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up to 1,500,000; Keu]egan Carpenter numbers up to 100; and relative sand-
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been determined through »he use of the Fourier analysis and the least-
squares method. The transverse force (1ift) has been analysed in terms of
its maximum, semi peak-to-peak, and root-mean-square values. In addition.
the frequency of vortex shedding and the Strouhal number have been determined.

The results have shown that (a) for smooth cylinders, all of the
coefficients cited above are functions of the Reynolds and Keulegan- -
Carpenter numbers, particularly for Reynolds numbers larger than about
20,000; (b) for rough cylinders, the force coefficients also depend on the
relative roughness k/D and differ significantly from those corresponding
‘8 the smooth cylinder; and that (c) the use of the 'frequency parameter’
D4¢/vT and the roughness Reynolds number Ugpk/v allow a new interpretation of
the present as well as the previously obta1ned data.
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NOMENCLATURE

Amplitude of oscillations at the test section
Amplitude of oscillations at the free surface
Drag coefficient

Maximum 1ift coefficient

Inertia coefficient

Diameter of the test cylinder

Force

Drag force

Inertia force

Frequency of oscillations, 1/T

Frequency of vortex shedding, (first harmonic)
Gravitational acceleration

Elevation, (see Fig. 1)

Keulegan-Carpenter number, UmT/D

Roughness height

Length of the test cylinder

Pressure

Reynolds number, UmD/v

Period of oscillations in the tunnel

Time

Instantaneous velocity

Maximum velocity in a cycle

Roughness Reynolds number

Frequency parcmeter, DZ/vT

Specific weight of water

2nt/T

Kinematic viscosity of water at a given temperature
Density of water
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INTRODUCTION

The design of structures for the marine environment requires the
prediction of the forces generated by waves and currents. Much of the
present knowledge has been obtained by means of model tests at Reynolds
numbers generally two to three orders of magnitude smaller than prototype
Reynolds numbers. These model tests have relied heavily on the so-called
Morison formula for expressing the for:e as the sum of a drag and inertia
force. The values of the drag and inertia coefficients to be used in the
Morison equatjon became the subject of many experimental studies in the .
last twenty years., The correlation of these coefficients with the relative
amplitude of the waves (or.the Keulegan-Carpenter number) has been generally
incong1usive. The complexity of the problem stems partly from the difficulty
of accurately defining the kinematics of the flow field, partly from the-
difficulty of accounting properly for the effects-of time-dependent separation
and vortex < 2dding, and partly from the difficulty in extrapolating the
laborator, findings to various conditions of the marine environment where
three-dimensional effects and reduced spanwise coherence play imnportant
roles. It thus became clear that much is to be gained by considering plane
oscillatory flow about cylinders at high Reynolds numbers in order to
isolate the influence of individual factors sucn as relative amplitude,
Reynolds number, and the relative roughness on vortex shedding and resistance.
It is with this realization that the present investigation was undertaken
and the preliminary results obtained with smooth cylinders in a small U-
shaped water tunnel operating at relatively low Reynolds numbers (2,500 to

25,000) have been previously reported [1].
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The present paper deals with in-line and transverse forces acting on
smooth and sand-roughened circular cylinders in harmonic flow at critical

and transcritical Reynolds numbers.

APPARATUS AND PROCEDURE

0f the two possible methods of generating relative harmonic fluid
motion about bluff bodies, namely, oscillatirg the fluid or the body, the
former has been chc.en. The relative merits and shortcomings of the two
methods have been amply discussed [2] and will not be repeated here.

Suffice it to note that large amplitude structural and free-surface
oscillations commonly enccuntered in oscillating the body in a fluid
otherwise at rest do not lead to reliable .data. The advantages of the
apparatus used herein for the purpose under consideration have already been
demonstrated [1, 2] and will become further evident from the data to be
presented.

The oscillating flow system consisted of a large U-shaped vertical
water tunnel as shown in Fig. 1. The cross-section of the two vertical legs
is 3 ft by 6 ft and that of the test section is 3 ft by 3 ft. The two
corners of the tunnel were carefully streamlined to prevent flow separation.
This design proved to be more than adequate for no separation was encountered,
and also the desired frequency and amplitude of oscillation were achieved.
The auxiliary components of the tunnel consisted of plumbing for hot and
cold water, butterfly-valve system, and ‘the air-supply system.

The butterfly-valve system (mounted on top of one of the legs of the
tunnel) consisted of four plates, each 18 inches wide and 36‘inches long.

