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Introduction 

This paper is one in a series describing the Alphard programming system and its 
associated verification methods. It presumes that the reader is familiar with the materal in 
[Wulf76a,b], particularly the use of forms for abstraction and the verification methodolrgy for 

forms. 

The primary goal of the form mechanism is to permit and encourage the localization of 
information about a user-defined abstraction. Specifically, the mechanism is designed to 
localize both verification and modification. Other reports on Alphard have discussed ways to 

isolate specific information about representation and implementation; in this paper we deal 

with localizing another kind of information. 

Suppose that S is a "set-oHntegers" and that we wish to compute the sum of the 

integers in this set. In most contemporary programming languages we would have to write a 

statement such as 

sum <- 0; for i ♦- 1 step 1 until S.size do sum <- sum + S[i] 

o.  ^nssibly 

p ♦- S; sum <- 0; while p ^ ni[ do (sum *- sum + p.value; p <- p.next) 

or, it we know that the set elements all lie in the range [lb..ubj, then we might write 

sum«-0! for i«-lb to ub do jl i f S then sum*-sum+i 

None of these statements is really satisfactory. First, they all seem to imply an order to the 

summation, whereas the abstract computation does not. Next, the first statement strongly 
suggests a vector implementation of the set and the second a list implementation. (Although 

other implementations are not excluded, the resulting loops will probably be unacceptably 
inefficient.) The third statement does not suggest an implementation of the set, but may be too 

inefficient if the cardinality of the set is much smaller than ub-Jb+L 

It would be much better if we could write something like 

sum«-0; for x<S do sum«-sum+x 

which implies nothing about either the order of processing or the representation of sets. 

Except for notational differences, this latter example illustrates our goal. We want to 
encourage suppression of the details of how iteration over that abstract data structure is 
actually   implemented.    The  difficulty  in  doing  this  is  that  the  abstract  objects   are   not 

. *itm'. XMH 
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predefined  in  Alphard.    Hence   it  is  the  author  of  the  abstraction  who  must   specify  the 

implementation of {the analog of) VS". 

We resolve the problem by separating the responsibility for defining the meaning of a 

loop into three parts. (1) Alphard defines the (fixed) syntax and the broad outline of the 
semantics. (2) The definition of the abstraction that is controHing the iteration fills in the 
details of the loop control (in particular, the algorithms for selecting the next element and 
terminating the loop). (3) The user supplies the loop body. Conventional languages provide 

only a small, fixed number of alternatives (usually one) for ihe second part of this information. 
In Alpharc it is supplied by the form that defines the abstraction; we say this part of the 
definition specializes the iteration statement to that abstraction. Related constructs appear in 

IPL-V as generators [Newell64] and in Lisp as the mapping functions [McCarthySZ, 

Weissman67]. 

One of the major goals of Alphard is to provide mechanisms to support the use of good 
programming methodology. The rationale for generators given above is based on 
methodological considerations; that is, it is generally good to abstract from the implementation 

and hide its details. Generators permit us to do this for control constructs much as the 
functions in a form permit abstraction of operations (see [Wulf76a,b]). 

A second major goal is to provide the ability to specify precisely the effect of a 
program and then prove the program implements that specification. To meet this goal, we 
must provide more than just the language mechanism for generators: we must also provide 
both a way to specify their effects and a corresponding proof methodology. A natural means 
of doing this for Renerators is somewhat different from one for functions. Functions are 
naturally characterized by predicates which relate the state of the computation before their 
invocation to its state afterward. Generators, however, are not invoked in the usual sense; 
rather they are used to control the repeated execution of an arbitrary "body" of an iteration 
statement. Thus, a natural specification of a generator is in terms of a "proof rule" which 
permits the effect of the entire iteration statement to be expressed. 

This report contains two strongly related components: first we introduce the language 
mechanism for generators, then we turn to the specification and verification of generators and 
of the iteration statements which use them. We begin with a digression on a language feature 

which is not discussed elsewhere, but is needed for the definition of generators. We then 
introduce the two Alphard iteration statements and show how they can be specialized by the 
user. One of these is an iteration construct designed for searching a series of values for an 
element with a desired property. It should replace most of the loop-exit gotos used in current 
languages. (Interlisp [Teitelman75] contains a wide variety of iteration statements, one of 
which specializes to this construct.) 

We obtain general proof rules for the two loop constructs, then state a series of 
simplifying assumptions that certain generators may satisfy. We obtain a corresponding series 
of proof rules whose simplicity increases with the restrictiveness of the assumptions we make 
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about the generators. These assumptions lead both to rules that correspond directly to 

familiar rules for iteration (e.g., those of Pascal [Hoare73, Jensen74]) and to simple rules for a 
substantial number of interesting abstract structures (e.g., those given by Hoare [Hoare72a]). 

We then show how to use proof rules instead of functional descriptions to specify many 
of the forms which define generators. We also give a technique for showing that loops using a 
generator will halt (assuming the loop body terminates). We prove, with one application of 

this technique, that many common generators have this property. 

Finally, we develop an extended example in which a programmer-defined abstraction is 
treated as primitive in the implementation of another abstraction. A generator defined in the 

former is used in the implementation and verification of the latter. 

Form Extensions 

In this section we introduce another language facility which makes it more convenient to 

define certain abstractions and to manage the definitions after they are written. The facility 
allows a programmer to define one form as an extension of another. The new form will have 

most or all of the properties of the old one, plus some additional ones. (This mechanism is 

similar to, and derived from, the clan concatenation mechanism of Simula [Dahl72].^ We 

introduce this mechanism at this point because it is needed for generator definitions, which 

will be discussed in the next section. 

The following skeletal form definition illustrates most of the major attributes of the 

extension mechanism: 

form counter extends itinteger« 
beginform 
specifications 

initially counter = ij 

inherits < =, ^, <, >, <, ^ >; 
function 

inc(x:counter). . ., 
dec(x:counter). . .; 

representation 

[rut i«-li 
implementation 

body inc = x.i «- x.i+lj 
body dec ■ x.i «- x.i-1; 

endform 

••«a« 



Page g Form Extensions 

The general flavor of the mechanism is that the new abstraction, "counter" in this case, 

is to be an extension of a previously defined one called its base type, here "integer". As such, 

the new abstraction inherits the indicated properties specified for the base type, and may 

appear in contexts where the base type was permitted (e.g., as an actual parameter where the 

formal specifies the base form). Further, the new abstraction has the additional properties 

specified in the extension form, "inc" and "dec" in this case. 

Even though the newly defined form is an extension of another, the body of the new 

form is not granted access to the representation of the old one; the only access rights 
granted to the body of the new form are those defined in the specifications of the one being 

extended. Thus, although the extension may add (and delete, see below) properties of the 
extended abstraction, it cannot affect the correctness of its implementation, and we need not 
reverify the properties of the original. (Indeed, since these properties are identical we do not 

demand that they even be specified.) 

In this example, and indeed more generally, it is not desirable for all of the properties 

of the old abstraction to be inherited by the new one. The "<>" notation may be used as «ii 
[Wulf76a,b] to list the rights that the instantiation of the new abstraction is allowed to inherit. 

Thus the maximum set of rights permitted to the instantiation of a "counter" is the union of the 
inherited rights {=,/,<,-,<,>) and the newly defined rights (inc and dec). Note in particular that 
assignment to a counter is not one of the inhe-ited rights; thus the only way to achieve a 
side effect on a counter is through the operations "inc" and "dec". The implementation of the 

extension form may, of course, use all operations on the base type. 

As a practical matter, the instantiation of the base form ("I" from "i:integer" in this 

example) may be considered a part of the representation part of the extended form. Note, 

however, that this need not be the entire representation part of the extension; in many cases 

the extension will involve additional data. 

Iteration Constructs in Alphard 

Alphard provides two iteration commands: the fox. statement k used for iteration over a 

complete data structure, and the first statement is used (primarily) for search loops. As 
mentioned above, each of these commands may be specialized for each use. Specialization 

information is provided through a standard interface called a generator. A generator is itself 

simply a form, but it must adhere to certain special requirements that make it mesh with the 

semantics of iteration statements: 

(a)    It  must  provide  two functions (named &init and &next) with   properties 

described below. 
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(b) Invocati these functions in a prescribed order must produce a sequence 

of valut; ., Dmd to the loop variable. 

(c) It  must be an extension whose base type is the same as the type of the 

elements being supplied to the loop body. 

Before we discuss generators intended for specific structures, we will illustrate the use of the 

for and first statements with simple counting loops. 

The for Statement 

We shall begin with the for statement.   The syntax for the statement is' 

for x: gen{y) while /?(x) do ST(x,y,z) 

where /3(x) is an expression, the statement 3T(x)y,z) is the loop body, x is the instantiation cf 
the generator "gen", y is the set of instantiation parameters to the generator, and z is the set 
of other variables used in the statement. The phrase "x: gen", which is our notational analog 

of the "x(S" in the introduction, means "bind x to an instantiation of the generator named gen 

intended specifically to generate the elements specified by y", Then x may appear free in /3 

and ST; like any loop variable, x is rebound for each pass through the loop. 

The meaning of the foi_ loop is given by the statement 

begin local x: gen(y)j 

n <- x.&init; 
while rt cand /3(x) do 

(ST(x,y,z)i n «- x.&next) 
end 

Here, cand is the "conditional and" operator: "b^ cand b^' ■ "if b| then b2 else false", ^'so, /? 

and ST are taken from the for statement, and x.&init and x.&next are functions supplied by the 
generator as described below.    The compiler-generated variable, n, is not accessible to the 

^ Although we call this a "loop variable", it will not normally be possible to alter its 

value within the loop body. 

2 Either "for x:gen(y)" or "while /3(x)" may be omitted yielding the pure while and pure 
for statements, respectively. If "while ßM" is omitted, ß is assumed to be identically true. If 
"for x: gen" is omitted, no x is declared or set, ß and ST (clearly) cannot depend on x, and 
Sinit and &next are assumed to be the constant true, ß may depend on y and z in addition to 

x. 
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programmer. 

