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OPTIMAL C12 RCL OF THE M/G/l

QUEUEING SYSTEM WITH REMOVABLE SERVER - LINEAR

AND NON-LIlilAR UOLDING COST FUNCTION

by

Peter Orkenyi

In recent years, various queuel.ng control problems have been studied

and solved by a number of investigators. A brief, but excellent survey

of the literature on this can be found in Gross and Harris (1974, pp. 364-

371). In most cases, the studies have concerned a single server. In

this report, we consider the M/G/l queueing system with removable server.

In Section 1, the problem is defined, some potential applications

are outlined, and previous studies of the problem are reviewed. The

problem is then formulated as a semi-Markov decision process in Section 'I
2. In Section 3, the case of linear holding cost is considered. Finally,

the case of non-linear holding cost is considered in Section 4.

1. Introduction.

The M/G/l queueing system with removable server was first studied

by Yadin and Naor (1963). Their idea was to utilize the idle time of

the server in the M/G/l queueing system, since this time cen be sub-

stantial. Therefore, the y proposed to remove the server when the system

would become empty (thus let6ting the server perform some other useful I

duty), and to bring him back when the number of customers in the system

would reach a certain critical number. We investigate this idea by con- I.
sidering the optimal control of the queueing system.
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Pro L-t in"IM

ri 4 4 s rc-)_IueeI.M StY ktr ude osz-dratjon rir ha- a singlJe server vitl

necus"tomers arrivi2, accod na to a 5stati ona ry Po zso3n fo e~sw

rpite N\ ~>0 hey are- served- scauetia.v. an(! the -ervc af: ar?

~roernende-st random variables with commaon r.-m-u -at d, -tiu or. fun-o:.n

ae ~I h the service rate. It is assumed that -he oar on. th~e

temn, c, 4L± is less tIhan one Tc servic_- ti-±-s arc ._un- to

be i r'depernden~ of th e arrival process.

At4 each Point in time, t'he server Is either o- c.r of-f. Wile of f

no customers are being served. While on, the customers are s_ rved Just

as in the ordinary M/G/l queueing system. An cn server may be turned

off at -w'v Point in time except wher. the server is giving service to a

customer An off server may be turned on by initiating a start-up pro-

cedure at the end of which the server is on. Its ewratilon is the start-

pti:me- it is assumed that the start-up times are indepe.ndent ano

vrariables with common cumulative disrbto UucinG I sas

asndthat the start-up times are independent of tn-e arrivjal process

rad t he service times.

The ;ost structure consistrs of four types of costs. First, there

is a servire cost K i,*ncurred each -,inre a sa3rvice-: is ini.i*atcd. Second,

h,'ore os anr. idling cost incurred at a rate r %rhi2.e tne server is on

khut has no customers to serve. Third, tere are switching costs. A

start-uu) cost R. and a shut-doywn cost R is incurred uoon eacn' coni-

Dletl on of a start-up and a shut-down, respectively. Fourt, th. ere iS

a hl±inL- cost fcr holding cust'omers in the system, it is inc!;rred at]

a ra-te which is a non-negative, non-decreasing funC4io'n fh) of the

rumber of' c-ustomers in *.w system.]



Some comments about these costs are appropriate here. The service

cost K may actually represent the expected (discounted) cost for giving

service to a customer. Likewise, R! and R2  may actually represent

the effect of cos's incurred during the start-up and shut-down times,

respectively (although the shut-down times are not considered explicitly

here, they are not excluded by our formulation of the problem). We

assume that r, R and R + R are non-negative.
1. 2

In general termsj the objective is to find a policy for turning

the server on and off such that expected costs are minimized. The problem

is considered both with and without the use of discounting. When the

costs are not discounted, two optimality criteria are used. The first

one is the average cost criterion, according to which a policy is optimal

if it minimizes the long run expected average cost. The second criterion

is the undiscounted cost criterion. A policy is optimal for this cri-

terion if it minimizes the long run expected cost where a cost incurred

at a rate equal to the minimum long run expected average cost is sub-

tracted from the original costs. When the costs are discounted, the

discounted cost criterion is used. A policy is optimal fcr this criterion

if it minimizes the total expected d-hcounted cost.

We will let X denote the interest ratp, N denote zhe set of

positive integers, NO  denote the set of non-negtive integers, and R

denote the set of real numbers.

1.2 Examples of Potential Applications.

Traffic Control:

Consider a bridge which can be opened and closed at a cost r1  and

r2, respectively (for the sake of simplicity, we assume that they are
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incurr-ed at the complet-.ion of the operatUion. A ship. can onl.y PaS

under the bridge if it is _pen 11t .sL a snir a r ri arnd the b r Jg_,eV

iS closed, the ship must wait until the briage is op:e bef'_ore it can;

Pass under It. There is a cost for keePinv thr.e ships uatnand it

is ncurred at ste 11 for each ship. The flow of traff-'-c on tht

Lr idge is stopptci when the bricge is opened, and it only re~sm- .cs ~n _7

the brid, >e is closed again. A cosl ~s inc ur r ed a t a r c e r w- e! biie

traff-,c cr. the bridge is intorrup±l. The Problem, IS 'to~dtrin hn

the bridee should be oTpened and closed.V

That %his protlem can be viewed as an I/Il-1 6 ..sueing syst:emp with

removable .erver can be seen as follows. Let the shnips be the customers

and let Uhe bridge be the ser'er. The service time is the time it take.-

'10r a ship to paE,.- under the bridge (we assume that there are physical

cons traints , so thai only one ship can pass under the bridge at a

time). The star-t-up timre is the time it takes to open the bridge.I

Clearlyv, the cost strvctire here is the samne as in the M/Gil queueing
sy~stem under consideration. Just let K be the expected (discounted)V1

cost for halting the traffic on the bridge while a ship iPaszec under

it, an.letR and fl2  be sdich that they represent the direct cost

for opening and closing the b-i.,7C pOluS the cost for halting the traffi

orn the bridge. whilte the bridge i,. beirg operc.d an closed, respectively.

Notice that the h..ldimng cos ,flunctin is lij~c-ar.

C~omnputer TieSaigControl:

Consider a companY which. has on~ly one computer, but se:c G ernid -7

rnals. he Jobs originating from the termiina~c are the on-lin jols, and

te 'b delivered to the operating room re the of f-J-1The jobs. The

.4
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on- lne jobs have priority over the off-.line jobs. 1n fact, there is

a cost incurred at a rate h for each on-line job which is kept waiting,

while there are no costs associa;ed with keeping off-line jobs waiting.

However, a cost is incurred at a rate r while the computer does not

process off-line jobs. If the computer is processing an off-line job

when an on-line job arrives, the off-line job may be thrown out of

the conputer so that it can start processing the on-line job. When

a job is thrown out of the computer, its entire memory content is trans-

ferred to an auxiliary memory device such that the processing of the - -.

job may be resumed later. If an off-line job is always thrown out of

t-he computer when an on-line job arrives, there may be an excessive

shifting of data from the computer to the auxiliary memory device and

vice versa. It may therefore be desirable to wait until a number of

on-line jobs have arrivd before throwing an off-line job out of the
A

computer. The problem is to determine when an off-line job should be

thrown out of the computer (if at allO.

That this problem can be viewed as an 14G1l queueing system with

removable server, can be seen as follows. Let the on-line jobs be the

castomers, and let the ce'..ucer be the server. The service time is the

time it takes to execute an on-line job, and the start-up time is the

time it takes to shift the memory content of the computer to an auxiliary

memory device. Clearly, the cost structurc here is the same as in the

M/G/I queueing system under consideration. Just let K be thc expected 4
(discounted) cost for no using the computer for off-line jobs while an

on-line job is being processed, ard let R and R be such that they

represent the cost for not using the computer for off-line jobs while

5 o-



d aza iS s.I.kftde fron the :c..ouker to aa uxi. . ry Jevice and vice -;rsa,

re s ctie.ly Notice .,hat the hdin'- cost function is li-ear.

Production Contro :

Conside a manufacturing comoany wh-ch uses a high ef-ficiency ro-

duction line for the proJuction of items 01 acrtain type, say type A.

The expected (discounte. ) cost for producing an item of tyeAis Kn.e.

Wnp-n an item of type A iE completed, a reward Ke_ Is rec-_Vd. In

order to produce an item of type A, an item of type B is needed.

Items of type B arrive to the production line according to a sationary

Poiss¢-. process. There is a cost for holding items of type B in The

system, and it is incurred at a rate which is a non-decrasIng, non-

negative function of the number of items of type B present. This

cost may represent the costs associated with storing and ua nta.:I*ng

the items. When there are no items of type B presen4 , there &re two

a.ternative actions available, The first one is simply to wait for

item - of type B -o ao -ive. The secord one is to switch tho production

at The production l ne to the production of items of type . n order

to do this, however, one has to set up the production line for the pro-

dction of items of type u, Also, once the production line is set 'Ip

for the pro *:.tion of items of type C, it has to be set up for the

production o. tems cf type A before the producti on cr these items can

be resumed- There is a setup cost ass Ciat d with each Vetup. T- -re

is a"so a cost for not producing item'; of type C. his cost is incurred

at d rate r while ite.m of type C are not produced. The probleri

4.s to deternine when the production at the production line should be

swtched from the production o." one type of items to th production of



another type of items (if at aM.

That this problem can be viewed as an P/G/l queueing system with

removable server can be seen as follows. Let the items of type B be

the customers, and let the production line be the server. The service

time is the time it takes to produce an item of type A, and the start-up

time is the time it +kes to set up tbe production line for the production

of items of type A. Clearly, the cost structure here is the same as

in the ./G/l queueing .-stem under consideration. First let K repre-

sent the sum of the service .-ost, the product completion reward and the

cost for not producing items of type C when an item of type A is

produced. Also, let R1 and R2 represent the setup costs plus the

cost for not producing items of t-pe C while the production line is

being set up for the production of items of type A and for the pro-

duction of items of type C, respe'tively. Notice that the holding

cost function may be non-linear.

