
<L0
00

o
CO
©

Mary Shaw
Carnegie-Mellon University

Wm. A. Wulf
Carnegie-Mellon University

Ralph L. London
USC Information Sciences Institute

ARPA ORDER NO. 2223

ISl/RR 76 47

1/

August 1976

^s*

ABSTRACTION and VERIFICATION in ALPHARD:

Iteration and Generators

. D D C

SEP «0 «976J |

• A

UNIVERSITY OF SOITHURN CALIFORNIA IM
INFORMATION SCIENCFS INSTITUTI:

4676 Admiralty Way/ Marina del ReyfCalijornia 90291

(213)822-1511

DiSi '- ■:*.'■'. '■" -"- *i:yxLNT A

Appicved ici public releoGe;
Distribution UuJimited.

.„.,,. , , • ■, .,.,,... ■..■.•...,»■, ■• •-. .-. ■-—»««»»»»«««««K-aäs^aaiivaBii«!,'

BEST
AVAILABLE COPY

■ ■

UNCIASSIFIED
SECURITY CL AJSIFICATION Ü1 THIS PAGE (Whfn D«(» Enlered;

~1
^^ Mary/Shaw,

Ralph L./LondorL IS I

/6

REPORT DOCUMENTATION PAGE
2. GOVT ACCESSION NO

T TITLE ("and Sublllte)

ABSTRACTION and VERIFICATION in.ALPHARD:/

Iteration and Generators / /

Jarnegie-MellQn JLIniversity

9. PERFORMING ORGANIZATION NAME AND ADDRESS

USC Information Sciences Institute
4676 Admiralty Way .^f] ;," ,)
Marina del Rey, CA 90291 {JUJjCP tlU^

.ijfm ■ HI jjiijitewM« ^
I. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

MONiToniKa Aae»eY *iSge!vsW8*Sl^RW!Sf& h™ fawtwuiHrbtticj
v-v. , ■ \r^ ' ~. _ '/ -' .-•' /"'■ ■& n/

~ ('S I

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3 .RHgCWlENrS CATALOG NUMBER

Research Report* *
6. PtR£ilAUlKao«G. REPORT NUfcieER

8. CONTRACT OR GRANT NUMBERfiJ

DAHC 15 72 C 0308

10. PROGRAM ELEMENT, PROJECT. TASK
AREA 4 WORK UNIT NUMBERS

—ARfA Order No. 2223
y>

12. REPORT DATE

August 20. 1976 W]
13. NUMBER OF PAGES OF F

47 £:
IS. SECURITY CLASS, (ol Ihlt report)

UNCIASSIFIED
15«. DECLASSIFI CATION/DOWN GRADING

SCHEDULE

It. BUTWIDUTIOM STOTBMBIIT f«< iMim ««pwH)

This document is approved for public release and sale;
distribution unlimited.

11^ p]i>TBIBUTIOHtJ^-TCyfNT,ir.!L'>'* JOlffttit ■"" ' I* '" "'*"fc fV" ■""■■'■'" *^" R»pory

> I ^y ^ ^y ^ '

///:/ id OV
Tn iiirn ryiiiT in n ■■-•""

This report is one in a series being printed jointly by
Carnegie-Melion University and USC Information Sciences
Institute.

19. KEY WORDS (.Continue on revara* aid» H nacaaaary and Identity By block number)

abstraction and representation, abstract data types, assertions,
control specialization, correctness, generators, invariants,
iteration statements, modular decomposition, program
specifications, programming languages, programming methodology,
proofs of correctness, types, verification

20. ABSTRACT fConlinua on ravaraa afda U nacaaaary and Identify by block number)

(OVER)

DD^'B 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 010 2-014- 660 1 /

r O

UNCIASSIFIED /
SECURITY CLASSIFICATION OF THIS PAGE fWhan D»»a Änlarad;

/V

, ...■. - . . ^■- ■■ ■

■■■.^■■■■■'MjSlll

UNCIASSIFIED
SCCuaiTY CLASSIFICATION Of THIS PAGEflW^n Pat» Bnfnd)

20. \ ABSTRACT

\ ihe Alphard form^provides the programmer with a great
deal of control over the implementation of abstract
data types. In this report we extend the abstraction
techniques from simple data representation and
function definition to the iteration statement, the
most important point of interaction between data and
the control structure of the language itself. We
introduce a means of specializing Alphard s loops to
operate on abstract entities without explicit
dependence on the representation of those entities.
We develop specification and verification techniques
that allow the properties of such iterations to be
expressed in the form of proof rules. We also
provide a means of showing that a generator will
terminate and obtain results for common special cases
that are essentially identical to the corresponding
constructs in other languages, j.

r
v

UNCIASaiilED
SECURITY CLASSIFICATION OF THIS PACEfHTi.n Dmlm Bnfnd)

ABSTRACTION and VERIFICATION in ALPHARD:
Iteration and Generators

Mary Shaw, Carnegie-Mellon University

Wm. A. Wulf, Carnegie-Mellon University

Ralph L London, USC Information Sciences Institute

August 20, 1976

Abstract: The Alphard form provides the programmer with a great deal of control over the
implementation of abstract data types. In this report we extend the abstraction techniquos
from simple data representation and function definition to the iteration statement, the most
important point of interaction between data and the control structure of the language itself.
We introduce a means of specializing Alphard's loops to operate on abstract entities without
explicit dependence on the representation of those entities. We develop soecification and
verification techniques that allow the properties of such iterations to be expressed in the form
of proof rules. We also provide a means of showing that a generator will terminate and obtain

results for common special casss that are essentially identical to the corresponding constructs

in other languages

Keywords and Phrases: abstraction and representation, abstract data types, assertions, control
specialization, correctness, generators, invariants, iteration statements, modular decomposition,
program specifications, programming languages, programming methodology, proofs of

correctness, types, verification

The research described here was supported in part by the National Science Foundation (Grant
DCR74-04187) and in part by the Defense Advanced Research Projects Agency (Contracts:
F44620-73-C-0074, monitored by the Air Force Office of Scientific Research, and DAHC-15-

72-0-0308). The views expressed are those of the authors. This report is one in a series

being printed jointly by CMU and IS1.

Page 2

Contents

Introduction 3

Form Extensions 5

Iteration Constructs in Alphard 6

Defining and Verifying Generators 9

Proof Rules for Loops 13

Special Cases and Examples 19

Termination of Generators 23

Example: Finite Sets 25

Conclusions 36

References 38

Appendix A: Informal Description of Verification Methodology 39

Appendix B: Derivations of Simplified Proof Rules 40

ALPHARD: Iteration and Generators Page 3

Introduction

This paper is one in a series describing the Alphard programming system and its
associated verification methods. It presumes that the reader is familiar with the materal in
[Wulf76a,b], particularly the use of forms for abstraction and the verification methodolrgy for

forms.

The primary goal of the form mechanism is to permit and encourage the localization of
information about a user-defined abstraction. Specifically, the mechanism is designed to
localize both verification and modification. Other reports on Alphard have discussed ways to

isolate specific information about representation and implementation; in this paper we deal

with localizing another kind of information.

Suppose that S is a "set-oHntegers" and that we wish to compute the sum of the

integers in this set. In most contemporary programming languages we would have to write a

statement such as

sum <- 0; for i ♦- 1 step 1 until S.size do sum <- sum + S[i]

o. ^nssibly

p ♦- S; sum <- 0; while p ^ ni[do (sum *- sum + p.value; p <- p.next)

or, it we know that the set elements all lie in the range [lb..ubj, then we might write

sum«-0! for i«-lb to ub do jl i f S then sum*-sum+i

None of these statements is really satisfactory. First, they all seem to imply an order to the

summation, whereas the abstract computation does not. Next, the first statement strongly
suggests a vector implementation of the set and the second a list implementation. (Although

other implementations are not excluded, the resulting loops will probably be unacceptably
inefficient.) The third statement does not suggest an implementation of the set, but may be too

inefficient if the cardinality of the set is much smaller than ub-Jb+L

It would be much better if we could write something like

sum«-0; for x<S do sum«-sum+x

which implies nothing about either the order of processing or the representation of sets.

Except for notational differences, this latter example illustrates our goal. We want to
encourage suppression of the details of how iteration over that abstract data structure is
actually implemented. The difficulty in doing this is that the abstract objects are not

. *itm'. XMH

Page 4 Introduction

predefined in Alphard. Hence it is the author of the abstraction who must specify the

implementation of {the analog of) VS".

We resolve the problem by separating the responsibility for defining the meaning of a

loop into three parts. (1) Alphard defines the (fixed) syntax and the broad outline of the
semantics. (2) The definition of the abstraction that is controHing the iteration fills in the
details of the loop control (in particular, the algorithms for selecting the next element and
terminating the loop). (3) The user supplies the loop body. Conventional languages provide

only a small, fixed number of alternatives (usually one) for ihe second part of this information.
In Alpharc it is supplied by the form that defines the abstraction; we say this part of the
definition specializes the iteration statement to that abstraction. Related constructs appear in

IPL-V as generators [Newell64] and in Lisp as the mapping functions [McCarthySZ,

Weissman67].

One of the major goals of Alphard is to provide mechanisms to support the use of good
programming methodology. The rationale for generators given above is based on
methodological considerations; that is, it is generally good to abstract from the implementation

and hide its details. Generators permit us to do this for control constructs much as the
functions in a form permit abstraction of operations (see [Wulf76a,b]).

A second major goal is to provide the ability to specify precisely the effect of a
program and then prove the program implements that specification. To meet this goal, we
must provide more than just the language mechanism for generators: we must also provide
both a way to specify their effects and a corresponding proof methodology. A natural means
of doing this for Renerators is somewhat different from one for functions. Functions are
naturally characterized by predicates which relate the state of the computation before their
invocation to its state afterward. Generators, however, are not invoked in the usual sense;
rather they are used to control the repeated execution of an arbitrary "body" of an iteration
statement. Thus, a natural specification of a generator is in terms of a "proof rule" which
permits the effect of the entire iteration statement to be expressed.

This report contains two strongly related components: first we introduce the language
mechanism for generators, then we turn to the specification and verification of generators and
of the iteration statements which use them. We begin with a digression on a language feature

which is not discussed elsewhere, but is needed for the definition of generators. We then
introduce the two Alphard iteration statements and show how they can be specialized by the
user. One of these is an iteration construct designed for searching a series of values for an
element with a desired property. It should replace most of the loop-exit gotos used in current
languages. (Interlisp [Teitelman75] contains a wide variety of iteration statements, one of
which specializes to this construct.)

We obtain general proof rules for the two loop constructs, then state a series of
simplifying assumptions that certain generators may satisfy. We obtain a corresponding series
of proof rules whose simplicity increases with the restrictiveness of the assumptions we make

ALPHARD: Iteration and Generators Page 5

about the generators. These assumptions lead both to rules that correspond directly to

familiar rules for iteration (e.g., those of Pascal [Hoare73, Jensen74]) and to simple rules for a
substantial number of interesting abstract structures (e.g., those given by Hoare [Hoare72a]).

We then show how to use proof rules instead of functional descriptions to specify many
of the forms which define generators. We also give a technique for showing that loops using a
generator will halt (assuming the loop body terminates). We prove, with one application of

this technique, that many common generators have this property.

