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LIMIT THEOREMS FOR PERIODIC QUEUES

1. Introduction and Summary

Let A = (A(t), t > 0) be a non-stationary Poisson process with bounded

measurable arrival rate function X(-) satisfying X(n + t) = X(t) for all t

in [0, 1) and neI = (1, 2,.. .} . We call the unit of time a day, and we

refer to a point t in [0, 1) generically as a time of day. Defining

X= (t) dt

0

we say that A is a periodic Poisson process with a period of one day and an

average arrival rate of X . We denote by TI, T2, . . . the jump points of

the right-continuous process A .

Let SI 1 2  . .. be independent and identically distributed (i.i.d) posi-

tive random variables, independent of A , with distribution function (d.f) F

having F(O) = 0 . We define o = XEfS and assume throughout that o < I

For t > 0 let X(t) = S + . . . + SA(t) , with the convention that an empty

sum is zero, and then let Y(t) = X(t) - t and

Z(t) = Y(t) - inf(Y(s-):O < s < t)

We interpret T,, T . . as the customer arrival times at an ordinary single

server queueing system and SI, S2 , . . . as the customer service times. Then

Z = fZ(t), t > 0) represents the server load process (or virtual waiting time

process) for this system, assuming that the server is initially idle; cf. Benev

(1958). Alternatively, one may interpret Z as the contents process for a dam

with input process X = (X(t), t > 0) and (constant) unit release rate, assum-

ing the dam is initially empty. If the queueing context, the actual waiting time

of customer n is given by Wn = Z(T-) = Z(Tn) - Sn It is the purpose of



this paper to study the asymptotic behavior of the processes Z and W =

(Wn, nE I)

Queues with non-homogeneous Poisson arrivals have been studied earlier by

Takacs(1955), Reich (1958, 1959) and Hasofer (1964). Hasofer (1964) considered

the case of periodic input and, imposing some further conditions on the arrival

rate function and service time distribution, showed that the probability of

server idleness is an asymptotically periodic function of time.

In Section 2 we focus attention on the integer time points (i.e., where

days begin) at which the system is empty, showing that these times constitute

a sequence of regeneration points for the continuous parameter process Z .

A similar sequence of regeneration points is identified for the discrete para-

meter process W . In Section 3, these results are combined with discrete

renewal theory to prove the following weak limit theorems. For each time of

day t ( 0, 1) there exists a proper distribution Ht such that

P[Z(n + t) S_ x) _4 Ht(x) as t -*c) for all x > 0 . Furthermore, there

exists a proper distribution G such that P(W_ < x) -4 G(x) as n - o for

all x > . We also prove strong limit theorems for Z and W . Speci-

fically, for all x > 0

t

(1) 1 fl[Z() < X ds - - H(x) as t -

0

with probability one (w.p.l) and

n

(2) E _ -- Gx) as n -4
' • k= I
-k_-

w.p.1, where

H(x) f H(x) ds x 0

0



As a by-product of (2) we show that

1

= ~ J' X(s) i(x) ds x >U *

0

Finally, in Section 4 we show that the limit distributions G and H are re-

lated by

(3) H(x) 1- p+ p (G*F)(x) , x > 0

where * denotes convolution and the d.f. F is defined by

X

(h) EfS13 -F(x) [- F(y)] dy , x > 0
4.

0

In particular, this shows that H(O) = - 0 , which is more or less obvious

from physical considerations. The relationship (3) between the asymptotic vir-

tual and actual waiting time distributions is exactly the same as that found by

Takacs (1963) for the GI/G/l queue. Our line of proof follows Lemoine (1974)

and shows that Takacs' result actually holds for much more general systems if

one interprets the distributions H and G as sample path limits as in (1)

and (2).

The results presented here are weak in the sense that we neither compute

nor characterize the distributions G and H , except to show that each can

be obtained from the other via (3). By demonstrating that interesting asymp-

totic distributions do exist for periodic systems, however, we hope to suggest

some potentially tractable problems in the theory of queues with non-stationary

Poisson input and hence to rekindle interest in this important class of models.