1.3 Some Terminology.

We are interested in showing that certain simple intuitive types of

policies are optimal. These policies are the hysteretic policies. A

policy is called hysteretic if there are two integers, say m and n

(n < m), such that the server is always turned on (or kept on) when

the number of customers in the system is greater than or equal to m,

and such that he is always turned off (or kept off) when the number of

customers in the system is less than or equal to n. This policy is

denoted by 7(n~m). The numbers m and n are the upper and lower

Confer with Gebbard (1966).
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-ntervtn's!on points, respectively.

If the lower intervention pint is less than zero, or if the upper

intervention point is equal to plus infinity, then the hysteretic policy

is degenerate: Otherwise, the policy is non-degenerate. y.7steretic

policies whose upper intervention points are finite and lower interven-

tion points are less than one, are cali~d natural hysteretic policies.

The different types of hysteretic policies are pictured in Figure 1.

The aim of this study is to prove that there always exists a hys-

teretic policy which is optiral, and to give the conditions for when

the various types of hysteretic policies are optimal. For the case

where the holding cost function is linear, especially explicit and con-

venient results are obtained.

1.4 Previous Studies of the Problem. A

As mentioned before, Yadin and Mor (1963) were the first ones to

study the M/G/l queueing system with removable server. They examined

the steady-state behavior of the system, given that a natural non-

degenerate hysteretic policy is used. Using a linear holding cost

function, they found the value of the upper intervention point which

minimizes the expected cost rate in steady-state.

Heyman (1968) was the first one to consider the optimal control

of the M/G/l qu:ueing system with removable server. As with Yadin

and Naor, he assumed a linear holding cost function. In addition, he

assumed that the start-up times were zero- He considered the problem

both with and without discounting, and proved the existence of a

hysteretic optimal policy. However, his proofs were incomplete.

8
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Figure 1. The types of hysteretic policies, where
the x-axis indicates the status of the
server, the y-axis indicates the number
of customers in the system, and the
arrows indicate how the system moves.
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Sobel (i959) considered the Gi/G/ queue-ng system with removable

server. However, he used a cost structure which, it seems, woul )n-y

be natural if the GIGl1 system were in fact an ql!Gll system. He

used the average cost criterion Under some fairl5 weak conditions, he

'oroved that there is a non-degenerate hysteretic olicy which is opti-ml

among all stationary policies.

Bell 171) considered the same problem as Heyman, but only with

d-scounting. He completed Heyman's proofs, and also gave an efficient

algorithm for finding an optimal policy.

Blackburn (1971) independently obtained results similar to those of

-Bell. He also considered the more general case where the holding cost

function is any non-negative, non-decreasing, convex function with a i

bounded slope. He used discounting, and under certain weak conditions

proved that there is a non-degenerate hysteretic policy. However, the

present author has found that his proof was incomplete at one point

(namely in the proof of Lemma 18, Chapter 5). Intuitively, the result

seemto be true, so it is still hoped that the proof can be completed.

Reed (1974a) also considered the M/G/! queueing syst.em with

removable server. He used a new approach to the problem and derived

similar, but somewhat more explicit results than those of Bell and Belackburn.

ater, Reed (1974b) extended his previous results to cover the .:ase of

non-instantaneous start-up and shut-down -times.

Recently, Deb (1976) considered the M/G/I queueing system with

removable server (actually he considered bulk service, but by letting

the bulk size be equal to one, his problem becomes the same as ours).

He allowed a general non-negative, non-decreasing holding cost fuinction,

IN
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but assumed instantaneous start-ups. His main result was that there

exists a natural non-degenerate hysteretic policy which is optimal if

the slope of the holding cost function is bounded below by a certain

constant.

Other variants of the M/G/1 queueing system have been considered

by Bell (1973), Blackburn (1972), Tijms (1975) and Levy and Yechial.

(1975). In particular, Bell considered the system with several customer

classes, Blackburn considered the system with balking and reneging,

Tijins considered -the system where the service time of a customer becomes

known when he enters the system, and Levy and Yechiali considered the

system where the server is removed for a random period of time with a J
Fy given distribution function.

2. A Semi-Markov Decision Process Formulation.

The M/G/1 queueing system with removable server can be formulated[ as a semi-Markov decision process. In order to do this, a state space;

an action space for each state, a law of motion and a cost function must[ be specified. We first identify the decision epochs, the state of the

system and the set of permissible actions.

T he decision epochs are the epochs when customers arrive and depart

with the exception of those arrivals which occur while the server is

giving service to another customer. At each decision epoch, the state

of the system is defined as the pair of integers indicating the number

of customers in the system and the status of the server (the second

integer being 1 if the server is on and 0 if he is off). Thus, the

state space becomes NO x (0,1), where N is the set of non-negative
0 0

integers.

i } 11



At each decision epoch there are always two available actions, action

0 and action 1. Action 0 is to turn the server off (or keep him off

if already off), and action 1 is to turn him on (or keep him on if

already on). Thus, each action space becomes (0,1).

The law of motion and the cost function are in principle determined

now. In order to avoid any ambiguities, a formal description of the law

of motion and the cost function is included below-

The law of motion, q, is the mapping from N x (0,1) x (0,1)
0

X× N X (0,1) x R into R, given by
0

1 ,1if i=i', J=l, k=j'=O, t > 0,

e. i= j=i5 =k=l, t > 0,
1. e i

if -i+l, J=J'=k0,O t > 0,

t *i+l
q(i,j,k,i',j2,t) =I - e UdF(U), if i' > i-l, j=j'=k=l, t > 0,

I u edG(u) , if i' > i, J=O, j'=k=l, t > O,

0 otherwise,

for i c NO, j c (0,1), k c (0,1), i e N, j? e (0,1) and t e R.

The cost function c is a mapping from N X (0,1) x R into R,
0

given by

12



R< -R2  ,if k < J, t > 0,

: rt ,if i =0, j k =l, t > 0

h(i) -t ,if j =k =O, t > 0,

[ , if i > O, j = k= 1, t > O,

( i+n e-d,

h(i+n)f (l-F(u)) edu ,

neNOn N0

if j =0, k =-l, t >0,

0 , otherwise,

for i E No, j (0,1), k e (0,11 and t e R.

The interpretation of q and c are as follows. Consider a decision

epoch. Suppose that the state of the system at that decision epoch is

(i~j) and that the action taken there is k. Pick a state (i,j 'T

and a time t. Then q(i,j,k,±'t,J",t) is just the joint probability

that the next decision epoch occurs within a time t and that the state

of the system at that decision epoch is (i',j'). Furthermore, 'c(i,j,k,t)

is just the expected cost accumulated within time t after the first

decision epoch considered here. We now introduce some general notation

to be used later.

Let and 6 denote the class of all policies and the class of

stationary, deterministic policies, respectively. For each r 1 ,

let (P denote the long-run expected average cost (per unit of time),

given that the policy rT is used (the start-state is irrelevent in this

2.



case). For each m c i NO and j E (C,1), let w (i,j) denote
V

the long-run expected cost in excess of what is indicated by CP, given

that the start-state is (i,j) and that the policy r is used. Finally,

for each v e e, c E NO and j c (0,1), let v T(i,j) denote the total I

expected discounted cost given that the start-state is (i,j) and that

the policy - is used.

A policy r is average optimal if it minimizes cp ( e b), and

it is undiscounted optimal if it minimizes w (i,j) for each

(i,j) c N. x 10,1) among all average optimal policies (inc), A policy

is discounted optimal if it minimizes v (i,j) for each (i,j) E No X I

(0,1) (7 6). P

In order to be able to determine whether a given policy is optimal

or not, we will need some optimality conditions. Fortunately, the problem

without discounting can be solved quite directly, so we need only consider

the problem with discounting here.

Otimality conditions for semi-Markov decision processes were given

by Orkenyi (1976). The important concepts of improvable and unimprovable

policies were introduced there.

A policy is improvable if there is a start-state such that the

expected discounted cost, given that start-state (and the policy under

consideration), can be reduced by changiro the first action chosen by

the policy. A policy is unimprovable if it is not improvable.

More formally, for each 7 e $, let j( 7) denote the set of

(deterministic) policies which uses the same decision rule as w after

the first decision epoch. A policy V in 6J then is unimprovable if

(i,j) < v (i,i), for i e N0  e (o,r), w l,*

0I
14I



Orky - in t is imroabe

Orkenyi (1976) also showed that if a policy 7r in is improvable,

then there is a policy ?r e Y which is an improvement over r . More

specifically, let 7' be a policy 1 7(-) such that

if (i:j) < v *(ij), for i o, c E (0,1

with a strict inequality for some state (i,j). Let 7r be the policy

in 1 such that it uses the same decision rule as 7r' does at the

first decision epoch. Then a theorem by Orkenyi (1976) says that

v (i,j) < v (ij), for i E 4O, j E (0,i ,

and Y is an improvement over w . This theorem is referred to as the

policy improvement theorem.

Clearly, an optimal policy must be unimprovable. But an unimprovable

policy need not always be optimal. Conditions ensuring that an unim-

provable policy is optimal are given by Orkenyi (1976). Chapter 4 there

contains a discussion of the optimality of unimprovable policies for the

M/G/l queueing system with removable server.

It is convenient to introduce the following general notation here.

For any random variable T, Es(T) denotes the expected value of T

given the policy 7r and start-state s.

3. The Case of Linear Holding Cost Function.

In this section we consider the case where the holding cost function

is linear. This case has been studied extensively before. Reed (1974a),

(1974b) has given a characterization of the optimal policies. Bell (lQ71)

and Blackburn (1971) have given algorithms for finding an optimal policy.