Finally, we develop an extended example in which a programmer-defined abstraction is
treated as primitive in the implementation of another abstraction. A generator defined in the

former is used in the implementation and verification of the latter.

Form Extensions

In this section we introduce another language facility which makes it more convenient to

define certain abstractions and to manage the definitions after they are written. The facility
allows a programmer to define one form as an extension of another. The new form will have

most or all of the properties of the old one, plus some additional ones. (This mechanism is

similar to, and derived from, the clan concatenation mechanism of Simula [Dahl72].^ We

introduce this mechanism at this point because it is needed for generator definitions, which

will be discussed in the next section.

The following skeletal form definition illustrates most of the major attributes of the

extension mechanism:

form counter extends itinteger«
beginform
specifications

initially counter = ij

inherits < =, ^, <, >, <, ^ >;
function

inc(x:counter). . .,
dec(x:counter). . .;

representation

[rut i«-li
implementation

body inc = x.i «- x.i+lj
body dec ■ x.i «- x.i-1;

endform

••«a«

Page g Form Extensions

The general flavor of the mechanism is that the new abstraction, "counter" in this case,

is to be an extension of a previously defined one called its base type, here "integer". As such,

the new abstraction inherits the indicated properties specified for the base type, and may

appear in contexts where the base type was permitted (e.g., as an actual parameter where the

formal specifies the base form). Further, the new abstraction has the additional properties

specified in the extension form, "inc" and "dec" in this case.

Even though the newly defined form is an extension of another, the body of the new

form is not granted access to the representation of the old one; the only access rights
granted to the body of the new form are those defined in the specifications of the one being

extended. Thus, although the extension may add (and delete, see below) properties of the
extended abstraction, it cannot affect the correctness of its implementation, and we need not
reverify the properties of the original. (Indeed, since these properties are identical we do not

demand that they even be specified.)

In this example, and indeed more generally, it is not desirable for all of the properties

of the old abstraction to be inherited by the new one. The "<>" notation may be used as «ii
[Wulf76a,b] to list the rights that the instantiation of the new abstraction is allowed to inherit.

Thus the maximum set of rights permitted to the instantiation of a "counter" is the union of the
inherited rights {=,/,<,-,<,>) and the newly defined rights (inc and dec). Note in particular that
assignment to a counter is not one of the inhe-ited rights; thus the only way to achieve a
side effect on a counter is through the operations "inc" and "dec". The implementation of the

extension form may, of course, use all operations on the base type.

As a practical matter, the instantiation of the base form ("I" from "i:integer" in this

example) may be considered a part of the representation part of the extended form. Note,

however, that this need not be the entire representation part of the extension; in many cases

the extension will involve additional data.

Iteration Constructs in Alphard

Alphard provides two iteration commands: the fox. statement k used for iteration over a

complete data structure, and the first statement is used (primarily) for search loops. As
mentioned above, each of these commands may be specialized for each use. Specialization

information is provided through a standard interface called a generator. A generator is itself

simply a form, but it must adhere to certain special requirements that make it mesh with the

semantics of iteration statements:

(a) It must provide two functions (named &init and &next) with properties

described below.

ALPHARD: Iteration and Generators Page 7

(b) Invocati these functions in a prescribed order must produce a sequence

of valut; ., Dmd to the loop variable.

(c) It must be an extension whose base type is the same as the type of the

elements being supplied to the loop body.

Before we discuss generators intended for specific structures, we will illustrate the use of the

for and first statements with simple counting loops.

The for Statement

We shall begin with the for statement. The syntax for the statement is'

for x: gen{y) while /?(x) do ST(x,y,z)

where /3(x) is an expression, the statement 3T(x)y,z) is the loop body, x is the instantiation cf
the generator "gen", y is the set of instantiation parameters to the generator, and z is the set
of other variables used in the statement. The phrase "x: gen", which is our notational analog

of the "x(S" in the introduction, means "bind x to an instantiation of the generator named gen

intended specifically to generate the elements specified by y", Then x may appear free in /3

and ST; like any loop variable, x is rebound for each pass through the loop.

The meaning of the foi_ loop is given by the statement

begin local x: gen(y)j

n <- x.&init;
while rt cand /3(x) do

(ST(x,y,z)i n «- x.&next)
end

Here, cand is the "conditional and" operator: "b^ cand b^' ■ "if b| then b2 else false", ^'so, /?

and ST are taken from the for statement, and x.&init and x.&next are functions supplied by the
generator as described below. The compiler-generated variable, n, is not accessible to the

^ Although we call this a "loop variable", it will not normally be possible to alter its

value within the loop body.

2 Either "for x:gen(y)" or "while /3(x)" may be omitted yielding the pure while and pure
for statements, respectively. If "while ßM" is omitted, ß is assumed to be identically true. If
"for x: gen" is omitted, no x is declared or set, ß and ST (clearly) cannot depend on x, and
Sinit and &next are assumed to be the constant true, ß may depend on y and z in addition to

x.

Page 8 Iteration Constructs in Alphard

programmer.

One of the generators defined in the standard prelude is

upto(lb,ub: integer) extends k: integer

This generator produces the sequence of values <lb, lb+1, lb+2, . . . , ub-1, ub>, or the empty
sequence if lb>ub. This generator, in combination with the for statement, provides the
familiar "stepping" loop found in nearly all programming languages; for example, an Alphard
loop for summing the integers from 1 to n is

sum <- 0; for j: upto(l,n) do sum *- sum+j

Note that two types are involved in this example. We said in earlier contexts that the notation
"j: upto(. .)" means "bind j to an instantiation of upto". This implies that the type of j is

"upto". However, notice that j is used in the body of the loop as though it were an integer.
This is possible because of the extension mechanism described in the previous section.

Although the apparent type of j is upto, form upto extends integers, inheriting all operations
except assignment (the definition is given in the next section). t\s a result, integer operations
on j are legal and behave as expected.

The first Statement

One of the common uses of loops is for searching a sequence of values for the first one
which passes some test. The use of an ordinary loop construct for this purpose is probably
the most common cause of necessary gotos in conventional programming languages: once the
test has been satisfied, there is no reason to continue executing the loop. Since this case
occurs so often, Alphard provides a special syntax for it. We may write

first x:gen(y) suchthat /?(x) then Si(x,y,z) else S2(y,z)

where S^ and $2 are statements and ß is an expression. Again, x is an instantiation of

generator gen and may appear free in /? and Sj (but not in S2)- The meaning of the first loop
is given by the statement

In Alphard, certain functions are given names 1 "ginning with "&". These are usually

functions provided by the user to perform operations tH.-t correspond to special constructs of
the language. Outside the form in which they are defined, they may not be called by user

programs. In this case, the for loop expects to call functions named &init and &next with
certain specified properties. Alphard prevents a user from calling them explicitly -- to skip
iterations in a loop, for example.

^ Eith&r "then SI" or "else S2" may be omittedj an omitted clause is assumed to denote
the empty statement.

ALPHARD: Iteration and Generators Page 9

begin label \;

beRJn local x: gen(y};

n *- x.&init;
while n do

if ßM then (S^x.y.z); goto \) else n *- x.&next

end;

S2(y,z);
X, end

As above, the compiler-generated names, n and X, are not accessible to the programmer.

In [Wulf76a(b] we presented a subroutine to compare two vectors of arbitrary (but

identical) types and indax sets. The subroutine presented there was phrased in terms of an

Algol-like for loop. It can now be written in real Alphard using the first statement:0

function eqvecs(A)B: vector(?t<^>,?lb,?ub)) returns (eq: boolean) -
first i: upto{lb,ub) suchthat A[i] ^ B[i] then eq ♦- false else eq ♦- true

It does not matter what the bounds of the two vectors are, as long as they are the same. In

this case, we are not relying on the procedure return or an explicit escape to terminate the

loop early in the case of inequality; that is handled by the first statement. The proof of

"eqvecs" will be given in a later section.

We have introduced Alphard loop constructs by comparing them to simple counting

loops. This is the first step toward solving the problem of sequencing over arbitrary

structures under the control of the defining type. We shall now show how generators and

loops are verified.

Defining and Verifying Generators

We said that a generator is a form which supplies sptcial functions and performs a

sequence of bindings to the control variable of the loop. In this section we will show how a
generator is defined and invoked, still using "upto" as an example. We will first present its

definition, then add assertions, verify it as a form, and establish its special properties as a
generator. Another generator is verified as part of the finite sets example in the sequel.

5 In this example the function specification and the function body are given as one

declaration. This is an obvious abbreviation of the notation used elsewhere. The ?cden.tcfcer

notation is used to indicate that the values of these parameters must be identical for A and B
and that specific values will be supplied implicitly with the vectors. This is explained in

[Wulf76a,b].

■ ■ ■■ ■ fe ... -. :, ,

The definition of the "upto" generator, without verification information, is

form uptodb.ub: integer) extends K:integer -

be^inform

specifications

inherits <allbiit *->;

function
&init(u:upto) returns (b:boolean),

&'next{u:upto) returns (b;boolean);

implementation
body &init = (u.K «- u.lb; b «- u.lb < u.ub);
body &next = (u.k <- u.K+l; b «- u.k < u.ub);

endform

Since no variables other than k are needed, the representation part is empty at this point.

This form extends integers, but does not pass along the right to assign to an upto; this

prevents the user from changing the loop variable during the iteration.

Using this form and the meaning of the for statement given in the previous section, we

can exhibit a loop that corresponds to the expansion of the "upto" functions in the statement
for summing integers. This code is, of course, only suggestive, but it illustrates an expansion
which a compiler might reasonably produce. Note that an obvious optimization has been

applied; later, when we exhibit the formal specifications of "upto", the value of the iteration

variable, x, will turn out to be irrelevant when &init or ^next returns false.

sum «- 0;
begin

local x: upto(lb,ub);

x «- x.lb;
while x<x.ub do (surtv-sum+x; x<-x + l);

end

Since "upto" is a form, we can verify the form properties as described in [Wulf76a,b]
and summarized in Appendix A. Adding verification information in italics, the definition of

"upto" becomes

6 The phrase 'allbut «-" means that all integer functions except «- are applicable to the

upto.

ALPHARD: Iteration and Generators Page H

form uptodb.ub: integer) extends k; integer =

beginform
specifications

requires true;

inherits <allbut *->;
let upto = flb..ab] where Lb < ab ^ apto = llb..k-l](k]fk*i,.abji

invanani. true;

initially true;

function
&init(u;upto) returns (b:boolean)

post (b s lb<ub) /\ (bo Ib^kSub),

&next(u:upto) returns (b;boolean)

pre lb < k < ub
post (b = k'<ab) t\ (b ? k^k'+l A lb<k<ub>,

representation

rep(k) = ifLb<ub then /lk..k-lJ/k/fk-L.ub/else f/;

invariant true;

implementation
body &init out_ (b s lb<ub) A (b ^ lb=k<ub) =

(u.K *- u.lb; b <- u.lb < u.ub);
body &next in lb<k<ub out (b ' k'<ub) r\ (b ^ k = /c'+i A lb<k<ub) =

(u.k «- u.k+1; b «- u.k < u.ub);

endform

The abstract specifications describe an "upto" as an interval [lb..ub]; since the form upto

extends the integer k, a direct reference to a loop variable of type upto will access k, the

current value of the loop counter. We will find it useful later to view the upto as the

concatenation of the interval already processed ([Ib.-k-l]), the current element ([k]), and the
interval yet to be generated ([k+l..ub]). Either k stays between the endpoints of the interval

[lb..ub] or the interval is empty. This is enforced by the phrase lb<k<ub which appears in the

pre condition for &next and both post conditions.