One of the generators defined in the standard prelude is 

upto(lb,ub: integer) extends k: integer 

This generator produces the sequence of values <lb, lb+1, lb+2, . . . , ub-1, ub>, or the empty 
sequence if lb>ub. This generator, in combination with the for statement, provides the 
familiar "stepping" loop found in nearly all programming languages; for example, an Alphard 
loop for summing the integers from 1 to n is 

sum <- 0;  for j: upto(l,n) do sum *- sum+j 

Note that two types are involved in this example. We said in earlier contexts that the notation 
"j: upto(. .)" means "bind j to an instantiation of upto". This implies that the type of j is 

"upto". However, notice that j is used in the body of the loop as though it were an integer. 
This is possible because of the extension mechanism described in the previous section. 

Although the apparent type of j is upto, form upto extends integers, inheriting all operations 
except assignment (the definition is given in the next section). t\s a result, integer operations 
on j are legal and behave as expected. 

The first Statement 

One of the common uses of loops is for searching a sequence of values for the first one 
which passes some test. The use of an ordinary loop construct for this purpose is probably 
the most common cause of necessary gotos in conventional programming languages: once the 
test has been satisfied, there is no reason to continue executing the loop. Since this case 
occurs so often, Alphard provides a special syntax for it.  We may write 

first x:gen(y) suchthat /?(x) then Si(x,y,z) else S2(y,z) 

where S^ and $2 are statements and ß is an expression. Again, x is an instantiation of 

generator gen and may appear free in /? and Sj (but not in S2)- The meaning of the first loop 
is given by the statement 

In Alphard, certain functions are given names 1 "ginning with "&". These are usually 

functions provided by the user to perform operations tH.-t correspond to special constructs of 
the language. Outside the form in which they are defined, they may not be called by user 

programs. In this case, the for loop expects to call functions named &init and &next with 
certain specified properties. Alphard prevents a user from calling them explicitly -- to skip 
iterations in a loop, for example. 

^ Eith&r "then SI" or "else S2" may be omittedj an omitted clause is assumed to denote 
the empty statement. 
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begin label \; 

beRJn local x: gen(y}; 

n *- x.&init; 
while n do 

if ßM then (S^x.y.z); goto \) else n *- x.&next 

end; 

S2(y,z); 
X, end 

As above, the compiler-generated names, n and X, are not accessible to the programmer. 

In [Wulf76a(b] we presented a subroutine to compare two vectors of arbitrary (but 

identical) types and indax sets. The subroutine presented there was phrased in terms of an 

Algol-like for loop.   It can now be written in real Alphard using the first statement:0 

function eqvecs(A)B: vector(?t<^>,?lb,?ub)) returns (eq: boolean) - 
first i: upto{lb,ub) suchthat A[i] ^ B[i] then eq ♦- false else eq ♦- true 

It does not matter what the bounds of the two vectors are, as long as they are the same. In 

this case, we are not relying on the procedure return or an explicit escape to terminate the 

loop early in the case of inequality; that is handled by the first statement. The proof of 

"eqvecs" will be given in a later section. 

We have introduced Alphard loop constructs by comparing them to simple counting 

loops. This is the first step toward solving the problem of sequencing over arbitrary 

structures under the control of the defining type. We shall now show how generators and 

loops are verified. 

Defining and Verifying Generators 

We said that a generator is a form which supplies sptcial functions and performs a 

sequence of bindings to the control variable of the loop. In this section we will show how a 
generator is defined and invoked, still using "upto" as an example. We will first present its 

definition, then add assertions, verify it as a form, and establish its special properties as a 
generator.   Another generator is verified as part of the finite sets example in the sequel. 

5 In this example the function specification and the function body are given as one 

declaration. This is an obvious abbreviation of the notation used elsewhere. The ?cden.tcfcer 

notation is used to indicate that the values of these parameters must be identical for A and B 
and that specific values will be supplied implicitly with the vectors. This is explained in 

[Wulf76a,b]. 

■     ■ ■■ ■ fe ... -.      :, , 



The definition of the "upto" generator, without verification information,  is 

form uptodb.ub: integer) extends K:integer - 

be^inform 

specifications 

inherits <allbiit *->; 

function 
&init(u:upto) returns (b:boolean), 

&'next{u:upto) returns (b;boolean); 

implementation 
body &init = (u.K «- u.lb; b «- u.lb < u.ub); 
body &next = (u.k <- u.K+l; b «- u.k < u.ub); 

endform 

Since no variables other than k are needed, the representation part is empty at this point. 

This form extends integers, but does not pass along the right to assign to an upto; this 

prevents the user from changing the loop variable during the iteration. 

Using this form and the meaning of the for statement given in the previous section, we 

can exhibit a loop that corresponds to the expansion of the "upto" functions in the statement 
for summing integers. This code is, of course, only suggestive, but it illustrates an expansion 
which a compiler might reasonably produce. Note that an obvious optimization has been 

applied; later, when we exhibit the formal specifications of "upto", the value of the iteration 

variable, x, will turn out to be irrelevant when &init or ^next returns false. 

sum «- 0; 
begin 

local x: upto(lb,ub); 

x «- x.lb; 
while x<x.ub do (surtv-sum+x; x<-x + l); 

end 

Since "upto" is a form, we can verify the form properties as described in [Wulf76a,b] 
and summarized in Appendix A. Adding verification information in italics, the definition of 

"upto" becomes 

6 The phrase 'allbut «-" means that all integer functions except «- are applicable to the 

upto. 



ALPHARD: Iteration and Generators Page H 

form uptodb.ub: integer) extends k; integer = 

beginform 
specifications 

requires true; 

inherits <allbut *->; 
let upto = flb..ab] where Lb < ab ^ apto =   llb..k-l](k]fk*i,.abji 

invanani. true; 

initially true; 

function 
&init(u;upto) returns (b:boolean) 

post (b s lb<ub) /\ (bo Ib^kSub), 

&next(u:upto) returns (b;boolean) 

pre lb < k < ub 
post (b = k'<ab) t\ (b ? k^k'+l A lb<k<ub>, 

representation 

rep(k) = ifLb<ub then /lk..k-lJ/k/fk-L.ub/else f/; 

invariant true; 

implementation 
body &init out_ (b s lb<ub) A (b ^ lb=k<ub) = 

(u.K *- u.lb; b <- u.lb < u.ub); 
body &next in lb<k<ub out (b ' k'<ub) r\ (b ^ k = /c'+i A lb<k<ub) = 

(u.k «- u.k+1; b «- u.k < u.ub); 

endform 

The abstract specifications describe an "upto" as an interval [lb..ub]; since the form upto 

extends the integer k, a direct reference to a loop variable of type upto will access k, the 

current value of the loop counter. We will find it useful later to view the upto as the 

concatenation of the interval already processed ([Ib.-k-l]), the current element ([k]), and the 
interval yet to be generated ([k+l..ub]). Either k stays between the endpoints of the interval 

[lb..ub] or the interval is empty. This is enforced by the phrase lb<k<ub which appears in the 

pre condition for &next and both post conditions. 

Note that no promise about the value of k is made before the loop starts (i.e., before 

&init is called) or after it has run to completion (either &init or Snext returns false). The re£ 
function shows how an interval is represented by its two endpoints and the loop variabJe. 
The post condition on &init guarantees that the first element generated is lb, but only if lb<ub. 

The ^re condition on &next prevents &next from being executed when there is no valid 
current element (in particular, Ainit must be called first). The rost condition on &next 
guarantees that generated values are consecutive and that the generator stops at ub. 

For "upto" the four steps which are required to verify the form properties are quite 

simple.   (Note that the "u." qualification on u.lb, u.k, and u.ub is omitted for simplicity.) 

I 
■■. .    .    ■ ■   ■ ■ ■    ■ ■■■ 
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For the form. 
1. Representation validity 

Show; true ^ true 

Proof: clear 

2. Initialization 

Show: true { } true A true 

Proof: clear 

For the function Sanit 
3. Concrete operation 

Show: true { k «- lb; b ^ lb < ub } {bälb<ub) A (bo|b=k<ub) 

Proof: Using the assignment axiom, the expression becomes 

true 3 (lb<ub s Iblub) A (lb<ub => lb=lb<ub) 

which surely holds. 
4. Relation Between Abstract and Concrete 

Corresponding abstract and concrete assertions are identical and the reja 
function performs a direct mapping, so the proofs are clear. 

For the function Scnext 
3. Concrete operation 

Show: lb<k<ub { k ^ k+1; b <- k<ub } (bik'<ub) A (b^k'+l A lb<k<ub) 

Proof: Using the assignment axiom, the expression becomes 
lb<k<ub 3 (k+l<ub H k'<ub) A (k+l<ub ? k+l-k'+l A lb<k+l<ub) 
which holds because k'=k is an implicit hypothesis of the antecedent. 

4. Relation Between Abstract and Concrete 

Same as &initA 

QED 

To emphasize that a generator is a form, we will now give an example in which a 
generator is instantiated in one place and used in another. The following procedure is. a 
generalized sum routine. Its parameter is an instantiation of a generator and its result is the 
sum of the elements produced by that generator. For simplicity, this procedure sums only 
integers. That restriction can be relaxed, but to do so would take us into parts of Alphard not 

discussed in this paper/ 

7 The difficulty is not defining the type of the output, which would be expressed as 

function iSUM (g: ?T<generator extends ?S>) returns (sum: S) 

but rather the fact that we need to initialize sum and do not know the identity for "+" in type 
S. One solution is to treat the first generated element differently from the rest, and we have 

deferred discussion of the richer possibilities of generators to a later paper. 



Definition 
function ISUM (g: ?T<p,enerator extends integer>) returns (sum: integer) 

begin 
sum «- 0; 
for g do sum ♦- sum + g; 

end 

Examples of Use 
begin 
local v: vectorOnteger.l.n), 

ig: uptod.m), vg: invecM, 

ssum, vsum: integer; 

ssum <- ISUM (ig); 
vsum «- ISUM (vg); 

end 

This small program declares five variables. The first, v, is a vector of integers indexed from 1 
to n. The next two, vg and ig, are (instantiations of) generators; ig is an instance of the upto 
we have been discussing and vg is an invec, which we assume is defined along with vectors 

and generates the elements of the vector named as its instantiation parameter. The last two 

variables, ssum and vsum, are simple integers. The first call on bUM uses ig (the upto) to 
generate integer values; it assigns to ssum the sum of the integers from 1 to m. The second 

call on ISUM uses vg (the invec) to generate vector elements; it assigns to ssum the sum of 

the elements of v. 

