Thus, there is a need for developing

a w,jry for Markov and semi-Markov decision processes with unbounded

costs. Although there have been some efforts in this direction earlier,

stronger results need to be developed. That is the objective of this

report. Specifically, results are obtained for semi-Markov decision

processes both when the costs are discounted .nd when they are not.

Application to the optimal control of queueing systems is also considered.

The terminology of semi-Yarkov decision processes is summarized in

Section 1. Section 2 then presents some examples of semi-M1arkov decision

processes both with and without unbounded costs. Section 3 reviews the

literature on semi-Mrkov decision processes. An overview of the study

is presented in Section 4.



1. Terminology of Semi-Markov Decision Processes.

The semi-Markov decision process is a stochastic process which

requires certain decisions to be made at certain points in time. These

points in time are the decision epochs. At each decision epoch, the

system under consideration is observed and found to be in a certain state.

The set of all conceivable states is the state space. The ctecision

consists of choosing an action from a set of permissible actions. This

set depends on the state of the system when the decision has to be made.

The set of permissible actions for a given state is an action space.

The union of all action spaces is referred to as the action space. Once

an action has been chosen, the probabilistic aspects of the evolution

of the system until the next decision epoch occurs (including the time

elapsed and the state of the system at the next decision epoch) is com-

pletely determined by the state of the system when the action was chosen

and the action itself.

A policy for a semi-Markov decision process is a rule which selects

an action at each decision epoch by considering only tne history of the

process up to that point in time. An interesting class of policies is

the class of stationary policies. A stationary policy selects the action

at each decision epoch solely on the basis of the state of the Eystem

at the decision epoch. A stationary policy is deterministic if it

selects the actions according to a fixed mapping from the state space

into the action space; otherwise it is randomized.

P part of the process is the costs incurred. The objective is to

minimize these costs. They are, however, incurred in a rahdom fashion

and at different times, so a further specification of the objective is

needed. There are several alternatives. If the time factor is not
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important, one may choose to minimize the total expected cost) or if this

is not finite, the long-run expected average cost. if the time factor

is important, one may discount the costs and minimize the total expected

discounted cost.

For our purposes, a semi-Markov decision process is completely

specified by four objects, the state space, S, the action spaces

(As] 5se, the law of motion q, and the cost function c. Let

A =U ES As and let R be the set of real numbers. The law of

motion, q, is a mapping from S XA X S X R into R, and the cost

function, c, is a mapping from S x A X R into R. Consider a decision

epoch. Suppose the state there is s and suppose the action chosen

there is a. Then, for s' e S and t e R, q(s,a,s',t) is the joint

probability that the time until the next decision epoch is less than or

equal to t and that the state at the next decision epoch is s'. If

the times between the decision epochs are constant, then we have a Markov

decision process. Also, for t E R, c(s,a,t) is the expected cost

accumulated until time t. The formulation of a problem in the framework

of semi-Markov decision processes consists of specifying S, (A)sagS q

and c. Some examples of semi-Markov decision processes are now pre-

sented.

2. Examples of Sm.-Aarkov Decision Processes With and .thout Unbounded

Costs.

Selling an asset (Ross (1970)):

Consider a person who wants to sell his house. Offers arrive according

to a stationary Poisson process. The sizes of the offers are independent,

identically distributed random variables. When an offer arrives, it
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must either be accepted or rejected. Rejected offers are lost. A main-

tensnce cost is incurred at a constant non-negative rate until the house

is sold. The problem is to decide when an offer should be accepted. This

problem can be forinulated within the framework of a semi-Markov decision

proness as f U.ows.

Let the aQcision epochs be the same as the tpochs when offers arrive,

let the actions be t accept or reject the current offer, and let the

state of the system be the size of the offer at the most recenz decision

epoch.

A job shop model (Lippman and Ross (1968)):

Consider a factory which is only able to handle one job at a time.

Jobs arrive according to a stationary Poisson process. When a job arrives

it is classified to be of a certain type. Jobs of the same type have

an identical probabilistic structure for their cost and completion time.

The classification of arriving jobs are independent, identically dis-

tributed random variables. Each job must either be accepted or rejected.

Jobs arriving when the factory is bu.y are rejected automatically. The

problem is to determine when a job should be accepted (rejected) when

the factory is not busy. This problem can be formulated within the

framework of semi-Markov decision processez, as follows.

Let the decision eochF be the same as the epochs of job arrivals

(neglect jobs which arrive when the factory is busy), let the available

actions be to accept or reject the job that just arrived and let the

state of the system be the type of job present.

! The 14G/1 queueing system with removable server (Heyman (1968)):

Consider a queueing system having one server which can be turned
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on and off. Customers arrive according -to a stationary Poisson process.

They are served one by one on a first-come-first-served basis. The service

times are independent, identically distributed random variables. There

is a cost associated with the service of each customer. These costs are

independent, identically distributed random variables. There are fixed

charges for turning the server on and off. There is a cost for having

the server on when there are no customers in the system. This cost is

incurred at a constant rate at such times. Finally, there is a cost

for holding customers in the system. This cost is incurred at a rate

which is a non-negative, non-decreasing function of the number of cus-

tomers present. The problem is to determine when the server should be

turned on and turned off. This problem can be formulated within the

framework of semi=Markov decision processes as follows.

Let the eei',;ion epochs be the epochs of customer arrivals and

departures (neglect arrivals which occur when the server is busy). Let

the available actions be to turn the server off (or have him off) and

to turn him on (or have him on). Finally, let the state of the system

be a vector whose first component gives the number of customers present,

and whose second component shows the status of the server.

3. A Brief Survey of the Literature on Semi-Markov Decision Processes.

The first comprehensive study of Markov decision processes was done

by Howard (1960). He assumed finite state and action spaces, and con-

sidered the problem both with and without discounting. He only considered

stationary policies, and developed his now well-known policy improvement

procedures. He proved that they would produce optimal stationary policies.

At the same time, Manne (1960) suggested solving the Markov decision
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problem by using linear programming. He used the average cost criterion,

and showed how to solve an inventory problem by his suggested approach.

The first linear programming formulation for he problem with discounting

was given by d'Epenoux (1960). Shortly afte:'wards, Wolfe and Dantzig

(1962) proposed the use of their decompositiov technique on Mai'ne's

linear programming formulation.

Blackwell (1962) considered Markov decision processes with finite

state and action spaces, and proved that there is a stationary policy

which is optimal among all Markov policies. He also considered the

problem for arbitrarily small interest rates, and proved that there is

a stationary policy which is optimal among all Markov policies for small V
enough interest rates. Later, Blackwell (1965) considered Markov decision

processes with more general state and action spaces. He only assumed

that they were Borel sets. However, he assumed that the rewards were

2 uniformly bounded. He considered the problem with discounting, and

allowed any measurable policy. His main results were the following.
There is a (p~e)-optimal stationary policy. If the action spaces are

countable, then there is an e-optimal stationary policy. If the action

spaces are finite, then there is an optimal stationary policy. If there

is an optimal policy, then there is one which is stationary.

Otrauch (1966) considered the same problem as Blackwell, but instead

of using discounbing, he assumed that the rewards were negative. His

wain results were similar to those of Blackwell. If the action spaces

are finite, then there is an optim l policir. If there is an optimal

A-[ policy, then there is one which is stationary. The optimal return function

-is measurable and satisfies the optimality equation.

6
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Denardo (1967) also considered the same problem as Blackwell and

generalized it to include certain stochastic games. He introduced oper-

ators with certain mcnotonicity and contraction properties, and used

the Picard-Banac. fixed point theorem to prove that the functional equation

of optimality has a unique solution, which is the optimal reward function.

Veinott (1966) ga-ie a policy iteration procedure for finding a bias-

optimal policy (no discounting). Later, Veinott (1969) considered a

more refined optimality criterion, namely, that of finding a policy which

is optimal for all sufficiently small interest rates (sensitive discount

optimality). He developed a policy iteration procedure for finding a

stationary policy which would be optimal according to this criterion.

Derman (1966) considered Markov decision processes with finite

action spaces and a countable state space. He used the average cost

criterion, and gave conditions for when a stationary, deterministic

policy is optimal. Ross (1968) considered the same problem, but allowed

a general state space. He derived results similar to those of Derman.

He also suggested a method for converting the average cost problem to

a discounted cost problem.

One of the first to consider semi-Markov processes was Pyke (1961).

Shortly afteriards, Howard's results for Markov decisioa processes were

extended to semi-Markov decision processes independently by Jewell (1963)

and Howard (1964). When they considered the average cost criterion,

they assumed that all states belong to one positive recurrent class.

They also gave linear programming formulations.

Denardo and Fox (1968) considered the multi-chain case (i.e., the

case of several positive recurrent classe,), using the average cost

/1 criterion. They gave a linear programming formulation and a policy
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improvement procedure. Later Denardo (197Oa)developed a solution method

which used Manne's linear programming formulation to solve a sequence of

subproblems. This solution method has the advantage zhat several small

linear programming problems are solved instead of one big one. Denardo

(1971) also considered the problem when small interest rates are used.

His results are similar to those of Veinott for the discrete-time Markov

decision process, He gives a sequence of linear programming problems

for finding an optimal policy.

All of these authors have assumed that the immediate rewards or costs

are bounded uniformly. After Strauch, Harrison (1972) was the first one

to relax the condition of bounded costs. He assumed that the expected

absolute reward in one period minus the expected absolute reward in the

period before it, given the state at the beginning of that period, is

uniformly bounded. He then showed that the expected discounted reward

is finite for each policy and that there exists a stationary policy

which is optimal. He proved this by using the Picard-Banach fixed point

theorem. He also extended his results from Markov decision processes

to semi-Markov decision processes.

