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NOMENCLATURE

A Amplitude of oscillations at the test section

A0  Amplitude of oscillations at the free surface
Cd Drag coefficient

CL Maximum lift coefficient

Cm Inertia coefficient
D Diameter of the test cylinder

F Force

Fd Drag force

Fi Inertia force

f Frequency of oscillations, l/T

fv Frequency of vortex shedaing, (first harmonic)
g Gravitational acceleration

4H Elevation, (see Fig. 1)

K Keulegan-Carpenter number, UmT/D

k Roughness height

L Length of the test cylinder

p Pressure
Pe Reynolds number, UmD/v

T Period of oscillations in the tunnel

t Time

U Instantaneous velocity

Um Maximum velocity in a cycle
Umk/V Roughness Reynolds number

8B Frequency parameter, D2 /vT
y Specific weight of water

0 2irt/T
v Kinematic viscosity of water at a given temperature

p Density of water
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INTRODUCTION

The design of structures for the marine environment requires the

prediction of the forces generated by waves and currents. Much of the

present knowledge has been obtained by means of model tests at Reynolds

numbers generally two to three orders of magnitude smaller than prototype

Reynolds numbers. These model tests hbve relied heavily on the so-called

Morison formula for expressing the for,;e as the sum of a drag and inertia

force. The values of the drag and inertia coefficients to be used in the

Morison equation became the subject of many experimental studies in the

last twenty years. The correlation of these coefficients with the. relative.

amplitude of the waves (or.the KeuleganrCarpenter number) has been generally

inconclusive. The complexity of the problem stems •partly from the difficulty

of accurately defining the kinematics of the flow field, partly from the

difficulty 9f accountibg properly for the effects-of time-dependent.separation

and vortex ' Adding, and partly from the difficulty in extrapolating the

laborator. findings to various conditions of the marine environment where

three-dimensional effects and reduced spanwise coherence play important

roles. It thus became clear that much is to be gained by considering plane

oscillatory flow about cylinders at high Reynolds numbers in order to

isolate the influence of individual factors such as relative amplitude,

Reynolds number, and the relative roughness on vortex shedding and resistance.

It is with this realization that the present investigation was undertaken

and the preliminary results obtained with smooth cylinders in a small U-

shaped water tunnel operating at relatively low Reynolds numbers (2,500 to

25,000) have been previously reported [l1.
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The present paper deals with in-line and transverse forces acting on

smooth and sand-roughened circular cylinders in harmonic flow at critical

and transcritical Reynolds numbers.

APPARATUS AND PROCEDURE

Of the two possible methods of generati.ig relative harmonic fluid

motion about bluff bodies, namely, oscillating the fluid or the body, the

former has been choaen. The relative merits and shortcomings of the two

methods have been amply discussed [2] and will not be repeated here.

Suffice it to note that large amplitude structural and free-surface

oscillations commonly enccuntered in oscillating the body in a fluid

otherwise at rest do not lead to reliable data. The advantages of the

apparatus used herein for the purpose under consideration have already-been

demonstrated [1, 2] and will become further evident from the data to be

presented.

The oscillating flow system consisted of a large U-shaped vertical

water tunnel as shown in Fig. 1. The cross-section of the two vertical legs

is 3 ft by 6 ft and that of the test section is 3 ft by 3 ft. The two

corners of the tunnel were carefully streamlined to prevent flow separation.

This design proved to be more than adequate for no separation was encountered,

and also the desired frequency and amplitude of 'oscillation were achieved.

The auxiliary components of the tunnel consisted of plumbing for hot and

cold water, butterfly-valve ,system, and -the air-supply -system.

The :butterfly-valve system (mounted on top of one of the legs of the

:tunnel.) consisted of four plates, each 18 inches ,wide and 36 inches long..

W 1 -four valves were simultaneously driven by 'a simple rack and pinion

2!
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system actuated by an air-driven piston and a three-way pneumatic valve.

Initially, the bucterfly valves were closed and air was introduced to that

side of the tunnel, with an electrically-controlled ball valve, to create

the desired differential water level between the two legs of the tunnel,

Then the valves were opened with the help of the rack and pinion system

and the three-way control valve. This action set the fluid in the tunnel

in oscillatory motion with a natural period of T = 5.500 seconds. The

elevation, acceleration, and all force traces were absolutely free from

secondary oscillations so that no filters whatsoever were used between the

outputs of the transducers anid the recording equipment (see Fig. 2).

Throughout the investigation, the monitoring of the characteristics

of the oscillations in the tunnel was of prime importance in view of the

fact that most of the difficulties in the past in the determination of the

drag, lift, and inertia coefficients resulted from the difficulty of

generating a purely harmonic motion free from vibrations or from applying

theoretically derived rather than measured values for velocities and

accelerations.

