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CHAPTER 1

INTRODUCTION

Markov and semi-Markov decision processes have been studied exten-
sively since their initial developm~vt in the late 1950's and early
1960's. They provide the natural framework for the study of a plethora
of problems arising in the areas of gqueuveing, inventory, maintenance
and replacement, etc. Many useful results about Markov and semi-Markov
decision processes are available now under a variety of assumptions.

A common assumption has been the assumption of bounded costs. Although
bounded costs is an appropriate assumption for many problems, there are
also many situations, especially in the context of queueing and inventory,
for which it is not appropriate. Thus, there is a need for developing

a oueury for Markov and semi-Markov decision processes with unbounded
costs. Although there have been some efforts in this direction ear’ier,
stronger results need to be developed. That is the objective of this
report. Specifically, results are obtained for semi-Markov decision
processes both when the costs are discounted _nd when they are not.
Application to the optimal control of gueueing systems is also considered.

The terminology of semi-Markov decision processes is summarized in
Section 1. Section 2 then presents some examples of semi-Markov decision
processes both with and without unbounded costs. Section 3 reviews the
literature on semi-Markov decision processes. An overview of the study

is presented in Section k.
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1. Terminology of Semi-Markov Decision Processes.

The semi-Markov decision process is a stochastic process which
requires certain decisions to be made a% certain points in time. These

points in time are the decision epochs. At each decision epoch, the

system under consideration is observed and found to be in a certain state.

The set of all conceivable states is the state space. The decision

consists of chcosing an action from a set of permissible actions. This
gset depends on the state of the system when the decision has to be made.
The set of permissible actions for a given state is an action space.

The union of all action spaces is referred to as the action space. Once

an action has been chosen, the probabilistic aspects of the evolution

of the system until the next decision epoch occurs (including the time
elapsed and the state of the system at the next decision epoch) is com-
pletely determined by the state of the system when the action was chosen
and the action itself,

A policy for a semi-Markov decision process is a rule which selects
an action at each decision epoch by considering-only tae history of the
process up to that point in time. An interesting class of policies is
the class of stationary policies. A stationary policy selects the action
at each decision epoch solely on the basis of the state of the system

at the decision epoch. A stationary policy is deterministic if it

selects the actions according to a fixed mapping from the state space
into the action space; ctherwise it is randomized.

A part of the process is the costs incurred. The objective is %o
minimize these costs. They are, however, incurred in a random fashion
and at different times, so a further specification of the objective is
needed. There are several alternatives. If the time factor is not
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important, one may choose to minimize the total expected cost, or if this
is not finite, the long-run expected average cost. If the time factor
is important, one may discount the costs and minimize the total expected
discounted cost.

For our purposes, a semi-Markov decision process is completely

specified by four objects, the state space, S, +the action spaces

the law of motion q, and the cost function c¢. ILet

{As}ses’

A= \~Jses A, and let R be the set of real mumpers. The law of

motion, ¢, is a mapping from S XA XS X R into R, and the cost
function, ¢, 1is a mapping from S XA X R into R. Consider a decision
epoch. Suppose the state there is s and suppose the action chosen

there is a. Then, for s' e S and %t e¢R, q(s,a,s',t) is the joint
provability that the time until the next decision epoch is less than or
equal to % and that the state at the next decision epoch is s'. If

the times between the decision epochs are constant, then we have a Markov 1.
decision process. Also, for t e R, c(s,a,t) is the expected cost

accumulated until time +t. The formulation of a problem in the framework

of semi-Markov decision processes consists of specifying 8, LAs}seS’ q

and ¢. Some examples of semi-Markov decision processes sre now pre-

sented.

2. Examples of Sem’-parkov Decision Processes With and .thout Unbounded

Costs.

Selling an asset (Ross (1970)):
Consider a person who wants to sell his house. Offers arrive according
to a stationary Poisson process. The sizes of the offers are independent,

g 1] identically distributed random variables. When an offer arrives, it
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mist either be accepted or rejected. Rejected offers are lost. A main-
tenance cost is incurred at a constant non-negative rate until the house
is sold. The problem is to decide when an offer should be accepted. This
problem can be formulated within the framework of a semi-Markov decision
proress as f Llows.

iet the accision epochs be the same as the epochs when offers arrive,
let the achions be b2 accept or reject the current offer, and let the
state of the system be the size of the offer at the most recent decision

epoch,

A job shop model (Lippman and Ross (1968)):

Consider a factory which is only able to handle one job at a time.
Jobs arrive according to a stationary Poisson process. When a job arrives
it is classified to be of a certain type. Jobs of the same type have
an identical probabilistic structure for their cost and completion time.
The classification of arriving jobs are independent, identically dis-
tributed random variables, Fach job muét either be accepted or rejected.
Jobs arriving when the factory is busy are rejected automatically. The
problem is to determine when a job should be accepted (rejected) when
the factory is not EEEX' This problem can be formulated within the
framework of semi~-Markov decision processes as follows.

Let the decision epochs be the same as the epochs of job arrivals
(neglect jobs which arrive when the factory is busy), let the available
actions be to accept or reject the job that just arrived, and let the

state of the system be the type of job present.

The M/G/1 queueing system with removable server (Heyman (1968)):
Consider & queueing system having one server which can be turned
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on and off., C(Customers arrive according ‘to a statlonary Poisson process.

They are served one by one on a first-come-first-served basis. The service

times. are independent, identically distributed random variables., There
is a cost associated with the servive of each customer. These costs are
independent, identically distributed random variables. There are fixed
charges for turning the server on and off. There is a cost for having
the server on when there are no customers in the system. This cost is
incurred at a constant rate at such times. TFinally, there is a cost
for holding customers in the system. This cost is incurred at a rate
which is a non-negative, non-decreasing function of the number of cus-
tomers present. The problem is to determine when the server should be
turned on and turned off. This problem can be formulated within the
framework of semi-Markov decision processes as follows.

Let the decdsion epochs be the epochs of customer arrivals and
departures (neglect arrivals which occur when the server is busy). Iet
the available actions be to turn the server off (or have him off) and
to turn him on (or have him on). TFinally, let the state of the system
be a vector whose first component gives the number of customers present,

and whose second component shows the status of the server.

3. A Brief Survey of the ILiterature on Semi-Markov Decision Processes.

The first comprehensive study of Markov decision processes was done

by Howard (1960). He assumed finite state and action spaces, and con-

sidered the problem both with and without discounting. He only considered

stationary policies, and developed his now well-known policy improvement

procedures. He proved that they would produce optimal stationary policies.

At the same time, Manne (1960) suggested solving the Markov decision
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problem by using linear programming. He used the average cost criterion,
and showed how to solve an inventory problem by his suggested approach.
The first linear progremming formulation for he probliem with discounting
was given by d'Epenoux (1960). Shortly afterwards, Wolfe and Dantzig
(1962) proposed the use of their decompositiorn technigue on Manne's
linear programming formulation.

Blackwell (1962) considered Markov decision processes with finite

state and action spaces, and proved that there is a stationary policy
which is optimel among all Ma;kov policies, He also considered the
problem for arbitrarily small interest rates, and proved that there is

a stationary policy which is optimal among all Markov policies for small
enovgh interest rates. ILater, Blackwell (1965) considered Markov decision
processes with more general state and action spaces. He only assumed
that they were Borel sets. However, he assumed that the rewards were
uniformly bounded. He considered the problem with discounting, and
alloved any measvrable policy. His main results were the following.
There is a (p,e)-optimal stationary policy. If the action spaces are
countable, then there is an e¢-optimal stationary policy. If the action
spaces are finite, then there is an optimal stationary policy. If there
is an optimal policy, ‘then there is one which is stationary.

Strauch (1966) considered the same problem as Blackwell, but instead

of using discounting, he assumed that the rewards were negative. His
main results vere similar to those of Blackwell. If the action spaces
are finite, then there is an optim§l policy. If there is an optimal

rolicy, then there is one which is stationary. The optimal return function

is measurable and satisfies the optimality equation.
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Denardo (1967) also considered the same problem as Blackwell and
generalized it to include certain stochastic games. He infroduced oper-
ators with certain menotonicity and contraction properties, and used
the Picard~Banach fixed point theorem to prove that the functional equation
of optimality has a unique solubion, which is the optimal reward function.

Veinott (1966) gare a policy iteration procedure for finding a bias-
optimal policy (no discounting). ILater, Veinott (1969) considered a
more refined opbtimality criterion, namely, that of finding a policy which
is optimal for all sufficiently small interest rates (sensitive discount
optimality). He developed a policy iteration procedure for finding a
stationary policy which would be optimal according to this eriterion.

Derman (196G) considered Markov decision processes with finite
action spaces and a countable state space. He used the average cost
criterion, and gave conditions for when a stationary, deterministic
policy is optimal. Ross (1068) considered the same problem, but allowed
a general state space. He derived results similar to those of Derman.

He also suggested a method for converting the average cost problem to
a discounted cost problenm,

One of the first to consider semi-barkov processes was Pyke (1961).
Shortly afterwards, Howard's results for Markov decision processes were
extended to semi-Markov dscision processes independently by Jewell (1963)
and Howard (1964). When they considered the average cost criterion,
they asswned that all states belong to one positive recurrent class.

They also gave linear programming formulations,

Denardo and Fox (1968) considered the multi-chain case (i.e., the

case of several positive recurrent classes), using the average cost

criterion. They gave a linear programming formulation and a policy

7
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improvement procedure., ILater Denardo (1970a)developed a solution method
which used Manne's linear programmiag formulation to solve a sequence of
subproblems. This solution methed has the advantage that several small
linear programming problems are solved instead of one big one. Denardo
(1971) also considered the problem when small interest rates are used.
His results are similar to those of Veinott for the discrete-time Markov
decision process. He gives a sequence of linear programming problems
for finding an optimal policy.

All of these authors have assumed that the immediate rewards or costs
are bounded uniformly. After Strauch, Harrison (1972) was the first one
to relax the condition of bounded costs. He assumed that the expected
absolute reward in one period minus the expected absolute reward in the
pericd before it, given the state at the beginning of that period, is
univormly bounded. He then showed that the expected discounted reward
is finite for each policy and that there exists a stationary Policy
which is optimal. He proved this by using the Picard-Banach fixed point
theorem. He also extended his results from Markov decision processes
t0 semi-Markov decision processes.

The‘;moblem with unbounded costs was also considered by Reed (1973).
He investigated the problem both with and without discounting. He assumed
finite action spaces and countable state space. He gave sufficieni con-
ditions for a stationary policy to be optimal.

