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Introduction

In this report we describe work completed under Subcontract No.
N68305-75-C-004 (Proposal UCB-Eng.-3889). As we frequently refer to our
previous work [1-5], it will prove helpful to the reader to be somwhat
familiar with these references.

In Section I we present theory and algorithms for large displacement
contact=impact analysis in two dimensions(i.e. plane stress, plane strain
and axisymmetric). This work builds upon earlier developments documented in
[2] and [3] and represents the completion of our theoretical work in this
area. The theory encompasses a wide range of contact-impact problems and
allows for a completely arbitrary contact surface development, stick, siip
and frictional s1*ding conditions, and impact-release conditions covering
the full range of contact possibilities.

In Section II we describe some new developments regarding the Hertzian
algorithm, which has been extensively documented in previous publications;
see [1-5].

Sgction III contains sample problems which employ the algor; chms
described in Section I and also some studies involving the Hertzian algoritkm.

Anticipating the need for an efficient shell element for crash
configuration modelling, we have performed a pilot study of a plate bending
element. The results of this study, which are encouraging, are contained

ir Section IV.
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I. Large Displacement Contact-Impact Theory |
1. Introduction %
In the following section- we present a large displacement contact-impact i
j theory. In Section I-2 we set notations and establish the structure of the
E local equations for a typical contactor node and target element boundary.

é i Tne algorithm for handling stick, s1ip and frictional contact conditions is
discussed in Sectiion I-3. This strategy is sufficient for the quasi-static
problem and governs the jterations within a time step in a dynamic problem.

The updating ir dynamic problems manifested by discrete impact-release

conditions is described in Section I-4.
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2. Local Structure of the Equations

To explicate the structure of the equations we wish to solve, we shall
consider in this section an idealization consisting of one ccntactor node
and one target element boundary (see Fig. I-1). Quantities associated with
the contactor node will possess a subscript k, and those associated with the
target nodes will possess a subscript £ or 2+1. Throughout this section we
shall concern ourselves only with equations which pertain to these three
nodes. In two-dimensional analysis (i.e. plane stress, plane strain or
axisymmetric) there are two displacement degrees-of-freedom azsociated with

each of the three nodes and, in addition, two contact force degrees-of-

freedom associated to the contactor node; a total of eijht degrees-of-

freedecm for the three nodes considered here. Thus there are six equations

H of motion to be satisfied and, if the bodies are in contact, two cordiiions
! of compatibility. Consider the case in which the contactor node is in
contact with the target element boundary. Then if o is the nondimensional

i location parameter for the target element boundary, defined by (see Fig. I-2):

el T L A

A AW g 2

241/2
= Llxg, g =) # (x2, g41 " %) 1T

the eight equations to be satisfied for the three nodes are:

st # P KRR e

X
—

1x
Ny
SO

<
~nN

i
:
]
H
F



o A AT A ia Caiiad oAbt K
Wﬂa‘mﬂ'mw Fals SALLISUES SVEaA SR iacn o o oo © . oatoi ok e o A7 S S S St S S T TR PRy L
LA ® SN e B - v

4 i
- -
Mk 0 0 0
1 0 o o0 o
[ m = 2 » the mass,
0 0 M 0
[

: 2
4 0 0 0 M
- 8 z+1_J
-
S o] 2 2 T .
! y, = (qu 0 Uy uY”l+]) , the displacements,
- . 2 2 T

k, = (KYk 0 Klg KY’2+]) » the internal forces,

T
= (1. -« T_,) ., the contact forces,

é IY (TYk 0 (1 u)‘tYk vk
é and

2 - 1 2 2 T

X, = (o {xYk - (1-a) X g = X w1} 08 ),

the compatibility conditions. The superscript indicates to which bady the

quantity pertains and the subscript y indicates the coordinate direction :

1

zY, v = 1,2. Note that the components K and K2 are functions ot the dis-

1 and Bz, respectively.

placements of B

The compatibility conditions amount to the second and sixth equations
in I-1. When the bodies are not in contact these conditions are ignored £
and Tk T 0.

The solution of the matrix equations is developed by employing a
temporal discretization which results in a nonlinear algebraic probiem to be
solved at each time step. The Newmark family of algorithms is employed
by us to temporally discretize the equations and we confine our attention
to implici: methods. This aspect of our work has oeen described previously

(see e.g. [5]) and we shall not repeat the details here. The resulting

temporally discretized system, for the nodes in question, becomes:

E.

AR YA 2L e - SN TR LI, o 2. O TSN
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where the subscripts n and n+l indicate the time step at which the quantity
is evaluated, At = te1 - is the length of the time interval, and B is
the Newmark parameter.

To solve the nonlinear algebraic problem at each time step, the Newton-
E Raphson method is employed. The linear equations used in this procedure,

for the nodes in question, are given as follows:

ol xe -5
(i)
T 4 49 0
]
K¥ = ——s +D 3 ’
T Bt
o m Ko | n+1 0 @

S
3
4
*
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where the superscript in parentheses indicates the iteration number and

tx
-—

e
N

denotes the tangent stiffness matrix. The formation of the tangent stiffness

follows the standard rules (in particular, in the case of linear elastic

bodies it is the usual stiffness matrix). The iterative process is defined

by
(o) _
Y4l T ¥n oo
(i+1) _ _{4) (i)
".ln+] = Wosd * AYnH *

(i) s ‘ . def. (i)
and when w_ , satisfies a convergence test, for some i, then Yoel = Yeele

Here w is defined by
N

T
\g=]+(01]k00012koo).
Yol

o i e o a ciranddinaletaiGai s sy s o
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“The matrix

is called the contact stiffnesc. Specification of it,

: (i) i, (i)
1

and
21 o9 21 o1

are the unique aspects of the contact-impact algorithm. In the next section

we describe the way this is done.

In passing, we note that formally setting m to o provides an algorithm

for the quasi-static case.
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3. Computing Strategy Within a Time (Load) Step

2

In this section we describe the strategy involved in solving the non-

. A cmm TR PSS e AR g et N ot
4
s
’

linear algebraic contact problem within a time step (or, equivalently, within

Rl vafMbe

a load step in the quasi-static case). The unknowns involved, as described

in the previous section, are the displacements and contact forces at the end

Seage #ag e SELIN AT B b W S 4 (oA ¥ *

of the step. Treatment of velocities and accclerations, and updating of
contact forces, when impact and release effects are present, are considered
] in the following section.

For consideratinn of sliding contact, it is convenient to work in a ’
coordinate system naturally defined by the target segment. A system of this %
kind cau be constructed by aligning the coordinate axes in the tangential
(s) and normal (n) directions to the target element boundary, with origin
located at node % (see Fig. I-3). If s denotes the angle between the s and

E z; axes, measured counterclockwise from z;, then

6 = arc tan [(xz’ o+ " xzz)/(x]’ g1 - X101 :

and vectors may be resoived in the usual way into tangential and normal

components, e.g.