Three transducers were used to generate three independent d.c. signals,

each proportional to the instantaneous value of elevation, velocity, and

acceleration. The first one consisted of a platinum wire stretched verti-

cally in one leg of the tunnel. The response of the wire was perfectly

linear within the range of oscillations encountered. The second method

consisted of the measurement of the instantaneous acceleration by means of

a differential-pressure transducer connected to two pressure taps placed

horizontally 2 ft apart and 4 ft to one side of the test section. The

instantaneous acceleration was then calculated from Ap = ps.dU/dt where

10
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Ap is the differential pressure, s the distance between the pressure taps,

and dU/dt is the instantaneous acceleration of the fluid. The third method

again consisted of t~he measurement of the differential pressure between two

pressure taps placed symmetrically on the two vertical legs of the tunnel

at an elevation H ft below the mean water level. The linear differential-

pre!-ure transducer yielded the instantaneous elevation and hence the

amplitude of oscillation since, according to Bernoulli's equation

A = 2Ao = [ap/y] max/[1 - (2n/T) 2H/g] (1)

in which g and T are constant and H is kept con1tant.

All three methods gave nearly identical results and yielded the

amplitude A, the maximum velocity U. = 2irA/T, or the maximum acceleration

am = (2n/T) 2A to an accuracy of about 2 percent relative to each other.

In addition to the methods cited above, the velocity at the test section

was directly measured with a calibrated magnetic velocimeter. These

comparisons, as well as '*he perfectly sinusoidal and noise-free character

of all pressure and force traces, speak for the suitability of the unique

test facility used in this study. The additional details of the apparatus

and procedure are given in [2].

The in-line and transverse forces were measured with two identical,

cantilever type, force transducers, one at each end of the cylinder. The

gages had a capacity of 250 lbs and the deflection of the cantilever end

was less than 0.008 inches. A special housing was built for each gage so

that it can be mounted on the tunnel window and rotated to measure either

the in-line or the transverse force alone. The test cylinders were placed

.• ~11
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in the test section by retracting the gages from their housing and then

pushing them into the bearings mounted on eaci: end of the cylinders. This

allowed a gap of 1/32 inch between the cylinder and the tunnel wall. The

natural frequency of the cylinder and force-tranaducer combination in

water was about 20 times larger than the frequency of oscillation of the

water column and about 10 times larger than the largest frequency of vortex

shedding.

Seven circular cylinders with diameters ranging in size from 2 inches

to 6.5 inches were used. The cylinders were turned on a lathe from

aluminum pipes or plexiilass rods and polished to a mirror-shine surface.

Same cylinders were also used as rough cylinders. For this purpose, sand

was sieved to obtain the desired relative roughness and applied uniformly

on the cylinder surface with an air-drying epoxy paint. After a series of

tests with water at various temperatures, the cylinders were polished again

and covered with sand of different size. This procedure was continued

until the desired ranges of all the governing parameters were covered.

Previously [21, sand paper, sand, and polystyrene beads were used as

roughness elements for a given cylinder in order to achieve the desired

relative roughness in a given Reynolds number range. A detailed study of

the effective roughness of each type of roughness element and the

discussions with the manufacturer have shown that the effective roughness

of the sand paper is larger than the height of the mean sand particles

applied on it. Furthermore, the gluing of the sand paper on the cylinder

invariably resulted in a 'Joint' along the cylinder which might have

generated larger disturbances and promoted earlier transition. The

polystyrene beads, on the other hand, present an effective-roughness

12
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height 'which is often smaller than their actual size [3]. In spite of

these differences, however, the terminal values of the drag coefficients

in the transcritical region remained practically the same for a given

actual effective relative roughness whether the data were obtained with

sand alone or with a combination of other roughness elements. Evidently,

it will be most iiteresting and desirable to carry out similar experiments

with cylinders roughened in the ocean enviroiment. The results presented

herein show that the testing of roughened cylinders with steady uniform

flow is not sufficient for the purposes under consideration, namely the

determination of the fluid loading on offshore structures.

FORCE COEFFICIENTS AND GOVERNING PARAMETERS

Data reduction for the forces in-line with the direction of oscillation

is based on Morison equation [4] and three different analysis of the force

records, namely, Fourier analysis, least squares, and a modified least

squares method.