2. The ReRenerative Structure

We formally assume a probability space (0, :0, P) on which is defined a

right-continuous compound Poisson process X* (X*(t), t > 0) with unit jump



rate and jump size distribution F. Let

t

A(t) =f X(u) du , t> 0

0

Then, A() is non-decreasing and continuous with A(O) = 0 and A(n + t) =

n2 + X(t) for nel and tE (0,l) . Let X(t) = X*(A(t)) for t ,

and let A(t) be the number of jumps of the process X = (X(u), u > O) during

[0, t] . Thus, A and X are described in Section 1. Also, let

• * (x*(u) , <u<t) , >o

O~t< t

0 < t <00

and

- j A(t) 0 o<t<_ <

We say that a random variable T : fl - (0, oo] is optional if (T < t) C t for

all 0_t<oo . And, for T optional we define

E= : En (T < ti Jrt for allO<t< c)
T

The process is strong Markov (cf. Blumenthal and Getoor (1968), pp. 37-44),

from which we easily obtain the following.

proposition I . If T is optional and finite w.p.1, then



PJX(T +t) -X(T) = jr QIJI- Af + t) -AT,Ic- - ex C(T -AJ

w.p.l for t > 0

Proposition 2 . If N is integer-valued, optional, and finite w.p.l, then

(X(N + t) - X(N), t > 0) is independent of iWN and distributed as (X(t),

We define Y(t), Z(t), Tn and W in terms of X as in Section l..n n

Let a = inf(ne I:Z(n) = 0) , with a = oo if the indicated set is empty.

Since Y(t) and Z(t) are .T-measurable for t > 0 , it follows that a

is an integer-valued optional time. Recall that we assume p = ),E(S] < I

and observe that E(X(l) =p

Proposition 3 E(a) <

Proof: Since Y(t) = X*(A(t)) - t , we have Y(t)/t-. p - I as t -

(w.p.l), and hence Y(t)- - as t - (w.p.l). From the definition of

Z it then follows that supft:Z(t) = 0) = co w.p.l. Moreover, it is clear

that sup(t:Z(t) > 0) c w.p.l. Let gl = 0 and recursively define

V = inf(t > n Z(t) > O)
nn

and

n = infft > Vn : Z(t) = 0)

for ne I In queueing terminology, n is the time at which the nth idlenI

period begins, and V is the time at which the nth busy period begins,n

n I. From the remarks above, the variables n and Vn are finite w.p.l

for ne I , and each is clearly optional. Let Tn = inf[kE I: k > En ) for

ne I , so that Y is the first integer time following the onset of the nth

5



idle period. Then a = YN where N = inf(ncI : yn < v ) • Now,

P(N> n+l) = P(N >n, vn<Yn

-P( > kn' x(n) - x(kn ) > o)

/
.= P(x(f) - x(E) > OJI ndP

fa>)

where n- " Since y < % + 1 , we have
In n- n

P - x( ) > 0I 8 P X( + 1)- xc) > o1's

-1 expl [A( +l1) -~n n

by virtue of Proposition I But A(t + 1) - A(t) = X for all t >0 , and

so we have

P(N > n+ 1) < -- )P,> = (1 e-)P(N > n)

Thus, by induction, P(N > n) < ( e) for nE which implies that

E(N) < * In particular, a = yN and so we have a < o w.p.1 . Note that

the total idle time of the server during [0, a] is

N-1

- inffY(-) :0< 5< =a(Vn" n) + (N" IN)

n=l

Hence, from the definition of Z , we have



N-I

o = Z(cx) =Y() + (vn "n ) + (rN > N - Y(a)
n=l

But, the nth idle period has duration (v - n) < 1 for 1 < n < N - i

and 7N -N 1 1 as well, so that 0 < Y(ce) + N . Thus, we have

0 < -Y(ce) S N w.p.l. and Pf-Y(a) > 0) > PLA(l) = 0) > 0 , whence

0 < E-Y(c)) < E(N)<w .

Having shown P(a K = , we set cl u and then recursively define

infIn e:n > and Z(n) =0

for kE I . It follows from Proposition 2 that Y(CX1 ) , Y(cr 2 ) - Y(C1 ) ,

. . are i.i.d. as are cx1, c2 - al .  . . . . We write

-Y(%) I lk

(5 _ IO- 1) -~ k_

k Cyj= 1

Then., letting k -4wo in (5), we conclude from the strong law of large num-

bers that E(-Y(c)) (1 - p)Ecx . Thus, (I - p)Ebcr) < E{N) < o , which

completes the proof.