Here, some new and stronger results are presented. The emphasis is on

15



obtaining results which az explicit and casy to use. The problem is

considered both with and without discounting.

3.1 The Ultdiscounted Case.

The problem is somewhat easier without discounting, so this case

is corsidered first. The optimality criterion is the undiscounted cri-

terion. We begin by obtaining some preliminary results.

3.1.1 Preliminaries. I
Recall that . is the arrival rate, g is the service -ate and

p (= X/g) is the load on the system. Let , r and 7 be definedI by

[ = tdG(t) ,M

= C tkdGrt) '"

and

an t2dF(t) ,

In words, is the expected start-up time, i is the second moment

of the start-up time, and 7 is the second moment of the service time.

We assume that these quantities are finite.

Let T denote the time until the state (0,1) is reached, and

define K and V by

K E7l... .

and

E (-1,O),(OO) (T

N1



By conditioning on the time until the second decision epoch and the state

of tne system at that epoch, we obtain

K= + D (1 ~ K-dF(t)
iN0

+ - - K,

and

V= + Z;fW 4 et iK'dG(t)

0

+ % K

This implies that

:1% 1 1

and

V

From this, we obtain

Er(_lm),(OO) (T) EW(O)m),1(O1O) (T)

= + V + MK

1( +) for m eNo

Let H denote the holding cost incurred until the state (0.1)

is reached. Letting h denote the holding cost rate for each customer,

then for each i c Noy

17



= ± W(,o) ~ 0 )r!)+ i(i-I)Kh.

By conditioning on the time uintil~ the second decision epoch and the '
state of' the system at that epoch, we obtain.

[ i

00

+ (z,1)(,) 2 1-ti1rO,_)(,)H iilK~F

and

ici

O1(xt e(1Gl))hd

+ fe- ~ E (H) + i(i-J.)Kh~dG(t)

This implies that

E +- 2 l)h

and

p 12
(~fl2 +~- +)h

18



From this, we obtain

E( )= (OO) = E(o,m),( O O )

i-1

+ E (I,) ( ~) + m-h'V

+0 - , )., (rap)(H)

1 h

. • 1 X27+ (l1- (2- ) 2 -P

(1-PJ LP+1 re(m-l) •1 i.h + m(1  + 1 %7 )h

2r~el p 11 p 1- 2 2T

M n1 + m(t + +2Z)

+(P + -t +l-l fcr m e No

Let C denote the cost incurred until the state (01) is

reached. Then, for each m e

~1(-,m =~.1-).~+ * + 1 7 ( )h)

2
1Xr(1-p) + (p + 1.' )- ,

and

19
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-:47. EO CM MP - OE,

R + + - ,,n

-:~~ i=O M+)~ "rr , 0~), 0 )-
70,) 1. 2 ~mj(0,n0,o

++ + P

- ((R1 + R2 )X(1) + (l m(m-1) + m(x + p +

%P + + ix2 )-

PC +2 1-p 2 1-p

[ - 5.1.2 The optimal Value of m in .(-1,m).

We will now consider the optimal value of m in ir(-l,m). Let

m denote this value. That m exists is shown in Section 4.1. It is

given by

rWi ,m,)(0,0) < w (.1,m)(O,O) , for m c No
)- : - 7r ~)0)

Now

(ow~ (C) Ecp C),O,)T)
7(.rm )(o1 -r(-lm),(o,o) - '(-1,o) "E(-1,m),(oo)

+ W (0,1), for m 's N0

so

WI, (0,0) - .,m)O

- E(.,m(OCo) C

7%(-1,O):; (-1,m+l) (0,0) ( 0l,0T

m h + + 1 + %7) h2

: 20



(r(1-p) +(p + . Z)h).
2 1-p Xlp

-~- (m + (1-p)), for m E N0

Thus

MI minfim c N jm >Elp
0 h§'~-

.1.3 The Optimal Value of m in wr(Orn).

We will now find the optim-.al value of m in wr(O,m). Let mn"

denote this value. Then mn" is given by

97r(~ OjII r(o,in)' for m eNo

TOW

' 7rojm~) 97~ol- (l% (in+%x)eEl(oM+),I~(O~)(H) (L R)]

( ixm+x%)- 7r'O'm '2 20-0 11-)

h12
=(+ ( (m+1+X+()(m+X+) * K-7)+

2 2
i?_1 %2 fl

- k(1-p)( 1  (~l x + 2

= (m+ L~(ln+X) ((mR +X +I1)2 t +1)

212
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+ -) P ( (R + R

h - h(i 12 2

+1 2
ht, •((m+xt+ +N

2(m' l+X .,(m+x ) +x+ ) + (.c)2 .- ×

2
- X(l2p) (R + R)

27- h +~PJR + 12+1 2 'V

m 2(m4li-X)(M+Q) 2 +2( -) 1-P

- ( 1 -P)(1 + 2- ) , for m E No

Thus, we obtain

n" min(m N In> - 2( -P) •(RI+R2 )+ - ( ' ) + ]
0 [L> _h: 2) +

3.1.4 Characterization of the Optimal Policies.

It is proven in Section 4.1 for the general case of non-decreasing,

convex holding cost function that either a policy i(-lm)(m < c) or

a policy 7r(O,m)(m < v) is undiscounted optimal, depending on which

is average optimal. In principle therefore, all one has to do to find

the (an) optimal policy is to compute m" (by using the formulae in

Section 5.1.3), compute the long run expected average cost, given that

the policy 7r(Om") is used (by using the formulae in Section 3.1.1),

and compare it with the long run expected average cost, given that the

policy ir(-l,m') is used.

3.2 The Discounted Case.

Here, we use the discounted cost criterion. The analysis becomes

somewhat different from that in the preceding section. One reason is

that it is possible to reformulate the problem so that the holding costs

do not need to be considered explicitly.
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3.2.3 Elimination of the Holding Costs from the Analysis.

Bell (1971) suggested a reformulation of the original problem such

that the holding costs would become bounded. Here, we show that the

original problem can be reformulated in such a way that the holding costs

are eliminated from the analysis altogether.

Since the holding cost function is linear, the total expected dis-

counted holding cost is equal to the sum of the expected discounted

holding cost for the respective customers. Let as before h denote

the individual holding cost rate. For each m .e N, let t and t
2n 2n+1

th
denote the times when the n customer arrives and departs, respectively.

Then the total expected discounted holding cost is

t 2n+1
r~ -at

E. P, hJ etdt
nN 2n1

nnN
h -at2  -- tt

Ef h _-at 2 n) h "t 2n

nEN aneN

Since the arrival process is not affected by the policy in use, the first

term in the above expression is neither. Therefore, it may be neglected

when searching for an optimal policy. The second term does depend on the

policy in use, and therefore cannot be neglected.

Suppose now that at each service completion a reward h/a would

be received. Clearly, the expected discounted cost arising from the

service completion rewards would just be equal to the second term in

the above expression. Therefore, the original problem must be equivalent

23



to the problem in which a reward h/a is received at each service com-rpletion instead of incurring a holding cost at a rate h for each customer

in the system. Thus, since the service completion reward may be included

in the service cost, we may assume without loss of generality that there

are no holding costs. This will now be done.

3.2.2 Preliminaries.

Let a, a3 and be given by

In words, a is the Laplace transform of the inter-arrival times, to

is the Laplace transform of the service times and | is the Laplace

transform of the start-up times,.i

Let as before T denote the time until the state (0,1) is reached, _

and define * and X by

* = F ,(-l.,), (1,1)(e" '
and

By conditioning on the time until the second decision epoch and the

4a1

ste Laplacetransformof the servicmaimesaanetranformof he sartup tmes



ex) e'-dFXtt

i 1101 f T

e( ~ dFi(t)

and

iEN

Sice p< 1, is teunique souinof the above equation in the

interal (il].This can be seen as follows.

Let bethe function from [0,1] into R, given by

g~, x Ft. for X E [0,11If
Taking the derivative, we obtain

g'(x) 1 -e Ft

_ 00

>1-x tdr(t)

> 0, for x e (0,1)

Aliso)

g(0) =
and A

-~l 1 - e-dF -) >-0



Therefore, by the mean value theorem, the equation

g(x) 0

has a unique solution in the closed interval [0,1].

We will now consider the costs. It is useful to introduce the

following quantities. Let

K
A R2"- K

2

B - -R 1-W)

-R rC 2 KC- x (l-4) "l---- '

and
r K

Also, let Z denote the total discounted cost incurred until "ne state

(0,1) is reached. Then, for each i c NO,

EFr(-!,O),(iI) (Z) -- K•

By conditioning on the time until the second decision epoch and the

state of the system at that epoch, we obtain

NolO i li+m

X'I e2 % -a 1-0)
EI(I~)(mo(Z) ,. e a  e'<t KldG(t)

K
-(a 'xrm) "7--' for mEN^.

Using this, we obtain

2
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v7 r(1m (0,0) =arp( K .(tXvm) + p

+ (C)ni + C' 1±. (1a*-

m K
+ + ) + (M4mn. K)r- (1-a*)1 x-ta 1-j)

=-B G +D - X(aO*)ni, for me N,

and

vWOm(0,0) m- (A-X*M) + R+ X~mR ~)(l-X(aor)M)-

A- tBCni
-A +M.,for m cNo

,.2.3 The Optimal Value of min 7r(-l,m).

From the preceding section, we obtain

V~.(-lmr+l)(OO r- (l,M) (O'0)

1-a

= (la)n( BD4~

Suppose first that D < 0. Then the sign of

V~r(-~m~l(Oy - Vwr(-lM)(O)O)

cannot change from being negative to being positive, so the optimal

value of mn in ir(-1,m) must be either 0 or ~.Now

-Bt + '-a X

27



and

=0

Tnerefore, the optimal value of m in ir(-l,m) is determined by the

sign of

1-a
l&VXD -B

Suppose now that D > 0. If B < 0, then

Yj.r(-l,m+l) (0,0) -VW(_l~m) (0,0)

is negative for all m E No, so the optimal value of m in wr(-l,m)

is infinity. III B > 0, then

VWr(.l,M+l) 0 -V~r(-l,m) (0,0)

changes sign from negative to positive exactly once. Therefore, in this

case, the optimal value of m in T(-1,m) is

log(")
m=Log~

rounded up to the nearest non-negative integer.