The in-line force which consists of the drag force Fd and the inertia

force Fi is assumn.d to be given by [4]

F d+Fj=0.5CdLI UIU +0.25CLD2irp.dU/dt (2)

in which Cd and Cm represent rEspectively the drag and inertia coefficients

and U the instantaneous velocity of the ambient flow. For an oscillating

flow represented by U = - UM cose , with e = 2irt/1, the Fourier averages

of Cd and Cm are given by Keulegan and Carpenter as [5]

13



Cd -0.75 f (FmCoOe/PU2LD)dO(3
0

and 27

Cm= (2mT/1r3D) f(Fmsine/pU2 LD)dO (4)
0

in which Fm represents the measured force.

The method of least squares consists of the minimization of the error

between the measured and calculated forces. This proceduer yields [6]

21
Cdls -(8/3w)f (Fmjcosejcose/pDLU2)de (5)

and Cmls= C0*. Evidently, the Fourier analysis and the method of least'

squares yield identical Cm values and that Cd values differ only slightly.

The details of the modified least-squares method may be found in [6] and

will not be repeated here.

The transverse force has been expressed in terms of various coefficients.

Some of these are: (a) the maximum lift coefficient defined by CL = (maximum

amplitude of the transverse firce in a cycle)/(O.5pLDUm); (b) the semi peak-

to-peak value of the transverse force normalized as above; and (c) the

normalized root-mean-square value of the transverse force. In addition, the

frequency of the oscillations of the transverse force and the Strouhal number

have been evaluated.

It is recognized that the coefficients cited above are not constant

throughout the cycle and are either-time-invariant averages or peak values

at a particular moment in the cycle. A simple dimensional analysis of the

flow under consideration shows that the time-dependent coefficients may be

written as

~2F/(O.5LDpUM) = f(UmT/0, UmD/v, k/D, t/T) (6)

14
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in which F represents the in-line or the transverse force. Equation (6),

combined with Eq. (2), assuming for now that the latter is indeed valid,

yields

Cd= f,(K, Re, k/D, t/T) (7)

Cm= fK, Re, k/D, t/T) (8)

in which K = UmT/D and Re = UmD/v , and k/D represents the relative roughness.

There is no simple way to deal with Eqs. (7) and (8) even for the most

manageable time-dependent flows. Another and perhaps the only other alter-

native is to eliminate time as an independent variable and consider suitable

t~me-invariant averages as given by Eqs. (3), (4), and (5).

The one-parameter characterization of the effect of roughness needs

sone justification. It is of course recognized that not only the relative

size of the roughness elements but also their shape and distribution may be

quite important. It is in fact partly for the difficulty of uniquely

specifying the 'roughness' and partly for the differences in other test

conJitions that there are considerable differences between the steady-flow

data reported by various workers [7-10], particularly in the drag crisis

region. For example, the effective surface roughness may be larger or

smaller than the nominal relative roughness based on the geometric size of

the roughness element depending on the shape and arrangement of the roughness

elements [3]. It is partly for this reason that it has been thought advisable

to investigate afresh the effect of roughness on cylinders in harmonic flow

using only sand of uniform size and paking rather than three different

types of roughness elements, (see Fig. 3 for sample photographs of the sand-

roughened surfaces).

15
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Thus, one has

[Cd Cm CL , . ] = fi(K , Re , k/D) (9)

It appears, for the purposes of Eq. (9), that the Reynolds number is not the

most suitable parameter involving viscosity. The primary reasons for this are

that the effect of viscosity is relatively small and that Um appears in both

K and Re. Thus, replacing Re by Re/K = D2 /vT in Eq. (9), one has

Ci[a coefficient] = fi(K , 0 , k/D) (10)

in which 8 = D2 /vT and shall be called the 'frequency parameter'.

From the standpoint of dimensional analysis, either the Reynolds number

or 8 could be used as an independent variable. Evidently, a is constant for

a series of experiments conducted with a cylinder of diameter D in water of

uniform and constant temperature since T is kept constant in a U-shaped

oscillating flow tunnel. Then the variation of a force coefficient with K

may be plotted for constant values of 8. Subsequently, one can easily

recover the Reynolds number from Re = OK and connect the points, on each

8 = constant curve, representinq a given Reynolds number.

From the standpoint of laminar boundary layer theory, 8 represents

the ratio of the rate of diffusion of vorticity through a distance 6 (the

CILuuuaru-iayer Lhickness) to the rate of diffusion through a distance D.

This ratio is also equal to (D/6) 2 and, when it is large, gradients of

velocity in the direction of flow are small compared with the gradients

normal to the boundary, a situation to which the boundary-layer theory is

applicable [11]. It should be noted in passing that the added mass and drag

coefficients for a cylinder or sphere undergoing harmonic oscillations

16-i -+-- - ~ - - -



without separation in a fluid otherwise at rest are determined uniquely

in terms of 8 [11].