Proof Rules for Loops 

In this section we shall consider the verification of Alphard's two iteration constructs, 

for and first. Specifically, we shall develop proof rules for these statements, discovering in 

the process certain desirable properties for forms which are intended to be used as 
generators. Some of these properties will be required of all generators; others will be 

considered optional, but their presence will substantially simplify proof rules and proofs. 

The development will proceed as follows. First we shall consider a proof rule for the 

for statement which makes minimal assumptions about the generator. This rule is derived 

directly from the statement's meaning as given earlier. As a consequence, it is rather bulky. 
Then we shall make a small number of basic assumptions about the generator. For purposes 

of this paper, these assumptions will be required of all generators and hence will have to be 
discharged when the generator is verified as a form. They will allow us to simplify 
substantially the proof rules for the for and firsl statements.   Next we shall consider a further 



set of jssumpiions about generators; these assumptions are not mandatory, but they are 
satisfied by typical generators. These will allow us to obtain sMIl simpler proof rules for 

particular generators. Finally, we shall consider the properties that a generator must have in 
order to be   a terminating generator. 

Development of the for Rule 

Suppose that we wish to prove 

P { for x:gen(y) while ßM do ST(x,y,z) | Kx.y.z) } Q 

where x, y, and z are as defined earlier and the notation "P { loop | 1 } Q" is used to denote "P 

{ loop } Q using I as the loop assertion (invariant) placed after the loop body". Further, 
suppose that we make only the minimal assumptions about the form "gen", namely that it has 
been verified as a form and that it supplies two functions, &init and &next, each of which 

takes a single parameter of type gen and returns a boolean result. We will also assume that 

ß(y) has no side effects.  We will adopt the following notation in the iteration proof rules: 

G   =   abstract invariant of the generator.   G may depend on x and y but not on z. 

flfQQ   =   the usual requires clause of the generator, stating restrictions on y so 
that the generator can be instantiated." 

ftj ■.    =    the  j-condition  for  generator  function  f, e.g.,  ^init post  's  ^e  Pos^ 
condition for &mit.   /Sf; depends on x and y only. 

XQ,...,Xp denotes the previously generated values of x, it any. 

Since the generator has been verified as a form, we know 

G A /^init.pre < n ^ x-&init ? G A ^init.post 
G A /^next.pre < n ** x&next 1 G A ^next.post 

ßreQ { init clause } G 

where init clause denotes the mil clause of the representation part. 

The expansion of 

for x:gen{y) while /?(x) do ST{x,y,z) 

ßM. 

o 0   We conventionally use   fl'  to name predicates.   Kence, e.g.,   /?req is unrelated to 

..; v.^.ii 



as a standard while statement, including the assertions which will be required for verification 

in the most general case, is 

assert P A /<req; 

feesiü !P-£3l x: gen(y); 
asserl P A G A ^njt.pre; 
n «- x.&init; 

while n cand /?(x) do 
begin 

SKx.y.z;; 
assert 1 A G A ßnexlpre; 
n <- x.&next; 

end; 
end; 
assert Q 

We will give from this expansion a proof rule for the most general Alphard for 

statement. The standard while rule is not directly applicable fo this expansion because the 

loop-cutting assertion is located in the middle of the loop body rather than before the test. 

This assertion placement means the test does not always appear just before or just after an 

assertion; in two control paths through the expansion (the third and fifth lines in the proof 
rule below), the test n cand ßM appears between either the statements n«-x.&init or 
n<-x.&next and ST^.y^). To indicate in these paths that n cand ßM may be assumed between 

the statements, the assume clause is introduced.     Its proof rule is 

P AQO R 

P { assume Q } R 

Using the assume clause and considering the five control paths between assertions, the 
general proof rule for the for statement Is 

P A /t?req { init clause } P A /?jni( pre 

P A G A /?in|t pre { n «- x.&init } -(nA/?{x)) o Q 

P A G A /?injt pre { n <- x.&init; assume nA/?(x); ST(xly,z) ) I A G A /3next.pre 

I A G A /?next pre { n ♦- x.&next } -(nA/?(x)) => Q 

I A G A ^next pre { n «- x.&next; assume n/\ßM; ST(x,y,z) } I A G A /?next_pre 

P A ßreq { for x: gen(y) while ßM do ST(x,y,z) | I } Q 

°   The assume clause appears in [IgarashiyS, p. 164] as the "marked" assertion using 
the notation Q-if in place of assume Q. 

***i*^;>r^.„:^:* ,*t:i*:±;.: /  i5^r 
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This formulation, because; of its generality, may appear formidable. The main difficulty 

appears to be that the three generator functions and the loop body may each change y in 
various ways even though P and I hold at ths places required by the rule. The generator 
functions are, therefore, involved in the verification of each use of a generator. However, the 
following three reasonable assumptions about the generator will simplify matters considerably. 

Basic Generator Assumptions: 

(a) The post conditions on &init and Änext are of the form 

(b s rij) A /?!   and  (b £ nn) A ßn 

respectively, where b is the result pL.,ameter of these functions. 

(b) G a /?mit.pre,  G A (TTjA/^f post v nnA/?next post) o /V,ext.pte 

(c) The init clause and the functions &init and Snext terminate. (This does not 
simplify the proof rule    It is, however, a desirable property, and it becomes 

especially relevant in ihe discussion of generator termination below.) 

(d) The  generator  and  the  loop  body  are  independent.   Thai   is, for  arbitrary 

predicates R and S 

R(y,z) { init clause ] R(y,z) 

R(y,z) { n <- x.&init } R(y)z) 

R(y,z) { n <- x.&next } R(y,z) 
and S(x,y) { ST(x,y,z) } S(x,y) 

Point (a) is a minor restriction and can be checked syntactically. Point (b) requires two 
proofs. The first is usually trivial since /?jnjf pre is generally omitted (defaulted to true) and 

/^next pre is usually included in both post conditions. G may often be strong enough by itself, 
but we may not want to commit the generator to provide a value at all times. In the latter 
case we therefore require that Ämit and &next make it possible for &next to be executed. 

Point (c) can be proved independently of the use of ^rator,   The proofs should usually 

be easy (see the section below on termination). 

Point (d) requires four proofs; in the typical u« c, however, the first three are trivial. 

Because of the scope restrictions mentioned in [WulfySa.b], the only ways the init clause, &init 

or iftnext could affect the predicate R(y,z) are through y, which is explicitly passed as a 
parameter to the form gen, and through side-effect-producing operations of &init and &next. 

Thus the proof ca,, be carried out locally for the generator definition — generally by 

inspection.   The fourth proof is more difficult.   Because of the scope restrictions, the only way 

. ■   ■--■..     ■■     .■ ■ & .■.-■  ■■    H   .■ &mmmm 



that the loop body could affect the loop variable, x, is for the generator to provide a function 

which could have a side effect on x (for example, by exporting assignment rights). This proof 
should be local to the generator definition. However, the independence of y from ST cannot in 
general be shown for tho generator, and must be treated as a restriction on its use. 

Simplified Rules for Iteration Statements 

If the generator and its use meet the four basic generator assumptions given above, a 
simplified proof rule applies to the for statement:^ 

G A [P A /?! A -(itjA/Kx)) v I A /?n A -(nnA/?(x))] = Q 
G A /?(x) A [P A /?, A n, v I A /in A nj { ST(x,y,z) ] I 

P A ßreq { for x: gen(y) while ßM do ST(x,y,z) | I } Q 

Note that the first line establishes that Q holds when (if) the loop terminates -- which may 
happen immediately after the invocation of &init (handled by the first term of the disjunction 

in [J's), or after an invocation of Änext (handled by the second term of the disjunction). In 

both cases termination may result either because the relevant generator function returned 

false or because ß{x) failed -- hence the terms of the form "--(n A ßM)". The second line 
ensures that the invariant is established after each application of the loop body. 

Under the same assumptions, the following proof rule applies to the first statement: 

G A P A [^jAnj v /?nAnnA^(x0..xp)] A ßM { S^x^.z) } Q 

G A P A hnjA/?! v -nnA/3nA^(x0..xp)] ( S2<y,z) ) Q 

P A ßrec. { first x: gen(y) suchthat ßM then S](x)y,z) else $2^)2) } Q 

where "-/?(XQ..X )" is an abbreviation for "-/^(XQ) A ... A -/?(x )". Note that the second line 

handles the "else" cases, where no match is found; the two terms of the disjunction are the 
case where the generator terminates immediately and the case where every element 

generated fails the suchthat test, ßM- The first line handles the case where a match is found. 

Note also that the presumed independence of the generator and the user program means that 
P is not affected by Äinit and Änext. 

Simplified Rules for Typical Generators 

Most generators are far more stylized than the simple assumptions above require.   The 

^   The justifications of this and the first rule, from the corresponding general rules 

and the basic generator assumptions, are given in Appendix B. 
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following assumptions about standard aggregates used in typical generators allow us to obtain 
prcof rules of further simplicity. 

Standard Aggregate Assumptiom 

(a) The additional abstraction provided by the generator is explicated in terms of 

an aggregate (of objects of the base type) for which the following are 
defined: 

& an operator to combine (e.g., concatenate) two aggregates 
<> the empty aggregate 

lead(S) = first element of S to be generated 

Examples of such aggregates are sets, sequences, and intervals. The 
corresponding empty aggregates are {}, <>, and []; the corresponding @ 

operators are union, concatenation, and merging adjacent intervals. 

(b) The instantiation of the generator will produce the complete aggregate, T, of 

objects to be generated.   Further, a nonempty T can be decomposed as 

T = s is <x> is t 

where: <x> is the unit aggregate consisting of the current element x; s and t 

are (possibly empty) aggregates -- s, those elements previously generated 

and t, those remaining to be getieratto; and s, <x>, and t are mutually 
disjoint. 

(c) The specifications on &init and Snext have the form 

functions 
&init(&g:gen) returns S'b:boolean 

post (&b s T^o) A (&b ^ x^eadft") A D^X)) 

Änext(&g:gen) returns &b:boo!ean ■ 
pre D2(x) 

post (&b s tV<>) A (&b ^ x^eada') A Dg(x)) 

where &g is an instantiation of gen corresponding to the aggregate T and 

the Dj(x) guarantee that the decomposition of T specified in (b) is legal and 

can be found. 

