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OPTIMAL CCHNYRCT OF THE M/G/1

QUEUEING SYSTEM WITH REMOVABLE SERVER - LINEAR
AND NON-LINEAR HOLDING COST FUNCTION
by

Peter Orkenyi

In recent years, various queueing control problems have been studied
and solved by a number of investigators. A brief, but excelilent survey
of the literature on this can be found in Gross and Harris (1974, pp. 364-
371). In most cases, the studies have concarned 2 single server. 1In
this report, we consider the M/G/1 queueing system with removable server.
In Section 1, the problem is défined, some potential applications
are outlined, and previous studies of the problem are reviewed. The
problem is then formulated as a semi-Markov decision process in Section
2. In Section 3, the case of linear holding cost is considered. Finally,

the case of non-linear holding cost is considered in Section b,

1. Introduction.

The M/G/l queueing system with removable server was first studied
by Yadin and Naor (1963). Their idea was to utilize the idle time of
the server in the M/G/1 queueing system, since this time cen be sub-
stantial. Therefore, th:y proposed to remove the server when the system
would become empty (thus leiting the server perform some other useful
duty), and to bring him back when the number of customers in the system
would reach a certain critical number. We investigate this idea by con-

sidering the optimal control of the queueing system.
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Some comments about these costs are appropriate here. The service

cost K may actually represent the expected (discounted) cost for giving

N p g

service to a customer. Likewise, Rl and R2 may actually represent

- the effect of cesbs incurred during the start-up and shut-down times,

respectively (although the shut-down times are not considered explicitly

here, they are not excluded by our formulation of the problem). We

assume that r, R, and R1 + R2 are non-negative.

In general terms, the objective is to find & policy for turning

the server on and off such that expected costs are minimized. The problem

is considered both with and without the v.se of discounting. When the

costs are not discounted, two optimality criteria are used. The first

one is the average cost criterion, according to which a policy is optinmal

if it minimizes the long run expected average cost., The second criterion

is the undiscounted cost criterion. A policy is optimal for this cri-

terion if it minimizes the long run expected cost where a cost incurred

at a rate equal to the minimum long run expected average cost is sub-

tracted from the original costs. When the costs are discounted, the

discounted cost criterion is used. A policy is optimal fcr this criterion

if it minimizes the total expected discounted cost.

We will let O denote the interest rate, N denote the set of

positive integers, Nb denote the set of non-negative integers, and R

denote the s2% of real numbers.

1.2 Examples of Pctential Applications.

Traffic Control:

and

Consider a bridge which can be opened and closed at a cost r,

=5

Y respectively (for the sake of simplicity, we assume that they are




completion nf the operabions). A shi
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i1 a ship srrives

a cost for keeping the ships
incurred at ¢ rate
toppes
is closed again.
the bridge
should b2 upened and closed.
mhat +his protlem can be viewed as an M/G/2
removable -erver can be sezen as follows. Let the
the bridge be the ser-er. The service time is the
ship to pacs under the bridge (we assume that there are pt
traints, so +thai only one ship can pass under the bridgs at a
time). The stari-up time is the time it takes to open the bridge.
Clearly, the cost struct.are here is the same as in the M/G/1 queueing

system under consideration. Just let K be the exvected (discounted)

sst for halting the traffic on the bridge while a

%, and let R, and R2 be s.ach that they represent the direct cost

r opening and closing the trifze plus the cost for haliing ¢
bridge, while the brid beirg opened and closed,

that the bolding cos., funciion is linear.

Compu ter Time~Sharing Control:
Conrsider a company which has osly one computer, but several ver.
bs originating from the terninalc are the on-line jolg,

the operating room cre the off-iine iobs. The
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obs have prioriby over the off-line jobs. Tn fact, there is

a cost incurred at a rate h for zach on-line job which is kept waiting,
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wnile there are no costs assceianed with keeping off-line jobs waiting.

However, a cost is incurred at a rate r while the computer does not
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process off-line jobs. If the computer is processing an off-line job
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when an cn-line job arrives, the off-~iine job mey be threown cut of

. the computer sco tha*t it can stari processing the on-line job., When

= a job is thrown out of the computer, its entire memory content is trans-
ferred t0 an auxiliary memory device such that the processing of the
job may oe resumed later. If an off-line job is always thrown out of

the compuier when an on-line job arrives, there may be an excessive

PR

shifting of data from the computer to the auxiliary memory device and

o,

H vice versa. + may therefore be desireble tc wait until a number of

n-line jobs have arrived before throwing an off-line job out of the

computer. The problem is to determine when an off-line job should be

Veedte e

thrown out of the computer {if at alil)},

/

That this preblem can be viewed as an M/G/1 queueing system with
removable server, can be seen as follows. Let the on-line jobs be the
castomers, and Let the computer be the server. The service time is the
time it takes to execute an on-iine job, and the start-up time is the
time it takes 4o stift ine memcry content of the computer to an auxiliary
memory device, Clearly, the c¢ost structurc here is the same as in the
M/G/1 queueing system under corsideration. Just let K be the expected
{discounted) cost for not using the computer for off-iine jobs while an
on-line jco is being processed, ard let Rl and R2 be such that they

represent the cosy for not using the computer for off-line jobs while
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another tyve of items (if at all).
Y

nhat this problem can be viewed as an M/G/l queueing system with
removable server can be seen as fcllows. Tet the items of type B be
the customers, and let the production line be the server. The service
time is the time it takes to produce an item of type A, 2znd the start-up
time is the time it takes t¢ set up ibe production line for the production
cf items of type A. Clearly, the cost structure here is the same as
in the M/G/l queveing -~ystem under consideration. First let X repre-
sent the sum of the service rosit, the product completion reward and the
cost for not producing items of type C when an item of type A is
produced. Also, let Rl ang R2 represent the setup costs plus the
cost for not producing items of 1ype € while the production line is
being set up for the production of items of type A and for the pro-
duction of items of type C, respectively. HNotice that the holding

cost function may be non-linear.

‘rml

.3 8Scme Terminology.

We are interested in showing that certain simple intuitive types of
policies are optimal. These policies are the hysteretic* policies. A
policy is called hysterstic if there are two integers, say m and n
(n <m), such that the server is always turned on (or kept on) when
the number of customers in the system is greater than or equal to m,
and such that he is always turned off {or kept off) when the number of
customers in the system is less than or equal to n. This poliey is

denoted by T(nym). The numbers m and n are the upper and lower

%
Confer with Gebhard (1966).

oy
|




intervenbion points, respectively.

If the lower intervention pouint is less than Zero, or if the upper

intervention point is egual {o plus infinity, then the hysteretic policy

is degenerate. (Otherwise, the peolicy is non-degenerate, Hysteretic

policies whose upper intervention points are finite and lower interven-

tion points are less than one, are callied natural hysteretic pclicies.

N
bt

The different types of hysteretic policies are piectursd in Figure 1.
The aim of this study is to prove that there always exists a hys-

teretic policy which is optimal, and to give the conditions for vhen

the various types of hysteretic policies are optimal. For the case E
where the holding cost function is linear, especially explicit and con-

venient results are obtained.

1.k Previous Studies of the Problem.

As mentioned before, Yadin and Naor (1963) were the first ones to
study the M/G/1 queueing system with removable server. They examined
the steady-state behavior of the sys*tem, given that a natural non-
degenerate hysteretic policy is used. Using a linear holding cosit
function, they found the value of the upper intervention point which
minimizes the expected cost rate in steady-state.

Heyman (1968) was the first one to consider the optimal control
of the M/G/l qurueing sysiem with removablie server. As with Yadin
and Naor, he assumed a linear holding cost function. 1In addition, he
assumed that the start-up times were zero. He considered the problem
both with and without discounting, and proved the existence of a

hysteretic cptimal poiicy. However, his proofs were incomplete.
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The types of hysteretic policies, where
the x-axis indicates the status of the
server, the y-axis indicates the number
of customers in the system, and the
arrows indicate how the system moves.
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bel (1969) considered <he a31/G/1 quaueing system with removail
server. However, he used a cost structure which, it seams, would nly
be natural if the GI/G/1 system were in fael an #/G/L system. He
used the average cost criterion  Under some fairiy weak conditions, he
vroved that there is a non-degeneraie hystereiic poiiey which is optimal
among all stationary policies.

BRell {1971) considered the sams problem as lHeyman, but only with
dxscounting. He completed Heymar's vproofs, and also gave an efficient
algorithm for finding arn optimal policy.

Blackburn (1971) independently obtained results similar to those of
Reil, He also considered the more general case where the hcldirng cost
function is any non-negetive, non-decreasing, convex function with &
vounded slope. He used discounting, and under certain weak conditions
proved that there is a non-degenerate hysteretic policy. However, the
present author has found that his proof was incomplete at one point
(namely in the proof of Lemma 18, Chapter 3). Intuitively, the result
seersto be true, so it is stiil hoped that tne proof can te completed.

Reed (197ha) also considered the M/G/L queueing system with

(1)

removable server. He used a new approach to the problem and derived

-

similar, but scmewhat more explicii resuliis than those ¢f Rell and Black

7

Later, Reed {197hkt) extended his previous results Lo cover the case of

*

-

non~instantaneous start-up and shut-down times.
Recently, Det (1976) ccnsidered the M/G/1 queueing system with
removable server (actually he considered bulk service, but by letting

the bulk size be equal to one, his problem becomes the same as ours).

He allowed a general non-negative, non-decreasing holding cost function,

.
Lourn,




but assumed instantaneous start-ups. His main result was that there

exists a natural non-degenerate hysteretic policy which is optimal if

the slope of the holding cost function is bounded below by a certain

constant.

Other variants of the M/G/l queueing system have been considered

by Bell (1973), Blackburn (1972), Tijms (1975) and Levy and Yechiali

(1975). In particular, Bell considered the system with several customer

classes, Rlackburn considered the system with balking and reneging,

Tijins considered the system where the service time of a customer becomes

known when he enters the system, and Levy and Yechiali considered the

system where the server is removed for a random period of time with a

given distribution function.

2. A Semi~-Markov Decision Process Formulation.

The M/G/l queueing system with removatle server can be formalated

as a semi-Markov décision process. In order to do this, a state space;

an action space for each state, a law of motion and a cost function must

be specified. We first identify the decision epochs, the state of the

system and the set of permissible actions.

The decision epochs are the epochs when customers arrive and depart

with the exception of those arrivals which occur while the server is

giving service to another customer. At each decision epoch, the state

of the system is defined as the pair of integers indicating the number

of customers in the system and the status of the server (the second

I O O D

integer being 1 if the server is on and O if he is off). Thus, the

state space becomes Nb x (0,1}, where Nb is the set of non-negative

integers.