Let us now re-examine a set of data previously obtained by others [5]

partly to illustrate the use and significance of 0 as one of the governing

parameters and partly to take up the question of the effect of Reynolds

number on the force coefficients.

The data given by Keulegan and Carpenter [5] may be represented by 12

different values of S. The drag and inertia coefficients are plotted in

Figs. 4 and 5 and connected with straightline segments. Evidently, the

identification of the individual data points in terms of the cylinder

diameter, as was done by Keulegan and Carpenter [5] and also by Sarpkaya [1],

irrespective of the o values gives the impression of a scatter in the data

and invites one to draw a mean drag curve through all data points. Such a

temptation is further increased by the fact that the data for each 8 span

over only a small range of K values. Evidently, the drawing of such a mean

curve eliminates the dependence of Cd and/or Cm on 8 and hence on Re.

Also shown in Figs. 4 and 5 are points representing four selected

Reynolds numbers. The corresponding K values for each Re and 0 were calculated

from K = Re/$. The points corresponding to the selected Reynolds nunbers are

reproduced in Figs. 6 and 7. These figures show, within the range of Re and

K values encountered in Keulegan-Carpenter data, that (a) Cd depends on bothdi

K and Re and decreases with increasing Re for a given K; and that (b) Cm

depends on both K and Re for K larger than approximately 15 and decreases

with increasing Re. A similar analysis of Sarpkaya's data [1] also shows

that Cd and Cm dep,.l on both K and Re and that Cm increases with increasing

"Re. Notwithstanding this difference in the variation of Cm between the two

17



sets of data, Figs. 6 and 7 put to rest the long standing controversy

regarding the dependence or lack of dependence of Cd and Cm on Re and

show the importance of a as one of the governing parameters in interpreting

the data, in interpolating the K values for a given Re, and in providing

guide lines for further experiments as far as the ranges of K and a

are concerned.

RESULTS AND DISCUSSIONS

Drag and Inertia Coefficients for Smooth Cylinders -

Only the representative data will be presented herein for sake of

brevity. The tabulated as well as plotted data for all force coefficients

for smooth circular cylinders are given in [2].

Figures 8 and 9 show Cd versus K and Cm versus K for five representative

values of s. Evidently, there is very little scatter in the data even though

the figures represent the results of four independent runs. Mean lines

drawn through the data shown in Figs. 8 and 9 are presented in Figs. 10

and 11 together with the constant Reynolds number lines obtained through

the use of K = Re/$. Evidently, there is a remarkable correlation between

the force coefficients, Reynolds number, and the Keulegan-Carpenter number.

The smoothness of the constant Re lines is another indication of the

consistency of the data from one cylinder to another.

Additional data obtained since the writing of Ref. [2] are included

herein in the figures showing Cd and Cm as a function of the Reynolds

number for constant values of K and/or kVD.

18
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Figures 10 and 11 show that Cd and Cm do not vary appreciably with Re

for Re smaller than about 20,000 and help to explain the conclusions

previously reached by Keulegan and Carpenter [5] and Sarpkaya [l].

The entire data-, obtained since the inception of the- investigation

about five-years ago, are shown as a function of Re for constant values of

K 1n, Figs. 12 and 13. These figures clearly show, that Cd. decreases with

increasing: Re to a. value, of about 0.5 (depending on K) and then gradually

rises to a constant transcritical' value within the range of Reynolds

numbers encountered. The inertia coeffibient Cm increases with increasing.

Re, reaches a max-imum, and then' gradually approaches a value, of about 1 .75.

It will be recall'ed that the Keulegan-Carpenter data indicated an opposite

trend. It is believed that the Keul'egan-Carpenter data for Cm are not quite,

reliable for K > 15.. This is aTso evident from the observation that the

data-corresponding to 0 = 141 appear to be out. of place (see Fig. 5) relative.

to those corresponding to 0 = 97 and 0 = 217'. Suffice it to say that the

resul~ts presented in Figs. 12 and 13 shed new light on the variations of the

drag and. inertia coefficients and. partly expl'ain the. reasons for the large

scatter encountered- in the plots, of Cd versus Re and Cm versus Re as compiled'

by Wiege [12],.

Drag. and Inertia- Coefficients for Sand-Roughened. Cylinders -

I* v~ie*- of the. fact that. each coefficient depends on at 1 east. three,

independent parameters- (Re, K,. and. k,/D:)',, it iVs not possible too. show- on

two-diinensibna1l plotbs; the variation- of either Cd or Cm for' a&lT vaTues- of"

Re,, K,% an&- kID.. However,, this- d.iff-icul'ty, is. a-Teviated- by. the fact that,

theý variation of- a. gijven force coefficient for a gjven, Re and; k-ID' is:. not.