Note that no promise about the value of k is made before the loop starts (i.e., before

&init is called) or after it has run to completion (either &init or Snext returns false). The re£
function shows how an interval is represented by its two endpoints and the loop variabJe.
The post condition on &init guarantees that the first element generated is lb, but only if lb<ub.

The ^re condition on &next prevents &next from being executed when there is no valid
current element (in particular, Ainit must be called first). The rost condition on &next
guarantees that generated values are consecutive and that the generator stops at ub.

For "upto" the four steps which are required to verify the form properties are quite

simple. (Note that the "u." qualification on u.lb, u.k, and u.ub is omitted for simplicity.)

I
■■. . . ■ ■ ■ ■ ■ ■ ■■■

Page 12 Defining and Verifying Generators

For the form.
1. Representation validity

Show; true ^ true

Proof: clear

2. Initialization

Show: true { } true A true

Proof: clear

For the function Sanit
3. Concrete operation

Show: true { k «- lb; b ^ lb < ub } {bälb<ub) A (bo|b=k<ub)

Proof: Using the assignment axiom, the expression becomes

true 3 (lb<ub s Iblub) A (lb<ub => lb=lb<ub)

which surely holds.
4. Relation Between Abstract and Concrete

Corresponding abstract and concrete assertions are identical and the reja
function performs a direct mapping, so the proofs are clear.

For the function Scnext
3. Concrete operation

Show: lb<k<ub { k ^ k+1; b <- k<ub } (bik'<ub) A (b^k'+l A lb<k<ub)

Proof: Using the assignment axiom, the expression becomes
lb<k<ub 3 (k+l<ub H k'<ub) A (k+l<ub ? k+l-k'+l A lb<k+l<ub)
which holds because k'=k is an implicit hypothesis of the antecedent.

4. Relation Between Abstract and Concrete

Same as &initA

QED

To emphasize that a generator is a form, we will now give an example in which a
generator is instantiated in one place and used in another. The following procedure is. a
generalized sum routine. Its parameter is an instantiation of a generator and its result is the
sum of the elements produced by that generator. For simplicity, this procedure sums only
integers. That restriction can be relaxed, but to do so would take us into parts of Alphard not

discussed in this paper/

7 The difficulty is not defining the type of the output, which would be expressed as

function iSUM (g: ?T<generator extends ?S>) returns (sum: S)

but rather the fact that we need to initialize sum and do not know the identity for "+" in type
S. One solution is to treat the first generated element differently from the rest, and we have

deferred discussion of the richer possibilities of generators to a later paper.

Definition
function ISUM (g: ?T<p,enerator extends integer>) returns (sum: integer)

begin
sum «- 0;
for g do sum ♦- sum + g;

end

Examples of Use
begin
local v: vectorOnteger.l.n),

ig: uptod.m), vg: invecM,

ssum, vsum: integer;

ssum <- ISUM (ig);
vsum «- ISUM (vg);

end

This small program declares five variables. The first, v, is a vector of integers indexed from 1
to n. The next two, vg and ig, are (instantiations of) generators; ig is an instance of the upto
we have been discussing and vg is an invec, which we assume is defined along with vectors

and generates the elements of the vector named as its instantiation parameter. The last two

variables, ssum and vsum, are simple integers. The first call on bUM uses ig (the upto) to
generate integer values; it assigns to ssum the sum of the integers from 1 to m. The second

call on ISUM uses vg (the invec) to generate vector elements; it assigns to ssum the sum of

the elements of v.

Proof Rules for Loops

In this section we shall consider the verification of Alphard's two iteration constructs,

for and first. Specifically, we shall develop proof rules for these statements, discovering in

the process certain desirable properties for forms which are intended to be used as
generators. Some of these properties will be required of all generators; others will be

considered optional, but their presence will substantially simplify proof rules and proofs.

The development will proceed as follows. First we shall consider a proof rule for the

for statement which makes minimal assumptions about the generator. This rule is derived

directly from the statement's meaning as given earlier. As a consequence, it is rather bulky.
Then we shall make a small number of basic assumptions about the generator. For purposes

of this paper, these assumptions will be required of all generators and hence will have to be
discharged when the generator is verified as a form. They will allow us to simplify
substantially the proof rules for the for and firsl statements. Next we shall consider a further

set of jssumpiions about generators; these assumptions are not mandatory, but they are
satisfied by typical generators. These will allow us to obtain sMIl simpler proof rules for

particular generators. Finally, we shall consider the properties that a generator must have in
order to be a terminating generator.

Development of the for Rule

Suppose that we wish to prove

P { for x:gen(y) while ßM do ST(x,y,z) | Kx.y.z) } Q

where x, y, and z are as defined earlier and the notation "P { loop | 1 } Q" is used to denote "P

{ loop } Q using I as the loop assertion (invariant) placed after the loop body". Further,
suppose that we make only the minimal assumptions about the form "gen", namely that it has
been verified as a form and that it supplies two functions, &init and &next, each of which

takes a single parameter of type gen and returns a boolean result. We will also assume that

ß(y) has no side effects. We will adopt the following notation in the iteration proof rules:

G = abstract invariant of the generator. G may depend on x and y but not on z.

flfQQ = the usual requires clause of the generator, stating restrictions on y so
that the generator can be instantiated."

ftj ■. = the j-condition for generator function f, e.g., ^init post 's ^e Pos^
condition for &mit. /Sf; depends on x and y only.

XQ,...,Xp denotes the previously generated values of x, it any.

Since the generator has been verified as a form, we know

G A /^init.pre < n ^ x-&init ? G A ^init.post
G A /^next.pre < n ** x&next 1 G A ^next.post

ßreQ { init clause } G

where init clause denotes the mil clause of the representation part.

The expansion of

for x:gen{y) while /?(x) do ST{x,y,z)

ßM.

o 0 We conventionally use fl' to name predicates. Kence, e.g., /?req is unrelated to

..; v.^.ii

as a standard while statement, including the assertions which will be required for verification

in the most general case, is

assert P A /<req;

feesiü !P-£3l x: gen(y);
asserl P A G A ^njt.pre;
n «- x.&init;

while n cand /?(x) do
begin

SKx.y.z;;
assert 1 A G A ßnexlpre;
n <- x.&next;

end;
end;
assert Q

We will give from this expansion a proof rule for the most general Alphard for

statement. The standard while rule is not directly applicable fo this expansion because the

loop-cutting assertion is located in the middle of the loop body rather than before the test.

This assertion placement means the test does not always appear just before or just after an

assertion; in two control paths through the expansion (the third and fifth lines in the proof
rule below), the test n cand ßM appears between either the statements n«-x.&init or
n<-x.&next and ST^.y^). To indicate in these paths that n cand ßM may be assumed between

the statements, the assume clause is introduced. Its proof rule is

P AQO R

P { assume Q } R

Using the assume clause and considering the five control paths between assertions, the
general proof rule for the for statement Is

P A /t?req { init clause } P A /?jni(pre

P A G A /?in|t pre { n «- x.&init } -(nA/?{x)) o Q

P A G A /?injt pre { n <- x.&init; assume nA/?(x); ST(xly,z)) I A G A /3next.pre

I A G A /?next pre { n ♦- x.&next } -(nA/?(x)) => Q

I A G A ^next pre { n «- x.&next; assume n/\ßM; ST(x,y,z) } I A G A /?next_pre

P A ßreq { for x: gen(y) while ßM do ST(x,y,z) | I } Q

° The assume clause appears in [IgarashiyS, p. 164] as the "marked" assertion using
the notation Q-if in place of assume Q.

***i*^;>r^.„:^:* ,*t:i*:±;.: / i5^r

Page 16 Proof Rules for Loops

This formulation, because; of its generality, may appear formidable. The main difficulty

appears to be that the three generator functions and the loop body may each change y in
various ways even though P and I hold at ths places required by the rule. The generator
functions are, therefore, involved in the verification of each use of a generator. However, the
following three reasonable assumptions about the generator will simplify matters considerably.

Basic Generator Assumptions:

(a) The post conditions on &init and Änext are of the form

(b s rij) A /?! and (b £ nn) A ßn

respectively, where b is the result pL.,ameter of these functions.

(b) G a /?mit.pre, G A (TTjA/^f post v nnA/?next post) o /V,ext.pte

(c) The init clause and the functions &init and Snext terminate. (This does not
simplify the proof rule It is, however, a desirable property, and it becomes

especially relevant in ihe discussion of generator termination below.)

(d) The generator and the loop body are independent. Thai is, for arbitrary

predicates R and S

R(y,z) { init clause] R(y,z)

R(y,z) { n <- x.&init } R(y)z)

R(y,z) { n <- x.&next } R(y,z)
and S(x,y) { ST(x,y,z) } S(x,y)

Point (a) is a minor restriction and can be checked syntactically. Point (b) requires two
proofs. The first is usually trivial since /?jnjf pre is generally omitted (defaulted to true) and

/^next pre is usually included in both post conditions. G may often be strong enough by itself,
but we may not want to commit the generator to provide a value at all times. In the latter
case we therefore require that Ämit and &next make it possible for &next to be executed.

Point (c) can be proved independently of the use of ^rator, The proofs should usually

be easy (see the section below on termination).

Point (d) requires four proofs; in the typical u« c, however, the first three are trivial.

Because of the scope restrictions mentioned in [WulfySa.b], the only ways the init clause, &init

or iftnext could affect the predicate R(y,z) are through y, which is explicitly passed as a
parameter to the form gen, and through side-effect-producing operations of &init and &next.

Thus the proof ca,, be carried out locally for the generator definition — generally by

inspection. The fourth proof is more difficult. Because of the scope restrictions, the only way

. ■ ■--■.. ■■ .■ ■ & .■.-■ ■■ H .■ &mmmm

that the loop body could affect the loop variable, x, is for the generator to provide a function

which could have a side effect on x (for example, by exporting assignment rights). This proof
should be local to the generator definition. However, the independence of y from ST cannot in
general be shown for tho generator, and must be treated as a restriction on its use.

Simplified Rules for Iteration Statements

If the generator and its use meet the four basic generator assumptions given above, a
simplified proof rule applies to the for statement:^

G A [P A /?! A -(itjA/Kx)) v I A /?n A -(nnA/?(x))] = Q
G A /?(x) A [P A /?, A n, v I A /in A nj { ST(x,y,z)] I

P A ßreq { for x: gen(y) while ßM do ST(x,y,z) | I } Q

Note that the first line establishes that Q holds when (if) the loop terminates -- which may
happen immediately after the invocation of &init (handled by the first term of the disjunction

in [J's), or after an invocation of Änext (handled by the second term of the disjunction). In

both cases termination may result either because the relevant generator function returned

false or because ß{x) failed -- hence the terms of the form "--(n A ßM)". The second line
ensures that the invariant is established after each application of the loop body.