T c S T]

T -~S C '[2

- T M taia deat Wi bl Al AR AN A ST LA s e e e

where ¢ = cos 6 and s = sin 6. Thus the vectors in the s, n - system H

corresponding to 1, and 1, are

-\
—

I
L]

(Tsk ) -(1-a)t and

sk % Tsk

1)
n

n (Tnk ) -(1-a)1nk -a T,

respectively, and likewise for x_and x .




At the end of each iteration, one of three conditions can hold for a

typical contactor node k; the condition is determined by the contactor code

1 i

K If ik = 0, then contactor node k is not in contact; if ik > 0, then
node k is in contact. The code ik = 1 signifies the stick condition and
ik = 2 signifies the sliding condition. The contact code determines what

is assembled into the contact stiffness and the right-hand side vectors t

; and x. Specifically, we have the following situations:
1 = o o, =8
; () oy
~Y -~
() oy
~'{ -~
"k = ] EY = g

T “« T
~Y -~y ~
x ) ) 5 ()
Y ~Y -y
‘ll=2 oty =8 ;
;
¢, =@ 1
~ (i) 2 (), 2 ()
Ih v I Ty

: « fy son (rﬁz) + ATﬁz))Iigi)l

>
+
1O
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where
r—— -
"o 1 0 0
1 0 -(1-a) ~-a
g -
0 -{1-a) 0 0
0 -a 0 o .
0 0 0 0
0 1 0 o
s =
0 0 0 0
0 0 0 o
— —d

- T
Itnl = (Irnkl o -(1-a) | Tnk | -o | Tnk )

and fd is the dynamic coefficient of friction. Rotation of quantities in

local coordinates into global ccordinates is facilitated by the follwwing

transformations:
C a 0
-.] g T -S -~
=T T
o .
d gz 9. gn
in which
- _
c 0 0 0 S 0 0 0
0 C 0 ) 0 S 0 o
0 0 c 0 0 0 S 0
T-= 0 0 0 c 0 0 o} 0

A Smae g oo - il T WD

b v T kT Eie Bl il il oo dnbiing aul
b B e R i i voog o S AT ey Zau b wes T e T T N R T R T T T e o S LT T Oaacd
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. o = ol - i

‘ %, = ck - sk |
1 ~ = - + ~
4 52 S 55 (o 5“
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The detemination of the contactor code 1k for the present iteration
depends upon its value for the previous iteration.

If ik was equal to o, then node k was not in contact during the previous

I I T

interation. In this case we must determine whether or not node k has pene-
trated a target segment during the present iteration. Let Xy denote the

tocation of node k and let x,_;, X,, X, denote the locations of consecutive

target nodes 2-1, &, t+1, respectively, where £ designatas an interior node
of some segment. We assume that the entire list of in‘erior iarget nodes

has been searched and k is found to be closest to £ at the end of the present
iteration. For node ¢ the interior of the target is defined to be that part
of the plane consisting of the two straight l1ines emanating from X, through

POV,

LI and Xg4] and extending to infinity, and all points to the right of i
these lines with respect to the target direction. The exterior is the
remaining portion of the plane (see Fig. I-4). At the end of an iteration,
if Xy is in the interio- of the target we say that tentative contact has
been made. To determine if this has occurred we employ the following

algorithm (see Fig. I-4 for notation).

RTE T e

Let A = (x,s X, 45> X;» X;11) and define TEST as indicated in Fig. I-5.
If the outcome of TEST is true (i), then Xy is exterior to the target,

whereas if the outcome is false (F), Xk is in the interior and tentative

contact has been made. In the latter case further calculations are required

L s
e e e . . S
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to determine if indeed contact has occurred* and, if so, where. The
routine to carry out these calculations requires the input parameters‘imax

and j___, which are the maximum number of iterations allowed to determine

fax

the approximate location of a contact point, and the maximum number of
changes of target reference node allowed, respectively. If tentative
contact hes been made we next employ a binary search procedure to determine
a good approximation to the-configuration A at whicn initial contact was ]

actually made. With this conficuration determined, we ascertain whether

et babiaadans,

node k actually contacted the segment defined by target nodes 2-1, 2, 2+l
(lal < 1) or did not (|a| > 1). In the former case we set the new value %
of the contactor code ik to 1, whereas in the latter we may try another i
reference point and repeat the calculation. However, if jmax has been %
reached, or the new reference point is a target segment boundary node, we

assume no contact has been made and set ik to o.

The following is a brief description of the main points of the flowchart

FEIRSLIY ST G

depicted in Figs. I-6 to I-11. 3

If ik was greater than zero for the vrevious iteration, then contactor

o ahath 08

ncde k was in contact. In this case it is first checked if the updated
normal component of traction T, is compressive. If this is not the case,
then ik is set to zero. If L is comprzssive, then it is determined
whether contactor node k was sticking (:k = 1) or whether it was sliding

(ik = 2) during the last iteration. If it was sticking then the updated

PR AT oA

vaiue of Irsl is compared with

crit = fg It,|» where f_ is the static

coefficient of friction. If [15] 2 < £ then 1k is set equal to 2;

cri
otherwise i, is set to 1. If node k was sliding during the last iteration

then a new value of a is computed based upon the updated configuration. If

[ N N | V7 SO Ryt

*
A contactor node can enter the interior without passing through the target,
e.g. by sneaking around a boundary node.
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la] < 1, then Irsl is compared with t_ .. = f, |1n|. The result of this
comparison determines whether contactor node k is sliding or sticking, as
above. If |a|>1, the target reference node is changed to the appropriate

adjacent one. A inaximum of is X changes of reference are allowed. (The

ma

default value of i . s one). If i max 15 exceeded, the computation is

ma x
terminated and an error message is pivinted. If in cha.ging the target

reference node a target segment boundary node is encountered, the no contact

codeik is set to zero. If a value of a is found such that |a| s 1, then

|tg| is compared with Terit = fd Irnl and we proceed as described above.

rit
When contactor nodes slide over target nodes, the computation of the new

values of a is approximate, unless the target segment is “‘at. Thus some
caution is advised in application to problems in which substantial sliding

is likely during a time (load) step.

b
p
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4, Impact-Release Conditions

Imposing correct impact and release conditions are essential ingredients
in the accurate solution of dynamic contact problems. The present developments
extend earlier work (see [1-5]) in which si.ple nnde on node normal
incidence was considered. In this section we describe procedures for setting
impact-release conditions for the stick, slip and frictional cases. Since
each of the cases differs somewhat from the others we discuss them one at a
time. The stick case is the most straightforward and we shall describe it

first.

a. Stick Contact Condition

We consider the case of an open target segment consisting of N2 nodes
( @ superscript refers to body number 2). The case of a closed target
follows trivially. We allow for the possibility of an arbitrary number
of contactor nodes impacting and/ur releasing the target segment over the

time step. The updating of nodal velocities is determined from the

foilowing two conditions:

(1) The velocity of a contactor node in contact with the target
segment is the linear interpolate of the target node velocities of the
element boundary in question. For instance, consider the configuration of

Fig. I-2 in which contactor node k is in contact with the element boundary

3 |~N\—ﬂ? Lo

defined by target nodes ¢ and 2+1. In this section we will attach a sub-
script to the nondimensional location parameter to indicate that it is
associated with contactor node k, i.e. we cenote it a . If Qk denotes the

velocity vector of contactor node k, and u_ and §2+] are the velocity vectors

£

of target nodes ¢ and 241, respectively

cy v ¥y weew

interpolation requires

G, = (e i *a i (1-4)
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Observe that this definition remains meaningful when there are more than one

contactor nodes in contact with a single elemer.t boundary.

