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I.  INTRODUCTION 

Lowell Bruce Anderson and Jerome Bracken 

The purpose of this paper is to discuss some aspects of the 

use of MaxMin and MinMax strategies in the analysis of multi- 

stage games.  This discussion is motivated by the development of 

the ACDA Tactical Air Campaign Model (ATACM), which is documented 

in References [9] and [10].  ATACM proposes the use of approxi- 

mate MaxMin and MinMax strategies instead of optimal mixed 

(equilibrium) strategies.  Chapter II, below, gives a critique 

of the MaxMin, MinMax approach as implemented in ATACM.  Chapter 

III treats several computational aspects of true MaxMin and Min- 

Max strategies; and Chapter IV gives a result concerning MaxMin 

and MinMax values in adaptive and nonadaptive games.  A more 

detailed summary of these chapters follows. 

Chapter II is a rather comprehensive critique of ATACM. 

The principal criticisms go to the heart of the MaxMin, MinMax 

approach as it is implemented in ATACM.  First, if one player 

plays a conservative strategy, the other player upon observing 

this can drive the outcome down towards the payoff corresponding 

to that conservative strategy.  Optimal mixed strategies, on the 

other hand, yield expected results that cannot be driven down 

towards a conservative payoff.  Second, conservative strategies 

may give results that are insensitive to important force struc- 

ture changes, while optimal mixed strategies could properly 

reflect the importance of these changes.  And third, if the 

game being modeled is inherently stochastic (which air combat 

is), then MaxMin and MinMax strategies also yield only expected 

results, not guaranteed bounds as claimed in ATACM.  Two other 



aspects of ATACM are also criticized:  (1) the ATACM approxima- 

tion procedure, and (2) the ATACM assessment procedure.  Finally, 

some suggestions for improvement are made.1 

If the optimal mixed strategies and game value were known, 

then knowing the true MaxMin and MinMax strategies could be use- 

ful additional information.  The OPTSA models (References [3], 

[4], and [5]) calculate the optimal strategies and game values 

for the games they address; but, as currently programmed, they 

cannot calculate the MaxMin or MinMax strategies.  Chapter III 

treats several aspects of the computation of MaxMin and MinMax 

strategies in multi-stage games.  A new method for finding Max- 

Min and MinMax strategies for one-stage games is proposed.  Com- 

putation of exact MaxMin and MinMax strategies for multi-stage 

games is discussed, and computation times are estimated. 

MaxMin and MinMax strategies can be considered for several 

types of games, two of which are:  (a) nonadaptive games, and 

(b) behavioral games, which in Reference [13] are shown to be 

equivalent to adaptive games.  The relationship between the Max- 

Min and MinMax strategies of an adaptive game and the MaxMin and 

MinMax strategies of the corresponding nonadaptive game is dis- 

cussed in Chapter IV. 

*It is appropriate to remark that ATACM shares with DYGAM (References [6] 
and [7]) the characteristic that the stated problem can be solved rigor- 
ously except for approximation error. Counterexamples for other models 
not having this guaranteed optimization philosophy are provided in 
References [8] and [11]. 



II.  A CRITIQUE OF ATACM 

Lowell Bruce Anderson 

The ACDA Tactical Air Campaign Model (ATACM) is described 

in References [9] and [10].  Reference [9] claims that the 

specific features of ATACM are that ATACM permits 

(1) as many as four user-defined aircraft types per 
side and as many as eight different missions per 
aircraft type; 

(2) automatic generation of approximate, optimal 
enforceable aircraft allocation strategies as 
a function of stage for any subset of the missions 
for which user-specified fractions are not supplied; 

(3) calculation of firm upper and lower bounds on the 
objective function value associated with the en- 
forceable strategies employed; 

(*0 the option to use a weighted sum of three different 
objective functions as the criterion for generating 
the optimal strategies; 

(5) the option to individually weight the Blue and Red 
contributions to these objective functions as a 
function of stage; and 

(6) the option to specify fractional or numerical 
reinforcements for any aircraft type as a func- 
tion of stage. 

If the procedures used in ATACM provide useful information, 

then feature (1) above would be very significant and important, 

and would make ATACM the premier model in its field.  On the 

other hand, feature (1) is largely irrelevant if ATACM does 

not provide useful information.  Whether ATACM provides use- 

ful information or not depends on what one means by useful 

information, which in turn largely depends on the definitions 

and interpretations associated with features (2) and (3), and 



on the  acceptability  of the  assessment  methodology.     In  this 

paper,  we  concentrate  on the  definitions  and assumptions 

associated with features   (2)   and   (3)   because  the  assessment 
methodology of ATACM could be  changed  if warranted.1 

The  key terms  in  feature   (2)   are   "approximate,   optimal, 

enforceable   ...   strategies."     These  terms  are not  directly 

defined  in Reference   [9].     However,   it   is  clear  from the  de- 

tails  of References   [9]  and  [10]  that  by  "optimal  enforceable 
strategies,"  the developers  of ATACM mean MaxMin and MinMax 
strategies.     This distinction is  important  because the  stan- 
dard  definition  of  "optimal  strategies"  for a two-person  zero- 
sum game   (like  the  game  in ATACM)   is that  optimal  strategies 

are  the   (possibly mixed)   equilibrium strategies.2     Thus,  the 

claim of  feature   (2)   is,   at  best,  misleading.     Properly phrased, 

feature   (2)   should be  stated  as: 

(2!)  ATACM generates  strategies that  are,   in  some 
sense,  approximations  to the MaxMin and MinMax 
strategies  of the  game  played  in  ATACM. 

This  revised  statement   of feature   (2)  raises  two  questions: 
How worthwhile  is  it  to  generate  MaxMin  and MinMax  strategies 
in  lieu of optimal   (equilibrium)   strategies,   which ATACM 
cannot   generate?     How  good  are  ATACM1s  approximations  to  the 

MaxMin and MinMax  strategies?    The  second question  is  related 

to  feature   (3),  which claims  that  ATACM calculates  firm upper 

and  lower bounds on   (properly phrased)   the payoffs produced 

by the MaxMin and MinMax  strategies.     By   "firm bounds"  the 
developers  of ATACM apparently mean true  bounds,  not  tight 

*A few specific changes to the assessment methodology will be suggested below. 
Of course, a sufficient amount of changes in the assessment methodology 
could increase the computer running time to the point where it is no longer 
practical to use ATACM.    Thus, the blanket statement above that "the assess- 
ment methodology could be changed" is, in general, an oversimplification. 

2Accordingly, throughout this chapter we will use the term "optimal strate- 
gies" to mean the (possibly mixed) equilibrium strategies. 



bounds.  But it is trivial to calculate true bounds if one does 

not care how tight these bounds are, and true but very loose 

bounds can be quite useless. 

In Section A we will discuss the limitations of consider- 

ing only MaxMin and MinMax strategies, as is done in ATACM.  In 

Section B we will discuss the approximation procedures used in 

ATACM.  In Section C we will discuss some limitations of the 

assessment procedure used in ATACM.  Finally, in Section D we 

will make a suggestion that might make ATACM a more useful 

model, provided that this suggestion can be implemented without 

greatly increasing the computer running time. 

A.   SOME ADVANTAGES AND LIMITATIONS OF MAXMIN AND MINMAX 

MaxMin, MinMax, and optimal (equilibrium) strategies are 

equivalent for any two-person, zero-sum game with a saddle- 

point.  So for this section (only) suppose that the game under 

consideration does not have a saddlepoint. 

1.  A Discussion of the Claimed Advantages of MaxMin and MinMax 

Two advantages of considering MaxMin and MinMax strategies, 

as opposed to optimal mixed strategies, are claimed in Reference 

[10].  These two advantages are summarized as follows:  (1) Max- 

Min and MinMax strategies are pure strategies, and many military 

commanders might abhor the concept of randomization to decide 

each day!s aircraft assignment.  (2) The "game" of a war in 

Europe will be "played" once at most.  Optimal mixed strategies 

guarantee to each side only that the side's expected payoff will 

not be less than a specific amount (the value of the game).  The 

actual payoff to either side is a random variable which may be 

above or below the expected payoff.  On the other hand, conser- 

vative play (MaxMin or MinMax, as appropriate) will guarantee 

to each side an actual payoff that is greater than or equal to 

the worst the side could receive with optimal mixed strategies 



although not as good as the expected payoff from optimal mixed 

strategies. 

We believe that these claimed advantages are not as great 

as they first might appear.  First, while commanders might not 

flip a coin to decide how to allocate their aircraft, they would 

attempt to avoid making decisions in a completely predictable 

manner.  Indeed, they would attempt to exploit an enemy's pre- 

dictability and they might even attempt to set up and fake out 

an enemy.l     Playing optimal mixed strategies is not a perfect 

way to model each side's attempt to exploit his enemy's predic- 

tability and surprise him when appropriate.  However, playing 

mixed strategies seems to us to be a better way to reflect these 

characteristics of war rather than playing that each side uses 

his conservative pure strategy throughout the war.  Thus, if 

there is a significant difference between the MaxMin value and 

the MinMax value (so that there is much to be gained by sur- 

prise), playing optimal mixed strategies may well be more 

realistic, not less realistic, than playing conservative MaxMin 

and MinMax strategies. 