19-
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Vot very strong from one K to another. Thus it has been decided to choose five

representative K values, namely K = 20, 30, 40, 60, and 100, to present the

variation of Cd and Cm with Re for five representative k/D values,

Figures 14 through 18 show Cd and Cm for five values of K as a function

of the Reynolds number. Each curve on each plot corresponds to a particular

relative roughness. Also shown on each figure is the corresponding drag

or inertia coefficient for the smooth cylinder at the corresponding K value.

The k/D = constant curves on each Cd plot are quite similar to those

found for steady flow about rough cylinders [7-10]. For a given relative

roughness, the drag coefficient does not significantly differ from its

smooth cylinder value at very low Reynolds numbers. As the Reynolds number

increases, Cd for the rough cylinder decreases rapidly, goes through the

region of 'drag crisis' at a Reynolds number considerably lower than that

for the smooth cylin-.r and then rises sharply to a nearly constant transcritical

value. The larger the relative roughness the larger is the magnitude of the

minimum Cd and the smaller is the Reynolds number at which that minimum occurs.

However, there appears to be a minimum Reynolds number below which the

results for rough cylinders do not significantly differ from those corre-

sponding to smooth cylinders. In other words, the Reynolds number must be

sufficiently high for the roughness to play a role on the drag and flow.

characteristics of the cylinder.

The figures for the drag coefficient also exhibit a few other interesting.

features. First, even a relative roughness as small as 1/800 can give rise

to transcritical drag coefficients which are considerably higher than those

for the smooth cylinder. Secondly, the asymptotic values of the drag
iI

coefficient for roughened cylinders within the range of Reynolds numbers
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encountered, can reach values which are considerably higher than those

od obtained with steady flows over cylinders of similar roughness ratio. in

other words, it is not safe to assume that the transcritical drag coeffi-

cient in harmonic flows will be identical to those found in steady flows

and will not exceed a value of about unity. On the basis of the present

results it may be said that such a conjecture is not accurate even for K

values as large as 100 (corresponding to a wave height-to-diameter ratio

of about 30). In steady flow about a cylinder, roughness precipitates the

occurrence of 'drag crisis' and gives rise to a minimum drag coefficient

which is larger than that obtained with a smooth cylinder [7-10]. This

is partly because of the transition to turbulence of the free sheat layers

at relatively lower Reynolds numbers (due to disturbances brought about by

the roughness elements) and partly because of the retardation of the

boundary-layer flow by roughness (higher skin- friction) and, hence, earlier

separation. In harmonic flow about a cylinder, roughness appears to play

an even more complex role because of the time-dependence of the boundary

layer and the position of the separation points. In particular, the

magnitude of the transverse force (to be discussed subsequentlyl strongly

suggests that the combined effect of uniformly-distributed roughness and

time dependence (even in the drag dominated region of K values) is to

increase the strength of vortices and the- spanwise coherence relative to

that in steady flow at the same Re about the same cylinder.

The Reynolds number at which the drag ci-siS occurs" gives rise to an

'inertia crisis'. In other words, for' a gtverr reTative roughness,. Cm rises-

rapidly to a maximum at a Reynolds number which corresponds to that at which,

Cd. drops to a minimum. At relatively higher Reynol'ds- numbers,. Cm decreases
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somewhat and then attains nearly constant values which are lower than those

corresponding to the smooth cylinders. It is also apparent from the inertia

coefficient curves that the smaller the relative roughness the larger is

the maximum inertia coefficient. For relatively smaller roughnesses such

as k/D = 1/800, the terminal value of Cm is nearly equal to that of a

smooth cylinder. The behavior of Cm is not entirely unexpected. It has

long been noted [5] that whenever there is a rise in the drag coefficient,

there also is a aecrease in the inertia coefficient.

Before closing the discussion of the drag and inertia coefficients,

it is necessary to point out the remarkably consistent behavior of the data

points, particularly for Cd. Perhaps it would not have been too surprising

"had tie data been obtained for one relative roughness through the use of

only one cylinder. In the present investigation, the use of several

cylinders and several temperatures for a given cylinder always provided

data for nearly identical k/D, Re, and K values. For instance, the Cd and

Cm values obtained at a given K, Re, and relative rouqhness k/D, using a

5 inch cylinder at a ljw temperature corresponds to the Cd and Cm values

using a 4-in. cylinder at a high temperature. Remembering the fact that

not only the actual size of the cylinders but also the size of the sand

grains differed in order to obtain the same k/D, and the fact that the

experiments were carried out at different temperatures and times, one fully

realizes that the correlation of the data and the •'elatively small scatter

are inceed quite remarkable. This is due not only to the repeatability of

the tests but also due to the vibration-free operation of the entire

tunnel system. 4

The correlation length along the cylinders was not directly measured.
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However, one series of experiments was conducted with a 2.18-diameters