At each decision epoch there are always two available actions, action

S

0 and action 1. Action O 4is to turn the server off (or keep him off
if already off), and action 1 is to turn him on (or keep him on if
aiready on). Thus, each action space becomes {0,1}.

The law of motion and the cost function are in principle determined
now., In order to avoid any ambiguities, a formal description of the law
of motion and the cost function is included below.

The law of motion, gq, is the mapping from N, x (0,1} x (0,1}

0

X Ny X {0,1) xR into R, given by

f
l i i=i=, j=l, k=j "-‘-‘O, t Z 0,

i=0, j=i'=k=l, t > 0,
=Ab ’ -
l-e i

1'=1+1, j=j'=k=0, t > 0,

t N 17441 Au
a(i,d,k,1t,3%,t) =¢ L ~ e " ar(u), 1' > i-1, j=j'=k=1, t > 0,
o i 'i+l + hand

£, Gi'-i S
L%_l{r} —e™ag(u) , if i'> 1, §=0, j'=k=1, t >0,

0 othervwise,
\N

for ieNy e (0,1}, kx ¢ (0,1}, i ¢ Ny» 37 € (0,1} and t eR.
The cost function ¢ 1is a mapping from N,X {0,1} xR into R,

given by




R , i k< §, t>0,

2
rt , if 1=0,3=k=1,%t>0
h(i)t s if j=k=0,t>0,

t \itn
Ry"F(t) + ) h(i+n)[ (i-F(u)) %ﬂ‘-)-p— e May,
(o}

ne i+n)?
e(i,j,k,t) = Y
3d 3K, 4
, if 1>0, j=k=1, t>0,
t i+n
. AU “\u
K+ Y h(1+n)jr (L-F(u)) %{;%TT- e du,
neNO o]
y if j=0,k=1,1%t2>0,
LQ , otherwise,

for 1Ny Je {0,1}, kx ¢ (0,1} and t ¢ R.

The interpretation of q and c¢ are as follows. Consider a decision
epoch. Suppose that the state of the system at that decision epoch is
(i,3) and that the action taken there is k. Pick a state (i;,st,
and a time +t. Then q(i,j,k,i*,3%,t) is just the joint probability
that the next decision epoch occurs within a time t and that the state
of the system at that decision epoch is (i',j'). Furthermore, ‘c(i,j,k,t)
is just the expected cost accumulated within time t after the first
decision epoch considered here. We now introduce some general notation
to be used later.

Let G) and éis denote the class of all policies and the class of
stationary, deterministic policies, respectively. For each T € 35,

let Qr denote the long-run expected average cost (per unit of time),

given that the policy 7T 1is used (the start-state is irrelevent in this

15




case). For each I ¢ &5, ieN

o end Jje (0,1}, 1let w,’r(i,j) denote
the long-run expected cost in excess of what is indicated by CPW_, given
that the start-state is (i,j) and that the policy T is used. Finally,
for each T e 6), ieNy and je {0,1}, 1let v,’T(i,;j) denote the total
expected discounted cost given that the start-state is (i,j) and that
the policy i 1is used.

A policy T is average optimal if it minimizes @_ (T e g)), and

it is undiscounted optimal if it minimizes w_’r(i,j) for each

(i,3) € Ny X {0,1) among all average optimal policies (ino@ ). A policy

is discounted optimal if it minimizes v,[r(i,j) for each (i,J) € Ny X
(0,1} (r e &).

In order to be able to determine whether a given policy is optimal
or not, we will need some optimality conditions. Fortunately, the problem
without discounting can be solved quite directly, so we need only consider
the problem with discounting here.

Ortimality conditions for semi-Markov decision processes were given
by Orkenyi (1976). The important concepts of improvable and unimprovable
policies were introduced there.

A policy is improvable if there is a startestate such that the
expected discounted cost, given that start-state (and the policy under
consideration), can be reduced by changins the first action chosen by
the policy. A policy is unimprovable if it is not improvable.

More formally, for each T ¢ ﬁ, let @(11‘) denote the set of
(deterministic) policies which uses the same decision rule as T after
the first decision epoch. A policy 1T* in @ then is unimprovable if

’ . I3 3 3 3 *
v (1,3) va(l,a), for ice¢ Nos 3 € (0,1}, T ¢ @(‘n‘ ) .
T

14
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Orkenyi (1976) also showed that if a policy w in <§5 is improvable,
'y 3 = ¥ - - "X'
then there is a policy T ¢ éf) which is an improvement over T . More
. . H EYE . * -
specifically, let 7' bLe a policy ir {r') such that
V.n.t(i)j) <v ,(i,§), for ie NO’ i e {01},
T
with a strict inequality for some state (i,j). ILet T be the policy
in 55 such that it uses the same decision rule as ' deces at the

first decision epoch. Then a theorem by Orkenyi (1976) says that
vi(1,3) Svi(i,4), for ien, §elol),

*
and T 1is an improvement over 7 . This theorem is referred to as the

policy improvement theorem.

Clearly, an optimal policy rust be unimprovable. But an unimprévable
policy need not always be optimal. Conditions ensuring that an unim-
provable policy is optimal are given by Orkenyi (i976). Chapter 4 there
contains a discussion of the optimality of unimprovable policies for the
M/G/1 queueing system with removable server,

It is convenient to introduce the following general notation here.
For any random variable T, Ew,sz} denotes the expected value of T

given the policy T ané start-state s.

3.  The Case of Linear Holding Cost Function.

In this section we consider the case where the holding cost function
is linear. This case has been studied extensively before. Reed (19Tka),
(1974b) has given a characterization of the optimal policies, Bell (1971)
and Blackburn (1971) have given algorithms for finding an optimal policy.

Here, some new and sironger results are presented. The emphasis is on

15
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obtaining results which arz explicii and easy to use. The problem is

considered both with and without discounting.

3,1 fThe Undiscounted Case-

The problem is somewhat easier without discounting, so this cese
is considered first. The optimality criterion is the undiscounted cri-

terion. We begin by obtaining some preliminary results.

3.,1.1 Preliminaries,

Recall that A 1is the arrival rate, u 1s the service _ate and

o (= i) is the load on the system. Let §, n and ¥ be defined

by
=f tdg(t) ,
[o)
=[ EdG(t) »

::f ‘bedF(*J) .
(o}

In words, § is the expected start-up time, 7 is the second moment

—ad

of the start-up time; and 7 1is The second moment of the service time.
Vie assume that these gquantities are finite.

Let T denote the time until the state (0,1) is reached, and
define K and v by
= E
T{(~1,0):(1,1)

E”T( -1,0),+{0,0) (3 .

16
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By conditioning on *he time until the second decision epoch and the state

of tne system at that epoch, we obtain

0 i ;
k=24 ) Lﬁi;- e iK@r(t)
u - lb
ieN . Jo
0
=}-+§K,
TR
and
o i
v==_§+ ) Qg—e'm'il('d(}(t)
ieN Jo '
0
=§ + Ak .
This implies that
1 1 1
Kz —m— o = e e
TE S TR BV
and
_ Su "
VEERT ¢ l-p*

From this, we obtain

ETT(-l,m),(O,O) (r3 = E‘IT(O,m),(O,O) (z)

m
-+ vV + mK
A

1 m
is (x +t), for me NO .

Let H denote the holding cost incurred until the state

(0,1)

is reached. ZILetting h denote the holding cost rate for each customer,

then for each i ¢ NO’

17
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f'(-..l. ¢ \1 O\Li{} F &’J-:.)K‘n)
FAC

i(1i-1)kn .

By conditioning on the time until %

he second decision epoch and the

state of the system at that epoch, we obtain

‘:, -2t
L ;- E‘ﬂ = h .( )\ 1T hdt
B?(.“ijo))(l;’i)){ ’ l%}\,f i1 ( I'(t)) l‘*‘l)

¢}

@ t) -\t
leN’f - (1-x W(O) )Kl;o){H] *3 l(l-l)K}‘}dF(t

= P Er(0,1),(1,0) Hy + (

EF(~1,0>,(0,0){H} =1 jf gﬁz%—- 'xt(l a(t)) i*hdt

1(—:1\

T )t
* O e TR gy, 1,08 T3 5 i(i-1)Kkn}dc(t)
lEuo (¢}

7\§ r‘rlo}" ){H) 1':' *

}21(1,0

impiies that

firl =
E"’T('lto).' {1,0) () =

1 2%y
=, . (1) = N
T{~1,0),(0,0) (l-p 6 2 (1-p

18




From this, we obtain

E'rr(-l,m),(o,o){m = Ew(o,m),(o,o)m

h m-1

+ Br(.1,0), (0,0) H} *meney

¥ E7T\ -1,0), (mp) (k)

=-2]-‘-m(m-l)%
TIPS, ST S I .
(1-p) (1-5)
+ 5 m(m-1) °%°T%5.h+m(l'lfp+%(l>.\:)2)h
=-;'-m(m-l)--i%3--;l+ (§+%+;‘1-7:%-)T1:—p-
+ (pt *%%54-32:{:\-2)1%—5, for me Ny

Let C denote the cost incurred until the siate (0,1) is

reached, Then, for each m ¢ NO’

= ML) G+ (e 25+ 5 —=g)n)

cp'"'("]-:n'l) l-p (l—p)

2
1
r(l-p) + (p + 52‘3%)h ’

and

i

e

i
4

e

j

i

il



R, + R

1" B * Breg my (0,0) 01

rio,m) =
7{0,) E?r(osm}‘,w,o/m
- A 1"9) { - ;j
- m+>\§ \Rl i RZ * E‘n‘-(O,m),(O,O) {H]) g
1 1 128y

= | In(d- = -1 = ol

it .(Rl + Ra;x( p) + (2 m(m-1) + m(Af + p + 5 _p)

% I's
. 1 1A
= apt + 5'%—5 C+5 Ay .

5.1.2 The Optimal Value of m in 7(=-1l,m).

We will now consider the optimel value of m in w(-1,m). Let

m denote this value., That m exists is shown in Section 4.1, It is

given by

|

wv(_l’m,)(o,o) S ( 1, )(o,o), for m e N,

Now

We(-1,m) (79 = Bre_1m), 00,00 8¢} = Om(-1,0) * Er(-1,m), (0,0) T}

* W, O)(O,l), for me N, ,

I LT

| - /
W (-1,m+2 *2‘0’0 Vor( o l,m)(o’O)

n

-rr( 1,m+1} (o,o)‘C} r(-l,m),(o,o)w]

{T})

{T} - E

”(”1 W( 1,m+1),(0,0) T{(~1,m),(0,0)

l AYy h

m
Tt T




CETRE A

2
1, 2% 1
- (2(1-p) * ( . :
(r(2=p) + (o + 3+ 3250 * 57ip)

h r

= — - T £ .
=15 wm + AL - 2(1 p)), for m e Ny
Thus

' o omi Li1.p) -
m' = min{m ¢ Nolm Zh(l p) - At} .