Under the same assumptions, the following proof rule applies to the first statement:

G A P A [^jAnj v /?nAnnA^(x0..xp)] A ßM { S^x^.z) } Q

G A P A hnjA/?! v -nnA/3nA^(x0..xp)] (S2<y,z)) Q

P A ßrec. { first x: gen(y) suchthat ßM then S](x)y,z) else $2^)2) } Q

where "-/?(XQ..X)" is an abbreviation for "-/^(XQ) A ... A -/?(x)". Note that the second line

handles the "else" cases, where no match is found; the two terms of the disjunction are the
case where the generator terminates immediately and the case where every element

generated fails the suchthat test, ßM- The first line handles the case where a match is found.

Note also that the presumed independence of the generator and the user program means that
P is not affected by Äinit and Änext.

Simplified Rules for Typical Generators

Most generators are far more stylized than the simple assumptions above require. The

^ The justifications of this and the first rule, from the corresponding general rules

and the basic generator assumptions, are given in Appendix B.

-

following assumptions about standard aggregates used in typical generators allow us to obtain
prcof rules of further simplicity.

Standard Aggregate Assumptiom

(a) The additional abstraction provided by the generator is explicated in terms of

an aggregate (of objects of the base type) for which the following are
defined:

& an operator to combine (e.g., concatenate) two aggregates
<> the empty aggregate

lead(S) = first element of S to be generated

Examples of such aggregates are sets, sequences, and intervals. The
corresponding empty aggregates are {}, <>, and []; the corresponding @

operators are union, concatenation, and merging adjacent intervals.

(b) The instantiation of the generator will produce the complete aggregate, T, of

objects to be generated. Further, a nonempty T can be decomposed as

T = s is <x> is t

where: <x> is the unit aggregate consisting of the current element x; s and t

are (possibly empty) aggregates -- s, those elements previously generated

and t, those remaining to be getieratto; and s, <x>, and t are mutually
disjoint.

(c) The specifications on &init and Snext have the form

functions
&init(&g:gen) returns S'b:boolean

post (&b s T^o) A (&b ^ x^eadft") A D^X))

Änext(&g:gen) returns &b:boo!ean ■
pre D2(x)

post (&b s tV<>) A (&b ^ x^eada') A Dg(x))

where &g is an instantiation of gen corresponding to the aggregate T and

the Dj(x) guarantee that the decomposition of T specified in (b) is legal and

can be found.

The standard aggregate assumptions subsume points (a) and (b) of the basic generator

assumptions, but points (c) and (d) of the latter must still be Demonstrated in addition to the

standard aggregate assumptions.

ALPHARD: Iteration and Generators Page 19

If these assumptions hold, we can derive several simpler proof rules. The rule for the

for statement becomes

G A [P A (T=<> v V?(lead{T))) v TH<> A I(s) A (S=T V -/?(X))] ^ Q
G A T/<> A [P A /S(tead(T)) v (s/T A I(S) A /?(X))] { ST } I<s@<x>)

P A ßreq [for X! gen(y) while /?(x) do ST(x,y,z) | 1} Q

and the first rule simplifies to

G A P A VW(S V?(W) A ßM { S^x.y,?)) Q

G A P A Vw(T ^(w) { S2(y,z) } Q

P A /?req { first x: gen(y) suchthat ßM then S^x.y.z) else S2(y,z) 1 Q

We call these two rules the standard aggregate rules.

Special Cases and Examples

The Pure for I 'ale

In many cases the programmer may wish to drop the while clause, treating ßM as

identically true. In addition, he will often wish to choose P = l(<>) and Q - I(T). (Until now the
major reason for distinguishing between P, Q, and I was that if/Kx) terminates the loop before

the generator signals termination, I(T) is probably not true.) If these decisions are made, the

proof rule simplifies further, since the first premise reduces to true and several terms drop
out of the second. Making the substitutions yields a generic rule similar to those of various

for statements given by Hoare [Hoare72a]:

G A T=S(fD<x>^t A I(s) { ST(x,y,z) } l(s@<x>)

!{<>) A /?req { for x: gen(y) do ST(x,y,z) } KT)

Proof Hales for upto

To use one of these rules with a particular generator, we must "instantiate" it with the

particulars of the generator in question. We will illustrate this by developing the proof rules

for upto. First, we discharge parts (c) and (d) of the basic generator assumptions:

Page 20 Special Cases and Examples

(c) The bodies consist of simple assignment statements, and thus clearly terminate.

(d) There is no init clause and functions Sinit and Änext change only local d.-'d

and their return values; thus the first three parts of independence are

satisfied. For the fourth point, note that no means is provided fnr the user

of the form to alter k; the user is expected to refrain from altering lb and

ub.

Next, we discharge the standard aggregate assumptions:

(a) Integer intervals are used.

(b) [lb..ub] = [lb..k-l][k][K+l..ub] when lb<k<ub,

(c) The g£e and post conditions have the required form.

Substituting the interval definitions in the standard aggregate rules and simplifying, we obtain

PA(lb>ubv-/?(lb)) v lb<k<ubAl[lb..k-l]A^(k) v lb<ubAl[lb..ub] => Q
lb<ub A (P A ß{\b) v lb<k<ub A I[lb..k-1] A /?(k)) { ST(K,y,z)) I[lb..k]

P { for k: uptodb.ub) while /?(k) do ST(k,yfz) | l(k,y,z) } Q

and

P A lb<k<ub A (Vw ([lb..k-l] V?(w)) A /?(k) { S^k.y.z) } Q

P A Vw ([lb..ub] V*(w) { ^^ 5 Q

P { first, k: uptodb.ub) suchthat /?(k) then S^k.y-z) else S2(y,z) } Q

where I he y parameters are <lb,ub>. In the special case P=l[], Q=I[lb..ub], and /tetrue, we

obtain the. Pascal rule for the for statement [Hoare72a, Hoare73]:

lb<k<ub A I[lb..k-1] {ST(k,y,z)} I[lb..k]

I[] { for k:upto(lb,ub) do ST(k,y,z) } I[lb..ub]

As must be the case, this rule is also obtained from the pure for rule by instantiating gen(y)

with upto(lb,ub).

/-M-rnMnu; ntrranun ana vjeneraiors rage el

The Pure white Rule

We showed above that when the while clause is dropped, the for proof rule resembles
Hoare's. We will now show how to eliminate the loop variable and obtain the standard proof
rule for the pure while statement.

Suppose we had a form named "forever" which extended type boolean and which

satisfied the requirements above by using the value "true" for all the predicates involved.

The aggregate T would be an infinite sequence of "true1^, and the standard aggregate for rule
would become

true A [P A (false v -/Ktrue)) v true A Ktrue*) A (false v -/?(true))] ^ Q
true A [P /, ß{\rue) v true A Ktrue*) A /?(true)] { ST(true„z) } Ktrue*)

P { fOji x: forever while /?(true) do STUrue,^) | Ktrue*) } Q

where "true*" denotes a sequence of "true"s and the adjacent commas indicate the absence of
the parameters y. By choosing P = I and Q = 1 A -/?, eliminating the vacuous dependencies on
"true", dropping the useless for clause, and simplifying, we obtain

I A/? { ST'z)} I

I { while ß do ST(z) } 1 A -^

which is the conventional while rule.

Generator Specifications by Proof Rules

We have shown how two sets of assumptions about the properties of a generator lead

to very simple proof rules for the iteration statements. Notice now that if a generator

satisfies these assumptions, the specifications for Äinit and &next can be reconstructed or

obtained from the proof rules. As a result, the author of the generator can perform the
substitutions and simplifications, then give the proof rules in the specifications instead of
giving the gre and post conditions. When this is possible, we use the keyword generator in

place of form in the specification to alert the user.

To illustrate this, we will write the generator for a counting loop that uses an integer

step size greater than 1. This will provide the Alphard equivalent of Algol's

for i := a step) until b do S

for positive values of j. We first augment the interval notation [a..b] to include a step size:

Page 22 Special Cases and Examples

[a(j)b] 5c,f <a)a+j>a+2*j, ... ,b-(b-a) mod j> where j>0

If a>b, then [a(j)b] is <>. Note that [a(l)b] = [a..b]. The following rule allows us to merge two
intervals:

[a(j)b][b+j(j)c]=[a(j)c] provided (b-a) mod j « Q

Using this notation, we can defins the generator stepup

generator stepup (lb,i,ub:integer)extends k:integer=

bepjnform

specifications

requires j > 0;
inherits <allbut «->;

let. stepup = [lb(j)ub] where lb<ub :> stepup ■= rib(j)k-j][kirk+j(i)ub]i

rule forwhile(PAi>0, k, <lb)j>ub>, ß, ST(k,<lb)j)ub>1.z)(I, Q) "

premise PA(lb>ubv^(lb)) v lb<k<ub-dAl[lb(j>k-j]A^(k) v lb<ubAl[lb(j)ub] o Q,
premise lb<ub A (PA/?(lb) v lb<k<ub-dAl[lb(j)k-j]A/?(k)) { ST(k(<lb,j,ub>,z) }

I[lb(j)k] where d=(üb-lb) mod j;

rule flrsKPAJ>0, k, <lb)j,ub>, ß, S1(k)<lb,],ub>,z), S2(<lb)j)ub>,z), Q) =

premise P A lb<k<ub A (VW ([lb(j)k-jl ^(w)) A /?{k) f S1(k,<lb,j,ub>,z) } Q,
premise P A Vw ([lb(i)ub] ^(w) { S2(<lb)j,ub>,z)) Q;

rule for(lAj>0, k, <lb,j,ub>) ST(k, <lb)jlub>l z)) »

premise lb<k<ub-d A ,[lb(j)k-j] { ST{k)<lb)j,ub>)z) } I[lb(j)k]
where d={ub-lb) mod j;

representation
i

! same as upto
t

implern en tat ion
I

! same as upto, except in &next "+1" becomes "+j" and k^ub becomes k'+j^ub
t

endform

Example of Loop Verification

In this section we shall illustrate the use of the proof rules given above by verifying
the "eqvecs" function given earlier. With pre and post assertions, the function is

ALPHARD: Iteration and Generators Page 23

function eqvecs(A,B: vector{?t<H>>?lb;?ub)) returns (eq; boolean) ■
pre true gosi (eq s (Vj ([lb..ub] A0>rfi])) =
first i: uptoOb.ub) suchthat A[i] ^ B[ij then eq «- false else eq *- true

Using the upto first rule, the proof requires that we establish the two premises:

Show: true A lb<i<ub A (VW < [IbJ-l] -(A[y]?'B[y])) A A[i]?'B[i]

{ eq^-false } eq H Vj ([lb..ub] A[j]=B[j]

Proof: This simplifies to lb<i<ub A A[i]?'B[i] => 3j i [lb..ub] A[j]^Bti]. Choose j-i.

Show: true A Vw ([lb..ub] -(A[w]^B[w]) { eqHrue } eq £ Vj ([lb..ub] Arj]=8[j]
Proof: clear

QED

Termination of Generators

A major advantage of the for_ statements in many of the more recent programming

languages, such as Pascal, is that they are guaranteed to terminate (provided, of course, that

the statement which is the loop body terminates for each value of the for statement). As a

result the programmer using them never need explicitly demonstrate termination. We wouiö

like to be able to make similar claims about the loops utiNzir.g at least some generators; the
generators having this property will be called terminating generators.

