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Introduction

SIn this report we describe work completed under Subcontract No.

N68305-75-C-004 (Proposal UCB-Eng.-3889). As we frequently refer to our

previous work [1-5], it will prove helpful to the reader to be somwhat

familiar with these references.

In Section I we present theory and algorithms for large displacement

contact-,impact analysis in two dimensions(i.e. plane stress, plane strain

and axisymtric). This work builds upon earlier developments documented in

[2] and [3] and represents the completion of our theoretical work in this

area. The theory encompasses a wide range of contact-impact problems and

allows for a completely arbitrary contact surface development, stick, slip

and frictional sl*ding conditions, and impact-release conditions covering

the full range of contact possibilities.

In Section II we describe some new developments regarding the Hertzian

algorithm, which has been extensively documented in previous publications;

see [1-5].

Section III contains sample problems which employ the algorthins

described in Section I and also some studies involving the Hertzian algorithm.

Anticipating the need for an efficient shell element for crash

configuration modelling, we have performed a pilot study of a plate bending

element. The results of this study, which are encouraging, are contained

in Section IV.

iI
)I
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I. Large Displacement Contact-Impact Theory

1. Introduction

In the following sectiov' we present a large displacement contact-impact

theory. In Section 1-2 we set notations and establish the structure of the

local equations for a typical contactor node and target element boundary.

The algorithm for handling stick, slip and frictional contact conditions is

discussed in Se.lion 1-3. This strategy is sufficient for the quasi-static

problem and governs the iterations within a time step in a dynamic problem.

The updating ir dynamic problems manifested by discrete impact-release

conditions is described in Section 1-4.

!S
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2. Local Structure of the Equations

To explicate the structure of the equations we wish to solve, we shall

consider in this section an idealization consisting of one ccntactor node

and one target element boundary (see Fig. I-1). Quantities associated with

the contactor node will possess a subscript k, and those associated with the

target nodes will possess a subscript Z or +l. Throughout this section we

shall concern ourselves only with equations which pertain to these three

nodes. In two-dimensional analysis (i.e. plane stress, plane strain or

axisymmetric) there are two displacement degrees-of-freedom associated with

each of the three nodes and, in addition, two contact force degrees-of-

freedom associated to the contactor node; a total of eight degrees-of-

freedom for the three nodes considered here. Thus there are six equations

of motion to be satisfied and, if the bodies are in contact, two cordiLions

of compatibility. Consider the case in which the contactor node is in

contact with the target element boundary. Then if a is the nondimensional

location parameter for the target element boundary, defined by (see Fig. 1-2):

(xlk x1 )2 + (X2k - x2 /)2] 2 /L

2 211/2

L [x, + (x x2 )

the eight equations to be satisfied for the three nodes are:

* I + + + :

where

-
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0 0 0

~2

m :M 
o , the mas _ss,

1 

2 
TLo (u y.+l , the displacements,

ky yk 0 K K,+lT , the internal forces,

kk 
( 1  

K2  

K2  
)

= (Tyk 0 -(l-a) Yk -a )T , the contact forces,

and

=Y (o {x ('-) x2  aX2 o 0, , )T,
k y Y, E+l

the compatibility conditions. The superscript indicates to which body the

quantity pertains and the subscript y indicates the coordinate direction

z , y = 1,2. Note that the components K l and K2 are functions ot the dis-
Y
placements of B1 and B2, respectively.

The compatibility conditions amount to the second and sixth equations

in I-1. When the bodies are not in contact these conditions are ignored

and T 0oyk
The solution of the matrix equations is developed by employing a

temporal discretization which results in a nonlinear algebraic problem to be

solved at each time step. The Newmark family of algorithms is employed

by us to temporally discretize the equations and we confine our attention

to implicit methods. This aspect of our work has oeen described previously

(see e.g. [5]) and we shall not repeat the details here. The resulting

temporally discretized system, for the nodes in question, becomes:



I ~ - _]_____I Vr'
I k*

1 
S

a t [ : z ] n+l 2 n+i 2 n+ l

:Inl At Y2-n at 21

+1-2s

2a
iL

where the subscripts n and n+l indicate the time step at which the quantity

is evaluated, At - tn+l - t n is the length of the time interval, and a is

the Newmark parameter.

To solve the nonlinear algebraic problem at each 
time step, the ewton-

Raphson method is employed. The linear equations used in this procedure,

for the nodes in question, are given as follows:

k* Aw() = r* , (1-3)

where

m o k 0 M

k* 2 + D -S

o m [Zkj n+l :21
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t2 nl L-2J n+l [-21 n+l

+ tA :( 21a+ B At
\_j [2jn L-2jnF] :,

+1-2a 1
26 a At 2

L2j n -jn+l

where the superscript in parentheses indicates the iteration number and

D E2

denotes the tangent stiffness matrix. The formation of the tangent stiffness

follows the standard rules (in particular, in the case of linear elastic'

bodies it is the usual stiffness matrix). The iterative process is defined

by

•(o) W
• Wn+1  -n

(i+l) (i) + A"M-n+l = n+l +  n+l

def. (i)
and when w i) satisfies a convergence test, fr some i, then W n+l w

Here w is defined by

I+ (o lk 0 0 2k 0 0



The matrix

(12.

is called the contact stiffness. Specification of it,

L-i2j n+l L2 n+l

are the unique aspects of the contact-impact algorithm. In the next section

we describe the way this is done.

In passing, we note that formally setting T to o provides an algorithm

for the quasi-static case.
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3. Computing Strategy Within a Time (Load) Step

~In this section we describe the strategy involved in solving the non-

linear algebraic contact problem within a time step (or, equivalently, within

a load step in the quasi-static case). The unknowns involved, as described

in the previous section, are the displacements and contact forces at the end

of the step. Treatment of velocities and accelerations, and updating of

contact forces, when impact and release effects are present, are considered

in the following section.