(2) The second condition is a discrete impulse-momentum balance.

Cinr DL Rl e

R VIR POV R

Let Az denote the tributary area surrounding target node £. Specifically,
this area is defined to be one-half the length of the two adjacent target
element boundaries to node 2, in case node £ is an interior node; and one-
half the length of the adjacent target segment, if node 2 is a target segment
boundary node (see Fig. I-12). Let C; denote the set of contactor nodes in

é contact with A, at the end of the time step (last iteration), and let C;]
;

denote the set of contactor nodes which were in contact with Az at the

he¢ginning of the time step, but which released during the time step. Then
fur each 2 € {1,2,...,N2

200 % aisvid Rha-0d

} we require that

t .- VT Y -1
. ‘ Mzgg t 1 Mﬁgk+_2- L

faa
R R ey

_ ot c
; =My I MY o (1-5)

(a4
]
—

[ M

= MC ﬁ']_ﬂ

E
ot
E kY ° MUk Tk \1-6)
3
’ : where the superscripts + and -1 indicate the updated values and values from
the previous time siep, respectively, ME indicates the Tumped mass coefficient

1 of target ncde 2 and Ms is the Tumped mass coefficient of contactsr nod

Equation (1-6) defines Q: for all k€ C;], in terms of the data from

the previous step; namely Q'l and ;‘l. Equations (6.1) and (6.2) lead to
the following system of equations for the target nodal velocities:

AU =B (1-7)
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where A is tridiagonal with nonzero coefficients

= c -~ 2
a I M{(1-a, ), 2€{2,3,..., N}
l) 2'] - k k
k€ (Cz)left
B0 = M+ oz Mo+ T ME (-, )y 2€ 1,2,3,...N
k€ (Cy)iefe k€ (Co)pight
_ c 2
G, @1 = I M s 2€ 11,2,3,... K1)
ke(cz)right
and [' _ _ _
. + . +
Uy 32 by b12
|
' . + . +
| iy Uz by boo
U= B=
.+ .t
i, 2 b2, by
|__ —J L_ —_
in which

t .-l ¢ -1 At -1 2
b, =M u +  _Mu + T o_ T, 2€1{1,2,..., N7}
L [AR ) K€ Cz k -k 2 kE cz ~k

The subscripts 'left' and 'right' on the C;‘s indicate the subsets of
C; to the left and right of target node ¢, respectively.

The second subscript on the entries of U and B refer to the coordinate
direction, e.g. b , is the z, - component of b,.

An argument which employs dynamic force balances in place of impulse-

momentum conditions yields relations for updated accelerations and contact
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forces. The end results are summarized as follows:

* The updated accelerations of the target nodes @; are determined by
solving
AU =B (1-8)
where
.. + . +— B . . -
Uy g ! byy by
- + + ! ' b!
Yar Y22 21 22
)
,l;j,z . E' -
+ o ) '
TRV Uy 2 b2 b2
N1 N“2 | N1 N2
L _J | -
T t .- C o= _
b, = M2 u, + I M u

z T,
9; - k "'k -] ~k
kEC2 kEC2

In the above definition of by, the superscripts refer to tne last iteration.
+ The updated accelerations of the contactor nodes which are in contact

with the target segment are given by linear interpolation, i.e.
4 A+ ot
e = (o) Up + oy Uy

- The updated accelerations of contactor nodes which have released from

the target sometime during the time step are given by

e - c )
e T T I/ M (1-9)
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- The updated contact forces associated with nodes which are in contact

? with the target are given by

hets

- T = Tt ME (G - ). (1-10)
ft 3}
; The solutions of the systems of equations (I-7) and (I-8) are

i accomplished most evficiently with an unsymetric tridiagonal solver. The

T TR AT

following is a FORTRAN subroutine to carry out this procedure. The matrix

A is stored by rows as a one-dimensional array.

SUBROUTINE TRISOL (A,B,NEQ)
DIMENSION A(1),B(NEQ,2)
C .-+ REDUCE EQUATIONS TO UPPER TRIANGULAR FORM
NM = 3 * NEQ-2
=2
1 DO 100 N = 1, NM, 3
E If (A(N) EQ. 0.0) GO TO 100

100 I1=1+)
C .-+ BACKSUBSTITUTE
1 = NEQ
200 IF (A(NM). EQ.0.0) GO TO 210
B(I,1) = B(I 1)/A(NM)
B(1,2) = B(1,2)/A(NM)
210 1=1 -1
IF (I.LE. 0) RETURN
NV, = NM-3
) = B(I,1) - A(NM+1) * B(I+1, 1)
) = B(I,2) - A(NM+1) * B(I+1, 2)

b. Sliding Contact Condition

The impact and release conditions for the sliding contact (frictior less)

case are similar to the stick case, but only involve normal components.

To describe the procedure employed, we will need to introduce some new

terminology. Local boundary coordinates are normal (n) - tangential (s)

coordinates attached to each target element boundary (see Fig. I-3). f

Pseudo-normal coordinate. for an interior target node £ are normal (n) -
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tangential (s) coordinates with respect to the line joining target nodes

2-1 and 2+1, whereas for target boundary nodes they are the same as the '
local boundary coordinates (see Fig. I-13). A1l computations of impact and

SIS TR TR I R R ey

release data are done with respect to the configuration determined by the
last iteration within the time step.

The velocity update is achieved as follows:

Bt raaais o Ol e

Transform all g's and t's appearing ir. 'I-5) and (I-6) to pseudo-normal

ey

of normal (n) components. Q will then be the updated n-components of

velocity of the target nodes.

% coordinates. Solve (I-7) where B is replaced by the analogous Nle vector

(The s components are unaffected by this

process.) Rotate the n, S-components into local boundary coordinates. Obtain

PO T T o

ASTH IR YA

the boundary normal (n) components of the contactor velocities by linear

interpolation of the updated n-component target velocities.

are unaffected,)

TP

The s-components
For nodes which bave released, equation (I-6) is to be

applied with the n-components.