We can now present a technique for demonstrating this property. Although the
general for statement is

for x:gen(y) while /?(x) dj) ST(x,y,z)

the clause "while /?(x)" can only reduce the number of times ST(x,y,z) is executed. Hence it
suffices to show that

tor x:gen(y) do ST(x,y,z)

terminates. Further, the generator and loop body, ST(x,y,z), are independent, so we know that

as long as the body itself terminates for each x, it cannot cause the for statement to fail to

1 * Note that nonterrnination of the loop might also be caused by nonterminaton of ♦he

mit clause or the functions Sinit and Snext in the generator. This is explicitly ruled out by
the basic generator assumptions, but must be treated as an additional requirement for proof of

termination of generators which do not satisfy those assumptions.

Page 24 Termination of Generators

terminate. Thus, if we can show the termination of the above statement for all possible
parameters ■ ' the generator and some particular loop body, we will have shown that use of

the generator c. ,nnot cause nontermination for any body.

Consider the statement

i«-0; for x:gen(y) do iH + 1

If we could find; (1) a (non-negative) value M depending only on y for which i<My after

executing the statement, and (2) a loop invariant which allowed us to prove that the loop
terminated with such a value of i, then we would have proved termination of ill lorps using

gen.

Clearly, the choice of M will depend on the instantiation parameters of the generator,

i.e., on the data structure from which the elements are being generated. The loop invariant
will have to asserl that M bounds i; it will also have to relate the value of i to progress

through the loop. The term that accomplishes the latter task, which we shall call Iy(x), must be

chosen for each generator whose termination is to be proved. Thus the loop invariant is of
the form i<M A! (x). If we can associate with a generator a rule for determining My for any

particular instantiation, and if we can find a suitable Iy{x), then it suffices to show

i=0 { for x:gen(y) do i<-i + l | i<MyAly(x) } i<My

Note that the clause "i<My" in this loop invariant ensures that the loop will terminate, since i is

strictly increasing from 0.

Although this must potentially be proved for each generator, we can show the
termination of every generator which satisfies the standard aggregate assumptions (with a
finite aggregate), provided only that it is possible to measure the size of an aggregate. To
demonstrate this, we use the pure for rule taking J(s) as i<size(T)Ai=size(s)) where "size" is

defined appropriately for ♦he aggregate. The only premise

G A T=s(f2<x>(?5t A i<Gize(T) A i=size(s) { N-i + 1 } i<size(T) A i=size(s@><x>)

follows since s and <x> are disjoint, whence si2e(s) < size(T) and size(s@<x>) = size(s)+l.

Hence the conclusion of the pure for rule is

i<size(T) A ;=size(<>) { for x: gen(y) do i<-i + l } i<size(T) A i=size(T)

This then implies the desired result with My=size(T) and Iy(x)=size(s).

12 This method for showing termination is a simple instance of the commonly-used well-
foundeu set notion [Katz75, Luckham75]. Here the well-founded set is the -«on-negative

integers bounded cy My.

••■■;'-i---vr-rrr<^m^'-': ... - ■ . ■■ -■ . , . ^,-._ .-..r.,........ ,■ ,. . . ■;;■■■-■■ .^ 7r~'y;^: ■■

ALPHARD: Iteration and Generators Pa8e 25

Example: Finite Sets

We now turn to a larger example that uses the iteration constructs. This example is

based on Hoare's "smallintset" [Hoare72b]) which implements small sets of integers. We begin
by presenting and verifying a slightly augmented version of "smallintset". This form, called
"simpleset", uses firsi statements and the "upto" generator; the program and the verification

can be compared with Hoare's "smallintset". We then discuss the problem of adding new

operations to "simpleset"; we construct a new type with the additional operators by adding a
set-element generator to "simpleset" and writing a new form (which extends "simpleset") for

the new operators.

"Simpleset": a Version of Hoare's "Smallintset"

Thi? differs from Hoare's "smallintset" in that it can build sets of many types and the
bound on the set size can be selected for each instantiation. Hoare noted these extensions in

[Hoare72b, section 9]. In addition, the algorithm used in "remove" is slightly different.

form simpleset(maxsize:integer, thing:form<»-,g>) =

beginform
specifications

requires maxsize > 0;
let simpleset = { . . . Xj . . . } where Xj is thing;
invariant C3rdinality(simpleset) < maxsize;

initially oimpleset = {};

function
insert{s:simpleset, x:thing)

pre cardinality({x} u s) < maxsize

post s = s' u {x},
remove(s:simpleset, x:thing)

post s = s' - {x},
has(s:simpleset, x:thing) returns (b: boolean)

post b = x t s';

13 To shorten the ere, ßOst, in, and out conditions in this oaper, we often, by

convention, omit assertions about variables which are completely unchanged. Thus, for
example, we have omitted s=s, from the post condition of has below. Such omitted assertions

are nevertieless used in the proof s! ;.

■ Ktmsn '■■ mmmtat '■

■ ■■ ■ ■' ■. . :■■: ' V ■■ ■■■■.■ . :■ ■■■ ;,... .-.:.,-...,.::

Page 26 Example: Finite Sets

representation
unique v: vector(thing,l)maxsize)) m: integer ini]_ m «- 0;

re£(v,m) = {v[i] | i ([L.tn]};

invariant 0<m<maxsize A (ViJ ([l..m] (v[i]=v[j] 3 i=j));

implementation
body insert in (3i ([l..s.m] st x=s.v[i] v s.m<maxsize)

out (Vi([l..s.m,](s.v[ij = s.v'[i]> A(3i (ri..s.m] st s.v[j] - x)) -

first p: uptod.s.m) suchthat s.v[p] = x
else (s.m «- s.m+1; s.vfs.m] «- x);

body remove out (Vj i [l..s.m](s.v[j] ^ x) A

(Vi ([l.-s-m'] Jj ([L.s.m] (s.v'O] * x s s.v[j] = s.v^i])))-
first p: uptod.s.m) suchthat s.v[p] = x

then (s.v[p] «- s.v[s.m]; s.m «- s.m-1)-

body has out (b = (3\ < [L.s.m] st s.v[i]=x) A s.v'=s.v A s.m'^.m) =

first p: uptod.s.m) suchthat s.v[p] = x
then b «- true else b ♦- false;

endform

Verification of Simpleset

For the form

1. Representation validity
Show; 0<m<maxsize A (Vi.j ([l..m](v[i]=v[jj3i=j)) ^

cardinaiity({v[i] | i i [l..rn]})<maxsize

Proof: clear

2. Initialization
Show: maxsize>0 {m«-0} {v[i] | i ([l..m]}={} A 0<m<maxsize A

(Vi.i<[l..m](.[i]=v[j]oi=j»

Proof: 0<0<maxsize and [1..0] is [].

For the function insert
3. Concrete operation

Show: ßin A Ic { first p: uptod.s.m) suchthat s.v[p]«x

else (s.m<-s.m+l; s.v[s.m]«-x)} /?ouj A Ic

Proof: The second premise of the upto first rule becomes

 \■:■]■:'■^■■■^^■:,:■,,

ALPHARD: Iteration and Generators Page 27

(3i < [l..s.m] it x=s.v[i] v s.m<maxsize) A Ic A

Vk ([l..s.m](s.v[k]^x) { s.m«-s.m+l; s.v[s.m]*-x }

Vi « [l..s.m,](s.v[i>s.v,[i]) A (3j ([l„s.m] it s.v[j]-x) A IC

The first term follows by s.m=s.m,+ l>5.m'. For the second term choose

j=s.m (note l<s.tn<maxsize). The first term of Ic holds because the Vk

term means s.m<maxsize in the second term of the hypothesis. The
second term of Ic holds from Ic and the Vk term. The first premise of
the first rule becomes

/?in A Ic A l<p<s.m A (Vk ([l..p-l](t;.v[k>x)) A s.v[p]=x { j ßoui A 1C

The second term of /?ouf follows by choosing j^p. The other terms
are clear.

4a. /?in holds

Show: Ic A cardinality({x}urep(v)m)) < maxsize 3
(3i ([L.s.rn] st x=s.v[i] v s.m<maxsize)

Proof: From Ic the v[i]'s are distinct. Hence cardinality(rep(v,s.m))

is s.m. If the 3i term is false, then x < rep(v,s.m) and
cardinality({x}urep(v,m)) = l+s.m<maxsize, i.e., s.m<maxsi2e.

Qb. /(?p0st holds

Show: Ic A cardinality({x}urep(v',s.m'))<maxsize A ß^ D s » s' U fx]
Proof: s ^ rep(s.v,s.m) = {s.v[i] | i ([l..s.m]} -

{s.v'[i3 | i ([l..s.m']} u {s.v[s.m]} • s' U {x}

For the function remove
3. Concrete operation

Show: /?jn A Ic { first p: upto(l,s.m) suchthat s.v[p]=x
then (s.v[p]«-s.v[s.m]; s.m*-s.m-l)} /?out A IC

Proof: The second premise of the upto first rule becomes

true A lc A Vk ([l..s.m](s.v[k]^x) { }

(Vj ([L.s.m^s.vU^x)) A (Vi ([l..s.ml3j € [l..s.m](s.v,[i]><x 3
s.v[j]=s.v'[il)) A Ic

The first ter n follows by the Vk term. For the second term choose
j=i. Ic is clear. The first premise of the first rule becomes

true A lc A l<p<s.m A (Vk i [l..p-l](s.v[k]^x)) A s.v[p] - x
{ s.v[p]*-s.v[s.m]; s.m<-s.m-l } /30ut A Ic

■1

Page 28 Example: Finite Sets

s.m remains non-negative since s.m'il. The reasons for the other

terms depend on p=s.m or p^s.m. Let p=s.m. For the second term of

Ic> note that {s.v[l..s.m]}-{x) * {s.v'[l..s.m'-l}} so s.v^L.m'-l] is

duplicate-free by Ic. The first term of /?ouj follows from the Vk term.
For the second term of /?ouj choose j=i. Now let p^s.m. By Ic,

{v[l..p-l,p+1..5.m'-lj} u {s.v[s.m']} = {v[l..m]} is duplicate-free. Thr
first term of ßou^ follows from Ic and s.v^p] = x ^ s.v'[s.m'] = s.v[p].

For the second term of /?ouj choose j=i except when 1=^' in woich
case choose j=p.

4a. ßm holds
/?ln is true

4b. ^post holds
Show: Ic A /?ouj ^ s = s' - {x}

Proof: s = {s.vLi] | i < [l..s.m]}. By the first term of ßou^
y < s and by the second term of ß0ü[t y^x = y(s iff y€s'.
Hence s = s' - {x}.

For the function has

3. Concrete operation

Show: ßin A Ic { first p: uptod.s.m) suchthat s.v[p]=x

then b*-true else b<-false } /?ouj A I

Proof: Ic is unchanged. The second premise of the upto first rule has
the hypothesis Vk ([l..s.m](s.v[kJHx)(i.e., the 3 term in ßou^ is false -
b. The first premise has the hypothesis v[p]=x, i.e., choose i=p so the
3 term is true = b.

4a. ßin holds

/?jn is true

4b. /?post holds
Show. Ic A /?ouj D b = x (s'

Proof: b = 3i < [l..s.m] st (s.v[i]=x) =

x ({v'[i] I i < [l.^.m1]}» x i s'

QED

We noted earlier that our algorithm for remove is different from Hoare's. Since our ßfn

and ßou[can be used for Hoare's remove, the proof of his remove requires changing only
step 3.