For consideration of sliding contact, it is convenient to work in a

coordinate system naturally defined by the target segment. A system of this

kind can be constructed by aligning the coordinate axes in the tangential

(s) and normal (n) directions to the target element boundary, with origin

located at node z (see Fig. 1-3). If e denotes the angle between the s and

z axes, measured counterclockwise from zi, then

e = arc tan [(x2, +l x2,)/(Xl, £+I - x1,)]

and vectors may be resolved in the usual way into tangential and normal

components, e.g.

where c = cos 6 and s = sin 6. Thus the vectors in the s, n - system

corresponding to !l and Tare

S sk 0 -(l-c)tSk -a Tsk and

n (Tnk o -(l-a)Tnk -a Tnk

respectively, and likewise for x s and n"
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At the end of each iteration, one of three conditions can hold for a

typical contactor node k; the condition is determined by the contactor code

i k . If Ik = o, then contactor node k is not in contact; if ik > 0, then

node k is in contact. The code ik = 1 signifies the stick condition and

i k = 2 signifies the sliding condition. The contact code determines what

is assembled into the contact stiffness and the right-hand side vectors T

) I and x. Specifically, we have the following situations:

I o(i)=
_k -Y

; (i) =

I-Y -Y -Y

i 2 : _ =

9n

in _n inty

M (i) +0A (i)+ ;( (i

-s

n =n
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- where

0 1 0 0

1 0 -(l-a) -a

r
o0 -(I-a) 0 o

0 -a 0 0

o 0 0 0

o 1 0 0

0 0 0 0

0 0 0 0

I r, = nkI  -( -z nk I -o I nk I)

and f is the dynamic coefficient of friction. Rotation of quantities in

local coordinates into global coordinates is facilitated by the following

transformations:

[;o :2] 2TT [s :]=. T
q- -0 nl

in which

F
C 0 0 0 S 0 0 0

0 C 0 0 0 S 0 0

0 0 c 0 0 0 S 0

T 0 0 0 c 0 0 0 0

-S 0 0 0 c 0 0 0

0 -S 0 0 0 c 0 0

0 0 -S 0 0 0 C 0

0 0 0 -S 0 0 0 C
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and

x = cX - s xs n

-2 s xs -+CXn

= C s - S Tn

2 = T + cTn

The determination of the contactor code i k for the present iteration

depends upon "its value for the previous iteration.

If i k was equal to o, then node k was not in contact during the previous

interatlon. In this case we must determine whether or not node k has pene-

trated a target segment during the present iteration. Let xk denote the

location of node k and let x.l , x,, xL+l denote the locations of consecutive

target nodes z-I, t, +l, respectively, where t designates an interior node

of some segment. We assume that the entire list of interior target nodes

has been searched and k is found to be closest to t at the end of the present

iteration. For node t the interior of the target is defined to be that part

of the plane consisting of the two straight lines emanating from x. through

and x +l and extending to infinity, and all points to the right of

these lines with respect to the target direction. The exterior is the

remaining portion of the plane (see Fig. 1-4). At the end of an iteration,

if x. is in the interior of the target we say that tentative contact has

been made. To determine if this has occurred we employ the following

algorithm (see Fig. 1-4 for notation).

Let A = (xk, xz 1 , xz. xt+1) and define TEST as indicated in Fig. 1-5.

Jf the outcome of TEST is true (1), then xk is exterior to the target,

whereas if the outcome is false (F), xk is in the interior and tentative

contact has been made. In the latter case further calculations are required
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to dete.ine if indeed contact has occurred* and, if so, where. The

routine to carry out these calculations requires the input parametersimx

and j Max, which are the maximum number of iterations allowed to determine

the epproximate location of a contact point, and the maximum number of

changes of target reference node allowed, respectively. If tentative

contact h~s been made we next employ a binary search procedure to determine

a good approximation to the-configuration 8 at which initial contact was

actually made. With this confi.uration determined, we ascertain whether

node k actually contacted the segment defined by target nodes t-1, Z, £+l

(II < 1) or did not (jcz > 1). In the former case we set the new value

of the contactor code ik to 1, whereas in the latter we may try another

reference point and repeat the calculation. However, if jmax has been

reached, or the new reference point is a target segment boundary node, we

assume no contact has been made and set ik to o.

The following is a brief description of the main points of the flowchart

depicted in Figs. 1-6 to I-11.

if ik was greater than zero for the previous iteration, then contactor

node k was in contact. In this case it is first checked if the updated

normal component of traction Tn is compressive. If this is not the case,

then ik is set to zero. If Tn is compressive, then it is determined

whether contactor node k was sticking ( = 1) or whether it was sliding

(i = 2) during the Idst iteration. If it was sticking then the updated

value of IT I is compared with t = fs Irnl' where fs is the static

coefficient of friction. If ITs! -"crit' then i k is set equal to 2;

otherwise i, is set to 1. If noje k was sliding during the last iteration

then a new value of a is computed based upon the updated configuration. If

A contactor node can enter the interior without passing through the target,
e.g. by sneaking around a boundary node.
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1 1, then ITs is compared with T crit fd IT nI The result of this

comparison determines whether contactor node k is sliding or sticking, as

above. If Ial l, the target reference node is rhanged to the appropriate

adjacent one, A naximum of ismax changes of reference are allowed. (The

default value of i is one). If i is exceeded, the computation issmax smax
terminated and an error message is jrinted. If in cha,,ging the target

reference node a target segment boundary node is encountered, the no contact

codeik is set to zero. If a value of a is found such that IaI s 1, then

1TsI is compared with Tcrit = fd ITnI and we proceed as described above.

When contactor nodes slide over target nodes, the comput3tion of the new

values of a is approximate, unless the target segment is 'at. Thus some

caution is advised in application to prnblems in which substantial sliding

is likely during a time (load) step.

f

I

I
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4. Impact-Release Conditions

Imposing correct impact and release conditions are essential ingredients

in the accurat( solution of dynamic contact problems. The present developments

extend earlier work (see [1-5]) in which s-.,.ple node on node normal

incidence was considered. In this section we describe procedures for setting

impact-relea3e conditions for the stick, slip and frictional cases. Since
each of the cases differs somewhat from the others we discuss them one at a

time. The stick case ib the most straightforward and we shall describe it

first.

a. Stick Contact Condition

We consider the case of an open target segment consisting of N2 nodes

* ( ,e superscript refers to body number 2). The case of a closed target

follows trivially. We allow for the possibility of an arbitrary number

of contactor nodes impacting and/or releasing the target segment over the

time step. The updating of nodal velocities is determined from the

following two conditions:

(1) The velocity of a contactor node in contact with the target

segment is the linear interpolate of the target node velocities of the

element boundary in question. For instance, consider the configuration of

Fig. 1-2 in which contactor node k is in contact with the element boundary

defined by target nodes z and z+l. In this section we will attach a sub-

script to the nondimensional location parameter to indicate that it is

associated with contactor node k, i.e. we denote it ck" If 6k denotes the

velocity vector of contactor node k, and u and 6,.+l are the velocity vectors

of tArnet nnoe o And 0+ racnartive1y fhan fha cnitInn of linear
interpolation requires

u (1-0)6 + ak i (1-4)k(- 0
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Observe that this definition remains meaningful when there are more than one

contactor nodes in contact with a single elemner.t boundary.