Remark: If p > I , one can show El(a) = by observing that a is a

weak descending ladder index for the random walk (Y(n), n cI.

Throughout the remainder of the paper, we define the integer-valued

optional times (n nel) as in the proof of Proposition 3, and we set

On =A(e n) for nel with 1 =13 Since C is optional and

(A(n) - A(n - 1), nel) is an i.i.d. sequence, Wald's Lemma gives E(1) =

E(a EfA(l)] = XE{al <m . Also, setting a0 = 00 , we define



U (x) f Ji(z(t).L x) dt

'n-i

and

k=p +, n
n-i

for n elI and x > 0 , with the convention that an empty sum is zero.

(Thus, V n(x) 0 with positive probability for each fixed n and x.) Let

13(x) = 11(x) and V(x) = V 1(x) , and note that 13(x)S <ce and V(x) <

Since an is optional, it follows from Propositions 2 and 3 that (Z(tn + u)

u > 0)l is independent of 0i and distributed as Z . The following isQxn
then immediate.

Proposition 4 . Fix x > 0 .The sequences (a n- a ,, nE il

(0- n -J' niEl) , (U n(x), n EIl and (V n(x), n cl) are each i.i.d.

with finite mean.

3. The Limit Theorems

For each tE [0, 1) we define a proper d.f. H tby

Eta) H t(x) E ,Zkt)<x x> 0

Proposition 5 * For each t e [0, 1) and each x > 0 ,



lim P(Z(n +t) x) H (x) .

n -c

Proof: We have already observed in Section 2 that (Z(cx + U), u > 0) is

independent of and distributed as Z . Thus for n 0, 1, 2,

P(Z(n +t) x] Pfa >n, Z(n +t) x)

+ 1:P [a k) P (Z (n -k + t) x)

kml

for fixed teIO,lI) and x>0 Let V n =Pfz(n +t) X) ,

b n =P(a > n. Z(n + t) < x) , and f n = Pta = n) for n 0, 1, 2,s

Then, the equation above can be equivalently expressed as

(6) vn bn + fk n n n= , 1, 2, ...

Now, since f I > 0 and EMa < co it fol. ows from the discrete renewal

theorem (cf. Feller (1968), p. 330) that

CO

lim V bk/Et(a)
n .4W oo

= i? (a > k) (Z (k +t) <

the second equality holding by virtue of monotone convergence. And, the

the second expression for the limit is clearly H (x) ,completing the proof.t



Proposition 6 For all x 0

t

0

as t -4 cc where

11(x) fH (x) ds

0

Proof: From Propositions 3 and 4 and the strong law of large numbers it

is easy to show that

t

as t -4 co, Now observe that

EfU(x)) E E f {I.Jlz(s) < X) }s
E ds

EFaf fZ(k +s) < x)d

E)'(zlk s) < ,'ds
0 k=

10



the last equality following from Fubini's Theorem (cf. Neveu (1965), P. 91).

Comparing this with the definition of H (x) completes the proof.

Proposition 7 .For all x > 0

lim P(W n< Xli G(x)
n

where

G(x) ECV(x)]/EfPJ

Proof: Since a~ is optional, we see that (W + np nEIJ is independent

of !;7 and distributed as W . Thus

n-l

P (W < x P (a > n.,W nX) +E P 13k 3 P(W n <k x)

k=0

for fixed x 0 and n cl . Let vn = P[W 11< x b n=Ptf > n, Wn<x)i

and f = P(5 n) for n 0,l 1 ,2 . . . where V = b 0 .Then,

n 0 0

the equation above has the form (6) with f 0 1and again we invoke the

discrete renewal theorem to obtain

lim P11W < x)l
n n k Ef3

11l



The last expression for the limit clearly equals E(V(x))/Ef) , completing

the proof.

Combining Proposition 14 with the strong law of large numbers and the

definition of G , we easily obtain the following result.

Proposition 8 . For all x > 0

n w
In E< X - G(x) w.p.l

k=l

as n -c .