Adding Functions to "Simpieset"

Suppose now that we wanted to add other set operations such as union, intersection,

and an inclusion test. We could do ihis either by adding each new operation to form
"simpieset", or we could write a new form, say "finitecet", which extends "simpieset". In the

->i vim «r m

ALPHARD: Iteration and Generators Page 29

former case we would have access to the representation of simplesets, but we would have to
be very concerned about possible side effects on the representation and about the possibility
of compromising the existing verification. In addition, each such change alters the

specifications of "simpieset", and thus potentially requires reverification of the programs that
use "simplesets". The latter choice substantially reduces the reverification responsibilities and
allows a number of users to write extended operation sets without interfering with each other.
However, it is feasible only if the set of operations provided by "simpieset" is rich enough.

The version of "simpieset" presented in the previous section is not quite rich enough

for extended operation sets to be independent. The chief deficiency is that there is no way
for a user to find out what elements are in a set. We will remedy that by adding a generator

"inset" to the simpieset form and then write an extension form "finiteset".

"Inset": a Set Element Generator

We said above that a generator produces a sequence of elements. Since sets are not
inherently ordered, we can generate the elements in any order that is convenient. We do,

however, want to be able to promise that each element in a set appears exactly once in the
generated sequence. It is not necessary (or particularly desirable) that the elements of two
equal sets be generated in the same order. In fact, the order in which this generator

produces the set elements is an accident of the history of the set.

The following program text is the definition of a generator, "inset", which produces the

desired sequence; it is shown in its proper context within the "simpieset" form. We have,

however, deleted (and replaced by ellipses) those parts of "simpieset" which are identical tc

their previous definition. The form inset satisfies the standard aggregate assumptions, so we
specify it by giving its proof rules. For simplicity, we provide only the first and the pure for

rules.

form simpleset(maxsize:integer, thing:form<«-,=>) ■
beginform

specifications

generator inset(s:simpleset) extends x:thing
let inset = { x it x « s } where s ?< {} = (inset = q u {x} u r and

q, {x}, and r are disjoint);

rule ford, x, s, ST(x, s, z)) «
premise q c s A x (s-q A I(q) { ST(x,s,z) } I(q U (x});

^ We could, of course, go to extra trouble to generate the elements in a standard

order, but that is a different design decision and leads to a different program.

* ■ . ■;.■: .1 • ■ ,;, m ^ • •:

?
■- ■■ ^ ^ r-■■■ "- »i

Page 30 Example: Finite Sets

rule firsKP. x, s, ß, SjCx, s, z), 82(5, z), 0) B

premise q c s A x < s-q A P A (Vw (q -•/?(w)) A /3(x) { S^x.s.z)] Q,

premise P A Vw (s -/?(w) { 52(5,2) } Q;

implementation

body inset =

beginform
representation

unique j:integer;
rep(s.v.s.m,x.i) = if; s.m=0 then {} else q U (x} U r where

q = {s.v[i] I i « [l-j-l]) äQd
x = s.v[j] and

r = {s.v[t] I i ([j+l..m]}i

invariant true;
implementation

body &init out «Ab 5 s.m>0) A (Ab => l=&g.j<s.m A x=s.v[&g.j])) -

if s.m > 0 then (&g.j<-li x«-s.v[l]i &b<-true)
else &b«-false;

body &next in l<Äg.j<s.m out ((Ab = Äg.]' < s.m) A

(&b 3 &'g.j=&g.j'+l A l<&g.j<s.m A x=s.v[&g.j])) =
if &g.j < s.m then (&g.j<-&'g.j+lj xf-s.v[&g.j]j &b*-true)

else &b*-false;

endform

endform

The generator "inset" can now be used to express the iteration which was posed as the

first problem in the introduction, that is, to compute the sum of the elements in a set s.

Compare this Alphard statement with the three versions in contemporary languages given

there:

sum *- 0; for x:inset(s) do sum <- sum + x

This version of the loop does not reveal the implementation, so the users neeo not be

concerned with which kind of iteration is most appropriate. In addition, the implementor of the
"simpleset" form can now be reasonably sure that a change in the implementation will not

create havoc in user programs. We can verify this program segment using the pure for rule

for inset given in the specifications.

ALPHARD: Iteration and Generators Page 31

Show: true { sum^-O; for x ; inset(s) do sum«-sum+x } sum - SIGMAj(s(j)

Proof: I({}) is sum = 0, I(q) is sum = SIGMA:(q(j), and tne premise of the for rule is
q c s A x < s-q A I(q) { surnf-sum+x } l(q U {x})

This reduces to the provable formula
q c s A x (s-q A sum = SIGMAj(q(j) = sum + x = SlGMA^ggf^j)

OED

We next verify inset. We must first reconstruct the gre_ and post conditions for &init

and &next from the specified proof rules:

&init
post (&bHs^{}) A (&b => x (s A q={})

&next

pre x(s
post (&b=rV{]) A (&b 3 x (r1 A q^ulx'})

The reasons that parts (c) and (d) of the basic generator assumptions hold are essentially the
same as for upto. It is also necessary to discharge the standard aggregate assumptions:

(a) Sets are used.

(b) s = q u {x} u r when sH{} (recall disjointness of q, {x}, and r).

(c) The f>re and post conditions have the required form.

Since "m" and "v" are unchanged by inset, the Ic of simpleset still holds and will be used

throughout this proof. The "s." qualifier is sometimes omitted in the interest of clarity.

For the form

1. Representation validity

Shoiv: true ^ true
Proof: clear

2. Initialization
Show: true { } true A true

Proof; clear

For the function &init
3. Concrete operation

Show: true { if s.m>0 then (&g.j«-li x«-s.v[l]i Äb«-true) else &b«-false } /?out A true

Proof: clear by considering the two cases of the if

;,:.;,.-■.:,

page 32 Example: Finite *

4a. ßm holds
/?in if true.

4b. /?pos, holds
Show; true A (Abss.m>0) A (&b = l-&g.j<s.m A x=s.v[&g.)]) ^ (&b s s^(]) A

(&b ^ x (s A q = {})
Proof: To obtain s and q in terms of concrete varables, use the reja

function. Then &b s (s.m>0) s {v[i] | i ([l..m])H{} = $*{}■ Suppose
s.m>0, i.e., &b = true. Then &g.j=l whence x=s.v[l] ({v[i] | i € [l..m]}

and q = {v[i] | i ([1..0]}={}.

For the function &next
3. Concrete operation

Similar to &init.3

4a. ß]n holds
Show: x (. s ^ l<Äg.j<s.m
Proof: Using the re£ function, x (s implies v[j] ({v[i] | i c [l-.m]},

whence l<Äg.j<m.

4b. /?post holds
Show: x (s A (&bs&g.j'<s.m) A {&b ? &g.j=&g.j,+ lAl<&g.i<s.mAx=s.v[&g.)]) =>

(&b = {v[i] 1 i c [j'+l-rn]} H {}) A (&b ^ x ({v[i] | i i [j'+l.m]} A

{v[i]|ic [l..j-l]}={v[i] | * « [l-i']})
Proof: &b = (&g.j'<s.m) s {v[i] 1 i ([j'+l-.m]} t {}

by reasoning similar to 4a. The second term of the conclusion follows

from l<&g.j»&g.j,+ l<s.m and x=s.v[&g.j].
OED

"Finiteset": an Extension of "StmpLeset"

Since the simple set form defined above does not provide the usual set operations one

expects (e.g., union), in this section we shall define and verify an extension of that form which
provides these facilities. All of the mechanisms used in this example have been presented
previously; the example does, however, provide us the opportunity to illustrate the use of the

specifications of one form, "simpleset", in the verification of another. The new form definition

and ih. proof are given below:

* t:.-

ALPHARD: Iteration and Generators Page 33

form finiteset(maxsi2e:integer, T:form<*-,=>) extends s:simpleset(maxsize,T) ■
beginform
speciiications

requires maxsize > 0
let finiteset = { } where x: is thing;

invariant cardinality{finiteset) < maxsize;
initially finiteset = {};
function

union(sl)s2:finiteset(tnaxsize,T)) returns s3:finiteset(maxsize,T)

pre cardinality(slus2)smaxsize
post s3=sl u s2,

intersect(slls2:finiteset(nnaxsize,T)) returns s3:finiteset(maxsize,T)

post s3=sl n s2,
includes(sl,52:finiteset(maxsize,T)) returns biboolean

post b=s2 c si;

representation
rep(s) = s

invariant cardinality(s) < maxsize

implementation
body union =

begin
for x:inset(sl) do insert(s3,x);
for x:inset(s2) do insert(s3,x)j
end;

body intersect =
for x:inset(sl) do

[f has(s2,x) then insert(s3,x);

body includes =
first x:inset(s2) suchthat -•has{sl,x) then b*-false else b«-true;

endform

Verification of Finiteset

Since "rep(s) is an identity function except for a type change from simpleset to finiteset,

we shall assume flpre = /?jn and ^p0st = ßou[in the proof. All the generator us^s are
independent of the loop bodies; specifically, s3 is changed but never generated. Note also
that s3 is instantiated as a simpleset whenever it is needed for a return value, and hence is

initialized to {}.

WfajM&'iA" :.■.■■'*.'■ ■■■»•■■■' ■ *■■""■■■■ J^ ":«:.:.:* ''.:-■:-::' '- .* ^

Pa8e 34 Example: Finite Sets

For the form

1. Representation validity

Show; cardinality(s)<maxsize ^ cardinality(s) < maxsize
Proof: clear

2. Initialization

Show: maxsize>0 { "s«-{}" } s={} A cardinality(s)<maxsize

Proof: The notation "s<-{}" refers to the initially clause of simpieset.
The proof is trivial.

For the function union
3. Concrete operation

Show: cardinality(slus2)<maxsize A IC { body of union } s3=slus2 A Ic

Prorf: Ic remains true because it is unchanged. A loop invariant for the

first for statement is s3 = q. Since cardinality(q) < cardinality(sl) <

cardinality(slus2) < maxsize, the pre condition of insert is met; the
post condition says s3 = q u {x} which shows s3 = q is indeed a loop

invariant. Similarly, a loop invariant for the second for statement is $3
= si u q. The first for statement is started with s3 = {}; the second
for statement is started with s3 = si by the result of the first for
statement, which is s3 = si.

4a. fl{n holds

ftpre = ^in
4b. /?post holds

^post = ^out

For the function intersect
3. Concrete operation

Show: Ic { body of intersect } s3 = slns2 A IC

Proof: A loop invariant is s3 = q n s2 because if x (s2 then s3u{x} -

(qns2)u{x) = (qu1
(x})ns2 while if x < s2 then s3 = qns2. The pre

condition for insert holds because s3 = qns2 c slns2 £ slus2. The
initialization of s3 to {} starts the loop properly; the result is s3 -
Glns2.

4a. and 4b. As in union.

»■tmxmmummk:

ALPHARD: Iteration and Generators Page 35

For the function includes
3. Concrete operation

Show: Ic { body of includes } b = s2 £ si

Proof: The second premise of the first rule has the hypothesis

Vw < s2 --has(sl,w) = (s2 c si) = true. The first premise has the
hypothesis x (s2 A -(ha^sl.x)), i.e., x C s2 A x -(si whence b = false
as the body does.