The second argument above, that MaxMin and MinMax strate- 

gies are more appropriate than optimal mixed strategies for a 

game (or war) that will be played (or fought) only once, is a 

long-standing point of discussion in game theory.  If the pay- 

offs to each player satisfy typical axioms for utilities (such 

as in von Neumann and Morgenstern, Reference [18], or as in 

Luce and Raiffa, Reference [15])* then the situation is clear: 

optimal mixed strategies are more appropriate than MaxMin and 

MinMax strategies.  For example, if the payoffs in the example 

of Reference [10] are in terms of utilities to Blue, then Blue 

is indifferent between an expected payoff of 3. ** and a certain 

payoff of 3.1*, and he prefers either to a certain payoff of 2.0. 

1"Surprise" is a principle of wary  "conservative play" is not. 

6 



The problem is that it is relatively much easier to model a 

physical occurrence such as Blue minus Red firepower delivered, 

than it is to determine BlueTs and Red's utilities for deliver- 

ing firepower. 

What one should do if it is not known whether the payoffs 

satisfy the axiomatic conditions of utilities is not clear, and 

we will certainly not resolve that issue here.  But there is an 

intuitive belief that if a game is played many times and no one 

play of the game strongly affects the end result, then the con- 

ditions of utility are "approximately satisfied" and the 

expected payoff is a reasonable measure.  (The developers of 

ATACM agree with this intuition in Reference [10].)  On the 

other hand, if the game is played only once and there are signi- 

ficant differences in possible outcomes, then the conditions of 

utility might not be satisfied.1 

While the war will be fought (at most) once, aircraft allo- 

cation decisions will not be made only once.  A commander could 

decide to re-allocate his aircraft for each raid on each day of 

the war, and he could make one allocation in one part of the 

theater and another in another part.  For example, a 30-day 

war with three raids per day into two areas of the theater 

could result in 180 allocations.  Thus, as in many plays of one 

game, the commander has many distinct allocation decisions.  So 

in this sense, the sequential game of aircraft allocation is 

intuitively similar to many plays of one game and expected pay- 

off would be the preferred measure.  On the other hand, it is 

possible that an "unlucky" decision on the first raid of the 

first day could have a dominant impact on the rest of the war, 

*It should be noted that this structure is intuitive, not formal, because 
a game played many times can be thought of as one large game with many 
sub-games inside of it, and the large game is then played only once. 
But given this intuitive structure (as opposed to a formal structure), 
one can ask how the sequential game of aircraft allocations fits into 
the intuition. 



no matter what decisions are made for the rest of the war.  To 

the extent that this dominance can occur, a sequential game is 

intuitively similar to one play of one game.  Considering only 

this argument, expected payoff may not be clearly preferred 

over MaxMin and MinMax as a measure of effectiveness, but it 

is not clearly inferior either.  Accordingly, the validity of 

the second claimed advantage of MaxMin and MinMax over optimal 

mixed strategies is also In doubt. 

Another facet of the second claimed advantage of the Max- 

Min, MinMax approach is that, while the assessment portion of 

ATACM is deterministic, actual combat is not deterministic. 

Thus, even if the entries in the payoff matrix are truly the 

expected outcomes of an air war, the MaxMin of these entries 

is the MaxMin of expected results, and the MinMax is the Min- 

Max of expected results.  Accordingly, whether a commander 

plays a MaxMin strategy or a mixed strategy, all he can count 

on is an expected result of non-deterministic combat, not a 

certainty.  Either way, to quote from Reference [10], "...the 

outcome is enforceable by the two sides only in an expected 

value sense," and so this claimed advantage of MaxMin and Min- 

Max over optimal mixed strategies is really no advantage at all. 

2.   Some Limitations of MaxMin and MinMax 

The discussion above attempts to counter the two claimed 

advantages for considering MaxMin and MinMax strategies in 

lieu of optimal mixed strategies.  Combining these counter 

arguments gives a major limitation of using MaxMin and MinMax 

strategies: A   side  will   try   to   exploit   its   enemy 's  predicta- 
bility   if it   has   the   opportunity  and  there   is   a  payoff from 
doing  so.     If one side sticks to its conservative play MaxMin 

strategies, then the other side could observe this over the 

course of the war and allocate its aircraft specifically against 

that MaxMin strategy (instead of using its own MinMax strategy). 

8 



This would push the payoff to the MaxMin side down toward the 

MaxMin value. 

The hypothetical example of Reference [10] is given below: 

.8 CAS 

Red 

ABA INT .2 

Blue 

CAS 

ABA 

INT 

l\ 1 6 

3 5 2 

2 0 !■ 

.6 
0 

n 1 6 

3 5 2 

2 0 2 

1 

2 

0 

j    5    6 

MaxMin = 2, MinMax = H, expected value = 3.M 

If Blue plays his MaxMin strategy (ABA) on each day of the war, 

then Red can observe this and fly INT instead of CAS.  This 

strategy may push the payoff to Blue towards 2.0.  If so, Blue 

will have to either accept a payoff nearer 2.0 or fly CAS 

instead.  How close the payoff is to 2.0 depends on when Red 

starts flying INT and on the details of the assessment proce- 

dure.  But it is not at all clear that Red would see Blue fly- 

ing ABA each day and yet never fly INT.  And it is not at all 

clear that if Red started flying INT, Blue would still continue 

to fly ABA (in the example game). 

In summary, given that each side must make a decision day 

after day, it is not reasonable that one side would see the 

other play its conservative strategy and not adjust its own 

strategy accordingly to drive the payoff toward the MaxMin (or 

MinMax) value.  Playing mixed strategies may be a reasonable 

way to model the case where both sides continually adjust their 

strategies to anticipate the moves of the other. 

A second limitation of considering MaxMin and MinMax stra- 

tegies is that, since these are pure strategies, they may be 

insensitive to important force structure changes.  For example, 



suppose that two force structures are under consideration and 

for both force structures the Blue MaxMin strategy is to fly 

all ABA while the optimal mixed strategy is to fly both CAS 

and ABA.  Suppose further that the second force structure 

results in a slightly lower payoff from flying ABA but a much 

greater payoff from flying CAS.  Then the MaxMin structure 

would prefer the first force structure over the second.  A 

numerical example, following Reference [10], is as follows: 

BLUE FORCE STRUCTURE NO. 1 

CAS    ABA    INT 

Blue 

CAS 

ABA 

INT 

4 1 6 

3 5 2 

2 0 2 

1 

2 

0 

MaxMin = 2, MinMax = 4, MaxMin vs. MinMax Payoff 

Optimal mixed payoff = 3.4 
= 3 

Blue 

BLUE FORCE STRUCTURE NO. 2 

CAS    ABA    INT 

CAS 

ABA 

INT 

400 0 600 1 
2 500 1 

1 0 1 

400 500 600 

0 

1 

0 

MaxMin = 1, MinMax = 400, MaxMin vs. MinMax Payoff = 2 

Optimal mixed payoff > 200 

In the above example, force structure 1 has both a better MaxMin 

and a better MaxMin versus MinMax payoff to Blue than force 

structure 2 does, yet force structure 2 would appear to be much 

better for Blue. 

10 



The numerics of the above example are not important.  What 

is important is that a MaxMin, MinMax approach can overlook the 

capability of general purpose aircraft to fly any one of several 

missions without the enemy knowing in advance which mission will 

be flown.  Accordingly, the MaxMin, MinMax approach can give an 

unrealistic advantage to a special purpose aircraft that might 

be only slightly better on one mission and much worse on all 

other missions than an alternative general purpose aircraft.  It 

may even be possible that if a special purpose aircraft is bought 

by the MaxMin side in place of a general purpose aircraft, then 

that side's enemy might more easily force the outcome of the war 

down towards the MaxMin value. 

Finally, there is the problem of how one uses the MaxMin 

and MinMax strategies and values.  If an analyst is comparing 

two force structures, he might prefer a force with much higher 

MaxMin value and a slightly lower game value when compared with 

an alternative force.  However, ATACM does not permit such a 

comparison because it cannot compute the optimal (mixed) stra- 

tegies or the game value.  Instead, the developers of ATACM 

seem to suggest considering the value procedure by playing the 

MaxMin strategy versus the MinMax strategy (conservative play 

on both sides).  But this "conservative play payoff" does not 

depend on any of the possible payoffs of the game (except for 

itself), other than that it must be above the MaxMin payoff 

and below the MinMax payoff.  That is, changing one entry in the 

(complete) game payoff matrix can make this payoff as high as 

the MinMax or as low as the MaxMin.  It seems to us that this 

"conservative play payoff" is an arbitrary number and the only 

justification for considering this payoff as a measure is the 

one implied by the developers of ATACM:  that the two commanders 

would actually use MaxMin and MinMax strategies.  We believe 

this to be a weak argument for the reasons given above. 

11 



B.   LIMITATIONS OF THE ATACM APPROXIMATION PROCESS 

ATACM makes two approximations in calculating the MaxMin 

and MinMax values, and it gives the strategies that produce 

these approximations.  Three points concerning these approxi- 

mations are important. 

First, these two approximations are made whether or not 

the game has a saddlepoint (and so the discussion below applies 

whether or not the game has a saddlepoint). 

Second, the approximate values are not necessarily close 

to the true MaxMin or MinMax values.  Let m and M denote the 

true MaxMin and MinMax values, respectively, of the game; and 

let m and M denote the ATACM approximations to these values. 

It is true that 

in < m < M <_ M . 

Thus, if m is close (in some sense) to M, then not only are the 

approximations of m to m and M to M good, but m and M are close 

to each other and so are necessarily close to the game value 

(produced by the optimal, possibly mixed, strategies) which 

lies between them.  Thus if, for a particular case, m is close 

to M, then all the arguments (pro and con) dealing with MaxMin 

and MinMax in Section A are irrelevant, and ATACM produces use- 

ful information for that case.  However, if m is not close to M, 

then ATACM cannot indicate the relative closeness of m, m, M, 

and M.  It may be that in is close to m and M is close to M, but 

m is not close to M; or it may be that m = M and the approxima- 

tions are terrible; or it may be that none of the quantities 

are close to any other. 