(2) Tha second condition is a discrete impulse-momentum balance.

Let AI denote the tributary area surrounding target node t. Specifically,

this area is defined to be one-half the length of the two adjacent target

element boundaries to node t, in case node 2 is an interior node; and one-

half the length of the adjacent target segment, if node k is a target segment

boundary node (see Fig. 1-12). Let C denote the set of contactor nodes in

contact with A at the end of the time step (last iteration), and let C-
1

I k

denote the set of contactor nodes which were in contact with A. at the

pc-qinning of the time step, but which released during the time step. Then

f.' each 2 z {1,2,...,N 21 we require that

+ k Y k + 2~ Tk

kE C kEC-1

M, +I MkuC (1-5)
kE C c

and for each kEC- 1 we require

*c + Mc -1 At -1 1 6

where the superscripts + and -l indicate the updated values and values from

the previous time step, respectively, M' indicates the lumped mass coefficient
CI

of target node t and Mc is the lumped mass coefficienft of cont-ato-r .. d k.
Equation (1-6) defines f+ for all kE C 1 i terms of the data from

the previous step; namely u"k and T-1. Equations (6.1) and (6.2) lead to

the following system of equations for the target nodal velocities:

AU =B (1-7)
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where A is tridiagonal with nonzero coefficients

a Mc M (1 - k , tt- {2,13,.., N2 }

X , -1 k Cleft

a,, = Mt + kc Mk)lf +  ( h M (l-c k), L€ {1,2,3,...N2 I
k d Cl)eft kE( right

k V E {1 ,2,3,. N2-1 U

k E (C)
P, right

and

ub b12

+ +

U. 21 u 22 b21 b22

+ +I ." .

KN2 UN22 bN21 bN22

in which

Mt -1 +c -1 At -12M =Mzu + U Mkk + E T kI  E {1,2,..., N2}

The subscripts 'left' and 'right' on the C's indicate the subsets of

C to the left and right of target node t, respectively.

The second subscript on the entries of U and B refer to the coordinate

direction, e.g. b z2 is the z2 - component of b..

An argument which employs dynamic force balances in place of impulse-

momentum conditions yields relations for updated accelerations and contact
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forces. The end results are summarized as follows:

The updated accelerations of the target nodes Z, are determined by

solving

A U = B' (1-8)

where

u u bl,

11 12 'i
u21 u22 b2 22

I~U= B'=

L. 2 UN22L bNl bN2 2

+ kE C- kM k  ke C 1 l

In the above definition of b , the superscripts refer to tne last iteration.

• The updated accelerations of the contactor nodes which are in contact

with the target segment are given by linear interpolation, i.e.

uk  (I-k) u + Ck uY+l

The updated accelerations of contactor nodes which have released from

the target sometime during the time step are given by

k k T (1-9)

-V .-.--- '-- -i----
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The updated contact forces associated with nodes which are in contact

with the target are given by

+~ 0~M(i-~.(-10)

+ - Mc"
T-k -- k +  k (-k -Uk)"( -O

The solutions of the systems of equations (1-7) and (1-8) are

accomplished most efficiently with an unsynmetric tridiagonal solver. *rhe

following is a FORTRAN subroutine to carry out this procedure. The matrix

A is stored by rows as a one-dimensional array.

SUBROUTINE TRISOL (A,B,NEQ)
DIMENSION A(1),B(NEQ,2)

C ... REDUCE EQUATIONS TO UPPER TRIANGULAR FORM
NM =3 * NEO-2
1=2
DO 100 N = 1, NM, 3
IF (A(N). EQ. 0.0) GO TO 100
AA = A(N+2)/A(N)
A(N+3) = A(N+3) - A(N+l) * AA
B(I,l) = B(I,l) - AA * B(I-I,1)
B(I,2) = B(I,2) - AA * B(I-l,2)

100 1=I +I
C ... BACKSUBSTITUTE

I = NEQ
200 IF (A(NM). EQ.O.O) GO TO 210

B(I,l) = B(I,I)/A(NM)
B(I,2) = B(I,2)/A(NM)

210 1 = I -I
IF (I.LE.O) RETURN
N = NM-3
B(l,1) = B(I,l) - A(NM+l) * B(I+I, 1)
B(I,2) = B(I,2) - A(NM+l) * B(I+I, 2)
GO TO 200
END

b. Sliding Contact Condition

The impact and release conditions for the sliding contact (frictiolless)

case are similar to the stick case, but only involve normal components.

To describe the procedure employed, we will need to introduce some new

terminology. Local boundary coordinates are normal (n) - tangential (s)

coordinates attached to each target element boundary (see Fig. 1-3).

Pseudo-normal coordinat., for an interior target node z are normal (n) -
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tangential Cs) coordinates with respect to the line joining target nodes

t-I and +l, whereas for target boundary nodes they are the same as the

local boundary coordinates (see Fig. 1-13). All computations of impact and

release data are done with respect to the configuration determined by the

last iteration within the time step.

The velocity update is achieved as follows:

Transform all ''s and T's appearing ir. '1-5) and (1-6) to pseudo-normal
coordinates. Solve (I-7) where B is replaced by the analogous N xl vector

of normal (n) components. U will then be the updated a-components of

velocity of the target nodes. (The s components are unaffected by this

procss. Roatethe6, -coponntsinto local boundary coordinates. Obtain

the boundary normal (n) components of the contactor velocities by linear

interpolation of the updated n-component target velocities, (The s-components

are unaffected,) For nodes which Iav released, equation (1-6) is to be

applied with the n-components.

Accelerations and contact forces are updated as follows:
Rotate the W's and i's appearing in the definition of B', (1-9) and

(I-10) into pseudo-normal coordinates. Solve (1-8) where B' consists only

of the h-components; U will be the updated n-components of the target node

accelerations.

t The i-components are unaffected. Rotate the n, s-components into local

boundary coordinates and linearly interpolate to determine 4k. The s-

components are unaffected. Updated n-components of contactor nodes which

have released are given by (1-9) with k replaced by . Updated n-component

of cortact force are given by (1-10) with k replaced by n. As before, the

contact force fur released nodes is zero.

c. Frictional Cut.tact Condition

The impact ani release conditions for the frictional case are identical,
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for the n-components, to the frictionless case. For the s-components some

modifications are required. In the ensuing discussion we consider only the

s-components. Again systems similar to (1-7) and (I-8) are coastructed.

