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LIMIT THEOREMS FOR PERIODIC QUEUES

1. Introduction and Summary

Let A = {A(t), t > 0} be a non-stationary Poisson process with bounded
measurable arrival rate function A(:) satisfying i(n + t) = 3(t) for all ¢t
in [0,1) and nelI = (1,2, ...} . We call the unit of time a day, and we

refer to a point t in [0, 1) generically as a time of day. Defining

1

A = /)\(t)dt ,

0

we say that A 1is a periodic Poisson process with a period of one day and an

average arrival rate of )\ . We denote by T,, T . « » the jump points of

17 "2t
the right-continuous process A .

Let S., S be independent and identically distributed (i.i.d) posi-

17 Sps 0 e
tive random variables, independent of A , with distribution function (d.f) F
having F(O) =0 . We define op = lEfSll and assume throughout that p <1

For t >0 1let X(t) = S1 + .. .+ SA(t) , with the convention that an empty

sum is zero, and then let Y(t) = X(t) - t and

Z(t) = Y(t) - inf{¥(s-):0<s <t} .

We interpret Tl’ T2, « . . as the customer arrival times at an ordinary single
server queueing system and Sl’ SE’ « +» «» as the customer service times., Then

z = {z(t), t > 0} represents the server load process (or virtual waiting time
process) for this system, assuming that the server is initially idle; cf. Benes
(1958). Alternatively, one may interpret Z as the contents process for a dam
with input process X = {X(t), t >0} and (constant) unit release rate, assum-
ing the dam is initially empty. If the queueing context, the actual waiting time

of customer n is given by W = Z(Tn—) = Z(Tn) -8 . It is the purpose of
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this paper to study the asymptotic behavior of the processes Z and W =
{Wn, nel} .

Queues with non-homogeneous Poisson arrivals have been studied earlier by
Tak;cs(1955), Reich (1958, 1959) and Hasofer (196L4). Hasofer (1964) considered
the case of periodic input and, imposing some further conditions on the arrival
rate function and service time distribution, showed that the probabilicy of
server idleness is an asymptotically periodic function of time.

In Section 2 we focus attention on the integer time points (i.e., where
days begin) at which the system is empty, showing that these times constitute
a sequence of regeneration points for the continuous parameter process Z .

A similar sequence of regeneration points is identified for the discrete para-
meter process W ., In Section 3, these results are combined with discrete
renewal theory to prove the following weak limit theorems. For each time of
day tel0,1) there exists a proper distribution Ht such that

P{z(n+ t) < x} 5H (x) as t o= for all x>0 . Furthermore, there
exists a proper distribution G such that P(Wn <x}) 5G(x) a8 n > o for
all x>0 . We also prove strong limit theorems for Z and W . Speci-

fically, for all x>0 ,

t
(1) %fl[z(s) < x) 48 — H(x) as t oo
0

with probability one (w.p.l) and

n
2 L lw < x) —=G{x) as n -ow
n k —
k=1

w.p.1, where
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As a by-product of (2) we show that

1
6(x) = i—/x(s)us(x)ds , x

0

I \'v/

o

Finally, in Section 4 we show that the limit distributions G and H are re-

lated by
(3) H(x) = 1-p+ p-(G*F)(x) , x>0 ,

~
where * denotes convolution and the d.f. F 1is defined by

X

(1) £{s,) - F(x) =f[1-F(y)]dy , x>0 .

0]
In particular, this shows that H(0) = 1 - p , which is more or less obvious
from physical considerations., The relationship (3) between the asymptotic vir-
tual and actual waiting time distributions is exactly the same as that found by
Takacs (1963) for the GI/G/1 queue. Our line of proof follows Lemoine (197h)
and shows that Tak;cs' result actually holds for much more general systems if
one interprets the distributions H and G as sample path limits as in (1)
and (2),

The results presented here are weak in the sense that we neither compute
nor characterize the distributions G and H , except to show that each can
be obtained from the other via (3). By demonstrating that interesting asymp-
totic distributions do exist for periodic systems, however, we hope to suggest
some potentially tractable problems in the theory of queues with non-stationary

Poisson input and hence to rekindle interest in this important class of models.