Hordijk (197ha), (1974b) also considered the problem with unbouuded
costs. He introduced the aotion of convergent dynamic programming, which
is just to say that the expectation of the sum of the absolute rewards
is finite. He proved that a policy is optimgl if it is unimprovable and

if another condition is satisfied.
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Most recentiy, Lippman (1973), (1975a)considered the problem with
unbounded. costs. His approach is to use a norm such that the norm of
the costs is finite even though the costs are unbounded. In order to
obtain the usual results, he then has to make as_umptions about the
law of motion of the system. By doing that, he showed that Denardo’s

N-stage contraction assumption is satisfied, and the results follow.

L,  Overview of the Study.

The emphasis of this report is on ¢..errining necesssry and sufficient

conditions for a stationary policy to be optimal. It is not assumed that
the costs are bounded. The problem is considered both with and without
discounting.,

Chapter 2 treats the problem without discounting. Two closely
related optimality criteria are used, namely, the average cost criterion

and the undiscounted cost criterion. After introducing the important

concept of an unimprovable policy, sufficient conditions are given T a

unimprovable policy to be optimal, Both the special case where the
opbimal expected average cost is independent of the stari~siate and the
general case when the average cost is not necessarily constant are con-
sidered.

Chapter > treats the  ~m with discounting., After formulating
the problem and introducing .e operetors QW‘ and TW, the optimality
equation is proven. The existence of stationary optimal and stationary
e~optimal policies are then investigated. Policy improvement is con-
sidered, and some necessary and sufficient conditions for optimality
are given.

Chapter 4 is devoted to the optimal control of queueing systems.
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Solution methods are explored, and four different ways of solving the
problem of unbounded costs are presented.

Some generel notation and conventlions are best introduced here. R
denotes the set of real numbers, R, denotes the set of non-negative
real numbers, N denotes the set of natural numbers (starting with one)
and W. denotes the non-negative integers. The Kroene.nwr delta function

0
& is defined by

1 if x=vy,
8(x,y) =
0 if x4vy.

If x is a real number, then x is mex(0,x) and x is max(0,-x).

Finally, we use the convention that

w if x =00, y> -0,

X+y=(=0 if x<o, y= -»

1
-

]
=
8

undefined if x = -y
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CHAPTER 2

SEMI-MARKOV DECISION PROCESSES WITHOUT DISCOUNTING

This chapter presents an investigation of semi-Markov decision
processes without discounting the costs. Thus, costs of equal size
incurred at different times count the same. Two optimality criteria
are used. The first one is the average cost criterion, according to
which a policy is optimal if the long~run expected average cost is
minimized by this policy. This criterion has been considered recently

by Hordijk (197ha): The other criterion is the undiscounted cosﬁ

criterion. A policy is optimal under this criterion if it minimizes
the long-run (total) expected cost for the process which is derived from
the original one by incurring an additional cost at a rate equal to the

negative of the minimum average cost. This criterion has hbeen considered

by Denardo (1970). He called a policy which is optimal for this criterion

a bias-optimal policy.

There have traditionally been two approaches to the problem without
discounting. The first one consists of restricting one's consideration
to stationary (deterministic) policies and performing a stationary
analysis. The second one consists of considering the problem with dis-
counting and observing what happens when the interest rate goes to zero.
Here, we will follow the first approach. It has been common to assume
that the costs are uniformly bounded. We make no assumptions about the
size of the costs. Reed (1975) conducted a similar but somewhat less

complete study of the problem.
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In Section 1, there is a formal statement of the problem to be con-

sidered. It also contains some preliminary results. Unimprovable policies

are defined there. In Section 2, sufficient conditions for an unimprovable
policy to be optimal are given. Iv is assumed that the long run expected
average cost is constant., 1In Section 3, the results from Section 2 are
extended to cover the general case of non-constant long-run expected
average cost. In Section 4, there is a brief discussion of methods for

finding an optimal policy.

1. Problem Fo—~mulation.

As before, let S be the state space, sAs}seS be the action

spaces, q be the law of mobtion and c¢ the cost function. TLet éz) be
the set of stationary, deterministic policies, and let A be \~)8es As.
For each n ¢ N, 1let tn’ Sn’ and an denote the time of the n{.’h

decision epoch, the state observed there, and the action chosen there,

respectively.
. + o,
For each T ¢ 55, let vw be the mapping from § X R into R
such that, for cach s ¢ 8 and t ¢ R+,

vw(s,t) =8 {2 c(s

sa b=t )) )
T,s nell, n n

n

where
N, = {n ¢ N|tn <t} .

E 1is the expectati-n operator, and the subscripts T and s respec~
tively denote that the start-state is s and that the policy used is

7. In words, vﬁ(s,t) is the expected cost incurred until time %,

given that the start-state is s and that the policy T is used.

12
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Vo need not always be well-defined. Later, however, certain assumptions
which guarantee the existence of Vo for each T ¢ 55 will be made.

The analysis here is based on the fact that under certain conditions
(to be introduced when needed), vv(t,s) has a linear asymtote for each

s eSS and T e gb. For each W'e.JS, let QW and w_. be the mappings

T
from S into R such that

Qw(s) = tliwm VF(S)t)/t s
wﬁ(s) = lim [vw(s,t) -t Qr(s)} s

t >

for s ¢ 8. QW is the long-run expected average cost, given that the
start state is s and that the policy 7 is used. wﬁ(s) is the long-
run expected cost not accounted for by Qﬂ(s).

™o opbimality criteria will be used. The first one is the average

*
cost criterion. A policy T € 35 is optimal according to this criterion

if @ *(s) E_QW(S) for s eSS and T ¢ 55, and the policy is called
T

average opbtimal. The second criterion is the undiscounted cost criterion.

*
A policy T ¢ Jb is optimal according to ‘this criterion if it is average
optimal and, in addition, w ,(s) f'ww(s) for s € 8 such that
T
¢ (s) = Q”(s) for T e 55. A policy which is optimal in this sense
m

is called undiscounted opbtimal. This latter criterion has not received

much attention in the literature. This may be due to the fact that often
there is not much to gain by using this criterion instead of the average
cost criterion. The main difference resulting from the use of these
criteria is that the action in the transient states become more important
when the undiscounted cost criterion is used. To illustrate this point
further, an example is included below.

13




Example: Consider the following simple semi-Markov decision process.

The state space is N and the action spaces are [O,l}. The times

between the decision epochs are exponentially distributed with the same

parameter. State O 1is an absorbing state. Consider states in N.

If action O is taken, the state 0 is entered next with probability

one, If action L is taken, the state numbered 1 higher is entered

next with probability one. The cost structure is simple. Each time a

state in N is reached, an immediate cost of 2 units is incurred, and

each time the state O is entered, an immediate cost of 1 unit is

incurred. Any policy which chooses action O in all the states above

a given number is average optimal. The undiscounted optimal policy is the

one which always chooses action 1. This is clearly the desired policy.
One special reason for using the undiscounted cost criterion is

as follows, Under certain circumstances there may exist a sequence of

average optimal policies Ty ”é’ +++ such thet using L for the

first decision, T for the se~ond, WB for the third, and so on, leads

to a long-run expected average cost which is higher than the optimal

one. This can easily be seen from the example above. First let T

be the policy which chooses action 1 fur states numbered less than n

and action O for states numbered n or higher. Each T, is average

optimal. But using Wh at the nth

decision epoch for n=1,2, ... ,
leads to a long-run expected average cost twice as high as the optimal
one., Notice that since tliere is a unique undiscounted optimal policy,
this situation cannot occur when the undiscounted cost criterion is used.

In general, there is no guarantee for the existence of a unigue undiscounted

optimal pclicy, but often a unigue undiscounted optimal policy does exist
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and thus the undesirable situvation mentioned ahove can be avoided by
using the more refined criterion. Some useful semi-Markov process btermi-
nology will aow be introduced.

A state is called transient if with probability one it will not
be reentered after some time. A state is called recurrent if with
probability one it will always be reentered. A recurrent state is

positive recurrent if the expected time between consecutive visits of

this state is f£fI ""e. Otherwise, it is called negative recurrenf. If

there is a positive probability that a state is reached in a finite time
from another state and vice versa, then the two states are said to ggéf
municate. The positive recurrent states belong to one or more positi&e

recurrent classes of states. FEach positive recurrent class is a set

of positive recurrent states which communicate with each other, but not

with states outside the class. We make the following assumptions.
Assumption 1: There is an € > 0 such that
a(s,a,s’,e) =0, for se§, ac A s'es.

In words, the time between two consecutive decision epochs is at

least e.

Assumption 2: For each T ¢ ét) and s € 8, the expected cost in-
curred and the expected time elapsed from time t wuntil the first
decision epoch after (or at) time t divided by the time + have
zero as their limits as t +tends to infinity, given the start-state
s and policy T.

Faced with a particular semi-Markov decision process, one may have

difficulties in showing that it satisfies the above assumption. However,

15
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we have not been able to do without them. If the semi-Markov decision
process is & Markov decision process, then the second assumption is
trivially satisfied.

Some convenient notation will now be introduced. For each T ¢ i),

let 9 and TW e the mappings from S X S into R such that

Lim Q(S:%F(S):S',t) )

t - ®

q.(s,s')

Jr tdq(s,an(s),s',t) s
t e R+

tF(S,S')
for s,s' ¢ 8. aﬁ(s) is the action chosen by 7 in the state s. For
each T € 55, also let MF and qv be the mappings from § inko K
such that

“
v(s) = % (st
5*eS

e (s) = lim c(s,a_(s),t)
T .t__,w ’-n— 3 3

for s ¢ 8. qﬂ(s,s') is the probability that the next state will be s,
given the present state s and policy . tw(s,s‘) is qn(s,s‘) mul-
tiplied by the expected time until the next decision epoch, given that
the next state is st 1F(s) is the expected time until the next decision
epoch, given the present state s and policy T. cv(s) is the expected
cost until the next decision epoch, given the present state s and
policy . DMNaturelly, we assume that all these quantities exist and are
finite.

If the state space is finite, it can easily be shown that Qﬁ and
- satisfy the following equations,

16
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e (s) = ¥ al(s,s")e(s"),
s'eS
wTr(s) = c,”_(s) -y TTr(s,s')'(PTT(S’) + ) QTr(S:S')'W,,r(S') ’

s'eS s'es
for s ¢S and T ¢ ci) (see Denardo and Fox (1968)). The expressions
on the right-hand side are obtained by conditioning on the time of the
second decision epoch and the state at that epoch. If w7 e $ and
7™ ¢ P are such that 7" uses 7' at the first decision epoch and T
thereafter, then
q).n-n(s) = 2 q,n.,(s,s’)~(p,[r(s') P)
s'eS

cw_,(s) - Z‘, TW,(S,S')~¢T(51) + 2 qw,(s,st)-w,rr(st) ,

steS steS

WWH(S)

for s € 8. If q>7r.,(s) scp,n_(s) and WW_,,(S) Sw,ir(s) for s =8, and
if, in addition, CP,n_..(s) < Cp,ﬂ_(s) or w,n_.,(s) < w,n_(s) for some s € S,
then 7" is an improvement over . It can be shown that 7' is also
an improvement over T in that case (see Denardo and Fox (1968)). fThis

motivates the following definitions.