3,1.3 The Optimal Value of m in m(0,n).

We will now find the optimal value of m in 7(0,m).

denote this value. Then m" is given by

< .
(pTr(O,m") - CP‘rr(o,m)" for m e N,
Now

A(1-p)

Let m"

Ur(o,mi1) " Pr(o,m) = TRAREIGAEY | (M) B na), (0,0) 1)

= (melnE) *Ereo m), (0,0

h
= tm+1aL) (mMg)

¢« {(m#g) ( 5 m(m+1) +(m+L) (;g+p+

)(H} ~ (R +Ry)]

1 X 7))

- (m+l+}\.§)(2 m(m<1) + m(A{ + p + %’i ))

3
- B(1-0)(ry + Ry +ast + 53T
h 1 2 1
= IR B (e

1 K27

7
-0
2
17y
+ 2 l-p)}

1 1 n
+K§(7~§+D+§—‘*--D-§i-_.—'§l_p'§)

lep

- %(l-p)(Rl +Ry))

: C Glm + a8+ 37 - 50+ 3P

T (m+Ia ) (manl)
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1

FNOL -3 5 P - -0 (R + Ry

b 1,2
= BlmAng gy (e 3T+ (87 -

2
5o 50 %(1-p)(R1+R2>}
2
h l 2 A
= AR {(m + At + + (AL - — i:g

2
- —2‘-(1-;3)(11l + Re) - %), for m e NO .

Thus, we obtain

2 !
e _3_-_ 2)\.(1 -0 2_.
mo= mln[merlm > - 5 -x§+V/——7;-- (R1+R2) + -(hﬁ -5 2) .

3.1.% Characterization of the Optimal Policies.

It is proven in Section L.l for the general case of non-decreasing,
convex holding cost function that either a policy m(~l,m)(m <) or
a policy m(0,m)(m < ») is undiscounted optimal, depending on which
is average optimal. In principle therefore, all one has to do to find
the (an) optimal policy is to compute m" (by using the formulae in
Section 3,1.3), compute the long run expected average cost, given that
the policy w(0,m") is used (by using the formulae in Section 3.1.1),
and compere it with the long run expected average cost, given that the

policy w(-1,m') is usead.

3,2 The Discounted Case.

Here, we use the discounted cost criterion. The analysis becomes
somewhat different from *nat in the preceding section. One reason is
that it is possible to reformulate the problem so that the holding costs

do not need to be considered explicitly.
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3.2.1 Elimination of the Holding Costs from the Analysis. =

Bell (1971) suggested a reformulation of the original problem such
that the holding costs would become bounded. Here, we show that the
original problem can be reformulated in such a way that the holding costs
are eliminated from the analysis altogether.

Since the holding cost function is linear, the total expected dis-
counted holding cost is equal to the sum of the expected discounted
holding cost for the respective customers. Let as before h denote
the individual holding cost rate. For each m e N, let t2n and t2n+l
denote the times when the nth customer arrives and departs, respectively.

Then the total expected discounted holding cost is

b

2n+l
BN hf e %tat)
nelN ten
-at Ot
- E[ E ge 2n -e 2n+l)}
nel

diten}

=t
h h
=B D ge N-EYPze
nelN neN

Since the arrival process is not affected by the policy in use, the first
term in the above expression is neither. Therefore, it may be neglected
when searching for an optimal policy. The second term does depend on the
policy in use, and therefore cannot be neglected.

Suppose now that at each service completion a reward h/a would
be received. Clearly, the expected discounted cost arising from the
service completion rewards would just be egual to the second term in

the above expression. Therefore, the original problem must be equivalent
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to the problem in which a reward hﬁa is received at each service com-

pletion instead of incurring a holding cost at a rate h for each customer

in the system. Thus, since the service completion reward may be included

in the service cost, we may assume without loss of gene}aligi that there

are no holding costs. This will now be done.

3,2,2 Preliminaries.

Let o0, ®w and & e given By

A

w =J[ e-atdF(t) s

t = [ e *tag(t) .

In words, ¢ 1is the Laplace transform of the inter-arrival times, o

is the laplace transform of the service times and & is the Laplace

transform of the start-up times.

Let as before T denote the time until the state (0,1) is reached,

and define ¥ and X by

QT
¥ =Epa,0), (e )

QT
X = Ere1,0), (0,01 )

By conditioning on the time until the second decision epoch and the

state of the system at that epoch, we obtain




> (M:)fL -(am)t | i,
0

=f° G T
o]

and

. - 2 lco ‘g?i;—?r]; e-(a’f')\)t . Wi'dG(t)

ieNO

=f° (@M e 4y
o

S8ince p<1l, ¥ is the unique solution of the above equation in the

interval [0,1]. This can be seen as follows.

Let g be the function from {[0,1] into R,

(]
g(x) = x -f e OAMIL k), for x € [0,17 .

o]

Taking the derivative, we obtain

g'(x) = 1 - xf pe (@A) bap 4y
(o]
00
>1 - x[ tdF (t)
(¢}
>0, for x ¢ (0,1) .
Also,
g(0) = -f @M gpey < o,
(o]
and

0
—1-[ e Ptar(t) > 0 .
o

st



!

i

w ety TR

Therefore, by the mean vaiue theorem, the equation

g(x) =0

has a unique solution in the closed interval [(0,1].

We will now consider the costs. It is useful to introduce the

following quantities. Le%

A=Ry =35
K

B=-Ry =15
o aR2 - K

A 1=¥) 1-w ’

and

r K

P=3-"1%"

Also, let Z denote the total discounted cost incurred until ‘re state

(0,1) is reached. Then, for each i ¢ Nb,

1yt
Br(-1,0),(1, 0@ = 15 ¥

By conditioning on the time until the second decision epoch and the

state of the system at that epoch, we obtain

0 i i+m
_ (M) -at | -0t 1y
ETT(‘l)m))(m)O){Z} - i%j; —ir € € ( l=w K)dG(t)
0

my . K,
(6~ X¢") * g2, for meN, .

Using this, we obtain
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21w (0:0) = (e + tRy)

it o

+ (o)™ . X(——f +a %:% K)(l—ow)”l

TR,

m, K m, gy X 10 o)t
g 5(123'+ Rl) + (o), X(xﬂd i K) (1-0¥)

-Bgo +Di 'X(G\V), for meNo,

and

Vi(o,m)(©00) = zg(s™) + emy + R (1X(oW) T

it

(=B + AXY™) (1-x(oy)™) 2

A i

J,'l““.IV'A’!’\"ﬁ,J“I"'"vI SRR R M A T B

m
= =4 +é_:§_§_0___m) for m eNO
1-X(oV)

2,2.3 The Optimal Value of m in m(-1,m).

From the preceding section, we obtain

Vir(1,me1)(070) = YLy ) (0:0)
= £B(1-0)0" - i'gw X(1-0¥) ()"

1}

(1-0)a"(£B-DXY") .
Suppose first that D < 0. Then the sign of

vv(-l,m+l)(o’o) < V(a1 m)(0,0)

cannot change from being negative to being positive, so the optimal

value of m in w(-l,m) must be either O or o. Now

10

B§+10\$’

V'"'("lro) - D
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VTr(_l,w) =0 .

Tnerefore, the optimal value of m in w(-1,m) is determined by the

sign of

l-0
= XD - .
TV D -~ EB

Suppose now that D> 0. If B <0, then

v‘H‘(-Zé.,m%—l)(O"O) B V‘11'(-l,m)(0"0)

is negative for all m ¢ Ny so the optimal value of m in T(-1,m)

is infinity. If B > 0, then

V(a1 me1)(020) = Yoy 1y(050)

changes sign from negative to positive exactly once, Therefore, in this

case, the optimal value of m in w(-1,m) is

log(%)

T log ¥

rounded up to the nearest non-negative integer.

3.2.4 The Cptimal Value of m in m(0,m).

From Section 3.2.2, we obtain

Y
v'77‘(0,!1&4-.‘;.)(0’0’ - v‘1:'(0,m)(o’o)

A-gBom
1-x(oy)"

A-§B6m+l )
m+1l

1-X(oV)

28

T A T ]




g VALY S

NP BT %%) ,

.

(-X(0)™) (1-X(oy)MFy oV ¥ Tooy

(o¢)"(1-0¥)EB (1 -0 -m

for m ¢ NO

Let f be the mapping from NO into Rl given by

Then

f(m) = = gW v+ Xo %E%W o, for m e N,
Vr(0,me1) (070) = Vir(, m) (00)

_ (1-09) (o¥)"(£BE(m)~Xa)
(1-X(0¥)™) (1-X(o¥)™ )

sy for me Nb .

Notice that f is an increasing function, since

f(m) - £(m-1) %E%E(l'W)W- - Xo ——-—(l—c)o

L}:Eli}:ﬂ_( - X"), for meN.

1oV

Suppose first that B < 0., Then the sign of

Vir(0,m+1) (070) = Voo 1ny(0,0)

cannot change from negative to positive, as m increases, so the optimal

value of m in T(O,m) is either O or . Now

and

XA-EB
Vir(0,0)(0:9) = 5~
VW(O’m)(o,o) =0,
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Therefore, the optimal value of m in w(0,m) is determined by the

LU T A A L

sign of

M"EB.

Suppose now that B > 0. This implies that A > 0, and

)(O;O) - )(0:0)

Vi (0, mel Vir(0,m

changes sign from negative to positive exactly once as m 1is increased.

Therefore, the optimal value of m in T(0,m) is
H

m = min{m ¢ Nb|f(m) > %%} .

%.2.5 Characterization of the Optimal Policies.

We now will show that a hysteretic policy is optimal, and specify
when the different types of hysteretic policies are optimal. Since we
have a semi~-Markov decision process with bounded costs, an unimprovable
policy is always optimal. Therefore, we will prove that a policy is

optimal by proving that it is unimprovable.
Lemma 1: If A <0, then m(e,») is ortimal.

Proof: We have to show that

Vw(m’w}(iyj) < V,‘.:..(i:.ﬂ’ for i€ NO’ jefo,1}, me 5(77'(‘”:"")) .

Consider the states in which the server is off. If a poliey
T ¢ éng{&,m)) starts with turning the server on when the start-state

is (i,0), then
vTr(i,O) = &(R, + Re) .
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Since Rl + R2 > 0, we conclude that

Vw(w,w)(i)()) SV;Ir(i,O), for 1 ¢ No, T € (ﬁ('n‘(w’oo)) .

Consider the states in which the server is on. If a policy

i AR BB T R T fg s bl

T € gﬁ(w(w,w)) starts with keeping the server on when the start-state

is (i,1), then

vﬁ(o,l)

faa * IR
and

V.n-(i:l)

]

K + aﬂe, for 1 eN.