Here, let C denote the subset of nodes in contact which are not sliding at

the last iteration of the time step, and let ClI indicate the released nodes

(including sliding nodes). Then, in the updating of velocities, s-components

of k should be replaced by the s-components of K( + . k) where is a

shear correcticn factor which can be adjusted to accurately capture shear

wave phenomena. In the present work we assume for simplicity K = 1. (These

remarks pertain to equations (1-5) and (1-6).) The si-components of velocity

for the nodes in C are computed by linear interpolation.

The updating of the i-components of acceleration and contact force

proceeds as follows:

Formulate the i-component of B' using u and T Then U will be the

updated i-components of acceleration fur the sticking nodes. Released node

s-accelerations are given by (1-9), and non-sliding node updated s-contact

forces are given by (1-7). For nodes which are sliding there is no update

of s-components of u and T.
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II. New Developments with Particular Reference to the Hertzian Algorithm.

I. Introduction

In this chapter we describe some improvements to the Hertzian

algorithm documented in our previous works; see [1-5].

2. Automatic Time Stepping

Often in impact problems the significant time scale during contact

is much smaller than that when the bodies are not in contact. An example

is illustrative. Consider the configuration of Fig. II-1. A simple

frame structure, perhaps excited through ground motion, is v'brating in

its fundamental .iode. Let us take the period of the fundamental mode

to be order 1. If in the course of the motion of the frame structure it

impacts the rigid wall adjacent to it, perhaps representing a more massive

structure, the characteristic time scale while in contact will be the

transit time through the horizontal member. This could be orders of

magnitude less than the period of the fundamental mode of the frame.

lo capture this phenomenon a very small time step would have to be taken

compared with the period of the fundamental frame mode. On the other

hand, a time step this small would be unnecessary and inefficient whileV
the frame is not in contact.

To effectively accommodate situations such as the one just described

an automatic time step feature has been programmed in FEAP. Three

different time steps are read in as input data. The largest is employed

if no contact is taking place. If contact occurs the intermediate time

step is employed d nd the computation is repeated. The intermediate -'tp

is used subsequently until contact is again made at which time the
computation is repeated with the smallest time step. The smallest time

step is employed thereafter throughout the contact phase. If the bodies

release the largest time step is again employed, and so on.
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This feature should allow us to solve impact problems aore

economically in the future.
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3. Higher-Order Impact-Release Conditions

In this section we shall describe higher-order impact and release

conditions f'r the Hertzian algorithm. The necessity of developing a

theory along these lines was first alluded to in [3], Section I-3-b, and

subsequently in [4] and [5]. The theory is aimed at more accurately

capturing the post-impact and post-release velocity states; the updated

accelerations and tractions are computed as was done previously (see [4]

or [5]). The reason for attempting to improve the velocity calculations

is that no account is taken of the acceleration of the nodes in question.

This can occasionally lead to poor results (see Section I-3-b of [3]).

The theory presented herein accounts for acceleration and represents a

negligible amount of additional computational effort.

We begin by quoting the discrete impact and release conditions for

a typical pair of candidate contact nodes, presented in [4] and [5]:

____2 + Mu 1_act + = (Ml + M2)

.. Mu I +M2

U+ = (M + M2)

Ml M2  2
-+------ -u
(Ml (u U

release = , At-+' = - + ' At . .-1..

U+ = U0MCOL
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The notation is as follows: Superscripts refer to the body number and

z. = 1,2. The subscript -1 indicates that the quantity in question is

evaluatf.d at the previous time step, the subscript - refers tD the last

iteration of the present time step, and the subscript + refers to the

updated values accounting for impact-release effects. Arguments leading

to these equations are presented in [1], [4] and [5]. The refinements

to these quations to follow effecz only the velocity equations. First

we consider the case of impact.

It can be argued from wave-propagation theory that the updated

velocity + is a good approximation to the velocity of the coalesced

contact nodes at the instant following impact. If impact occurs towards

the beginning of a time step, ;+ may not be a very accurate representa-

tion for the end of the step. We seek to account for this effect in a

rational way. To do this we make use of the fact that from the instant

after impact to the end of the time step, the velocity is a reasonably

smo,'th function. With this we define a new updated velocity

= + + U T

where Ht = tn+l - tc, tcE [tn, tn+] is the instant of contact, and t n

and tn. l denote the beginning and end of the time step, respectively.

The picture is as illustrated in Fig. 11-2. It remaiiis to obtain an

expression for Ef. To do this, we approximate the position of the

contact nodes in terms of the data from the previous time step, viz.

X, +X u + (A- ?) + At -t)2
-l=X +U-a2 "'-I l

where Xa denotes the initial position of the candidate contact mode of

body a. The contact location is defined by

1 2X = X
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which leads to

Ht _- Ab +_(bz 2 4ac)11 2

2a

~2 1lwhere a = u _-u 1

t

-2 l
b l -U_

= 
2 ~ 1  2 -u1

Sc =X 2  X1 + u_ u_

The physically relevant solution is determined by the condition

0 < t < At

If no solution satisfies this condition Et is set to At/2.

To obtain improved release velocities we also attempt to estimate a

more accurate time of release within the step. Since the nodes vere in

contact at the end of the previous step, T-l > 0. Let T denote the last

value of contact force before release occurred. In keeping with our

previous conventions (see [4] or [5]), _ will be negative (indicating

tension) or less than or equal to 2% of T-l. In the latter case we
~*cxl

maintain the use of u as the post-release velocity. (We note that the

second term on the right-hand side of the expression for u+ represents

the impulse over the time step, assuming linear interpolation between

T-1 and zero.) In the case in which T < 0, we compute (see Fig. 11-3)

r :If: -_1

The new updated velocity is then defined to be

U++ + U+
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where

+ + (-1)C' (At - KE) T_1/24
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III. Sample Problem

1. Identification of Urethane-Polystyrene Composite Fodm for the

Nonlinear Continuum Element.