3.2.4~ The Optimal Value of m in 7r(o,m).

From Section 3.2.2, we obtainj

Vr(O,m+l) (,)-vT( _)(0 0)

1+l m
_A-tBaf A-9BG

lX~a*) i-X(aV)m  N

28
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[ (o*)m(l-_cy) B I-m + L m
~~~(1X(C*)m) (1x(o*)m,+l) (!-04 T- ~ B

for m N

Let f be the mapping from N into R, given by

f(m)=l- -m m 1m
J1- 1 m, for m e NO

Then

vr(O,m+l) (0,0) - v (o,)

= (l-a) )(ro)m(tBf(m)'XA) for m e N(1-x(o*) m ) (l-X(o') re +l )  fo ieN

Notice that f is an increasing function, since

f(m) - f(m-1) i-= - i-a 22(a m
- I: z--?6 (l-,)-o z .r

I- l- - Xam), for m e N.

Suppose first that B < 0. Then the sign of

V.(o,m+1)(O,0) - V7(o,m)(oo)

cannot change from negative to positive, as m increases, so the optimal

value of m in 7r(O,m) is either 0 or -. Now

= l--- ,

and

V (O,)(O) ) 02
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--- =-----= .- ......... -c -......-____,_ _ -., = " '-" -' - -

t; Therefore, the optial value of m in w(o,m) is determined by the

sign of

[ XA - B.

Suppose now that B > 0. This implies that A > 0, and

Vv(O,m+l)(OO) - v.r(O,m)(OO)

changes sign from negative to positive exactly once as m is increased.

Therefore, the optimal value of m in w(Om) is

M nin(m e N if(m) > -1
0 9B

3.2.5 Characterization of the Optimal Policies.

We now will show that a hysteretic policy is optimal, and specify

when the different types of hysteretic policies are optimal. Since we

have a semi-Markov decision process with bounded costs, an unimprovable

policy is always optimal. Therefore, we will prove that a policy is

optimal by proving that it is unimprovable.

Lemma 1: If A < 0, then v(00,) is optimal.

Proof: We have to show that

, i Kj) < v (i,j), for i c NO, j (0,1], T E ' (r(0,))

Consider the states in which the server is off. If a policy

c 7 r (-,o)) starts with turning the server on when the start-state

is (i,O), then

v (i,0) -- 1 + .

540 1-
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Since R1+ R 0, we conclude that

v (i,0) < v_(i,0), for i e No, 7T E V-)

Consider the states in which the server is on. If a policy

wr e ~(~c~o)starts with keeping the server on when the start-state

is (i,l), then

v (0,l) +C-

and

~~~v (i,) K +WR) for i e N, N~~ro,)

Prof:ce n )w onlyhaeuodho that

v 0 0(i~) < v (i,), for i a N, r e 01,i ((,)

temsa-sa t is (fA ,).< Suppose 0 th rO-)i ptml

btepoiyrvmthehsm oiya (,)eepttattunh ere nwe

Ni, 0) < Ti,

31



_ --

Tnis implies that

LV(o,i)(i/1o) v w(o,)(i)o) .

But from Section 3.2.4,

(o)(i,o) > v(,)io :

since B < 0. This is a contradiction. Therefore,

v O (i,0) < v.(i,o), for i c NO) 7r E 0((,))

Consider the states in which the server is on and the system is

not empty. If a policy 7r e 93(r(0,)) starts with turning the server

off when the start-state is (il), then

= V ,(i~l) R2 • :-

Now

o,)vl 1 K, + R2

Clearly A > 0 implies that I

Consider the state (0)1). If a policy 7r K + ((0, )) starts with I
keeping the server on, then

vr(o, ) =xr-+ a-. r(o,-O)(l') !;

++
r .14

a- K + *
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Therefore,

r r 2 K

3-a(l- v)y B)-(laR

> 0

Thus, 71(o,co) is unimprovable and optimal.Ic Q.E.D.

Lemma 13: If A > 0, B < 0 and C > 0, then 7r(-l11o) is optimal.

Proof: We only have to show that

VrCjCO( Kj v~r(iyj), for i e NO) j e (0,1KI, 7r E J(r(-1,oo)).]

Consider the states in which the server is off. Let 7r e (rl4)

be the same policy as ir(-l,oo) except that it turns the server on when

the start-state is (i,0). Suppose that

v7.(i"O) < V(_')iO

But3

so

From Section 3.2.3,

5A3



-- ~~-70 - -- 7 -7-

since B < 0. This is a contradiction. Therefore,

( )ilo) < v(i,o), for i e No, 7r e (7r(l,-o))

Consider the states in which the server is on. If a policy

r c ( Ar(-!,)) starts with turning the server off when the start-state

is (i)l), then

v 7(i, l)=R2 •

Now

* Z l- K + a - K) (l- c)

-co~ 1-coK i r 1-a K) (--) -1

K 1-a +

< +1'-- "D j
- 1-o 1-c

There fore

v.7r(i1) - , >_ A ----a D I
if D <0U, then

.(i > 7.)l, ,l)

since A > 0. If D > 0, then

-~("ill) v ( il AD

7r 1-0l,

>0,
34
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7MJ so

V7 - -r(-l,co)

Thus,w-l~ is unjinprovable and optimal.

QE. D.

Theorem 4: If B > 0, then a natural hysteretic policy is optimal.

Proof: Let m' be the (an) optimal value of m in 'r(0,m). prom

Section 3.2, we know that mdt is finite. Suppose first that 7r(O.,m)

is at least as good as 7r(-l,m) for all m e No. Then 7r(0,m') is

optimal. To show this. we only need to show' thatAIr W( n)(i~)j) <. v (ij for i c N, 0 E 7r1] E e (~m)

Consider the state (0,1). Let 7r e o0r(0,m')) be the same policy

F f as r(0,m') except that it keeps the server on in state (0,1). Suppose

that

Effv (0,l) < V(,i t(0,1)

By the policy improvement theorem,

so

B3ut we juast, assumed that this is not the case, so we conclude that

V~r(0, -a)(0jl) < v (011), for ir e c (7r(o,m'))

5
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Consider the states in which the server is off and the number of

customers is less than m'. Let T E c((O,m')) be the same policy

as w(o,m') except that it turns the server on in a state (iO), i < m.

Suppose that

v.(iO) < V-(om,(iO) .Ai=

By the policy improvement theorem,

v 7(O'i) (i)O) < v (iO),

7 Vw.(O,i)(i,'O) < v~r(O..m,)(iO ) .

This is a contradiction, so we conclude that wo

vo,m(t (,0) < Vr ioo) , for i < m' (r(O,mf))

Consider the states in which the server is off and there are at

least m' customers present. Let r e c(r(O,m')) be the same policy

as 7r(O,m') except that it keeps the server off in a state (i,O),

i > m. From Section 3.2.1*, we know that

Vr(i+l)(iO) > V~r(i) (i, ) .

Now

Vr(i)(i~l) > V r(o,m,)(i,1L) P

so

vr(i"o) > V r(o,m,)(iyo).

36
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_

Thus

v ( 0 in') (1,0) < v T(i)ci), for i > M. Tr C ;brom

Rik Consider the states in which the server is on and there is at least

one customer present. Let 7r e co(7r(o,m')) be the same policy as

7r(O,m') except that it turns off the server in a state (ill), 0 < i < .]

Suppose that

Vr(il < vIOmi),I

By the policy improvement theorem,

so

But V~r(i.M1)(iL-0) < V~0r(O M (i,0) .

which implies thatI

vrl.o,ml)(0i0) < Vr11(,t (i,o) *-

This is equivalent to

a i (OPO) V ,(o)Oo)P

37
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or

VW(O,m1)(o.,)>o0

This is a contradiction, since

lrov o (o,;)) 0O

Thus

vw~),it)(1)< v, 1~).. for 0 < i < in', r e A(r(O'o))

Let r ((wm) be the same policy as r(o,m') except thatI it turns off the server in a state (i,l), i > in'. Suppose that

r~i < V )

By the policy improvement theorem,Iri.) il
so

Repeating the argument n. times, we obtain

Taking the limit on both sides as n tends to infinity, we obtainI

vK
r(O.0)O) < -- -

But
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XR2 + R

v ~ l)---- t.~ 2 1= ( (,1 + B +•
1-0) !

Since B > 0, R + R > 0 and R, > 0, we have a contradiction.

Thus

v (O,m,)(i,l) < v (i,l), for i > m', r E CQ(r(O,m'))

_7 ,7))\

We conclude that .w(O,m') is unimprovable and optimal.

Now let m' be the optimal m in 7r(-l,m). From Section 3.2.3,

we know that m' is finite. Suppose that 7r(-l,m') is at least as

good as 7r(O,m) for m e No . Then r(-l,m') is unimprovable. This

is .-hown in exactly the same way as the proof that w(O,m') was unim-

provable, so it will not be repeated. Thus 7r(-l,m') is optimal.

We conclude that a natural hysteretic policy is optimal.

Q.E.D.

lemma 5: Suppose B > 0, and let m' and m" be the optimal values

of m in w(-l,m) and r(O,m), respectively. If m' < m", then

7,r(-l,m') is optimal. If m" < m', Then (oim") is optimal.

Proof: Suppose first that 7r(-l,m') is optimal. Then

,tj fl)" (1111 v 'm " mVl)

This implies that

=>- vr('l'm")(1'O) < V7r('lm"+l) " ' i

which in turn implies that m' < m".