4a. and 4b. As in union.

QED

A Remark on Program Size

We are aware of (and have occasionally shared) the apprehension of some of our

colleagues that Alphard programs will be substantially, even unreasonably, larger than

programs for similar tasks written in other languages. Early results indicate that this need not

be the case. One comparison is made in [Shaw76]; we are now able to compare Hoare's
"smallintset" with "simpleset".

First, let us compare this program text with Hoare's. The Alphard program, "simpleset",
initially looks longer - 32 lines to 28 for Hoare's "smallintset". "Simpleset", however, includes

about 14 lines of verification assertions. With the exception of the in/out assertions, this
information appears in Hoare's paper, but not in the "smallintset" program tself.

We will compare program sizes (exclusive of assertions) on the basis of the number of
lexemes used, since the division info lines is arbitrary. We divided the lexemes into three
categories: declarations and procedure headers, text grouping symbols like begin and end, and
executable statements. We treated a qualified name as a single lexeme. We found the
following:

executable grouping declaration total
"simpleset" 95 2 81 178
"smallintset" 121 12 58 191

Alphard's shorter executable text is largely attributable to the conciseness of the first
statement; its larger declaration text seems to arise from the separation of specifications from

procedure bodies and from the additional generality. The differences are not large enough to
draw major conclusions from the data, and raw text length is hardly the major criterion for
comparing languages. Nonetheless, the closeness of the numbers should serve to allay any
fears that Alphard programs will necessarily be very large.

Page 36

Conclusions

The ultimate goal of the Alphard project is to increase the quality and reduce the total,

lifetime, cost of real programs. Of the many alternative approaches to this goal we have

chosen one in which recent results from programming methodology and program verification

are merged in a programming language design.

The key component of this merger is the introduction of a language mechanism, the

form, to provide explicit support for the development of conceptual abstractions. The close

association between forms and our intuitive notion of abstraction seems sound on

methodological grounds, for it permits the programmer to concentrate on abstractions instead

of their implementations. It also seems sound in terms of current (and projected) verification

technology in that it permits isolated proofs of manageable size which collectively verify the

entire program.

The success of this approach to improving quality and reducing costs depends, in hrge

measure, on the degree to which the proposed language mechanism is able ' "> express natural

abstractions. In a previous report [Wulf76a,b] we dealt with abstraction;, - "nose behavior is

naturally expressed as a collection of operations defined over an abstract data structure. This

is not, however, the full range of behaviors implicit in our understanding of the concept of

"abstraction". Thus, in this report we concerned ourselves with that clasä of behaviors

cprresponding to the notion of enumerating the elements of an abstract aggregate (i.e., data

structure).

The specific content of this report has dealt with two related issues: the language

features for defining and using such abstractions and the development of specification and

verification techniques to accompany the language features. It is reassuring to us that the

existing form mechanism is adequate to capture the new class of abstractions introduced here

We also find it interesting that 'he forms which define generators can be specified quite

naturally in terms of proof rules instead of the usual functional specifications. Despite the

complexity of the full generator mechanism and associated proof rules, a chain of simplifying

assumptions yields the simple rules for common types of loops in other languages;

furthermore, these common loops terminate.

A number of open problems remain. Th° loop specialization facility in Alphard has made

it possible to encapsulate iteration patterns along with other properties of an abstraction, but

it has also made it awkward to write certain kinds of loops, including those which operate on

only part of a structure and those in which a structure is modified by the loop which operates

on it.

We may wish to eliminate many such irregular loops on methodological grounds, but

others seem to be reasonable, understandable, and hence safe. For example, it seems

acceptable to write loops for

 • • ■ -■

ALPHARD: Iteration and Generators Page 37

- recurrence relations in which the first k elements of a vector are treated

individually and the rest uniformly,

- operations on matrices in which the boundary values receive special treatment,

- tree walks in which data values at the nodes, but not the tree structure, are

changed,

- list processing operations when the loop body is making insertions and deletions

to the list from which elements are being generated, and

- operations in which the loop body may wish to request early loop termination

(without »he distributed cost and complexity of including the test in the while

clause).

Since a pjnerator is in fact a form, the ability to write some of these loops may be provided

by defining functions other than ftinit and Änext in the generator. Operations on the structure

would then still be performed only by the generator, which could presumably keep matters in

hand. The restrictions under which this is reasonable are a subject for further research. This

is not, however, an acceptable general solution, for it would require the generator to provide

its own versions of all interesting ope-ations on the structures for which it generates

elements.

A general solution for the problem of permitting interactions between the generator and

the loop body can be found by returning to the original proof rule, without even the basic

generator assumptions. This rule assumes only that &init and &r,ext are functions provided by

the generator. This solution is too general — it is too unwieldy for any but the most intricate

of interactions. We believe that a promising path for further research is the search for sets

of reasonable assumptions which permit interesting interactions and also, like the two sets of

assumptions made in this report, lead to vastly simplified proof rules.

Acknowledgements

We owe a great deal to our colleagues at CMU and ISI, especially Mario Barbacci, Neil

Goldman, Donald Good, John Guttag, Paul Hilfm^er, David Jefferson, Anita Jones, David Lamb,

David Musser, Karla Perdue, Kamesh Rsmakrishna, and David Wi'e. We would also like to thank

Jarnes Horning and Barbara Liskov and their groups at the University of Toronto and

Massachusetts Institute of Technology, respectively, for their critical reviews of Alphard. We

also appreciate very much the perceptive responses that a number of our colleagues have

made on an earlier draft of this paper. Finally, we are grateful to Raymond Bates, David Lamb,

Brian Reid, and Martin Yonke for their expe t arsistance with the document formatting

programs.

- (MB

Page 38

References

[Dahl72] Ole-Johan Dahl and C. A. R. Hoare, "Hierarchical Program Structures", in Structured

Programming (O.-J. Dahl, E. W. Dijkstra, and CAR. Hoare), Acadenic Press, 1972 (pp.

175-220).

[Hoare72a] C. A. R. Hoare, "A Note on the For Statement", BIT, 12, 1972 (pp. 334-341).

[Hoare72b] C. A. R. Hoare, "Proof of Correctness of Data Representations", Acta Inforr.xtica,

1, 4, 1972 (pp. 271-281).

[.Hoare73] C. A. R. Hoare and N. Wirth, "An Axiomatic Definition of the Programming Language

Pascal", Acta Informaüca, 2, 4, 1973 (pp. 335-355).

[Igarashi75] Shigeru Igarashi, Ralph L London, and David C, Luckham, "Automatic Program

Verification I: A Logical Basis and its Implementation", Acta Informaüca, 4, 2, 1975 (pp.

145-182).

[Jensen74] Kathleen Jensen and N;klaus Wirth, PASCAL User Manual and Report, Springer-

Verlag Lecture Notes in Computer Science, No. 18, 1974.

[Katz75] Shmuel Katz and Zohar Manna, "A Closer Look at Tenvration", Acta Informatica, 5,

4, 1975 (pp. 333-35?).

[London76] Ralph L. Lordon, Mary Shaw, and Wm. A. Wulf, "Abstraction and Verification 'n

Alphard: A Symbol Table Example", Carnegie-Mellon University and USC Information

Sciences Institute Technical Reports, 1976.

[Luckham75] David C. Luckham and Norihisa Suzuki, "Automatic Program Verification IV: Proof

of Termination within a Weak Logic of Programs", Memo AIM-269, Stanford University,

October 1975.

[McCarthy62] John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy P. Hart, and

Michael I. Levin, LISP 1.5 Programmer's Manual, MIT Press, 1952.

[Newell64] Allen Newell, Fred Tonge, Edward A. Feigenbaum, Bert F. Green Jr., and George H.

Mealy, Information Processing Language-V Manual, Second Edition, Prentice-Hall, 1964.

[Shaw76] Mary Shaw, "Abstraction and Verification in Alphard: Design and Verification of a

Tree Handler", Proc. Fifth Texas Conference on Computing Systems, 1976 (to appear).

[Teitelman75] Warren Teitelman, "Interlisp Reference Manual", Xerox PARC, 1975.

ALPHARD: Iteration and Generators Page 39

[Weissman67] Clark Weissman, LISP 1.5 Primer, Dickenson, 1967.

[Wulf76a] Wm. A. Wulf, Ralph L. London, and Mary Shaw, "Abstraction and Verification in

Alphard: Introduction to Language and Methodology", Carnegie-Mellon University and

USC Information Sciences Institute TechnLcal Reports, 1976.

[Wulf76b] Wm. A. Wulf, Ralph L. London, and Mary Shaw, "An Introduction to the Construction

and Verification of Alphard Programs", IEEE Transactions on Software Engineering, SE-
2,4, December, 1976 (to appear).

Appendix A
Informal Description of Verification Methodology

AlpharcTs verification methodology is designed to determine whether a form will actually

behave as promised by its abstract specifications. The methodology depends on explicitly
separating the description of how an object behaves from the code that manipulates the

reprcscntaticn in order to achieve that behavior. It is derived from Hoare's technique for

showing correctness of data representations[Hoare72b].

The abstract object and its behavior are described in terms of some mathematical

entities natural to the problem domain. Graphs are used in [Shaw76] to describe binary trees;

sequences are used in [Wulf76a,b] to describe queues and stacks and in [London76] to
describe list processing, and so on. We appeal to these abstract types:

- in the invariant, which explains that an instantiation of the form may be viewed
as an object of the abstract type that meets certain restrictions,

- in the initially clause, where a particular abstract object is displayed, and

- in the gre and post conditions for each function, which describe the effect the

function has on an abstract object whrch satisfies the invariant.

The form contains a parallel set of descriptions of the concrete object and how it
behaves. In many cases this makes the effect of a function much easier to specify and verify

than would the abstract description alone.

Now, although it is useful to distinguish between the behavior we want and the data
structures we operate on, we also need to show a relationship that holds between the two.
This is achieved with the representation function rep(x). which gives a mapping from the

Page W Appendix A

concrete representation to the abstract description. The purpose of a form verification is to

ensure that the two invariants and the re£(x) relation between them are preserved.

In order to verify a form we must therefore prove four things. Two relate to the
representation itself and two must be shown for each function. Informally, the four requireJ

* 15 step-:, are -^

For the form

1. Representation validity

Ic(x)3 Ia(rep(x))

2. Initialization
require;:. { uict clause } initially(rep(x)) A IC(X)

For each function

3. Concrete operation
in(x) A lc(x) { function body } out(x) A Ic{x)

4. Relation between abstract and concrete

4a. Ic(x) A pre(rep(x)) ^ in(x)

4b. Ic(x) A pre^rep^')) A out(x) o post(rep(x))

Step] shows that any legal state of the concrete representation has a corresponding abstract

object (the converse is deducible from the other steps). Step 2 shows that the initial state
created by the representation section is legal. Step 3 is the standard verification formula for
the concrete operation as a simple program; note that it enforces the preservation of Ic. Step

4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition
holds and (b) that if the operation is performed, the result corresponds properly to the

abstract specifications.