A policy T is called unimprovable if

(9,”.(5) < 2 %,(S,S')‘CPW(S’) ’

s'eS

W,"-(S) Sc.n.;(s) - ,E TW,(S)S’)’(P,IT(S') + ’E qTT'(s’s’).w'Ir(S') ’
5"€d s’ eS

for s €8 and 7! ¢ ﬁ , assuming that all of the expressions above

are well-defined and finite. A policy 7T is strictly unimprovable

if it is unimprovable and if, in addition, equalities in the above

expression are achieved simultaneously only when 7' = T.

17
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If the state spate is finite, then an unimprovable policy is average
optimal (see Denardo and Fox (1968)). If the state space is not finite,
an unimprovable policy is not necessarily average optimal any more (see
Hordijk (1974)). Thus, some additional conditions must be satisfied in
order to be guaranteed that an unimprovable policy is optimal. Such

conditions are given in the next sections.

2. The Case of Constant Optimal Expected Average Cost.

For many semi-Markov decision processes, the optimal long-run expected

average cost is constant (i.e., independent of the start-state). In
particular, if any state can be reached from each state (by using an
appropriate policy) such that the expected cost up to the time the state
is reached is well defined and finite, then the optimal long-run expected
average cost must be constant. Tor in this case, the long-run expected
average cost, given any start-state s and policy m, can be obtained
for any other start-state by using a policy whose actions coincide with
those of T at states which are reached from s ﬁith a2 non-2ero proba-
bility under T, and otherwise are such that the expected cost up to the
time when s is reached is finite.

For each T ¢ 55, let xw be the mapping from § X 8 into R+

such that

x (s,s') = 1lim E_ ( (s ,s')}
ﬂ( #s") f>w N8 né%f ( n’ s

for s,s' ¢ S. Here, ® is the Kroeneckar delta function, given by

1 if s=s*,
S(S,S’) =
0 if s # s,

18
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The fact that - exists (although possibly infinite valued) follows

from renewal theory (see Smith (1955)). We assume that the expected

R
g R
SRR

time until the second decision epoch, given any start-state and action

at the first decision epoch, non-zero. This implies that X is

always finite valued.
Lemma l: For each T ¢ éﬁ,

xﬁ(s,s') =

% x(s,5")q (s"5")

s"eS

for s,s' ¢ S.

Proof; For each >0, T ¢ 55, let xw‘a be the mapping from S X S
I ?

into R+ such that
~Qit

¥y _ n
o) = B (2P alan)

for s,s' ¢ 8. Since X exists,

x (s,s') = lim o-x_ (s,s') ,
T G MO
for s,s' € S. Now

(e:8) = 3 pals:8") ap g(s%s) + - (557)

X
Ty
) s"es

for s,s' €S, where

qu,oe(s’s') =f e'atdq(s,a_’r(s),s',t) .

teR+

This implies that

; Yy _ : ny, "noLt
Lim axhua(s,s ) = lim "2> ox_ (s,s") %, (s",s') ,
o =0 O -=+0s"eS

19
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x,n_(s,s‘) = s“?s ,c,}r(s,s") q,p_(s ,s'), for s,s' eS.

Lemma 2: Lot ¢ (> 0) be as in Assumption 1. Then, for each T e @,

x,n_(s,s')

t
' 2
E ,s{ Et 8(s ,sn)] < P CI Y for t eR+ s
neNt T

for states s and s' which are positive recurrent under 7.

Proof: Let T be a policy in ﬁ, and let s and s' be positive

recurrent states under . By Lemma 1,

1Y) ) 1"y, t
xﬂ_(s,s ) = s"'/er x,n_(s,s ) EW,S,(B(S ,sa)) .

Using Lemma 1 repeatedly, we obtain

ty . N 1y, '
x,n_(s,s ) = "21 x,n_(s,s ) EW’S{S(S ,sn)}, for nelN.
s€eS
Therefore
x,n.(s)s')
$
E,"_’S[S(s »8,)] _<_X7T ssy for mel.

ow

s 3 — L4 .
Ems( Y 8(shys )= P Emsts(s »s,) P,[r’s{tn < tls )}
nc:i\It nell
]
< Y E,"_)SIS(S ,sn)} ,

n<-.E
- €

by Assumption 1. The lemma now follows by combining the two last results.

F.,“’;J"J‘“
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Lemma 5: If T is an unimprovable policy such that @ *(s) is constant
T

and

stﬂ%\/s x’lr(sis')'lw',r*(s’)l <w,

for s ¢S and ’n‘e@, then

?  (s) - > ox (s,8")+v_(s") < E x (s,s')+¢c (S’) ’
7r* s'“eJS T T stes T m i

for s €S and ’n‘eg).

Proof: Let ¢ be the constant such that ¢ = ¢  (s), for s e 8.
T L

K] * (3 0 R
Since T is unimprovable,

1 > . 1 -
¢ (s ) "w'zr*(S) + ¢y (s ) o

TN g) n). n s
%:,Sq,n,(s s w’n.*(s)

for s' eSS and T ¢ 3) Multiplying both sides by xTr(s,s') and ;

summing up over s' ¢ S yields

%) x(srs) e (s")

s'eS m

> » x_"_(s,s’)(ww*(s’) +cp.v,"_(s’) - qv(s',s")wv*(s")} s

steS s"es

for s €8, Teg i) The sums on both sides of the above inequality

A WA s e s

exists, since

stes T T s"eS

Y ox (s,s")w (s') + ¢ - VTr(S’) - “% qw(s‘,s")wv*(s")}-

< > XW(S,S,)VTW*(S’)~ + 0 x,,r(s,s’)qw(s',s")w *(s")+

s'eS sf,s"eS T

+9" 3 x (s,8')v (s7)
stes T T

21
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= ‘E xﬂ_(s,s')w *(s') + “E xqr(s,s“)w NE Y + @
s'el (4 5" €S T

(using Lemma 1 and Lemma 2)
<o o,
using the assumption of the lemma. Now

> x,r(s,s')'iww*(s') + ooy (s') - S%)S q,]T(s',s“)ww*(s")}

steS

> x (5,8t ) (') + @ S ox (s,8')Y, (s*)
"'s‘ze>s LA T stes T m

- X Xv(s,S')q,r(SSS")WW*(S“)

st,s"eS

it

n x(s,8"W NED Y, xqr(s,S")Wv*(S") Q-

¥ X (s,8')*¥ (s*)
steB T s"eS 4 W

steS

(using Lemma 1)

u

Q ,8t)ev (s')
S'ZG)S x,ﬂ_(s st)e v (s

for s €S and TE g) , and the lemma follows.

Q.E.D.

For each T € D, et R(w) denote as before the set of positive
recurrent states under T, and let T(w) denote the set of the other
states. TFor each T € 53) , et Vo be the mapping from S X $ into
R, such that

S[ > 8(5",sn)}, for s' e T(mM, s €5,

E
58 nel

1 for s' ¢ R(m), s €8 .
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In words, yqr(s ,8') 1is the expected number of times the state of the
system is s' before a positive recurrent state is eatered from another

state, given that the start-state is s and that the policy m is used.

*
Theorem 4: If 7 is an unimprovable policy such that @ *(s) is
m

constant and

3 Goplest) e el (o) <o

*
for s eS8 and T eg, then T is average optimal.
Proof: We first show that

(P.n.(s) > E XW(S,S')‘CW(S') )

s'eS

for s e€8 and T € 5}
For each T € c%, let arr and 'c\:'?r be the mappings from S X 8
and S into R such that

qv(s,s’), for s ¢ (M) ,

’c\;’_‘T(s,s') =

0 , for s e R(mM ,

c,n_(s) - (p-vw(s), for s ¢ T(m) ,

e (s) =
W 4 (s) , for s e R(M) ,
T
*
for s!' ¢ 8. Since T is unimprovable,

C() 2w (s) = B st (sh)
T

T s'eS

for s € S and Treib. Now

e3




2 ¥ (s"ss) {w «(8) - E q,,r(s,s )~w L5

seS steS

IN.

v (s",s)ow L8+ 3 Vi (s",s) 2, qﬂ_(s s )w (s')

ses seS s'es

Y v(s"s)hw 4 (s)” + E (v, (s"ss") = 6(8";S))‘W NEUN

5€8 T steS

> Vo (S",s)w #(8)" ) V(s"s8)w (S') -w *(S")+

seS s'eS 1r T

<o,

by the last assumption of the theorem. This implies that

D Vp(s"s)e(s)T <w, s es, Ted . !

seS

Thus

DEACUDEAO)

seS

is well-defined and greater than minus infinity for s" € 8 and T ¢ f)

Now

n

(p,n_(s) lim E ,s[ ) c(sn,an,t-tn)]/t

af t - nel,

) lim B_ ( (s ,a_,)}/t
1: £ - o TT,Sn?Nt n’“n

i
| (by Assumption 2)
{

:' tlim E7r,s[ » 2 8(s*,s, Yee (s )3/t
{1 - © neNt s'eS

lim E_ [2 > 8(s’,sn)-c1r(s')]/t

A T8 nel, s teT ()

+ lim E_ 8(s',s )* 1/t
,% t a0 T28 n.ezl\lt s'%%?('ﬂ') (s °n CTT(S

2k




i

S e ad

=@ + lim > 5. (% 8(st,s))ec (s*)/t
t > ster(m) "°° nel, e

i tlimoo sre%>(7r) E?f,s{n%lt 8(s'y5,) 1 (ep(st)-0 v (s")) /%,

using Assumption 2. The first limit is non-negative, since

E_ { 2} 8(s',sn)} < xﬁ(s,s’), for s' €S,

s neNJG

and since

1y, 1" « .
s'?S Y.n-(s:s ) C,".(S ) o

Therefore

QF(S) > ¢+ lim > B Y 8(s',sn))(csz') r CP'VTr(S'))/t .

t > s'er(m) m,s nel,

Using Lebesque's bounded convergence theorem, we obtain

'blimoo sf€§('n') ET;S(H%\N_b S(S”sn)].(c’n"(s') - CP'VTT(S'))/t

= S'd%)(v) x(s,8') (e (s*) = 9w (s')) ,

since

lin E s{ b 6(s’,sn)}/t = tw(s,s'), for s' e 8§,
t — o 77 nelN

t
x (S" S')
1 T~
E { 2: 8(s*,s )}t <= - s for s' es8, s" eRr(m ,
T,s nefi, n = x.(sT,s

25
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and

27 XﬁﬁS",S’)(Qﬁ(S') - ¢-yﬁ(s'))" <o,
s'eS

Thus

Ol) 2945 xyls,8)(og(s") - @u(sh)

Using Lemma 3, we obtain

os) 29 .