The problem with unbounded costs was also considered by Reed (1.973).

He investigated the problem both with and without discounting. He assumed

finite action spaces and countable state space. He gave sufficient con-

ditions for a stationary policy to be optimal.

Hordijk (1974a), (1974b) also considered the problem with unbo'unded

costs. He introduced the notion of convergent dynamic programming, which

is jusz to say that the expectation of the sum of the absolute rewards

is finite. He proved that a policy is optimal if it is unimprovable and

if another condition is satisfied.



Most recently, Lippman (1973), (1975a)considered the problem with

unbounded costs. His approach is to use a norm such that the norm of

the costs is finite even though the costs are unbounded. In order to

obtain the usual results. he then has to make as:,.unptions about the

law of motion of the system. By doing that, he showed that Denardo's

N-stage contraction assumption is satisfied, and the results follow.

4. Overview of the Study.

The emphasis of this report is on dQ er,-ining necessary and sufficient

conditions for a stationary policy to be optimal. It is not assumed that

the costs are bounded. The problem is considered both with and without

discounting,

Chapter 2 treats the problem without discounting. Two closely

related optimality criteria are used, namely, the average cost criterion

and the undiscounted cost criterion. After introducing the important

concept of an unimprovable policy, sufficient conditions are given f 1

unimprovable policy to be optimal. Both the special case where the

optimal expected average cost is independent of the start-state and the

general case when the average cost is not necessarily constant are con-

sidered.

Chapter 3 treats the p - m with discounting. After formulating

the problem and introducing iti operators Q and TT, the optimality

equation is proven. The existence of stationary optimal and stationary

c-optimal policies are then investigated. Policy improvement is con-

sidered, and some necessary and sufficient conditions for optimality

are given.

Chapter 4 is devoted to the optimal control of queueing systems.
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Solution methods are explored, and four different ways of solving the

problem of unbounded costs are presented.

Some general notation and conventlons are best introduced here. R

denotes the set of real numbers, R+ denotes the set of non-negative

real numbers, N denotes the set of natural numbers (starting with one)

and N0  denotes the non-negative integeis. The Kroene.tr delta function

8 is defined by

8(x,y) = if x y

to if x y.

If x is a real number, then x is max(O,x) and x is max(O,-x).

Finally, we use the convention that

r if X y>~o

x +y= -0 if x < 0, y= ,

Lundefined if x -y= +

10i
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CHAPTER 2

SEMI-MARKOV DECISION PROCESSES WITHOUT DISCOUNTING

This chapter presents an investigation of semi-Markov decision

processes without discounting the costs. Thus, costs of equal size

incurred at different times count the same. Two optimality criteria

are used. The first one is the average cost criterion, according to

which a policy is optimal if the long-run expected average cost is

minimized by this policy. This criterion has been considev'ed recently

by Hordijk (1974a); The other criterion is the undiscounted cost

criterion. A policy is optimal under this criterion if it minimizes

the long-run (total) expected cost for the process which is derived from

the original one by incurring an additional cost at a rate equal to the

negative of the minimum average cost. This criterion has been considered

by Denardo (1970). He called a policy which is optimal for this criterion

a bias-optimal policy.

There have traditionally been two approaches to the problem without

discounting. The first one consists of restricting one's consideration

I to stationary (deterministic) policies and performing a stationary

analysis. The second one consists of considering the problem with dis-

counting and observing what happens when the interest rate goes to zero.

Here, we will follow the first approach. It has been common to assume

that the costs are uniformly bounded. We make no assumptions about the

size of the costs. Reed (1973) conducted a similar but somewhat less

complete study of the problem.
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areIn Section 1, there is a formal statement of the problem to be con-

~sidered. it also contains some preliminary results. Unimprovable policies

are defined there. In Section 2) sufficient conditions for an unimprovable

policy to be optimal are given. It is assumed that the long run expected

average cost is constant. In Section 3, the results from Section 2 are

extended to cover the general case of non-constant long-run expected

average cost. In Section 4, there is a brief discussion of methods for

finding an optimal policy.

1. Problem Fo-mulation.

As before, let S be the state space, 'As  be the action
s se'

spaces, q be the law of motion and c the cost function. Let J be

the set of stationary, deterministic policies, and let A be 'U S As.