(12 inches) long, centrally located, section of a 5.5-inch cylinder which

'floated' on the ends of the force transducers with small gaps (0.002 in.)

between the section and the rest of the rigidly supported 12-inch long

sections. The floating and dummy s-ections were carefully polished and

tested as a smooth cylinder. Then both sections -were coated with sand for

a relative roughness of k/D = 1/100. The comparison of the lift, drag., and

inertia coefficients obtained with the short section with those obtained

with the longer section spanning the entire test section has shown that

the two sets of coefficients are -nearly identical for both smooth and

roughened cylinders. The differences were in the order of experimental

errors and, if anything, the drag coefficients obtained with the short

section were about 3% larger than those obtained with the 3-foot section.

Evidently, the force-cancelling effects f -phase shifts which may have been

brought about by three-dimensional effects were either insignificant or

non-existent. Thus, it is concluded that both the three-dimensionality

effects and the boundary-layer effects played very little or -no role in

the present investigation.

A comparison of the results Shown in Figs, 14 through 18 with thr

previously reported [2, 1.3] preliminary results for -roughened cylinders for

K = '50 alone indicates that the type of -roughness may affect the 'variation

of the drag 'coefficient with -Reynolds -number, particular'iy in the drag-

-crisis region. Previously., sand ýpaper, sand, and .pol6ystyrene -beads -were

used T-2] as roughness -elements for a given Vcylinder in order to achieve

the desired -relative -roughness in a ogiven Reynolds -number range. .1 7spi~te

lOf the differences in the '•effect:ive roughness" -of the three -types of

-roughness elements, however, the terminal values of the drag -coefficients
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in the transcritical region remained practically the same for a given actual

effective relative roughness whether the data were obtained with sand alone

or with a combination of other roughness elements. Evidently, it will be

most interesting and desirable to carry out similar experiments with cylinders

roughened in the ocean environment.

In-Line Force Coefficients and the Roughness Reynolds Number -

The data given in Figs. 18a and 18b are replotted in Fig. 19 as a

function of the roughness Reynolds number defined by Umk/v for all values

of k/D. Similar plots may be prepared for other values of K through the

use of Figs. 14 through 17.

It is rather remarkable that Cd and Cm become practically independent

of k/D for Umk/v larger than about 300. In other words, for sufficiently

large values of the roughness Reynolds number, the drag and inertia coeffi-

cients for a roughened cylinder in a given harmonic flow are deterriiined by

the height of the excrescences rather than by the diameter of the cylinder.

The importance and the consequences of this result are self evident for

supercritical Reynolds number simulation for flow over circular cylinders.

A detailed discussion of this and other pertinent concepts for steady flow

over roughened cylinders is presented by Szechenyi [10] and will not be

repeated here.

Transverse Force and Vortex Shedding for Smooth and Rough Cyli:jders -

The data for the maximum lift coefficient for smooth cylinders are

summarized in Figs. 20 and 21. The original data in plotted and tabulated

form are presented in [2]. Evidently, the lift coefficient depends on Re

for Re larger than about 20,000 and rapidly decreases to about 0.2 for
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larger values of Re and K. It is also evident that the lift force is a

major portion of the total force acting on the cylinder and cannot be

neglected in the design of strictures.

The frequency of the alternating transverse force is shown in Fig. 22

in terms of fr = fv/f as a function of K and Re. It is apparent that fr is

not constant and increases with increasing K and Re. Furthermore, a quick

L.alculation through the use of Fig. 22 shows that the Strouhal number given

by St = feD/Um = f r/K is not constant at 0.2, as in steady flow, and depends

on both Re and K.

Several additional facts are of special importe.ice in connection with

the variation of the lift coefficient and the frequency ratio. Firstly,

the lift curve begins at K = 5. There is an occasional vortex shedding for

K values between 4 and 5. The minimum value of K at which lift or asymmetry

in the vortices develops is, by the very nature of vortices, extremely

sensitive to the experimental conditions. Evidently, what is of special

importance is not the highest value of K at which the symmetry of the

vortices can be maintained with extreme care but the lowest value- of K below

which asymmetry cannot be initiated in spite of the magnitude of the external

disturbances. A careful analysis of all the lift traces has shown that there

is a 90% chance that the asymmetry will occur at K 5. At K 4, there is

only a 5% chance that the asymmetry will. appear for very short periods of

time. Secondly, each f = N line does not represent an absolute line of
r

demarcation between the frequencies N-I and- N+l. Occasionaly,, a. frequency.

of N+11 will occur on the N-I1 side of the. NI Tine, ancL vice versa. Thirdly',.

the, frequency of vortex shedding is not a- pure mul-tiple of the frequency, of

flow- oscil lation. Evidently, fr' as an integer, is a measure of the-number
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o? vortices actually shed during a cycle. However, all of the vortices are

not fully developed or completely shed. Thus, the fractional part of fr

indicates an incomplete vortex shedding. This phenomenon is particularly

common for fr values in the neighborhood of 3 and also for large values of

K and Re where the oscillations of the transverse force become quite irregular.