‘ATl four valves were -simultaneously driven by a simple rack and pinion
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system actuated by an air-driven piston and a three-wey pneumatic valve.
Initially, the bucterfly valves were closed and air was introduced to that
side of the tunnel, with an electrically-controlled ball valve, to create
the desired differential water level between the two legs of the tunnel,
Then the valves were opened with the help of the rack and pinion system
and the three-way control valve. This action set the fluid in the turnnel
in oscillatory motion with a natural period of T = 5.500 seconds. The
elevation, acceleration, and all force traces were absolutely free from
secondary oscillations so that no filters whatsoever were used between the
outputs of the transducers aund the recording equipment (see Fig. 2).

Throughout the investigation, the monitoring of the characteristics
of the oscillations in the tunnel was of prime importance in view of the
fact that most of the difficulties in the past in the determination of the
drag, 1ift, and inertia ccefficients resulted from the difficulty of
generating a purely harmonic motion free from vibrations or from applying
theoretically derived rather than measured values for velocities and
accelerations.

Three transducers were used to generate three independent d.c. signals,
each proportional to the instantaneous value of elevation, velocity, and
accé]eration. The first one consisted of a platinum wire stretched verti-
cally in one leg of the tunnel. The response of the wire was perfectly
linear within the range of oscillations encountered. The second method
consisted of the measurement of the’instantaneous acceleration by means of
a differential-pressure transducer connected to two pressure taps placéd
horizontally 2 ft apart and 4 ft to one side of the test section. The

instantaneous acceleration was then calculated from Ap = ps.dU/dt where
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Ap is the differential pressure, s the distance between the pressure taps,
and dU/dt is the instantaneous acceleration of the fluid. The third method
again consisted of the measurement of the differential pressure between two
pressure taps placed symmetrically on the two vertical legs of the tunnel
at an elevation H ft below the mean water level. The linear differential-
pre:_ure transducer yielded the instantaneous elevation and hence the

amplitude of oscillation since, according to Bernoulli's equation
A= 28, = [ap/y] /D1 - (20/T)PH/g] (1)

in which g and T are constant. and H is kept con: fant.

A1l three methods gave nearly identical results and yielded the
amplitude A, the maximum velocity Um = 27A/T, or the maximum acceleration
a, = (Zn/T)zA to an accuracy of about 2 percent relative to each other.
In addition to the methods cited above, the velocity at the test section
was directly measured with a calibrated magnetic velocimeter. These
comparisons, as well as “he perfectly sinusoidal and noise-free character
of all pressure and force traces, speak for the suitability of the unique
test facility used in this study. The additional details of the apparatus
and procedure are given in [2].

The in-line and transverse forces were measured with two identical,
cantilever type, force transducers, one at each end of the cylinder. The
gages had a capacity of 250 1bs and the deflection cf the cantilever end
was less than 0.008 inches. A special housing was built for each gage so
that it can be mounted on the tunnel window and rotated to measure either

the in-]ine or the transverse force alone. The test cylinders were placed
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in the test section by retracting the gages from their housing and then
pushing them into the bearings mounted on eacr end of the cylinders. This
allowed a gap of 1/32 inch between the cylinder and the tunnel wall. The
natural frequency of the cylinder and force-tranaducer combination in
water was about 20 times larger than the frequency of oscillation of the
water column and about 10 times larger than the largest frequency of vortex
shedding.

Seven circular cylinders with diameters ranging in size from 2 inches
to 6.5 inches were used. The cylinders were tufned on a lathe from
aluminum pipes or plexinlass rods and polished to a mirror-shine surface.
Same cylinders were also used as rough cylinders. Fror this purpose, sand
was sieved to obtain the desired relative roughness and applied uniformly
on the cylinder surface with an air-drying epoxy paint. After a series of
tests'with water at various temperatures, the cylinders were polished again
and covered with sand of different size. This procedure was continued
until the desjred ranges of all the governing parameters were covered.

Previously [2], sand paper, sand, and polystyrene beads were used as
roughness elements for a given cylinder in order to achieve the desired
relative roughness in a given Reynolds number range. A detailed study of
the effective roughness of each type of roughness element and the
discussions with the manufacturer have shown that the effective roughness‘
of éhe sand paper is larger than the height of the mean sand particles
applie& on it. Furthermore, the gluing of the sand paper on the cylinder
invariably resulted in a 'joint' along the cylinder which might have
generated Targer disturbances and promoted earlier transition. The

{

polystyrene beads, on the other hand, present an effective-roughness

12
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: height which is often smaller than their actual size [3]. 1In spite of

=y these differences, however, the terminal values of the drag coefficients
in the transcritical region remained practically the same for a given
actual effective relative roughness whether the data were obtained with
sand alone or with a combination of other roughness 2lements. Evidently,
it will be most iateresting and desirable to carry out similar experiments
with cylinders roughened in the ocean enviromment. The results presented
herein show that the testing of roughened cylinders with steady unifcrm

flow is not sufficient for the purposes under consideration, namely the

determination of the fluid loading on offshore structures.