Since r >0 and A £ 0, we conclude that

v'n-(co’m)(i’l) < V,"_(i,l), for i eN, T ¢ ﬁ('fr(w,m)) .

Thus, T(®,») is unimprovable and optimal.

Q.E.D.

Lemma 2: If A >0, B<O and C <0, then m(0,) is optimal.

Proof: We only have %o show that

V,n,(o,oo)(isj) < v (i,3), for ieNy, Je{0}, Te J(wto,=)) .

Consider the states in which the server is off. Let T e (m(0,»))

be the same policy as w(0,®) except that it turns the server on when

the start-state is (i,0). Suppose that

.,Tr(i,o) < v,n,<o,m)(i,0) .

By the policy improvement theorem,

vTT(O,i)(i’O) S V,,T(i,O) .
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This implies that
i n) - . .
Vr(0,1) (100 Y(,m) (1:0)
But from Section 3.2.4,

i >
VTT(O,.i)(l’O) Z V(0,0

)(1:0) ’

since B < 0. This is a contradiction. Therefore,

v’.'r(o,w)(i’o) < vv(i,o), for 1 €Ny, Te ﬁ(w(o,w)) .

Consider the states in which the server is on and the system is
not empty. If a policy T ¢ Q(W(O,w)) starts with turning the server

off when the start-state is (i,1), then

V'n_(i,l) = Re .

i .
. _ 1y i,
v’rr(O,"“)(l’l) =T KYV Ry

Clearly A >0 implies that

v (1,1) > (1,1) .

v'"'(o ")

Consider the state (0,1). If a policy 7 ¢ (T(0,m)) starts with

keeping the server on, then

r
V,”,(O,l) =g vﬂ_(o,m)(l,l)
r ey

=-—-—-+a(m;(+\y32) .

) T ——
D A A It e
AR bl e X




Therefore,

o+ o(19) (3 - By) - (1-0)R,

vw(o,l) - vw(o’w)(o,l)
-o(1-¥)c
>0

< Thus, (0,®) is unimprovable and optimal.

Q.E.D.
Lemma 3: If A>0, B<O and C >0, then w(-l,») is optimal.
Proof: We only have to show that
é “W(O,w)(i’j) < vﬁ(i,j), for i e NO, jelol, Te éj(ﬂ(-l,“)) .

Consider the states in which the server is off. Let T ¢ Ja(v(-l,é))
be the same policy as T(-1l,0) except that it turns the server on when

. the starte-state is (i,0). Suppose that

vr(i,o) < VW(-l,w)(i’o) .
V”(_l’i)(i,O) = Vv(i:o) ’

Vir(-1,1) (8200 < Vg ) (£50)
From Section %.2.3,

(i,0) > (i,0) ,

Vir(-1,1) Vir(e1,m)
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since B < Q. This is a contradiction., Therefore,

(1,0) S v (1,0), for i eNy, Te D(m(~1,2)) .

VI (~1.,2) 0

Consider the states in which the server is on. If a policy

T € éb(?r(-l,m)) starts with turning the server off when the start-state

is (i,l), then

R i, r 1-y -1
{ = T —_— fetush & -
V,n_(_l,oo)\l,l) T K+ v (Ma +o T K) (1-ow)
K i, r l-0 -1
=16tV (e - g V()

K l-0 . .1
=Tt Tooy DV

K

l-0 +
S- Tow © I-ow

. D .

v'rr(i’l) - vﬂ_(_l,w)(i,l) >A - 7

2 <0, then
V_n_(l,l) > vw(_l,w)(i,l) ,

since A > 0. If D> 0, then

. \
V,n_(l,lj - V,n_(_l,m)(i,l) _>_A - l—vw ¢+ D




(1,1 1,1) .
\Tr<-.’ ) _>_ V‘"-(-l,m)(l,l)

Thus, w(-l,®) dig unimprovable and optimal,

Q.E.D.

Theorem 4: If B> 0, then a natural hysteretic policy is optimal.

Proof: Let m' be the (an) optimal value of m in w(0,m). ¥rom

Section 3.2, we know that m'! is finite. Suppose first that w(o,m')

Wy SRR AP, Ay

is at least as good as w(-1,m) for all m ¢ No,+ Then m(0,m*) is

optimal. To show this. we only need to show that

VW(O,m,)(i,j) < vn(i,j), for ieNj, Je (0,1}, T ¢ SB(W(O,m')) .

Consider the state (0,1). ILet T e Jj(w(o,m')) be the same policy
as w(0,m') except that it keeps the server on in state (0,1). Suppose

that

v,”,(o,l) <v. (0,1) .

Y N

(O}m')

e o b

By the policy improvement theorem,

V,"_(-l’m')(o,l) i v,n.(O,l) ’

TR T TR NeT

v”(_l,m.)(o,l) < VW(-O,m')(O’l) .

But we just. assumed that this is not the case, so we conclude that

Vv(o,mf)(o:l) <v.(0,1), for Te Sr(o,m?)) .




o ittt
T T g
TR v A AL LA

Consider the states in which the server is off and the number of

customers is less than m'. Let T e @(W(O,m’)) be the same policy
as m(0,m') except that it turns the server on in a state (4i,0), i <m.

Suppose that

v,,r(i,o) < vv(o,m,)(i,o) .

By the policy improvement theorem,
. < .
Vr(o,1)(10) < v (1,0)

50

V,n_(o,i)(i,O) < V,’r(o,m,)(i,O) .

This is a contradiction, so we conclude that
. 0 < [ - H .
v,n_(o,m,)(l,O) < v,"_(l,o), for i<m', Te g('rr(o,m ))

Consider the states in which the server is off and there are at
least m' customers present. ILet T ¢ ﬁ(v(o,m')) be the same poliicy
as 7(0,m') except tha% it keeps the server off in a state (i,0),

i >m'. From Section 3.2.4, we know that
r(242)(150) 2 V() (1:0) -
Now
V,".(i)(i,l) > V'rr(o,m')(i’l) ’
so

v_n_(i,o) > er(o,m')(i’c’) .
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Vv(o,m')(i’o) < vw(i,o), for i>m, Te éa(ﬂ(o,m')) .

Consider the states in which the server is on and there is at least
one customer present. ILet T € éa(w(o,m')) be the same policy as
m(0,m') except that it turns off the server in a state (i,1), 0 < i< m'.

Suppose that
V.H.(l:l) < V.".(O’mc)(l)l) .
By the policy improvement theorem,

vv(i,m')(i’l) < mv(i,l) ,

V-n-(i,m')(i:o) < V.".(O,mc)(i:o) .

V-"-(i,mc ) (1,0) = vﬂ'(O,m'-i) (0:0)

2 v‘TF(O,m' ) (0,0) ,

which implies that

VW(O,m')(O’O) < V_n_(o,m')(i,O) .

This is equivalent to

ui . VW(O,m,)(O,O) < v‘lT(O,m')(o’O) ’

il

it
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vv(c’m.)(o,o) >0.

is a contradiction, since

v_’r(o’w)(o,o) =0.

,)(;%.,1) < vﬂ_(i,l), for 0<i<m',Te ﬁ(w(o,w)) .

V1 (0,m
Let T ¢ éa(w(o,m')) be the same policy as w(0,m') except that
it turns off the server in a state (i,1), i > m'. Suppose that
1) < . .
V,n.(ls—) vTT(O,m')(l’l)

By the policy improvement theorem,

v‘ﬂ'(i,i)(i’l) _<_ V.n.(i:l) ’

< i .
V‘"_(i’i)(i,l) V,n,(o’m|)(1’l)
Repeating the argument n times, we obtain

y(niy1) < ny(ni,1) .

Vr(ni,ni Vir(0,m
Taking the limit on both sides as n tends to infinity, we obtain

K
vvr(o,o)(o’l) Si%




xR
1.% '

+ R
K 2 1

( = om—— kw2
V‘7.*((),0)‘0’3“) o © B+

Since E > 0, Rl + R2 >0 and R, > 0, we have a contradiction.
- 1 Z

Thus

YV(O,m:)(i)l) S VW(i’l)’ for i>m', T ¢ éj(W(O,m')) )

We conclude that 7(0,m') is unimprovable and optimal.

Now let m' be the optimal m in m(-l,m). From Section 3.2.3,
we know that m' is finite. Suppose that m(-1l,m') is at least as
good as m(0,m) for m ¢ Ny Then w(-1,m') is unimprovable. This
is chown in exactly the same way as the proof that m(0O,m!) was unim-
provable, so it will not be repeated. Thus w(~l,m') is optimal.

We conclude that a nacural hysteretic policy is optimal.

Q.E.D.

Iemma 5: Suppose B> 0, and let m' and m" be the optimal values
of m in 7(-l,m) and w(O,m), respectively. If m' < m", then

m(-1,m') is optimal. If m" < m', then w(0,m") is optimal.
Proof: Suppose first that w(-l,m') is optimal. Then

iy (17,2) < v

W(O,m")(m"’l) .

VTT(-l,m

This implies that

r‘H 1
Vr(e1,m) (2190 S Vg gy (m"50)

which in turn implies that m' < m".

Suppose now that w(0,m") is optimal. Then




(m',1) S v,

W(-l)M’ ) (m' ,l) )

Vi (o,m*)

This implies that

V'17'(0 m? )(m 0) < W(O m' +l)( m',0) ,

which in turn implies that m" < m'.

Q.E.DI

Lemma 6: Suppose B> 0. Let m' and m" be defined as in Leuma 5.
Suppose that m' = m"(=m), Let g be the function from N, into R,

given by

1-¥
1oy

. l-oc m -m .
g(i) = Iy XDy + oCc ~ - EB, for i e NO

1f g(m) <0, then w(0,m) is optimal. If g(m) >0, then w(~1,m)

is optimal.
Proof: Trom Section 3.2.2, we have

Vv(o,m)(O’O) (0,0)

v‘TT(--l,m)

m m
_ AX(oy)" - iBG + £B0™ - 1 o
1-X(oV)

XD(G‘JI)

l-0

(ax(o¥)™ - 30" + £B0"(1-X(0¥)") - Foor XD(W)™(1-X(a¥)™))

]

¢ (1-x(oy)™)"t

1-0
-0y

xp(o¥)" 1';’Wxn(c\#) )

t]

(ax(o¥)™ ~ £BX(o¥)"" «

¢ (2x(oy)™ "t
x(oy) o™ 1- 1-0
=ﬁ%a%wm-zﬁvm - £8 + 120 o)

4o




=
=3

53
=
.
]
3

X" 1=y em  1-0 m

Co + m XDV - EB)

1-X( ay)™® 1-ov

_ Xon)"e" g(m) ,
1-X(oy)"

and the lemma follows.