The standard aggregate assumptions subsume points (a) and (b) of the basic generator 

assumptions, but points (c) and (d) of the latter must still be Demonstrated in addition to the 

standard aggregate assumptions. 
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If these assumptions hold, we can derive several simpler proof rules.   The rule for the 

for statement becomes 

G A [P A (T=<> v V?(lead{T))) v TH<> A I(s) A (S=T V -/?(X))] ^ Q 
G A T/<> A [P A /S(tead(T)) v (s/T A I(S) A /?(X))] { ST } I<s@<x>) 

P A ßreq [ for X! gen(y) while /?(x) do ST(x,y,z) | 1} Q 

and the first rule simplifies to 

G A P A VW(S V?(W) A ßM { S^x.y,?) ) Q 

G A P A Vw(T ^(w) { S2(y,z) } Q 

P A /?req { first x: gen(y) suchthat ßM then S^x.y.z) else S2(y,z) 1 Q 

We call these two rules the standard aggregate rules. 

Special Cases and Examples 

The Pure for I 'ale 

In many cases the programmer may wish to drop the while clause, treating ßM as 

identically true. In addition, he will often wish to choose P = l(<>) and Q - I(T). (Until now the 
major reason for distinguishing between P, Q, and I was that if/Kx) terminates the loop before 

the generator signals termination, I(T) is probably not true.) If these decisions are made, the 

proof rule simplifies further, since the first premise reduces to true and several terms drop 
out of the second. Making the substitutions yields a generic rule similar to those of various 

for statements given by Hoare [Hoare72a]: 

G A T=S(fD<x>^t A I(s) { ST(x,y,z) } l(s@<x>) 

!{<>) A /?req { for x: gen(y) do ST(x,y,z) } KT) 

Proof Hales for upto 

To use one of these rules with a particular generator, we must "instantiate" it with the 

particulars of the generator in question. We will illustrate this by developing the proof rules 

for upto.   First, we discharge parts (c) and (d) of the basic generator assumptions: 
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(c) The bodies consist of simple assignment statements, and thus clearly terminate. 

(d) There is no init clause and functions Sinit and Änext change only local d.-'d 

and their return values; thus the first three parts of independence are 

satisfied. For the fourth point, note that no means is provided fnr the user 

of the form to alter k; the user is expected to refrain from altering lb and 

ub. 

Next, we discharge the standard aggregate assumptions: 

(a) Integer intervals are used. 

(b) [lb..ub] = [lb..k-l][k][K+l..ub] when lb<k<ub, 

(c) The g£e and post conditions have the required form. 

Substituting the interval definitions in the standard aggregate rules and simplifying, we obtain 

PA(lb>ubv-/?(lb)) v lb<k<ubAl[lb..k-l]A^(k) v lb<ubAl[lb..ub] => Q 
lb<ub A (P A ß{\b) v lb<k<ub A I[lb..k-1] A /?(k)) { ST(K,y,z) ) I[lb..k] 

P { for k: uptodb.ub) while /?(k) do ST(k,yfz) | l(k,y,z) } Q 

and 

P A lb<k<ub A (Vw ( [lb..k-l] V?(w)) A /?(k) { S^k.y.z) } Q 

P A Vw ( [lb..ub] V*(w) { ^^ 5 Q 

P { first, k: uptodb.ub) suchthat /?(k) then S^k.y-z) else S2(y,z) } Q 

where  I he  y parameters are <lb,ub>.   In the special case P=l[], Q=I[lb..ub], and /tetrue, we 

obtain the. Pascal rule for the for statement [Hoare72a, Hoare73]: 

lb<k<ub A   I[lb..k-1] {ST(k,y,z)} I[lb..k] 

I[] { for k:upto(lb,ub) do ST(k,y,z) } I[lb..ub] 

As must be the case, this rule is also obtained from the pure for rule by instantiating gen(y) 

with upto(lb,ub). 
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The Pure white Rule 

We showed above that when the while clause is dropped, the for proof rule resembles 
Hoare's. We will now show how to eliminate the loop variable and obtain the standard proof 
rule for the pure while statement. 

Suppose we had a form named "forever" which extended type boolean and which 

satisfied the requirements above by using the value "true" for all the predicates involved. 

The aggregate T would be an infinite sequence of "true1^, and the standard aggregate for rule 
would become 

true A [P A (false v -/Ktrue)) v true A Ktrue*) A (false v -/?(true))] ^ Q 
true A [P /, ß{\rue) v true A Ktrue*) A /?(true)] { ST(true„z) } Ktrue*) 

P { fOji x: forever while /?(true) do STUrue,^) | Ktrue*) } Q 

where "true*" denotes a sequence of "true"s and the adjacent commas indicate the absence of 
the parameters y. By choosing P = I and Q = 1 A -/?, eliminating the vacuous dependencies on 
"true", dropping the useless for clause, and simplifying, we obtain 

I A/? { ST'z)} I 

I { while ß do ST(z) } 1 A -^ 

which is the conventional while rule. 

Generator Specifications by Proof Rules 

We have shown how two sets of assumptions about the properties of a generator lead 

to very simple proof rules for the iteration statements. Notice now that if a generator 

satisfies these assumptions, the specifications for Äinit and &next can be reconstructed or 

obtained from the proof rules. As a result, the author of the generator can perform the 
substitutions and simplifications, then give the proof rules in the specifications instead of 
giving the gre and post conditions. When this is possible, we use the keyword generator in 

place of form in the specification to alert the user. 

To illustrate this, we will write the generator for a counting loop that uses an integer 

step size greater than 1.   This will provide the Alphard equivalent of Algol's 

for i := a step ) until b do S 

for positive values of j.  We first augment the interval notation [a..b] to include a step size: 
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[a(j)b] 5c,f <a)a+j>a+2*j, ... ,b-(b-a) mod j> where j>0 

If a>b, then [a(j)b] is <>.   Note that [a(l)b] = [a..b].   The following rule allows us to merge two 
intervals: 

[a(j)b][b+j(j)c]=[a(j)c]  provided  (b-a) mod j « Q 

Using this notation, we can defins the generator stepup 

generator stepup (lb,i,ub:integer)extends k:integer= 

bepjnform 

specifications 

requires j > 0; 
inherits <allbut «->; 

let. stepup = [lb(j)ub] where lb<ub :> stepup ■= rib(j)k-j][kirk+j(i)ub]i 

rule forwhile(PAi>0, k, <lb)j>ub>, ß, ST(k,<lb)j)ub>1.z)( I, Q) " 

premise PA(lb>ubv^(lb)) v lb<k<ub-dAl[lb(j>k-j]A^(k) v lb<ubAl[lb(j)ub] o Q, 
premise lb<ub A (PA/?(lb) v lb<k<ub-dAl[lb(j)k-j]A/?(k)) { ST(k(<lb,j,ub>,z) } 

I[lb(j)k] where d=(üb-lb) mod j; 

rule flrsKPAJ>0, k, <lb)j,ub>, ß, S1(k)<lb,],ub>,z), S2(<lb)j)ub>,z), Q) = 

premise P A lb<k<ub A (VW ( [lb(j)k-jl ^(w)) A /?{k) f S1(k,<lb,j,ub>,z) } Q, 
premise P A Vw ( [lb(i)ub] ^(w) { S2(<lb)j,ub>,z) ) Q; 

rule for(lAj>0, k, <lb,j,ub>) ST(k, <lb)jlub>l z)) » 

premise lb<k<ub-d A   ,[lb(j)k-j] { ST{k)<lb)j,ub>)z) } I[lb(j)k] 
where d={ub-lb) mod j; 

representation 
i 

! same as upto 
t 

implern en tat ion 
I 

! same as upto, except in &next "+1" becomes "+j" and k^ub becomes k'+j^ub 
t 

endform 

Example of Loop Verification 

In this section we shall illustrate the use of the proof rules given above by verifying 
the "eqvecs" function given earlier.   With pre and post assertions, the function is 
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function eqvecs(A,B: vector{?t<H>>?lb;?ub)) returns (eq; boolean) ■ 
pre true gosi (eq s (Vj ( [lb..ub] A0>rfi])) = 
first i: uptoOb.ub) suchthat A[i] ^ B[ij then eq «- false else eq *- true 

Using the upto first rule, the proof requires that we establish the two premises: 

Show: true A lb<i<ub A (VW < [IbJ-l] -(A[y]?'B[y])) A A[i]?'B[i] 

{ eq^-false } eq H Vj ( [lb..ub] A[j]=B[j] 

Proof:   This simplifies to lb<i<ub A A[i]?'B[i] => 3j i [lb..ub] A[j]^Bti].   Choose j-i. 

Show: true A Vw ( [lb..ub] -(A[w]^B[w]) { eqHrue } eq £ Vj ( [lb..ub] Arj]=8[j] 
Proof: clear 

QED 

Termination of Generators 

A major advantage of the for_ statements in many of the more recent programming 

languages, such as Pascal, is that they are guaranteed to terminate (provided, of course, that 

the statement which is the loop body terminates for each value of the for statement). As a 

result the programmer using them never need explicitly demonstrate termination. We wouiö 

like to be able to make similar claims about the loops utiNzir.g at least some generators; the 
generators having this property will be called terminating generators. 

We can now present a technique for demonstrating this property. Although the 
general for statement is 

for x:gen(y) while /?(x) dj) ST(x,y,z) 

the clause "while /?(x)" can only reduce the number of times ST(x,y,z) is executed.   Hence it 
suffices to show that 

tor x:gen(y) do ST(x,y,z) 

terminates.   Further, the generator and loop body, ST(x,y,z), are independent, so we know that 

as long as the body itself terminates for each x, it cannot cause the for statement to fail to 

1 * Note that nonterrnination of the loop might also be caused by nonterminaton of ♦he 

mit clause or the functions Sinit and Snext in the generator. This is explicitly ruled out by 
the basic generator assumptions, but must be treated as an additional requirement for proof of 

termination of generators which do not satisfy those assumptions. 
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terminate. Thus, if we can show the termination of the above statement for all possible 
parameters ■ ' the generator and some particular loop body, we will have shown that use of 

the generator c. ,nnot cause nontermination for any body. 

Consider the statement 

i«-0;   for x:gen(y) do iH + 1 

If we could find; (1) a (non-negative) value M depending only on y for which i<My after 

executing the statement, and (2) a loop invariant which allowed us to prove that the loop 
terminated with such a value of i, then we would have proved termination of ill lorps using 

gen. 