Third, the strategies produced by ATACM are not the MaxMin 

and MinMax strategies.  The strategies produced are those used 

to obtain m and M.  In general, the relationship between those 

strategies and the true MaxMin and MinMax strategies is not 

12 



clear.  Thus, when m is not close to M, m may not be close to 

m, and the ATACM "approximate MaxMin" strategy may not be simi- 

lar to the true MaxMin strategy (the same holds for the MinMax 

strategies). 

The two approximations made in ATACM are discussed on 

pages 30 through 3^ of Reference [9].  We have no rigorous 

basis for commenting on the first approximation, using linear 

interpolation to generate a first pass approximated strategy, 

but intuitively this seems like a reasonable approximation. 

However, as Reference [9] states, a second approximation is 

required to obtain the strategies that yield m and M.  This 

second approximation is where significant inaccuracies can 

occur. 

If Blue is the MaxMin player, the second approximation 

requires, for the computation of the "approximate MaxMin" 

strategy, that at several stages Blue resources be rounded 

down to the nearest grid points and that Red!s resources be 

rounded up to the nearest grid points.  (The grid points form 

a grid over Blue and Red inventories, and the location of the 

grid points are input to ATACM.)  In the example given in 

Appendix A of Reference [9], Blue has two types of aircraft, 

Red has one type; the grid points are at 0, 333, 667, and 1000 

for Blue plane type 1 and at 0, 200, and 400 for Blue plane 

type 2—Red?s grid points are at 0, 400, 800, and 1200 for its 

plane type 1.  Thus, in the extreme case, if ATACM were com- 

puting the MinMax value and Blue had 332 aircraft of type 1 

and 199 aircraft of type 2 while Red had 401 aircraft of 

type 1, ATACM would round this to no Blue aircraft of either 

type and to 800 Red aircraft.  We suspect that this type of 

approximation would generally lead to very poor bounds.  In 

Section D we suggest an improvement to this type of approxi- 

mation. 

Results of three ATACM runs are given on pages A-33 through 

A-41 of Appendix A, Reference [9].  Our interpretation of these 

13 



runs may be in error, but it appears as if the three runs were 

made with the same inputs except for the initial number of Blue 

and Red aircraft.  The measure of effectiveness used is cumula- 

tive Blue air plus ground firepower minus cumulative Red air 

plus ground firepower for a two-day (stage) war.1  The results 

are: 

Red MinMax minus Blue MaxMin 

Trial  (M - m)  

1 20,250 

2 11,042 

3 16,072 

The units  of M and m are  important,   and they appear to be 

closer to tons  rather than  ounces  of  firepower.     For  example, 

in  the ATACM data the aircraft  of type  1  deliver 2  units  of 

CAS  firepower per  sortie  and  they have  a  sortie rate  of 2.0 

on  CAS mission.     Thus  it  would take  over  2,531 Blue  aircraft 
of type  1 to deliver  20,250 units  of  firepower  in two days, 

assuming no  attrition whatsoever.      (But   for Trial  1,   there are 
only  400  Blue  aircraft  of type   1   in the  theater  on  day   1,   with 
100  replacements  on day  2,   and  Blue  aircraft   of  type  2  cannot 
deliver  CAS  firepower.)     Similarly,   it  would  take  over  1,687 
Red  aircraft  to deliver 20,250  units  of  firepower  in two  days 

with the data  in ATACM,   assuming no attrition.     (But  for 

Trial  1,  there  are  only  500 Red  aircraft   in the  theater on 

day  1 with 200 replacements  on day  2.)2 

Based  on the  arguments  above,   we  believe  that  M  - m  is 
a reasonable measure  of whether  or not  ATACM produces  useful 

blue's air plus ground firepower is weighted by 1/2 on day 1 and the value 
of residual Blue and Red aircraft of type 1 is 8 units of firepower (Blue 
aircraft of type 2 have no residual value). 

2With bounds this wide, it seems to us that no meaning whatsoever can be 
attached to the value produced by the "approximate MaxMin" strategy 
versus the "approximate MinMax" strategy. 
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information.  Clearly the value of M - in depends on the data 

used as well as on the model, but for the sample data given 

in Appendix A of Reference [9] it appears that ATACM does not 

produce useful information. 

C.   LIMITATIONS OF THE ATACM ASSESSMENT PROCESS 

It should be noted that developers of ATACM did not intend 

to make major contributions to the (assessment) modeling of air 

combat.  For example, page 12 of Reference [9] states:  "In con- 

sideration of these limitations, ATACM is purposely structured 

so that other, alternative assessment methodologies can be im- 

plemented with minimal programming effort."  ATACM uses features 

from other models in order to build an assessment methodology 

on which the optimization methodology could operate.  Accord- 

ingly» there are no significant new features in the assessment 

methodology of ATACM.  As mentioned in our introduction, we have 

not thoroughly reviewed the assessment methodology of ATACM, and 

so the limitations and suggestions for improvement given below 

are not necessarily complete; however, they should be relatively 

easy to implement in the ATACM computer program. 

1.   Engagements 

It may be that no one ordered set of engagements for air 

combat is absolutely correct, and it may be that several differ- 

ent orderings of different engagements are reasonably acceptable. 

However, the particular set of engagements played in ATACM has 

three logical deficiencies which might render it unreasonable. 

These deficiencies are that— 

(1) Air Base Defense (ABD) aircraft cannot engage enemy 
Rear (i.e., air base) SAM Suppressor (RSS) aircraft, 
and Battlefield Defense (BD) aircraft cannot engage 
either enemy RSS aircraft or enemy Forward (i.e., 
battlefield) SAM Suppressor (FSS) aircraft.  ABD 
aircraft should be able to engage enemy RSS aircraft 
and BD aircraft should be able to engage both enemy 
RSS and enemy FSS aircraft. 
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(2) BD aircraft cannot engage enemy ABA aircraft.  Perhaps 
there is some way for ABA aircraft to reach enemy 
air bases by not going over the FEBA; but this should 
be an option instead of a fixed rule in the model, and 
if the ABA aircraft are not vulnerable to enemy BD air- 
craft, then it is hard to see why ATACM assumes they 
are vulnerable to enemy forward (battlefield) SAMs. 
BD aircraft should be able to engage enemy ABA air- 
craft, and likewise ABAE (ABA Escort) aircraft should 
be able to engage enemy BD aircraft. 

(3) In ATACM, Blue forward SAMs shoot at Red CAS aircraft, 
then Blue BD aircraft shoot at Red CAS aircraft, then 
Red CAS aircraft deliver ordnance on ground units. 
But if the Blue forward SAMs are near (or behind) the 
ground units they are protecting, it is hard to see 
how air-to-air engagements between CAS and BD aircraft 
could occur between the time that the SAMs shoot at 
the CAS aircraft and the time that the CAS aircraft 
shoot back at the units the SAMs are defending.  This 
order and the corresponding order for ABA and ABD 
aircraft and rear SAMs should be changed. 

2.  Attrition Equations 

Our main comment on the equations in ATACM is that these 

equations have been pieced together out of various other air 

combat models and no justification is given in Reference [9] 

as to why these equations, and not others, were selected for 

use in ATACM.  Page 16 of Reference [10] gives one sentence of 

justification, namely:  "Initially we propose using the more 

detailed VECTOR equations for most interactions to be modeled." 

But it is not clear in Reference [10] what is meant by "detail," 

why detail is desired, which equations the VECTOR equations are 

more detailed than, which interactions the VECTOR equations 

should not be used for, and what equations should be used for 

these other interactions.  We believe that the key word in the 

above sentence from Reference [10] is "Initially."  We recom- 

mend to a potential user of ATACM that he not accept the equa- 

tions initially used in ATACM (we believe they have several 

important limitations), and that he select, from the various 

types of attrition equations that are available, those which 
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he feels are most appropriate for the interactions modeled in 

ATACM.  Various suitable attrition equations can be found in 

References [1], [2], [3], [12], and [14].  Section (2) of 

Reference [1] gives a reasonable menu of homogeneous attrition 

equations suitable for modeling air combat.  The other refer- 

ences provide details (such as how to handle heterogeneous 

forces) on these equations. 

Finally, we note that (a) the method for considering 

sortie rates described on page 17 of Reference [4] will not 

work if the sortie rates are less than 1.0 (and it is only an 

approximation if the sortie rates are greater than 1.0) (see 

Reference [3] for details); (b) aircraft in ATACM are sheltered 

proportionally, not by priority; (c) ABA aircraft in ATACM know 

which shelters are empty and they attack only full shelters 

(however, aircraft in the open are apparently not attacked 

preferentially over aircraft in shelters); and (d) ATACM does 

not play Quick Reaction Alert aircraft. 

D.   A SUGGESTION FOR IMPROVING ATACM 

If the assessment methodology were sufficiently improved, 

we would have only one criticism of ATACM; namely, the MaxMin, 

MinMax methodology of ATACM is meaningless if M - m is large. 

And M - m must necessarily be large for those sets of input data 

for which the difference between the true MinMax and true MaxMin 

values (M-m) is large (i.e., the games being played do not have 

saddlepoints, and are not close to having saddlepoints).  For 

these sets of data, we believe that the MaxMin, MinMax approach 

of ATACM should not be used.  Either a more aggregated model 

such as OPTSA (Reference [3]) is required, or the grid points 

should be used to develop approximate optimal strategies in a 

manner similar to that described in Reference [7]. 