2, The Regenerative Structure

We formally assume a probability space (Q, 4 P, on which is defined a

* *
right-continuous compound Poisson process X = (X (t), t > 0} with unit jump
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rate and jump size distribution F. Let

t

l
A(t) =fx(u)du , t>0 . § i
i

0

Then, A(+) 1is non-decreasing and continuous with A(0) =0 and A(n+ t) =

n + A(t) for nel and te(0,1) . Let x(t)=x*(A(t)) for t>0 |,

i

R
2
LI
¢

and let A(t) be the number of jumps of the process X = {X(u), u> 0} during

[0, t] . Thus, A and X are described in Section 1. Also, let

Nl o LR RO

% ﬂ = F(X(u, 0<u<t) , t>0 ,
1
i
s
’ »* *
i % ’\/ Fe s
k| 0<t<w
i
g and
b

We say that a random variable T: Q — [0, »] is optional if (T <t} eg, for

all 0<t<® . And, for T optional we define

; .ﬂr’ = (E:EN(T<t)l e forallOo<t<wl .

t

The process X" is strong Markov (cf. Blumenthal and Getoor (1968), pp. 37-kk),

.-‘;jf from which we easily obtain the following.

Proposition 1. If T 4is optional and finite w.p.l, then
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P{X(T+t) - X(T) = OIJTT; = exp}'[A(’l‘ +t) - /\(T)%

w.p.l1 for t >0

Proposition 2 . If N is integer-valued, optional, and finite w.p.l, then
(X(N + t) - X(N), t >0} 1is independent of JN and distributed as (X(t),
t > 0]}

We define Y(t), Z(t), T, and L in terms of X as in Section 1..
Let O = inf{neI:Z(n) =0} , with O = o if the indicated set is empty.
Since Y(t) and 2zZ(t) are .Ft-measurable for t >0 , it follows that «

is an integer-valued optional time. Recall that we assume ¢ = m[sl} <1 ,

and observe that E{X(1)} = o

Proposition 3 . E{0} <o

*
Proof: Since Y(t) =X (A(t)) -t , we have Y(t)/t > p -1 as t - =

(w.p.1l), and hence Y(t) > - o as t -

8

(w.p.1). From the definition of

Z it then follows that sup{t:Z2(t) =0}

o w.p.l. Moreover, it is clear

that sup{t:Z(t) >0} = w.p.l. Let §1 = 0 and recursively define

v, = inf{t > gn: z(t) > 0)
and
gn_' 1 = inf(t > v, z{t) = 0}
for neI . In queueing terminology, gn is the time at which the nth idle

period begins, and ‘vn is the time at which the nth busy period begins,
nel . From the remarks above, the variables gn and v, ~are finite w.p.l1
for necI , and each is clearly optional. Let v = inf{keI: k > §n] for

nel , so that "n is the first integer time following the onset of the nth

[Pt M s &




PP S Sra I, o S i

1

idle period. Then «a = ™~ where N

inf{lneI:y <v ]l . Now,
n

~

P{N> n+1} = P{Nzn,vn<7n} A i

= Pla>e , X(7) - X(¢ ) >0}

=/P{X(7n) - X(gn) > olfgn}dr

{a> gn}

vhere ¢ = .sTgn . Since y < gt 1 , we have

Plx(y) - X(s,) > o0lg ] < Blx(s + 1) - x(e ) > ol |

o exp{- [A(g+1) - A(gn)]_§

by virtue of Proposition 1 . But A(t + 1) - A(t) =2 for all t >0 , and

so we liave

PN>n+ 1)< (L-eMplaxe) = (1-eMenzal .
_}‘n-l
Thus, by induction, P(N>n) < (1 - &™) for nel , which implies that
E{N} <o . 1In particular, q = N and so we have o < o w.p.1. Note that