Accelerations and contact forces are updated as follows:

Rotate the U's and 1T's appearing in the definition of B', (I-9) and
(I1-10) into pseudo-normal coordinates. Solve (I-3) where B' consists only

of the n-components; U will be the updated n-components of the target node
accelerations.

The $-components are unaffected. Rotate the n, s-components into local

boundary coordinates and linearly interpolate to determine ﬁ:. The s~

components are unaffected. Updated n-components of contactor nodes which

kave released are given by (I-9) with k replaced by n. Updated n-component

contact force are given by (I-10) with k replaced by n. As before, the

contact force fur released nodes is zero.
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¢. Frictional Cu-tact Condition

The impaci anc release conditicns for the frictional case are identical,
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for the n-components, to the frictionless case. For the s-components some
modifications are required. In the ensuing discussion we consider only the
s-components. Again systems similar to (I-7) and (I-8) are coastructed.
Here, let C; denote the subset of nodes 1n contact which are not sliding at

1

the last iteration of the time step, and let C; indicate the released nodes

(including s1iding nodes). Then, in the updating of velocities, s-components
of 1,° should be replaced by the s-components of K(I;] + 3;), where « is a
shear correcticn factor which can be adjusted to accurately capture shear
wave phenomena. In the present work we assume for simplicity x = 1. (These
remarks pertain to equations (I-5) and (I-6).) The s-components of velocity
for the nondes in C; are computed by linear interpolation.

The updating of the s-components of acceleration and contact force
proceeds as follows:

Formulate the s-component of B' using Qg and I§° Then g will be the
updated s-components of acceleration fur the sticking nodes. Released node

s-accelerations are given by {I-9), and non-sliding node updated s-contact

forces are given by (I-7). For nodes which are sliding there is no update

of s-components of U and 1.
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II. New Developments with Particular Reference to the Hertzian Algorithm.

1. Introduction
In this chapter we describe some improvements to the Hertzian

algorithm documented in our previous works; see [1-3].

2. Automatic Time Stepping

Often in impact problems the significant time scale during contact
is much smaller than that when the bodies are not in contact. An example
is illustrative. Consider the configuration of Fig. II-1. A simple
frame structure, perhaps excited through ground motion, is v’brating in
its fundamental mode. Let us take the period of the fundamental mode
to be order 1. If in the course of the motion of the frame structure it
impacts the rigid wall adjacent to it, perhaps representing a more massive
structure, the characteristic time scale while in contact will be the
transit time through the horizontal member. This could be orders of
magnitude less than the period of the fundamental mode of the frame.

To capture this phenomenon a very small time step would have to be taken
compared with the period of the fundamental frame mode. On the other
hand, a time step this small would be unnecessary and inefficient while
the frame is not in contact.

To effectively accommodate situations such as the one just described
an automatic time step feature has been programmed in FEAP. Three
different time steps are read in as input data. The largest is employed
if no contact is taking place. If contact occurs the intermediate time
step is empioyed and the compuiation is repeated. The intermediate :t:p
is used subsequently until contact is again made at which time the
computation is repeated with the smallest time step. The smallest time

step is employed thereafter throughout the contact phase. If the bodies

release the largest time step is again employed, and so on.

33
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This feature should allow us to solve impact problems ore

economically in the future.
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3. Higher-Order Impact-Release Conditions

In this sectiin we shall describe higher-order impact and release

conditions f~r the Hertzian algorithm. The necessity of developing a
theory along these lines was first alluded to in [3], Section I-3-b, and
subsequently in [4] and [5]. The theory is aimed at more accurately
capturing the post-impact and post-release velocity states; the updated
accelerations and tractions are computed as was done previously (see [4]
or [5]). The reason for attempting to improve the velocity calculations
is that no account is taken of the acceleration of the nodes in question.
This can occasionally lead to poor results (see Section I-3-b of [3]).
The theory presented herein accounts for acceleration and represents a
negligible amount of additional computational effort.

We begin by quoting the discrete impact and release conditions for

a typical pair of candidate contact nodes, presented in [4] and [5]:

qu + M u

impact y = 1
' (n‘ W)
. Vw2
U = T . w2
(M + M%)
ey
(M + M) )
release W = h 4 (1% At o o0
+ 2 L

[ =
+Q
u
[ =4
(=}
1
—
S
[*]
~
~
4
[2]
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The notation is as follows: Superscripts refer to the body nuwber and
« = 1,2. The subscript -1 indicates that the quantity in question is
evaluated at the previous time step, the subscript - refers to the last
iteration of the present time step, and the subscript + refers to the
updated values accounting for impact-release effects. Arguments leading
to these equations are presented in [1], [4] and [5]. The refinements
to these quations to follow effec~ only the velocity equations. First
we consider the case of impact.

It can be argued from wave-propagation theory that the updated
velocity &+ is a good approximation to the velocity of the coalesced
contact nodes at the instant following impact. If impact occurs towards
the beginning of a time step, &+ may not be a very accurate representa-
tion for the end of the step. We seek to account for this effect in a
rational way. To do this we make use of the fact that from the instant
after impact to the end of the time step, the velocity is a reasonably
smouth function. With this we define a new updated velocity
+u, Bt

Uy = Wy

where At = ts - to tcEE[tn, tn+1] is the instant of contact, and t,
and tn+] denote the beginning and end of the time step, respectively.
The picture is as illustrated in Fig. II-2, It remains to obtain an
expression for at. 7o do this, we approximate the position of the

contact nodes in terms of the data from the previous time step, viz.

2
=%y e (ot - 5T) 00+ LES BB o

where X® denotes the initial position of the candidate contact mode of
body a. The contact location is defined by

)(‘l '-'Xz,

S e el one o S x 2t
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which leads to

£ At = at
F 1 2a
&
-
] é where a = G_% - E_}
- 2 1
: b = uy-u,
;
: c = X2 - X] + u_% - u_}
The physically relevant solution is determined by the condition
‘ 0 < at < at
: If no solution satisfies this condition at is set to at/2.
: To obtain improved release velocities we also attempt to estimate a
' more accurate time of release within the step. Since the nodes vere in
contact at the end of the previous step, Ty 0. Llet T denote the last
value of contact force before release occurred. In keeping with our
b previous conventions (see [4] or [5]), 7 will be negative (indicating

tension) or less than or equal to 2% of T_1- In the latter case we

maintain the use of G: as the post-release velocity. (We note that the

-

second term on the right-hand side of the expression for u} represents

the impulse over the time step, assuming linear interpolation between

L and zero.) In the case in which T < 0, we compute (see Fig. 11-3)

- \
- l_][ .