Clearly, the choice of M will depend on the instantiation parameters of the generator, 

i.e., on the data structure from which the elements are being generated. The loop invariant 
will have to asserl that M bounds i; it will also have to relate the value of i to progress 

through the loop. The term that accomplishes the latter task, which we shall call Iy(x), must be 

chosen for each generator whose termination is to be proved. Thus the loop invariant is of 
the form i<M A! (x). If we can associate with a generator a rule for determining My for any 

particular instantiation, and if we can find a suitable Iy{x), then it suffices to show 

i=0   { for x:gen(y) do i<-i + l | i<MyAly(x) } i<My 

Note that the clause "i<My" in this loop invariant ensures that the loop will terminate, since i is 

strictly increasing from 0. 

Although this must potentially be proved for each generator, we can show the 
termination of every generator which satisfies the standard aggregate assumptions (with a 
finite aggregate), provided only that it is possible to measure the size of an aggregate. To 
demonstrate this, we use the pure for rule taking J(s) as i<size(T)Ai=size(s)) where "size" is 

defined appropriately for ♦he aggregate.   The only premise 

G A T=s(f2<x>(?5t A i<Gize(T) A i=size(s) { N-i + 1 } i<size(T) A i=size(s@><x>) 

follows since s and <x> are disjoint, whence si2e(s) < size(T) and size(s@<x>) = size(s)+l. 

Hence the conclusion of the pure for rule is 

i<size(T) A ;=size(<>) { for x: gen(y) do i<-i + l } i<size(T) A i=size(T) 

This then implies the desired result with My=size(T) and Iy(x)=size(s). 

12 This method for showing termination is a simple instance of the commonly-used well- 
foundeu set notion [Katz75, Luckham75]. Here the well-founded set is the -«on-negative 

integers bounded cy My. 
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Example: Finite Sets 

We now turn to a larger example that uses the iteration constructs. This example is 

based on Hoare's "smallintset" [Hoare72b]) which implements small sets of integers. We begin 
by presenting and verifying a slightly augmented version of "smallintset". This form, called 
"simpleset", uses firsi statements and the "upto" generator; the program and the verification 

can be compared with Hoare's "smallintset". We then discuss the problem of adding new 

operations to "simpleset"; we construct a new type with the additional operators by adding a 
set-element generator to "simpleset" and writing a new form (which extends "simpleset") for 

the new operators. 

"Simpleset": a Version of Hoare's "Smallintset" 

Thi? differs from Hoare's "smallintset" in that it can build sets of many types and the 
bound on the set size can be selected for each instantiation. Hoare noted these extensions in 

[Hoare72b, section 9].   In addition, the algorithm used in "remove" is slightly different. 

form simpleset(maxsize:integer, thing:form<»-,g>) = 

beginform 
specifications 

requires maxsize > 0; 
let simpleset = { . . . Xj . . . } where Xj is thing; 
invariant C3rdinality(simpleset) < maxsize; 

initially oimpleset = {}; 

function 
insert{s:simpleset, x:thing) 

pre cardinality({x} u s) < maxsize 

post s = s' u {x}, 
remove(s:simpleset, x:thing) 

post s = s' - {x}, 
has(s:simpleset, x:thing) returns (b: boolean) 

post b = x t s'; 

13 To shorten the ere, ßOst, in, and out conditions in this oaper, we often, by 

convention, omit assertions about variables which are completely unchanged. Thus, for 
example, we have omitted s=s, from the post condition of has below. Such omitted assertions 

are nevertieless used in the proof s!     ;. 

■ Ktmsn    '■■ mmmtat '■ 
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representation 
unique v: vector(thing,l)maxsize))   m: integer ini]_ m «- 0; 

re£(v,m) = {v[i] | i ( [L.tn]}; 

invariant 0<m<maxsize A (ViJ ( [l..m] (v[i]=v[j] 3 i=j)); 

implementation 
body insert in (3i ( [l..s.m] st x=s.v[i] v s.m<maxsize) 

out (Vi([l..s.m,](s.v[ij = s.v'[i]> A(3i ( ri..s.m] st s.v[j] - x)) - 

first p: uptod.s.m) suchthat s.v[p] = x 
else (s.m «- s.m+1; s.vfs.m] «- x); 

body remove out (Vj i [l..s.m](s.v[j] ^ x) A 

(Vi ( [l.-s-m'] Jj ( [L.s.m] (s.v'O] * x s s.v[j] = s.v^i])))- 
first p: uptod.s.m) suchthat s.v[p] = x 

then (s.v[p] «- s.v[s.m]; s.m «- s.m-1)- 

body has out (b = (3\ < [L.s.m] st s.v[i]=x) A s.v'=s.v A s.m'^.m) = 

first p: uptod.s.m) suchthat s.v[p] = x 
then b «- true else b ♦- false; 

endform 

Verification of Simpleset 

For the form 

1. Representation validity 
Show; 0<m<maxsize A (Vi.j ( [l..m](v[i]=v[jj3i=j)) ^ 

cardinaiity({v[i] | i i [l..rn]})<maxsize 

Proof: clear 

2. Initialization 
Show: maxsize>0 {m«-0} {v[i] | i ( [l..m]}={} A 0<m<maxsize A 

(Vi.i<[l..m](.[i]=v[j]oi=j» 

Proof: 0<0<maxsize and [1..0] is []. 

For the function insert 
3. Concrete operation 

Show: ßin A Ic { first p: uptod.s.m) suchthat s.v[p]«x 

else (s.m<-s.m+l; s.v[s.m]«-x)} /?ouj A Ic 

Proof: The second premise of the upto first rule becomes 
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(3i < [l..s.m] it x=s.v[i] v s.m<maxsize) A Ic A 

Vk ( [l..s.m](s.v[k]^x) { s.m«-s.m+l; s.v[s.m]*-x } 

Vi « [l..s.m,](s.v[i>s.v,[i]) A (3j ( [l„s.m] it s.v[j]-x) A IC 

The first term follows by s.m=s.m,+ l>5.m'. For the second term choose 

j=s.m (note l<s.tn<maxsize). The first term of Ic holds because the Vk 

term means s.m<maxsize in the second term of the hypothesis. The 
second term of Ic holds from Ic and the Vk term. The first premise of 
the first rule becomes 

/?in A Ic A l<p<s.m A (Vk ( [l..p-l](t;.v[k>x)) A s.v[p]=x { j ßoui A 1C 

The second term of /?ouf follows by choosing j^p.   The other terms 
are clear. 

4a.   /?in holds 

Show: Ic A cardinality({x}urep(v)m)) < maxsize 3 
(3i ( [L.s.rn] st x=s.v[i] v s.m<maxsize) 

Proof: From Ic the v[i]'s are distinct.   Hence cardinality(rep(v,s.m)) 

is s.m.   If the 3i term is false, then x < rep(v,s.m) and 
cardinality({x}urep(v,m)) = l+s.m<maxsize, i.e., s.m<maxsi2e. 

Qb.   /(?p0st holds 

Show: Ic A cardinality({x}urep(v',s.m'))<maxsize A ß^ D s » s' U fx] 
Proof: s ^ rep(s.v,s.m) = {s.v[i] | i ( [l..s.m]} - 

{s.v'[i3 | i ( [l..s.m']} u {s.v[s.m]} • s' U {x} 

For the function remove 
3.   Concrete operation 

Show: /?jn A Ic { first p: upto(l,s.m) suchthat s.v[p]=x 
then (s.v[p]«-s.v[s.m]; s.m*-s.m-l)} /?out A IC 

Proof:   The second premise of the upto first rule becomes 

true A lc A Vk ( [l..s.m](s.v[k]^x) { } 

(Vj ( [L.s.m^s.vU^x)) A (Vi ( [l..s.ml3j € [l..s.m](s.v,[i]><x 3 
s.v[j]=s.v'[il)) A Ic 

The first ter n follows by the Vk term.   For the second term choose 
j=i.   Ic is clear.   The first premise of the first rule becomes 

true A lc A l<p<s.m A (Vk i [l..p-l](s.v[k]^x)) A s.v[p] - x 
{ s.v[p]*-s.v[s.m]; s.m<-s.m-l } /30ut A Ic 
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s.m remains non-negative since s.m'il. The reasons for the other 

terms depend on p=s.m or p^s.m. Let p=s.m. For the second term of 

Ic> note that {s.v[l..s.m]}-{x) * {s.v'[l..s.m'-l}} so s.v^L.m'-l] is 

duplicate-free by Ic. The first term of /?ouj follows from the Vk term. 
For the second term of /?ouj choose j=i. Now let p^s.m. By Ic, 

{v[l..p-l,p+1..5.m'-lj} u {s.v[s.m']} = {v[l..m]} is duplicate-free. Thr 
first term of ßou^ follows from Ic and s.v^p] = x ^ s.v'[s.m'] = s.v[p]. 

For the second term of /?ouj choose j=i except when 1=^' in woich 
case choose j=p. 

4a.   ßm holds 
/?ln is true 

4b.   ^post holds 
Show: Ic A /?ouj ^ s = s' - {x} 

Proof: s = {s.vLi] | i < [l..s.m]}.   By the first term of ßou^ 
y < s and by the second term of ß0ü[t y^x = y(s iff y€s'. 
Hence s = s' - {x}. 

For the function has 

3.   Concrete operation 

Show: ßin A Ic { first p: uptod.s.m) suchthat s.v[p]=x 

then b*-true else b<-false } /?ouj A I 

Proof: Ic is unchanged.   The second premise of the upto first rule has 
the hypothesis Vk ( [l..s.m](s.v[kJHx)( i.e., the 3 term in ßou^ is false - 
b.   The first premise has the hypothesis v[p]=x, i.e., choose i=p so the 
3 term is true = b. 

4a. ßin holds 

/?jn is true 

4b.   /?post holds 
Show. Ic A /?ouj D b = x ( s' 

Proof: b = 3i < [l..s.m] st (s.v[i]=x) = 

x ( {v'[i] I i < [l.^.m1]}» x i s' 

QED 

We noted earlier that our algorithm for remove is different from Hoare's. Since our ßfn 

and ßou[ can be used for Hoare's remove, the proof of his remove requires changing only 
step 3. 