The theory for a nonlinear elastic continuum element was presented

in [3], Sections 11-2 an.l 11-3. This element has been programued in

FEAP and the following options are available:

plane strain

2-D plane stress

axi symmetric

3-D

Two different quadrature rules can be employed in each case: 2 x 2

Gaussian quadrature for all terms, or 2 x 2 Gaussian quadrature for

u-terms and 1-point quadrature for A-terms (see [3] for notation and

further details). The latter option is appropriate for incompressible

and nearly-incompressible applications. For use in subsequent check

problems, we have selected the parameters A and p so that a close fit

is obtained to the loading cycle for a urethane-polystyrene composite

foam described in [6]. Values of E = 50 psi and v = .1, .25, .3 were

selected which, for the configuration illustrated in Fig. Ill-1, leads

to the response illustrated in Fig. 111-2. As can be seen, the best

results are obtained with v = .25. In subsequent calculations,

unless otherwise indicated. E = 50 Dsi and = 9r wo'-P amnlnvaA



2. Equivalence of Present Incompressible Formulation with a Mean-Pressure-

Variable Element.

In [3], on p. 32, we conjectured that employing 2 x 2 Gaussian quad-

rature on the p-terms, and 1-point quadrature on the A-terms, for the

standard four-node isoparametric quadrilateral, might yield result identical
to the constant mean pressure-bilinear displacement element employed in

the past by Hughes and Allik [7]. We have attempted to corroborate this

conjecture by performing an analysis using both elements. Consider the

configuration illustrated in Fig. 111-3. The beam is modelled with plane

strain rectangular using several different quadrature rules and the

constant mean pressure-bilinear displacement element of [7].

The beam is fixed at the left end and a uniform shear is applied to

the right end. The results confirm the equivalence of the 'underintegrated'

element with the constant mean pressure-bilinear displacement element.

We thank H. Allik and P. Caccistore of the Electric Boat Division of

General Dynamics, Groton, Connecticut, for providing us with the results

for the constant mean pressure-bilinear displacement element. (Recently

an analytical study has been performed which establishes the equivalence

of the two elements; see Hughes [8].)

I
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3. Quasi-Static Analysis of a Skull-Pad Contact Configuration

This analysis consists of a cylindrical 'skull' model being contacted

with a soft pad. The material properties of the three-layer skull are

those quoted in [3], Table l*, and originally obtained from [9]. The

pad material is that described in Section II-. Linear elements are

used to model the skull and nonlinear elements are used to model the

pad. All elements employ the plane strain option and 2 x 2 Gaussian

quadrature. The skull is fixed at the uppermost node and the pad is

driven into the skull and withdrawn by way of prescribing a uniform

displacement condition along the bottom of the pad. The initial gap

between skull and pad is O.linches. The maximum vertical displacement

of the bottom of the pad is 0.5inches and the displacement is applied

in steps of 0.linches. Unloading is performed similarly. The contact

condition is assumed to be perfect friction along the contact surface.

Thus there is no tangential slipping while in contact. Release occurs

when tension is sensed normal to the target segment (in this case the

pad). The analysis employs the 'between node' contact element described

in [2], Section 11-3, and the kinematically nonlinear search algorithm

described in [3], Section III. The target segment consists of the seven

element boundaries along the top surface of the pad. There is a total

of seven contactor nodes -- the innermost seven nodes along the boctom

outer surface of the skull. Initial and deformed configurations are

depicted in Fig. 111-4. The unloading steps are identical to the loading

steps (i.e. step numbers 6-4, 7=3, 8=2, 9=i, 10=0) and thus not shown.

Note that the contactor nodes contact the target segment between nodes.

* There is a typographical erroi in the table. The density of the brain
material should be .937 x 10 lb -sec2/in . This was the value
actually used in the analyses.
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The strain in the pad elements near the axis of symmetry reach a maximum

strain of approximately 50% and the pad elements near the periphery of

the contact zone experience a maximum rotation of approximately 300.

Normal and tangential contact stresses, at the point of maximum contact

area development, are plotted in Fig. 111-5. The pad has the effect of

more uniformly distributing the contact force than a rigid surface; cf.

[3], Section 1-1-a. Total vertical contact force and contact area width

are plotted, versus applied displacement step number, in Fig. 111-6.

In our initial attempts to solve this problem we observed a lack

of convergence. This was due to the following situation: Nodes frequently

released and then recontacted during iterating within a step. The point

of contact was set to the last penetration point, rather than the initial

contact point. This was in violation of the stipulated no-slip condition.

In addition, the contactor node along the symmetry axis penetrated the

contact surface without contact being sensed. This was due to a small

negative horizontal displacement, caused by round-off, which made the

search algorithm think the contactor node was outside the target segment.

I Upon correcting these fallibilities convergence was achieved.
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IV. A Simple and Efficient Finite Element for Plate Bending

1. Introduction

An enormous amount of effort has been devoted to the development of

finite elements for the bending of plates. The literature is extensive

and we will not make an attempt to review it here. (The interested

reader may consult any of the standard texts for references, e.g.

[l0-12].) Most of this effort has been oriented towards linear

problems; in particular, to the classical Poisson - Kirchhoff theory of

bending. The Cl-continuity requirement imposed by this theory on

'displacement' finite element models precludes the development of simple

and natural elements (see [13)). Because of this, incompatible elements

(e.g. [14-151) are oft.n resorted to, since they involve simpler

progranming than the rather complicated Cl-continuous elements (e.g.

[15-17] )and are competitive from an accuracy standpoint.

Accurate higher-order Cl-elements have also been developed (e.g.

[18-20]),but they too are quite complicated and involve

nodal derivative degrees-of-freedom of order greater than one, which

complicates the specification of boundary conditions.

The assumed stress hybrid bending elements of Pian and his associates

(e.g. [21]) have proven to be accurate, but they have some drawbacks and

thus are not widely used.

Another approach to the development of bending elements for thin

plates involves the so-called 'discrete Kirchhoff hypothesis'

(e.g. [22,23]). In this approach the classical equations are

abandoned in favor of a bending theory which includes shear deformations.

The result is that only CO-continuity is required of the shape functions.

To capture the behavior of thin plate theory, the constraint of zero shear
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strains is imposed at a discrete nunber of points. The method is

effective, but implementations tends to be somewhat complicated. Recent

improvements and variants on this theme have been proposed by Fried

[24-26].

An accurate quadrilateral element for thick and thin plates has

been developed by enkiewicz, Taylor and Too [27]. This element possesses

F eight nodes--four corner and four midside--,;ith the basic three degrees-

of-freedom per node. The transverse displacement and rotation shape

functions are selected from the 'serendipity' family (see rIo]). Two-by-

two Gaussian quadrature is an essential requirement for the good performance

of the element.