X3 - ey
229 [WARN

The new updated veiocity is then defined to be

o e
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IIT. Sample Problem

! 1. Identification of Urethane-Polystyrene Composite Foam for the

Nonlinear Continuum Element.

The theory for a nonlinear elastic continuum element was presented

in [3], Sections II-2 ani 11-3. This element has been programmed in

FEAP and the following options are available:

plare sirain
2-D plane stiess
axisymmetric

L3I aiis um e e aEF 0

s
o

] Two different quadrature rules can be employed in each case: 2 x 2

Gaussian quadrature for all terms, or 2 x 2 Gaussian quadrature for
u-terms and 1-point quadrature for A-terms (see [3] for notation and
further details). The latter opticn is appropriate for incompressible
and nearly-incompressible applications. For use in subsequent check
problems, we have selected the parameters A and u so that a close fit
is obtained to the loading cycle for a urethane-polystyrene composite
foam described in [6]. Values of E = 50 psi and v = .1, .25, .3 were
selected which, for the configuration illustrated in Fig. III-1, leads
to the response illustrated in Fig. III-2, As can be seen, the best
results are obtained with v = .25, In subsequent calculations,

unless otherwise indicated, £ = 50 psi and v = _25 were emnlovaed

LA A~ R

]
f
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2. Equivalence of Present Incompressible Formulation with a Mean-Pressure-

Variable Element.

In [3], on p. 32, we conjectured that employing 2 x 2 Gaussian quad-

rature on the y-terms, and 1-point quadrature on the A-terms, for the

standard four-node isoparametric quadrilateral, might yield resuii* identical
to the constant mean pressure-bilinear displacement element employed in

the past by Hughes and Al1ik [7]. We have attempted to corroborate this
conjecture by performing an analysis using both elements. Consider the
configuration illustrated in Fig. III-3. The beam is modelled with plane
strain rectangular using several different quadrature rules and the

constant mean pressure-bilinear displacement element of [7].

The beam is fixed at the left end and a uniform shear is applied to

the right end. The results confirm the equivalence of the 'underintegrated'

element with the constant mean pressure-bilinear displacement element.
We thank H. A11ik and P. Caccistore of the Electric Boat Division of
General Dynamics, Groton, Connecticut, for providing us with the results
for the constant mean pressure-bilinear displacement element. (Recently
ar analytical study has been performed which establishes the equivalence

i
i
:

of the two elements; see Hughes [8].)
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3. Quasi-Static Analysis of a Skull-Pad Contact Configuration

This analysis consists of a cylindrical 'skull' model being contacted
with a soft pad. The material properties of the three-layer skull are
those quoted in [3], Table 1-1*, and originally obtained from [9]. The
pad material is that described in Section IT1I-1. Linear elements are
used to model the skull and nonlinear elements are used to model the
pad. A1l elements employ the plane strain option and 2 x 2 Gaussian
quadrature. The skull is fixed at the uppermost node and the pad is
driven into the skull and withdrawn by way of prescribing a uniform
displacement condition along the bottom of the pad. The initial gap
between skull and pad is 0.linches. The maximum vertical displacement
of the bottom of the pad is 0.5inches and the displacement is applied
in steps of 0.linches. Unloading is performed similarly. The contact
condition is assumed to be perfect friction along the contact surface.
Thus there is no tangential slipping while in contact. Release occurs
when tension is sensed normal to the target segment (in this case the
pad). The analysis employs the ‘between node' contact element described
in [2], Section II-3, and the kinematically nonlinear search algorithm
described in [3], Section III. The target segment consists of the seven
element boundaries along the top surface of the pad. There is a total
of seven contactor nodes -- the innermost seven nodes along the boctom
outer surface of the skull. Initial and deformed configurations are
depicted in Fig. III-4, The unloading steps are identical to the loading
steps (i.e. step numbers 6-4, 7=3, 8=2, 9=i, 10=0) and thus not shown.

Hote that the contactor nodes contact the target segment between nodes.

* There is a typographical errog in the table. The density of the brain
material should be .937 x 107" 1b-sec?/in®. This was the vaiue
actually used in the analyses.
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The strain in the pad elements near the axis of symmetry reach a maximum
strain of approximately 50% and the pad elements near the periphery of
the contact zone experience a maximum rotation of approximately 30°.
Normal and tangential contact stresses, at the point of maximum contact
area development, are plotted in Fig. III-5. The pad has the effect of
more uniformly distributing the contact force than a rigid surface; cf.
[3], Section I-1-a. Total vertical contact force and contact area width
are plotted, versus applied displacement step number, in Fig. III-6.

In our initial attempts to solve this problem we observed a lack
of convergence. This was due to the following situation: Nodes frequently
released and then recontacted during iterating within a step. The point
of contact was set to the last penetration point, rather than the initial
contact point. This was in violation of the stipulated no-slip condition.
In addition, the contactor node along the symmetry axis penetrated the
contact surface without contact being sensed. This was due to a small
negative horizontal displacement, caused by round-off, which made the
search algorithm think the contactor node was outside the target segment.

Upon correcting these fallibilities convergence was achieved.
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IV. A Simple and Efficient Finite Element for Plate Bending

1. Introduction

An enormous amount of effort has been devoted to the development of
finite elements for the bending of plates. The literature is extensive
and we will not make an attempt to review it here. (The interested
reader may consult any of the standard texts for references, e.g.
[10-12].) Most of this effort has been oriented towards linear
problems; in particular, to the classical Poisson - Kirchhoff theory of
bending. The C1-continuity requirement imposed by this theory on
'displacemznt’ finite element models precludes the development of simple
and natural elements (see [13]). Because of this, incompatible elements
(e.g. [14-15]) are oft.n resorted to, since they involve simpler
programming than the rather complicated C]-continuous elements (e.g.
[15-17] ) and are competitive from an accuracy standpoint.

Accurate higher-order C]-elements have also been developed (e.g.
[18-20]), but they too are quite complicated and involve
nodal derivative degrees-of-freedom of order greater than one, which
complicates the specification of boundary conditions.

The assumed stress hybrid bending elements of Pian and his associates
(e.g. [21]) have proven to be accurate, but they have some drawbacks and
thus are not widely used.

Another approach to the development of bending elements for thin
plates involves the so-called ‘discrete Kirchhoff hypothesis'

(e.q. [22,23]). In this approach the classical equations are
abandoned in favor of a bending theory which includes shear deformations.
The result 1s that only Co-continuity is required of the shape functions.

To capture the behavior of thin plate theory, the constraint of zero shear
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strains is imposed at a discrete number of points. The method is
effective, but implementations tends to be somewhat complicated. Recent
improvements and variants on this theme have been proposed by Fried
[24-26].