The significance of the foregoing relative to the in-line force will be taken

up separately.

The maximum lift coefficient for the r3ughened cylinders are presented

in Fig. 23 as a function of K for various values of 8 and one particular

value of k/D. Additional details may be found in [14]. Evidently, CL does

not vary appreciably with either 8 or Re. The data presented in [14] for

other values of k/D show that CL does not vary with k/D also within the range

of the parameters encountered. If there is some variation with these parameters

( Re and s), it is certainly masked by the scatter of the data resulting

from the random nature of the lift force. In fact, it is not too uncommon

to obtain a variation of 20-25% for a given value of K. This fact is of

importance in discussing the effect of the Reynolds number on the lift coeffi-

cient. Also shown in Fig. 23 is the lift coefficient for smooth cylinders for

8 in the range of 1000 to 2000. It is rather surprising that the smooth

cylinder data at relatively low values of 8 form more or less the upper

limit of the rough cylinder data. In other words, the lift coefficient for

rough cylinders does not depend on Re and becomes almost Identical to that

for smooth cylinders at very low'Reynolds numbers. The consequences of this

observation for modil testing purposes are rather obvious. The'behavior of

the lift coefficient for rough cylinders is in conformity with the fact that

the transcritical drag coefficient for rough cylinders (steady or harmonic

flow) nearly returns to its subcritical value.
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As noted earlier, the alternating nature of the transverse force is as

important as its magnitude. It is for this reason that the frequency of the

lift force has been determined for rough cylinders also. A close examination

of the frequency ratios shows that fr/K remains essentially constant at a

value of about 0.22 [14]. To be sure, there are variations from one cylinder

to another and from a given combination of Re and K to another. Nevertheless,

the Strouhal number is fairly constant for all roughnesses, relative amplitudes,

and Reynolds numbers larger than about 20,000. This fact is of special

importance in determining the in-line and transverse vibrational response of

the elements of a structure to wave-induced forces. One must, however, keep

in mind the fact that the spanwise coherence along a vertical cylinder in the

ocean environment may be reduced by the variation of the velocity vector with

time and depth and that the lift coefficients presented herein represent the

maximum possible values of the transverse force.

ON THE APPLICABILITY OF MORISON'S EQUATION AND THE PRESENT DATA

Since its inception, questions have been raised regarding the applicability

of Morison's equation to time-dependent flows in general and to wavy flows in

particular. It has been known that the equation predicts quite accurately

the in-line force for both very small values of K (K smaller than-about 10)

and for large values of K (K larger than about 20). For intermediate values

of K, differences have been observed between the measured and calculated

values. These differences have been attributed either to the imprecise

measurement of the kinematics of the flow or to the shortcomings of the

equation. It is now realized that not only these two factors (namely the.

heuristic nature of the equation and the difficulty of measuring the local
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velocities and accelerations) but also the three-dimensional nature of the

wavy flows and decreased spanwise coherence must be partly responsible for

the differences between the measured and calculated forces. In fact, it

would have been extremely difficult to draw meaningful conclusions regarding

the applicability of Morison's equation through the use of the field data.

It is only through the use of carefully conducted two-dimensional harmonic

flow experiments that one can ascertain the degree of applicability of

Morison's equation.

Figure 24 shows the calculateu aid measured forces normalized by
20.5DLpU• together with the normalized velocity and the difference between

the measured and calculated forces for a relatively large value of k/D.

It is evident that there is often a remarkable correspondence between the

measured and calculated forces particularly for K values larger than about

20. This is also true for K smaller than about 10. In the disturbance-

sensitive region of vortex formation and onset of asymmetry: the growth and

shedding of single or alternating vortices have profound effects not only

on the measured in-line force but also on the force coefficients calculated.