For each n e N, let tn., sn and a denote the time of the nth

decision epoch, the state observed there, and the action chosen there,

respectively.
I+

For each 7r e ), let v be the mapping from S X R into R

such that, for each s e S and t c R

~~~~vT (s~t) = ~(D C(Snjan)t-tn)

where

Nt= (n e Nit <t)

E is the expectat4-n operator, and the subscripts 7w and s respec-

tively denote that the start-state is s and that the policy used is

7r. In words, v 7(s,t) is the expected cost incurred until time t,

given that the start-state is s and that the policy w is used.
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v r need not always be well-defined. Later, however, certain assumptions

which guarantee the existence of v7 for each 7r e 0 will be made.

The analysis here is based on the fact that under certain conditions

(to be introduced when needed), v (t,s) has a linear asymtote for each

s CS and 7rE aJ. For each irev , let cP and w be the mappings

from S into R such that

( = lim v.(st)/t,
t- .oo

w (S) lim (v (s,t) - t • (s) ,

for s e S. Cpr is the long-run expected average cost, given that the

start state is s and that the policy i" is used. w (s) is the long-
=r

run expected cost not accounted for by fpr(s).

Two optimality criteria will be used. The first one is the average
* A

cost criterion. A policy 7r e ) is optimal according to this criterion

if r:(s) < (s) for s c S and 7r e b, and the poli.cy is called

average optimal. The second criterion is the undiscounted cost criterion.

A policy 7r e S) is optimal according to this criterion if it is average

optimal and, in addition, w *(s) < w (s) for s e S such that

P *(s) = 'r(s) for 7r e t. A policy which is optimal in this sense

is called undiscounted optimal. This latter criterion has not received

much attention in the literature. This may be due to the fact that often

there is not much to gain by using this criterion instead of the average

cost criterion. The main difference resulting from the use of these

criteria is that the action in the transient states become more important

when the undiscounted cost criterion is used. To illustrate this point

further, an example is included below.
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Example: Consider the following simple semi-Markov decision process.

The state space is N and the action spaces are (0 1). The times

between the decision epochs are exponentially distributed with the same

parameter. State 0 is an absorbing state. Consider states in N.

If action 0 is taken, the state 0 is entered next with probability

one. If action I is taken, the state numbered 1 higher is entered

next with probability one. The cost structure is simple. Each time a

state in N is reached, an immediate cost of 2 units is incurred, and

each time the state 0 is entered, an immediate cost of 1 unit is

4 incurred. Any policy which chooses action 0 in all the states above

a given number is average optimal. The undiscounted optimal policy is the

one which always chooses action 1. This is clearly the desired policy.

One special reason for using the undiscounted cost criterion is

as follods, Under certain circumstances there may exist a sequence of

average optimal policies 71 ) 7r2 , ... such that using 7r1 for the

first decision, 72  for the se-ond, 7r for the third, and so on, leads

to a long-run expected average cost which is higher than the optimal

one. This can easily be seen from the example above. First let rn

be the policy which chooses action 1 fur states numbered less than n

and action 0 for states numbered n or higher. Each 7Tn is average

optimal. But using 71 at the nth decision epoch for n = 1, 2, ... a

leads to a long-run expected average cost twice as high as the optimal

one. Notice that since tLere is a unique undiscounted optimal policy,

this situation cannot occur when the undiscounted cost criterion is used.

In general, there is no guarantee for the existence of a unique undiscounted

optimal pclicy, but often a unique undiscounted optimal policy .does exist

14



and thus the undesirable situation mentioned above can be avoided by

using the more refined criterion. Some useful semi-Markov process termi-

nology will now be introduced.

A state is called transient if with probability one it will not

be reentered after some time. A state is called recurrent if with

probability one it will always be reentered. A recurrent state is

positive recurrent if the expected time between consecutive visits of

this state is f - 'e. Otherwise, it is called negative recurrent. If

there is a positive probability that a state is reached in a finite time

from another state and vice versa, then the two states are said to com-

municate. The positive recurrent states belong to one or more positive

recurrent classes of states. Each positive recurrent class is a set

of positive recurrent states which communicate with each oth.r, but not

with states outside the class. We make the following assumptions.

Assumption 1: There is an e > 0 such that

q(s~astje) = 0, for s e S, a E A , s' C S

In words, the time between two consecutive decision epochs is at

least e.

Assumption 2: For each i re ) and s e S, the expected cost in-

curred and the expected time elapsed from time t until the first

decision epoch after (or at) time t divided by the time t have

zero as their limits as t tends to infinity, given the start-state

s and policy 7r.

Faced with a particular semi-Markov decision process, one may have

difficulties in showing that it satisfies the above assumption. However,

15



we have not been able to do without them. If t'.e semi-Markov decision

process is a Markov decision process, then the second assumption is

trivially satisfied.

Some convenient notation will now be introduced. For each wr E

let qIT and T be the mappings from S X S into R such that

q (s,s) = lrn q(s,a (s),s?,t)

r(s.st) = f tdq(s,a r(s),s,t)
t eR+

for s,s' e S. a r(s) is the action chosen by 7 in the state s. For

each ir c , also let VT and c7 be the mappings from S ivito R

such that

V r(s) = D TY(,s')
VstE

c7r(s) = lim c(s,ar(s),t) ,

for s e S. qr(ssI) is the probability that the next state will be s,

given the present state s and policy 7r. T (ss') is qr(s,s') mul-

tiplied by the expected time until the next decision epoch, given that

the next state is s'. T (s) is the expected time until the next decision

epoch, given the present state s and policy 7r. c r(s) is the expected

cost until the next decision epoch, given the present state s and

policy 7. NatnralJy, we assume that all these quantities exist and are

finite.

If the state space is finite, it can easily be shown that 'P and

w1 satisfy the following equations,

16



CP.( s) = D q(ssp.(s ,
S ES

W (s) = c s) - , (s,s,).p(s,) + 'S"  (s,s').r(s')

for s e S and e (see Denardo and Fox (1968)). The expressions

on the right-hand side are obtained by conditioning on the time of the

second decision epoch and the state at that epoch. If w,wt e 6 and

T it e P are such that 7r" uses 7' at the first decision epoch and 7

thereafter, then

P~r,,(s) = ~Dq~ ,(s,s'). (s') ,

w~rt(s) = 71 (s) - D 7 '(S)S')*CP~(Si) + q 1 q(s~st W~( st),
s ES s cS

for s c S. If cp 7,(s) < T(s) and w V,,(s) < w,(s) for s c S, and I"
if, in addition, rt(s) < (s) or w ,,(s) < w (s) for some s E S,

then 7" is an improvement over 7r. It can be shown that 7' is also

an improvement over 7r in that case (see Denardo and Fox (1968)). This

motivates the following definitions.

A policy Tr is called unimprovable if

wyr(s) < , qr,(ss') +7 s) I

steS s'eS

for s c S and 7r' e b, assuming that all of the expressions above

are well-defined and finite. A policy 7r is strictly unimprovable

if it is unimprovable and if, in addition, equalities in the above

expression are achieved simultaneously only when 7' = 7.
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If the state spate is finite, then an unimprovable policy is average

optimal (see Denardo and Fox (1968)). If the state space is not finite,

an unimprovable policy is not necessarily average optimal an, more (see

Hordijk (1974)). Thus, some additional conditions must be satisfied in

order to be guaranteed that an unimprovable policy is optimal. Such

conditions are given in the next sections.

2. The Case of Constant Optimal Expected Average Cost.

For many semi-Markov decision processes, the optimal long-run expected

average cost is constant (i.e., independent of the start-state). In

particular, if any state can be reached from each state (by using an

appropriate policy) such that the expected cost up to the time the state

is reached is well defined and finite, then the optimal long-run expected

average cost must be constant. For in this case, the long-run expected

average cost, given any start-state s and policy 7r, can be obtained

for any other start-state by using a policy whose actions coincide with

those of w at states which are reached from s with a non-zero proba-

bility under 7, and otherwise are such that the expected cost up to the

.ime when s is reached is finite.

F.:r each T E 5, let x be the mapping from S X S into R

such that

x r(s'sy) = lim E Cs 8(snIs)],
tT t-oo 7r- nett hN t

for s,s' e S. Here, 6 is the Kroeneckir delta function, given by

5(sps ( if S s'

toif S st

18
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The fact that x1 r exists (although possibly infinite valued) follows

from renewal theory (see Smith (1955)). We assume that the expected

time until the second decision epoch, given any start-state and action

decision epoch, non-zero. This implies that~at the first dcsoeoh nneo.TsimlstatXz is

always finite valued.

Lemma 1: For each 7 6

x.(s,s) = ,.%(s",s),S es
for ss' e S.

Proof: For each a > O, 7r e , let x be the mapping from S X S
7r~a

into R+ such that

-cit

x (s,s') = e n . 8(snSI)]
V'a 7r, SneNn

for s.,s' e S. Since xT exists,

x(s's,) = lim .x r,(s,s') ,
a -0

for s,s' e S. Now

x s = s"6s x7r,a(s,s"). ,a(s"I,s) + ,'1

for sjs' S where

q 7,a( s s) = e dq(s,a (s),s't)ftR+

This implies that

lim ax ,((s,s') = a6m+x (ss::.'(s",st)
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or

XV(S's') '" (s, s f ).q ,s (s ), for SSt e S

Lemma 2: Lot e (> O) be as in Assumption 1. Then, for each 7r eb,

E ,s 2 (s',Sn)) < x_. (s~s') fo te. ,

n N%< -t s~) for t e R+
W,)s next n e TS.s+

for states s and s' which are positive recurrent under 7.

Proof: Let 7r be a policy in b, and let s and s' be positive

recurrent states under 7r. By Lemma 2,

xr(s,s') = , x(s,s")E ., s",s2))

Using Lemma 1 repeatedly, we obtain

c(sst') = X (s,s")Er (8(s',sn)), for n e N

Therefore

E (8(ss~s_)
Er, s (s, n <x(ss) for n e N

Now

E 8(sn)] = EVr, 5(8(s',sn)'P(r,stn <-t n
ncNt  neN

+'+n < t

by Assumption 1. The lemma now follows by combining the two last results.
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Lena 3: If r is an unimprovable policy such that cp *(s) is constant
7r

and

x'(s' lw *(s)lI <

for seS and e , then

7 CS s CS

for s c S and 7r .

Proof: Let (P be the constant such that (p (p .(s)2 for s C S.

Since 7r is unimprovable

c (s') > w .(s) + c'vT(s')- .. (s',s").w *(s")
T s S 7r

for s' e S and 7r c t. Multiplying both sides by x (s,s') and

summing up over s' e S yields

s'Sx (s,').cT[(s' )

X71 x(st)(w "(S') + Cp.V~r(S') it ) q7( s1,st)w *(Sit))
s GS 7r s GS 7

for s e S, e . The sums on both sides of the above inequality

exists, since

s'6S~~~qrsls) *(ss'( ")) )p w~T

< X(s,., s s)w )-+ D x(s,s.)qr(s,,s")w *(sit)+
CS s 2s CS 7r

+ p' "s' x(s's')v (st)

21 '



= ~~s'N ~ + ~ ,~.5~"W*(s'1) + c

St eS S"S "

(using Lemma I and Lemma 2)

< 0,

using the assumption of the lemma. Now

+ T'v

x ss') ) S~(lt + Tp f

s'eS T eS

. , x(s,s)%( s 9s")W .(s

~~~~~X~ sI~~W ~ -~ wsSIW(~l 
,xcssV~(t

st  CV

(using Lemma 1)

= ~~ D xT.sisy).) v~ ,

for s e S and 6r e b, and the lemma follows-

Q.E.D.

For each T E D, let R(7r) denote as before the 
set of positive

recurrent states under 
W, and let T(7W) denote the set of the 

other

states. For each ? r j, let yr be the mapping from S X S into

p, such that
7T R schtt (s",,nY) for s' I T(7), s 6 S ,

y (sz) = j for s' e R(7r), s e S
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In words, y(ss') is the expected number of times the state of the

system is s' before a positive recurrent state is entered from another

state, given that the start-state is s and that the policy V is used.

Theorem 4: If Tr is an unimprovable policy such that (p .(s) is

constant and

D (y (s,s,) + x r(s,s 'W w(s) < ,
s'ES135

for s c S and r 4 , then 7 is average optimal.

Proof: We first show that

(D(s) > ' x (s').c(s~l
s'eS

for s e S and 7" e .

For each Y e) , let q and c be the mappings from S X S

and S into R such tnat

q (s~s) S,=(
q F( s s ) j for s e T(7r),

wfor s eR()
7r

for s' e S. Since 71 is unimprovable,

(s) > w .(s) - (s,st).w *(s')

for s e S and e ). Now
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Dy,(s",S) (w "(s) - 'I D~ ss)w*s)
s1 F5 1 6 Sw

I ys"s).w *(S)- + DY y.(S",S) 2 4(s')w *(s,)+
seSw seS E6 7'

= ) Y(sIt,S)w ,(s)- + (Y 7 -sJS 8B(s 1,s)) w *(St)+

s~Yi(shIjs)w *(s) + Y y(Slt,S) w (t -

< 00,

by the last assumption of' the theorem. This implies that

Y,(s",> (T 0 S 1

Thuas

ses C

is well-def'ined and greater than minus infinity for s" e S and 71' c

Now

CP7F(S) Jim EVI c(s n a nIt-t n)/t

=lim E7  (~c(sn,an )o))/t
t 00 ncN't

(by Assumption 2)

= lim0 E ( J ) S 8('Stn)'C~(sI))/t
t-*o feNt sES

=lim E ( s b(s5t5).C(st))/t
co0 ne~t s'T (70

+ lim E C ~8s, ~ s)/

t- 007' neNt s CR(7T)n 1
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-(P + D.m ~ E (~~sn.'('/
t 00 s eT (70 11eS

using Assumption 2. The first limit is non-negative, since

D Z (sI's9 < y~(s,s'), for s' c S

and since

Therefore

(pr (S) > (p + urn E 7 C 6 (S',3))(c r(s') (P'Vr(st))/tiT ~ C*O sER (TO no~t 1.

Using Lebesque's bounded convergence theorem, we obtain

since s~() i Ti

lim E 6 (sls Wlt = (s,s'), for s' E s,
t r.9 sT neNt n V

E V s xF.(s",s' ,)/ for s' E 5, S" P_ R(7r)
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and

x N(s",s,)(c (s,) - cp. (s'))" < o .

stCS

Thus

C (s) > Cp + X,(ss')(c(s') P .v(s.))
SIS

Using Lemma 3, we obtain

C(s) > (P

- Q.E.D.