QoE-D-

Corollary 5: Suppose that, for each s € 8 and T ¢ gé, the expected

number of decision epochs occurring before reaching a state in R(T)

is finite. Then, if W* is an unimprovable policy such that @ *(s)

is constant and, in addition, w *(s) is bounded, then w* is Z;erage \
optimal. T

Proof: 1In view of the theorem and the fact that w *(s) is bounded,

™
we only need to show that

E v (s,s') <o,
stes T
for s <8 and T e§2). But this follows from the first assumption of
the corollary, which completes the proof.
*
Theorem 6: If 7 is a strictly unimprovable policy such that @ «(8)

T
is constant and, in addition,

26
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D (v (s,s") +x (s s*))* v *(s’)l <w ,
s'eS

*
for s €S and T e ﬁ , then w7 is undiscounted optimal.

_I_z;o_g,g: Let T be any average opbimal stationary, deterministic policy.
Following the proof of Lomma 3 and Theorem I, one can easily see that

a,"_(s) A av*(s) imply that (p,[r(s) > @ (s) for s eR(W, since Tr*

is strictly unimprovable. This impliZs that a,n_(s) =a ,(s) for s e R(m.

T
From the proof of Theorem b,

¢, (s) ZWTI'*(S) - s E,T(S:S’)WW*(S’) ’

for s ¢ 8. This implies that

Py yw_(s",s e e ) > 5 Vo (s",s){w J(s) - » E,Ir(s,s’)w (89} .
s'eS T

seS sed

It was shown in the proof of Theorem 4 that these sums are well-defined.

Now

P (s (5] = B Gylesn (1)

sed steS

u

R MG *(S) - Z} v (s",8)q (s,8")w ,(s")
K

'seS 5,8'eS

2 Ym(s":s x.( ) - E (Y (s",s') - S(S")S'nw (S

sed steS

w *(S") )
T

for s" ¢ 8. Hence

v, (s") < Y Vo (s",s)°¢ (s)

7r s€eS

27
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for s" eSS and T ¢ éb' It is easy to check that
(8 = 3 v (s"8) 5 (5)
ses

for s" €S, so

W (S") <w (S")

¥ —_— 2

T T

for s" e 8.

Q.E.D.

Corollary 7: Suppose that for each s ¢S and T ¢ 55, the expected
number of decision epochs occurring before reaching a state in R(T)
is finite. Then, if W* is a strictly unimprovable ».licy such that
¢ (s) is constant and, in addition, w ,(s) is bounded, then T
iz'undiscounted optimal. T

Proof: The proof proceeds just as in the proof of Corollary 5, and so

will not be repeated here.

3. The Case of Non-Constant Optimal Expected Average Cost.

The case when the optimal long-run expected o-erage cost varies with
the start-state now will be considered. The notation is the same as in

Section 2.
*
Temma 8: If T is a policy such that

Q. < ,81)e t ,
FOESMHERCEOENCD

'E XW(S:S')‘l(P *(S')I <w,
5'eS T

28
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for s eS8 and T e ﬁ, then @ *(s) is constant in each positive ‘
™ .
recurrent class of states under each policy T ¢ @. i

Proof: Let T be a policy in @, and let s be a state in R(m).

Using Lemma 1 repeatedly, we obtain

x_n,(s,s") = 3 x,n_(s,s')'E,lr’s,{é(s",sn)] s

steS

for ne!N and s" ¢ S. This implies that

x,n_(s,s“)

1"
Br,a B8] < ey

for ne N, and s" €S, since x7r(s,s)>0. Now

x_(s,s")

I T . ] < ::
’% x'tr—Ts_’—ST- lCPTr*(S )| <o, ’

42

S
because of the second assumpbion of the lemma. Using ILebesque's bounded
convergence theorem, we obtain

lim

8 n, ], 1
n—>w gy S{ (s Sn) (P'IT*(S :

Eﬂ.’

= 2 X (s,s")~(p (S") »
sfes T r
or equivalently,

lim E_ {9 (s )} = x (s,s").9 _(s") .
noe 78 71'*( n s"§s W( ’ Tr*(

Let d’lT be the mapping from S into R such that

d 1 = s"’ ] . ] - . 1 s
{s") S'Z,;) q (s",s") ¢Tr*(s ) cPw,e(s )
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for s" e 8. d'rr is well-defined by the first assumption of the lemma.

It can easily be shown by induction on n that

E‘TT,S"(i ?n d‘lT(Sl)] = E’TT,S"{(p,IT*(Sn)} -~ (P'Tr*(s") )

for neN and s" € 8. Inserting s for s" in this expression

and taking the limits as n goes to infinity, we obtain

lim E,n_ s(- E d_n_(si)} = lim E,"_

n-+o 7 idn n-~o 7

s{q)’n-*(sn)] bad (PW*(S)
= % XW(S:S')'CPW%(S') - (Pﬂ*(s) <,
s'eS

The first assumption of the lemma implies that d,n_(s') > 0, for s' €8

and T € $ Using this fact together with

lim B 2 als)) <e,

n-o i<n
we obtain d,,r(s) = 0. But s e R(m) was chosen arbitrarily, so

dﬂ_(s) =0 for o e R(mM). This implies that

¢ *(S) = 2 q,"_(s,s')%p *(S) ’
[

T s'eR(m)

for 5 e R(m). This, in turn, implies that

cpv*( s) lim E’Ir, s {cpTr*( sn) )

n - ©

= ’z>s xa"-(s)st)'(p *(S') 2
s'e ™

for s ¢ R(m). Now, x,[r(s,s')=x1r(s",s'), for s and s", if they

belong to the same positive recurrent class under . Thus,

30
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) *(S) 2 x.”-(s:s')'(? *(S') =9 *(S") 2
T s'eS T T

for s,s" in the same positive recurrent class under .

Q.E.D.

For each T € @ ; et I('Ir) be the set of positive recurrent

se€S and z e I(m),

classes, and for each let p,n_(s,z) be the prob-

s and policy .

ability that class 2z is enbtered, given start-state

*
Lemma 9: If T is an unimprovable policy such that the conditions of

the previous lemma hold, and, in addition,

im inf ) E_ [6(3',5 o (s') <o,
n - ste?(m) T
for s e€S and T e @, then
‘-\ .
9 (s) < ) P,”.(s)z) ?, »
T zeI(T)
for s €S and T ¢ S) Here, (pz is the long-run expected average

*
cost under T , given that the start-state is in the class =z.

Proof: Let T be any policy in $ , and let SZ be the set of states

belonging to class z for each 2z ¢ I(m). As in the proof of Lemma 8,

9 ,(s) < lim inf B s (@ (s )]
T n-w® T
= lim {5(s? ’S, BE <p MEL

n - s'er(m) W’

31
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+# lim inf Y B (8(s',s.))-0 (s*)
n - o steT(m) ™% nen o

< lm 3 B _(8(s",s))0 (s*) ,
“n o ster(mM) M8 o

for s ¢ S. The last limit exists and is finite. By Lemma 2,

1 X,H_(S";S")
t = u
EW’S{S(S :Sn)] > PTI.<S;Z) < c xn-—'(-é-“;-gn')- for some s" ¢ R('TT), €e>0,

for s' eS,; s eS8 and z e I(T). Now

1 ]
‘ . l x‘"‘(s )S ) ) "
Z€§('ﬂ') p’[r(S,Z) ICPZI = € S"GES x,n_ s',s I(P *(S )I <

for s € S. Therefore, by Lebesgue's bounded convergence tneorem,

lim E_ _{8(s*,s )}'o (s*)
n = s’ef?(?r) LEL (s "n 71‘*S

= ,2)° )
ze?(?r) P,n.(s i (Pz

for s ¢ 8. We conclude that

) < 552)* ’
(pv*(s - ze§>(7r) pls,2)%,

for s ¢ 8.

QOEODO

Let I be defined as in Section 2.

*
Theorem 10: If 7T is an unimprovable policy such that
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T = oo . —r TN e Y —b

> ox (s,8') e ()l <=,
stes T 'n‘*

s'?s {X,".(SJS’) + VW(S;S')}'lWW*(S'H <o,

lim inf ) B _{8(s',s )}-o  (s'),
n-o ste®(m) 7’8 n oy

.X.
for s €8 and T e éb, then T is average optimal.
Proof: Let T be any policy in gb. By Lemma 8, ¢ ,(s) is constant

T
for s ¢ S, (z ¢ I(T)). Therefore, by Theorem 4, ¢  (s) < @ﬂ(s), for
T

ses, (z ¢ I(m) ). Using Lemma 9 together with this, we obtain

QW*(S) < ¢%(s) for s € S. The costs incurred until a positive recurrent

state is reached do not contribute anything to the average cost, siunce

it can be shown (as in the proof of Theorem 4) that the expected cost
*

until a positive recurrent state is reached is finite. Thus, T must

be average optimal.

Q.E.D.

Coxollary ll: Suppose that, for each s € S and T ¢ éi% the expected
number of decision epochs recurring before reaching a state in R(T)
is finite.

If T is an unimprovable policy such that ¢ *(s) and w ,(s)

% ™ T
are bounded, then 7 is average optimal.

Proof: We only need 1o show that

2 x'n-(s)s') <o,
s'eS

33
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Y V-(s,s') <,
stes T

for each 8 € S. The first sum is finite by an assumption made in Section
1, the second sum is finite by Lemma 2, and the third sum is finite by

the first assumpbion of the corollary. Thus, the corollary follows.

Q.E.D.

Theorem 12: If w* is a strictly unimprovable policy such that the

*
conditions of Theorem 10 are satisfied, then 7 is undiscounted optimal.

Proof: The proof proceeds just as in the proof of Theorem 6, and so will

not be repeated here.

*
Corollary 13: If T is a strictly unimprovable policy such that the

¥
cenditions of Corollary 11 are satisfied, then 7  is undiscounted

optimal,

See the proof of Corollary 1l.
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CHAPTER 3

SEMI-MARKOV DECISION PROCESSES WITH DISCOUNTING

In this chapter the optimization problem arising when the costs are
discounted is investigated. From an economic viewpoint, this problem is
somewhat more interesting than the problem without discounting. It has
been studied by a number of investigators who have made various assump-
tions sbout the state and action spaces, the motion of the system and
the costs (see Section 2 in Chapter 1). Here, the assumptions made by
other authors are weakened, and more general results are obtained.

In Section 1, there is a formal statement of the problem to be

considered. It also contains some prelimingry results. In Section 2,

some useful operators are introduced. 1In Section 3, the optimality ;
equation is proven. In Section 4, there are some existence theorems.