P FORCE COEFFICIENTS AND GOVERNING PARAMETERS

Data reduction for the forces in-line with the direction of oscillation
is based on Morison equation [4] and three different analysis of the force
records, namely, Fourier analysis, least squares, and a modified least
squares method.

The in-1ine forrce which consists of the drag force F& and the inertia

torce F. is assumed to be given by [4]

FeF ;#F =05 4L0p|U]U +0.25C mLDznp.dU/dt (2)

in which C, and Cm represent respectively the drag and inertia coefficients

and U the instantaneous velocity of the ambient flow. For an oscillating

flow represented by U = - U, cosé , with 6 = 2nt/T, the Fourier averages

of C4 and C, are given by Keulegan and Carpenter as [5]

13
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2n
C = -0.75 6[ (Fcose/pU2LD)do (3)
and 2
i 3 2
¢,= (20 1/x°D) { (F,sine/pU°LD)do (4)

in which F represents the measured force.
The method of least squares consists of the minimization of the error

between the measured and calculated forces. This proceduer yields [6]
2n
Cans™ -(8/3n) f(F, |cose| cose/pDLUZ)de (5)

and les= C

0 Evidently, the Fourier analysis and the method of least’

squares yield identical C; values and that Cy values differ only slightly.
The details of the modified least-squares methed may be Found in [6] and
will not be repeated here.

The transverse force has been expressed in terms of various coefficients.
Some of these are: (a) the maximum 1i7t coefficient defined'by ¢ = (maximum
amplitude of the transverse fsrce in a cyc]e)/(O.SpLDU%); (b) the semi peak-
to-peak value of the transverse force normalized as above; and (c) the
normalized root-mean-square value of the transverse force. In addition, the
frequency of the oscillations of *he transverse force and the Strouhal number
have been evaluated.

It is recognized that the coefficients cited above are not constant
throughout the cycle and are either time-invariant averages or peak values
at a particular moment in the cycle. A simple dimensional analysis of the
flow under consideration shows that the time-dependent coefficients may be -.

written as

F/(0.5LDpUZ) = F(U_T/D, UyD/v, /D, t/T) (6)

14




in which F represents the in-line or the transverse force. Equation (6),

combined with Eq. (2), assuming for now that the latter is indeed valid,

st

yields
Cy= fy(Ks Re, k/D, t/T) (7)
Cy= fo(K, Re, k/D, t/T) (8)

in which K = U_T/D and Re = U, D/v , and k/D represents the relative roughnessf
There is no simple way to deal with Eqs. {7) and (8) even for the most

manageable time-dependent flows. Another and perhaps the only other alter-

rative is to eliminate time as an independent variable and consider suitable

time-invariant averages as given by Egqs. (3), (4), and (5).

*The one-parameter characterization of the effect of roughness needs
sone justification. It is of course recognized that not only the relative
size of the roughness elements but also their shape and distribution may be
quite important. It is in fact partly for the difficulty of uniquely
specifying the 'roughness' and partly for the differences in other test
conditions that there are considerable differences between the steady-flow
data reported by various workers [7-10], particularly in the drag crisis
region. For example, the effective surface roughness may be larger or
smaller than the nominal relative roughness based on the geometric size of
the roughness element depending on the shape and arrangement of the roughness
elements [3]. It is partly for this reason that it has been thought advisablé
to investigate afresh the effect of roughness on cylinders in harmonic flow
using only sand of uniform size and packing rather than three different
types of roughness elements, (see Fig. 3 for sample photographs of the sand-

roughened surfaces).

15




Thus, one has
[Cd , Cm . CL I fi(K , Re , k/D) (9)

It appears, for the purposes of Eq. (9), that the Reynolds number is not the
most suitable parameter involving viscosity. The primary reasons for this are
that the effect of viscosity is relatively small and that Um appears in both

K and Re. Thus, replacing Re by Re/K = DZ/vT in Eq. (9), one has
Ci[a coefficient] = fi(K s B » k/D) (10)

in which g8 = DZ/VT and shall be called the 'frequency parameter'.

From the standpoint of dimensional analysis, either the Reynolds number
or B could be used as an independent variable. Evidently, g is constant for
a series of experiments conducted with a cylinder of diameter D in water of
uniform and constant temperature since T is kept constant in a U-shaped
oscillating flow tunnel., Then the variation of a force coefficient with K
may be plotted for constant values of 8. Subsequently, one can easily
recover the Reynolds number from Re = gK and connect the points, on each
B = constant curve, representing a given Reynolds number,

From the standpoint of laminar boundary layer theory, B represents
the ratio of the rate of diffusion of vorticity through a distance 6 (the
Scundary-iayer thickness) to the rate of diffusion through a distance D.
This ratio is also equal to (D/G)2 and, when it is large, gradients of
velocity in the direction of flow are small compared with the gradients
normai to the boundary, a situation to which the boundary-layer theory is
applicable [11]. It should be noted in passing that the added mass and drag

coefficients for a cylinder or sphere undergoing harmonic oscillations

16

A
i




1 WSEAN, B 10 o

TR

v
AR EL S WM

without separation in a fluid otherwise at rest are determined uniquely
in terms of g [11].