Corollary 5: Suppose that, for each s E S and ir c A the expected

number of decision epochs occurring before reaching a state in R()
l*

is finite. Then, if 7r is an unimprovable policy such that p .(s)
is constant and, in addition w .(s) is bounded, then 7r is average

optimal.

Proof: In view of the theorem and the fact that w .(s) is bounded,

we only need to show that

Ds ~y'(s~sf) < 00
's

for s s S and rE t. BiO this follows from the first assumption of

the corollary, which completes the proof.

I*

Theorem 6: If 7r is a strictly unimprovable policy such that Cp .(s)

is constant and, in addition,
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s (y,(s s) + x,(ss'))" w (sl)I < ,

for s e S and r C then 7r is undiscounted optimal.

Iroof: Let 7 be any average optimal stationary, deterministic policy.

Following the proof of Lcmma 3 and Theorem 4, one can easily see that

a r(s) a *(s) imply that (((s) > (P .(s) for s e R(w), since 7VII is strictly unimprovable. This implies that a (s) =a ,_(S) for S 6 R('rr).

7 T
From the proof of Theorem 4,

c(s) > w .(s)- 4(s,s')w .(s')
7 s 'eS V

for s e S. This implies that

* 1 y(s",s)Y(s) > P y (s",s)(w k(s)- %7(ss')w *(s,).
sES se S sS 7

It was shown in the proof of Theorem 4 that these sums are well-defined.

Now

yt.(',s)(w *(s)- q (s,s )w (s'))
s' "s S11" I

- y .(s',,s)w *(s) . y ).(s,,,s) (s,S,)w *(s)
'sCS sS' 7Sr

-ss y,.(s",s)w .(s) - A (y (s",s')- 6(s",s'))w *(5)s
seS s CS W 7

. = (") -
'r

for s" e S. Hence

w "(S") < Y ("" ,,,r(S

7r seS
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for s" e S and 7 e It is easy to check that

s11= y(s ,,s)., (s)
sS

for s" e S, so

w *(S") < w r(S" )

for s" C S.

Q.E.D.

Corollary 7: Suppose that for each s e S and 7r e j the expected

number of decision epochs occurring before reaching a state in R(r)

is finite. Then, if wr is a strictly unimprovable -ilicy such that

(p (s) is constant and, in addition, w .(s) is bounded. then V
7T

is undiscounted optimal.

Proof: The proof proceeds just as in the proof of Corollary 5, and so

will not be repeated here.

3. The Case of Non-Constant Optimal Expected Average Cost.

The case when the optimal long-run expected P-,erage cost varies with

the start-state now will be considered. The notation is the same as in

Section 2.

Lemma 8: If 7r is a policy such that

.*(s) < q q(s,s').c.(.) , -
W/ s'eS W

t x, (s, s'')I < , ,
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for s e S and 7r e then (P .(s) is constant in each positive

recurrent class of states under each policy 7r C

Proof: Let 7 be a policy in C, and let s be a state in R(w).

Using Lemma 1 repeatedly, we obtain

X s = S (Ss')E°'r I((s".s

for n e N and s" c S. This implies that

E , (6(s",sn) <  7r(s, s")

,-s n(s,s) '

for n e N, and s" c S, since x (sIs) > 0. Now

x (ss)ZS S) *(s")[ < ,

because of the second assumption of the lemma. Using Lebesque's bounded

convergence theorem, we obtain

s"m xr(s "'s)'p (") ,

or equivalently,

lim Ers( '(s) = x (s,s") .Cp.(s")
n -+ 00 F stie 7( T

Let dr be the mapping from S into R such that

d.(s") - D q(s",s').P *(s') - T .(S") ,

s'ES 7T



for s" c S. d V is well-defined by the first assumption of the lemma.

It can easily be shown by induction on n that

Bs <n d (si)) =  ws"E *(Sn)} c P .(s") ,

for n 6 N and s" F S. Inserting s for s" in this expression

and taking the limits as n goes to infinity, we obtain

lim E-r, s d (s.)] = lim E 7r) S ((nP 3 - ( ,(s)n* - n0noo s T

X'S S ~,.(s,) - (.s) <

The first assumption of the lemma implies that dv.(s') > 0, for s' 6 S

and 7i r . Using this fact together with

lim E s  < d r(si)} < 0,

we obtain dr(s) = 0. But s E R(w) was chosen arbitrarily, so

dr(s) = 0 for e R(wr). This implies that

T s 1' e(7r) '

for s c R(w). This, in turn, implies that

q I(P = n lim E7,s (CP *(Sn)

s' X,(S,s').Cp *(s')
s CS T'7

for s e R(W). Now, x7(s,s') = x (s",s'), for s and s", if they

belong to the same positive recurrent class under 7r. Thus,
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V S CS"

.p (s) = x(s,s').p .(s') -- CP.," ,

for ss" in the same positive recurrent class under w.

Q.E.D.

For each 7r e let I(Tr) be the set of positive recurrent

classes, and for each s e S and z e I(7r), let p r(s~z) be the prob-

ability that class z is entered, given start-state s and policy w.

Lemma 9: If v is an unimprovable policy such that the conditions of

the previous lemma hold, and, in addition,

Iim inf ( E 7r,s((s',sn))-( P(s') < 0
n -+ C s eT(r) T-

for s E S and 7T c , then

.P (s) < P p(s)ZCz

'r -ZI(7 ) 7z

d4-

for s e S and Ir E X. Here, Cpz  is the long-run expected average

cost under wr*, given that the start-state is in the class z.

Proof: Let 7r be any policy in , and let S be the set of states

belonging to class z for each z c I(7r). As in the proof of Lemma 8,

(P *(s) < lira inf E' , s ( T *(Sn))

=nlim E (R(s,s n). '*(sl)
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+ lim inf T E, s(6(s's (s)
n o S' eT(7 ) , n '1..(s

< m E 8(s',s)).(P (s,) ,', n 0 s'e (7r) 7r,

for s e S. The last limit exists and is finite. By Lemma 2,

E , (sS < p(s,z)< - 7  Trr,- for some s" e R(), > 0 ,

for s' E Sz  s c S and z e 1(7). Now

, SZ)i- CPI< ig i(ss, (s")

for s E S. Therefore, by Lebesgue's bounded convergence theorem,

limu E rs(8(s',sn)]'.(sP (')
n co s' CR(7) 7r

= p (s,z).P,zel w) Wz

for s e S. We conclude that

"(s)<_z P (S'z)'P

for s e S.

Q.E.D.

Let Y~r be defined as in Section 2.

Theorem 10: If "* is an unimprovable policy such that
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x (Ss ).Cp *(Sz <

i'F

D (x(ss) + y(sS(s <S (E£S 7r

lim inf I ETs (8(s1,sn)).Cp p(s') ,
n -o s ! T(7) V"

for s E S and "7 e 6, then w is average optimal.

Proof: Let 7r be any policy in 9. By Lemma 8, P ,(s) is constant

for s e Sz (z e 1(7r)). Therefore, by Theorem 4, p .(s) < cp T(s), for
'T

s C Sz (z e 1(7)). Using Lemma 9 together with this, we obtain

cp *(s) < (s) for s c S. The costs incurred until a positive recurrent

st! -te is reached do not contribute anything to the average cost, since

it can be shown (as in the proof of Theorem 4) that the expected cost

until a positive recurrent state is reached is finite. Thus, 7 must

be average optimal.

Q.E.D.

Corollary 11: Suppose that, for each s e S and w e I, the expected

number of decision epochs recurring before reaching a state in R(7r)

is finite.

If 7r is an unimprovable policy such that tp *(s) and w *(s)

are bounded, then 77r is average optimal.

Proof: We only need to show that

s CS
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s ' s ') < ,0

for each s c S. The first sum is finite by an assumption made in Section

1, the second sum is finite by Lemma 2, and the third sum is finite by

the first assumption of the corollary. Thus, the corollary follows.

Q.E.D.

Theorem 12: If w is a strictly unimprovable policy such that the

conditions of Theorem 10 are satisfied, then 7 is undiscounted optimal.

Proof: The proof proceeds just as in the proof of Theorem 6, and so will

not be repeated here.

*
Corollary 13: If 7r is a strictly unimprovable policy such that the

cnlitions of Corollary 11 are satisfied, then w is undiscounted

optimal.

See the proof of Corollary 11.
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CHAPTER 3

SEMI-MARKOV DECISION PROCESSES WITH DISCOUNTING

In this chapter the optimization problem arising when the costs are

discounted is investigated. From an economic viewpoint, this problem is

somewhat more interesting than the problem without discounting. It has

been studied by a number of investigators who have made various assump-

tions about the state and action spaces, the motion of the system and

the costs (see Section 2 in Chapter 1). Here, the assumptions made by

N other authors are weakened, and more general results are obtained.

In Section 1, there is a formal statement of the problem to be

considered. It also contains some preliminary results. In Section 2,

some useful operators are introduced. In Section 3, the optimality

equation is proven. In Section 4, there are some existence theorems.

In Section 5, policy improvement is considered. In Section 6, necessary

and sufficient conditions for optimality are presented. Finally, in

Section 7, there is an analysis using the contraction properties of a

certain operator. An alternative set of necessary and sufficient con-

ditions for optimality are obtained.