An accurate quadrilateral element for thick and thin plates has
been developed by enkiewicz, Taylor and Too [27]. This element possesses
eight nodes--four corner and four midside--t:ith the basic three degrees-
of-freedom per node. The transverse displacement and rotation shape
functions are selected from the '‘serendipity’' family (sec [10]). Two-by-
two Gaussian quadrature is an essential requirement for the good performance
of the element.

In summarizing these developments one can confidently assert that
for linear problems of plate bending many adequate elements exist. The
choice is more a matter of taste as no single element is clearly superior
to the rest in all cases.

Many users of finite element computer programs find a 'basic’
four-node quadrilateral element particularly appealing due to its
simplicity. It is our feeling that this appeal will become even greater
'hen nonlinear applications are undertaken. In the nonlinear regime--
and especially in nonlinear dynamics--computational cost is the prime
concern. Due to freguent reformulations of tangent stiffnesses, complicated
element routines can lead to exorbitant computational expenditures and
may actually preclude nonlinear analysis. A simpler element of competi-
tive accuracy becomes auite desirable under suych circumstances. Other
factors in nonlinear analysis buttress tnis assertion. For example, the
accuracy level attainable in nonlinear problems is often severely limited
due to the uncertainty of nonlinear materia) characterizations. Thus it

makes little sense to engender significant computational cost for complicated

W e M Ll s s Bkt 2 a e

L




54

e

S T

MOuie e i

TONTE TRTNTICY

bending elements which are only marginaliy more accurate than simpler
elements, since the confidence level of the overall analysis may be
affected only negligibly. Unfortunately, heretofore, ro really simple
alternative has existed.

In this chapter we attempt to remedy this situation. We develop

what we believeis the simplest effective plate bending element yet pro-

posed. The element is a four-node quadrilateral with the basic three
degrees-of-freedom per node. The element shape functions are bilinear
for transverse displacement and rotations. The shear 'locking’
associated with such Tow-order functions in application to thin plates
is eleviated by splitting the shear and bending energies and using one-
point quadrature on the shear term. The simplicity of the element lends
itself to concise and efficient computer implementation.

To develop the theory in its simplest setting, we consider in
Section IV-2 a beam element involving linear displacement and rotation
shape functions. We show how exact integration (two-point Gaussian
quadrature) of the element stiffness matrix leads to an overly stiff
element and we present an heuristic argument why this is the case. We
then show how employing one-point quadrature on the shear term lessens
the stiffness. The concept is identical for the plate bending element
which is developed in Section IV-3. The effectiveness of the element
in thin piate bending is demonstrated in Section IV-4. A simple computing
strategy for dealing with the numerically sensitive case of extremely
thin plates 1s presented in Section IV-5. In Section IV-6 we consider
applications to thick plates. Tt is shown that the element is still
effective for moderately thick plates. However, for very thick plates,
in which the thickness of individual elements exceed their characteristic

lengths, a slight modification of the shear quadrature need be employed.
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2. Example: Linear Beam Element

In this section we will describe the formulation of a beam element
stiffness for which displacement and rotation are assumed to be indepen-
dent linear functions. Exact integration of the element stiffness can be
facilitated by two-point Gaussian quadrature, whereas one-point integration
exactly integrates the bending contribution, but ‘underintegrates' the
shear contribution. For the case of thin beams we view the shear term
as a constraint which attempts to enforce the condition of negligible
shear strains;. wWe shall show that one-point quadrature has a decisively
positive effect on the accuracy of -the element; two-point quadrature

leading to worthless numerical results. The upshot of all this is that

by appropriately underintegrating troublesome terms, good bending behavior

YT T -‘nn
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can be attained by the simplest shape functions.

The equations of a rectangular cross-section beam, including shear

deformation effects, emanate from the following expression for strain

energy:
L L
3 2
_ 1 Et de 126G dw - 2
U(w,e) 773 f(a-i) dx + « az- (&' 6) dx|, (IV-])
0 0

vhere w is the transverse displacement of the center-line, 8 is the
rotation of the cross-section, E is Young's modulus, G is the shear
modulus, x is the shear correction factor (throughout we employ x = 5/6),
t is the depth, L is the length and x is the axial coordinate. The first
term on the right-Yand side of (IV-1) is the bending energy and the
second is the shear energy. With independent expansions for w and @,
(IV-1) can be employed to derive beam element stiffness matrices. The
case we are interested in is when both w and 8 are assumed to behave

linearly over an element. This leads to a four-degree-of-freedom element

P R W
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in which displacement and rotation are the nodal degrees-of-freedom. By
virtue of the fact de/dx is constant within this element, the bending
energy may be exactly evaluated by one-jpoint Gaussian quadrature. On
the other hand, two-point Gaussian quadrature is required to exactly

integrate the shear energy term due to the explicit presence of 6, which

is linear within the element. Employing one-point quadrature on the

shear energy term 'underintegrates' the alement and it is our prime

concern here to ascertain the effect of this procedure. (See also
5allagher [11], pp. 364-367.)

A series of test computations were performed to determine the
behavio.: of the element. A cantilever beam subjected to an end load
(see Fig. IV-1) was analyzed for various discretizations. The first

example is for a relatively deep beam. The data are:

E = 1000
G = 375
t = 1
L = 4

Tip displacement results for several discretizations are presented in
Table IV-1. As is evident, the one-point quadrature results are vastly

% superior to the two-point results. A more severe test for linear
elements is bending governed by Bernoulli - Euler theory. In this case
shear strains are to be equal to zero. Such a situation can be brought
about in the present theory if depth is taken very small compared with
element length. Alternatively, a very large fictitious value of G can
be specified. In the second example we attempt to ascertain the behavior
of the linear element when the assumptions of the Bernoulli - Euler

theory apply. The data of the previous example are employed with the
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Table IV-1. Normalized tip displacement
for a deep cantilever beam.

Number of Tip displacement-- Tip displacement--
elements one-point quadrature two-point quadrature
E 1 762 416 x 107"
é 2 .940 .445
% 4 .985 762
' 8 .996 .927
% 16 .999 .981

Table IV-2. Normalized tip displacement
for a thin cantilever beam.

Number of Tip displacement-- ' Tip displacement--
elements one-point quadrature two-point quadrature

] 750 230 x 107
2 .938 .800 x 107
4 .984 .320 x 1073
8 .996 128 x 1073

16 .399 512 x 10

e

wvm—"
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exception of G which is set hese to 375 x 105. Results are listed in

Table IV-2. The one-point quadrature results are quite accurate whereas

- ——

the two-point results are in error by approximately three orders of

: magnitude. Early attempts at developing bending elements with simple

: shape functions were abandoned because of results like those for the
two-point quadrature presented here.

i We shall now proceed to give a heuristic argument why two-point
quadrature causes such an overly stiff element. Consider a cantilever beam
discretized into N elements. In the assembled stiffness matrix there are 2N
Jegrees-of-freedom -- two degrees-of-freedom per element. The shear contribution
to the stiffness represents a constraint on the shear strains. If one-
Joint quadrature is employed, one constraint is imposed upon the element,

whereas if two-point quadrature is employed, two constraints are imposed

4 upon the element. In the latter case the number of constraints per
element equals the number of degrees-of-freedom per element, and the
result is that the mesh 'locks'.