the total idle time of the server during [0,a] is

N-1
g - inf{¥(s-):0 < s < a) =Z(vn =g ) (g -8y -
2 n=1

Hence, from the definition of Z , we have




N-1

= = - - p . 5:
0 = z(a) = ¥(a) + E (v = &) + (g - &) 2 ¥(@) ¢
But, the nth idle period has duration (vn - gn) <1 for 1<n<N-~-1 , ,
and 7y - &, <1 as well, so that O < Y(a) + N . Thus, we have
0 < -¥(a) <N w.p.l, and P{-Y(a) >0} > P{A(1) = 0) >0 , whence g
i k:
0 <E{-¥(a)] <EN) <ew . ; g
Having shown Pla < «} =1 , we set y =a and then recursively define ! g
O 41 = inf:nel:n>o¢k and Z(n):O;
g
for kel . It follows from Proposition 2 that Y(o;), ¥(ap) - ¥(a,), 3
« + .+ are 1i.i.d., as are Qs G -y -« o - . Wewrite . -
o -.
-Y(oy ) 1 o :
(5) A=Y [ -v-wn] )X -
k o & k 3
=1 4
Then, letting k — o in (5), we conclude from the strong law of large num-
bers that E{-¥(a)} = (1 - p)E{a} . Thus, (1 - p)E{a)} <EIN) <« , which 4
completes the proof. -‘
Remark: 1If p > 1 , one can show Efa) = = by observing that o is a
weak descending ladder index for the random walk (Y(n), ne¢1I] .
Throughout the remainder of the paper, we define the integer-valued ' i
optional times [Otn, nel} as in the proof of Proposition 3, and we set I
R
B, = A(an) for nel with B = B, - Simce @ is optional and A
{A(n) - A(n - 1), neI} is an 1.i.d. sequence, Wald's Lemma gives E(B} =
o
E{@} -E(A(1)] = AE{@) <o . Also, setting Oto = BO =0 , we define g
g.
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% 9
Un(x) = /le(t)f_x}dt
-1 ’ L

and

Pa

Vn(x) = Z I{Wn < x}

k=B _,+1 3
for neI and x >0 , with the convention that an empty sum is zero.
(Thus, Vn(x) = 0 with positive probability for each fixed n and x.) Let
v(x) = Ul(x) and V(x) = Vl(x) , and note that U(x) < a and V(x)<p .
Since a is optional, it follows from Propositions 2 and 3 that [Z(Otn+u) ’
u > 0} 1is independent of j& and distributed as 2 ., The following is

n F
then immediate.

Proposition 4 . Fix x >0 . The sequences (an - nel) ,

-1
[Bn - B, .1’ nell}l , {Un(x), nel}l and [Vn(x), nell are each i.i.d,

with finite mean. ;;

3. The Limit Theorems

For each te [0,1) we define a proper d.f. H_ by

t
1
a-1 1
|
. = 1 > . .
Ela) - H,(x) E Z zk+t) <x)( + *=2° | 3
k=0 o
Proposition 5 . For each te[0,1) and each x>0 ,
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lim P(2(n + t) < x} = Ht(x) .
n -0

Proof: We have already observed in Section 2 that {Z(a + u), u >0} is

independent of % and distributed as Z ., Thus for n=0, 1,2, . ., .

PZ(n+ t)<x} = Pla>n, 2(n+ t) < x}

LY R Yo o AL A MR 1%

n
+§ Plo = k} *P{z(n - k + t) < x]

k=l
for fixed te[0,1) and x>0 . Let vn=P{Z(n+t)_<_x) ,

b =Pla>n, Z(n+t)<x), and £ =Pla=n] for n=0,1,2, ...