In summarizing these developments one can confidently assert that

for linear problems of plate bending many adequate elements exist. The

choice is more a matter of taste as no single element is clearly superior

to the rest in all cases.

Many users of finite element computer programs find a 'basic'

four-node quadrilateral element particularly appealing due to its

simplicity. It is our feeling that this appeal will become even greater

.,hen nonlinear applications are undertaken. In the nonlinear regime--

and especially in nonlinear dynamics--computational cost is the prime

concern. Due to frequent reformulations of tangent stiffnesses, complicated

element routines can lead to exorbitant computational expenditures and

may actually preclude nonlinear analysis. A simpler element of competi-

tive accuracy becomps quitp dpsirahlp under Sjch cirijmst.ances. Othpr

factors in nonlinear analysis buttress tnis assertion. For example, the

accuracy level attainable in nonlinear problems is often severely limited

due to the uncertainty of nonlinear material characterizations. Thus it

makes little sense to engender significant computational cost for complicated
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bending elements which are only marginally more accurate than simpler

elements, since the confidence level of the overall analysis may be

affected only negligibly. Unfortunately, heretofore, no really simple

alternative has existed.

In this chapter we attempt to remedy this situation. We develop

what we believeis the simplest effective plate bending element yet pro-

posed. The element is a four-node quadrilateral with the basic three

degrees-of-freedom per node. The element shape functions are bilinear

for transverse displacement and rotations. The shear 'locking'

associated with such low-order functions in application to thin plates

is eleviated by splitting the shear and bending energies and using one-

point quadrature on the shear term. The simplicity of the element lends

itself to concise and efficient computer implementation.

To develop the theory in its simplest setting, we consider in

Section IV-2 a beam element involving linear displacement and rotation

shape functions. We show how exact integration (two-point Gaussian

quadrature) of the element stiffness matrix leads to an overly stiff

element and we present an heuristiL argument why this is the case. We

then show how employing one-point quadrature on the shear term lessens

the stiffness. The concept is identical for the plate bending element

which is developed in Section IV-3. The effectiveness of the element

in thin plate bending is demonstrated in Section IV-4. A simple computing

strategy for dealing with the numerically sensitive case of extremely

thin plates is presented in Section IV-5. In Section IV-6 we consider

applications to thick plates. !t is shown that the element is still

effective for moderately thick plates. However, for very thick plates,

in which the thickness of individual elements exceed their characteristic

lengths, a slight modification of the shear quadrature need be employed.
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2. Examle: Linear Beam Element

In this section we will describe the formulation of a beam element

stiffness for which displacement and rotation are assumed to be indepen-

dent linear functions. Exact integration of the element stiffness can be

facilitated by two-point Gaussian quadrature, whereas one-point integration

exactly integrates the benling contribution, but 'underintegrates' the

shear contribution. For the case of thin beams we view the shear term

as a constraint which attempts to enforce the condition of negligible

shear strains. We shall show that one-point quadrature has a decisively

positive effect on the accuracy of the element; two-point quadrature

leading to worthless numerical results. The upshot of all this is that

SIby appropriately underintegrating troublesome terms, good bending behavior

can be attained by the simplest shape functions.

The equations of a rectangular cross-section beam, including shear

deformation effects, emanate from the following expression for strain

energy:

Et3L(d 12G dw 2 e x 2VU(w,O) =1 dx + dx ,t fI-w

10o 0

where w is the transverse displacement of the center-line, o is the

rotation of the cross-section, E is Young's modulus, G is the shear

modulus, K is the shear correction factor (throughout we employ K = 5/6),

t is the depth, L is the length and x is the axial coordinate. The first

term on the riqht-hand side of (IV-l) is the bending energy and the

second is the shear energy. With independent expansions for w and e,

(IV-l) can be employed to derive beam element stiffness matrices. The

case we are interested in is when both w and e are assumed to behave

linearly over an element. This leads to a four-degree-of-freedom element
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in which displacement and rotation are the nodal degrees-of-freedom. By

virtue of the fact de/dx is constant within this element, the bending

energy may be exactly evaluated by one-doint Gaussian quadrature. On

the other hand, two-point Gaussian quadrature is required to exactly

integrate the shear energy term due to the explicit pre3ence of e, which

is linear within the element. Employing one-point quadrature on the

stzear energy term 'underintegrates' the element and it is our prime

concern here to ascertain the effect of this procedure. (See also

Gallagher [11], pp. 364-367.)

A series of test computations were performed to determine the

behavio. of the element. A cantilever beam subjected to an end load

(see Fig. IV-l) was analyzed for various discretizations. The first

example is for a relatively deep beam. The data are:

E = 1000

G = 375

t = 1

L = 4

Tip displacement results for several discretizations are presented in

Table IV-l. As is evident, the one-point quadrature results are vastly

superior to the two-point results. A more severe test for linear

elements is bending governed by Bernoulli - Euler theory. In this case

shear strains are to be equal to zero. Such a situation can be brought

about in the present theory if depth is taken very small compared with

element length. Alternatively, a very large fictitious value of G can

be specified. In the second example we attempt to ascertain the behavior

of the linear element when the assumptions of the Bernoulli - Euler

theory apply. The data of the previous example are employed with the
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Table IV-1. Normalized tip displacement

for a deep cantilever beam.

Number of Tip displacement-- Tip displacement--
elements one-point quadrature two-point quadrature

1 .762 .416 x 10-I

2 .940 .445

4 .985 .762

8 .996 .927

16 .999 .981

Table IV-2. Normalized tip displacement
for a thin cantilever beam.

Number of Tip displacement-- Tip displacement--

elements one-point quadrature two-point quadrature

1 .750 .21)0 x 10- 4 .

2 .938 .80 x 10- 4

4 .984 .320 x 10-3

8 .996 .128 x 10-

16 .999 .512 x 1O 3 "
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exception of G which is set here to 375 x 10. Results are listed in

Table IV-2. The one-point quadrature results are quite accurate whereas

the two-point results are in error by approximately three orders of

magnitude. Early attempts at developing bending elements with simple

shape functions were abandoned because of results like those for the

two-point quadrature presented here.