1

Proposition 9 .G(x) =fX(s) Hs (x) ds x > 0

0

Proof: Fix x > 0 and let

A(t)

7(t) = I[Wk <x)
k=l

for t > 0 . From Proposition 8 and the fact that A(t)/t -+ X w.p.l as

t -4c* , it follows readily that 7(t)/t -XG(x) w.p.I as t -u . Further-*1
more, 0 < 7(t)/t < A(t)/t , and EtA(t)/t} = A(t)/t < 2X. for all t > I

Thus, uniform integrability gives Ety(t)/t}-- ).G(x) 4s t - Now let

n-l

7n(t) = l(z(kt/n) < x [A((k + l)t/n) -A(kt/n)]

k=O

for ncl and t >0 . Then 7n(t) -4y(t) w.p.l as n-c , and hence, by

dominated convergence, E(yn(t)) -+E(Y(t)) as n -*4 . From the independent

i,2



increments of X we have

n-i

E(yn(t)) =-P(Z(kt/n)< x) [A((k + 1)t/n)- A(kt/n)]

k=O

t

--- ! (() <x) X(s) ds

0

as n --oo Thus

XG(x) = nim lE(y(t))
t-W0 t

1i - )m x)(n)) .

n- n
li- 1 P (z(k + 8) < x) X(s) d.

fH.(x)x(s)ds ,

0

the last equality following from Proposition 5 and bounded convergence.

4. More on the Asymptotic Distributions

We now show how either of the asymptotic distributions H and G can

be obtained from the other. We define the d.f. F as in Section 1.

Proposition 10 . H(x) = 1 - p+ - G*)(x) , x >0

Proof: In the proof of Proposition 6 we have shown that H(x) i(U(x))/

E(a) . Let



U*(X) Idt x>0

Then U(x) + U (x) = ae for all x > 0 ,where U(x) is defined as in

Section 2. Furthermore,, u(0) and U*(0) represent, respectively, the total

server idle time and the total server busy time during the initial regenera-

tive cycle [0, a) .Thus we have

A (ae)

(7) a u(0) + u(o) 1: S k + u(o)

where S is the height of the kth jump of X (the service time of the

kth arriving customer) and we follow the convention that an empty sum is

zero. Now, from (3) in Lemoine (1974t) it then follows that

(8) U(x) ~min ISM (x -Wk) + u(o)
k= 1

Using (7) and (8,we thus have

A (c) A (c)

(9) U (X) = cc-U(x) Sj k Y
k=l k~l

where Y k =mini Sk ,(x W k)~. Using Wald's Leumma we can obtain

(10) ES E E(A (ce E - XE (c) E -S E (Ck)

14



Let J~denote the u--algebra in -ir generated by TI and then for

k el let M denote the u--algebra generated by TI, S1,., T k, Sk,

and T k 1l Then

Yk$ L.A~ > k -I)

k~l k= 1

= E Ec~ Y F( -w

E EE(Yk}-

Sinceedn eUxactly Ea) in) the ei eut follw from (9),min (197) andolow

(11). This completes the proof.

The mean oj. F is E(S )/P E(S) , so that Proposition 10 gives



H(dx) XE{S )12? + x f:G(dx)
f f
0 0

5. Concluding Remarks

In defining our model (Section 2) we have assumed A(-) to be non-

decreasing and absolutely continuous with a periodic density X(-) , but

the assumption of absolute continuity is not really necessary. We may

instead assume we are given a non-decreasing and continuous function A

with A(O) =0 , A(-)=c ,and A(n + t)= nX + A(t) for n cl and

t E [0, 1) . All of our results continue to hold exactly as stated, except

that X(s)ds is replaced by A(ds) in Proposition 9.

This suggests the further generalization where A is permitted to have

discontinuities. In that case, the customer arrival process A may have jumps

of any integer size at time points where A is discontinuous. (The size of

the jump in A at such . time point is Poisson distributed with mean equal to

the height of the jump discontinuity.) Our results for the server load pro-

cess Z continue to hold, but those for the waiting time process W must

be altered somewhat.

With A continuous., our model can also be generalized by allowing the

service time distribution to depend on the time of day at which a customer

arrives. With the traffic intensity p properly redefined, all of our

results except Proposition 10 continue to hold, but the proof of Proposition

3 becomes much more complicated.

Acknowledgement. The regenerative structure on which we have relied so

heavily was first pointed out to us by David Kreps.
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