*
Theorem 7: Let T denote the (an) optimal policy. If B< 0, then

7T(°°,°°) 3 fOI‘ A S 0 )

%
7 =¢m(0,®) , for A>0, C<O0,
T(=1,%), for A>0, C>0 .
If B> 0, then
5 |m(-Lm*), for m'<m",
T =

m(o,m") , for m" <m',

T = for m=m*=n"
m(0,m) , for g(m) <0

)

where

m' = minf{m ¢ §.|m > 1og(£§)/log v}

B 0o = XD ’
' . XA

m" = minfm ¢ Nolf(m) > 'Eﬁ} p

and
10 em 1y m
f(m) = ooy Vo4 Xo T °
1l-0 1=y

g(m) = oV xpy™ + Tov oco™ . B .

Proof: These results follow directly from Lemmasl, 2 and 3, Theorem 4,

and Lemmas5 and 6.
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Theorem 8: Suppose B> 0, and let m' and m" be defined as in the

preceding theorem. Then

if

V IA
~——
&l

(éig)log o/log V.
XD o
Proof: By definition,

),

=

]
v
=1l ]

' = min{m ¢ NOIWm <

8
1

1t s _A_
min{m ¢ Nolf(m) > 5 .

vl

Since both -y" and f(m) are increasing in m,
m'(

f(log(é -g)log w)(

.IVBR/\

is equivalent to

V A
ve| 2
Wi

|

Simple algebra shows that this is equivalent to

(g _1§)log o/1og \lf(i) C

XD > tB °

Q.E.D.

%.2.6 Bounds and Approximations.

Based on the results in the preceding sections, it should be easy
to find the optimal policy now. The only problem may be to find m"

(given in Theorem 7). Since £(m) dis an increasing function of m,




m" may be found efficiently by the bisection method (see Wilde (197h,
pp. 300-400)). To use this meihod, one needs an upper bound on m".
This upper bound should be as small as possible. We will now give an
upper bound which is also a goc.t approximation to m" when certain

conditions are met.

Motice that

[ =)
[}
Q

-1

f(m}z -y 7, for meNo,

-t

2

-

1

and that the expression on the right-hand side of the above inegaality

is also an increasing function of m. Therefore

1 ( |l" _>E _AL
m" < minim ¢ N o' Tov v W > E B}
= min{m ¢ N, Im > log(i'gw i f )/1og V) .

Letting
- log(13y ov D108V
we obtain
m" < min{m € Nolm > b} .

For finding an optimal policy, it is more useful to have a relatively

tight upper bound on min(m*,m") instead. We obtain

min{m ¢ No!m > log(% %)/log V),
min(m',m") <
min{m e Nofm > b}

min(m',m") < min{m ¢ Nblm > min(b,log(% %)/log ¥)) .




b = log(% %)/log v o+ log(%f%v-g)/log v,
so
b < 10g(-§z %)/log ¥

if and only if

This is equivalent to C < 0. Therefore, b is a better upper bound

on min(m',m") than
£B
log(s D)/log ¥

if and only if C < 0.
The fact that b may also be a good approximation for m" follows

from the next theorem.
Theorem 9: If
1- X(cw)b >0,

then m" is either the smallest non-negative integer above b or the

largest non-negative integer below b.

Proof: We only have to show that

XA

f(b-1) < i

Ly




= £(b) - (£(b) - £(b-1))

£(b) - b (1) (¥ - )

1-%Xo¥)P° >0,

Therefore

1=y b+l

£(b-1) < f(b) - 1:0\11 Xo

- =b
v Y

Corollary 10: If

Ay £lo (X, log ¥/log(o¥)
B~ X l-o¥ ‘l-0 4

then m" is equal to the smallest non-negative integer above b or the

largest non-negative integer below b.

Proof: Straightforward algebra shows that the condition of the Corollary
is equivalent to the condition of the theorem.
Suppose that one has found b, and that it does not seem to be
a good approximation to m". Some graphs, indicating the true value
of m" as a function of X, ¥, ¢ and b, have been developed for this

case. They can be found in Appendix B.
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3.2.7 The Case of Erlangian Service and Start-Up Timeﬁ.

The Laplace transforms a, €, ¥ and X may not always be easy
to compute, given the cumulative distribution functions F and G.

If the service times have k-Erlang distribution, then

*

k

__ ko ko 0
V= (gamaw KT
g

k,
o

Since it is impossible to derive a closed form expression for V¥, some

graphs, giving V¢ as a function of K, p and 0o, have been developed.
They can be found in Appendix C.
If the start-up times have a k-Erlang distribution, and if u'

denotes the start-up "rate,” then

£ = (g

i ku' k
X = (ku‘+a+x-w)

Having computed the values of w, ¥, £ and X, the optimal pclicy is

easy to find.

4,  The Case of Non-Decreasing Holding Cost Function. 3

Ll o L AL

The case where the holding cost function is an arbitrary non-

decreasing function now will be investigated. Blackburn (1971) and

Deb (1976) have also considered the problem where the holding cost
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function is not necessarily linear. The problem is considered both with

and without discounting.

4,1 The Undiscounted Case.

In this section, costs are not discounted. Two optimality criteria
are used, namely the average cost critericn and the undiscounted cost
eriterion., These criteria were described in Section 2. Recall that 55
is the set of deiterministic stationary policies. Only these policies
are considered here. Let éj denote the set of deterministic stationary
policies which always turn the server on (or keep him on) at decision
epochs where the number of customers in the system is larger than a certain
number. It will be shown that only policies in jy need to be considered.

We assume that the service times are not instantaneous and that
the holding cost function is not bounded from above. If desired, the
analysis vhich follows can be extended so that these assumptions become
unnecessary. Without loss of generality, we only allow policies which
do not turn the server on and off repeatedly at the same point in time.

For each T ¢ gb, and (i,3) ¢ N, X (0,1}, 1let Qw(i,j) denote
the long rur expected average cost, given that the start-state is (i,J)

and that the policy T 1is used.
Lemma 1l: For each T ¢ éj, there is a 7' ¢ éﬁ such that
C,D,".,(i,j) E(pn.(i:j): for (i,J) e NO x {0,1} .

Proof; Let Zf denote the set of Jeterministic stationary policies which
turn the server on if he is off and there are more than s certain number

of customers in the system. Clearly

b7




AT

Yycdcd.

We prove the lemma by first showing that for each T e , there is

a 1T ¢ §b such that
CP_n_,(i,j) < @F(i:\j); for (i,3) e NO x {o,1} ,

and then showing that for each T e;f', there is a T* ¢ éﬁ such that
the above inequality holds again.

Therefore, consider a policy 7 in éﬁ ,» but not in :i . Then
there is a number, say k, such that T does not turn the server on if

he is off and there are k or more custcmers in the system. This implies

that
9.(1,0) = @ (3,0), for k<i<j,

since the expected cost incurred until a state {j,07 (3 > i) 1is reached,
given that the start-state is (i,0) (L > k) and that the policy T
is used, is finite.

Since h 1is a non~decreasing function, and since the number of
customers in the system is always J or more, given that the start-state

is J (J > k) and that the policy 1w is used,
?.(3,0) > n(3), for §>k.

Together with the result above, this implies that

¢ (i,0) =w, for i>k,

T

sirce h 1is not bounded from above.

L8




Let 7' be the same policy as T except that it turns the server
on if he is off and there are k or more customers in the system.

Clearly
<@ (i,j) ==, for j=0,1i>k,
AN RS Z
Cp,n.c(liJ)
f- . " .
= NAl,J) , otherwise .
This completes the first part of the proof.
Now, consider a policy T in 7?’, but not in éy . Then there
)

is a strictly increasing sequance of integers, ( such that 7

ik kel?
turns the server off at the decision epochs where he is on and the number
of customers in the system is ik for some k in N. Since the service
times are not instantaneous, the probability that the number of customers
in the system will eventually exceed any given number is one. This

implies that the long run expected average holding cost, given any start-
state and the poliey T, is equal to plus infinity, since for each

k ¢ N the number of customers in the system cannot decrease below 1

k
once it has been exceeded. Since the long run expected average cost
due to other costs than the holding cost is always larger than minus
infinity, we must nave

@F(i,j) =o, for (i,j) e N, X (0,1} .
Thus, any 7°* € aﬂ satisfies
CPTr(i:J') Sq).”.(i:»j): for (i,J) € NO x (0,1} .
This completes the second part of the proof.
QIEID'




Lemma 12: For each T eéﬂ, @W(i,j) is constant over (i,j) ¢ Ny X (0,1},

Proof: Assume that a policy in éﬁ , say T, 1is used, and let n be
a number such that the server is always turned on (or kept on) when there
are n or more customers in the system. Since the service times are not
instantaneous, the probability that the number of customers in the system
will eventually exceed n 1is one.

There are two mutually excluding and exhaustive cases, namely the
case when the expected holding cost incurred during a service, given
any number of customers in the system at the start of the service, is
finite and the case when it is infinite. In the latter case, the long
run expected average cost is equal to plus infinity for all start-states,
and the lemma holds.

In the former case, the expected holding cost incurred during a
service initiated with n or less number of customers in the system is
bounded. Since the expected number of services given before the number

of customers in §EQG§XEEEP exceeds n is hounded from above, this implies
that the expected holding cost incurred until such a time is finite.
Clearly, the expected service cost incurred until the number of customers
in the system exceeds n is also finite.

The expected switching cost incurred until the number of customers
in the system exceeds n can be seen to be finite as follows. There
are two possible cases, the case where the start-up times are instartanecus

and the case where these times are non-instantaneous. In the former

case, the expected switching costs incurred until the number of customers

e

n the system exceeds n 1is finite, since T cannot turn the server

O
o3

y and off repetitively at the same point in time and since the expected
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number of services given hefore the poler ot customers in the system

TR 1 Ll

i

exceeds n 1is finice. In the latter case, the expected number of

the server on and off before the number of customers in the system

n 1is bounded. Therefore, the expected cwitching cost incurred
ntil the number of customers in the system exceeds n is finite.
Together with the previous results, this implies that the expected total
cost incurred until the number of customers exceed n  1is finite.

This in turn implies that ¢ j is cvonstant over

(i,3) « Hy X (0,1}, since the (i,3) are positive recurrent
for i>n (recall that ¢ < 1

Q.E.D.

Sirce we will only consider policies in éﬁ hereafter, we will drop

the reference to the start-state in the following.

Theorem 15: There exists a natural hysteretic policy which is average

1

optimal.

s

Froof: ILet T be a policy in éﬂ , and let n be least number such

o

that 7 keeps the server on if he is on and there are more than n

e T

customers in the system. Iet m be the least number greater than or
such thst 7 +turns the server on when the state of the
7{n,m) have the same

dentical a

expected preportvion

given that the policy

0 b b LR, DL R 2




average holding cost is

y: xih(i) , for w{0,men) ,
ieN

z> x h(i+n), for w(n,m) .
. i
ieN

The long run expected average cost due to other costs than the holding

costs are the same for w(0,m-n) and w(n,m). Since h is a non-

secreasing function which is not bounded from above, and since each xi

is strictly positive,

< .
Qﬁ(o,m-n) q)‘Tr(n,m)

Thus, we can restrict our search for an optimal policy to the class

of natural hysteretic policies. In order to prove that there is an

average optimal natural hysteretic policy, we only need to show that

there is a finite k such that

< .
q).".(_l,o) > <P,n.(o’m), for m _>_ k

This will now be shown.