Let us now re-examine a set of data previously obtained by others [5]
partly to illustrate the use and significance of g as one of the governing
parameters and partly to take up the question of the effect of Reynolds
number on the force coefficients.

The data given by Keulegan and Carpenter [5] may be represented by 12
different values of 8. The drag and inertia coefficients are plotted in
Figs. 4 and 5 and connected with straightline segments. Evidently, the
identification of the individual data points in terms of the cylinder
diameter, as was done by Keulegan and Carpenter [5] and also by Sarpkéya 11,
irrespective of the g values gives the impression of a scatter in the data
and invites one to draw a mean drag curve through all data points. Such a
temptation is further increased by the fact that the data for each g8 span
over only a small range of K values. Evidently, the drawing of such a mean
curve eliminates the depzndence of Cd and/or Cm on 8 and hence on Re.

Also shown in Figs. 4 and 5§ are points representing four selected
Reynolds numbers. The corresponding K values for each Re and g were calculated
from K = Re/g. The points corresponding to the selected Reynolds numbers are
reproduced in Figs. 6 and 7. These figures show, within the range of Re and
K values encountered in Keulegan-Carpenter data, that (a) Cy depends on both
K and Re and decreases with increasing Re for a given K; and that (b)
depends on both K and Re for K larger than approximately 15 and decreases
with increasing Re. A similar analysis of Sarpkaya's data [1] also shows
that G4y and G depc.d on both K and Re and that C, increases with increasing
Re. Notwithstanding this difference in the variation of C, between the two

17
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sets of data, Figs. 6 and 7 put to rest the long standing controversy
regarding the dependence or lack of dependence of Cq and Cm on Re and

show the importance of g as one of the governing parameters in interpreting
the data, in interpolating the K values for a given Re, and in providing
guide lines for further experiments as far as the ranges of K and 8

are concerned.

RESULTS AND DISCUSSIONS

Drag and Inertia Coefficients for Smooth Cylinders -

Only the representative data will be presented herein for sake of
brevity. The tabulated as well as plotted data for all force coefficients
for smooth circular cylinders are given in {2]?

Figures 8 and 9 show C4 versus K and Cm versus K for five representative
values of B. Evidently, there is very litile scatter in the data even though
the figures represent the results of four independent runs. Mean Tines
drawn through the data shown in Figs. 8 and 9 are presented in Figs. 10
and 11 terther with the constant Reynolds number 1ines obtained through
the use of K = Re/g8. Evidently, there is a remarkable correlation between
the force coefficients, Reynolds number, and the Keulegan-Carpenter number.
The smoothness of the constant Re lines is another indication of the

consistency of the data from one cylinder to another.

*Additional data obtained since the writing of Ref. [2] are included
herein in the figures showing Cd and Cm as a function of the Reynolds

number for constant values of K and/or k/D.
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Figures 10 and 11 show that Cq and Co do not vary appreciably with Re:
for Re smalier than about 20,000 and help to explain the conclusions
previously reached by Keulegan and Carpenter [5] and Sarpkaya [1].

The entire data, obtained since the inception of the: investigattan
about five- years ago, are shown as a function of Re for constant vajues of
K in:Figs. 12 and 13. These figures clearly show. that Cd.decreases with
increasing: Re: to a value of about 0.5 (depending on K) and then. gradually:
rises to a constant transcritical value within the range of Reynolds
numbers encountered. The inertia coeffitient'cm increases with increasing
Re,. reaches a maximum, and then gradually approaches a value of about 1.75.
It wilT be recalled that the Keulegan-Carpenter data indicated an opposite
trend. It is believed that the Keulegan-Carpenter data for Cp are not quite

reliable for K > 15.. This is also evident from the observation that the

data corresponding to 8 = 141 appear to be out. of place (see Fig. 5) relative

to those corresponding to B = 97 and B = 217. Suffice it to say that the
results presented in Figs. 12 and 13 shed new 1ight on the variations of the

drag and. inertia coefficients and. partly explain the reasons for the large

scatter encountered in the plots. of Cd versus Re and Cm versus Re as compiled

by Wiegel [12].