We shall now proceed to give a heuristic argument why two-point

quadrature causes such an overly stiff element. Consider a cantilever beam

discretized into N elements. In the assembled stiffness matrix there are 2N

degrees-of-freedom -- two degrees-of-freedom per element. The shear contribution

to the stiffness represents a constraint on the shear strains. If one-

point quadrature is employed, one constraint is imposed upon the element,

whereas if two-point quadrature is employed, two constraints are imposed

upon the element. In the latter case the number of constraints per

element equals the number of degrees-of-freedom per element, and the

result is that the mesh 'locks'.

This can be seen more precisely by looking at the stiffness

contributions of the bending and shear terms. We assume the nodal

dearees of freedom are ordered as follows: wl, 01, w2, 02; and h is

the element length. The stiffnesses are:

0 0 0 0

Et3  0 1 0 -1
kb T 0 0 0 01

L0 -1 0 1l
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I h/2 -1 h/2

h/2 h2/4 -h/2 h2 14
k~l ) cGts = -IT- (IV-2b)

-1 -h/2 1 -h/2

h/2 h2/4 -h/2 h2 /4

1 h/2 -1 h/2

h/2 h2/3 -h/2 h2 /6( 2) :Gt
= -kt (IV-2c)

-1 -h/2 1 -h/2

h/2 h2/6 -h/2 h2 /3

(1) (2
where kb is the bending stiffness, and k l and k 2 ) are the one-point

and two-point quadrature shear stiffnesses, respectively. It is easily

verified that the rank of k~)is one and the rank of k (2) is two. In
5 s

the latter case, kb is completely dominated by the shear stiffness, as

the following simple example illustrates.

Consider the case of a one-element cantilever beam, subjected to an

, end load P and moment M.

(i) One-point quadrature.

Combining (IV-2a) and (IV-2b), eliminating appropriate rows and

columns, and solving for the tip displacement and rotation yields

w (h2 /4a + f 1 ) P + hM/2c , (IV-3a)

0 (P/2 + M)/a , (IV-3b)

--. -- --- --
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where

Et3/12h, (IV-3c)

KGt/h. (IV-3d)

In the thin beam limit (i.e., when B>>a), (IV-3a) becomes

w = h(hP/2 + M)/2a, (IV-4)

and (IV-3b) remains unchanged. Thus we are left solely with the deforma-

tion due to bending as is right.

(ii) Two-point quadrature.

Carrying out the same steps as in case i, with (IV-2c) in

place of (IV-2b), yields

w (a +h 2 3) P + hM/2y, (IV-5a)

o = (hP/2 + M)/y, (IV-5b)

where
y a + h2a/12. (IV-5c)

In the thin beam limit (IV-5a) and (IV-5b) become

w = (4P + 6M/h)/B (IV-6a)

o = 6(hP + 2M)/h2 , (IV-6b)

respectively. In this case only deformations due to shear are in evidence

and (IV-6a) and (TV-6b) are(t -2  in error.

In passing we note that there are some circumstances in which the

,)resent element may have some practical value. For example, an axisymme-

tric shell version miqht be useful for shell covered solids in which

bilinear elements are used to model the solid. The fact that only one
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quadrature point is involved may lead to more economical computations in

nonlinear analysis.
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3. Bilinear Plate Bending Element

The strain energy for an isotropic, linearly elastic plate, including

hear deformation, is

Ju(w, 01, 09)

3Et3 I e 2 +4(Do a6 2 +x (2) 2 + (1-v) (.I ( 1 2)2

1 7x d 2  x2 1x

+ (1- ffj - e1)2+ law- 82)21 dxI dx2j
t A /Tx FaI

where xI and x2 are cartesian coordinates, w is the transverse displacenent,

01 and .32 are the rotations about the xI and x2 axes, respectively, E is

Young's modulus, v is Poisson's ratio, s is the shear correction factor,

t is the plate thickness and A is its area. The first integral in (IV-7)

represents the bending energy and the second represents the shear energy.

AJe consider a four-node quadrilateral element and assume the displacement

and rotations are expanded in independent bilinear shape functions. The

isoparametric concept is employed (see Zienkiewicz [10]). This results

in three degrees-of-'reedom -- one displacement and two rotations -- at each

of the corners.

For very thick plates two-by-Mo Gaussian quad.'iture leads to

acceptable results, however, for thin plates it causes 'locking' as

indic,.ted for the beam in the previous section. In this case we use

two-by-two Gaussian quadrature on the bending energy term and one-point

,aussiar, quadrature on the shear energy term. This results in one con-

straint per element. Ini large meshes there are approximately three

equations per element, thus there is no danger of the mesn -6cving'.
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As is apparant, che proposed element is extremely simple, and easily and

concisely coded. We are certain that the element routines are faster

than any other plate bending element yet proposed. In the next section

we will show that the element is also surprisingly acrurate.

2Ii ,
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4. !Iumerical Examples: Thin Plates

In this section we present several numerical examples which have

become more or less standard ones for evaluating plate elements. All

computations were performed on a CDC 6400 computer in single precision.

(A single precision word consists of 63 bits on the CDC 6400.)

Square Plate

The data for this example consists of the following (see Fig. IV-2):

E = 10.92 x 105

.3

t = .1

L = 10

Both simply supported and clamped boundary conditions were considered as

well as concentrated and uniformly distributed loadings. Results are

presented in Tables IV-3 and IV-4 for K values of 1000 and 5/6. The

former value is set to artificially maintain the Poisson-Kirchhoff con-

straint. Due to the fact that the plate is rather thin (L/t = 100),

there is little difference in the results for the two values of ., In

fact, the bending moments are identical. In practical situations there

seems no point in exceeding the 'natural' value of 5/6.

Moment and shear resultants, and displacements are plotted ,n Fig.

IV-3 along the line xI = 0, for the clamped, concentrated load case in

.jhich v 5/6. Along xI = D arid x2 = 0. the xI and x2 components of the
moment are equal, as are th, and v'-'-r---t-*- ' " '-

The simply supported concentrated load case has, it seems, taken

on the role of the preeminent comparison problem for bending elements.

:n Fig "V-4 the present element, with r 1000, is compared with data

tdken from Gallaqher r-. The good corvergence of the element is evident.
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Clamped Circular Plate

The data for this example is the same as for the previous problem

except (see Fig. IV-5):

I R =5

t = .1

Zesults are presented in Table IV-5 for concentrated and uniform loadings,

and < values of 1000 and 5/6.

Again, due to the thinness of the plate, there is little difference

in the displacement results for the two values of K, and the moment results

are identical.
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Table IV-3. Normalized center displacement
dnd bending moment for a simply
supported square plate.