Since it is generally not known in advance whether or not 

M - m is small, we recommend either using OPTSA or implementing 
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concepts  similar to  those described  in Reference   [7]  over 

improving the  MaxMin,   MinMax  approach  in  ATACM.l     However, 

if  for  a particular  set  of  input  data M  - m were  small,   then 
ATACM would be  a worthwhile model  to determine  optimal  strate- 
gies   (for these data)  provided that— 

(1) M - in were   shown  to  be  small,   and 
(2) the  computer  running time  of ATACM were  not   excessive. 

But,   we  believe  that  even  if M = m,  M - m will  not  usually  be 
small  if the rounding procedure described here   (and  on page  32 

of Reference   [9])   is  used. 

Using the notation defined  in Reference   [9l,2   as  well as 
new notation defined below,   we  suggest  the  following alterna- 

tive  to ATACM's  rounding procedure.     The  rounding procedure 

is  used  in ATACM to  compute  a bound  on *??     AZ..^x
t^• 

TP       (Z   .(X   ))   could not  be  computed  directly  because  Z..(Xt) 
is  not   in  general  a grid  point.     So  Z..(X   )   is  rounded  to 
nearest   "lower right"  grid point,  denoted by  Z..(X   ),   and 

TPt+1(Zi   (X   ))   is  used   in  place  of TP
t+l(

z
i1(

x
t))•     We  recom- 

mend   "rounding  the   strategies"  but  not   "rounding the  resources." 
That  is,   let 

s£(X   )   ■ Red's  one-stage MinMax  strategy  corresponding 
not  to X   ,   but  to  the  grid  point  closest  to X 
(not  necessarily the   "upper  left"  grid point). 

Let  ATACM make  a  "first  pass"  as  described  on pages   30  and   32 
of Reference   [9].     On  the  second pass  compute  TP       (Z     (X   )) 

lfThe description of the DYGAM model in References [6] and [7] emphasizes 
using the grid point approximations to allow many stages to be played. 
We believe that using approximations to allow playing multiple aircraft 
types and multiple missions per aircraft (as claimed in the features of 
ATACM) and playing range-payload tradeoffs are relatively much more 
important for air combat models. 

2Except that we replace the erroneous notation TP(X ) and S(X.) with 
TPt(Xt) and St(Xt), respectively. 
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by having Blue play his first pass strategy (§) and by Red 

playing s£+1(Z±. (Xt)) on period t+1, and playing s£+2(x£+2) 

on period t+2, where 

*t+2 = z§t+i
st+i

(Zij(xt))(ZlJ(Xt)) ' 

and playing sr+o(xf+o) 
on period t+3, where 

X"+3 " ZSt+2s[+2(<+2)
(Xt+2> ■ 

and so on to the end of the war.  That is, for each grid point 

in each period, the war would have to be re-fought forward to 

its end in order to calculate the payoff (in the same manner as 

the war is fought forward to determine the MaxMin versus MinMax 

payoffs as described on page 34 of Reference [9]). 

This suggestion requires three comments.  First, while it 

will not necessarily produce true bounds on the MaxMin and Min- 

Max values of the game described in Reference [9]> it will 

produce true bounds on the game where the commanders are re- 

quired to make the same allocations when between grid points 

as they do on the nearest grid point.  For example, if the grid 

points are 0, 400, 800, and 1200, and a commander has 548 air- 

craft, he thinks:  "548 is about 400, so I'll do what is optimal 

for 400 aircraft" (but the assessments are calculated using 548 

aircraft).  Thus, true bounds would be obtained for a slightly 

revised game. 

Second, this suggestion will not necessarily make M - in 

small, even if M = m, because of the first pass approximation. 

Third, this suggestion may violate condition (2) above, 

i.e., it may make the computer running time of ATACM excessive. 

But it is the only way that we currently see to enable ATACM 

to make M - in small, given that M - m is small. 
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III.  COMPUTATION OF MAXMIN AND MINMAX 
STRATEGIES IN MULTI-STAGE GAMES 

Eleanor L. Schwartz 

This chapter considers multi-stage games, MaxMin and MinMax 

strategies, and computation time.  The OPTSA multi-stage game 

models are documented in detail in References [3] and [4]; the 

reader is assumed to have some familiarity with them.  The frame- 

work is a game with a specified number of decision periods; at 

the beginning of each decision period Blue and Red each (simul- 

taneously) make a decision from an input list of strategies.  A 

stream of such decisions made by both players over the course of 

the game leads to a final payoff.  Methods for finding decisions 

that in some sense optimize the payoff are sought; traditionally, 

an equilibrium point in randomized strategies has been sought. 

The idea of finding MaxMin and MinMax values and strategies as 

enforceable bounds on the final payoff has been proposed and 

implemented in ATACM (Reference [9]). 

At all times the amount of computation needed to process a 

game must be considered.  Models such as DYGAM (References [6] 

and [7]) and ATACM find approximations (that might or might not 

be close) to the randomized strategy equilibrium point and Max- 

Min and MinMax values, respectively, in order to process games 

of more stages than OPTSA can process.  This approximation is 

made possible by computing in the state space of aircraft 

resources, rather than the space of possible decisions. 

Section A derives an efficient way to find MaxMin and Min- 

Max strategies of matrix games, bringing together the game- 

solving method of the Revised OPTSA Model (Reference [3]) with 
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MaxMin and MinMax ideas.  Section B discusses MaxMin and MinMax 

strategies in multi-stage games.  Section C derives computation 

time formulas for finding MaxMin and MinMax strategies for the 

game encountered in the OPTSA models. 

A.   COMPUTATION OF MAXMIN AND MINMAX STRATEGIES AND VALUES 
OF ONE-STAGE GAMES 

The Revised OPTSA Model uses a game-solving algorithm that 

is able to find optimal randomized strategies for one-stage 

matrix games without computing all the payoff entries.  As a 

result the total running time is greatly reduced from previous 

versions.  This method can be adapted to find MaxMin and MinMax 

strategies of a matrix game without computing all the payoff 

entries. 

The problem of finding the optimal randomized Blue strategy 

can be formulated as the linear program 

maximize 0 

m 
s. t. 

a £ I    ax  , 
i=l  1J x 

m 
I     x. = 1 

1-1  1 

j = 1 to n 

x± > 0 1 ■ 1 t'O B , 

(1) 

where a., is the payoff to Blue when Blue chooses pure strategy i 
(1 to m) and Red chooses pure strategy j (1 to n), and x  is the 

probability Blue plays pure strategy i.  In the Revised OPTSA 

Model this LP is solved by considering a subset of the first n 

constraints, solving the relaxed LP, and checking the solution to 

see if any constraints not considered are violated.  If none are, 

the current solution is optimal for the whole game.  Otherwise 

the most violated constraint is added to the constraint set and 

the procedure repeated. 
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The MaxMin problem can be formulated as 

maximize o 

m 
I 

i = l 
s.t.    G <  y  a..x. >    j = i to n 

m (2) 

i = l 

xi = 0 or 1 ,  i = 1 to m. 

The additional constraints that the x. be integer have been added 

to the original LP; therefore the optimal objective function value 

will be lower.  Exactly one x. will equal 1; the corresponding i 

is Blue's MaxMin strategy. 

This integer program can be solved by an algorithm similar 

to the relaxation technique above.  The difference is that in 

problem (1) each relaxed LP was solved by the dual simplex 

method; here a simple comparison test can be used.  The algo- 

rithm is as follows.  Let JQ c {l,...,n} be the set of Red pure 

strategies being considered at the current iteration, iQ the 

current Blue optimal strategy, and oQ the current objective 

function value to the relaxed problem (2).  This solution satis- 

fies the constraints in J , i.e., for j e J , 

m 
0 " i-i   lj i     V io     V 

Since 

m 

for the feasibility test we only need to compute the elements 

{ai0r 
i £ Jö} 
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where 

J^ = {l,...,n} - J0 , 

and compare each element with on-  If 

m 
GA <  y a..x. = a. .x.  = a. j 0 " i«l  1J 1 V 10 ±0i 

for each j z Jly   i.e., the current solution is also feasible 

for the constraints not explicitly considered, problem (2) has 

been solved, as addition of new constraints cannot increase 

the objective function value. 

Suppose there is some j  e J' such that a  > a. . .  Let 1     U U     IQJ -J 
us assume also that 

^O-^J^ - (a0"al0j
) •   J = 1 to n , 

i.e., j  is the constraint most violated by the current solution. 

We can compute the column j. and augment the constraint set by 

letting J = J U {J1>.  We now solve the relaxed problem (2) 

with constraint set J,.  Let us assume that a minimum value, 
0 denoted by m., of each row over the columns of Jn has been kept. 
1 0 

Each element of column j, is tested in turn.  If a. . < m. , 
j. i -i j    l 

1 10 then m. = a. A ; if not, m. = m..  That is, given the minimum of 
l   l^j 11 

each row over the set of columns JQ, we find the minimum of each 

row over the set of columns J,.  The maximum element of this set 

of row minima becomes the new optimal objective function value 

c-., and the row i1 in which it appears becomes the new MaxMin 

strategy.  The feasibility test is then performed again; stopping 

if a and i  are optimal for the whole problem; otherwise the 

procedure is repeated. 

Problem (2) is easier to solve than problem (1) in that no 

simplex pivots are done, merely a comparison test.  However, 

recall that solving problem (1) also found the Red optimal 
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randomized strategy from the dual variables at optimality.  The 

Red MinMax strategy and value cannot be directly found by solv- 

ing problem (2).  A similar but separate problem must be solved, 

By suitable storage of payoff entries, however, duplications in 

payoff computation can be avoided. 