1. Problem Formulation.

r As before, let S be the state space, (Ass 5  be the set of action

spaces, q be the law of motion, and c be the cost function of the

SI4DP. F9r each n in N, let s , a and t denote the state of

the system, the action and the time of the nth decision epoch, respec-

tively. The first decision epoch is taken to occur at time zero, so



t1  O. Also, let , and denote the set of all policies, the

set df 'Gationary policies and the set of deterministic stationary policies,

respectively. Let A = S A
seS A

Let a be a given positive interest rate, and let c. be the

mapping from S X A into R such that

ca(s,a) = e dc(sat)

tR 
+

for a e A s for s e S. In other words, c .(s,a) is the expected

discounted cost incurred until the second decision epoch, given that

the start-state is s and that the first action is a. Naturally, it

is assumed that ca exists.

For each 7 in P, let v v and v be the three functions

from S into R+ U f ., R+ U Hc. and R U Ho, respectively, such

-at+ n na)+)

v(s) = E7 ,s( e n ,ccSa)-)

neN

v (S) = V v(~e n c~na)

for s in S, where E is the expectation operator and the subscripts

"i and s indicate that the start-state is s and that the policy T

is used. In words, v (s) is the total expected discounted cost, given

that the start-state 'is s and that the policy 7 is used. v is

+
the value function of the policy w. Clearly, v and va are well-

defined (possibly infinite-valued). In order that v7 be well-defined,

the following assumption is made:
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Assumption 1: vr(s) <c, for s e S, r e4.

Let v. be the function from S into RUJoo, -oo such that

v (s) = inf v (s) 0

for s in S. For parposes which will become clear later, the following

assumption is made.

Assumption 2: v(s) > - , for s e S.

If there can be an infinite number of decision epochs in a finite

amount of time, some of the costs may unintentionally be ignored by

the definition of v . In order to eliminate this problem, the following

assumption is made:

Assumption 3: P .st < t for n P N) = 0, for t E R+; S e S. V c

Here, P is the probability operator and the subscripts 7r and

s indicate that the start-state is s and that the policy 7r is used.

For purposes that will become clear later, a fourth assumption is made:

Assumption 4: Given C > 0, there is an m (possibly depending on s)

such that

Er e nc(S,an)) <
n > m

for 7r in .

These assumptions are satisfied trivially if ca(sa) is non-negative

for each s and a. The following theorem gives some weaker conditions

under which the assumptions ho.d.
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Theorem 1: If q is uniformly bounded from below and there is a

< 1 such that

for s in S and r in P, then all the assumptions above hold.

Proof: Let be as in the theorem. For each n e N,

-at-n+ 
t

e

-at -t -t
( E e n . +s 1 n a

E. .E7r, s n nn-

This implies that

-at

E ,se n] < n-1 ,

p *, e

for n N. For each m in N,

-at -at
E V (e n Ce nn

' ~n>mn m

[f This implies that

t

n n



1 e n)> C, en

neN n < m

>me P (tn < t for n < m)>_e " r, s n--

for t e R+ and m P N. Thus

P7stn < t for n < m) <e (eaY 1  • m l

for t c R+ and m c N. Assumption 3 follows by taking the limits as

m goes to infinity.

Let M be an upper bound on -c,(s.,a). Then

-at

D, e n. ca(sn.an)-)n> m

-at
<M n M . e n)
-_M' n >m

< M .Pm ' l  . (1 .- ) 1

for m e N. This shows that the rest of the assumptions hold.

2. The Operators and T

Let B be the set of mappings from S into R JC ). For each

w e P, define the operators QV and T from B into B by

(Qv)(s) = E (e
2  v(s9)), for s C S,

-2

(T7v)(s) = Br,sC(c(Sla l ) + e •v(s 2 )), for s S,

for v in B. For some v in B, the above expressions may not be

well-defined. Those functions will, however, not be used.
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Some compact notation will be used. If u and v are functions

in B, then u < v means that u(s) < v(s) for s e S, u + v is

the function such that (u+v)(s) = u(s) + v(s) for s e s, and if c

is a constant, then cv is the function such that (cv)(s) = c'v(s)

for s e S, etc.

Lemma 2: If u and v in B are such that u <v, then Q u <Qv

and T u < T v, provided the expressions are well-defined.

For each n e N and 7r e P, define the operators and

by

-at
(ev)(s) = EWs(etn V(Sn+l), for s e S ,

-rMV. -n+1

=Tv)(s) E, <n e * ca(s.,a i) + e • V(Sn+) for s e S

for v in B. Again, these expressions need not always be well-defined

for each v in B. If, however, v is the value function of a policy,

then the expressions are clearly well-defined.

Let e be the function (from S into R) which is zero every-

where. Then

-at.

(Tne)(s) = E e -at ca(si,ai ' s e S ,
i<n

and

liM

for any 7r in .
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Lemma 3: For each n e N and 7w c T, 0 nv~ and T n v are well-

defined.

Proof: Let e > 0 be given, and let r' be an e-optimal policy.

This means that v > v + .IL where I is the function from S

into (1). This implies that

v <(V, +ej <_ + E °

Therefore

since

a is finite-valued and th

& refined. Also

since
n n

This implies that TYVa is finite-valued, and thus Twva is we.l-

defined.

Lemma 4: For each i e

dlmi infQ.v>..
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Proof: Let e > 0 be given. From the proof of Lemma 3, there is a

policy Y' such that

0n V- < n v -  C

1W a - +~

for all Y in P. This implies that

n -n-
lim Q Va < lim Q v, + (E

by Assumption 4. The lemma follows, since e is arbitrary.

3. The Optimality Equation.

Bellman (1957) introduced the principle of optimality for dynamic

programming. He says (p. 83), "An optimal policy has the property that

whatever the initial state and initial decisions are, the remaining

decisions must constitute an optimal policy with regard to the state

resulting from the first decision." Since an optimal policy need not

always exist, the principle has a limited potential use. More useful is

the optimality equation, given in the theorem below. For a discussion

of the principle of optimality and the optimality equation, see Porteus

(1975a).

Let a be the mapping from S X A X S into R such that

fo(sasf) -f e -tdq(sas',t)

for a e A sfor s',s C S.
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Theorem 5: For each s in S,

va(s) = inf (cQ(sa) + q, q(sas').va(S?)

aeAs  s'eS

Proof: The proof is similar to the one given in Ross (1970, P. 121)

for the case when the action spaces are finite. Let v' be an E-

optimal policy. This exists for each e > 0, since vQ(s) > -- for

each s E S by Assumption 2. Then

,a- 7r7rt - wVC a vc +Q

Y_%2 +

for all 7r e 9. Since c is arbitrary, va < T va for V . This

is equivalent to

v (s) < inf (c (s,a) + qa(s,a,s't)v,(s)] ,
aeA s'tS a

for s e S. We now show that this inequality also holds in the opposite

direction.

For each s e S,

-at
Vr(s) =ErS ( ne e . c(S,an)ec a,

';7, (,(sa.) e-aZt2. e-a(t n-t1) . ,s,,

= Es[ (l~a )  e EV., s n > 1 (S la)Jl,s2,t2].

Now

-a (tn-t1 )
Es C e *c(sn a) la,st]> v(s)n> n -2) a2

To see this suppose the opposite. Then there must be a', s' and t'

such that
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-(tn-t )

E7, s[ e• ca (Sn a n )1a, a', s 2 =s', t 2 =t?) < v(s').
n >

For each n c Nj let h denote the history of the process up to the

thrh decision epoch (including the state at that time). Let r' be a

policy such that for each history h,

P t',s(an =ah = P7r, s(an+1 =a h+1 = (at sat'h))

Then

-(tn-t1)
vr,(s) = Es 5  e n e ca(sn an)aI a'a s 2 s" t2  t']

n>l

< v (s')

which is a contradiction. Therefore

-ait
vw(s) > E,s(ca(slal) + e 2 vQ(s2))

= T v (s)

This implies that

v (s) > inf (c a(s,a) + q (s,a,s').v (s'),
aeA s ES

s

for s c S. But this holds for each r in , so

v a(s) > inf (ca(sa) + s qO(sa,s')'v (s:))
acA s es

for s e S. Combining this with the result above the theorem follows.

4. On the Ecistence of Stationary Optimal and Stationary c-Optimal

Policies.

In this section the existence of stationary optimal and stationary
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e-optimal policies is investigated. It is important to distinguish between

stationary optimal policies and optimal stationary policies. While the

former policies are truly optimal, the latter ones are only optimal in

the class of stationary policies. Conditions are given for optimal

stationary policies to be stationary optimal policies.

Theorem 6: If W is a stationary policy such that va = T v, then

7r is optimal.

Proof: Since 7r is stationary, we obtain

n

va= TYva

by applying TW on both sides of va = Twva repeatedly. This implies

that

n n n

lim Twva = lim (Tne + 1 v
n1 -+ Oo n _-,oo

> lim TY + lim infQ v

n- n-

by Lemma 4. Thus, 7r is optimal.

Corollary 7: If each A s is finite, then there is a stationary optimal

policy.

Proof: The existence of a policy 7r as in the theorem is in this case

guaranteed by the optimality equation.
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Corollary 8: If there is an optimal policy, then there is one which

is stationary.

Proof: Let r be an optimal policy. From the proof o2 the optimality
equation, v > Tev. Since 7r is optimal, we obtain Twva< v . But

va < Tjv for all 7r' e P, so v, = TwTa Let 7" be the stationary

policy such that T Tr. By the theorem., r" is optimal. Thus,

there is a stationary optimal policy.

Theorem 9: If for each ss' C S,

-atE7., s{ e .(s s,S)]

neN

is uniformly bounded, then an optimal stationary policy is a stationary

optimal policy.