Adding Functions to "Simpieset" 

Suppose now that we wanted to add other set operations such as union, intersection, 

and an inclusion test. We could do ihis either by adding each new operation to form 
"simpieset", or we could write a new form, say "finitecet", which extends "simpieset".   In the 

->i vim «r  m 
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former case we would have access to the representation of simplesets, but we would have to 
be very concerned about possible side effects on the representation and about the possibility 
of compromising the existing verification. In addition, each such change alters the 

specifications of "simpieset", and thus potentially requires reverification of the programs that 
use "simplesets". The latter choice substantially reduces the reverification responsibilities and 
allows a number of users to write extended operation sets without interfering with each other. 
However, it is feasible only if the set of operations provided by "simpieset" is rich enough. 

The version of "simpieset" presented in the previous section is not quite rich enough 

for extended operation sets to be independent. The chief deficiency is that there is no way 
for a user to find out what elements are in a set. We will remedy that by adding a generator 

"inset" to the simpieset form and then write an extension form "finiteset". 

"Inset": a Set Element Generator 

We said above that a generator produces a sequence of elements. Since sets are not 
inherently ordered, we can generate the elements in any order that is convenient. We do, 

however, want to be able to promise that each element in a set appears exactly once in the 
generated sequence. It is not necessary (or particularly desirable) that the elements of two 
equal sets be generated in the same order. In fact, the order in which this generator 

produces the set elements is an accident of the history of the set. 

The following program text is the definition of a generator, "inset", which produces the 

desired sequence; it is shown in its proper context within the "simpieset" form. We have, 

however, deleted (and replaced by ellipses) those parts of "simpieset" which are identical tc 

their previous definition. The form inset satisfies the standard aggregate assumptions, so we 
specify it by giving its proof rules. For simplicity, we provide only the first and the pure for 

rules. 

form simpleset(maxsize:integer, thing:form<«-,=>) ■ 
beginform 

specifications 

generator inset(s:simpleset) extends x:thing 
let inset = { x it x « s } where s ?< {} = (inset = q u {x} u r and 

q, {x}, and r are disjoint); 

rule ford, x, s, ST(x, s, z)) « 
premise q c s A x ( s-q A I(q) { ST(x,s,z) } I(q U (x}); 

^ We could, of course, go to extra trouble to generate the elements in a standard 

order, but that is a different design decision and leads to a different program. 

* ■     . ■;.■: .1 • ■ ,;, m        ^   •     •: 



? 
■- ■■ ^ ^ r-■■■ "- »i 

Page 30 Example: Finite Sets 

rule firsKP. x, s, ß, SjCx, s, z), 82(5, z), 0) B 

premise q c s A x < s-q A P A (Vw ( q -•/?(w)) A /3(x) { S^x.s.z) ] Q, 

premise P A Vw ( s -/?(w) { 52(5,2) } Q; 

implementation 

body inset = 

beginform 
representation 

unique j:integer; 
rep(s.v.s.m,x.i) = if; s.m=0 then {} else q U (x} U r where 

q = {s.v[i] I i « [l-j-l]) äQd 
x = s.v[j] and 

r = {s.v[t] I i ( [j+l..m]}i 

invariant true; 
implementation 

body &init out «Ab 5 s.m>0) A (Ab => l=&g.j<s.m A x=s.v[&g.j])) - 

if s.m > 0 then (&g.j<-li x«-s.v[l]i &b<-true) 
else &b«-false; 

body &next in l<Äg.j<s.m out ((Ab = Äg.]' < s.m) A 

(&b 3 &'g.j=&g.j'+l A l<&g.j<s.m A x=s.v[&g.j])) = 
if &g.j < s.m then (&g.j<-&'g.j+lj xf-s.v[&g.j]j &b*-true) 

else &b*-false; 

endform 

endform 

The generator "inset" can now be used to express the iteration which was posed as the 

first problem in the introduction, that is, to compute the sum of the elements in a set s. 

Compare this Alphard statement with the three versions in contemporary languages given 

there: 

sum *- 0; for x:inset(s) do sum <- sum + x 

This version of the loop does not reveal the implementation, so the users neeo not be 

concerned with which kind of iteration is most appropriate. In addition, the implementor of the 
"simpleset" form can now be reasonably sure that a change in the implementation will not 

create havoc in user programs. We can verify this program segment using the pure for rule 

for inset given in the specifications. 
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Show: true { sum^-O; for x ; inset(s) do sum«-sum+x } sum - SIGMAj(s(j) 

Proof:   I({}) is sum = 0, I(q) is sum = SIGMA:(q(j), and tne premise of the for rule is 
q c s A x < s-q A I(q) { surnf-sum+x } l(q U {x}) 

This reduces to the provable formula 
q c s A x ( s-q A sum = SIGMAj(q(j) = sum + x = SlGMA^ggf^j) 

OED 

We next verify inset.   We must first reconstruct the gre_ and post conditions for &init 

and &next from the specified proof rules: 

&init 
post (&bHs^{}) A (&b => x ( s A q={}) 

&next 

pre x(s 
post (&b=rV{]) A (&b 3 x ( r1 A q^ulx'}) 

The reasons that parts (c) and (d) of the basic generator assumptions hold are essentially the 
same as for upto.   It is also necessary to discharge the standard aggregate assumptions: 

(a) Sets are used. 

(b) s = q u {x} u r when sH{} (recall disjointness of q, {x}, and r). 

(c) The f>re and post conditions have the required form. 

Since  "m" and "v" are unchanged by inset, the Ic of simpleset still holds and will be used 

throughout this proof.   The "s." qualifier is sometimes omitted in the interest of clarity. 

For the form 

1. Representation validity 

Shoiv: true ^ true 
Proof: clear 

2. Initialization 
Show: true { } true A true 

Proof; clear 

For the function &init 
3. Concrete operation 

Show: true { if s.m>0 then (&g.j«-li x«-s.v[l]i Äb«-true) else &b«-false } /?out A true 

Proof: clear by considering the two cases of the if 

;,:.;,.-■.:, 
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4a.   ßm holds 
/?in if true. 

4b.   /?pos, holds 
Show; true A (Abss.m>0) A (&b = l-&g.j<s.m A x=s.v[&g.)]) ^ (&b s s^(]) A 

(&b ^ x ( s A q = {}) 
Proof: To obtain s and q in terms of concrete varables, use the reja 

function. Then &b s (s.m>0) s {v[i] | i ( [l..m])H{} = $*{}■ Suppose 
s.m>0, i.e., &b = true. Then &g.j=l whence x=s.v[l] ( {v[i] | i € [l..m]} 

and q = {v[i] | i ( [1..0]}={}. 

For the function &next 
3.   Concrete operation 

Similar to &init.3 

4a.   ß]n holds 
Show: x (. s   ^ l<Äg.j<s.m 
Proof: Using the re£ function, x ( s implies v[j] ( {v[i] | i c [l-.m]}, 

whence l<Äg.j<m. 

4b.   /?post holds 
Show: x ( s A (&bs&g.j'<s.m) A {&b ? &g.j=&g.j,+ lAl<&g.i<s.mAx=s.v[&g.)]) => 

(&b = {v[i] 1 i c [j'+l-rn]} H {}) A (&b ^ x ( {v[i] | i i [j'+l.m]} A 

{v[i]|ic [l..j-l]}={v[i] | * « [l-i']}) 
Proof: &b = (&g.j'<s.m) s {v[i] 1 i ( [j'+l-.m]} t {} 

by reasoning similar to 4a. The second term of the conclusion follows 

from l<&g.j»&g.j,+ l<s.m and x=s.v[&g.j]. 
OED 

"Finiteset": an Extension of "StmpLeset" 

Since the simple set form defined above does not provide the usual set operations one 

expects (e.g., union), in this section we shall define and verify an extension of that form which 
provides these facilities. All of the mechanisms used in this example have been presented 
previously; the example does, however, provide us the opportunity to illustrate the use of the 

specifications of one form, "simpleset", in the verification of another. The new form definition 

and ih. proof are given below: 

* t:.- 
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form finiteset(maxsi2e:integer, T:form<*-,=>) extends s:simpleset(maxsize,T) ■ 
beginform 
speciiications 

requires maxsize > 0 
let finiteset = { } where x: is thing; 

invariant cardinality{finiteset) < maxsize; 
initially finiteset = {}; 
function 

union(sl)s2:finiteset(tnaxsize,T)) returns s3:finiteset(maxsize,T) 

pre cardinality(slus2)smaxsize 
post s3=sl u s2, 

intersect(slls2:finiteset(nnaxsize,T)) returns s3:finiteset(maxsize,T) 

post s3=sl n s2, 
includes(sl,52:finiteset(maxsize,T)) returns biboolean 

post b=s2 c si; 

representation 
rep(s) = s 

invariant cardinality(s) < maxsize 

implementation 
body union = 

begin 
for x:inset(sl) do insert(s3,x); 
for x:inset(s2) do insert(s3,x)j 
end; 

body intersect = 
for x:inset(sl) do 

[f has(s2,x) then insert(s3,x); 

body includes = 
first x:inset(s2) suchthat -•has{sl,x) then b*-false else b«-true; 

endform 

Verification of Finiteset 

Since "rep(s) is an identity function except for a type change from simpleset to finiteset, 

we shall assume flpre = /?jn and ^p0st = ßou[ in the proof. All the generator us^s are 
independent of the loop bodies; specifically, s3 is changed but never generated. Note also 
that s3 is instantiated as a simpleset whenever it is needed for a return value, and hence is 

initialized to {}. 

WfajM&'iA" :.■.■■'*.'■ ■■■»•■■■' ■      *■■""■■■■ J^   ":«:.:.:* ''.:-■:-::' '-       .* ^ 
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For the form 

1. Representation validity 

Show; cardinality(s)<maxsize ^ cardinality(s) < maxsize 
Proof: clear 

2. Initialization 

Show: maxsize>0 { "s«-{}" } s={} A cardinality(s)<maxsize 

Proof: The notation "s<-{}" refers to the initially clause of simpieset. 
The proof is trivial. 

For the function union 
3. Concrete operation 

Show: cardinality(slus2)<maxsize A IC { body of union } s3=slus2 A Ic 

Prorf: Ic remains true because it is unchanged.   A loop invariant for the 

first for statement is s3 = q.   Since cardinality(q) < cardinality(sl) < 

cardinality(slus2) < maxsize, the pre condition of insert is met; the 
post condition says s3 = q u {x} which shows s3 = q is indeed a loop 

invariant.   Similarly, a loop invariant for the second for statement is $3 
= si u q.   The first for statement is started with s3 = {}; the second 
for statement is started with s3 = si by the result of the first for 
statement, which is s3 = si. 