Drag. and Inertia Coefficients for Sand-Roughened.Cylinders -

Im: view: of the: fact that. each coefficient depends: on at. least. three:
independent. parameters: (Re,. K,. and: k/D),. it is not possible to: show: on:
twordimensional’ plots:; the variation of either Cq o Cm'fbr’aﬂﬂéva1ues-of
Re,. K,, and: k/D.. However,. this. difficulty is. alTeviated: by. the fact that.

the: vaniation af- a: given force coefficient: for a: given.Re and. k/D' is: not.
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very strong from one K to another. Thus it has been decided to choose five
representative K values, namely K = 20, 30, 40, 60, and 100, to present the
variation of Cy4 and Cm with Re for five representative k/D values,

Figures 14 through 18 show Cy and Cy, for five values of K as a function
of the Reynolds number. Each curve on each plot corresponds to a particular
relative roughness. Also shown on each figure is the corresponding drag
or inertia coefficient for the smooth cylinder at the corresponding K value.

The k/D = constant curves on each Cy plot are quite similar to those
found for steady flow about rough cylinders [7-10]. For a given relative
roughness, the drag coefficient does not significantly differ from its
smooth cylinder value at very low Reynolds numbers. As the Reynolds number
increases, Cy for the rough cylinder decreases rapidly, goes through the
region of 'drag crisis' at a Reynolds number considerably lower than that
for the smooth cylinicr and then rises sharply to a nearly constant transcritical
value. The larger the relative roughness the larger is the magnitude of the
minimum C4 and the smaller is the Reynolds number at which that minimum occurs.
However, there appears to be a minimum Reynolds number below which the
results for rough cylinders do not significantly differ from those corre-
sponding to smooth cylinders. In other words, the Reynolds number must be
sufficiently high for the roughness to play a role on the drag and flow:

characteristics of the cylinder.

W AR ek

The figures for the drag coefficient also exhibit a few other 1nterestingf
features. First, even a relative roughness as small as 1/800 can give rise §
to transcritical drag coefficients which are considerably higher than those ;
for the smooth cylinder. Secondly, the asymptotic values of the drag

coefficient for roughened cylinders within the range of Reynolds numbers 1
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encountered, can reach values which are considerably higher than those
obtained with steady flows over cylinders of similar roughness ratio. In
other words, it is not safe to assume that the transcritical drag coeffi-
cient in harmonic flows will be identical to those found in steady flows
and will not exceed a value of about unity. On the basis of the present
results it may be said that such a conjecture is not accurate even for K
values as large as 100 (corresponding to a wave height-to-diameter ratio
of about 30). In steady flow about a cylinder, roughness precipitates the
occurrence of ‘'drag crisis' and gives rise to a minimum drag coefficient
which is larger than that obtained with a smooth cylinder [7-10]. This

is partly because of the transition to turbulence of the free shear layers
at relatively lower Reynolds numbers (due to disturbances brought about by
the roughness elements) and partly because of the retardation of the
boundary-layer flow by roughness (higher skin friction) and, hence, earlier
separation. In harmonic flow about a cylinder, roughness appears to play
an even more complex role because of the time-dependence of the boundary
layer and the position of the separation points, In particular, the
magnitude of the transverse force (to be discussed subsequently; strongly
suggests that the combined effect of uniformly-distributed roughness. and
time dependence (even in the drag dominated region of K values) is to
increase the strength of vortices and the: spanwise coherence relative to
that in steady ftow at the-same Re about the same cylinder.

The Reynolds number at which the drag crisis occurs gives rise to an

'inertia crisis’'. In other words, for a givenm relative roughness,.Gh rises

rapidly to a maximum at a Reynolds number which corresponds to that at which:

Gaﬂdrops to a minimum. At relatively higher Reynolds numbers, C, decreases
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somewhat and then attains nearlyv constant values which are lTower than thoce

corresponding to the smooth cylinders. It is also apparent from the inertia
coefficient curves that the smaller the relative roughness the larger is
the maximum inertia coefficient. For relatively smaller roughnesses such
as k/D = 1/800, the terminal value of C; is nearly equal to that of a
smooth cylinder. The behavior of Co is not entirely unexpected. It has
long been noted [5] that whenever there is a rise in the drag coefficient,
there also is a aecrease in the inertia coefficient.

Before closing the discussion of the drag and inertia coefficients,
it is necessary to point out the remarkably consistent behavior of the data
points, particularly for Cd. Perhaps it would not have been too surprising
had tiie data been obtained for one relative roughness through the use of
only one cylinder. In the present investigation, the use of several
cylinders and several temperatures for a given cylinder always provided
data for nearly identical k/D, Re, and K values. For instance, the Cd and
Cm values obtained at a given K, Re, and relative roughness k/D, using a
5 inch cylinder at a low temperature corresponds to the Cd and Cm values
using a 4-in. cylinder at a high temperature. Remembering the fact that
not only the actual size of the cylinders but also the size of the sand
grains differed in order to obtain the same k/D, and the fact that the
experiments were carried out at different temperatures and times, one fully
realizes that the correlation of the data and the relatively small scatter
are.inceed quite remarkable. This is due not only to the repeatability of
the tests but also due to the vibration-free operation of the entire
tunnel system.