Proof: For each s~st e S, let M(s,s') be an upper bound on

-atEBs N e n (nS)

neNn

Let e > O be given. Let v be a mapping from S into R+ such

that v(st) > 0 for s' e S and

steS

where s is an element of S. Let 7r be a stationary policy such

that

TvTrV < v + .v.

Such a policy exists by the optimality equation. Applying TW on both
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sides of this inequality repeatedly, we obtain

T nV < V +~ G) i:
ir a- a zY

<v
- ionf

for n e N. Letting n go to infinity in the expression above, we

obtain

n V
lim inf Tv <v + E oj .

n -i Ca - a nFN

Now

Jira inf Tnv lira inf(TI + n

n -co r a n -
j

nn

=~ ia TGD

ur ~+ n iS)~

by Lemma 14. Thus

ir- < + E

nrzN
and in particular,

< va(s) + 6 ) M(ss')V(s')
-a s' S

Let 7' be an optimal stationary policy. From above,

v ,(s) v(s) + 6 M(s,st).(s)•

But e > 0 is arbitrary and W M(s,s)v(s) is finite, so
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v ,(s) < v (s). The argument can be repeated for each s e S, so 7'
T -a
must be optimal.

Theorem 10: If for each s' e S,

-c t
E e n S ))

neN

is uniformly bounded, then there are stationary c-optimal policies

for all e > 0.

Proof: For each s' c S, let M(s') be a bound on

-at

B s ,) n 5 5(s, )) .

neNn

Following the proof of the previous theorem, we obtain

. (s) < v (s) + E M(s,>v(s,) ,

for some stationary policy 7r. Since e > 0 is arbitrary and

)M(s').v(s') < ,
'CS

the theorem follows directly.

Corollary 11: If there is a p < 1 such that I

-at2I ( e <
7r*, 5

for s c S and Y e , then there are stationary e-optimal policies

for arbitrarily small e and every optimal stationary policy is a sta-

tionary optimal policy.
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Proof: We only need to show that the conditions of the two previous

theorems are satisfied. It is enough to show that

Ew,5  D e n} <(1)-E7r, s neN e -

for s E S, 7 r e. But this follows from the proof of Theorem 1.

5. Policy Improvement

By the optimality equation, an optimal policy, 7 , must satisfy

the equation

v,* =inf T v
Tr 7f

iT 7r41 7r

A policy T" which satisfies this equation is called unimprovable.

An unimprovable policy need not be optimal, as the following example

shows.

Example: Consider a discrete time Markov decision process with

state space No and action space (0,1). If the system enters state

0, the process stops. In every other state there are two permissible

actions, 0 and 1. If action 0 is taken in state i(i > 0), an

immediate cost a' is incurred and the state 0 is entered. If action

1 is taken in state i(i > 0), no immediate costs are incurred and

the state i + 1 is entered. Let P be a given discount factor. If

ap > 1, then the policy which always chooses action 0 is unimprovable,

but it is not optimal.

If there is an s c S such that

vI(s) > inf (Tv)s

then 7r' is called improvable.
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Theorem 12: If' 7r' and 7r e are such that Twrv 7 , <v,, then

v < TTr,.

Proof: Applying Tr on both sides of Tv , < v repeatedly, we obtain

n
Twv,> Tv: ,

for n e N. Letting n go to infinity yields

v _lim inf T = lim inf(Tne + n

YT li n -+r0n n+0 1y

lim Tne + lim infQv
n n

by Lemma 4. Thus, the theorem is proved.

This theorem may be useful for the development of a policy improve-

ment procedure like that of Howard (1960). The problem is that one has

to avoid convergence to a suboptimal solution.

6. Necessary and Sufficient Conditions for Optimality.

In Section 5, it was shown that an unimprovable policy need not

always be optimal. Here, necessary and sufficient conditions for a policy

to be optimal are presented. If v"a is known, then the optimality

equation can be used to find out whether a given policy is optimal or

not. i v. is not known in advance, the following theorems may be more

useful for proving that a given policy is optimal.

Theorem 13: Let S' be the set of s in S for which v,(s) is
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finite. Let be any subset of such that for each r in

there is a 7r' in (5 such that vjr, < V.

If 7r is an unimprovable policy such that

rnlim (n )(s) = 0 for s e S', fr e

then r is optimal.

Proof: We first prove that v *< Tnv * for n c N and 7r e(?. This
V 

7r

clearly holds for n = 1. Now

-ati  _at

(T.v = 7r, e • c<n(s,a) + e • v n+l
i<n 7r

-- a a -
ii = E.'sl" n ei * ca(si,a i )

n n~

+ (+ e t O *(Sn+ltnsn

Furthermore)

Er,5 sa(snan) + e • v *(Sn+l)ItnSn ] > V *(sn )

since * is unimprovable. Therefore

-at. -at
(Tnv *)(s) > E7r,s( e c (si,a.) + e * v d)

T i < n7r

-
>E 7r, s , + e n- * s v -

i < n-1 Tn

> V a)SS ,

for a e S. This implies that
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v *< lrn Tn T v lim (Tee + r;

7Y n "* liW n 7

- im T r + lir Qnv9

- 00 -1 0.,

nn*

by the last condition of the theorem. Thus, 7r is optimal.

Corollary 14: If r is an unimprovable policy such tht

-at

E 7E .s (e n 8(ss n))'Iv .(s')l <-, for s e S', '
s" ' 7rf

then r is optimal.

Proof: It is sufficient to recognize that

s'G S E e n. b(sS n)).Iv *(s')J

ls ES r

- Y v QJ*I)(s)neN

neN Y 7

for s e S' and 7r e '. Thus the conditions of the theorem hold, and

the corollary follows.

Corollary 15: If Tr is an unimprovable policy such that its value-
*

function is bounded; then ir is optimal.

Proof: Let M be an upper bound on Iv .(s)I- Then

Vr
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=rn lm (e n * 

nn e0

iM. r s (e IV*s)Iirt
< M 'lira Er e n) = 0,

n. a

by Assumption 3. The corollary now follows from the theorem.

Theorem .16: Suppose that there is an optimal policy, 7t. Then a policy

7r is optimal if and only if

lim (Qv )(s) = 0, for s G S'

Proof: The if part of the theorem follows from Theorem 13 by letting

P = M71. The only if part is proven as follows. Suppose that 7r

is optimal. Then

(y~ T )(s) = (Qyvr)(s) =v(s) - (T; e)(s),

for s C S', n e N. This implies that

lim (v *)(S) = liM (vr(s) - (T7O)(s)) 0

for s e S'. This completes the proof of the theorem.

7. Norms and Contraction May,±ngs.

It may sometimes be more convenient to work with norms and con-

t:action mappings. Denardo (1967) did this, and developed an elegant

analysis. Recently, Lippman (1975) used these concepts.

As before, let i be the function from S into R with value 1

everywhere. Let 11-11 be a norm on B such that
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(a) i!Un- ,

(b) 1jull < jlvhl if 0 < u < v

The sup norm, given by

* + llvhl -- suplv(s)l ,
S ES

is such a norm. Lippman (1975) has considered other norms.

A mapping T from B into B is called a contraction mapping

if there is a P < 1 such that

IITVII < PhlvlY

for v e B. Denardo's n-stage contraction condition is as follows.

There is an n E N and a 1 < 1 such that

nj~vjJ < Phlvjl ,

for v E B and w e ?. We weaken the n-stage contraction condition

so that it reads as follows. For each v > 0, there is an n N

and a P < 1 such that

11 ,vl1 < Plvhl ,

for all 7r in .

Lemma 17: If there is an n E N and a P <l such that

-at

(Ese n) < P

for s e S and 7 e , then the sup norm satisfies the n-stage con-

traction condition.
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Proof: We have

j4vII = supI(yv)(s)I = supIE Is v(sn))I
sGS seS TS

ses ~-at e (e V n)

< sup E.qr, sCe n . suplv(s')j)
ses seS

-at
=llvl • sup E, s(e n) ,

and the lemma follows.

Let p(.).) be a metric on .6 X B such that for u~v in B,

p(u,v) = jwil, where

s U(S) - v(s), if u(s) < - or v(s) <
w(s) =

0o, if u(s) = v(s)

Theorem 18: If IHI satisfies the n-stage contraction condition, then
* *

a policy w is optimal if and only if 7r is unimprovable and

p(v ,,va) < *

7"

Proof: The only if part of the theorem is trivial. We now prove the

if part. Let w be such that

v *(s) - va(s), if v (s) < - or v .(s) <

w(s) =

0o,  if v *(s) = va(s)
i

Let n e N and P < 1 be as in the contraction condition. Let c > 0

be given, and let v be a stationary policy such that

T, v(<V + (e/n)' .
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*
7r is unimprovable, so v *< T v ,. This implies that

7r T

w < Q w + ()s/n)

since w > e. Applying Qr to both sides of this inequality repeatedly

yields

n_ + . ,

since Q.,4 <4. Taking the norm of the functions on both sides of the

i inequality yields

l Iw I Q< wll Iw + . 11

S< I11 ,, 11 + (El 11.I

< PIIwI + 'z

by the contraction condition. But E > 0 is arbitrary, P < 1 and

liwll < . This implies that lwil = o, and thus v

*a

Corollary 19: If r is an unimprovable policy such that v .(s) -

va (s) is bounded and if the condition of Lemma 17 is satisfied, then

7r is optimal.

Notice the similarity of this corollary and Corollary 15.