This can be seen more precisely by looking at the stiffness
contributions of the bending and shear terms. We assume the nodal
dearees of freedom are ordered as follows: Wis 015 Wos 055 and h is

the element length. The stiffnesses are:

0o 0 0 0
3 jo 1 0 - *
£t
k = (IV'Z&) 4
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_-1 h/2
h/2  h/a
-1 -h/2
h2  he/a
E h/2
h/2  h?/3
-1 -h/2
h/2  hé/6
L

the following simple example illustrates.

end load P and moment M,

(i) One-point quadrature.

colums, and solving

for the tip displacement and rotation yields

(h2/4c + 8'1) P + hM/2a ,

(hP/2 + M)/a ,

-h/2

-h/2

-h/2

-h/2

h/2

h™/4

-h/2

h=/4

h/2 -T

he/6
-h/2

he/3

and two-point quadrature shear stiffnesses, respectively.

(1v-2b)

(1v-2c)

where kb is the bending stiffness, and k§]) and kﬁz) are the one-point

It is easily

verified that the rank of kgl) is one and the rank of k§2) is two. In

the latter case, kb is completely dominated by the shear stiffness, as

Consider the case of a one-element cantilever beam, subjected to an

Combining (IV-2a) and (IV-2b), eliminating appropriate rows and

(1v-3a)

(Iv-3b)
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where

Et3/12h, (1V-3c)

xGt/h. (1v-3d)

™
1

|

In the thin beam limit (i.e., when 8>>a), (IV-3a) becomes

h(hP/2 + M)/2qa, (1v-4)

x
]

and (IV-3b) remains unchanged. Thus we are left solely with the deforma-

tion due to bending as is right. $

(ii) Two-point quadrature.

Carrying out the same steps as in case i, with (IV-2c) in

» v rea mvwaerebeen o

: place of (IV-2b), yields E
3 3
+ h%s/3 i

W = (2____._.__) P + hM/2y, (1v-5a) )

By :

8 = (hP/2 + M)/y, (Iv-5b) K

where %

A

v = a+ h%s/12. (1V-5¢) ;

In the thin beam Yimit (IV-5a) and (IV-5b) become

x
"

(4P + 6M/h)/8, (IV-5a)

<
n

6(hP + 2M)/h%8, (IV-6b)

respectively. In this case only deformations due to shear are in evidence ;
and (IV-6a) and (I1V-6b) are O(t'z) in error,

In passing we note that there are some circumstances in which the
present element may have some practical value. For example, an axisymme-
tric shell version might be useful for shell covered solids in which

hilinear elements are used to model the solid. The fact that only one
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quadrature point is involved may lead to more economical computations in

TR R e o v e
S Ter e S et et

T
>

nonlinear analysis.
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3. Bilinear Plate Bending Element

The strain energy for an iscotropic, linearly elastic plate, including

shear deformation, is

U(w, 81> 92) =

£t3 fj‘[(ae])2+ Zyae] %, . (aez)z+ 1o (ﬁ+ ﬂ)z]dx N
2) A Xy 39Xy 3%, X, J Xy Xy 1772

24(1-\
+ ﬁ‘{%:ll {[[(%] - e])2+ (%2- 92)2] dx, dx, ¢, (Iv-7)

where X1 and Xy are cartesian coordinates, w is the transverse displacement,
8y and 92 are the rotations about the Xy and X5 axes, respectively, E is
Young's modulus, v is Poisson's ratic, « is the shear correction factor,

t is the plate thickness and A is its area. The first integral in (IV-7)
represents the bending energy and the second represents the shear energy.

de consider a four-node quadrilateral element and assume the displacement
and rotations are exparded in independent bilinear shape functions. The
isoparametric concept is employed (see Zienkiewicz [10]). This results

in three degrees-of-“reedom -- one displacement and two rotations -- at each
of the corners.

For very thick plates two-by- wo Gaussian quad.-ature leads to
acceptable results, however, for thin plates it causes 'locking' as
indiccted for the beam in the previous section. In this case we use
two-by-two Gaussian quadrature on the bending energy term and one-point
;aussian quadrature on the shear energy term. This results in one con-
straint per element. [0 large meshes there are approximately three

equations per element, tnus there is no danger of the mesn 'i,cring'.

*
1
'
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As is apparant, the proposed element is extremely simple, and easily and
concisely coded. We are certain that the element routines are faster
than any other plate bending element yet proposed. In the next section

we will show that the element is also surprisingly acrurate.
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&. MNumerical Examples: Thin Plates

In this section we present several numerical examples which have

become more or less standard ones for evaluating plate elements. All
computations were performed on a CDC 6400 computer in single precision.
(A single precision word consists of 60 bits on the CDC 6400.) ]

Square Plate
The data for this example consists of the following (see Fig. IV-2):

£ = 10.92 x 10°

v o= .3 _,
t o= 3
L = 10 :

Both simply supported and clamped boundary conditions were considered as

Skl 3

w#ell as concentrated and uniformly distributed loadings. Results are

vd d Al

presented in Tables IV-3 and IV-4 for « values of 1000 and 5/6. The
former value is set to artificially maintain the Poisson-Xirchhoff con-

straint. Due to the fact that the plate is rather thin (L/t = 100),

At XINAS . Ant 3 mbws

there is little difference in the results for the two values ¢f «., In

W A T

fact, the bending moments are identical. In practical situations there
seems no point in exceeding the 'natural' value of « = 5/6.

Moment and shear resultants, and displacements are plotted .n Fig.

IV-3 along the line Xy = 0, for the clamped, concentrated load case in

A e AR ARG Wi A Adaldl

«+hich » = 5/6. Along x; = 0 and x, = 0, the x, and x, components of the :

F tha chaawm
wic atizar .

moment are equal,. as are tho x, and X, components <’
The simply supported concentrated load case has, it seems, taken
on the role of the preeminent comparison problem for bending elements.

n Fig V-4 the present eiement, with » = 1000, 15 compared with data

taken from Gallagher T17]. The good corvergence cf the element 15 evident.

ot sl
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Clamped Circular Plate

The data for this example is the same as for the previous problem

except (see Fig. IV-5):

Resilts are presented in Table IV-5 for concentrated and uniform loadings,
and « values of 1000 and 5/6.

Again, due to the thinness of the plate, there is little difference
in the displacement results for the two values of «, and the moment results

are identical.

L




T R PR Y

66

Table IV-3. Normalized center displacement
and bending moment for a simply
supported square plate.