Suppose now that w(O,m") is optimal. Then

1~3:1
~39



This implies that

which in turn implies that m" < mi.

Q.E.D.

Lemma 6: Suppose B > 0. Let mi and m" be defined as in Leiama 5.

Suppose that mi m't(= in). Let g be the function from N into R,

given by

g =i 3-c' X~ - aCa- -EB, for i eNo

If g(m) < 0, then 7r(0,m) is optimal. If g(m) > 0, then 7r(-l,m)

is optimal.

Proof: From Section 3.2.2) we have

VT(0,m) (o O) -V7l(l,M)(0

m
- X(aflh)m t m 1-am

(Axafi~m
- 0m+ Bam l X Daflr)m)-1aX(*)(=()

1-aft

=(AX(aft)
m 

- BX(O4 Eam- XD(a ) J-F X D( f') m-XO)M

(A(cy)m~ 1-Xa 1a )m '-a XDOB ) + 1DU ) (

(A -1f

Af 0

J-aJ



_ X(_)m
m

_( 1-4 - i 1-a m
-X( -Ca + - D'4 -B)

-X(a*)m

and the lemma follows.

Theorem 7: Let r* denote the (an) optimal policy. If B < 0, then

l~(0'7r=t(0,00) for A>:< 0 0

7(0,00)  for A > C < 0

trT(-1,1), for A > 0, C > 0.

If B > 0, then

7Ir( -1,m',for m' < m",

7(O,m") , for m" < ml

-lm), for g(m) > o]7r - for m = m' = m"
r(o,m) , for g(m) <

where

m' = min(m e om > log()/log 

m" minm e N of(m) > -3
0 t

and

f(m)= 1'-m + XG a m
1m --

g(m) -m
gam*= XD* 1- a- 9RB

Proof: These results follow directly from Lemmasl, 2 and 3, Theorem 4,

and Lemmas 5 and 6.
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Theorem 8: Suppose B > 0, and let m' and MI" be defined as in the

preceding theorem. Then

ifj 2)log a/log

Proof: By definition,

m' =min~m e NOI* m < B )

and

m" =min(m e Nolf(m) >

Since both .@m and f(m) are increasing in m,

is equivalent to

B X B

f(log( D)log A

Simple algebra shows that this is equivalent to

( B log a/log C .

Q.E.D.

3.2.6 Bounds and Approximations.

Based on the results in the preceding sections, it should be easy

to find the optimal policy now. The only problem may be to find M"

(given in Theorem 7). Since f(m) is an increasing function 
of m,

N4



r. may be found efficiently by the bisection method (see Wilde (1974,

pp. 300-1,00)). To use this method, one needs an upper bound on m".

This upper bound should be as small as possible. We will now give an

upper bound which is also a goo,' approximation to m" when certain

conditions are met.

Notice that

fm_) > for m E N ,

and that the expression on the right-hand side of the above inequiality

is also an increasing function of m. Therefore

MIIl-cy -rm X Am" ~~< min (m €o~- _ >[

o- l-aB /lo
00~B

min(m E N Im > log(-- 1 )/log]
o1 - lrX A

Letting

lo-1-a ~B~1
b -- og(y7'a  T )/log ,

we obtain

m" < min(m e NOIm > b)
0-

For finding an optimal policy, it is more useful to have a relatively

tight upper bound on min(mt,m") instead. We obtain

(min(m c N Im> log(i B)/log *],
min(m',m") <m 0 N b

-min(m e N 'rn > b)

or

min(m',m") < minim E N Im > min(blog(i 2)/log 41)]
0X
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-3 7T:-= ~ -=c~

Now

b =log log + log(- 2)/log 4
Xo( DIO 41 -04 A

so

b < log(! !)/log

if and only if

1-a D
1-04 A

This is equivalent to C < 0. Therefore, b is a better upper bound

on min(m',m") than

log(! !)/log4

if and only if C < 0.

The fact that b may also be a good approximation for m" follows i

from the next theorem.

Theorem 9: If

bI
l-x(4) > ,

then m" is either the smallest non-negative integer above b or the

largest non-negative integer below b.

Proof: We only have to show that

f(b-l) <X:i
- .l !@

44
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[ Now

f(b-l) = f(b) - (f(b) -(b-1))

f(b) 1-* (l'G)(*-b "Xab)
4 ib+b

< f(b) - * Xa

since

Vq
1 X(a*r) b> a

Therefore

f(b-1) < f(b) 1-a xb+1

I l-c4*
XA

Q.E.D.

Corollary 10: If

A > 1-a X×)log */log(a*)
B Xl-0~ 1-a

then m" is equal to the smallest non-negative integer above b or the

largest non-negative integer below b.

Proof: Straightforward algebra shows that the condition of the Corollary

is equivalent to the condition of the theorem.

Suppose that one has found b, and that it does not seem to be

a good approximation to m". Some graphs, indicating the true value

of m" as a function of X, a a and b, have been developed for this

case. They can be found in Appendix B.
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3.2.7 The Case of Erlangian Service and Start-Up Times.

The Laplace transforms a, , 4 and X may not always be easy

to compute, given the cumulative distribution functions F and G.

If the service times have k-Erlang distribution, then

%I

_k k

and

(k4a%-*k iii-
Since it is impossible to derive a closed form expression for 4, some

graphs, giving 4 as a function of K, p and a, have been developed.

They can be found in Appendix C.

If the start-up times have a k-Erlang distribution, and if j'

denotes the start-up "rate," then

k,,' )k

and

Xq (r w)k

Having computed the values of w, 4, and X, the optimal pclicy is

easy to find.

4. The Case of Non-Decreasing Holding Cost Function.

The case where the holding cost function is an arbitrary non-

decreasing function now will be investigated. Blackburn (1971) and

Deb (1976) have also considered the problem where the holding cost
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function is not necessarily linear. The problem is considered both with

and without discounting.

4i.! The Undiscounted Case.

In this section, costs are not discounted. Two optimality criteria

are used, namely the average cost critericn and bhe undiscounted cost

criterion. These criteria were described in Section 2. Recall that

is the set of deterministic stationary policies. Only these policies

are considered here. Let denote the set of deterministic stationary

policies which always turn the server on (or keep him on) at decision

epochs where the number of customers in the system is larger than a certain

number. It will be shown that only policies in need to be considered.

We assume that the service times are not instantaneous and that

the holding cost function is not bounded from above. If desired, the

analysis which follows can be extended so that these assumptions become

unnecessary. Without loss of generality, we only allow policies which

do not turn the server on and off repeatedly at the same point in time.

For each ? , r , and (i,j) e N X (0,1], let P (i,j) denote
0 i

the long run expected average cost, given that the start-state is (ij)

and that the policy v is used.

Lemma 1l: For each 'T e there is a 7i' e such that

,(i,j) <CP(ij), for (i,j) c x (0,1.

Proof: Let 4 denote the set of deterministic stationary policies which

turn the server on if he is off and there are more than a certain number

of customers in the system. Clearly

q- A-
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We prove the lemma by first showing that for each E e , there is

a 7r' such that

cp.,(i,j _ < P (i, j for (ij) e N X (0,1)

and then showing that for each 7w E-4, there is a 7r' E such that

the above inequality holds again.

Therefore, consider a policy 7 in , but not in 4 . Then

there is a number, say k, such that wr does not turn the server on if

he is off and there are k or more custcmers in the system. This implies

~that

CP (i_ for k < i i

since the expected cost incurred until a state (j,O) (j > i) is reached,

given that the start-state is (i,O) (i > k) and that the policy r

is used, is finite.

Since h is a non-decreasing function, and since the number of

customers in the system is always j or more, given that the start-state

is j (j > k) and that the policy 7r is used,

(j,O) > h(j), for j > k .

Together with the result above, this implies that

R_'i,O) = for i > k

since h is not bounded from above.
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Let 7r' be the same policy as 7w except that it turns the server

on if he is off and there are k or more customers in the system.

Clearly

<cp (ij) = , for j =, i> k,

S Tr(i, j) , otherwise

This completes the first part of the proof.
Now, consider a policy rF in ,but not in 4 . Then there

is a strictly increasing sequence of integers, (ik keN, such that 'r.

[ turns the server off at the decision epochs where he is on and the number

of customers in the system is i for some k in N. Since the servi.ce

times are not instantaneous, the probability that the number of customers

in the system will eventually exceed any given number is one. This

implies that the long run expected average holding cost, given any start-

state and the policy ir, is equal to plus infinity, since for each

k c N the number of customers in the system cannot decrease below ik

once it has been exceeded. Since the long run expected average cost

due to other costs than the holding cost is always larger than minus

infinity, we must iave j
(ij) -, for (i,j) e NO X (O,l) .

Thus, any c'e satisfies 1

q (ijj) < (ij), for (i,j) N x (0)

This completes the second part of the proof.

Q.E.D.
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Lemma 12: For each 7r e, (pT (ijj) is constant over (i,j) e N0  (Oi).

Proof: Assume that a policy in Z , say 7T, is used, and let n be

a number such that the server is always turned on (or kept on) when there

are n or more customers in the system. Since the service times are not

instantaneous, the probability that the number of customers in the system

will eventually exceed n is one.

There are two mutually excluding and exhaustive cases, namely the

case when the expected holding cost incurred during a service, given

any number of customers in the system at the start of the service, is

finite and the case when it is infinite. In the latter case, the long

run expected average cost is equal to plus infinity for all start-states,

and the lemma holds.

In the former case, the expected holding cost incurred during a

service initiated with n or less number of customers in the system is

bounded. Since the expected number of services given before the number

of customers in the system exceeds n is bounded from above, this implies

that the expected holding cost incurred until such a time is finite.