The correlation length along the cylinders was not directly measured.
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However, one series of experiments was conducted with a 2.18-diameters

(12 inches) long, centrally iocated, section of a 5.5-inch cylinder which
‘floated' on the ends of the force transducers with smali gaps (0.002 in.)
between the section and the rest of the rigidly supported 12-inch long
sections. The floating and dummy sections were carefully polished and
tested as a smooth cylinder. Then both sections were coated with sand for
a relative roughness of k/D = 1/100. The comparison of the 1ift, drag., and
inertia coefficients obtained with the short section with those obtained
with the longer section spanning the entire test section has shown that

the two sets of coefficients are nearly identical for both smooth and
roughened cyiinders. The differences were in the order of experimental
errors and, if anything, the drag coefficients obtained with the short
section were about 3% larger than those obtained with the 3-foot section.
Evidently, the force-cancelling effects of phase shifts which may have been
brought about by three-dimensijonal effects were either insignificant or
non-existent. Thus, it is concluded that both the three-dimensionality
effects and the boundary-layer effects played very little or no role in
the present investigation.

A comparison of the results shown in Figs. 14 through 18 with thc
previously reported [2, 13] preliminary results -for roughened cylinders for
K =50 alone indicates that the type of -roughness may affect the variation
of the drag ‘coefficient with Reynolds ‘number, particulariy in the drag-
crisis region. Previously, sand .paper, sand, and ;polystyrene -beads were
used T2] as roughness -elements for a given ¢ylinder in order to achieve
the .desired relative ‘roughness :in a -given Reynolds number range. In -spite
of 'the -differences in the ‘effective roughness’ -of the ‘three types .of

roughness elements, however, the ‘terminal values of the drag coefficients
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in the transcritical region remained practically the same for a given actual
effective relative roughness whether the data were obtained with sand alone
or with a combination of other roughness elements. Evidently, it will be
most interesting and desirable to carry out similar experiments with cylinders

roughened in the ocean environment.

In-Line Force Coefficients and the Roughness Reynolds Number -

The data given in Figs. 18a and 18b are replotted in Fig. 19 as a
function of the roughness Reynolds number defined by Umk/v for all values
of k/D. Similar plots may be prepared for other values of K through the
use of Figs. 14 through 17.

It is rather remarkable that Cd and Cm become practically independent
of k/D for Umk/v larger than about 300. In other words, for sufficiently
large values of the roughness Reynolds number, the drag and inertia coeffi-

cients for a roughened cylinder in a given harmonic flow are determined by

the heigiit of the excrescences rather than by the diameter of the cylinder.
The importance and the consequences of this result are self evident for
supercritical Reynolds number simulation for flow over circular cylinders.
A detailed discussion of this and other pertinent concepts for steady flow
over roughened cylinders is presented by Szechenyi [10] and will not be

repeated here.

Transverse Force and Vortex Shedding for Smooth and Rough Cyli:ders -

The data for the maximum 1ift coefficient for smooth cylinders are %
summarized in Figs. 20 and 21. The original data in plotted and tabulated

form are presented in [2]. Evidently, the 1ift coefficient depends on Re

el s b WU

for Re larger than about 20,000 and rapidly decreases to about 0.2 for
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larger values of Re and K. It is also evident that the 1ift force is a
major portion of the total force acting on the cylinder and cannot be
neglected in the design of structures.

The frequency of the alternating trancverse force is shown in Fig. 22
in terms of fr = fv/f as a function of K and Re. It is apparent that fr is
not constant and increases with increasing K and Re. Furthermore, a quick
talculation through the use of Fig. 22 shows that the Strouhal number given
by St = f"D/Um = fr/K is not constant at 0.2, as in steady flow, and depends
on both Re and K.

Several additional facts are of special importc.ice in connection with
the variation of the 1ift coefficient and the frequency ratio. Firstly,
the 1ift curve begins at K = 5. There is an occasional vortex shedding for
K values between 4 and 5. The minimum value of K at which Tift or asymmetry
in the vortices develops is, by the very nature of vortices, extremely
sensitive to the experimental cenditions. Evidently, what is of special
importance is not the highest value of K at which the symmetry of the
vortices can be maintained with extreme care but the lowest value of K below
which asymmetry cannot be initiated in spite of the magnitude of the external
disturbances. A careful analysis of all the Tift traces has shown thet there
is a 90% chance that the asymmetry will occur at K = 5. At K = 4, there is
only a 5% chance that tne asymmetry will appear for very short periods of
time. Secaondly, each fr = N line does not represent an absolute line of
demarcation between the frequencies N-1 and: N+1.. -Occasionaly,. a frequency
of N+l will occur on the N-T side of the N line, and vice versa. Thirdly..
the frequency of vortex shedding. is not a pure muitiple of the frequency of

flow oscillation. Eviﬂently,,f}, as an integer, is a measure of the nmumber
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or vortices actually shed during a cycle. However, all of the vortices are
not fully developed or completely shed. Thus, the fractional part of fpe
indicates an incomplete vortex shedding. This phenomenon is particularly
common for fr values in the neighborhood of 3 and also for large values of
K and Re where the oscillations of the transverse force become quite irregular.
The significance of the foregoing relative to the in-Tine force will be taken
up separately.