For each i and m in N, 1let ti m denote the long run expected
»

proportion of time when there are 1 or more customers in the system,

given that the policy w(0,m) is used, Since R, +R, 20,

Pr(o,m) 2 ti,m * h(i) + A-min(K,0), for ieN, meN.

Choose i € N such that

r(-1,0) < h(i) + Acmin(k,0) .

n ne Lbrds o e
AU P e i R U




It can easily be snown that there is a ¥ such that

- > - emi \ .
ti,m 2> (q)TT(-l,O) 2 Xln(K,O,)/h(l)’ for m _>- k ,

since the right-hand side of the inequality is less than one. This

implies that

< .
*r(-1,0) = Fr(o,my? FOT M2

Q.E.D.

We now introduce some convenient terminology. If @ is the optimal

long run expected average cost, then the relative cost incurred during

a given time interval is the total cost incurred then minus ¢ times
the length of the time interval.

For caca 1 € Nb, let Cm denote the cost incurred until the
state (i,1) is reached, and let f be the function from Ny into R,

given by

f(m) = ){Cm} - (Cm}, for me Ny -

T(=1,mHL) , (m,0 Err(=1,m), (m,0)

This function will play an important role in the following.
TLemma 1k: TIf f is a non-decreasing function and ©® denotes the optimal
long run expected average cost, then the expected relative cost ircurred

until the server is on (regardless of the start-state) is minimized by

m(-1,m) (or equivale.tly by m(0,m)), where

m = minlm ¢ Nolf(m) > ¢/n(1-p)} .




Proof: If the system starts with the server on, the lemma is trivial.
Therefore, assume now that the start-state is (i,0) for some i ¢ NO.
With regard to the expected relative cost incurred until the surver is
on, any policy which turns the server on eventually is equivalent to
a poiicy m(-l,m) (or w(0O,m)) for some m.

ror cach 1 ¢ Nb, let Ti denote the time elapsed until the state

(i,1) is reached. We only have to show that

Br(-1,141),(1,0) %1 = T3 = B sy, (1,00 (01 - 9 Ty)
is non-negative for i >m and non-positive for i < m. But this is
Just equivalent to
> 9/n(1-p), for i>m’

£(i)
< OM(1-p), for i<m,

1
Br(-1,1+41), (5,0) 1) = Br(e1,1), (1,00 (1) = X357

Since f 1is a non-decreasing function, the lemms follows.

Q. E'DC

Lemma 15: For any set of real numbers a, b, ¢ and 4 such that

b>0 and d > 0,

[+

+c
+d

a+c =
+

<& =

[ AN

<

|
|

(=7 ol

<

o'l

g
d

o
o
jo )
o

Lemma 16: If f is a non-decreasing function, then the (an) average

optimal value of m in m(0,m) is given by
m = min{i ¢ Nolf(l) > QW(O’i)(k(l-p)} .
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Proof: By renewal theory,

( 0,00 €} * BRI B0 1y 16,0y TH}s for i e d .

*r(0,1) = Pro,m), (

Since

{co} = Eﬂ_( )[co} + £(i), for i eN_,

Er(0,1+1),(0,0) 0,1),(0,0 0
and since

1

(5 = Br(0,1) (T} = Pr(o,1), (0,0 ™) * x(3eey

Er(0,i+1),(0,0)

for i ¢ NO P)

we obtain

. 1
r(0,i41) = Br(o,1),(0,0)Co} * Ro * TRV EL 5y (0,0 (To) * LK

for i ¢ NO .

Using Lemma 15,
<
q)7r(o,i) - (pv(o,iﬂ)

if and only if

< - i .
By Theorem 13, there is an 1 such that

<

®r0,1) = Pr(o,1+1) ?

so m exists. By Lemma 15 and the definition of m,

cP’n’(C,m) = CP‘TT(O,.m+l) < M1-e)t(m)

25




3ince f 1is non~decreasing,
< l1-p)f .
ro,me1) S ML-p)f(m+l)
Using Lemma 15 again, we obtain
) S M1-p)E(me1)

< q
cf)',rr(o,mﬂ.) - p’rr(o,m+2

Continuing this procedure, we obtain

¢ < < eve
@T(O,m) - @W(O,mﬂ&-l) -
Now, since
Mi-p)e(n-) S @ o
we obtain (using Lemma 15)

(pv(o,m) < q>1r(o,m-l) '

Since f is non-decreasing,

O;m-l) '

Mi-p)2(n-2) < @

USing Lemma 15 again, we obtain
|...p f{m-2) < 0] N
)\( ) ( ) -— TT(O,m-Q)

Continuing this procedure, we obtain

cp‘n‘(o,m) = CP‘71'(O,m--.'L) St

< i .
wﬁ(o,m) < Qv(o,i)’ for 1 ¢ NO
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Theorem 17: If f 1s non-decreasing, then there exists a natural hys-

teretic policy which is undiscounted optimal, and the optimal value of

the upper intervention point (m) is given by

[ Nt et bt Ak e s e

m = minfi ¢ N0|f(i) > o/\(1-p)) ,
where @ 1is the minimum long run expected average cost.

Proof: Consider the case where

o T o ) B e e

< i .
Ur(-1,0) < r(o,1)0 T el

in this case, only policies which eventually turn the server on and never
turn him off are average optimal. By Lemma 14, the policy (-1,m)
minimizes the long run e=xpected relative cost for each start-state.

This implies that m(-1,m) is undiscounted optimal.

Consider the casz where

Ur(o,m) < MOy 0)0 ¥n(o,m1)? Pr(o,me1)]

From the proof of Theorem 13, only natural hysteretic policies can be

average optimal. From the proof of Lemma 16, we have

rrm A e b AL ol S

Wi

< i -
Prio,m) < Pr(o,1)? T tel,

This implie. that only policies which take the same actions as (0,m)

for the states which are positive recurrent under w(0,m) can be average

S B g T )t e

optimal. Since w(0,m) minimizes the expected relative cost until the

e

server is on (for each start-state) by Lemma 14, (0,m) is undiscounted

Lz

optimal.
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= = i # m, then
I Ot 1,m) = On(om) O Omo,m) = Pr(o,i) TOr sone 1Am
a finer analysis is needed to determine which of the corresponding policies
is undiscounted optimal, The fact that one of the policies above is
undiscounted optimal follows from Lemma 1k, This completes the proof.

Q.E.D.

Corollary 18: If the start-up times are zero, or if the holding cost
funetion is convex, then there is a natural hysteretic policy which is
undiscounted optimal, and the optimal value of the upper intervention

point is given by Theorem 17.

Proof: We only have to show that f is a non-decreasing function.

Consider th= ca:e where the start-up times are zero. 1In this case

for 1 eN_ .

£(1) = {c;) - Ry b

(0,i+1),(4,0)

Clearly, f 1is non-decreasing, since h is non-decreasing.

Consider the case where the holding cost function is convex. Now

) = Bro,100), (1,00~ Prto,0), (1,00 1)
1.,. .
Y h(i) + E’Tr(o,i+l);(i+l,l)[ci]
+ ETT(O,i+1),(i+l,O){Ci+l} - E’IT(O,J.),(:'.,O){Ci}’ for 1 e NO .

The two first terms in the final right-hand side are non-decreasing in i,
since h 1is non-decreasing. The difference between the two last terms
is non-decreasing in i, since h is convex. Thus, f is non-decreasing.

Q.E.D.
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4,2 The Discounted Case.

The problem with discounting now will be considered. We assume
that the start-up times are instantaneous. As before, let éiy denote
the set of deterministic stationary policies and let éﬂ denote the
set of deterministic stationary policies which always turn the server
on (or keep him on) at decision epochs where the number of customers
in the system is larger than a certain number.

Without loss of generality, we nse the convention that the server
cannot be turned on immediately after he is turned off. The results
obtained by Orkenyi (1976, Chapter 4) then are applicabl:. In parti-
cular, any unimprovable policy in Sj is optimal. Also, the policy
which always turns the server off (or keeps im off) is optimal if it
is unimprovable and if its value function is finite-valued. These
results will be used implicitly throughout the rest of this section.

A policy T e ;3 is unimprovable ior the particular semi~Markov

decision process under consideration here if

(a) V,n_(i,O) _<_V.”.c(i:0) »

(b)

Vﬂ_(i,O) < V,”.n(i;o) s
(e) V,n.(i’l) < V,n.,(i,l) ’

(a) v (1,0)

A

mwn(i,l) s

LR, O A R R U S BN Y i S A

el

for 1 e Nb, where 7' and 7" are the same policies as T except
that they respectively turn the server on (or keep him on) and turn him
off (or keep him off) at the first decision epoch.

Iet a, 0 and ® be defined as before.




Theorem 19: If

3 (/‘ F(t) Ltz_ (Ma)tdt)(h(i-*-j)-h(i-bj-l)) < K"(l"“’)Re ,

for 1ieN,

then the policy which always turns the server off (or keeps him off)

is optimal.

Proof: We only need to show that (e,) is unimprovable, since the
second condition of the theorem guarantees that its value function is
finite~valued.

Condition (a) holds for all i ¢ NO, since R, + Ry > 0. Condition

(b) and (d) hold trivially for all i e N It is now shown that con-

OO
dition (c) also holds for all 1i ¢ NO. Let 7' be as in condition (c).
Then
r41R2
(O,l) - Vv (w °°)(O l = IO
>0.
Also
V(o oy (151) = By !ﬁ?_ ~(@M)Baeyn(ieg), for ieN,
AN JeNO o

and.

JURLI

it
il 1
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» \3
v o(i,1) = K £ aRy + D (f (r() I M ) n(ig)
jeNo o

Y (fm 1“(1:)-——,—0"1?)J e'(a+>\)tdt)'l1(i+‘jnl) ’
jeNO o a

for i eN.

This implies that

va(isl) - vv(w,w)(m) = K - (1-0)R,

o] J -l
-3 (f p5) A8 @MW)y (n(345) - n(i4§-1)), for ieN.
jeNO ) Je

Therefore,

V‘n’(oo,oo)(i’l) ..<_ V,n.,(i,l), for ieN.

Thus condition (c) holds for all i ¢ Ny @&nd m(=,») is unimprovable.