Corollary 20: If 11'll satisfies the n-stage contraction condition,

if v. is bounded below, and if 7r is an unimprovable policy such

that lIv *11 <co, then 7r is optimal.
7r
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Proof: Let -M(M > O) be a lower bound on v (s). Let w be as in the

proof of the theorem. Then

O <w <V +M '11,

so

<lf <lIV * +M .111 : livj* + M<~
7r
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CHAPTER 1

OPTIMAL CONTROL OF QUEUEING SYSTEMS

There has been a considerable interest in the control of queueing

systems in the last decade. Often the control problems have been forma-

lated in the framework of semi-Markov decision processes. The existence

of certain simple and intuitive optimal policies have been proven for

many different queueing systems. For a brief (but excellent) survey of

the literature in this area, see Gross and Harris (1974., PP. 36V-380).

In this chapter, three aspects of the control of queueing systems

are considered. In Section ', the formulation of queueing control problems

is discussed. Section 2 elaborates upon two general approaches to the

solution of queueing control problems. In Section 3, four different

methods for proving the optimality of an unimprovable policy are developed.

1. Formulation of Queueing Control Problems.

The formulation of queueing control problems plays an important

role in the solution of these problems. Sometimes; a queueing control

problem way be formulated in two different but equivalent ways, where

only one is amenable to analysis. Special queueing control problems

may have special desirable formxalations. But since a general formulation

of queueing control problems may yield a better perspective, we shall

now briefly describe the various components of a controllable queueing

system.

A queueing system consists of an input source, a queue and a service

mechanism. The input source generates customers which need certain services
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provided by the service mechanism. A customer generated by the input

source is said to arrive at the queueing system. The times between two

consecutive arrivals are the interarrival times. On arrival, a customer

either is given service immediately or is placed in the queue of customers

waiting to be served. There may be several customer classes, reflecting

the special needs of the customers. The service mechanism may consist

of one or several service facilities, each of which has a certain number

of servers. When the customers have received their service(s), they

leave the system.

The control of queueing systems can take various forms. Sometimes,

the arrival rate may be adjusted dynamically. Other times, the service

rate(s) or the number of active servers may be controlled., A third

possibility is to control the order in which the customers are given

service.

There are various costs that may need to be considered when analyzing

queueing systems. For example, there may be a service cost which is

incurred each time a customer is served. If the server(s) can be turned

on and off, there may be start-up and shut-down costs when the server(s)

are turned on and turned off, respectively. There may be an idling cost

which is incurred at a positive and constant rate. for each server when

he is not giving service or performing other useful duties. There may

be a customer holding cost which is incurred at a rate which is a function

of the number of customers in the system.

There may, of course, be many other types of controls and costs

than those which have been mentioned here. But surprisingly many of the

queueing control problems which have been considered in the literature

fit the above description.
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By formulating a queueing control problem as a semi-Markov decision

process, the theory for such processes may be used in developing a solu-

tion procedure or to prove that a given policy is optimal (or not). The

formulation is usually quite straightforward. One only has to define

the state of the system and the decision epochs. The state space, the

set of action spaces, the law of motion and the cost function of ;he

semi-Markov decision process are then determined by the specification

of the queueing system.

The definition of the state of the system is crucial. The state

must characterize the queueing system completely at each decision epoch.

Since a queueing system consists of an input source, a queue and a service

mechanism, cone may define the state of the input source, the state of

the queue and the state of the service mechanism. The state of the

system is then given by these three states. The state space of the

system may be defined as the Cartesian product of the state spaces of

the input source, the queue and the service mechanism, respectively.

The state space of a queueing system is often countable. If the

input source, the queue and the service mechanism all have countable

state spaces, then the state of the system is countable.

Consider the state space of the queue. Suppose that there is a

thdefnedbas number of customer classes. If the state of the queue is
defined as the vector whose i component indicates the number of cus-

tomers in class i (for each i c N), then the state space of the queue

is countable. This follows from the fact that there are only a finite

,- number of customers in the queue at any given time.

Consider the state space of the service mechanism. One case is

the system which can be controlled by turning serving on or off. For
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this case, if there is a countable number of servers, and if the state

of the service mechanism is defined as the vector whose ith component

indicates whether the ith server is on or off (for each i e N), then

the state space of the service mechanism is countable. For a more general

case, suppose now that the service rate of each server may be adjusted

to a countable number of levels. Also suppose that there are a countable

number of servers and that the service rate is only non-zero for a finite

number of servers at any given point in time. If the state of the service

mechanism is defined as the vector whose i component indicates the

level of efie a the e ith server then the state space is still
countable.

The definition of the decision epochs is also crucial. As mentioned

before, the state of the system must characterize the queueing system

completely at each decision epoch. The most natural way to define the

decision epochs is by letting them be the epochs when the state of the

system changes. If the state of the system (as it happens to be defined)

does not characterize the queueing system completely at each of these

decision epochs, one can try to eliminate some of the decision epochs.

Sometimes it may be desirable to have the decision epochs equally

spaced in time. In this case, the decision epochs are determined by

specifying the length of time between two consecutive decision epochs.

Magazine (1971) used this approach. Other times, it may be desirable

to define the decision epochs such that the times between two consecu-

tive decision epochs are independent and identically distributed random

variables. Lippman (1975) used this approach. Both of these ways of

defining the decision epochs are motivated by a certain solution method

which will be elaborated upon in the next section.
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2. Analytical Solution Methods.

A large variety of queueing control problems have been successfully

analyzed by a number of investigators. Their successes have to some

extent depended or, the special features of the problems they considered.

But many of the queueing problems also have much in common. Therefore,

there is some basis for developing general approaches for solving them.

Prabhu and Stidham (1973) attempted to develop a unified view of the

different approaches that have been used previously.

If the state and action spaces are finite, then there are well-

known (policy improvement, policy iteration) algorithms for finding an

optimal policy. But in the context of queueing systems, one is often

more interested in showing that there is an optimal policy of a simple

and intuitive form. As a by-product of this, one may perhaps develop

especially efficienb algorithms for finding an optimal policy. Two

The first approach consists of solving the problem for one period

(stage) and then extending the results to arbitrarily many periods by

an inductive argument. This approach was initially used for solving

inventory problems (e.g. by Iglehart (1963)). Because of the similarity

between queueing and invcntory problems, the approach was later adopted

by queueing theoreticians. McGill (1969) used the approach in his analysis

of the M/M/c queueing system with controllable servers. A full develop-

ment of this approach can be found in Porteus (1975b).

This approach has two advantages. First, the one-period problem is

usually easier to analyze than the infinite period problem. A successful

analysis solves both the finite and infinite horizon problems.
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However, this approach of first solving the one-period problem can

also have its disadvantages. In fact, for many queueing problems, the

one-period problem is rather meaningless. One reason is that the length

of tile first period may not be nearly the same for different start-states

and different actions. Furthermore, many important costs may be neglected

in the one-period problem (e.g., switching costs). Nevertheless, the

approach is still attractive for many problems.

The second approach consists of restricting one's search for an

optimal policy to a small class of stationary policies (hopefully not

excluding the optimal policy) and then proving that the policy which is

optimal in this class is also optimal among all policies. To prove that

a policy believed to be optimal is indeed optimal among all policies,

one usually only has to prove that the policy is unimprovable. This

approach has been used by, among others, Reed (1974 a), (1974b).

This approach has the advantage that it usually only requires the

analysis of relatively simple stationary policies. If one can obtain

an explicit expression for the value functions of these policies, then

it is usually a simple matter to prove when one of these policies is un-

improvable (and thus probably optimal). Even if such explicit results

cannot be obtained, the approach may still be used with success (e.g.,

see Orkenyi (1976)).

The disadvantage of the approach lies in the fact that an unimprovable

policy need not necessarily be optimal. In the previous chapters, several

conditions for an unimprovable policy to be optimal were given. For

example, when discounting is used, it was shown that if the value function

of the unimprovable policy is bounded, then the policy is optimal.
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But queueing control problems are often characterized by giving

rise to unbounded value functions. This is often due to the holding

costs tIng unbounded. In the next section, it is shown how this

problem can be solved.

3. Solutions to the Problem of Unbounded Costs.

We now consider the problem of unbounded costs with discounting,

and develop four different methods for proving that an unimprovable policy

is optimal. The assumptions of chapter 3 are retained here.

*3.1 A Reformulation.

Perhaps the easiest way to solve the problem of unbounded costs

is by reformulating the cost structure of the system under consideration

in such a way that the costs become bounded. There is, however, no

single receipe for doing this. Different problems may require different

reformulations. Here, an idea of Bell (1971) is generalized.

For the sake of simplicity, suppose that the expected.distoUnt~d-

cost excluding the cost .due to holding customers in the system is bounded.

Also suppose that there are m customer classes and that a holding cost

is incurred at a rate which is a given functicn, h, of the number

of customers present in each customer class. Define the state of the

queue as indicated in Section 1.

th
For each n e N, let tn  denote the time of the n change in

the state of the queue and let yn denote the state of the queue immed-

iately after the change. Without loss of generality, assume that tI = 0.

h
For each policy wr and state s, let v (s) denote the expected dis-

counted holding cost, given that the policy w is used and that the
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start state is s. Clearly

h ftn+. h(y )e -a tv(s) = E 7, S f n dtht

n

1 t
h(y E+B,s( i(h(yn+)- h(yn))e ,

a ~ n1a n

for each s e S and 7 e.

Now, reformulate the holding cost structure such that at each time

tn(n > 1), the holding costni

xn =  (h(Yn) " h(y)

is incurred. Formally, we choose to include the cost xn in the costs

incurred in the period from tn-l to tn(n > 1). For each start-state

s and policy w used, the expected discounted holding cost becomes

v (s) - h(Y

Thus, the problem before the reformulation is equivalent to the problem

after the reformulation with regard to optimal policies.