An example of the new method of solving problem (2) will 

clarify things.  This game, where m = 4 and n = 6, was used as 

an example in the Revised OPTSA Model documentation.  There is 

no saddlepoint.  Looking at the whole matrix, the Blue MaxMin 

strategy is B*J, with value H. 

Rl R2 R3 RiJ R5 R6 

Bl 5 8 1 2 4 5 

B2 5 11 3 1 1 7 

B3 3 3 H 6 1 7 

Bi4 6 10 5 k 8 6 

Step la.  Arbitrarily let Rl be the first Red pure strategy to 

be tried, so Jn = {Rl}.  Compute column Rl (elements 

a  to aü1), resulting in the matrix below, where a 

circle around a payoff entry indicates that it has 

been computed. 

Rl R2 R3 Ri4 R5 R6 

Bl (D 8 1 2 4 5 

B2 CD 11 3 1 1 7 

B3 (D 3 J| 6 1 7 

B4 © 10 5 4 8 6 

The minimum row values m. are just the a _, that is, 

5, 5, 3, and 6.  The maximum of these is 6, occurring 

in row BH, so aQ ■ a^., ■ 6 and iQ = 4. 
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Step lb. Perform the feasibility test. We know aQ £ 
a2n' is 

a
0 1 

ah•> 3 = 2 to 6? Compute row B4, yielding the 
matrix below. 

Rl  R2  R3  M       R5  R6 

Bl   ©   8   1   2   4   5 

B2   (5) 11   3   1   1   7 

B3   ©  3   ^ 6   1   7 

B4   ©  10   5 ^   8   6 

Note that entry a^ = 4 < a = 6.  Therefore Red pure 

strategy R4 should also be considered. 

Step 2a.  Let the constraint set J1 = JQ U W) = {R1,R4}. 

Compute column R4 = {a ., i = 1 to 4}, yielding: 

Rl  R2  R3 R4  R5  R6 

Bl (D 8 1  © 4 5 

B2 © 11 3  © 1 7 

B3 CD 3 *  © 1 7 

Bk © © ©  © CD © 
We now compute new row minima m., by taking the 

0 minimum of m and a.j., i =• 1 to 4, as in the 

table below. 

Minimum of Minimum of 
row i over columns row i over columns 

i 
T      0 
J0 = mi ai4 

2 

Ji = mJ 
1 5 2 

2 5 1 1 

3 3 6 3 
4 6 4 k 
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The maximum of the m. is k  in row k.     Thus a. « 4, which is 

less than on = 6, and i , the MaxMin strategy, is 4, which 

happens to be the same as i . 

Step 2b.  Perform the feasibility test.  Is a  < a,,?  (We 

know a, <_ a^., , and a.. <_  a^.)  Since row -4 has 

already been computed we only need to look across 

and see that, indeed, k  is the smallest element. 

Therefore the procedure stops; the MaxMin strategy 

is Blue pure strategy 4 and the MaxMin value is 4. 

Note that only 12 of the 2k  payoff entries need to 
be computed. 

This method is applicable to any matrix game.  It could 

be a huge nonadaptive game where each row and column repre- 

sents a stream of decisions over several stages, or it could 

be the small matrix occurring at one stage of a behavioral 

game.  The OPTSA I games could be solved by the new method, 

with much less computation. 

An important factor to consider is the relationship between 

the number of rows and columns that need to be computed to solve 

either problem (1) or problem (2) and the size of the payoff 

matrix.  In one recent analysis that used OPTSA and solved games 

for many variations of a realistic set of data, only one or two 

rows and one or two columns were required to solve the majority 

of the games.  This is probably because of dominations among 

the pure strategies which is due to the data and assessments 

used in OPTSA.  Payoff matrices generated from realistic data 

may have enough domination among rows and columns so that the 

number of rows and columns that need to be computed grows very 

slowly with the size of the matrix.  Even payoff matrices with 

independent, randomly generated elements frequently might not 

require computation of all rows and columns for solution. 

Exploration of this relationship could be considered in further 

research on multi-stage games. 
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B.   COMPUTATION OF NONADAPTIVE AND ADAPTIVE MAXMIN AND 
MINMAX STRATEGIES AND VALUES OF MULTI-STAGE GAMES 

Suppose there is a two-person zero-sum game of several 

stages, containing rules about when Blue and Red can make deci- 

sions and what information each side has at any decision point. 

Given these rules, suppose Blue wishes to formulate (at the 

beginning of the game) a decision policy to guarantee that the 

payoff is at least some value a—no matter what Red does. 

Furthermore, suppose Blue wishes to find the maximum o  for 

which such a decision policy exists.  Similarly, suppose Red 

wishes to find a decision policy to guarantee that the payoff 

is no more than T, no matter what Blue does, and to find the 

minimum T.  The maximal a is less than or equal to the minimal 

T, and they may be equal.  For a one-stage matrix game (or any 

game in normal form) the standard formulas 

a =   max      min  a.. 
i=l to m 3-1 to n 1J 

and 

T ■   min      max  a.. 
J = l to n 1=1 to m 1J 

yield the maximal a and minimal T, and their arguments i and j, 

respectively, provide the Blue and Red decision policies. That 

is, i is such that 

min  a~  = a 
j=l to n  1J 

and j is such that 

max  a.? = T . 
i=l to m  J 

A matrix game such as this can be solved relatively quickly by 

the method In Section A above. 
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The nonadaptive multi-stage game of OPTSA I is easily 

transformed into a large one-stage matrix game where each stra- 

tegy consists of a sequence of allocation choices, one for each 

period, that is to be played regardless of what the other side 

does.  If there are b, allocation choices available to Blue in 

decision period k, k = 1 to s, then the total number of Blue pure 

s 
strategies for the large matrix game is B ■  II b .  The matrix 

k=l R 

game has the following quantities associated with it. 

• A Blue MaxMin strategy iN and associated MaxMin value a.,, 

• A Red MinMax strategy JN and associated MinMax value TN, 

• A payoff a. .  when each side plays its nonadaptive 
1NJN 

strategy. 

(Note that aM <_  a. .  <_ TM.) N 1NJN   N 

• A game value g = x Ay, where x and y are the optimal 
Blue and Red randomized strategies for the nonadaptive 
game. 

(Note that c?N <_ g < TN- ) 

The value g is found in OPTSA I (with x and y); one cannot say 

where g lies with respect to a  .  (unless aM = TM). 
iN J N IM    IN 

The multi-stage game solved in OPTSA II allows both sides 

at each stage to choose their strategy dependent on what both 

have done during preceding stages.  Blue (and Red too) is 

allowed to formulate a policy  based on all the freedom of 

decision he has.  How do we find MaxMin and MinMax strategies 

and values for this game?  First, note that what  will  actually 

occur in  the game is a sequence of allocations by both sides 

that will lead to a final payoff.  Therefore any outcome to be 

taken into consideration in solving an adaptive or behavioral 

game will also appear in the corresponding nonadaptive game. 
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Therefore, the maximal a, call it a., is at least oN, as there 

is a strategy for Blue (i.e., i„) by which he is assured o 

with certainty.  Examples have been constructed where a. is 

strictly greater than o„.     Similarly, for Red there is a TA < 

Tj,.  Corresponding to a. and T. are behavioral strategies that 

take into account the decision rules of the game.  (These stra- 

tegies do not involve randomization.)  The values provide bounds 

on the OPTSA II game value that might be tighter than the non- 

adaptive MaxMin and MinMax values.  However, it is not possible 

in general to tell where the OPTSA II game value, the OPTSA I 

game value, the outcome from each side playing its conservative 

nonadaptive strategy (MaxMin or MinMax, as appropriate), and 

the outcome from each side playing its conservative adaptive 

strategy lie with respect to each other. 

Putting the game of OPTSA II into normal form would involve 

listing all the policies for Blue and Red.  This would result in 

a huge unwieldy matrix.  However, the method used to find the 

optimal (randomized) behavioral strategies can be combined with 

the method in Section A above to find (in two passes) the values 

a. and T. and the associated MaxMin and MinMax behavioral stra- 

tegies.  Let us consider a game of three stages for an example, 

and let there be b, "pure" choices for Blue and r. for Red at 

stage k, k = 1 to 3.  At the end of stage 2 there are b1
t)prir2 

places where Blue could be, one for each possible history of 

choices.  At each of these places Blue is faced with a one-stage 

matrix game for which the MaxMin strategy and value can be found 

by the method in Section A.  This results in D
1
b2rlr2 values 

each guaranteed, conditioned on the place at the end of stage 2. 

Organize these into b,r. matrix games, each bp x r2.  For each 

of these matrix games, the MaxMin strategy will guarantee Blue 

the maximum value possible regardless of where Red moves, condi- 

tioned on the outcome at the end of stage one.  This yields t>_r 

MaxMin values, which are organized into one final game, the Max- 

Min strategy and value of which yield Blue!s first period choice 
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and the value a..  To find the Red MinMax strategies, the same 

b^r-b^r. matrices at the end of stage 2 can be used, but the 

b^ matrices of MinMax values will not be the same as the 

matrices of MaxMin values; therefore some kind of two-pass 

procedure is needed. 

The embedding procedure of the Revised OPTSA Model (Refer- 

ence [2], Chapter II, Section E) can be used to find the adaptive 

MaxMin and MinMax strategies as efficiently as possible.  With 

judicious programming the two passes of the procedure can be 

meshed to avoid unnecessary duplication in computation. 