Clearly, the expected service cost incurred until the number of customers

in the system exceeds n is also finite.

The expected switching cost incurred until the number of customers

in the system exceeds n can be seen to be finite as follows. There

are two possible cases, the case where the start-up times are instantaneous

and the case where these times are non-instantaneous. In the former

case, the expected switching costs incurred until the number of customers

in the system exceeds n it finite, since r cannot turn the server

on and off repetitively at tht same point in time and since the expected
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number of services aiven .efo.re th-:. - r or customers in the system

exceeds n is finice. In .he lat;ter case, the expected number of

[ urning the server on and off before the number of customers in the system

exceeds n is boun6ed. Therefore, the expected switching cost incurred

until the number of customers in the syste-a exceeds n is finite.

Together with the previous results, this implies that the expected total

cost incurred until the number of customers exceed n is finite.

This in turn implies that ,_(i,j) is constant over

(i,j) N0 X (0,1), since the states (i,j) are positive recurrent

for i > n (recall that p < 1).

Q.E.D.

Since we will only consider policies in P hereafter, we will drop

the reference to the start-state in the following.

Theorem 13: There exists a natural hysteretic policy which is average

optimal.

Proof: Let 7 be a policy ir. , and let n be least number such

that v keeps the server on if he is on and there are more than n

customers in the system. Let m be the least number greater than -r

equal to n such that " turns the server on when the state of the

system is (m,0). Then the policies I.r and nIn) have the ame

positive recurrent class (of, states) and they take identical actions

withir ant clas. U-ing Lfmma 12 -

1,r ea1 i g 22, 7.

:or each i -, x. denote the long run expected proportionI- c- wh.- there are custn the rr..fx.e given +hat the policy

&I -~ - -ae cu:..nr - The th ln 2K1 x cO~m=.) 3 us- . . -po-e that n .... L O.ph-,_, ogrn .e"
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average holding cost is

xih(i) , for rOjm-n)
ieN

and

xih(i-n), for 7r(n,m)
tliieN1

The long run expected average cost due to other costs than the holding

costs are the same for 7r(O,m-n) and r(n,m). Since h is a non-

aecreasing function which is not bounded from above, and since each x.

is strictly positive,

'(O,m-n)/ < '(n,m)" -

Thus, we can restrict our search for an optimal policy to the class

of natural hysteretic policies. In order to prove that there is an

average optimal natural hysteretic policy, we only need to show that

there is a finite k such that

Tr(-1,O) < r(O,m)' for m > k

This will now be shown.

For each i and m in N, let t. denote the long run expected

proportion of time when there are i or more customers in the system,

given that the policy 7r(o,m) is used, Since R1 + R> 0,

>ti h(i) + X-min(K,O), for i e N, m e N•
'PT(0),M) -i'

Choose i e N such that

@ir(-1,O) < h(i) + X'min(K,O)
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It can easily be shoWn that there is a k such that

t.,m - (wW(l,) - 'min(K,O))/h(i), fnr m > k

since the right-hand side of the inequality is less than one. This

implies that

V(_1,O) I q1 r(Om), for m > n

Q.E.D.

We now introduce some convenient terminology. If E is the optimal

long run expected average cost, then the relative cost incurred during

a given time interval is the total cost incurred then minus Cp times

the length of the time interval.

For uach i ENp let C denote the cost incurred until the

state (i,l) is reached, and let f be the function from N into R,

given by

f(m)- E (C(C for m EN
fm (-l,m+l),(mo) - Em(.im),(mo)(Cm] f 0

This function will play an important role in the following.

Lemma l: if f is a non-decreasing function and (p denotes the optimal

long run expected average cost, then the expected relative cost ircurred

until the server is on (regardless of the start-state) is minimized by

7r(-l,m) (or equivale.itly by 7r(O)m)), where

m = min~m c N If(m) > T/%(l-p)) •
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Proof: If the system starts with the server on, the lemma is trivial.

Therefore, assume now that the start-state is (i,O) for some i c N
0

With regard to the expected relative cost incurred until the surver is

on, any policy which turns the server on eventually is equivalent to

a policy 7(-l,m) (or wY(O,m)) for some m.

i or each i E NO, let T. denote the time elapsed until the state

(il) is reached. We only have to show that

E(_i+I),(i,o) (C i  - - l,i),(i,)Ci - T

is non-negative for i > m and non-positive for i < m. But this is

just equivalent to

fPi /X(l-p), for i > m'

< /X(l-p), for i < m'

since

EWr(-l,i+l),(iO)(Ti) - E(-l,i),(i,O) (Pu

Since f is a non-decreasing function, the lemma follows.

Q.E.D.

Lemma 15: For any set of real numbers a, b, c and d such that

b > 0 and d > 0,

a < c a a+c _a+c c

bd b -b+d b+d-

Lemma 16: If f is a non-decreasing function, then the (an) average

optimal value of m in 7r(Om) is given by

m min~i N of(i) > ) l-p))
0 -

-- 4



Proof: By renewal theory,

= (F(C )+ R )/(E (T 1, for i E N
(F(~i ~ r(O~m),(o),O) ) + 2 w,rn~m),(0,O) 0 0

Since

Ev ~ ~))OO(C I=E(0C + f(i), for i c No
w~oi+1,(00) 0 v(0,i),(0,0)0

and since

(T 11 (.0j to) Er1(O7-). (0Oy7T9 1+ 7

f or i E N0

Using Lemma 15,

if and only if

"w(0, i) I

By Theorem 13, there is an i such that

so m exists. By Lemma 15 and the definition of m,

wr(c, m) - w(0,m+1) i(1pfm .
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Since f is non-decreasing,

.M(0,m+ )  < (-p)f(m+l)

Using Lemma 15 again, we obtain

<- 7\,m+2) <- (l-p)f(m+l)

Continuing this procedure, we obtain

I(Om) < T(O,,m+l) <

Now, since

X(l-p)f(m-i) < (P(O)M-i)'

we obtain (using Lemma 15)

"(O,m) 1r(O,M-l)

Since f is non-decreasing,

X(1-p)f(m-2) < qw(oM-l)

Using Lemma 15 again, we obtain

%(1-p)f(m-2) _ (

Continuing this procedure, we obtain

7,1(oM < T(oM) < '"

Thus,

(O - r(0,i)' for i No

Q.E.D.
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Theorem 17: If f is non-decreasing, then there exists a natural hys-

teretic policy which is undiscounted optimal, and the optimal value of

the upper intervention point (m) is given by

__

r m =minfi c Nojf(i) > c/(l-p)) ,

where ( is the minimum long run expected average cost.

Proof: Consider the case where

p%(-1,o) < w(0,i)' for i E NO

in this case, only policies which eventually turn the server on and never

turn him off are average optimal. By Lemma 14, the policy ir(-l,m)

minimizes the long run expected relative cost for each start-state.

This implies that w(-l,m) is undiscounted optimal.

Consider the case where

< in(cIl) o' (O),m) < min r(-1,O)' 'p(O,m-l)' ':7(O,m+l) ]

From the proof of Theorem 13, only natural hysteretic policies can be

average optimal. From the proof of Lemma 16, we have

@ (Om) (Oi)'for i c NO
'r(O'M)< poi)0

This implie4 that only policies which take the same actions as 1r(O,m)

for the states which are positive recurrent under 7r(O,m) can be average

optimal. Since w(o,m) minimizes the expected relative cost until the

server is on (for each start-state) by Lemma 14, ir(O,m) is undiscounted

optimal.
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If CPr(-l,m) =  (O,m) or %(O,m) T(O,i) for some i / m, then

a finer analysis is needed to determine which of the corresponding policies

is undiscounted optimal. The fact that one of the policies above is

undiscounted optimal follows from Lemma 14. This completes the proof.

Q.E.D.

Corollary 18: If the start-up times are zero, or if the holding cost

function is convex, then there is a natural hysteretic policy which is

undiscounted optii'al, and the optimal value of the upper intervention

point is given by Theorem 17.

Proof: We only have to show that f is a non-decreasing function.

Consider the ca..e where the start-up times are zero. In this case

f(i) E (C )- frf (Oi+l),(iO) - for i N

Clearly, f is non-decreasing, since h is non-decreasing.

Consider the case where the holding cost function is convex. Now

f(i) =E (C E ~)(,)C)
fr(Oi+l),(iO)C i  - EW(O,i),(i,o)Ci

h(i) + E (C.h(O,i+l),(i+l,l) i

+E(C )-E .(.C, for i eN.+(o,i+l),(i+l,o) i+l - (o,,(io)C i 0

The two first terms in the final right-hand side are non-decreasing in i,

since h is non-decreasing. The difference between the two last terms

is non-decreasing in i, since h is convex. Thus, f is non-decreasing.

Q.E.D.
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4.2 The Discounted Case.

The problem with discounting now will. be considered. We assume

that the start-up times are instantaneous. As before, let 9 denote

the set of deterministic stationary policies and let ) denote the

set of deterministic stationary policies which always turn the server

on (or keep him on) at decision epochs where the number of customers

in the system is larger than a certain number.

Without loss of generality, we use the convention that the server

cannot be turned on immediately after he is turned off. The results

obtained by Orkenyi (1976, Chapter 4) then are applicab-. In parti-

cular, any unimprovable policy in is optimal. Also, the policy

which always turns the server off (or keeps :'im off) is optimal if it

is unimprovable and if its value function is finite-valued. These

results will be used implicitly throughout the rest of this section.

A policy ir e I is unimprovable for the particular semi-Markov

decision process under consideration here if

(a) v7(iO) < v t(iO) ,

(b) v ,(i,O) < v7,,.(i,o),

(c) 7r (isl) <_vr,(i~l),

(d) v (i,l) < v,,,(i,l),7I!
for i N, where 7' and iT" are the same policies as 7r except

that they respectively turn the server on (or keep him on) and turn him

off (or keep him off) at the first decision epoch.