Number of Displacement-- Displacement-- Moment--
elements Concentrated load Uniform load Uniform load
4 .9922 .9770 .51
16 .9948 .9947 .963
64 .9982 .9987 .991
(a) « = 1000

Number of Displacement-- Displacement-- loment--
element Concentrated load Uniform Toad Uniform load
4 .9957 .9782 851
16 .9991 .9960 .J63

i 64 1.7034 .9997 .99

(b)

x =5/6
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Table IV-4. Normalized center displacement
and bending moment for a clamped
square plate.
Number of Displacement-- Displacement-- Moment--

: elements Concentrated load Uniform load Uniform load
5 4 8652 9535 822 |

16 .9650 .98%0 .955

24 .9920 .9937 .386 1

(a) « = 1000

i 4
14
f A
§ 3
} Number of | Displacement-- Displacement-- Momen -~ W
t elements Concentrated load | Uniform load Uniform load :
; 4 .872C .8575 822
; 16 .9748 .9890 .955
i
64 1.0034 .9976 .986

(b) K = 5/6

A A W o AN o




Table IV-5. Normalized center displacement
and bending moment for a clamped
circular plate.

Number of Displacement-- Displacement-- Moment--
<lements Concentrated load Uniform load Uniform load
3 .9197 .8587 .827
12 .9579 .9535 .957

g 48 .9883 .9888 .990
(a) « = 1000
Humber of Displacement-- Displacement-- oment--
elements Coancentrated load Uniform load Uniform ioad
3 .9267 .8621 .327
12 .9674 .3570 .957
1.0005 .9925 .990
{b) 5/6

LR o

CRPUTETLT E. U LU PPN

il A

S btk e ot

e AR L




2N e - 4

69

5. Numerical Sensitivity due to Extreme Thinness

The results of the previous section indicate that despite the
simplicity of the present element it is quite accurate. However, one
orecaution must be taken when employing elements derived from the reduced
integration concept. This admonition stems from the observation that
the shear stiffness is 0((h/t)2) times the bending stiffness. (In the
case of a quadrilateral bending element h may be taken to be the length
of the longest side.) For fixed h, as t - 0, it is only a matter of time
oefore the effect of the bending stiffness vanishes completely due to the
finite computer word length. Results of this kind can be seen for the
beam element in Fig. IV-6 and for the plate element in Fig. IV-7. The
plateaus represent the appropriate solutions for the meshes in question
in the 'thin' limit. Deterioration of the numerical solution begins to
occur at L/t = 104 in the case of the beam, and L/t = ’IO5 for the plate;
this corresponds to element aspect ratios (i.e., h/t) of 104/16 and
105/8, respectively. It is unlikely that aspect ratios larger than
these values will be met in practice. However, on computers with shorter
single precision word length,deterioration will commence at smaller
aspect ratios. Here it is important to employ a strateqgy which circum-
vents these difficuities. This can be done as follows: Determine the
maximum element aspect ratio for which good results are obtained by
plotting graphs similar to Figs. 1V-6 and I¥-7. Before combining the
shear and bending contributions of the element stiffness test the aspect

16 ¢ 3 1 b S~ A 1e \
1T YU Y5 €55 unan wniln §OCa ves5uLs ave tha‘u"v‘c'd,

combine in the usual way. Otherwise, multiply the shear stiffness by
(t/h)2 times the square of the maximum element aspect ratio aliowed,

then combine. This will reduce the disparity between the bending and

i i i
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shear term to an acceptable level, yet maintain thin element behavior, ;
Numerical results illustrating these ideas are depicted in Figs. IV-6 :
and IV-7. The maximum allowable aspect ratios were determined to be

104/16 for the beam element and 105/8 for the plate element, from Figs.

IV-6 and IV-7, respectively. Employing these values in the procedure

described above enables the plateaus to be extended to the higher aspect

ratios, as illustrated in Figs. IV-6 and IV-7. This process enables the

reduced integration procedure to be appliied successfully in cases

involving arbitrarily large aspect ratios.

0f course, another way to avoid difficulties is to work in double

precision on short word computers.




One-point Gaussian quadrature on the shear term has a decidedly

beneficial effect in application to thin plates. However, the opposite

is true for very thick plates. The difficulties do not always manifest

PRI

themselves. For example, results for the uniformly loaded clamped

circular plate are acceptable (see Fig. IV-8; q refers to the magnitude 3

i E 6. Application to Thick Plates
E
§
i
£

aaad )

of the load). For t/R = .4 the results are of about the same level of

accuracy as those in [27], where a higher-order element is employed.
On the other hand, results for the same plate subjected to a concentrated

; : Toad tend to oscillate about the exact solution (see Fig. IV-9). This

PR

problem is a trying one as the exact Reissner's theory solution consists

of an infinite displacement under the load, viz.

/ 2 2 2
) w = PR <]__r_>-_2_f_'__ ]n&-_go_.]nr

]

TénD

PTCTIPIR P VO SR T

bending shear ;
_PR |r R
B ‘m[ﬁ‘"r]

where P is the concentrated force and D 1is the bending rigidity.

As the plate thickness is reduced the oscillations are lessened (see
Figs. IV-10 to IV-15). From these results we conclude that when the
t/h ratio exceeds unity, the one-point Gaussian quadrature of the shear
term should be abandoned in favor of the following scheme: Two-by-two
Baussian quadrature shouid be used on the (aw/'ax])2 and (aw/axz)2

contributions to the shear enerqy. The remaining terms in the shear

energy should be inteqrated as usual by one-point Gaussian quadrature.

We refer to this element as the ‘rodified' one-point shear element.




A spectral analysis of the element stiffness, when one-point
Gaussian quadrature is employed on the shear term, reveals that there
are five zero eigenvalues -- two more than the usual three rigid body
modes. Thus the eiement by itself is rank deficient, but this only
manifests itself in problems for very thick plates and here only in
certain cases. The two additional zero-:nergy modes are illustrated

in Fig. IV-16. The first mode consists of 8y = 8y = 0 and an 'hourglass'
pattern for w (see [38]). Modifying the one-point shear integration as
indicated above removes the hourglass mode and leads to good results for
very thick plates as evidenced by Figs. IV-9 and IV-10. The second mode
consists of w = 0 and an in-plane twisting of the plate. In a mesh in
which the rigid body modes are removed, this pattern cannot persist and

thus causes no further rank deficiency.
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7. Conclusions

We have presented an element for the bending of thin and moderately

thick plates which involves minimal programming, is highly efficient and

g AT BN T

competitively accurate. Due to these attributes the element offers an
attractive basis for nonlinear developments. Numerical sensitivity in
; applications involving extremely thin elements has been shown to be '

avoidable by employing a simple computational strategy. Very thick 1

plates may be successfully analyzed by a siight modification to the

element.
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