In Section 5, policy improvement is considered. In Section 6, necessary
and sufficient conditions for optimslity are presented. Finally, in
Section T, there is an analysis using the contraction properties of a
certain operator. An alternative set of necessary and sufficient con-

ditions for optimality are obtained.

1. Problem Formulation.

As before, let S be the state space, [As}ses be the set of action
spaces, q be the law of motion, and ¢ be the cost function of the
SMDP. For each n in N, 1let Sp? 8y and tn denote the state of
the system, the action and the time of the nth decision epoch, respec~

tively. The first decision epoch is taken to occur at time zero, so

25
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tl = 0. Also, leb @, qg and i) denote the set of all policies, the
set ¢f rtationary policies and the set of deterministic stationary policies,
respectively. Let A = Uses A

Let O be a given positive interest rate, and let y be the

mapping from S XA into R such that

ca(s,a) = f e'atdc(s,a,t)
t

eR+
for & ¢ As for s ¢ 8. In other words, ca(s,a) is the expected
discounted cost incurred until the second decision epoch, given that
the start-state is s and that the first action is a. Naturally, it
is assumed that o exists.
For each T in 63, let v:r, v,;_ and v, be the three functions

from § into R_UI®}, R U {»} and R U {®}, respectively, such

<0t

v;(s) = ETT’S{n%N e n ., ca(sn,an)‘*') )
) ' ot )
v,,r(s) = ETT,s[n?N € ’ ot.(.sn’an) ),

vﬂ_(s) = v,;_(s) - v;(s) s

for s in S8, where E is the expectation operator and the subscripts
7 and § indicate that the start-state is s and that the policy T
is used. In words, v,lr(s) is the total expected discounted cost, given
that the start-state is s and that the policy T is used. Vor is

the value function of the »olicy . Clearly, v,;_ and v,; are well-

defined (possibly infinite-valued). In order that Vo be well-defined,

the following assumption is made:

36
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Assumpbion 1: v,:r(s) <w, for se8, Tel.

Let v, be the function from § into R U {2, ~0} such that

va(s) = :rr;é‘) vw(s) ,

for s in S. TFor purposes which will become clear later, the following

assumption is made.
Assumption 2: va(s) > 0, for s ¢ S.

If there can be an infinite number of decision epochs in a finite
amount of time, some of the costs may unintentionally be ignored by
the definition of v,n_. In order to eliminate this problem, the following

assumption is made:

Assumption 3: s{txst for ne N} =0, for t e R+, s eS8, Te @

I’ﬂ_’
Here, P is the probability operator and the subscripts 7 and

s indicate that the start-state is s and that the policy T is used.

For purposes that will become clear later, a fourth assumption is made:

Assumptiog_li: given ¢ > O, there isan m (possibly depending on s)
such that
~atn .
E__{ 2 e ca(sn,an) }1<e

for T in .

These assumptions are satisfied trivially if ca(s ,8) is non-negative
for each s and a. The following theorem gives some weaker conditions

under which the assumptions houd.
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Theorém l: If ¢, is uniformly bounded from below and there is a

o
B <1 such that

4xt2
EW’S(e }<p,

for s in 8§ and T in P, then all the assumptions above hold.

Proof: ILet B be as in the theorem. For each n ¢ N,

E {e_(xtn'*‘l)
T,S
-0t -o -t
n n+l n
= EF,S[e . En,s[e Isn,an}}
thn
<pE e )
since
[ -a(tn+l- n l <
E,n_,s e Sn)an] <Bg.
This implies that
-0t
n n-l
ETT,S{e ) <8 »

for ne N. For eacn m in W,

This implies that
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-Odtn -Od‘bn
(1-p)t FS{Ee 1> 0 ) e 7]

neN *"n<m
> me % . P‘Tr,s{tn <t for n<m}
for t €R, and m ¢ N. Thus
(6, <t for n<m)<e® . (1)t e mt

7T)

for t e¢R + and m ¢ N. Assumption 3 follows by taking the limits as

m goes to infinity.
Iet M be an upper bound on -ca(s ,a8). Then

0t

E_ { > e n'c(s,a)"}
W,anm n’“n
{ -Ot‘bn
< M'E e
- W’Sn>2m :

<wg™t . ()t
for m ¢ N. This shows that the rest of the assumptions hold.

2, The Operators Q‘1r and T’lr'

Let B be the set of mappings from § into R |J{»}. For each
T e P, define the operators er and Tﬂ_ from B into B by

-0

(@)(s) =B Lo 20 w(sy)), for ses,
-a‘b2
(T,[rv)(s) = 1r s{ca(s .8 ) + e . V(se)]’ for seS,

for v in B. For some v in B, the above expressions may not be

well-~defined, Those functions willl, however, not be used.
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Some compact notation will be used. If u and v are functions
in B, then u<v means that u(s) <v(s) for se§, u+v is
the function such that (utv)(s) = u(s) + v(s) for s ¢S, and if ¢
is a constant, then cv is the function such that (cv)(s) = cev(s)

for s ¢ 8, ete.

Lemma 2: If u and v in B are such that u < v, then Q'ITu-<-Q‘1rv

and T,[ru < T,lrv, provided the expressions are well-defined.

For each n e N and 7 ¢ P, define the operators Q,? and T;

by

n 'atn+l
(Q,n_v)(s) E'rr,s[e . v(sn+l)), for s e8,

I

-dti -0t
. cot(si’ai) + e

n+l

1
(T,[rv)(s) Evr,s[i ;_L‘,n e

for v in B. Again, these expressions need not always be well-defined

for each v in B. If, however, v is the value function of a policy,
then the expressions are clearly well-defined.
Let 6 be the function (from § into R) which is zero every-

where. Then

-0t
n i .
(Te)(s)=%__( 3} e «c (s;,a,7s * seS,
T W’Siin (rARS R 1
and
n
v_= lim T 6
T n-—->o ’

for any T in @

4o

. v(sn+l)}, for s ¢ S,

- ——
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Lemma 3: For each ne N and T ¢ T, Q;Nd and E;Wx are well-

defined.

Proof: ILet €> 0 be given, and let 7' be an e-optimal policy.
This means that v, z_vw, + eﬂl where ﬂ_ is the function from 8

into (1)}, This implies that ]
Va S (Vw, + e-ﬂ.)- S v’ﬂ" 4o €.ﬂ .

Therefore

since

@1<1.

This implies that Q;X; is finite-valued, and thus ngd is well-

defined. Also

n - n -
< Ty . + ¢
Tl S Iy * € ﬂ~’

since

o1<1.

This implies that E?W; is finite-~valued, and thus Tﬁyq is well-

- —

defined.
Temma 4: For each T ¢ @%

lim inf Q;yd > 0.

n - o
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Proof: Let € > 0 be given. From the proof of Lemme 3, there is a

policy 7' such that

g S o+ e

for all 7 in P. This implies that

1i n - < 13 n - R
n imoo ana “n 3;moo Q_n_V,"_, * €ﬂ
= a'ﬂ. ’

by Assumption 4. The lemma follows, since e is arbitrary.

3.  The Optimality Equation. 1

Bellman (1957) introduced the principle of optimality for dynamic

programming. He says (p. 83), "An optimal policy has the property that
whatever the initial state and initial decisions are, the remaining
decisions must constitute an optimal policy with regard to the state
resulting from the first decision." Since an optimal policy need not
always exist, the principle has a limited potential use. More useful is

the optimality equation, givern in the theorem below. For a discussion ;

é of the principle of optimality and the optimality equation, see Porteus

F (1975a).

Let 9y be the mapping from § XA XS into R such that

0
Noiv
qx(s,a,s') =J[ e dq(s,a,s',t) ,
0

for a ¢ As for s',s ¢ 8.
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Theorem 5: For each s in 8,

va(s) = inf {ca(s,a) + ) qa(s,a,s’)-va(s')] .
aeAs steS

Proof: The proof is similar to the one given in Ross (1970, p. 121)

for the case when the action spaces are finite. Tet T' be an e~
optimal policy. This exists for each e > 0, since va(s) > o for

each s € 8 by Assumption 2. Then

vy STV S T,[r(va + e-'ﬂ_) =TV, *+ Q,lr(e-']l)

< T,n,v2 + ev']l

for all T e@. Since ¢ is arbitrary, vo‘_<_‘1‘ﬂ_va for T e@. This

is equivalent to

Va(s) < inf {ca(sya) + E qa(s,a,s')'va(s')] ’

1
aeAS s'eS

for s € 8. We now show that this inequality also holds in the opposite

direction,
For each s ¢ S,
-—Ottn
v(s)=E () e c e (s ,a )}
T Tys S 0" n’"n
<t <t _-t.)
2 n 1 '
= Ew,s{ca(sl,al) + e E'{r,s{n ?l e ca(sn,an)lal,se,ten . .
Now
-t -t.)
n 1
E’n‘,s[n 21 e cot(sn’an) Ial,sa,tal > va(se) .
To see this, suppose the opposite. Then there must be a'!, s' and t°?

such that

k3




-a(tn-tl)
0 . o 4 — t — H ?
B { e ca(sn,an)lal_a,sz_s,’oz_t}<v(s).

For each n e N, let hn denote the history of the process up to the

nth decision epoch (including the state at that time). ILet 7' be a

policy such that for each history h,

- _ - — 1 H 1
P'n",s'[an = alhn = h} = P'rr,s(an+l al 1 = (a',st,t',h)] .
Then
-a(tn-tl)
$ — . — 1 — 1 —_ b 4
v,n_,(s ) = E,"_,s(n Z)l e ca(sn,an)lal =a', s, =58’ t,=t }
< va(s') s

which is a contradiction. Therefore

-Ot‘be
v,n_(s) > E’ir,s[coz(sl’al) +e . Va(SQ)}

= TTrVa(S) .
This implies that

v,[r(s) > inf (ca(s,a) + ’2 qu(s,a,s*).va(sv)] ,
aeAS s'eS

for s ¢ S. But this holds for each 7 in @, g0

ofe) 2 1 Cglont) B s le )

for s € 8. Combining this with the result above, the theorem follows.

4. On the Bxistence of Stationary Optimal and Stationary e-Optimal

Policies.
In this section the existence of stationary optimal and stationary

Wl




e-optimal policies is investigated. It is important to distinguish between
stationary optimal policies and optimel stationary policies. While the
former policies are truly optimal, the latter ones are only optimal in

the class of stationary policies. Conditions are given for optimal

stationary policies to be stationary optimal policies.

Theorem 6: If T 1is a stationary policy such that Vo = TV then

- g -

T is optimal.
Proof: Since T is stationary, we obtain

n
Vd = m#%x ’

by applying TW on both sides of v =T v_ repeatedly. This implies

o~ ro
that ;
. n . n n
v.= lim Tv_ = lim (T9 + Qv }
@ e ma T LT UV )
> 1im 7% + lim inf ng
z o
n - «© n—+©
=V'IT’

by Lemma 4. Thus, 7T is optimal,

Corollary 7: If each AS is finite, then there is a stationary optimal

policy.