Then, the equation above can be equivalently expressed as

n .
(6) v, =bn+2ﬁgm¢ , n=0,1,2, ... .
k=1
Now, since f1 >0 and Elg) <o it fol ows from the discrete renewal ) 1

theorem (cf. Feller (1968), p. 330) that

o0

lim v = z bk/E{a]
n -

k=0

R P as, WAR

(]

E 2:1£oc>k11(z(k+t)sxl/“{O‘l
k=0

the second equality holding by virtue of monotone convergence., And, the

the second expression for the limit is clearly Ht(x) , completing the proof.
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Proposition 6 . For all x:

o

[

t B ;{

L 1 ds —— H(x) w.p.l : “

: £/ Lz(s) < x) -p- :
] 0

g i

as t 5« where

Faalte oy

1
H(x) =/Hs(x) ds i
0
3
‘ Proof: From Propositions 3 and L and the strong law of large numbers it : 4
', is easy to show that :

%>

t
i 1
3 E/l{z(s) < x4 T BUG/ER) wep
. J <

3
., 1
& as t 5w ., Now observe that .
_. a-1 k+1 ;
i 1 1
3 E{u(x)}] = E 1 ds
3 (x) 2:0 | Yz(s) < x) !
'{ a"l 1 é
3 = d ;
3 E E Yz(k + s) < %198 ‘i
R k-:O O ..l
3 4
.’. 1 a-1 i
. _ i
g - / E Zl[z(k +8) < x] ds ’
I 0 k=0 -
] o
1 3
ik
|
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the last equality following from Fubini's Theorem (cf. Neveu (1965), p. 91).

Comparing this with the definition of Ht(x) completes the proof.

Proposition 7 .

For all x >0

lim P(Wn <x} = G(x)

n —oo

6(x) = E{vx)YE®) .

Proof: Since « is optional, we see that { , nel}l is independent

wB+n

and distributed as W . Thus

3 | n-1

P{Wn S X} - P[a Z n, wn s X] +Z P{B = k} P {Wn S x}

-k

for fixed x >0 and nel . Let v, = P{W_ < x}

b, =Pl >n, W <x} ,

r ! and f = P{g =n} for n=0,1,2, ..., where v, = bO =0 . Then,

the equation above has the form (6) with

, and again we invoke the

discrete renewal theorem to obtain

lim P{W < x}
h =

n —om
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The last expression for the limit clearly equals E{V(x)}/E{g) , completing

the proof.

Combining Proposition L with the strong law of large numbers and the

definition of G , we easily obtain the fcllowing result,

Proposition 8 . For all x>0

n
1
= E l{wka} —_— G(x) w.p.l
k=1
as now .,
1
Proposition 9 . 2 G(x) =/}\(S)Hs (x)ds , x>0 .
0

Proof: Fix x >0 and let

A(t)
= 1
7(t) kzl w, < x]

for t> 0 . From Proposition 8 and the fact that A(t)/t -»A w.p.l as
t > , it follows readily that y(t)/t -21G(x) w.p.l as t -w . Further-

more, O < y(t)/t < A(t)/t , and E{A(t)/t} = p(t)/t < 2x for all t >1

Thus, uniform integrability gives E{y(t)/t} - AG(x) 8s t -+ » . Now let

n-1

7l®) = D g ) <x) [A((k + 1)e/n) -ACke/m) ]
k=0

for nel and t >0 ., Then 7n(t)—>y(t) w.p.l as n e~ , and hence, by

dominated convergence, E[yn(t)} —-E{y(t))] as n 5« ., From the independent

12
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increments of X we have

n-1

Ely (t)] =ZP{Z(kt/n) < x) - [A((k + 1)t/n) - A(kt/n)]
k__-o

t

— JP{Z(8) < x)1(s) ds
0

as n-ow , Thus

]

1im 1 E(y(t))

tow t

2 G(x)

= lim 1 E{y(n)]
nown

n-1 _1
= M= ‘%z:frtz(k +8) < x}A(s)ds
=70

1

-/ﬂa(x) A(s)ds ,

0]

the last equality following from Proposition 5 and bounded convergence.