Let a, a and o be defined as before.
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[ Theorem 19: If

r

[ r o.h(i) <
iEn

Ia 00 ( t) j e(%4)tt
iso F(t ) edt)(h(i+j)-h(i+j-l)) < K-(l-w)R2 ,

for i N,

then the policy which always turns the server off (or keeps him off)

is optimal.

Proof: We only need to show that (cc) is unimprovable, since the

second condition of the theorem guarantees that its value function is

finite-valued.

Condition (a) holds for all i E NO, since R1 + R2 > 0. Condition

(b) and (d) hold trivially for all i E No . It is now shown that con-

dition (c) also holds for all i E N0. Let 70' be as in condition (c).

Then

r-RI v,,(O,1) -v (.,.)(0,i) r-a 2--

>0.

IAlso

v('(i'l) R2  0 (f -. e (a+)tdt)'h(i+j), for i e N

and

I



v ,(i,!) K + a + 0 ( f ( t) dt)'h(i+j)

2 jEo eo:i JcNo

J cN0

for i e N

This implies that

v 7,(il) - V()(i,l) = K - (I-o)i 2

- ' (f F(t)--- e ( d+)tat)(h(i+j) - h(i+j-l)), for i E N •

j eN0  
J

Therefore,

Vr)(il) < v ,(i,l), for i E N.

Thus condition (c) holds for all i e No, and ?r(-,-) is unimprovable.

Q.E.D.

Corollary 20: If r > aR2 and if

h(i+l) - h(i) <E (K (1-)R for i ENo,

then 7(ooco) is optimal.

Proof: For each i E N,

CO?
(,t) e- (a+%)t dt)(h(i+j) -h(i+j-l)) |

F/t (t)J e (-±)tdt) * (K - (l-)R2 ) |I

2y 

2
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OC(fo F()e-Cdt) .- (K-(l-)

= K - (l-w)R 2 •

Also

a cih(i) < OD
icN

Thus the conditions of the theorem are satisfied and the corollary follows

directly.

Q.E.D.

We will need to indicate the dependence of the value function of

each policy on the start-up and shut-down costs. Therefore, for each

T E 6, a E R, b e R, let v denote the value function of policy0 v7r, a , b
7r, given that the start-up cost is a and the shut-down cost is b.

For each 7r , let ur and w be the functions from

N X (0,1) into R defined by
0

ur = V Rl'.R1

and

'wr _v7..,-R 2, R2

As will be seen later, these functions will be quite useful in the

following.

Lemma 21: If r is a policy (in . ) which always turns the server

on (or keeps him on) when the number of customers in the system is greater

than or equal to, say m, and if in addition,
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VV v (m,1) u m1)

u(i-l. < fo (ii+l) (i l), for i > m

then 7r satisfies the conditions (a), (b), (c) and (d) for i > m.

Proof: The conditions (a) and (c) are trivially satisfied for i > m.

We now show t1hat condition (b) is satisfied for i > m.

Observe that condition (b) is equivalent to I
(i'l) < u7(i,i+l iyl)

for i > m. We prove tt

v.(i,l) < u (ii+l)(i'l), for i > m

by induction on i. The above inequality holds trivially for i = m.

Suppose that it has been proven to hold for some i > m. Then

v.(i,l) < u (i,l) , -4!

or equivalently 4
v i(i+11

Using this together with the last assumption of the lemma, we obtain

ii+,) i+l) (i+l,1) -
v.ilr ! ( i

This completes the induction proof, and condition (b) is satisfied for

i M.
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That condition (d) holds for i > m, is seen as follows. From the

above results,

V (i 0) =v 1 (,1) + R

= v,,(~l)-%, for i >m.

This implies that

< ,i~~pfor i >m,

since R + R 0. This completes the proof of the lenmma.

Q. E. D.

Let ml and m" be the smallest numbers in N too) such that

vr(-l (0,0) < V 7( M ~ (,0), for m e: No

and

V ,"Om)(0, 0) < vnO)(00), for m e N

That m' and m"t exist, follows from the fact that

and

lirn v (oo =v 0,0)
M w(o,m)(0O wr(O'o

Also notice that

_ _ _ 2



since

r a
V ( , )-v (00

>0.

Lemma 22: If r is a policy (in . ) which always turns the server on

(or keeps him on) when the number of customers in the system is greater

than or equal to, say m(m > 0), and if in addition,

v,(m-1,O) < min[v (m-1,O), v r..(m-lO)) I

where w- and 7T" are the same policies as 7r with the only exception

that they do not turn the server on in the states (m,O) and (m+l,O),

respectively, then:I

uTr(m-l,m) (m1_<v'm,1) < U7T(m.,m+l) (m'l) .

Proof: Clearly

v' ,(m-lO) < vlr(m-lO)

is equivalent to

u(m-lm) (m,) < v(,l) ,

and

VT',(m-l, O)  vlr,,(m'O

is equivalent to

v7, (m,l) < U r(m,m+l ) .
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Combining these results, the lemma follows.

Q.E.D.

Let f and g be the two functions from N into R given by

f(m)-UW(m,ml)(m,1) - v (_lm)(m,1) , for m c N

anda

ME g(m) =Uw(m)m+l)(m~) - v( (m,l) , for m c N0

Lem-ma 23; If there is a k such that

( 0, for i < k,
u (m-lml(m,l) - u (mm+!) (ml)

<O, for i > k,

then the conditions (a), (b), (c) and (d) are satisfied for i > m' and

i > m" for r r(-l,m') and ir = 7(O,m"), respectively.

Proof: By Lemma 22,

P(m, < " (,l), for m m' and m = m"
- - ir m,m+l)

Using this together with the condition of the lemma, we obtain

.' l) m_)(ml) for m > min(m',m")

By Lemma 22,

f(m') > 0 ,

and

g(m") > 0

Thus, we can use Lemma 21 to obtain that the conditions (a), (b), (c)
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and (d) are satisfied for i > m' and i > m" for 7r = (-l,m') and

w(0,m"), respectively.

Q.E.D.

Lemma 2)1: Under the condition of Lemma 23, the conditions (a) and (b)

are natisfied for all i c N for both 7T 7r(-l,m') and r = (O,m").
0

Proof: Follows directly from Lemma 25 and the definition of m' and

Lemma 25: Under the condition of Lemma 25,

0, for m < m'

g 0, for m < m"

O, for m> m"

and m' and m" are the smallest integers in N satisfying the above

inequalities.

2
Proof: Since condition (b) holds for i > m' and i > m" for 7r

,-'m,') and 7r = 7(0,m"), respectively,

f(m) > 0, for m > m'

and

g(m) > 0, for m >m"

We prove that

f(m) < 0, for in<m' ,
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by induction on m. Clearly

f(O) < 0

since

7"(-ll)(O)O) - v ( 1 ,)(010) 4a

>0

Suppose that we have proven that

f(m)< 0, for some m < m' -1

This is equivalent to -

u r(m, m+l) (m+l 1) < vr(l,ma+l ) (m+1~))

But by the condition of the lemma,

U (m, m+l) (m+l 1) >_Ur(m+l, m+2)(mll m<m-)N

Thus

uW(m+l,m+2)(m+ll) < v(l, (m+l,l) ,

or equivalently

f (M+l) < 0
- AR

This completes the induction proof. A

That

g(m) < 0, for m < m" ,
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can be shown in a quite similar manner. That

g(o) < 0

follows from the fact that R + R2 > 0. Suppose that we have proven

that

g(m) < 0, for some m < m" - I

This implies that

U-T(m,m+ ) (m+l,1) < v 7T(O'm+i )(m + l 'l ) .

But by the condition of the lemma,

u (m+l,l) (m < m"-l)

U(m,m+l) uw(m+l,mr+2)(m"'( "'

Thus

" (~l~+2)(m+l'l) < v f(O,m+l )(m+!,l ) ,

or equivalently

g(r.m+l) < 0

This completes the induction proof. The last assertion of the lemma

follows trivially from the definition of m' and m".

Q.E.D.

Lemma 26: if

V (_l,m )(i1l) - v7(i,m)(i, for i < m

and there is a k such that
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>0 for i< k
u- u

u~i\-l'i)'l ) 0 for i > k ,

then W(-l,mt) is optimal.

Proof: By Lemmas 23 and 24, we only need to show that condition (d)

holds for i < m' for 7r = 7r(-l,m'). But this follows directly from

the first condition of the lemma.

Q.E.D.

Lermoa 27: If

w7 7i.,i)(il) <w7r(ii+l)(i 1) , for i E N

then

v~ri~~m(i~l) > v rim(i.,l) ,for 0 < i < m.
7r~i1,M) - 7r(i,m)

Proof: It is enough to prove that

i) (i) (im) ,(i,1), for 0 < i < m

since this implies that

v (iKl,m)(i,l) < v 7(i,m)(i,l), for 0 < i < m.

We use an induction proof. Clearly

w (i,i l)(i,l) <v r(i,m)(i,l) , for i m - 1

.ince R I+ R2 > . Using the condition of the lemma for i = m-l, we

obtain

wr(i-1, i) (i,1) < vl7(im)(il), for i m



Suppose that we have pro-ven that

w 7(i-l,i)(il) < V r(im)(il), for some 1 < i < m

This implies that

wlr(i_!,i)(il <_vr(i -l,M)(il

which is equivalent to

w 7r(i -1, i)il1 < V 7r(i-l,m)(i-l,1) I

Using the condition of the lemma, we obtain

This completes the induction proof.

Q.E.D.

Lemma 28: If

VT(O,m,,) (0,1) -V(_l,ml) (0,1) ,

w7r(i-l,i)(i~l) <w7T(i~i+l)(i-tl) , o'

and if there is a k such that

(> 0, for i < k,
Uu

<, for i > k,

then w(O,m") is optimal.