The fractional shedding of vortices and the vortex-induced oscillations in

the in-line force give rise to an asymmetry in the magnitude of the in-line

force. In other words, the in-line force can no longer be represented by

an odd harmonic function. Thus, it is clear that part of the reason for

the larger differences between the measured and calculated forces even in

perfectly two-dimensional harmonic flows is due to the use of the force

coefficients which are derived by assuming the in-line force to be given by

an odd harmonic function. In the range of K values from about 10 to 20,

particularly for low values of Re, this assumption is not quite correct as

evidenced by the present experiments, (see also Ref. [2]).
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In considering the relevance of the coefficients presented herein and

of the equation devised by Morison to wave induced loads on offshore

structures, it is of course important to take into account the differences

between uniform two-dimensional harmonic motion and the wave motion where

the velocity vector both rotates with time at a point and decays in magnitude

with depth. The spanwise variations of the flow in general lead to reduced

spanwise coherence. It is safe to assume that both the three-dimensionality

of the flow and the reduction of the correlation length along the cylinder,

in an ocean environment, tend to increase the base pressure and thus give rise

to transcritical drag coefficients which are smaller than those obtained

with purely two-dimensional flows. The drag coefficients presented herein

obviously represent their maximum possible values since they have resulted

from a uniform, two-dimensional flow where the instantaneous wake of the

cylinder has the highest possible degree of spanwise coherence. The similarity

between the reduced drag coefficient due to reduced spanwise coherence in

wavy flows and the drag coefficient in steady flows (both for roughened

cylinders) is rather fortuitous and does not imply the equality of the two

drag coefficients in the drag-dominated region of the K values. It is rather

unfortunate that even the experiments with wavy flows cannot be expected to

isolate the effect of reduced spanwise coherence since such experiments

surely bring in other factors whose influence is combined in a complex way

with that of the reduced correlation. Thus, the value of the results

presented herein lies in the fact that the designer now knows the maximum

possible value of the coefficients under consideration, if not the values

which might be more appropriate to the conditions under which the structure

must survive and function.
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CONCLUSIONS

The results presenteJ herein warrant the following conclusions:

(a) For smooth cylinders, the drag, lift, and the inertia coefficients

depend on both the Reynolds and Keulegan and Carpenter numbers; (b) For

roughened cylinders, the drag and inertia coefficients depend on Re, K,

and k/D; (c) The drag coefficient undergoes a 'drag crisis' and rises to a

nearly constant value ?epending on k/D) within the range of Reynolds and

Keulegan-Carpenter numbers tested; (d) The asymptotic values of the drag

coefficient for K < 100 are larger than the transcritical drag coefficients

for roughened cylinders in steady flow; (e) The results show that neither

the accele-ation modulus Rl = 2ir/K nor the ratio of the maximum inertial

force to maximum drag force R2 = (ir2/K)(C m/C d) is small enough (for the K,

Re, and k/D values tested) for the harmonic flow to behave like a pseudo-

steady flow over a roughened cylinder, (e.g. for K = 100, Re = 1,000,000,

and k/D = 1/100, one has Cd = 1.55, Cm 1.6, and R, = 0.063, R2 = 0.10);

(f) The importance of the role played by roughness in harmonic flow is

further evidenced by the fact that in the same range of K and Re values, the

transcritical Cd values for steady and harmonic flows become neariy identical

even though the force ratio R2 may be larger than that for the rough cylinder

case, (e.g. for K = 100, Re = 1,000,000, one has Cd = 0.65, Cm = 1.75, and

Rl = 0.063, and R2 = 0.27); (g) The physical mechanism responsible for the

surprisingly large effect of roughness on resistance in flows with relatively

small accelerations and decelerations needs careful study; (g) The inertia

coefficient also underees an 'inertia crisis' at Re values corresponding to

the 'drag crisis' at which Cm reaches a maximum value and then asymptotically

decreases; (h) The drag and inertia coefficients become independent of k/D

for roughness Reynolds numbers larger than about 300; (i) The transverse
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force is a significant fraction of the total resistance at all Reynolds

numbers for both smooth and rough cylinders and must be taken into consid-

eration in the design of structures; (j) The Strouhal number for smooth

cylinders depends on both K and Re. For rough cylinders, it remains nearly

constant for all Reynolds numbers at about 0.22; (k) The results presented

herein and the conclusions arrived at are applicable only to cylinders in

harmonic flow with zero mean velocity within the range of the Re, K, and

k/D values encountered in the tests. The force coefficients for wavy flows

(with or without a mean velocity superimposed on them) may differ somewhat

from those presented herein partly due to the reduced coherence along the

iength of the cylinder, partly due to the three-dimensionality of the flow,

and partly due to the nonlinear interaction between the current and the

waves. It is thus hoped that the data and the discussions presented herein

will draw serious attention to the effect of roughness, three dimensionality,

and spanwise coherence in wavy flows and will accentuate the need for

additional laboratory and full scale experiments.
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