The maximum 1ift coefficient for the ;soughened cylinders are presented
in Fig. 23 as a function of K for various values of g and one particular
value of k/D. Additional details may be found in [14]. Evidently, CL does
not vary appreciably with either 8 or Re. The data presented in [14] for
other values of k/D show that C, does not vary with k/D also within the range
of the parameters encountered. If there is some variation with these parameters
( Re and g8), it is certainly masked by the scatter of the data resulting
from the random nature of the 1ift force. In fact, it is not too uncommon
to obtain a variation of 20-25% for a given value of K. This fact is of
importance in discussing the effect of the Reynolds number on the 1ift coeffi-
cient. Also shown in Fig. 23 is the 1ift coefficient for smooth cylinders for
B8 in the range of 1000 to 2000. It is rather surprising that the smooth
cylinder data at relatively low values of g form more or less the upper
limit of the rough cylinder data. In other words, the 1ift coefficient for
rough cylinders does not depend on Re and becomes almost identical to that
for smooth cylinders at very low Reynolds numbers. The consequences of this
observation for mod:1 testing purposes are rather obvious. . The behavior of
the 1ift coefficient for rough cylinders is in conformity with the fact that

the transcritical drag coefficient for rough cylinders (steady or harmonic

flow) nearly returns to its subcritical value,
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As noted earlier, the alternating nature of the transverse force is as
important as its magnitude. It is for this reason that the frequency of the
1ift force has been determined for rough cylinders also., A close examination
of the frequency ratios shows that fr/K remains essentially constant at a
value cf about 0.22 [14]. To be sure, there are variations from one cyiinder
to another and from a given combination of Re and K to another. Nevertheless,
the Strouhal number is fairly constant for all roughnesses, relative amplitudes,
and Reynolds numbers larger than about 20,000. This fact is of special
importance in determining the in-line and transverse vibrational response of
the eiements of a structure to wave-induced forces. One must, however, keep
in mind the fact that the spanwise coherence along a vertical cylinder in the

& ocean environment may be reduced by the variation of the velocity vector with

time and depth and that the 1ift coefficients presented herein represent the

maximum possible values of the transverse force.

ON THE APPLICABILITY OF MORISON'S EQUATION AND THE PRESENT DATA

Since its inception, questions have been raised regarding the applicability
of Morison's equation to time-dependent flows in general and to wavy flows in
particular. It has been known that the equatiscn predicts quite accurately
the in-line force for both very small values of K (K smaller than about 10) §
and for large values of K (K larger than about 20). For intermediate values §

of K, differences have been observed between the measured and calculated

Wy w5 i e
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values. These differences have been attributed either to the imprecise

P Ryl

measurement of the kinematics of the flow or to the shortcomings of the

2 oyt 4

equation. It is now realized that not only these two factors (namely the. ;

heuristic nature of the equation and the difficulty of measuring the local

27

K iL‘ Wi

F




-t

velocities and accelerations) but also the three-dimensional nature of the
wavy flows and decreased spanwise coherence must be partly responsible for

the differences between the measured and calculated forces. In fact, it

would have been extremely difficult to draw meaningful conclusions regarding

the applicability of Morison's equation through the use of the field data.
It is only through the use of ca»efully conducted two-dimensional harmonic
flow experiments that one can ascertain the degree of applicability of
Morison's equation,

Figure 24 shows the calculatea and measured forces normalized by
O.SDLpui together with the normalized velocity and the difference between
the measured and calculated forces for a reiatively large value of k/D.