4a.   fl{n holds 

ftpre = ^in 
4b.   /?post holds 

^post = ^out 

For the function intersect 
3.   Concrete operation 

Show: Ic { body of intersect } s3 = slns2 A IC 

Proof: A loop invariant is s3 = q n s2 because if x ( s2 then s3u{x} - 

(qns2)u{x)  = (qu1
(x})ns2 while  if x < s2 then s3  = qns2.   The pre 

condition for insert holds because s3 = qns2 c slns2 £ slus2.   The 
initialization of s3 to {} starts the  loop properly; the result is s3 - 
Glns2. 

4a. and 4b.   As in union. 

»■tmxmmummk: 
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For the function includes 
3.   Concrete operation 

Show: Ic { body of includes } b = s2 £ si 

Proof: The second premise of the first rule has the hypothesis 

Vw < s2 --has(sl,w) = (s2 c si) = true.   The first premise has the 
hypothesis x ( s2 A -(ha^sl.x)), i.e., x C s2 A x -( si whence b = false 
as the body does. 

4a. and 4b.   As in union. 

QED 

A Remark on Program Size 

We are aware of (and have occasionally shared) the apprehension of some of our 

colleagues that Alphard programs will be substantially, even unreasonably, larger than 

programs for similar tasks written in other languages. Early results indicate that this need not 

be the case. One comparison is made in [Shaw76]; we are now able to compare Hoare's 
"smallintset"   with "simpleset". 

First, let us compare this program text with Hoare's. The Alphard program, "simpleset", 
initially looks longer - 32 lines to 28 for Hoare's "smallintset". "Simpleset", however, includes 

about 14 lines of verification assertions. With the exception of the in/out assertions, this 
information appears in Hoare's paper, but not in the "smallintset" program tself. 

We will compare program sizes (exclusive of assertions) on the basis of the number of 
lexemes used, since the division info lines is arbitrary. We divided the lexemes into three 
categories: declarations and procedure headers, text grouping symbols like begin and end, and 
executable statements. We treated a qualified name as a single lexeme. We found the 
following: 

executable   grouping declaration total 
"simpleset" 95                2 81 178 
"smallintset" 121               12 58 191 

Alphard's shorter executable text is largely attributable to the conciseness of the first 
statement; its larger declaration text seems to arise from the separation of specifications from 

procedure bodies and from the additional generality. The differences are not large enough to 
draw major conclusions from the data, and raw text length is hardly the major criterion for 
comparing languages. Nonetheless, the closeness of the numbers should serve to allay any 
fears that Alphard programs will necessarily be very large. 
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Conclusions 

The ultimate goal of the Alphard project is to increase the quality and reduce the total, 

lifetime, cost of real programs. Of the many alternative approaches to this goal we have 

chosen one in which recent results from programming methodology and program verification 

are merged in a programming language design. 

The key component of this merger is the introduction of a language mechanism, the 

form, to provide explicit support for the development of conceptual abstractions. The close 

association between forms and our intuitive notion of abstraction seems sound on 

methodological grounds, for it permits the programmer to concentrate on abstractions instead 

of their implementations. It also seems sound in terms of current (and projected) verification 

technology in that it permits isolated proofs of manageable size which collectively verify the 

entire program. 

The success of this approach to improving quality and reducing costs depends, in hrge 

measure, on the degree to which the proposed language mechanism is able ' "> express natural 

abstractions. In a previous report [Wulf76a,b] we dealt with abstraction;, - "nose behavior is 

naturally expressed as a collection of operations defined over an abstract data structure. This 

is not, however, the full range of behaviors implicit in our understanding of the concept of 

"abstraction". Thus, in this report we concerned ourselves with that clasä of behaviors 

cprresponding to the notion of enumerating the elements of an abstract aggregate (i.e., data 

structure). 

The specific content of this report has dealt with two related issues: the language 

features for defining and using such abstractions and the development of specification and 

verification techniques to accompany the language features. It is reassuring to us that the 

existing form mechanism is adequate to capture the new class of abstractions introduced here 

We also find it interesting that 'he forms which define generators can be specified quite 

naturally in terms of proof rules instead of the usual functional specifications. Despite the 

complexity of the full generator mechanism and associated proof rules, a chain of simplifying 

assumptions yields the simple rules for common types of loops in other languages; 

furthermore, these common loops terminate. 

A number of open problems remain. Th° loop specialization facility in Alphard has made 

it possible to encapsulate iteration patterns along with other properties of an abstraction, but 

it has also made it awkward to write certain kinds of loops, including those which operate on 

only part of a structure and those in which a structure is modified by the loop which operates 

on it. 

We may wish to eliminate many such irregular loops on methodological grounds, but 

others seem to be reasonable, understandable, and hence safe. For example, it seems 

acceptable to write loops for 

 •  • ■       -■ 
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- recurrence  relations  in  which the first  k elements of  a vector  are  treated 

individually and the rest uniformly, 

- operations on matrices in which the boundary values receive special treatment, 

- tree walks in which data values at the nodes, but not the tree structure, are 

changed, 

- list processing operations when the loop body is making insertions and deletions 

to the list from which elements are being generated, and 

- operations in which the loop body may wish to request early loop termination 

(without »he distributed cost and complexity of including the test in the while 

clause). 

Since a pjnerator is in fact a form, the ability to write some of these loops may be provided 

by defining functions other than ftinit and Änext in the generator. Operations on the structure 

would then still be performed only by the generator, which could presumably keep matters in 

hand. The restrictions under which this is reasonable are a subject for further research. This 

is not, however, an acceptable general solution, for it would require the generator to provide 

its own versions of all interesting ope-ations on the structures for which it generates 

elements. 

A general solution for the problem of permitting interactions between the generator and 

the loop body can be found by returning to the original proof rule, without even the basic 

generator assumptions. This rule assumes only that &init and &r,ext are functions provided by 

the generator. This solution is too general — it is too unwieldy for any but the most intricate 

of interactions. We believe that a promising path for further research is the search for sets 

of reasonable assumptions which permit interesting interactions and also, like the two sets of 

assumptions made in this report, lead to vastly simplified proof rules. 
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Appendix A 
Informal Description of Verification Methodology 

AlpharcTs verification methodology is designed to determine whether a form will actually 

behave as promised by its abstract specifications. The methodology depends on explicitly 
separating the description of how an object behaves from the code that manipulates the 

reprcscntaticn in order to achieve that behavior. It is derived from Hoare's technique for 

showing correctness of data representations[Hoare72b]. 

The abstract object and its behavior are described in terms of some mathematical 

entities natural to the problem domain. Graphs are used in [Shaw76] to describe binary trees; 

sequences are used in [Wulf76a,b] to describe queues and stacks and in [London76] to 
describe list processing, and so on.   We appeal to these abstract types: 

- in the invariant, which explains that an instantiation of the form may be viewed 
as an object of the abstract type that meets certain restrictions, 

- in the initially clause, where a particular abstract object is displayed, and 

- in the gre and post conditions for each function, which describe the effect the 

function has on an abstract object whrch satisfies the invariant. 

The form contains a parallel set of descriptions of the concrete object and how it 
behaves. In many cases this makes the effect of a function much easier to specify and verify 

than would the abstract description alone. 

Now, although it is useful to distinguish between the behavior we want and the data 
structures we operate on, we also need to show a relationship that holds between the two. 
This   is   achieved  with  the  representation  function rep(x). which  gives  a  mapping  from  the 
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concrete representation to the abstract description. The purpose of a form verification is to 

ensure that the two invariants and the re£(x) relation between them are preserved. 

In  order  to verify  a form we must  therefore prove four things.   Two  relate  to the 
representation itself and two must be shown for each function.   Informally, the four requireJ 

* 15 step-:, are   -^ 

For the form 

1. Representation validity 

Ic(x)3 Ia(rep(x)) 

2. Initialization 
require;:. { uict clause } initially(rep(x)) A IC(X) 

For each function 

3. Concrete operation 
in(x) A lc(x) { function body } out(x) A Ic{x) 

4. Relation between abstract and concrete 

4a. Ic(x) A pre(rep(x)) ^ in(x) 

4b. Ic(x) A pre^rep^')) A out(x) o post(rep(x)) 

Step ] shows that any legal state of the concrete representation has a corresponding abstract 

object (the converse is deducible from the other steps). Step 2 shows that the initial state 
created by the representation section is legal. Step 3 is the standard verification formula for 
the concrete operation as a simple program; note that it enforces the preservation of Ic. Step 

4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition 
holds and (b) that if the operation is performed, the result corresponds properly to the 

abstract specifications. 

Appendix B 
Derivations of Simplified Proof Rules 

In  this Appendix we  show that the general for  and first proof rules  and  the  basic 

15 We will use Ia(rep{x)) to denote the abstract invariant of an object whose concrete 

representation is x, Ic(x) to denote the corresponding concrete invariant, italics to refer to 
code segments, and the names of sp cification clauses and assertions to refer to those 
formulas. In step 4b, "pre^rep^1))" refers to the value of x before execution of the function. 
A complete development of the form verification methodology appears in [Wulf76a,b]. 



ALPHARD: Iteration and Generators Page ^1 

generator assumptions yield the simplified proof rules based on those assumptions.   We shall 

use the following two sets of assumptions and three proof rules: 

Generator Assumptions 
(Gl)   G A /?init.pre { n - x.&init } G A /?initip0st 

(U2)   G A /?next.pre { H - x.&next ) G A ^next.p0st 

(G3)   ßren { i-nit clause } G 

Basic Generator Assumptions 
(BG1) The post conditions on &init and &next are of the form 

(b 5 Hj) A /?!   and  (b s nn) A ßn 

respectively, where b is the result parameter of these functions. 