Appendix B
Derivations of Simplified Proof Rules

In this Appendix we show that the general for and first proof rules and the basic

15 We will use Ia(rep{x)) to denote the abstract invariant of an object whose concrete

representation is x, Ic(x) to denote the corresponding concrete invariant, italics to refer to
code segments, and the names of sp cification clauses and assertions to refer to those
formulas. In step 4b, "pre^rep^1))" refers to the value of x before execution of the function.
A complete development of the form verification methodology appears in [Wulf76a,b].

ALPHARD: Iteration and Generators Page ^1

generator assumptions yield the simplified proof rules based on those assumptions. We shall

use the following two sets of assumptions and three proof rules:

Generator Assumptions
(Gl) G A /?init.pre { n - x.&init } G A /?initip0st

(U2) G A /?next.pre { H - x.&next) G A ^next.p0st

(G3) ßren { i-nit clause } G

Basic Generator Assumptions
(BG1) The post conditions on &init and &next are of the form

(b 5 Hj) A /?! and (b s nn) A ßn

respectively, where b is the result parameter of these functions.

(BG2) G D /fljnjt.pre- G A (nMnit.post ^ "n^next.post) 0 ^next.pre

{BG3) The generator and the loop body are independent. That is, for arbitrary

predicates R and S

R(y,z) { mit ciaase } R(y,z)

R(y,z) { n «- x.&init) R(y,z)
R(y,z) { n ♦- x.&next } R(y,z)

and S(.<,y) { ST(x,y,z) } S(x,y)

And Rule

Pi {S}Q1,P2{S}Q2

Pj AP2 { S IQi AQ2

Consequence Rules

P = Q, Q { S } R

P {S }R

Q { S } R, R = T

Q { S } T

...■■....: ^ ■ -
:-i

Page 42 Appendix B

SemicoLon Rule

P {Sl }Q,Q{ S2 }R

P{Si;S2 }R

Let us work initially on the [or, statement, its general proof rule is

(GforO) P A ßreq { mit clause] P A ßin{\pre

(Gforl) P A G A ^init.pre '. " <" x^init 1 <n*ß(*)) => Q
(Gfor2) P A G A /^injt.pre { n «- x.&init; assume nA/?(x)j ST(x(y,z) } I A G A /?nextipre

(Gfor3) I A G A ßne)(ipre { n *■ x.&next) -{nA/?(x)) 3 Q

(Gfor4) I A G A /?next,pre (n *" x-&next; assume .nA/?{x); ST(x,y,z)] I A G A /3next pre

P A ßreq { for x: gen(y) while fiM do ST(x,y,z) | 1 } Q

and the simplified proof rule is

(Sforl, Sfor2> G A [P A /?, A -(njA^x)) v I A /?n A -(nnA/?(x))] o Q

{Sfor3, Sfor4) G A ßM A [P A /?,- A nj v I A /3n A nn] { ST(x,y,z) } 1

P A ßreq { for x; gen(y) while ßM do ST(x,y(z) | I } Q

Our task, therefore, is to derive each of the five Gfor premises from G, BG, and the four
Sfor premises. If we do this, we obtain the conclusion of the general rule which is the
conclusion of the simplified rule. Note that the inU clause in GforO is invoked when the
generator is instantiated by the clause "local x;gen(y)" in the expansion of the for statement.

We first note relationships involving x.&next, x.&init, the invariant I, and the assertion P.

Assumption BG1 means that for an arbitrary predicate R involving the set of generated values

XQ,...,xp, and x (in this notation x is also denoted by Xp+1), we know

R{{x0,..,xp,x}) { n *- x.^next } R({x0,..,xp,xp+1}) A (nn = x^xp+2)
R({}) { n <- x.&init) R({}) A (nj = x=x0)

Thus, provided x is denoted by x +1, the predicate R is preserved by x.&next and x.&lnit, and
there may be a newly generated value. Using both BG1 and BG3 we see that x.&next
preserves the invariant I, which depends on x, y, and z. The cases of the init clause and

x.&init preserving P are simpler since P depends only on y and z.

ALPHARD: Iteration and Generators Page A3

Derivation of CforO
ßren { in.it clause } G
P { init clause } P
P A ßrec. { init clause } P A G
G :> /^init.pre
P A /?req { init clause } P A ß\n\ipre

Derivation of Gfori
G A /^init.pre ^ n *" x•&ini, ^ G A ^init.post
P { n *- x.&init } P
P A G A /?initipre { n «- x.&init } G A P A /?|nit p0st

G A P A (nertj) A /^j 3 AnAßM) o Q

P A G A ^jnit.pre { n ♦" x■&ini, J -(nA/?(x)) ^ Q

Derivation of Gfor2
P A G A /?init pre { n «- x.&init } G A P A /?init.p0st

G A P A (nsrt,) A /?, A nj A /?(x) o G A P A (nan,) A ^ A nj A /?(X)

Ü A P A (n^nj) A ^j { assume nA/?(x) } G A P A (nsrij) A ^ A nj A fi(x)

G A P A (nzn{) A ß- A n, A /?(x) { SKx.y.z) } 1 A n,
G A ^init.post i ST<x'y.z) 1 G A ^init.post
G A P A (nanj) A /^j A n| A /?(x) { SKx.y.z) } 1 A G A nj A /3jnit p0st

G A P A (nsrtj) A ß] { assume nA/?(x); ST(x,y,z) } I A G A Rj A ^init.post

G A R, A /^jnit.post 0 ^next.pre
P A G A ^jnjt pre (R *- x.&init; assume RA/?{x)i ST{x,y(z) }

I A G A /?next.pre

Derivation of Gfor3
G A ^next.pre ^ n *" x&ne)<t 1 G A ^next.post
I [R «- x.&next } I
I A G A ^next.pre { n «- x.&next } G A I A /?next.p0st
G A I A (R£Rn) A /?„ 3 -(RA^X» 3 Q

I A Ü A /Vxt.pre t n *■ x-&next J ^nA^x» = Q

Derivation of Gfor4
I A G A /?next.pre * n «- x.&next } G A I A /?next.pDst
G A I A (R=Rn) A /?n A Rn A /?(x) 3 G A I A (R£Rn) A ß^ A Rn A /?(x)
G A I A (R=Rn) A /?n { assume RA^(X) } Ü A 1 A {R5Rn) A /?n A Rn A ßM

G A I A (R£nn) A /?n A Rn A ßM { SKx.y.z)] 1 A Rn

G A ^next.post { ST<x.y>z)) G A /^next.post
G A I A (RSRn) A ^n A Rn A ßM { SKx.y.z)] I A G A Rn A /3next.post

G A I A (Rr n) A /?n { assume RA/?{X); SKx.y.z) } I A G A Rn A /?next.post

G A Rn A /?next.post 0 ^next.pre

I A G A /^next.pre R «- x.&next; assume RA^(X)J ST(x,y,z) }

I A G A /?next.pre

G3
BG3
and rule

BG2
consequence

Gl
BG3
and rule

Sforl
consequence, BG1

step 3 above

identity

assume rule
Sfor3, private Rj

BG3

and rule

semicolon rule

BG2
semicolon rule,

consequence, BG1

G2
BG1, BG3
and rule
Sfor2
consequence, BG1

step 3 above

identity
assume rule
Sfor4, private Rn

BG3

and rule

semicolon rule

BG2
semicolon rule,

consequence, BG1

--;;„-.i^-*ii,1un.^ ■■ -..i-

Page 44 Appendix B

We now work on the first statement. The expansion of

first x:gen(y) suchthat ßM then S^x.y.z) else S2{y.z)

using a standard while statement, including the most general case assertions, is

asserl P A ^req;
begin label X;

beain local x: gen(y);

assert P A G A ßmilprei
n «- x.&init;
while

[asserl P A G A ^(x0..xp) A (n3/?ne)<t pre) A (/öjnjt.post v /Snext.post)]
n do

[f ßM then (Sj(x,y,z); goto \) else n ♦- x.&next
end;

S2(y.z);
X: end;

assert Q

The general proof rule for the first statement is

(GfirstO) P A ßreq { mit clause } P A ß[r[\\pre

(Gfirstl) P A G A ßinilpre { n *- x.&init } P A G A {n?ßnex[pre)

(Gfirst2) P A G A ^<x0..xp) A (/?init,post v /?next.post) A ßnexlpre A n A ßM
{ Sj^v.z) } Q

(Gfirst3) P A G A ^(x0..xp) A (/?mit post v ^next.p0$t) A -n {S2(yI2) } Q
(Gfirst4) P A G A ^{x0..xp) A /^next pre A ^(x) { n <- x.&next }

PAGA^{x0..xp+1)A(n3/?nextpre)

P A ßrec. { first x;gen(y) suchthat ßM then Sj(x,y,2) else $2^12) } Q

and the simplified proof rule is

(Sfirstl) G A P A [^An, v /?nAnnAi^(x0..xp)] A ßM { S^x.y,?) } Q

(Sfirst2) G A P A [-injA/?! v -^nnA/?nA^(x0..xp)] { S2(y,z) } Q

P A ßre { first x: gen(y) suchthat ßM then S^x.y.z) else S2(y,z) } Q

In Gfirstl note that there is no x before the statement n <- x.&init so -'/3(XQ..XD) S true.
As in the for. case, the task is to derive each of the five Gfirst premises from G, BG, and the
two Sfirst premises.

ALPHARD: Iteration and Generators Page 45

Derivation of GfirstO

Same as derivation of GforO

Derivation of Cfirst 1
G A ^init.pre l n " x-&init ^ G A ^init.post
P { n *-- x.Äinit } P
P A G A /?injt pre { n «- x.&init } G A P A ^init.post

G A P A ^init.post 3 P ^ G A <nD^next.pre)

P A G A ^injt_pre { n «- x.&init } P A G A (n3/?next pre)

Gl
BG3
and rule

BG2

consequence

Derivation of Gfirst2
G A P A [/^ A rti A true v /?n A nn A ^{YQ-M^)] A flM { S^x.y.z) } Q Sfirstl

P A G A ^(x0..xp) A [(nsnj) A /?, v (nHnn) A /?n] A n A fiM { S^x.y.z) } Q algebra

P A G A ^(x0..xp) A (/?inil.post v ^next.pos,) A n A ^(x) { S^x.y.z) } Q BG1

P A G A V?(x0..xp) A (/?init.post v /^next.post) A /^next.pre A " A ßM

{S^x.y^lQ

Derivation of GfirstB
G A P A [-n, A /?! A true v -nn A /?n A -/?(xQ..xp)] { S2(y,z) } Q

P A G A V?(x0..xp) A [(nsn,) A ^ v (n=nn) A /?n] A -n { S2(y(z)) Q

P A G A V<(x0..Xp) A (/«init.p0St V /W.post) A ^ { S2<V'Z) ' Q

Derivation of Gfir$t4
G A ^next.pre ? n *")<-Änext ^ G A ^next.post
P { n «- x.&next } P
-./?(x0..xp) A -/?(x> { n «- x.&next } ^(xo.-Xp+1)

consequence

Sfirst2

algebra

BG1

G2
BG3
BG1, definition

Of ^(XQ-Xp)

and rule
P A G A V?(x0..Xp) A V?{x) A /?next.p,e { n *- x.&next }

PAGA^next.postA^<xO-Vl)

P A G A -VKx0..xp) A /?next.pre
A ^x) (n *- x.&next }

P A G A ^(xQ-Xp+j) A (n3^next pre) BG2, consequence