It is evident that there is often a remarkable correspondence between the
measured and calculated forces particularly for K values larger than about
20. This is also true for K smaller than about i0. In the disturbance-
sensitive region of vortex formation and onset of asymmetry. the growth and

shedding of single or alternating vortices have profound effects not only

on the measured in-l1ine force but also on the force coefficients ca]cu]ated.r

The fractional shedding of vortices and the vortex-induced oscillations in
the in-line force give rise to an asymmetry in the magnitude of the in-line
force. In other words, the in-line force can no longer be represented by
an odd harmonic function. Thus, it is clear that part of the reason for
the larger differences between the measured and calculated forces even in
perfectly two-dimensional harmonic flows is due to the use of the force
coefficients which are derived by assuming the in-line force to be given by
an odd hamonic function. In the range of K vaiues from about 10 to 20,
particularly for Tow values of Re, this assumption is not‘quite correct as

evidenced by the present experiments, (see also Ref. [2]).
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In considering the relevance of the coefficients presented herein and
of the equation devised by Morison to wave induced loads on offshore
structures, it is of course important to take into account the differences
between uniform two-dimensional harmonic motion and the wave motion where
the velocity vector both rotates with time at a point and decays in magnitude
with depth, The spanwise variations of the flow in general lead to reduced
spanwise coherence. It is safe to assume that both the three-dimensionality
of the flow and the reduction of the correlation length along the cylinder,
in an ocean environment, tend to increase the base pressure and thus give rise
to transcritical drag coefficients which are smaller than those obtained
with purely two-dimensional flows. The drag coefficients presented herein
obviously represent their maximum possible values since they have resulted
from a uniform, two-dimensional flow where the instantaneous wake of the
cylinder has the highest possible degree of spanwise coherence. The similarity
between the reduced drag coefficient due to reduced spanwise coherence in
wavy flows and the drag coefficient in steady flows (both for roughened
cylinders) 1s rather fortuitous and does not imply the equality of the two
drag coefficients in the drag-dominated region of the K values. It is rather
unfortunate that even the experiments with wavy flows cannot be expected to
isolate the effect of reduced spanwise coherence since sucht experiments
surely bring in other factors whose influence is combined in a complex way
with that of the reduced correlation. Thus, the value of the results
presented herein lies in the fact that the designer now knows tne maximum
possible value of the coefficients under consideration, if not the values
which might be more appropriate to the conditions under which the structure

must survive and function.
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CONCLUSIONS

The results presented herein warrant the following conclusions:
(a) For smooth cylinders, the drag, lift, and the jnertia coefficients
depend on both the Reynolds and Keulegan and Carpenter numbers; (b) For
roughened cylinders, the drag and inertia coefficients depend on Re, K,
and k/D; (c) The drag coefficient undergoes a 'drag crisis' and rises to a
nearly constant value=fdepending on k/D) within the range of Reynolds and
Keulegan-Carpenter numbers tested; (d) The asymptotic values of the drag
coefficient for K < 100 are larger than the transcritical drag coefficients
for roughened cylinders in steady flow; (e) The results show that neither
the acceleration modulus R] = 2n/K nor the ratio of the maximum inertial
force to maximum crag force R2 = (n2/K)(Cm/Cd) is small enough (for the K,
Re, and k/D values tested) for the harmonic flow to behave like a pseudo-
steady flow over a roughened cylinder, (e.g. for K = 100, Re = 1,000,000,
and k/D = 1/100, one has C, = 1.55, Cm = 1.6, and R

d 1
(f) The importance of the role played by roughness in harmonic flow is

= 0.063, R2 = 0.10);

further evidenced by the fact that in the same range of K and Re values, the
transcritical Cd values for steady and narmonic flows become nearly identical
even though the force ratio R2 may be larger than that for the rough cylinder
case, (e.g. for K = 100, Re = 1,000,000, one has Cd = 0.65, Cm = 1.75, and

R] = 0.063, and Ry = 0.27); (g) The physical mechanism responsible for the

surprisingly large etffect of roughness on resistance in flows with relatively

small accelerations and decelerations needs careful study; (g) The inertia
coefficient also undergres an ‘'inertia crisis' at Re values corresponding to
the 'drag crisis' at which Cm reaches a maximuﬁ value and then asymptotically
decreases; (h) The drag and inertia coefficients become independent of k/D

for roughness Reynolds numbers larger than about 300; (i) The transverse
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force is a significant fraction of the total resistance at all Reynolds
numbers for both smooth and rough cylinders and must be taken into consid-
eration in the design of structures; (j) The Strouhal number for smooth
cylinders depends on both K and Re. For rough cylinders, it remains nearly
constant for all Reynolds numbers at about 0.22; (k) The results presented
herein and the conclusions arrived at are applicable only to cylinders in
harmonic flow with zero mean velocity within the range of the Re, K, and
k/D values encountered in the tests. The force coefficients for wavy flows
(with or without a mean velocity superimposed on them) may differ somewhat
from those presented herein partly due to the reduced coherence along the
1ength of the cylinder, partly due to the three-dimensionality of the flow,
and partly due to the nonlinear interaction between the current and the

waves. It is thus hoped that the data and the discussions presented herein

will draw serious attention to the effect of roughness, three dimensionality.

and spanwise coherence in wavy flows and will accentuate the need for

additional laboratory and full scale experiments.
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Fig. 3 Scanning Electron Microscope Photographs of Sand-

Roughened Surface
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