Proof: The existence of a policy T as in the theorem is in this case i

guaranteed by the optimality equation.
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Corollary 8: If there is an optimal policy, then there is one which

2y

is stationary.

gg;g;i_‘.: Let T be an optimal policy. From the proof o. the optimality

equation, v,n_z T'Irvot' Since T 1is optimal, we obtain T'rrvot < Vo But s

4 = r 1 + ] 5y |
Vo < Tw‘va for all 7' ¢ P, so Vo, = Tﬂ_\a. Let 7" be the stationary ;; ,
policy such that T,’r,, = T7r' By the theorem, 7" is optimal. Thus, ‘
there is a stationary optimal policy. .

‘
Theorem 9: If for each s,s' €S,
-ottn
E e « 8(s_,s')} )
rsl 2 (s,05")

is uniformly bounded, then an ophtimal stationary policy is a stationary

optimal policy. |

Proof: TFor each s,s' ¢ S, let M(s,s') be an upper bound on
( -Ottn
E e « 8(s_,s')} .
m,s nze>N ( n’ )
Let e€> 0 be given. Let v be a mapping from S into R+ such
that v(s') >0 for s®' €S and

’2 M(s,s?) v(s?) <o,
s'eS

where s 1is an element of S. Let T be a stationary policy such

that
< v .
Trla SV * e
g
]‘ Such a policy exists by the optimality equation. Applying Tﬂ_ on both

4€
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sides of this inequality repeatedly, we obtain

i

n =

v <v_ + N

TVe SVt ey &Y
i<n

for n e N. ZLetting n go to jinfinity in the expression above, we

obtain
. n n
1im inf T v < v_ + ¢ E v o
n - ™« (04 neN QW‘
Now
. . n , . n n
lim inf Tov o © lim 1nf[T7r6 + Q,lrva]

[

. n . . n
lim T ,n_e + lim inf Qﬂ_v o

n - ® n-—w

v
<

by Lemma 4. Thus

n
v.<v,+e ), QV,
- O
™ nelN
and in particular,

v,lr(s) f_va(s) +e ) (Q_[r;v)(s)
neN

f_va(s) + € 2 M(s,s') v(s') .
s'eS

Tet w' be an opbimal stationary policy. TFrom above,

vﬂ_,(s) Sva(s) y ,E M(s,s') v(s*) .
s'eS

But e > 0 is arbitrary and E M(s,s')v(s) is finite, so
seS
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v,’r,(s) < va(s). The argument can be repeated for each s ¢ 8, so 7!

must be optimal.

Theorem 10: If for each s' € §,

-OC‘bn
{E e . S(Sn:sl)}

E
m,s neN

is uniformly bounded, then there are stationary e-optimal policies

for all e > 0.

Proof: For each s' ¢S, let M(s') be a bound on

—dibn
P . §(sn,s’)} .

E_
LELEY

Following the proof of the prewious theorem, we obtain

v(s) Sv(s) v e D oM(s)v(s)
s'eS

for some stationary policy . Since €> 0 1is arbitrary and

¥ M(s')ev(s!) <o,

s'eS

the theorem follows directly.

Corollary 1l: If there is a P < 1 such that

-0t

2
ETI',S{e } SB s

for s €8 and 7T ¢ (P, then there are stationary e~optimal policies
for arbitrarily small e and every optimal stationary policy is a sta-

tionary optimal policy.
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Proof: We only need to show that the conditions of the two previous

theorems are satisfied. It is enough to show that

- -t 1
E,IT’S nze,N e } < (),

Tor s €S, Te @. But this follows from the proof of Theorem 1.

5. Policy Improvement

*
By the optimality equation, an optimal policy, T , must satisfy

the equation

V= inf va %

T wef "o

.

% ..
A policy w which satisfies this equation is called unimprovable.
An unimprovable policy need not be optimal, as the following example

shows.

Example: Consider a discrete time Markov decision process with
state space Nb and action space ({0,1}. If the system enters state
0, ‘the process stops. In every other state there are two permissible
actions, O and 1. If action O is taken in state i(i > 0), an
immediate cost ai is incurred and the state O is entered. If action
1 is taken in state i(i > 0), no immediate costs are incurred and
the state 1 + 1 is entered. Let P be a given discount factor. If
ap > 1, then the policy which always chooses action O is unimprovable,

but it is not optimal,

If there is an s ¢ § such that

V,”.t(s) > 1:1"21‘ (T’ITV’TF')(S) 3

then 7' is called improvable.

k9




Theorem 12: If 7' ¢® and T qu are such that T, Vet < Vot then

< .
Vi 2 T

Proof: Applying 'I',n_ on both sides of T'rrv’lr' < v,"_ repeatedly, we obtain

n
Tﬂy y 2 Tvvn' ’

+

for n e N. Lebting n go to infinity yields

1im i n = . . n n
TVpe > lim inf Ty, = lim 1nf[T7r9 + QTrvvr’]

n-—>o n - ©

. n . . n
lim 76 + lim inf Q‘lrv'rr'

n -+ n -+

>V
~r?

by Lemma 4. Thus, the theorem is proved.

This theorem may be useful for the development of a policy improve-

ment procedure like that of Howard (1960). The problem is that one has

to avoid convergence to a suboptimal soluticn.

6. Necessary and Sufficient Conditions for Optimality.

In Section 5, it was shown that an unimprovable policy need not
always be optimal. Here, necessary and sufficient conditions for a policy
to be opbimal are presented, If Vo, is known, then the optimality
equation can be used to find out whether a given policy is optimal or
not. ZIf Yo is not known in advance, the following theorems may be more

useful for proving that a given policy is optimal.

Theorem 13: Let S' be the set of s in § for which va,(s) is
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finite. Let @’ be any subset of 63 such that for each T in GD

there is a 7' in & .such that Vo < Vo

*
If T is an unimprovable policy such that

lim (Q,’rv =0 for se8', re®,

no®

*
then T is optimal.

froof: We first prove that v < ‘.['Tr;v w for neN and T e® This
™ ™
clearly holds for n = 1. Now

(T;’_v’rr*)(s) =E_ ; e *o ca(si,ai) + e

Z,\ e -c(s,ai)

<t .=t )
n+l n
+ e By, s{co‘(s s, ) +e v (s t ,s 13

Furthermore,

(t_ .=t )
ntl n
s{co‘(sn,a\n) e . v7r n+l)lt )5 ) > vv*(s y

*
since 7 1is unimprovable. Therefore

n - -Oﬁti -Ottn
(Tv Js)>E [ 5 e » e (s.,a,) +e - v (s )}
T T, 5 i<n [0 AN R« R T n
-t -Cd‘:
S , 0 n-1
> E?T,s(l & ¢ si,al) + e v (sn_l)}
> v (s},
T

for 5 € S. This implies that
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v < lim v . = lim (7% + QII;_V }
m *
T ~n-o® " poow T

[}

lim Tr}e +  lim Q‘?rv %
m

n—)OO n = ®

*
by the last condition of the theorem. Thus, T is optimal,

*
Corollary l4: If T is an unimprovable policy such thet

e
tE E'n',s[e i S(S’,Sn)]olv *(S')l <w, for ses', Tel®,
s"eS T

*
then 7 is optimal.

Proof: It is sufficient to recognize that

55, " v 45"
E e © 8(s',e )} v (s*)
stes ™S n T

=9 (Q‘;lvw*ms)

nelN
> 2 (@ JE)]
“nf:,N QW'IT*

for s e8' and T ¢®'. Thus the conditions of the theorem hold, and

the corollary follows.

*
Corollary 15: If 7 is an unimprovable policy such that its value-

*
function is bounded, then 7 is optimal.

Proof: Let M be an upper bound on |v *(s)l. Then
T
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nliww IEW,s{e o vw*(sn)]{
= lim E [emno lv (s)])
n-o 18 T
-0t
<M+ lim B (e M=o,

- n_’w TT,S

by Assumption 5. The corollary now follows from the theorem.

Theorem 16: Suppose that there is an optimal policy, . Then a policy

.y,-
T is optimal if and only if

lim (Q;y »(8) =0, for ses'.
T

n -

Proof:; The if part of the theorem follows from Theorem 13 by letting
*
@ = (7). The only if part is proven as follows. Suppose that T

is optimal. Then
n n n
(waw*)(S) = (QFWF)(s) = vv(s) - (Twe)(s) R
for s e€8', n e N. This implies that

Yim (v )(s) = im (v (s) - (100)(s)) =0,
n -~ m n-—=+o

for s e€ S!'. This completes the proof of the theorem.

T. Norms and Contraction May . .ngs.

Tt may sometimes be more convenient to work with norms ané con-
traction mappings. Denardo (1967) did this, and developed an elegant
analysis. Recently, Lippman (1975) used these concepts.

As bvefore, let 11 be the function from $§ into R with value 1

everywhere, Let "«H be a norm on B such that
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@ I11h=2,
(®) |l < vl ir o <u<gv.,
The sup norm, given by

Ivll = suplv(s)] ,
Sed

is such a norm. ILippman (1975) has considered other norms.

A mapping T from B info B is called a contraction mapping

if there is a B <1 such that
lzvll < glivll

for v ¢ B. Denardo’s n-stage contraction condition is as follows.

There isan ne N anda B <1 such that
o2l < il

for veB and T edl We weaken the n-stage contraction condition
so that it reads as follows. For each v > 0, there isan n N

and a B < 1l such that

o2l < pllvl |

for all T in .

Lemma 17: If there isan nel anda B <1 such that

-t

n
E?T,S{e } _<_B )

for s €8 and T eG% then the sup norm satisfies the n-stage con-

traction condition.
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Proof: We have

-t
lejrll = supl (@) (s)| = suplE, (e "v(s)))]
ses 7

ses

-t
sup E_ S[e . suplv(s')])
seS 7’ seS

IN

-oztn
lvll + sup EW,S(e ),
seS

and the lemma follows.
Let p(+,-) be a metric on B X B such that for u,v in B,

p(u,v) = ”W": where

u(s) ~ v(s), if u(s) <e or v(s) <=,

W(S) =
0, if u(s) = v(s) == .,
Theorem 18: If "" satisfies the n-stage contraction condition, then

* *
a policy T is optimal if and only if o is unimprovable and

p(v ov,) <.
T a

Proof: The only if part of the theorem is trivial. We now prove the

if part. Let w Dbe such that

v . (s) - va(s), if va(s) <w or v (s)<w,

W(S) = T m

0, it v (s) = va(s) = ,
™
Let ne N and B <1l be as in the contraction condition. TLet e> 0

be given, and let T be a stationary policy such that

Ty SV * (e/n)-'ﬂ_ .
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*
T is unimprovable, so Vv * < T,,rv %+ This implies that
T

W< Qw4 (k-.'/n)°']]_ ,

since w > 6. Applying Q_n_ to both sides of this inequality repeatedly
yields

W EQ;;_W + (c-:/n)i En Q_;’ﬂ

<
SQ‘I;-W+€.1’

since Q,n_']]_ < ]1 Taking the norm of the functions on both sides of the

inequality yields
Ioll < P + e - 4 I
< el + el 1 1

< Blbll + e,

by the contraction condition. But e > 0 is arbitrary, P < 1l and

ull <. This implies that [lwfl = 0, and thus v = Vo
T
*
Corollary 19: If T is an unimprovable policy such that v *(s) -

T
Va(s) is bounded, and if the condition of Lemma 17 is satisfied, then
*
T is optimal.