Number of Displacement-- Displacement-- Moment--

elements Concentrated load Uniform load Uniform load

4 .9922 .9770 .351

16 .9948 .9947 .963

64 .9982 .9987 .991

(a) = 1000

Number of Displacement-- I Displacement-- fMoment--

element Concentrated load Uniform load Uniform load

4 .9957 .9782 851

16 .9991 .9960 .J63

64 1.)034 .9997 • 991

(b) 5/6
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Table IV-4. Normalized center displacement
and bending moment for a clamWed
square plate.

Number of Displacement-- Displacement-- Momnt--

elements Concentrated load Uniform load Uniform load

4 .8652 .9535 .822

16 .9650 .98,10 .955

24 .9920 .9937 .986

(a) 1000

Number of Displacement-- Displacement-- Moment--
elements Concentrated load Uniform load Uniform load

4 .8720 .9575 .822

16 .9748 .9890 .955

64 1.0034 .9976 .986

(b) =5/6

3

2 1
3
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Table IV-5. Normalized center displacement
and bending moment for a clamped
circular plate.

Number of Displacement-- Displacement-- Moment--
Jlements Concentrated load Uniform load Uniform load

3 .9197 .8587 .827

12 .9579 .9535 .957

48 I .9883 .9888 .990

(a) = 1000

Nuner of Displacement-- Displacement-- Moment--
elements Concentrated load Uniform load Uniform load

3 .9267 .8621 .327

12 .9674 •J570 .957

48 1.0005 .9925 .990

(b) . 5/6

I
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5. Numerical Sensitivity due to Extreme Thinness

The results of the previous section indicate that despite the

simplicity of the present element it is quite accurate. However, one

precaution must be taken when employing elements derive' from the reduced

integration concept. This admonition stems from the observation that

the shear stiffness is 0((h/t)2) times the bending stiffness. (In the

case of a quadrilateral bending element h may be taken to be the length

of the longest side.) For fixed h, as t - 0, it is only a matter of time

before the effect of the bending stiffness vanishes completely due to the

finite computer word length. Results of this kind can be seen for the

beam element in Fig. IV-6 and for the plate element in Fig. IV-7. The

plateaus represent the appropriate solutions for the meshes in question

in the 'thin' limit. Deterioration of the numerical solution begins to

occur at L/t = l04 in the case of the beam, and L/t = l05 for the plate;

this corresponds to element aspect ratios (i.e., h/t) of 10 4/16 and

105/8, respectively. It is unlikely that aspect ratios larger than

these values will be met in practice. However, on computers with shorter

single precision word length,deterioration will commence at smaller

aspect ratios. Here it is important to employ a strategy which circum-

vents these difficulties. This can be done as follows: Determine the

maximum element aspect ratio for which good results are obtained by

plotting graphs similar to Figs. IV-6 and IV-7. Before combining the

shear and bending contributions of the element stiffness test the aspect
,34,40. TIC 44-. OU l fr "- , ^S, r1Ce, . ,U fC ..... 9CA

combine in the usual way. Othergise, multiply the shear stiffness by

(t/h) 2 times the square of the maximum element aspect ratio allowed,

then con tine. This will reduce the disparity between the bending and
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shear term to an acceptable level, yet maintain thin element behavior.

Numerical results illustrating these ideas are depicted in Figs. IV-6

and IV-7. The maximum allowable aspect ratios were determined to be

104/16 for the beam element and 105/8 for the plate element, from Figs.

IV-6 and IV-7, respectively. Employing these values in the procedure

described above enables the plateaus to be extended to the higher aspect

ratios, as illustrated in Figs. IV-6 and IV-1. This process enables the

reduced integration procedure to be applied successfully in cases

involving arbitrarily large aspect ratios.

Of course, another way to avoid difficulties is to work in double

precision on short word computers.
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6. Application to Thick Plates

One-point Gaussian quadrature on the shear term has a decidedly

beneficial effect in application to thin plates. However, the opposite

is true for very thick plates. The difficulties do not always manifest

themselves. For example, results for the uniformly loaded clamped

circular plate are acceptable (see Fig. IV-8; q refers to the magnitude

of the load). For t/R = .4 the results are of about the same level of

accuracy as those in [27], where a higher-order element is employed.

On the other hand, results for the same plate subjected to a concentrated

load tend to oscillate about the exact solution (see Fig. IV-9). This

problem is a trying one as the exact Reissner's theory solution consists

of an infinite displacement under the load, viz.

PR2  r~ 2
W =( 1 - r2) - 2  1R 80 lnRw =  L R2  2 r KGtR2

bending shear

PR_ r Ri
4irD I 1lnr;

where P is the concentrated force and D is the bending rigidity.

As the plate thickness is reduced the oscillations are lessened (see

Figs. IV-lO to IV-15). From these results we conclude that when the

t/h ratio exceeds unity, the one-point Gaussian quadrature of the shear

term should be abandoned in favor of the following scheme: Two-by-two

dusidn quadrature shouId De used on the tawixl1 - and kawfax 2 )

contributions to the shear enerqy. The remaining terms in the shear

energy should be inteqrated as usual by one-point Gaussian quadrature.

We refer to this element as the 'ridified' one-point shear element.
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A spectral analysis of the element stiffness, when one-point

Gaussian quadrature is employed on the shear term, reveals that there

are five zero eigenvalues -- two more than the usual three rigid body

modes. Thus the eiement by itself is rank deficient, but this only

manifests itself in problems for very thick plates and here only in

certain cases. The two additional zero-2nergy modes are illustrated

in Fig. IV-16. The first mode consists of 01 = 02 = 0 and an 'hourglass'

pattern for w (see [38]). Modifying the one-point shear integration as

indicated above removes the hourglass mode and leads to good results for

very thick plates as evidenced by Figs. IV-9 and IV-l0. The second mode

consists of w = 0 and an in-plane twisting of the plate. In a mesh in

which the rigid body modes are removed, this pattern cannot persist and

thus causes no further rank deficiency.

* I

II
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7. Conclusions

We have presented an element for the bending of thin and moderately

thick plates which involves minimal programming, is highly efficient and

competitively accurate. Due to these attributes the element offers an

attractive basis for nonlinear developments. Numerical sensitivity in

applications involving extremely thin elements has been shown to be

avoidable by employing a simple computational strategy. Very thick

plates may be successfully analyzed by a slight modification to the

element.

-1
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