The motivation of both the DYGAM and ATACM models is to 

find quantities connected with the game of OPTSA II where the 

numbers b  and r are so large that OPTSA II, or the adaptive 

MaxMin and MinMax finding procedure, would take too much com- 

puter time.  They both make the approximation of condensing the 

"b b?r r places at the end of stage 2" into somewhat fewer 

places.  DYGAM tries to find the optimal randomized behavioral 

strategies; ATACM tries to find the adaptive MaxMin and MinMax 

strategies.  Because of this condensation of the state space, 

games with many more stages than 3 can be processed in a reason- 

able amount of computer time. 

C.   COMPUTATION TIME REQUIREMENTS 

This section derives estimates of computation time formulas 

for several different games solved by OPTSA methods.  The ap- 

proach is similar to that used in Reference [3].  The formulas 

are in terms of number of days of combat simulated, since the 

running time of all the OPTSA models is essentially proportional 

to that number.  Given the time it takes to simulate one day of 

combat in an assessment routine, an estimate of the time OPTSA 

would take to solve the game can be obtained.  This can then 

reasonably be compared with the time of other models. 
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Let there be s stages and let b, and r. be the number of 

pure strategies available to Blue and Red, respectively, in 

stage k.  Let stage k comprise d, days of combat; thus a war 

s 
has D = I    d, days.  The first days of the stages are decision 

k=l K 

days, which must be identical for Blue and Red.  Let w and c be 

average estimates of the number of rows and columns that need to 

be computed to solve a matrix game.  The actual number needed 

might vary somewhat with the input data and advance start.  As- 

sume w and c are independent of the size of the matrix (as has 

been discussed); also assume they are independent of stage.  The 

two-pass MaxMin and MinMax procedure might yield values of the w 

and c different from those found in the procedure for finding 

the optimal randomized strategy. 

1.   Computing Randomized Strategies for Nonadaptive Games 

s 
There is one large matrix; the order is  n b, rows by 

II r, columns.  Call these numbers B and R, respectively.  The 
k=l  K 

number of payoff entries that need to be generated is wR + cB - 

wc.  The last term will be insignificant if B and R are large. 

To find the number of daily  campaigns  needed, first note that 

the procedure described in Reference [3] can be applied.  This 

involves not resimulating the whole war but only the latter 

periods where the pure strategy changes.  That is, to compute 

a column of R elements one would think that RD daily campaigns 

would be required.  However, this can be reduced considerably 

s     k 
to I    d  n r0.  For example, if s = 3 and r0 = n v i9  the 

k=l K £=1  * * 

formula reduces from n^D to nd1 + n d« + n d • if d = - for 

s—1 i = 1 to s, the reduction is on the order of  .  The corres- s 

ponding formula for the number of daily campaigns needed to 
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s   / k   \ 
compute a row of B elements reduces from BD to  £  d ( IT b0 ). 

k=l KU=1  V 

With w rows and c columns needed to be computed, the total 

formula becomes: 

Number of daily campaigns that must be computed » 

w * dk( n hi)\   + c I    dk( n rz)\ Lk=l KH=1  */J    Lk=l *U=1  *'J 

campaigns per row campaigns per column 

(3) 

where 

w = number of rows, 

c = number of columns. 

For some (though not most) assessment routines, the method of 

recomputing only the days where the strategy changes may not 

be valid.  Thus wBD + cRD remains a general estimate, though 

an extremely conservative one. 

2.  Computing Randomized Strategies for Adaptive Games 

This formula is derived in Reference [3]; we restate it 

here.  For stage I, let a„ = wr. + cb« - wc.  This is an esti- 

mate of the number of payoff entries needed to solve a game at 

stage I.     The number of daily campaigns needed, using the "no 

unnecessary days recomputed" feature, becomes a^d + a apd2+...+ 

a_a_...ad = 
12   s s 

* dk(n 0 ■ (4) 

The estimates for the MaxMin and MinMax games are exactly 

the same for randomized strategy ones, except w and c might be 

bigger if two passes are made.  This is because exactly  the 

same kind of relaxation technique is used; the difference is 
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between simplex pivots and comparison tests, which is very 

small compared to payoff computation time.  Thus formula (3) 

serves also for nonadaptive MaxMin and MinMax games, formula 

(4) for adaptive ones. 

These formulas can be simplified. Let b- = r. = n for all 

I (1=1 to s), and call a. = wr. + cb„ - wc = a for all I. Then 

B = R = n .  Formula (3), the nonadaptive game, then reduces to 

?    k (w+c)  2.  d,n ■  If ci  is large compared to the other d, , as is 
k=l K        s K 

often the case, the sum is dominated by its last term, d ns. s 

§  k Formula (4) becomes \     ad,, which again is dominated by its 
k=l   K 

last term a d .  The ratio s 

asd s adaptive # campaigns Ä  s   m       1  ra-j 
nonadaptive # campaigns ' (w+c)n

s<i    (w+c) W 

Given w and c, - is almost independent of n.  If w = c = 2, 

then a = wn + en - wc = 4n - 4 so a/n « 4«  As s gets larger 

the nonadaptive game quickly becomes much more favorable in 

terms of computation. 
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IV.  PURE STRATEGIES IN ADAPTIVE AND NONADAPTIVE GAMES 

James E. Fa 1k and Jeffrey H. Grotte 

In general, research in multi-stage games has dealt with 

mixed-strategy phenomena.  The foregoing chapters on the other 

hand, raise questions concerning the features of pure strate- 

gies in multi-stage games.  The beginnings of two parallel 

approaches to this problem are given in Appendices A and B. 

While the content of these appendices overlap to some extent, 

their philosophy and notations differ and consequently it is 

of interest to present them both. 

The key theorem, common to both appendices, proves that 

if a multi-stage game has a nonadaptive pure strategy saddle- 

point, then no adaptive strategy saddlepoint will yield a 

better MaxMin value to the maximizing player or a better Min- 

Max value to the minimizing player.  Appendix A also gives a 

condition for an adaptive strategy saddlepoint to imply the 

existence of a nonadaptive strategy saddlepoint and shows how 

to relate the adaptive and nonadaptive strategies when adap- 

tive and nonadaptive saddlepoints exist.  Some examples are 

also presented.  Appendix B, in addition to the key theorem, 

discusses the effectiveness of nonadaptive strategies against 

pre-announced adaptive strategies. 
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APPENDIX A 

ON ADAPTIVE AND NONADAPTIVE PURE STRATEGIES 
IN ZERO-SUM SEQUENTIAL GAMES 

Jeffrey H. Grotte 

Let G be a two-person zero-sum sequential game; i.e., G 

comprises M stages.  At each stage each player executes an 

action that he chooses from some set of actions available to 

him at that stage.  At the end of the game, each player will 

receive some payoff based on both players1 choices of actions. 

We will assume that each playerfs set of actions at any stage 

is finite and known by both players before the game begins. 

Further, a player's set of actions at any stage is independent 

of either player's previous actions.  For the purposes of this 

paper, each player may play in one of two modes: 

Nonadaptive  pure   strategy.  The player must pick his 

actions for each stage before the game begins, and then play 

his sequence of actions regardless of how the game progresses. 

Adaptive  pure  strategy.     For each stage, the player waits 

to see what actions both sides have taken up to that stage 

before choosing his action for that stage.  For this case, we 

will require that the player have perfect and complete knowl- 

edge of the past.] 

We will look at two extremes and compare the results.  The 

cases will be: 

1Others have examined adaptive pure strategies in other contexts. See for 
example, the majorant and minorant games of von Neumann [^4] and the meta- 
games of Howard [1]. The reader is also referred to Karr [2] and Kuhn 
[3]. (These references are listed at the end of this appendix.) 

A-l 



(1) Both players play nonadaptive strategies. 

(2) Both players play adaptive strategies. 

A remarkable fact is that, if we disallow randomization, 

both these cases can be modeled by normal form games. 

Let {S.} i=l,2; j=l,...,M be the players1 sets of actions 

for all stages, so that S. is player i's action set at stage j 
i ^ i Denote by s. some specific element of S..  Thus a play  of the 

game is 

M r 1 1   1  22   2^       i  ci  , , ~  . . 
[S*S2...BM; s1s2...sMJ, s^ e Sj  I»l,2; 3-1,..., 

The payoff of the game (from 2 to 1) we denote by 

0(sjs^...sj; s^...s^) . 

Nonadaptive Model 

Let R1 = {(s*s*...sj) | s* e sj}  1-1,2 . 

Then define the normal form game GN with the first player's pure 

strategies being the elements of R , and the second player's 
2 

pure strategies being the elements of R .  We define the out- 

come of the players' choices r  e R  1=1,2  in the following 

manner 

where 

2 2    2    2 
S1S2'-'SM  r  ' 
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Example:  A two stage game 

sj = {a,b}  S* = {a,b} 

\*  - {p,q} S\  = {p,q} . 

Let 

01 ■ 0(aa,pp) 

(?2 ■ 0(aa,pq) 

0^ = 0(aa,qp) 

0^ = 0(aa,qq) 

05 = 0(ab,pp) 

06 = 0(ab,pq) 

0? = 0(ab,qp) 

08 = 0(ab,qq) 

09 = 0(ba,pp) 

010 = 0(ba,pq) 

0±1 = 0(ba,qp) 

012 = 0(ba,qq) 

013 = 0(bb,pp) 

0l2| = 0(bb,pq) 

015 = 0(bb,qp) 

016 = 0(bb,qq) 

then the normal form of this nonadaptlve case is 

pp pq qp qq 

1 01 
°2 °3 oh 

°5 °6 °1 °8 

°9 °10 "ll °12 

\    °13 °1H °15 °16 

aa 

ab 

ba 

bb 

Figure 1 

Adaptive Model 

Although straightforward, the adaptive model requires 

somewhat more effort to formulate. 
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Define F* E $* and F^ E S*.  For j=2,...,M, let F1  be the 

set of all functions f from 

S^ x S^x. . «xS2   into S* . 