Notice the similarity of this corollary and Corollary 15.

Corollary 20: If "" satisfies the n-stage contraction condition,
. . - * > 3 .
if va is bounded below, and if 7 is an unimprovable policy such

that |lv | <, then 7 is optimal.
m
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Proof:

Let -M(M> 0) be a lower bound on va(s). Let

proof of the theorem. Then

SO

o<w <v,t+tHM: ﬂ_,
(L

Ilwllsllv*+M-ﬂ_||_<_|lvTr*Il FM< @,
T

o7

w be as in the

R e g e e iz 0L
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CHAPTER L

OPTIMAL CONTROL OF QUEUEING SYSTEMS

There has been a considerable interest in the control of queueing
systems in the last decade. Often the control problems have been formu-
lated in the framework of semi-Markov decision processes. The existence
of certain simple and intuitive optimal policies have been proven for
many different queueing systems. For a brief (but excellent) survey of
the literature in this area, see Gross and Harris (1974, pp. 361+380).

In this chapter, three aspects of the control of queueing systems
are considered. 1In Section 1, the formulation of queueing control problems
is discussed. Section 2 elaborates upon two general approaches to the
solution of queueing control problems. In Section 3, four different

methods for proving the optimality of an unimprovable policy are developed.

1. Formulation of Queueing Control Problems.

The formulation of queueing control problems plays an impoftant
role in the solution of these problems. Sometimes,; a queueing control
problem may be formulated in two different but equivalent ways, where
only one is amenable to analysis. Special queueing control problems
may have special desirable formulations. But since a general formulation
of queueing control problems may yield a better perspective, we shall
now briefly describe the various components of a controllable queueing
system.

A queueing system consists of an input source, a queue and a service

mechanism. The input source generates customers which need certain services
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provided by the service mechanism. A customer generated by the input
source is said to arrive at the queueing system. The times between two

consecutive arrivals are the interarrival times. On arrival, a customer

either is given service immediately or is placed in the queue of customers

waiting to be served. There may be several customer classes, reflecting

the special needs of the customers. The service mechanism may consist

of one or several service facilities, each of which has a certain number

of servers. When the customers have received their service(s), they
leave the system.

The control of queueing systems can take various forms. Sometimes,
the arrival rate may be adjusted dynamically. Other times, the service

rate(s) or the number of active servers may be controlled.. A third

possibility is to control the order in which the customers are given
service.

There are various costs that may need to be considered when analyzing
queueing systems., For example, there may be a service cost which is
incurred each time a customer is served. If the server(s) can be turned

on and off, there may be start-up and shut-down costs when the server(s)

are turned cn and turned off, respectively. There may be an idling cost
vhich is incurred at a positive and constant rate. for each server when
he is not giving service or performing cther useful duties. There may

be a customer holding cost which is incurred at a rate which is a function

of the number of customers in the system.

There may, of course, be many other types of controls and costs
than those which have been mentioned here. But surprisingly many of the
queueing control problems which have been considered in the literature

fit the above description.
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By formulating a queueing control problem as a semi-Markov decision
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process, the theory for such processes may be used in developing a solu-

tion procedure or to prove that a given policy is optimal (or not). The
formulation is usually quite straightforward. One only has to define

the state of the system and the decision epochs. The state space, the

s bl
L.

i set of action spaces, the law of motion and the cost function of “he
semi~Markov decision process are then determined by the specification

of the queuweing system.

The definition of the state of the system is crucial. The state
must characterize the queueing system completely at each decision epoch.
Since a queueing system consists of an input source, a queue and a service
mechanism, cne may define the state of the input source, the state of

the queue and the state of the service mechanism. The state of the

system is then given by these three states. The state space of the
; system may be defined as the Cartesian product of the state spaces of
the input source, the queue and the service mechanism, respectively.
The state space of a queueing system is often countable. If the
input source, the queue and the service mechanism all have countable
' state spaces, then the state of the system is countable.
Consider the state space of the queue. Suppose that there is a
countable number of customer classes. If the state of the queue is

defined as ‘the vector whose ith component indicates the number of cus-

tomers in class i (for each i e N), then the state space of the queue
] is countable. This follows from the fact that there are only a finite

number of customers in the queue at any given time.

& T

Consider the state space of the service mechanism. One case is

the system which can be controlled by turning serving on or off. For

60

b

R S T R
) :




Ol ol b

TR

TEPPF

I e
BIMERANEES i v

this case, if there is a countable number of servers, and if the state
of the service mechanism is defined as the vector whose ith component

indicates whether the ith server is on or off (for each i ¢ N), then
the state space of the service mechanism is countable. For a more general
case, suppose now that the service rate of each server may be adjusted

to a counbtable number of levels. Also suppose that there are a countable

number of servers and that the service rate is only non-zero for a finite

number of sexvers at any given point in time. If the state of the service
mechanism is defined as the vector whose ith component indicates the

level of the service rate of the ith server, then the state space is still
countable.

The definition of the decision epochs is also crucial. As mentioned
before, the state of the system must characterize the queuveing system
completely at each decision epoch. The most natural way to define the
decision epochs is by letting them be the epochs when the state of the
system changes. If the state of the system (as it happens to be defined)
does not characterize the queueing system completely at each of these
decision epochs, one can try to eliminate some of the‘decision epochs,

Sometimes it may be desirable to have the decision epochs equally
spaced in time. In this case, the decision epochs are determined by
specifying the length of time between two consecutive decision epochs.
Magazine (1971) used this approach. Other times, it may be desirable
to define the decision epochs such that the times between two consecu-~
tive decision epochs are independent and identically distributed random
variables, Lippman (1975) used this approach. Both of these ways of
defining the decision epochs are motivated by a certain solution methed

vhich will be elaborated upon in the next section.
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2. Analytiéal Solution Methods.

A large variety of queueing control problems have been successfully
analyzed by a number of investigators. Their successes have to some
extent depended on the special features of the problems they considered.
But many of the queuneing problems also have much in common. Therefore,
there is some basis for developing general approaches for solving them.
Prabhu and Stidham (1973) attempted to develop a unified view of the
different approaches that have been used previously.

If the state and action spaces are finite, then there are well-
known (policy improvement, policy iteration) algorithms for finding an
optimal policy. But in the context of queueing systems, one is often
more interested in showing that there is an opvimal policy of a simple
and intuitive form. As a by-product of this, one may perhaps develop
especially efficient glgorithms for finding an optimal policy. Two
general approaches for analyzing queuing systems will now be presented.

The first approach consists of solving the problem for one period
(stage) and then extending the results to arbitrarily many periods by
an inductive argument. This approach was initially used for solving
inventory problems (e.g. by Iglehart (1963)). Because of the similarity
between queueing and inventory problems, the approach was later adopted
by queueing theoreticians. McGill (1969) used the approach in his analysis
of the M/M/c queueing system with controlluble servers. A full develop-
ment of this approach can be found in Porteus (1975b).

This approach has two advantages. First, the one-period problem is
usually easier to analyze than the infinite period problem. A successful

analysis solves both the finite and infinite horizon problems.
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However, this approach of first solving the one-period problem can
also have its disadvantages. In fact, for many queueing problems, the
one~period problem is rather meaningless. One reason is that the length
of the first period may not be nearly the same for different start-states
and different actions. Furthermore, many important costs may be neglected
in the one-period problem (e.g., switching costs). Nevertheless, the
approach is still attractive fcr many problems.

The second approach consists of restricting one's search for an
optimal policy to a small class of stationary policies (hopefully not
excluding the optimal policy) and then proving that the policy which is
optimal in this class is also optimal among all policies. To prove that
a policy believed to be optimal is indeed optimal among all policies,
one usually only has to prove that the policy is unimprovable. This
approach has been used by, among others, Reed (197ha), (197hb).

This approach has the advantage that it usually only requires the
analysis of relatively simple stationary policies. If one can obtain
an explicit expression for the value functions of these policies, then
it is usuvally a simple matter to prove when one of these policies is un-
improvable (and thus probably optimal). Even if such explicit results
cannot be obtained, the approach may still be used with success (e.g.,
see Orkenyi (1976)).

The disadvantage of the approach lies in the fact that an unimprovable
policy need not necessarily be optimal. In the previous chapters, several
conditions for an unimprovable policy to be optimal were given. TFor
example, when discounting is used, it was shown that if the value function

of the unimprovable policy is bounded, then the policy is optimal.
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But gqueueing control problems are often characterized by giving
rise to anbounded value functions. This is often due to the holding
costs L:ing unbounded. In the next section, it is shown how this

problem can be solved.

. Solutions to the Problem of Unbounded Costs.
3

We now consider the problem of unbounded costs with discounting,
and develop four different methods for proving that an unimprovable policy

is opbtimal. The assumptions of chapter 3 are retained here.

3.1 A Reformulation.

Perhaps the easiest way to solve the problem of unbounded costs
is by reformulating the cost structure of the system under consideration
in such a way that the costs become bounded., There is, however, no
single receipe for doing this. Different problems may require different
reformulations. Here, an idea of Bell (1971) is generalized.

For the sake of simplicity, suppose that the éxpecbed .distountéd-
cost excluding the ¢cost .due to holding customers in the system is bounded.
Also suppose that there are m customer classes and that a holding cost
is incurred at a rate which is a given functicir, h, of the number
of customers present in each customer class. Define the state of the
queue as indicated in Section 1.

For each n e¢ N, let tn denote the time of the nth change in
the state of the queue and let Yn denote the state of the queue immed-
iately after the change. Without loss of generality, assume that tl = 0.

For each policy T and state s, let Q;(s) denote the expected dis-

counted holding cost, given that the policy T is used and that the

6l
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for each s €S and T e@.
Now, reformulate the holding cost structure such that at each time

tn(n > 1), +the holding cost
x = =(h(y ) ~ h(y_.))
n o n n-1

is incurred. Formally, we choose to include the cost X, in the costs

incurred in the period from + to tn(n > 1), For each start-state

n-1
s and policy T wused, the expected discounted holding cost becomes

h L \

Thus, the problem before the reformulation is equivalent to the problem

after the reformulation with regard to optimal policies.