Assvme that the number of customers in each customer class only

can change by one at a time and that changes in different customer classes

cannot occur simultaneously. Let Y denote the state space of the queue,

and for each i(< m), let a) denote the m-vector whose components
I1

are all zero except for the ith one which is equal to one. We can now

state the following theorem.

Theorem 1: If for each policy 7r,

neN
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is uniformly bounded and if there is an M < o sch that

jh(y +u i ) - h(y)J < M

for 1 < i< m and y c Y, then every unimprovable policy is optimal.

Proof: Under the conditions of the theorem, the expected discounted

holding cost after the reformulation is bounded. Therefore, any policy

which is unimprovable for the problem after the reformulation is optimal

for that problem. But the optimal policies are the same for both problems.

The unimprovable policies are also the same for both problems. Therefore,

we conclude that a policy which is unimprovable for the original problem

is also optimal.

Example (The M/G/l queueing system with removable server):

Excluding the policies which turn the server on and off repeatedly

at a decision epoch, the expected discounted cost excluding those due

to holding custdmers in the system is bounded. Let X be the arrival

rate of the customers, and let a< 1) be the Laplace transform of the

service times (with its parameter being equal to the interest rate (X).

Let (t'] be the sequence of times when customers arrive, and
n neN

let (t") be the sequence of times when customers depart. It can
n neN

easily be shown that for each policy w used and each start-state s,

E s( e n3 =1+ X

and

K -w t" < _ _ < .
n6N
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Since (tn)nN is a subsequence of (t')nn U (tit)n the first -,n-

dition of the theorem holds.

If the slope of h is bounded (in this case h is a function of

one variable), then the second condition of the theorem holds. Thus,

if the slope of the holding cost function is bounded, then every unim-

provable policy is optimal. This is just the assumption made by Blackburn

(1971) when he considered the convex holding cost model.

3.2 Comparison with the Policy which Shuts Down the System.

Assume as before that the customer .holding cost is incurred at a

rate h(yn) in each intexal (tn'tn+l). Also assume that h is such

that

0 < h(x) < h(y)

for x < y and x E Y, y e Y.

Assume that the system can be shut down at any decision epoch and

that the shut-down cost is bounded uniformly from above. L~t wF0 denote

the policy whicn always shuts the system down (or leaves it off). Assume

that when the policy 7r0 is used the total number of customers present

in each customer class is at a maximum at all times for any given start-

state.

.
Theorem 2: If 7r is an unimprovable policy such that, for each s e S,

.( s ) <_ v ( s ) < -
7r

then is optimal.

Proof: By Theorem 15 in Chapter 3, we only need to show that
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lim E ,(e n .v .(Sn) 0

EV., n

n - (en

for each s c S and 7r (9. Here (t) is the sequence of the

times of the decision epochs.

For each s e S, let R(s) denote the expected discounted shut-

down cost when the system is in state s and the policy Tr0  is used.

For each 7 e 6, s c S and t e R, let x (sit) denote the discounted

holding cost incurred from time t onward (the discounting starting

at time 0), given tha' the start-state is s and that the policy 70

is used. It follows from our assumptions that

( sit) < x (sit), for t E R, s e S, Tr e

Now

VT (s) = R(s) + EXTO (s,O)), for s e S ,

so

E(X 70(SO)) < o, for s G S •

CtFor each 7r T:n s let (tn(S)]ncN be the sequence of

the times of the decision epochs, given that the start-state is s and

that the policy Tr is used.

Choose a 7r c 9 and for each n e N, let 7rn  be the policy which

follows T until the nth decision epoch and then shuts down the system.

Then

n
E se n(s ) :Ex (Stn(1s)

= E~t (7T,s) < t) X7n(S'tn(T s))J
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+ E~(t n (7,s) > t) "~ X(S'tn(7r's)))

<E~l t(V)s) < t) * X o(SO)}

+ E!l tn(7r, s) > t x (sJtn(.'s)

-E(l(tn(7r,s) < t) x XTO(SO)} + E[xo(S't))

nn

for n e N, t e R and s e S. Here, we have used the fact that

x"r(s)t) <x o(s,t), for t e R, s e S, 7r e

71-0

and

x 7 (s,t) < xr (st'), for t < t' tt' R) S SE,76 )

and

r( Kxt) ), for t R, s eS, r

By Lebesgue's bounded convergence theorem,

lim El(tn(Ts ) < t (s,O)J = 0, for s e S

n oo tnOT

since

Ex O(s,O)) <

and

limr P t < t]= 0

7r, S fl

Thus

-at h
urn Ce n . v (s)) < E(x (St)), for t e R, s e S

fl )0ws i0 n - 0
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But

lim E Xo(St)) =0 for s e S

since

E(Xo(S,) tli m  E 0st e "- t  h(yt)dt) < , for s e S,

where yt denotes the state of the queue at time t. Therefore

-atlr E. se n . v n n)

nr E Ce
n-o

-a t -at
lim EC, s e "R(Sn))+ lim Er e n h (S

nts nn -s

Thi copee the proof.

.-at
< lim E' 7r e n . R(Sn)

- n _ , -* O

for s eS. Let M be a finite upper bound on R(s). Then

-at -at
liTh s e e y s (S<eM idlif E o e ( in_ co 7r S  TOn - n 7,-, 3s

=0, for s c S

since

lim P=rs (tn <t) 0) for t c R, s e S•

This completes the proof.

Q.E.D.

Example (The mIG/1 queueing system with removable server):

~The state of the system is defined as a pair of integers (i~j),

where i denotes the number of customers in the system and

0



-0 if the server is off

l, if the server is on

It is easy to find that

. (_ k. h(i+k), for j= 0 i 0

keN

v0rooV~o(i,j) =

0k
+ k h(i+k), for j l, i e No

k+N0  0

Therefore, if 7r is an unimprovable policy such that

v (ij) < v (i,j), for j e (0,1), i G No
T 710

and if

iEN0  M

then 7r is optimal.

5.5 Comparison with the Policy which Minimizes the Expected Discounted

Holding Cost.

Suppose that there is a policy which minimizes the expected discounted

holding cost, and let 7r0  denote such a policy. For each 7r e e and
nh

s e S, let v (s) denote the expected discounted cost excluding the

holding costs, given that the start-state is s and that the policy 7r

is used. Then

vT(s) = vh(s) + vnh (s), for s E S, T e6.

Let p be a metric defined as in Chapter 3. Let A be the binary

operator such thatJ - -- ~71



p

xAy =min(x,y), for xeRyeR

We are now ready to state the following theorem.

Theorem 3: If 7r is an unimprovable policy such that v r *< vT 0 and,

in addition,

p( nh VonhAvnh) <% for 7r , 9

0 0

then w is optimal.

Proof: By Theorem 18 of Chapter 3, we only have to show that

p(v ,, v* Av )<-,, for 7r

But

.V o v * A v) <- p(v v A v

wr 0 0

- h +nh Vh +nh) vnh

-P((V h + vnh), (vho+ . A(vh+ V )
TO T 0 0r T

"h vnh A nnhn

o 0 0r< (v , Vnh nh

< c, for 7r .

Q.E.D.

Example (The M/G/1 queueing system with removable server):

In this case, let 1i11 be the sup norm. Excluding those policies

which turn the server on and off repeatedly at a decision epoch, then

the contraction condition of Section 7 of Chapter 3 is satisfied. For

1 7272
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any Y e

p(v , v:.hA vnh'= r i~v Ov n - vn .hA vhI
P~ n Vnh h jn nh An

supiv - (s) - v.hs)Avh(s)i
sS 0O 0r

< 00.

We conclude that if 7 is an unimprovable policy such that v7r < V T,

then 7r is optimal.

3.4 Comparison with a Policy which Minimizes the Expected Discounted

Holding Cost until a Finite Set of States is Reached.

We now generalize the result of Section 3. This time, let 710

denote a policy which minimizes the expected discounted holding cost

incurred until a given, finite set of states is reached. Assume that

v is finite-valued. Let p be defined as before.
i*

Theorem 4: If r is an unimprovable policy such that v r < V 1

and, in addition,

nh vnh Av nh )<p (Vo, vfor
STO 7r "

then 7r is optimal.

Proof: Since 7r, minimizes the expected discounted holding cost in-

curred until a given, finite set of states is reached, and since 
v h

is finite-valued there must exist an M < c such that

oh (s) vh(s) for s 5, 7

S(s) M' for S M,
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Now

p(vo Av)<p(v A v*-1 0 TO 70 rT

nh h v (vnhPT 7r A NV J

0 0

0 0hP V 7 10o, 0 A (v TO m +v
nih nh n

<p('v vwhA N -me))

'Iv nh vnh nh)+
TO TO 7VW +

< Co.? for T e Q

*
Theorem 18 of Chapter 3 now implies that r is optimal.

Q.E.D.

Example (The M/GiI queueing system with removable server):

Let c be the set of policies such that each policy in always

turns the server on (or keeps him on) when the number of customers in

the system is sufficiently large. It is easy to show that, for each

7 r , either v h(s) is finite-valued for each s in S or it is

infinite-valued for each s in S. In the latter case, all policies

may be regarded as optimal. Therefore, we now focus on the former case

where v h(s) is always finite-valued.

Clearly, Tr0  in the theorem may be any policy in . As before)

p(V o, )v'Av") <-, for VeP.

Therefore, we conclude that if 7r is an unimprovable policy in

then Tr is also optimal.
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