Q.E‘D.
Corollary 20: Iif r ZaR2 and if
. . o .
n(i+l) - h(i) <7 (K- (1-a>)32), for i e Ny,

then T{®,») is optimal.

Proof: For each i ¢ N,

2 PR M) (n(143) - n(1r5-1)
jeN, Jo v

% J
E Z>N (f F(t)g_)‘% e‘(a"‘)\.)tdt) . % (K - (l“w)Re)
J€ 0 0
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% (K - (1-0Ry)

> o'h(i) < ® .
ieN
Thus the conditions of the theorem are satisfied and the corollary follows

directly.

Q.E.D.

We will need to indicate the dependence of the value function of
each policy on the start-up and shut-down costs. Therefore, for each
T € gﬂ, aeR, beR, let v denote the value function of policy

Ta,b
T, given that the start-up cost is a and the shut-down cost is b.

For each T ¢ 35, let U and ww be the functions from

Ny X {0,1} into R defined by

3 R Ty geh e bt
Pl kA AL AT Al b DR

u
s~R, ’

T = “r,Rl 1

W,
T

2

bl LY s

v,
7-,-’ ”Rg }R

As will be seen later, these functions will be quite useful in the

following.

Lemma 21l: If T is a policy (in }5 ) which always turns the server
on (or keeps him on) when the number of customers in the system is greater

than or egual to, say m, and if in addition,
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; (m,1) < Y
\'.n.(m)l/ > u7r(m,m+l)(m’l) ’

)\"’l) < Y

(1,141 (i,l), for i>m,

Yr(i-1,i
then T satisfies the conditions (a), (b), (c¢) and (d) for i >m.
Proof: The conditions (a) and (c¢) are trivially satisfied for i > m.

We now show that condition (b) is satisfied for i > m.

Observe that condition (b) is equivalent to

v (1,'1) ( +l)(1 1) ,
for 'i > m. We prove that

vﬁ(i,l) <y

7r(i,i+l)(l’l)’ for i>m,

by induction on i. The above inequality holds trivially for i =

Suppose that it has been proven to hold for some i > m. Then

Vv(i’l) 2 Sr(1,i41

)(i:l) ’
or equivalently

v (1+1 1) < u (i, i+l,1) .

+l)(

Using this together with the last assumption of the lemma, we obtain

v (i+l,.~) < u ( l+l,l)

+1)(

S Up(541,142) (121)

This completes the induction proof, and condition (b) is satisfied for




That condition (d) holds for i >m, is seen as follows, From the

above results,

v_n_(i,O) = V,Tr(l,l) + Ry
< v,n,,.(i,o)
= V7r|g(i,l) - Re) for i .>_ m.

This implies that
V,n.(i:l) < Vﬂ_..(_i,l) - (Rl + R2)
< v,n_..(i,l), for i>m,

since R, + R2 > 0. This completes the proof of the lemma.

1
QO EO Do

Let m' and m" be the smallest numbers in N{J{®»} such that

4
vr(-l,m')\o’o) < VW(,l’m)(O;O), for m e NO ,
and

< .
V‘IT(O,HI")(O’O) > V‘n_(o,m)(o,O), for m ¢ NO

That m' and m" exist, follows from the fact that

lim v’ﬂ'(-l,m)(O,O) = v'”'(..l,m)(o,o) ’

m-—®®

lim v

m-=o W(O)m)(OIO) - VW(O}W)(O)O) .

Also notice that

V_"_(-l’l)(o,O) _<_ VW(-I,O)(O’O) )

€4




r+0R
N

V1r(«2L,<))<O’O) B Vv(-l,l)(o’o)
>0 .

Lemma 22: If 7 is a policy (ixi-%)) which always turns the server on
(or keeps him on) when the number of customers in the system is greater

than or equal to, say m{m > Q), and if in addition,
ww,(m~l,0) < min{vﬂ(m-l,o), vmn(m-l,o)} R

where 7' and T" are the same policies as T with the only exception
that they do not turn the server on in the states (m,¢) and (m+l1,0),
respectively, then
< ( .
u'Tr(m--:t.,m)(m’l) < vp{m1) Su (m,m+l)(m’l)

Proof: Clearly

Vo (m-1,0) < v,",(m-l,O)

is equivalent to

uﬁ(m-l,m)(m’l) < Vgo(msl) ’

V'IT' (m-l,O) _/‘: V,"_"(m-l,())
is equivalent to

i {
e 2] S g, g () -
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Py P

Combining these results, the lemma follows.

Let £ and g be the two functions from Nb into R given by

)(m,l) - vﬁ(_l,m)(m,l), for me N_,

= Yr(m,m+l 0

m - - \
g(m) = u”(m,m+l)(m,l) w(o,m)(m’l’ , for me Ny -

Lemma 2%; If there is a k such that

(m,1) - (m,1)

Yr(m-1,m) Yo (m,m+1)

<0, for i>k,

then the conditions (a), (b), (c) and (d) are satisfied for i > m' and

i>m" for m=mw(-l,m') and 7 =w(0,m"), respectively.

Proof: By Lemma 22,

t 11

)(m,l} < (m,1), for m=m' and m=m".

v . U
T(m=~1,m = “w{m,m+l)

Using this together with the condition of the lemma, we obtain
M ] ( i i .. l' " »
hw(m-l,m)(m’*) < uw(m,m+l)("’l)’ for m > min(m',m")

By Lemma 22,

f(m') >0,
and

g(m") > 0.

Thus, we can use Lemma 21 to obtain that the conditions (a), (b}, (c)
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and (&) are satisfied rfor i>m' and i > m for T = m(-1l,m') and
T(0,m"), respectively.

Q.E.D.

Lemma 2%: Under the condition of Lemma 23, the conditions (a) and (b)

ere satisfied for all i e Ny for both T = m(~1l,m') and T = m(0,m"),

Proof: TFollows directly from Lemma 23 and the definition of m' and

m".

Lemma 25: Under the condition of Lemma 23,

<0, for m<nm'
£(m)

>0, for m>m',

<0, for m<m"
g(m)

>0, for m

v
g

and m' and m" are the smallest integers in N satisfying the above

inequalities.

1t

Proof: Since condition (b) holds for i > m' and i >m’ for T =

m{~1,m') and wT = m(O,m"), respectively,

f(m) >0, for m>m',
and

g(m) >0, for m>m" .

We prove that

AT ‘W‘ L3 s T bt
WA e

A
i

ittt

5 B ' i




by induction on m. Clearly

£(0) <0,
since
r+OtRl
"w(-l,o)(o’o) B V'rr(-l,l)(o’O) T T
Z O L]

Suppose that we have proven that
f(m) <0, for some m<m'-1.
This is equivalent %o

(m+1,1) < )(m+l,l) .

Yr(m,m+1) Var(=1,m+1

But by the condition of the lemma,

)(m+l,l) >

Yr(m,m+l Y (m+L ,m+2

Thus

U (mad,me2) (L2 Sy gy (1)

or equivalently
f(in+l) <0 .

This completes the induction proof.

That

g(m) <0, for m<m",

)(m+l,l) (n < m'-1) .




»
l

can be shown in a quite similar manner. That
g(O) <0,

follows from the fact that Rl + R2 > 0. Suppose that we have proven

that
g(m) <0, for some m<m" - 1.
This implies that

(m+l,1 (m+1,1) .

U (L) ) S Vir(o,me1)

But by the condition of the lemma,
> LY \ I
uW(m,m+l)(m+l’l) - u‘Tr(m+l,m+2)(m“’l’ (m < m"-1) .
Thus

)(m+1:l) < VF( (m+1,1) ,

u'n'(m-i-l,m+2 0,m+1)

or equivalently
g(m+1) <0.

This completes the induction proof. The last assertion of the lemma

follows trivially from the definition of m' and m".

Q.E.D.

Lemma 26: If

i < s 9 . '
V’ﬂ'(-l,m’)(l’l) - v'n-(i,ml)(l,-«), for 1i<nm',

and there is a k such that




v
<
)
[e]
=
(=X
TAN
o

(1,1) = u_,. (i
Yr(i-1,1) 't ) u7r(1,i+l)‘l’l)

IN
(o]
5
C
=
f)

v
=

then w(-1,m') 1is optimal.

Proof: By Lemmas 23 and 24, we only need to show that condition (d)

ho'ds for i <m' for m = m(-1,m'). But this follows directly from

the first condition of the lemma.

s < N .
w?r(i-l,i)‘(l,l) ‘-w'n'(i,i*‘l)(l,l)’ fOI‘ 1 € N 3

Yv(i‘l’m)(l,l) > Y”(i,m)(l,l) , for 0<i<m,

Proof{: It is enough to prove that

. < . .
wﬁ(i-l,i)(l’l) < vv(i,m")(l’l)’ for 0<i<m,

since this implies that

We use an induction proof. Clearly

wTr(i,i'*'l)(l,l) _<_ ,n.(i,m)(i)l), for i =M - l R

since Rl + R2 2> 0. Using the condition of the lemma for i = m-1, we

obtain

w’n‘(i-}_,i)(l,l) S V"’_(i,m)(l,l), for i=m-=-1.

5

5 i b
| ﬁmmam&mmmmm.mmmm e A A e e A T
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Suppose that we have proven that

)(i,l) <v (i,1), for some 1< i <m,

Yir(ie1,i T(i,m)

This implies that

Ur(i-1,5) () S Viag,m (B0

which is equivalent to

i"l,l) S V'n. i-l,l) .

w'rr(i-l,i)( (i-l,m)(

Using the condition of the lemma, we obtain

i-1,1) < v m)(i-l,l) .

War(1-2,3-1) (i-1,

This completes the induction proof.

Q- EuDo

Lemma 28: If

V’TT(O,m")(O’l) S V,n.(_l’mu)(o)l) ’

i,1) <w

+ 1) i e
v(i,i+l)(1’l” for i eN,

Wor(ie1,1)¢

and if there is a k such that

0, for i<k,

v

Ur(1-1,1) ) = V(s 1ag) (B0 D)

LAY

O’ for i>k,
then w(0,m") is optimal.

Proof: By Lemmas 235 and 24, we only need to show that conditions (e¢)

and (d) hold for i < m".

e ey




Condition (c) holds trivially for i > 0. It also holds for i =0
by the first assumption of the lemma. Condition (&) holds for i < m"

by Lemma 27. Thus, 7(0,m") is unimprovable and optimal.

Theorem 29: If m" is finite, if

wﬂ(i-l,i)(l’l) < wv(i,i+l)(1’l)’ for i eN,

and if there is a k such that

>0, for i<k,

ooy (1,1) ~u . . i,1
u”(l'l’l)( ’ W(l’”l)(l’ ) <0, for i>k,

then there is a natural hysteretic Ppolicy which is optimal, and it has
the following characterization.