Proof: By Lemmas 23 and 24, we only need to show that conditions (c)

and (d) hold for i < m".
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Condition (c) holds trivially for i > 0. It also holds for i = 0

by the first assumption of the lemma. Condition (d) holds for i < m"

by Lemma 27. Thus, 7r(nO,m") is unimprovable and optimal.

Q.E.D.

Theorem 29: If m" is finite, if

w i)l) <Wl) for i e NI and if there is a k such that

I 0, for i < k ,A
UTT~~l~)(i~) -U7T(i,i+l ) ( i ~l

< 0, for i > k ,

then there is a natural hysteretic Policy which is optimal, and it has
A

the following characterization.

If m' < m", then 7r(-l,m') is optimal. If m" < m, then

r(o,m") is optimal. If m' = m", then T(-l,m') or 7r(O,m") is

optimal according to which of the two policies minimizes v (0,0).
?T

Proof: Consider the policy 7(O,m"). If

V r(O,m,,)(O1l) < v~lm,(0,1),

then ,(O)m") is optimal by Lemma 28. If

V (~,)Ol > v(.,,)Ol,

then m' is finite and 7r(-l,m') is optimal. We now prove this

assertion.

Therefore, assume now that
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This is equivalent to

v r(O,m,,)(m",'l) v v~(l m,,("l) z

By Lemma 25,

m= min(m E N U(0} Iu >( Vmr(.,m)(m,l))

an (m,rn+l) r- ' (m, )

and

m"= min(m E NlUm (m,l) > v (m,l))
w(m,m+l)' - w(O'm)

Thus m' is less than or equal to m", and thus it is finite.

By Lemma 27,

Vo,m')('l) <_.. , ,i,mI)(i'l), for 0 < i < ml'

This leads to

v r(.l,m,)i1 <_v(.l,m,,)(i1

< V~r(O,m,,
)(i)

<v~r(O,m, ) (i,1)

< vv(i,m,)(i,1) , for 0 < i < ml'

Thus, the conditions of Lemma 26 are satisfied, and we can conclude that

7r(-l,m') is optimal.

Therefore, if 7r(-l,m') is optimal, then m' < m". Suppose that

7r(-l,m') is not optimal. Then
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VW(imI (m, < v rn: O ( l) , for some 0 < i < m'

Using Lemma 27, we obtain

v7(O,m.)(m,) Vr(.l,m)(m') •

Therefore, m" is less than or equal to m' by Lemma 25. This com-

pletes the proof of the theorem.

Q.E.D.

Lemma 30: If there is an c > 0 such thal.

h(i+l) - h(i) > -(K + (I-)R I  + for i c No

then m" is finite.

Proof: Suppose first that

h(i+l) - h(i)= - (K + (i-W)R) + e, for i c N0o,

and let m" denote the value of m" for this case. From Section 3.2,

we know that m" is finite.
0

Consider now the general case where

h(i+l) - h(i) > ! (K + (l-w)RI ) + , for i c No

Clearly

U (moitAmo+l)(mo,1l) > vlr(0,mo)(mo )  ,

0 0 0

since the number of customers in the system is always at least as large

when T(m,m+l) is used as when w(O,m) is used (for each m).
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If

h(i+l) - h(i) (K + (1-0)RI), for i E N ,

then

- r(i,i+l)(i,!) 0 0, for i c N

Therefore, in the general case,

uw(i.li)(i)1) u (ii+l)(il) > 0, for i E N
21-

since the number of customers in the system is always at least as large

when w(i,i+l) is used as when w(i-l,i) is used (for each i e N).

Therefore, we can use Lemma 25 to conclude that m" is less than

or equal to m". Thus, m" is finite.0

Q.E.D.

Lemma 31: If there is an E > 0 and an n < such that

h(i+l) h(i) > (K + (1-w)R l) + e, for i > n

if

wT(i.!,i)(i,1) < wlr(i,i+l)(,) fo i N

and if there is a k such that

>0 , for i < k ,
u74i-i1i)(i1) -u~r(i'i+i)(i~l)

< 0, for i > k,

then m" is finite.
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Proof: Let m' be the smallest integer such that

V r m)(kO) < v (k,O), for m > n

7r( 1 ) l 7r(n,m)

Consider now the queueing system where the holding cost function h(i)

has been replaced by the holding cost function h(i+n). Let m" be as
0

in Lemma 50 for this system. Then m" is finite, and
0

i ml -n •fI -n
o n

[ This implies that m" is finite.

By Lemma 27,I

,r(O,m .)(n,l) v_ vW(n,mt)(n,)l)

This implies that

U ,m,m,+,)(m ",l) > v ,, (ml

mlmll± r(n,m) l)

Using Lemma 25, we conclude that m" < mI. Thus m" is finite. I
Q.E.D.

Theorem 32: If h is convex, if

h(i+l) - h(i) > a (K - (l-w)R2), for i NO,

and if

h(i+) - h(i) > (K + (i-1)R 1 , for some i E No ,

then the condition of Theorem 29 hold and there is a natural hysteretic

policy which is optimal.
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Proof: It is easy to see that

uW(ii+l)(i~l) - u ( ,2i)

is a non-decreasing function of i, since h is convex. Thus the last

condition of Theorem 29 holds.

if

then 1(i+e ) -h(i) 51 te irt Kfor o N
~then

W ri~~)(il) =Wlr(i'i+l)(i,l) ,  for i N.

I hrfrh(i+].) -h(i) > ( (K -(I-cu)R2)0 for i e NO0

implies that the second condition of Theorem 29 is satisfied.

By Lemma 31, the first condition (m" <oo) of Theorem 29 also

holds. Thus, the theorem follows.

Q. E. D.

Theorem 33: If there is an 6 > 0 such that

h(i+l) - h(i) > -- (K + (l-Wj)R l) + , for i E No ,

the conditions of Theorem 29 are satisfied and there is a natural hys-

teretic policy which is optimal. H

Proof: Since R + R> ,

h(i+l) - h(i) > a (K- (1-)R 2), for 1 c N
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As it was shown in the proof of Theorem 32, this implies that the second

condition of Theorem 29 holds.

As it was shown in Lemma 30,

h(i+l) - h(i) > 2 (K - (-)RI, for i e N

implies that the last condition of Theorem 29 holds. By the same lemma,

the first condition (m" < ') of Theorem 29 holds. Ths, the theorem

follows.

Q.E.D.

Blackburn (1971) studied the case where the holding cost function

is convex. His Theorem 14 (in Chapter 3) is equivalent to our Theorem 33

with the exception that we do not require the holding cost function to

be convex. When we do require that the holding cost function is convex,

in Theorem 32, the other conditions are made considerably weaker.

Deb (1976) obtained a result almost identical to our Theorem 33 in 
R

an independent study of a related problem.

We will now give an efficient algorithm for computing m' and m"

when they are finite. The only requirement is that f(m) and g(m) can

be calculated efficiently for various values of m. For the cases where

the holding cost function is a quadratic or exponential function, closed

form expressions can be obtained for f and g. The same is true for

the case where the service times are constant or have an Erlang distri-

bution. If the holding cost function has a linear tail, nearly closed I
form expressions can be obtained for f and g. In the following, we

assume that f and g can be evaluated efficiently at all relevant

points. Since the algorithm is the same for both m' and m", we shall

only outline it for m.
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[ m Therefore, suppose m' is finite. The following algorithm finds

Step ]: Let m = 1.

Step 2: While f(m) < 0, double m.

Step 3: Let m =m/2 and m =m.

Step 4: While m - m > 1, do the following:

Let m = (m + m)/2.

If f(m) > O, then set m =m.

Otherwise, set m = m.

Step 5: Let m' = m.

That this algorithm really finds mt follows from Lemma 25. The algorithm

is essentially a bisection method, and it requires only 2 log2 m' function

evaluations.

We close this section by mentioning that most of the results In

this section can be easily extended to cover hysteretic policies which

are not necessarily natural. In particular, an algorithm, similar to the

one above, can be constructed so that it finds the optimal value of both

n and m in .r(n,m), where n is not necessarily less than or equal

to zero.

I
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APPENDIX A: Definition of Basic Symbols

a interest rate.

7W t 2dF(t) second moment of the service time.

tdG(t) = expected length of the start-up time.

0€

P t2dG(t) second moment of the start-up time.

0m

= arrival rate.

g= ( tdF(t))"l  service rate.

00

= e tdG(t) Laplace transform of the start-up time.

p = - =load on system.

a - Laplace transform of the inter-arrival times.

x = oe-C+' tdt)

- e J )dF(t).

e-(a+% -% =)tdF(t) Laplace transform of busy period.

= r e dF(t)= Laplace transform of the service time.

F cumulative distribution function for the service times.

G = cumulative distribution function for the start-up times.
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APPENDIX B: The Optimal Value of mn ip 7r(fO,n'

This appendix contains graphs which show the optimal valiie of n

in 7r(O~m) for various values of the system parameters X, Vaand

V b. The optimal value of in in w(NO,m) is given by

in minti GN jf(i) >
0

where

1- *i 1f' i+1fir -C + X -L, for i C 11- CY*o

It should be noted that a logarithmic scale has been used for G in

the graphs.
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APPENDIX C: The Laplace Transform of the Busy

Period in the M/Ek/1 and M/D/i I
Queneing Systems

This appendix contains graphs showing the Laplace transform of the

busy period in the M/Ek/l and the M/D/I queueing systems. The busy

period is defined as the time from a customer arrives (to an empty system)

until the system becomes empty again. The parameter of the transforms

is denoted by a. As before
Cr

X4cz

and

x

where X is the arrival rate and g is the service rate. The Laplace

transform is denoted by --1

For the M/Ek/i queueing systems, is given by

/ k
1 I, for k e N

P +

For the M/D/I queueing system, 4 is given by

e

QA

g 4
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