Similarly define       ¥2     j=2,...,M . 

Note that F* is a set of actions  while F , j ?  1 is a set of 
1   " functions.  The finiteness of the S guarantees the finiteness 

of the  F*. 

Now define 

P1- {(fjf§...rjl  I rJ.Fj}   1-1.2 . 

Now we can model the adaptive case by the normal form game GA 

where player l's pure strategies are the elements of P and 
2 

where P is the set of player 2's pure strategies.  We evaluate 
112   2 the outcome of a choice p  e P , p  e P as follows: 

p  equals some sequence  *\^2"''^M anci 

2 2 2    2 p  equals some sequence  f_fp...fM . 

Now, since F* = S* for i = 1,2, then f* = some s* e S1  1*1,2. 

We can now find inductively 

s\  = fj(.f)      s\  = ff(.J) 
Sl = f*(.*.§)     s

2, = f|(.J.|) 

ij = f}(s28282)   sj = f24(sjs^) 

and so on. 

Define 6(p1,p2) = oCs^s*...s ; s^.-.s2) . 
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Example 

s\  = {a,b}  s\  = {a,b} 

Si  = {p,q}   S\  = {p,q> . 

Then 

where g/, defines the function 
h 

Similarly f\  = {p,q}, v\  = jp/p, 
p/q, 

q/p, 
q/q} where 

£/m 

defines 

fg(a) = A    f^Cb) = m . 

Using our procedure for computing outcomes, and the notation 

from the nonadaptive example, it is easy to see that the normal 

form game we have thus determined is given in Figure 2. 

Note the obvious:  the set of outcomes of the game GN is 

precisely the set of outcomes of the game GA, not counting 

multiplicities. 

i CMMA 1.  «^  max    min ZCr.1   ^ ^  max   min  nfr1 r2l LEMMA 1 : a.) ?     0  o[p     p J >  -,  -,  P  ? v{r   ,r ; 
peP1  p z?d r eR1 r* eJT 

. v min   max *, 1 2^   min  max "Qr  1 2N 
b)  2 p2   1 pl 

Ö^p >p J - 2 «2  1 Rl °lr 'r J 

p eP   p eP r eR  r eR 

PROOF:  a) Let r1 be an element of R at which the 

max  min    ,  2 1 
1 „2  2 ^2 <5fr ,r )   is achieved.  We know r represents the r eR r eR   ^  '  ; - 

sequence 
1 1   1 

&i ^2 * • • =ii * 
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1    1p % '% P V 
' \q% qP/Q 

'p q V         1 

I   .5- a 1 1 
0 

2 
0 
2 

0 
3 

0 
3 % \ 

a5M 
Ö 

1 
0 

1 
0 

2 2 
0 

7 °7 «8 °8 

'H °5 °5 °6 °6 3 "3 
ö* <>„ 

"M °5 i    °5 i    °6 °6 Ö7 °7 °8 °8 

»% °9 So °S °10 Öll Ö12 öll Ö12 

b5{ 
°9 °10 °9 «10 °15 Ö16 °15 °16 

"''• 
°13 Öl* °13 «tt °11 ö12 öll °12 

»H 1    °13 °1« °13 °u °15 Ö16 ö15 
öl6         1 

Select that 

where 

Figure 2. 

n1 , -r1 r1       f1 

f1 = s1 

f,(0 = 87 for all arguments, j=2,...,M . 
J       J 

Observe that the p1 row of the game GA must have precisely the 

same outcomes as the r row of the game GN; therefore 
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T 

min min    -»  ^     j   -  T  ^ 
2
eP

2 0[P ,P J =  2  2 °fe. >r i 
r eR 

r1eR1 rzRd 

Therefore 

max   min %el     2\   v  max   min *r  1     2\ 
1       2     2   °tp   5p   J   - 1        2     2  ölr   »r  '    • peP1    p  eP* rcR1    Tdt?C 

Assertion b) is proven in an entirely analogous manner. 

PROPOSITION:  If GN has a pure strategy saddlepoint, so 

does GA.  In this case the values of the two games are equal. 

PROOF:  This follows trivially from inequalities (a) and 

(b) of the Lemma. 

-i  p 
PROPOSITION:  Let (r ,r ) be a pure strategy saddlepoint 

for the game GN, where 

1   11 r = Sls2.. 
1 

•SM' 
2    2 2 r  = Sls2.. s2 

Let 

P  = f^.. f1 n2   r2r2 
P  - fxf2.. ■4 

where 
1       2    2 fj = s15 t\ - si , 

f^(.) = s\     for all arguments, j=2...M 

f?(.) = s2     for all arguments, j=2...M . 

1  2 Then (p ,P ) is a saddlepoint for the game GA. 

PROOF:  Clearly otP^P2) ■ Oiv1
9v

2)   = value of GM = 

value of GA. 
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We have yet to show that (p ,p ) is a saddlepoint. 

Suppose there is some £ such that ö(p , p ) > 0(p ,p ). 

Now, £ represents the sequence 

Compute 

fl 1  fl 
-1-2 •' * ^M ' 

s1 = f1 -1  -1 

1   „lr 2y 

and so on until s s ...s have been computed. 

Therefore 

ö[£ ,p ) = ^(s^...^; s1s2...sM). > 0(p ,p ) (by assumption) 

= Ö(r\r2) = tf(sjs*...sj; ■£•§...■£) 

So that there is some r = S^s^.-.S« 

0(r\r2) > o{r\r2)   . 

1   P 
This contradicts the assertion that (r ,r ) was a saddle- 

point for GN. 
2 

In a similar way one proves that there is no £ such that 

ö(P\P
2
) < Ö(PV) • 

What we have shown so far is that whenever the nonadaptive 

game has a pure strategy saddlepoint, then so does the adaptive 

game.  Moreover, when this occurs, at least one of the adaptive 

saddlepoints will be the "image" of a nonadaptive saddlepoint, 

hence it suffices to look at the nonadaptive game.  It is im- 

portant to realize that knowing that the adaptive game has a 
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pure strategy saddlepoint yields no information about the non- 

adaptive game except   in the following circumstance: 

PROPOSITION:  If GA has a pure strategy saddlepoint (p ,p ) 

where 

n1  ■ r1*1  f1 
p - f^-..^ 

2   ,2-2    2 

and the f. have the property that 

1        12        2 f, = some s,    f, = some s, 

and 

f.(•) = some s.  for all  arguments 

1-1,2;   j=2,...,M 

then if r = s]Ls2...sM  r = s-^.-.s^, [r ,r J is a saddle- 

point of the game GN. 

PROOF:  Since (p ,p ) is a pure strategy saddlepoint of GA 

Äf  1    2i .        *,   1     2> 0 ip   ,p  )   =    min    oIP   ,P  J   • 

But 

TO "IT TOO *} 

ö(p   5P  )        0(s1s2...sM,   B^...^)   . 

Therefore 

0(sis2-"sM;     S1
S
2'--

S
M)   =    min     O^s*. . . sj;   s*s|. . .s*) 
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or equivalently 

0\T   ,r ] = min Q [v   ,r J 

r2cR2 

In a similar manner, it is possible to show 

1 2\ *fl    2< tf(r ,r ) = max ö(r ,r ) . 

Hence ö(r ,r ) is the minimum of its row, the maximum of 

its column so that (r ,r ) is a pure strategy saddlepoint. 

EXAMPLES:  The following examples are the two-stage game with 

S* = {a,b}   S* = {a,b} 

sl  = {p,q}   s\  - {p,q} . 

The outcomes can be found in the table for the nonadaptive 

case of each example.  In all cases e,y > 0 

Example 1 shows a game in which the nonadaptive game has 

a saddlepoint, so that the adaptive game also has one.  More- 

over, if one looked only at the adaptive game, one would notice 

that one of the saddlepoints (in the upper left hand corner) 

corresponds to a nonadaptive strategy pair which is a saddle- 

point of the nonadaptive game.  This illustrates the final 

Proposition. 

Example 2 is a case where the nonadaptive game has no 

saddlepoint, although the adaptive game has one. 