(BG2)  G D /fljnjt.pre-  G A (nMnit.post ^ "n^next.post) 0 ^next.pre 

{BG3) The generator and the loop body are independent.  That is, for arbitrary 

predicates R and S 

R(y,z) { mit ciaase } R(y,z) 

R(y,z) { n «- x.&init ) R(y,z) 
R(y,z) { n ♦- x.&next } R(y,z) 

and S(.<,y) { ST(x,y,z) } S(x,y) 

And Rule 

Pi {S}Q1,P2{S}Q2 

Pj AP2 { S IQi AQ2 

Consequence Rules 

P = Q, Q { S } R 

P {S }R 

Q { S } R, R = T 

Q { S } T 

...■■....:     ^  ■ - 
:-i 
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SemicoLon Rule 

P {Sl }Q,Q{ S2 }R 

P{Si;S2 }R 

Let us work initially on the [or, statement,   its general proof rule is 

(GforO) P A ßreq { mit clause ] P A ßin{\pre 

(Gforl) P A G A ^init.pre '. " <" x^init 1 <n*ß(*)) => Q 
(Gfor2) P A G A /^injt.pre { n «- x.&init; assume nA/?(x)j ST(x(y,z) } I A G A /?nextipre 

(Gfor3) I A G A ßne)(ipre { n *■ x.&next ) -{nA/?(x)) 3 Q 

(Gfor4) I A G A /?next,pre ( n *" x-&next; assume .nA/?{x); ST(x,y,z) ] I A G A /3next pre 

P A ßreq { for x: gen(y) while fiM do ST(x,y,z) | 1 } Q 

and the simplified proof rule is 

(Sforl, Sfor2>       G A [P A /?, A -(njA^x)) v I A /?n A -(nnA/?(x))] o Q 

{Sfor3, Sfor4)       G A ßM A [P A /?,- A nj v I A /3n A nn] { ST(x,y,z) } 1 

P A ßreq { for x; gen(y) while ßM do ST(x,y(z) | I } Q 

Our task, therefore, is to derive each of the five Gfor premises from G, BG, and the four 
Sfor premises. If we do this, we obtain the conclusion of the general rule which is the 
conclusion of the simplified rule. Note that the inU clause in GforO is invoked when the 
generator is instantiated by the clause "local x;gen(y)" in the expansion of the for statement. 

We first note relationships involving x.&next, x.&init, the invariant I, and the assertion P. 

Assumption BG1 means that for an arbitrary predicate R involving the set of generated values 

XQ,...,xp, and x (in this notation x is also denoted by Xp+1), we know 

R{{x0,..,xp,x}) { n *- x.^next } R({x0,..,xp,xp+1}) A (nn = x^xp+2) 
R({}) { n <- x.&init ) R({}) A (nj = x=x0) 

Thus, provided x is denoted by x +1, the predicate R is preserved by x.&next and x.&lnit, and 
there may be a newly generated value. Using both BG1 and BG3 we see that x.&next 
preserves the invariant I, which depends on x, y, and z. The cases of the init clause and 

x.&init preserving P are simpler since P depends only on y and z. 
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Derivation of CforO 
ßren { in.it clause } G 
P { init clause } P 
P A ßrec. { init clause } P A G 
G :> /^init.pre 
P A /?req { init clause } P A ß\n\ipre 

Derivation of Gfori 
G A /^init.pre ^ n *" x•&ini, ^ G A ^init.post 
P { n *- x.&init } P 
P A G A /?initipre { n «- x.&init } G A P A /?|nit p0st 

G A P A (nertj) A /^j 3 AnAßM) o Q 

P A G A ^jnit.pre { n ♦" x■&ini, J -(nA/?(x)) ^ Q 

Derivation of Gfor2 
P A G A /?init pre { n «- x.&init } G A P A /?init.p0st 

G A P A (nsrt,) A /?, A nj A /?(x) o G A P A (nan,) A ^ A nj A /?(X) 

Ü A P A (n^nj) A ^j { assume nA/?(x) } G A P A (nsrij) A ^ A nj A fi(x) 

G A P A (nzn{) A ß- A n, A /?(x) { SKx.y.z) } 1 A n, 
G A ^init.post i ST<x'y.z) 1 G A ^init.post 
G A P A (nanj) A /^j A n| A /?(x) { SKx.y.z) } 1 A G A nj A /3jnit p0st 

G A P A (nsrtj) A ß] { assume nA/?(x); ST(x,y,z) } I A G A Rj A ^init.post 

G A R, A /^jnit.post 0 ^next.pre 
P A G A ^jnjt pre ( R *- x.&init; assume RA/?{x)i ST{x,y(z) } 

I A G A /?next.pre 

Derivation of Gfor3 
G A ^next.pre ^ n *" x&ne)<t 1 G A ^next.post 
I [ R «- x.&next } I 
I A G A ^next.pre { n «- x.&next } G A I A /?next.p0st 
G A  I A (R£Rn) A /?„ 3 -(RA^X» 3 Q 

I A Ü A /Vxt.pre t n *■ x-&next J ^nA^x» = Q 

Derivation of Gfor4 
I A G A /?next.pre * n «- x.&next } G A I A /?next.pDst 
G A  I A (R=Rn) A /?n A Rn A /?(x) 3 G A I A (R£Rn) A ß^ A Rn A /?(x) 
G A I A (R=Rn) A /?n { assume RA^(X) } Ü A 1 A {R5Rn) A /?n A Rn A ßM 

G A I A (R£nn) A /?n A Rn A ßM { SKx.y.z) ] 1 A Rn 

G A ^next.post { ST<x.y>z) ) G A /^next.post 
G A I A (RSRn) A ^n A Rn A ßM { SKx.y.z) ] I A G A Rn A /3next.post 

G A I A (Rr  n) A /?n { assume RA/?{X); SKx.y.z) } I A G A Rn A /?next.post 

G A Rn A /?next.post 0 ^next.pre 

I A G A /^next.pre R «- x.&next; assume RA^(X)J ST(x,y,z) } 

I A G A /?next.pre 

G3 
BG3 
and rule 

BG2 
consequence 

Gl 
BG3 
and rule 

Sforl 
consequence, BG1 

step 3 above 

identity 

assume rule 
Sfor3, private Rj 

BG3 

and rule 

semicolon rule 

BG2 
semicolon rule, 

consequence, BG1 

G2 
BG1, BG3 
and rule 
Sfor2 
consequence, BG1 

step 3 above 

identity 
assume rule 
Sfor4, private Rn 

BG3 

and rule 

semicolon rule 

BG2 
semicolon rule, 

consequence, BG1 

--;;„-.i^-*ii,1un.^    ■■ -..i- 
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We now work on the first statement.  The expansion of 

first x:gen(y) suchthat ßM then S^x.y.z) else S2{y.z) 

using a standard while statement, including the most general case assertions, is 

asserl P A ^req; 
begin label X; 

beain local x: gen(y); 

assert P A G A ßmilprei 
n «- x.&init; 
while 

[asserl P A G A ^(x0..xp) A (n3/?ne)<t pre) A (/öjnjt.post v /Snext.post)] 
n do 

[f ßM then (Sj(x,y,z); goto \) else n ♦- x.&next 
end; 

S2(y.z); 
X: end; 

assert Q 

The general proof rule for the first statement is 

(GfirstO)    P A ßreq { mit clause } P A ß[r[\\pre 

(Gfirstl)   P A G A ßinilpre { n *- x.&init } P A G A {n?ßnex[pre) 

(Gfirst2)   P A G A ^<x0..xp) A (/?init,post v /?next.post) A ßnexlpre A n A ßM 
{ Sj^v.z) } Q 

(Gfirst3)   P A G A ^(x0..xp) A (/?mit post v ^next.p0$t) A -n {S2(yI2) } Q 
(Gfirst4)   P A G A ^{x0..xp) A /^next pre A ^(x) { n <- x.&next } 

PAGA^{x0..xp+1)A(n3/?nextpre) 

P A ßrec. { first x;gen(y) suchthat ßM then Sj(x,y,2) else $2^12) } Q 

and the simplified proof rule is 

(Sfirstl)   G A P A [^An, v /?nAnnAi^(x0..xp)] A ßM { S^x.y,?) } Q 

(Sfirst2)   G A P A [-injA/?! v -^nnA/?nA^(x0..xp)] { S2(y,z) } Q 

P A ßre    { first x: gen(y) suchthat ßM then S^x.y.z) else S2(y,z) } Q 

In Gfirstl note that there is no x before the statement n <- x.&init so -'/3(XQ..XD) S true. 
As in the for. case, the task is to derive each of the five Gfirst premises from G, BG, and the 
two Sfirst premises. 
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Derivation of GfirstO 

Same as derivation of GforO 

Derivation of Cfirst 1 
G A ^init.pre l n " x-&init ^ G A ^init.post 
P { n *-- x.Äinit } P 
P A G A /?injt pre { n «- x.&init } G A P A ^init.post 

G A P A ^init.post 3 P ^ G A <nD^next.pre) 

P A G A ^injt_pre { n «- x.&init } P A G A (n3/?next pre) 

Gl 
BG3 
and rule 

BG2 

consequence 

Derivation of Gfirst2 
G A P A [/^ A rti A true v /?n A nn A ^{YQ-M^)] A flM { S^x.y.z) } Q Sfirstl 

P A G A ^(x0..xp) A [(nsnj) A /?, v (nHnn) A /?n] A n A fiM { S^x.y.z) } Q algebra 

P A G A ^(x0..xp) A (/?inil.post v ^next.pos,) A n A ^(x) { S^x.y.z) } Q     BG1 

P A G A V?(x0..xp) A (/?init.post v /^next.post) A /^next.pre A " A ßM 

{S^x.y^lQ 

Derivation of GfirstB 
G A P A [-n, A /?! A true v -nn A /?n A -/?(xQ..xp)] { S2(y,z) } Q 

P A G A V?(x0..xp) A [(nsn,) A ^ v (n=nn) A /?n] A -n { S2(y(z) ) Q 

P A G A V<(x0..Xp) A (/«init.p0St V /W.post) A ^ { S2<V'Z) ' Q 

Derivation of Gfir$t4 
G A ^next.pre ? n *" )<-Änext ^ G A ^next.post 
P { n «- x.&next } P 
-./?(x0..xp) A -/?(x> { n «- x.&next } ^(xo.-Xp+1) 

consequence 

Sfirst2 

algebra 

BG1 

G2 
BG3 
BG1, definition 

Of ^(XQ-Xp) 

and rule 
P A G A V?(x0..Xp) A V?{x) A /?next.p,e { n *- x.&next } 

PAGA^next.postA^<xO-Vl) 

P A G A -VKx0..xp) A /?next.pre 
A ^x) ( n *- x.&next } 

P A G A ^(xQ-Xp+j) A (n3^next pre) BG2, consequence 