R Se——
[ N

Assvme that the number of customers in each customer class only
can change by one at a time and that changes in different customer classes
cannot occur simultaneously. Let Y denote the state space of the queue,

and for each i(f m), let o, denote the m-vector whose components

are all zero except for the ith one which is equal to one. We can now

state the following theorem,

Theorem 1l: If for each policy T,
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is uniformly bounded, and if there is an M < ® guch that

In(y +u;) - n@)| <
for 1<i<m and y €Y, then every unimprovable policy is optimal.

Proof': Under the conditions of the theorem, the expected discounted
holding cost after the reformulation is bounded. Therefore, any policy
which is unimprovable for the problem afler the reformulation is optimal
for that problem. But the optimal policies are the same for both problems.
The unimprovable policies are also tne same for both problems. Therefore,
we conclude that a policy which is unimprovable for the original problem

is also optimal.

Example (The M/G/l queueing system with removable server):

Excluding the policies which turn the server on and off repeatedly
at a decision epoch, the expected discounted cost excluding those due
to holding custdmers in the system is bounded. ILet A be the arrival
rate of the customers, and let «w(< 1) be the Laplace transform of the
service times (with its parameter being equal to the interest rate «a).

Let [t;}neN be the sequence of times when customers arrive, and
let (tg}neN be the sequence of times when customers depart. It can

easily be shown that for each policy T used and each start-state s,

{E -an A
T35 neN o
and
1!
1
{Ee n]<——<00,
E'"-’Snel\l = 1o
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Since {tn}neN is a subsequence of {t!} U (t"} the first :n-

n’neN n’neN’
dition of the theorem holds.
If the slope of h is bounded (in this case h is a function of
one variable), then the second condition of the theorem holds. Thus,
if the slope of the holding cost function is bounded, then every unim-

provable policy is optimal. This is just the assumption made by Blackburn

(1971) when he considered the convex holding cost model.

3,2 Comparison with the Policy which Shuts Down the System.

Assume as before that the customer nolding cost is incurred at a

rute h(yn) in each inter.al (tn,t ). Also assume that h is such

n+l
that

0 < h(x) < h(y)

for x<y and xe¥, ye¥. i

Assume that the system can be shut down at any decision epoch and
that the shut-down cost is bounded uniformly from above. ILet Wb denote
the policy whicn always shuts the system down (or leaves it off). Assume
that when the policy wb is used the total number of customers present
in each customer class is at a maximum at all times for any given start-

state,
*
Theorem 2: If T is an unimprovable policy such that, for each s ¢ S,
7 (s) S (s) <,
T 0
*
then 7 is cptimal.

Proof: By “heorem 13 in Chapter 3, we only need to show that
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for each s ¢ § and T e & Here {tn}neN is the sequence of the
times of the decision epochs.

For each s ¢ 8, let R(s) denote the expected discounted shut-
down cost when the system is in state s and the policy Tro is used.
For each Te®, s €S and t eR, let xﬂ_(s,t) denote the discounted
holding cost incurred from time t onward (the discounting starting
at time O0), given tha ' the start-state is s and that the policy 7r0
is used. It follows from our assumptions that

x,n_(s,t) < x_lro(s,t), for teR,sesS, Te®.
Now

vTro(s) = R(s) + E(x,[ro(s,O)}, for s €8S,

SO

E{x_ (5,0)} <o, for s eS8 .
To

For each T e¢® and s e, let (tn(w,s)}nGN be the sequence of
the times of the decision epochs, given that the start-state is s and
that the policy w 1is used.

Choose a T € @, and for each n ¢ N, let T, be the policy which
follows T until the n'th decision epoch and then shuts down the system.

Then

ot

B e “v,,*;(()snn = 5 (5,4, (ms)))

= By (rs) < 1) (S08(Ts)))
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(6, (mys) > 8} an(s:tn(W:S))}
SEQG () < ) % (900))
* By (ry0) > 33 7 X (855 (me))]

= E[l{tn('n',s) < t) ) x,n_O(S,O)} + E(XO(S,t))

for nell, t eR and s ¢ S. Here, we have used the fact that

x (s,t) <x_(s,t), for t eR, seS, Te®
T - 'JTO

and
xﬂ_(s,t) Sx,n_(s,t'), for t<t', t,4' eR, s e S, T c®,
and

x,n_(s,t)zo, for teR, ses, Te®.
By Lebesgue's bounded convergence theorem,

lim EB(1

n - ©

"X (s,0)} =0, for s es8,

(6 (T,8) <t} 5

since
Elx (S:O)] <o,
T
0
and
lim P t <tj=0.
n -~ o ’II',S( n- ]
Thus

lin E_ f{e . v_?r (sn)] SE[xo(s,t)), for teRy seS.

n -

)
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But

Lim E{xo(s,t)} =0, for se¢8S,

t -

since

v ]
E{x (s5,0)} = lim E {f e * h(y, )at) <, for s e S, ‘
0 £ - ﬂb,s 0 t
where Vi denotes the state of the queue at time +t. Therefore
4xtn
lim E_ fe e v (s}
n-—w y8 7r0 n
= lim E {eAJtn-R(s Y}+ 1im E {e4xtn c v (L))
n_)wn’lr,s n now TS Ty N
( ~atn |

< lim E e * R(s

“h o TS ( n) ’
for s € S. Let M be a finite upper bound on R(s). Then

{-Cttn ) {-Ct‘bn
lim E e cv_(s )} <M+ lim E e }
n->ow LEE 7TO n - n - s8
=0, for s €8S,
since
lim P‘rr,s[tnst}=o’ for t €R, seS.

n -

This completes the proof.
Q.E.D.
Example (The M/G/1 queueing system with removable server):
The state of the system is defined as a pair of integers (i,j),
where 1 denotes the number of customers in the system and
0




0, 1if the server is off

1, if the server is on .

It is easy to find that

r

y k . . :
3. ()\_%) - h(i+k), for 5 =0,1¢eN,
keNo
v, (i:j) =
r (09
Ry v B ()" - n(i), for j=1,1ien, .
\ K+N

0

Therefore, if 7 dis an unimprovable policy such that

vTr(i,j) f_v,n_o(i,a‘), for j e (0,1}, i ¢ Ny >

and if

> (E)'n(i) <,
. AN
1eNO

then T is optimal.

3.3 Comparison with the Policy which Minimizes the Expected Discounted

Holding Cost.

Suppose that there is a policy which minimizes the expected discounted

holding cost, and let wb‘ denote such a policy. For each T ¢ and
s €8, let v;?(s) denote the expected discounted cost excluding the
holding costs, given that the start-state is s and that the policy T

is used. Then
h nh
vﬂ_(s) = v,rr(s) Ve (s), for ses, Telf.

Let p be a metric defined as in Chapter 3. Let /\ be the binary

operator such that

T1

S .

v Ay e e e s b i ¢
PRI N S




x/\y = min(x,y), for X e¢R, Yy € R .
We are now ready to state the following theorem.

*
Theorem 3: If 7 is an unimprovable policy such that v " < v,n_ and,
‘ T 0

in addition,

nh _nh nh
p(v,n_ Vir v,n_)<°°, for 'n'e@,

0 0

*
then T is optimal.
Proof: By Theorem 18 of Chapter 3, we only have to show that
p(v 4o v */\v,n_) <w, for Tel.
T T

But

p(v o vﬂ.* Avp) <e (v'rro’ v':ro/\ V)

u

h nh h
9((V,H-O + V.n. ); (V.n.

+ v,?rh) /\ (v;l_ + v_‘r;_h))
0 0 ]

h nh h nh h nh
S el #p)s (g g )N\ O * V)

A

nh _nh nh
oy i A

< w, for ‘ﬂ‘e@.
Q.E.D.

Example (The M/G/l queueing system with removable server):

In this case, let ”” be the sup norm. Excluding those policies
which turn the server on and off repeatedly at a decision epoch, then

the contraction condition of Section 7 of Chapter 3 is satisfied. TFor
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any m G@,

nh _nh nhy py nh  nh nh
p(vqro, ‘7r0 Ve ) = "vwo vﬂ_o/\ Voo I

h nh nh
= sup|vp(s) - viP(s) A viR(s) ]
seS 0 0

L oo, !

¥*
We conclude that if 7 is an unimprovable policy such that v % < v,n_ s
T 0
*
then 7T is optimal.

3.4 Comparison with a Policy which Minimizes the Expected Discounted

Holding Cost until a Finite Set of States is Reached.

We now generalize the result of Section 3. This time, let 'n'o

denote a policy which minimizes the expected discounted holding cost
incurred until a given, finite set of states is reached. Assume that

V;l: is finite:valued. Let p Dbe defined as before.
0

*
Theorem 4: If T is an unimprovable policy such that v % S Vor
T 0

and, in addition,

nh _nh nh
P(V,n. s v v.)

T <o, for We@, .
0 0 /

*
then T is optimal.

Proof: Since 7r0 minimizes the expzcted discounted holding cost in-

curred until a given, finite set of states is reached, and since v:lr
0

is finite-valued, there must exist an M <« guch that

Ve (s)<vh(s)+M, for ses, mTe® .
TI'O - T

T3
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Now
F
A
p(v*,v*/\v)_<_p(v , v Av)
\E T T (a 'HTO ’ITO T
E h nh
i =p(v._, V. /\(V + v "))
j T T T T
1 h nh
: <p(v_, v /\(v - M0+ v _))
‘g ’H‘O 7r0 7ro T
< p(v;;_h, v;;_h /\(v;h - M6))
0 0
< p(Vnh’ vnh /\vnh) + M
1 - T, T, m
' <o, for T e@.

*
Theorem 18 of Chapter 3 now implies that T is optimal.

(]

* g
N — W

Q.E.D.

Example (The M/G/'l queueing system with removable server):

X

Let & be the set of policies such that each policy in 21 always

N

turns the server on (or keeps him on) when the number of customers in
4 the system is sufficiently large. It is easy to show that, for each

E T e w, either v:;_(s) is finite-valued for each s in S or it is
infinite-valued for each s in S, In the latter case, all policies
may be regarded as optimal. Therefore, we now focus on the former case
where v,l;lr(s) is always finite-valued.

Clearly, 7r0 in the theorem may be any policy in éj . As before,

g:,(v,rr;_h nh vnh)<°°, for Tel.

» Vv
o M T

*
Therefore, we conclude that if T is an unimprovable policy in ‘éj B

then ‘IT* is also optimal.
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Abstract:
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spaces are investigated, The optimality criteria considered are the
average cost criterion, the undiscounted cost criterion, and the
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given.
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