If m' <m", then wm(-l,m') is optimal. If m" < m', then
m(0,m") is optimal. If m' =m", then w(-1,m') or w(O,m") is

optimal according to which of the two policies minimizes VW(O,O).
Proof: Consider the policy w(o,m"). If

v'Tr(o,m")(o"l) E-vn(-l,m")(o’l) ’
then w{0,m") 4is optimal by Lemma 28. If

v,

TT(O,m")(O’l) > V?T(-l,m")(o’l) ’

then m' 1is finite and m(~l,m') is optimal. We now prove this
assertion.

Therefore, assume now that




My

(0,1) > Vw(-l,m")

! \
VTT(O,m’) (0, 1)

This is equivalent to

~

VTT(O,m")(m"’l) > V'IT(-l,m")(m"’l) .

By Lemma 25,

m' = min{m e N U(w”u‘ﬂ'(m,m‘!'l)(m’l) > V.,,.(_/l’m)(m)l)}

and

1

m" = min{m € qun(m,m+1)(m’l) > vﬂ(o’m)(m,l)} .

Thus m' 1is less than or equal to m", and thus it is finite.

By Lemma 27,

(i i,1 v i1 '
(O,m')( ? ) S W(J.,m’)( ] )} for 0<3i<mt.
This leads to

(1,1) <

V‘rr(-l,m’) V’IT(-l,m")(i’l)

(1,1)

(A

Vir(o,m")

IN

V-,I-(O,mt)(i)l)

(AN

. 1
Vw(i,m')(l’l)’ for 0<i<m',

Thus, the conditions of Lemma 26 are satisfied, and we can conclude that

m(-1,m') is optimal.

Therefore, if m(-1l,m') is optimal, then m' < m". Suppose that

m(=1,m') is not optimal. Then
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,)(m',l) < (m',1), for some 0<i<m',

Vir(i,m Vir(-1,m*)

Using Lemma 27, we obtain

Vr(o,mt) (W) S Vg ey (a2

Therefore, m" is less than or equal to m' by Lemma 25. This com-

pletes the proof of the theorem,

Q.E.D.
Lemma 30: If there is an ¢ > 0 such that

n(i+l) - h(i) 3% (K + (1-0)R)) + & for icN

0 2
then m" ;s finite.
Proof: Suppose first that
h(i#l) - h(i) = (K + (1-0)R)) + ¢, for ic N,

and let mg denote the value of m" for this case. From Section 3.2,
we know that mg is finite.

Consider now the general case where
n(i+1) - (1) > S (K + (1=a)R)) + ¢, for i e, .
Clearly

1t i
uv(m;,m;+l)(mo’l) 2 V‘Tr(o,m"_;)(mo’]') ’

since the number of customers in the system is always at least as large

when w(m,m+l) is vsed as when w(0,m) is used (for each m).

Th

ittt




h(i#1) - h(s) = & (K + (1-0)R)), for i

uﬂ(i-l,i)(l’l) - uw(i,i+l)(l’l) =0, for ieN.

Therefore, in the general case,

m

(1,1) - i for i
uw(i—l,i)‘l’l) qﬂ(i,i+l)<l’l) >0, for ieN,

since the number of customers in the system is always at least as large

when m(i,i+l) 1is used as when w(i-1,i) is used (for each i e N).

Therefore, we can use Lemma 25 to conclude that m" is less than

or equal to m;. Thus, m" is finite.

Lemma 31: If there isan € >0 and an n <o such that

n(i+l) - h(i) > < (K + (-0)R.) + ¢, for i>n ,
- w 1

“r(i-l,i)(l’l) < wv(i,i+l)(1’l)’ for ieN,

and if there is a k such that

>0, for i<k,

U_,. o .y(i,1) = -
"r“‘*’l)(l’ ) u”(l’””(i’l) <0, for i>k
b

then m" is finite.




Proof: Let mi be the smallest integer such that

(kx,0), for m>n .

Vir(n,m)

rd
vﬁ(v,mz)(k’o) =

Consider now the queueing system where the holding cost function h(i)
has been replaced by the holding cost function h(i+n). Let mg be as

in Temma 30 for this system., Then m; is Tinite, and

1t 1
m" - ml' =n.
o) 1

1 is finite.

This implies that m
By Lemma 27,

n) (n:l) S_ V.n.

y 2)(“:]-) .

Vir(0,m (n,m

This implies that

11 1"
uW(mI,mI+l)(ml’l) 2 v'1T(n,m'l')(ml"l)

n
2 Vr(o,uy) (o2 -

Using Lemma 25, we conclude that m" <m Thus m" is finite.

1t
lo

Theorem 32: If h is convex, if

h(i+l) - h(i) >% (K - (1-0)R,), for ieN,,
and if

h(i+i) - h(i) >% (K + (1-0)R;), for soms i €N, ,

then the condition of Theorem 29 hold and there is a natural hysteretic

policy which is optimal.

4
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Proof: It is easy to sec that

(i,1) = u (i,1)

Yr(d,1+1) m(i-1,1)

is a non-decreasing function of i, since h is convex. Thus the last
condition of Theorem 29 holds.

If

. . (04 .
h(i+l) - h{i) = = (K - (l-aﬂRg), for i e Ny

then

)(i,l) = W (i,l), fOI‘ i € N *

Yir(4-1,1 T(i,i+1)

Therefore,

- oL O
h(i+i) = h(i) >= (K - (1-cn)R2), for i e Ny -

implies that the second condition of Theorem 29 is satisfied.
By Lemma 31, the first condition (m" < ») of Theorem 29 also
holds. Thus, the theorem follows.

Q' E' D.
Theorem 35: If there is an € > 0 such that

. . a .
h(i+l) - h(i) >3 (K + (l-w)Rl) + e for ice Ny

the conditions of Theorem 29 are satisfied and there is a natural hys-

teretic policy which is optimal.

Proof: Since R1 + R, > 0,

2

7 . a - .
h{i+l) - h(i) > ES(K - (;-w)Rg), for i ¢ LN




As it was shown in the proof of Theorem 32, this implies that the second
condition of Theorem 29 holds.

As it was shown in Lemma 30,

h(itl) - h(i) > (K - (1-0)R)), for i N,

implies that the last condition of Theorem 29 holds. By the same lemma,
the Tirst condition (m" < «») of Theorem 29 holds. Thus, the theorem
follouws.

Q.E.D.

Blackburn (1971) studied the case where the holding cost funetion
is convex. His Tneorem 14 (in Chapter 3) is equivalent to our Theorem 33
with the exception that we do not require the holding cost function to
be convex. When we do require that the holding cost function is convex,
in Theorem 32, the other conditions are made considerably weaker.

Deb (1976) obtained a result almost identical to our Theorem 33 in

an independent study of a related problem,

We will now give an efficient algorithm for computing m' and m"
when they are finite. The only requirement is that f(m) and g(m) can
be calculated efficiently for various values of m. For the cases where
the holding cost function is a quadratic or exponential function, closed
form expressions can be obtained for f and g. The same is true for
the case where the service times are constant or have an Erlang distri-

bution. If the holding cost function has a linear tail, nearly closed

form expressions can be obtained for f and g. In the following, we

assume that £ and g can be evaluated efficiently at all relevant
points. Since the algorithm is the same for both m' and m", we shall

only outline it for m'.
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Therefore, suppose m' is finite. The following algorithm finds

Step 1: Let m= 1.

Step 2: While f(m) < 0, double m.

Step 3: Let m=m/2 and m = m.

Step k: While m -m> 1, do the following:
Let m= (m +m)/2.
If f(m) >0, then set m = m.
Otherwise, set m = m.

Step 5: Let m' = m.

That this algorithm really finds m' follows from Lemma 25. The algorithm
is essentially a bisection method, and it requires only 2 logam’ function
evaluations.

We close this section by mentioning that most of the results in
this section can be easily extended to cover hysteretic policies which
are not necessarily natural. In particular, an algorithm, similar to the
one above, can be constructed so that it finds the optimal value of both
n and m in m(n,m), where n is not necessarily less than or equal

to 2ero.
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APPENDIX A: Definition of Basic Symbols

O = interest rate.

Y

¢
5

[+ 4]

l tgdj‘(t) = second moment of the service time.

]-W tdG(t) = expected length of the start-up time,
o

N o= fm tgd(}(t) = second moment of the start-up time.
o]

A = arrival rate.

e s]
(f tdF(t))'l = service rate.
0

[ e-ath(t) = Iaplace transform of the start-up time.
o)

%’ = load on system.
5\%&" = Laplace transform of the inter-arrival times.

- fo G ALy
o]

= f e—(a+>‘-W)tdF(t) = Laplace transform of busy period.
o

/9° e-atdF(t) = Laplace transform of the service time.
o

cumulative distribution function for the service times.

cumulative distribution furnction Yor the start-up times.
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APPENDIX B: The Optimal Valuve of m ip (C,m)

This appendix contains graphs which show the optimal valn

cf m

in m(0,m) for various values of the system parameters X, ¥, 0 and

b. The optimal value of m in w{0O,m) is given by

l-0 -b-
J

m = min{i ¢ Nb|f(l) 23ioy Y

Sl in
+ X 20§ g sy Tfor 1ie HO

It should be noted that a logarithmic scale has been used for

the graphs.
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APPENDIX CG: The Laplace Transform of the Busy
Period in the M/Ek/l and M/D/1

Queneing Systems

This appendix contains graphs showing the Iaplace transform of theé

busy period in the M/Ek/l and the M/D/1 queueing systems. The busy

period is defined as the time from a customér arrives (to an empty systam)
until thé system becomes empty again. The parameter of the transforms

is denoted by . As before

where )\ is the arrival rate and p 1is theé servicé rate., The lLaplace

transform is denoted by V.
For the M/Ek/i quéueing systems, V¥ is given by
¥

s for keN.

-«
1"
al+lo 1%

+

-V

T %]

For the M/D/L queueing system, V¥ is given by

PR R R

., 1
p(¥=- =)
V=oe ¢
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{
Y Abstract:

AN -

TT~——AThis report considers t'e M/G/l queueing system with
remcvable server, The cases of linear and non-linear customer
holding cost functions are both considered. Non-inscantaneous
start-up times are allowed, The problem is to £ind an optimal
policy for turning the server on and off, The optimality criteria
considered are the avérage cost criterion, th: undiscounted cost
criterion and the discounted cost criterion,

A certain class of simple policies, the hysteretic policies,
is considered. Natural hysteretic policies and non~degenerate
hysteretic policies axe introduced. It is shown that there is a
natural hysteretic policy which is average optimal, and that if
the start-up times are instantaneous or the holding cost function
convex, then there is a natural hysteretic policy which is undig-
counted optimal. When discounting is used, the results are not as
strong, except for the case where the holding cost function is
linear. For the non-linear case we still obtain certain fairly
weak sufficient conditions for a natural hysteretic policy to be
optimal,
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