L. More on the Asymptotic Distributions

We now show how either of the asymptotic distributions H and G can

~
be obtained from the other. We define the d.f. F as in Section 1,

Proposition 10 . H(x) = 1-p+p-(G*F)(x) , x>0 .
Proof: In the proof of Proposition 6 we have shown that H(x) = B{u(x)}/

Ela) . Let

O e

T

e
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0]

U*(x) =f1(2(t)>x}dt , x>0 .
0]

*
Then U(x) + U (x) = o for all x>0 , where U(x) is defined as in
*
Section 2. Furthermore, U(O) and U (0) represent, respectively, the total
gserver idle time and the total server busy time during the initial regenera-

tive cycle [0,a) . Thus we have

. Ala)
(7 a = U (0)+U(0) = E S, * u(o) ,
k=1

where S, is the height of the kth jump of X (the service time of the

kth arriving customer) and we follow the convention that an empty sum is

zero. Now, from (3) in Lemoine (1974k) it then follows that

Ala) l

(8) U(x) = Zmn}sk, (x - w )| + u(o)
k=1

Using (7) and (8), we thus have

. Ala) Ala)
(9) ) = a-Ux) =y s - Doy,
k=1 k=1

where Yk = minisk , (x - Wk)+£ . Using Wald's Lemma we can obtain

Al l
(10) E i-fsk = E(A(a)]-E{sl) = m(a]-E(sl} = pEfla} .
k=1

e,
e
I3

¥
g
.
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Let JEB denote the o-algebra in .# generated by T1 , and then for C
kel let Jﬁk denote the o-algebra generated by Tl’ Sl’ o e ey Tk’ Sk’ ‘; ;
3

and Tk-+1 . Then j
]

3

Ale) © 3

Ely 1 '

| "k {Ala) >k - 1}

E E Yk
k=1

[}
i™
[

%

2% 1) L > k- 1)

k=1
Ala)
e S )
k=1
Ala)
- E E E(s,) - Fl(x ~ W)’ .
k=1

Proceeding exactly as in the argument for (5) in Lemoine (197L), it follows

that
Aa)

(11) E EYk = E'(Sl]-E{A(a)]‘(G*F)(x) = pE{al -(c*?)(x) .
k=1

Since E{U(x)} = E{a} *H(x) , the desired result follows from (9), (10) and

(11). This completes the proof.

The mean o F is E[Sf]/?E[Sl} , so that Proposition 10 gives
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[xﬁ(dx) = 15{512}/9 + o/xG(dx) .

0 0

5e Concluding Remarks

In defining our model (Section 2) we have assumed A(+) to be non-
decreasing and absolutely continuous with a periodic density A(-) , but
the assumption of absolute continuity is not really necessary. We may
instead assume we are given a non-decreasing and continuous function A
with A(0) =0 , Alx) =w , and A(n+ t) =mnx+ A(t) for nel and
te [0, 1) . All of our results continue to hold exactly as stated, except
that A(s)ds is replaced by A(ds) in Proposition 9.

This suggests the further generalization where A 1is permitted to have
discontinuities. 1In that case, the customer arrival process A may have jumps
of any integer size at time points where A is discontinuous. (The size of
the jump in A at such » time point is Poisson distributed with mean equal to
the height of the jump discontinuity.) Our results for the server load pro-
cess Z continue to hold, but those for the waiting time process W must
be altered somewhat,

With A continuous, our model can also be generalized by allowing the
service time distribution to depend on the time of day at which a customer
arrives. With the traffic intensity o properly redefined, all of our
results except Proposition 10 continue to hold, but the proof of Proposition

3 becomes much more complicated,

Acknowledgement. The regenerative structure on which we have relied so

heavily was first pointed out to us by David Kreps.
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ABSTRACT

&Consider a single server queue with service times distributed as a
general random variable S and with nonstationary Poisson input. It is
assumed that the arrival rate function X(-) is periodic with avgrage
{ value ) and that o = 2AE{S} <1 . Both weak and strong limit{theorems
are proved for the waiting time process W ={W,, W2, ...} an 'theq
server load (or virtual waiting time process) Y s {z(t), £t >0} N The
asymptotic distributions associated with Z and W are shown to be re-
lated in various ways, 1In particular, we extend to the case of periodic
Poisson input a well knnwn formula (due to Takics) relat.ng the limiting
virtual and actual waiting time distributions of a GI/G/1 queue.
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