In Example 3, neither game has a saddlepoint. 
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PP pq qp qq 

aa 
I 

0 Y Y 0 

ab -c Y 0 -e 

ba —c -€ 0 Y 

bb 0 Y -c Y 

Example 1 

MaxMin = 0 

MinMax = 0 

*  saddlepoint 

Nonadaptive Case 

IP% 
>% >% \*% U% y% |«% h% 

*a/a 

0* 0 Y Y Y Y °* 0 

a&/b 

0 0 Y Y 0 0 -G -G 

■*. -E -e Y Y Y Y 0 0 

a>b 

-e -G Y Y 0 0 -G -G 

-X -e -G -e -C 0 Y 0 Y 

»% 
-e -G -G -c -e Y -G Y 

-X 
* 

0 Y 0 Y 0 Y 0* Y 

bb/b 

0 Y 0 Y -G Y -e Y 

MaxMin = 0   MinMax =0   * saddlepoint 

Adaptive Case 
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2I-V 

aseo   3AL^depv 

^ufodaippBS *    o = XBWUIW   0 = UJWX^W 

0 k 0 X 3- A. 3- k 
*« 

3- k 3- X 3- A. 3- k 
%■> 

0 k 0 X 3- 3- 3- 3- 
k< 

X- k 3- A. 3- 3- 3- 3- 
k* 

k k X k 0 0 3- 3- 
%• 

0 0 3- 3- 0 0 3- 3- 
^« 

k k X A. X A. 0 
1 

0 5«« 
0 0 3- 3- X k 0 0 

X» %» >/<> X» 5t« 1 %« 1 v 11< 

aseo aAL^dcpeuoN 

A.  = XBWUTW 

3- = UfWXBW 

0 X 3- k qq 

3- A 3- 3- *q 

k A. 0 3- q* 

0 3- k 0 BB 

bb db bd dd     1 1 2 9Ldwex3 



Example 3 

1 PP pq qp qq 

aa 0 -e Y -e 

ab -e Y 0 Y 

ba Y 0 Y -£ 

bb -e Y -e 0 

MaxMin = -e 

MinMax =  Y 

Nonadaptive Case 

\'H 1  P  ^ q I p y \>X Y% y% y% |«% 

**4 0 0 -£ -e Y Y -e -e 

>%, 
0 0 -£ -e 0 0 Y Y 

*K -e -e Y Y Y Y -e -C 

■% -e -e Y Y 0 0 Y Y 

*% Y 0 Y 0 Y —€ Y -e 

»X Y 0 Y 0 -e 0 -e 0 

»X -e Y -E Y Y -c Y -e 

*% 
-e Y -€ Y -e 0 -e 0 

MaxMin = -e   MinMax = y 

Adaptive Case 
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APPENDIX B 

SADDLEPOINTS OF ADAPTIVE GAMES 

James E. Falk 

In this appendix we examine the relationship between saddle- 

points of adaptive games and saddlepoints for their associated 

nonadaptive games.  In particular, we show that the MaxMin and 

MinMax values of the nonadaptive game bound the same quantities 

for the adaptive game.  It follows that the adaptive game will 

have a saddlepoint if the nonadaptive game has one.  An example 

is given which shows that the opposite is not true, i.e., the 

adaptive game may have a saddlepoint while the nonadaptive game 

does not. 

Notation: 

Let n (number of periods) be given.  For each n, let: 

A (x ,y ,p ,q ) ■ payoff in period i when in state (p ,q ) 

and actions x  and y are chosen by the 

players, 
p (x >y ,P ,q ) = state p   resulting from state (p^q ) 

when actions x and y are chosen, 

Q1(xi,yi,pi,q1) = state qi+1 resulting from state (p1,qi) 

when actions x  and y  are chosen, 

X ,Y = constraint sets on decision variables 

x and y in period i, 

Then 

(p >Q ) = given initial state. 

1   1   1   i   i 
A(x,y) = I    A (x ,y ,p ,q ) 

i=l 
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where 

x = (x ,...,x ) 
,   1     rK 

y = (y ,.■.,y ) 
ni+l  JLt  i i 1 iv P   = P (x ,y ,p ,q ) 
i+1  Ai, i 1  1  iv 

Q   = Q (x ,y ,p ,q ) 

is the cumulative payoff function whose value is uniquely deter- 

mined when the players choose vectors x and y. 

In order to define the game G, we first define the types of 

strategies available to the players I and II. An adaptive stra- 

tegy for player I is a sequence of (vector-valued) functions 

x1(0,...,xn(0 

where x (•) : (p , q ) -> X .  Thus an adaptive strategy for 

player I prescribes an action or decision for each state (px,q ) 

that can be realized in each period i.  A similar definition 

holds for player II. 

A nonadaptive   strategy for player I is a sequence of 

vectors 

n 
3 X 

where x e X . Thus a nonadaptive strategy for player I also 

prescribes an action or decision for each period i, but there 

is no state dependence. 

Let 

S = set of all nonadaptive strategies for I, 

S = set of all adaptive strategies for I, 

and 

T = set of all nonadaptive strategies for II, 

T = set of all adaptive strategies for II. 

Note S C S, T C T. 

Player I's adaptive problem is 

max min A(s,t) = V 
seS tcT 
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and his nonadaptive problem Is 

max min A(s,t) = v . 
seS teT 

Player IIfs adaptive problem is 

min max A(s,t) = V 
teT seS 

and his nonadaptive problem is 

min max A(s,t) = v . 
teT seS 

We have 

V < V 

and 

v <_ v . 

We will show that 

v < V <_ V < v . 

Results: 

First, we prove the following result: 

Theorem.  With the definitions given above, if s = (x (•), 

...,x (•)) is any adaptive strategy for I, then 

min A(s ,t) = min A(s ,t) . 
teT teT 

Proof.  Since T c T, we have 

min A(s ,t) <_ min A(s ,t) . 
teT teT 

Let t° = (y1(•),...,yn(-)) solve1 the left of these two problems, 

1 Without proper assumptions on the constituent functions, the problem may 
have no solution. We shall assume that the proper assumptions do hold. 
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and set 

and 

x1 = xV.q1)  y1 = yW) 

p2 = P1(x1,y1,p1,q1) 

q2 = Q^x1,^1,?1^1) . 

Continuing, set 

and 

-2    2, 2  2 s    -2    2,   2 2, x  = x (p ,q )   y  = y (p ,q ) 

3  c2,-2 -2  2  2, p  = P (x ,y ,p ,q ) 

3   n2^-2 -2  2  2, Q  = Q (x ,y ,p ,q ) 

etc., to produce two sequences of decisions 

and 

x1    x^1 

-1    -n 
y ,--.,y 

for the players.  (This pair of sequences is often termed a 

play  of the game G whose payoff is A when strategies s and t 

are employed.) 

Note that 

But 

t i (y\...,yn) e T . 

A(s°,t°) = A(s°,t) 

since the same play of the game is produced by either of the 

pairs (s ,t ) or (s ,t).  Thus 
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min A(s°,t) = A(s°,t°) = A(s°,t) 
teT 

> min A(s ,t) 
teT 

>_ min A(s ,t) 
teT 

and the proof is complete. 

The theorem implies that player II can restrict himself to 

his nonadaptive strategies if player I announces his intent to 

employ a given adaptive strategy.  This is analogous to the 

situation in matrix games, wherein a player may restrict himself 

to his pure strategies if his opponent announces his intent to 

employ a certain mixed strategy. 

Corol1ary.  With the above definitions 

max min A(s,t) <_ max min A(s,t) 
seS teT        ' seS teT 

i.e., v < V 

Proof.  Let s denote any nonadaptive strategy for I.  Then 

min A(s,t) = min A(s,t) 
teT teT 

so 

v = max min A(s,t) = max min A(s,t) 
seS teT seS teT 

<_  max min A(s,t) ■ V 
seS teT 

since S c S. 

This corollary implies that the first ("outside") player 
generally does better with an adaptive strategy, but the second 

("inside") player cannot improve his payoff by employing an 
adaptive strategy. 

•B-5 



Let G = (A,S,T) denote the nonadaptive  game  with payoff 

A and strategy sets S and T.  This adaptive  game is denoted 

by 6= (A,S,T). 

Corol1ary.  If G has a saddlepoint, then so does G. 

Proof.  From the above corollary 

v < V < V <_  v . 

If G has a saddlepoint, the v = v, so V = V which implies 

that G has a saddlepoint. 

This corollary was also established by Berkovitz1 in the 

context of differential games. 

The following example shows that G may possess a saddle- 

point while G does not.  In Figure 1, the extensive form of 

G is given with terminal payoffs as indicated.  The normal 

form of the game is given in Table 1, where we employ the 

notation 

(R|L,R) 

to  stand  for the  strategy: 

go down and  to  the  right  when  in period  1; 
go  down and  to the   left  when  in period  2   if 

your  opponent  went  left  in period  1,   otherwise, 
go down  and  to  the  right   in period  2. 

^rkowitz, L., Lectures on Differential Games, in Kuhn, H. and Szego, G. 
(editors) Differential Games and Related Topics, North-Holland, 1971. 
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I* PERIOD 

Figure 1.  THE ADAPTIVE GAME 
(EXTENSIVE FORM) 

Table 1.  THE ADAPTIVE GAME--NORMAL FORM 

_J 

ex 

—J 

_j 

 1 

—1 

or 

—1 

—i 

a; Cd 

gl 

or 

a: 

(L|L,L) 0 0 0 0 1 1 2 2 

(L|L,R) 0 0 0 0 0 0 0 0 

(LIR.L) 2 2 2 2 D 2 2 

(L|R,R) 2 2 2 2 0 0 0 0 

(R|L,L) 0 0 0 0 0 0 0 0 

(R|L,R) 0 0 0 0 0 0 0 0 

(R|R,L) 0 0 0 0 0 0 0 0 

(R|R,R) 0 0 0 0 0 0 0 0 

There are 2 saddlepoints (circled). 
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In Figure 2, the extensive form of the nonadaptive game is 

displayed.  The corresponding normal form is given in Table 2. 

Note that there is no saddlepoint. 

I- PERIOD 

Figure 2.  THE NONADAPTIVE GAME (EXTENSIVE FORM) 

Table 2.  THE NONADAPTIVE GAME--NORMAL FORM 

a: 
CXL 
a: 

LL 0 0 1 2 

LR 2 2 0 0 

RL 0 0 0 0 

RR 0 0 0 0 

In these examples we have v=0, V=v=V=V=l.  Note 

that v = V, a reflection of the fact that one of player IIfs 

MinMax adaptive strategies is actually a nonadaptive strategy 

(R|L,L). 
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