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1.  INTRODUCTION 

The Lulejian-I combat model is an aggregated, theater- 

level, computerized combat simulation model overlaid with a 

two-sided optimization structure which seeks to generate 

approximately optimal campaign-long allocations of major 

theater resources.  In seeking to optimize resource entry into 

a logistics network, allocation of tactical aircraft to missions, 

and possible initial massing of the attacking side's resources, 

the model tries to represent in a game-theoretic context the 

adversary nature of the decision-making processes of the two 

sides. 

Let us outline briefly the overall optimization structure 

of the model.  The time period to be simulated is broken into a 

number of moves, each representing one or more days of combat; 

at the beginning of each move the two sides may change their 

allocations of entering supplies and tactical aircraft.  For 

each of the possible choices of actions the evaluative portion 

of the model computes, from the resources present at the begin- 

ning of the move and those designated to enter during the move, 

the numbers of resources left at the end of the move and the 

territory gained.  This evaluation is performed using a tactical 

air submodel, a ground combat assessment submodel, a logistics/ 

interdiction submodel, and a ground force allocation submodel, 

in that order, for each day comprising the move. 

Thus the structure is that of a two-person sequential game, 

as outlined in [A].  In principle, it is necessary to run the 

combat simulation once for each possible set of sequentially 

chosen actions by both sides.  This is prohibitively time- 



consuming, so the model uses certain approximations to the 

objective function of territorial gain in order to compute only 

a very small set of outcomes; in the given context this is a 

necessary simplification, but we don't know of any bounds on the 

potential error committed by using it.  More details on the 

optimization procedure appear in Section 2. 

This paper is a summary of the structure of the model, 

together with some criticisms and praises of its various 

aspects.  The Lulejian and Associates report [8] was the source 

of information on the Lulejian-I model used in preparation of 

this paper.  Attrition computations in the Lulejian-I model are 

discussed and evaluated at length in Sections 5 and 6.  Our 

purpose therein is to promote reasoned discussion and com- 

parison of various methods for calculating attrition in highly 

aggregated combat models.  By considering such factors as under- 

lying assumptions, the rigor of derivations, and mathematical 

consistency, we hope to add deduction and inference to the set 

of useful criteria for comparison and evaluation of combat 

models.  That set of criteria also contains plausibility of 

results and verisimilitude to historical data.  By deduction 

we mean that if various assumptions underlying each attrition 

model are known and carefully stated (for some models there may 

be more than one set of mathematical assumptions leading to the 

same result or more than one physical situation compatible with 

the mathematical assumptions) and if one believes that a set of 

assumptions is satisfied, then he must necessarily accept 

attrition calculated using an equation rigorously derived from 

those assumptions. 

The emphasis in this paper on attrition computations and 

in particular on underlying assumptions and mathematical ques- 

tions is a reflection of the biases and competence of the author. 

It should not be construed to mean that other aspects of a combat 

model, such as numbers and types of resources modeled, are not 

important. 
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2.  EMPHASES OF THE LULEJIAN-I MODEL 

The model report [8] states that the main intended use of 

the model is the "...assessment of alternative force levels, 

compositions, and deployments in Central Europe...."  Within 

this context one main emphasis is determination of "approxi- 

mately optimal" allocations of major theater resources.  The 

objective function of the optimization is (net) area gained. 

All conclusions obtained from the model must be interpreted in 

light of the overall optimization structure; for example, the 

effects of different numbers of resources or different weapon 

system capabilities may be evaluated differently by a model 

which does not contain this particular optimization algorithm 

and in particular by a model with no optimization structure at 

all, such as IDAGAM I [1,2]. 

As noted in Section 1, the optimization structure of the 

Lulejian-I model is that of a two-person sequential game, in 

which the evaluative portion of the model (i.e., the combat 

assessment) serves to compute intermediate and terminal payoffs 

for the game solution algorithm.  The type of forward sweep/ 

reverse sweep algorithm used to solve the game is known in other, 

similar (indeed, simpler) contexts not to produce global optima. 

Another ground for skepticism is Lhe treatment of mixed strategies 

and especially the meaning of the sequence of allocations used by 

the two sides which is produced as a model output.  In the lan- 

guage of [^4] we can interpret this sequence only as a realization 

of a pair of "nearly optimal" strategies.  The strategies them- 

selves are (so far as we can determine) not computed by the model. 

As a consequence, the results of the model have no prescriptive 

content for choosing actions.  The realization of actions 



computed could as well have arisen from nonoptimal strategies. 

And, moreover, the realized value of the game (that is, the 

realized FEBA movement) need bear no necessary relation to the 

game-theoretic value of the sequential game, which is an expecta- 

tion with respect to optimal mixed strategies.  For these reasons, 

the decision-making implications of the optimization structure of 

the model are of doubtful usefulness.  Conclusions obtained con- 

cerning relative effects of force structures and strengths are 

tainted, but not entirely useless. 

The model contains three processes in which optimization 

takes place.  First, the allocation of tactical aircraft to 

missions is optimized, subject to constraints involving relative 

effectiveness of the different types of aircraft in different 

missions.  While this is indeed an allocation problem of con- 

siderable interest and import, it should be noted that it is 

in precisely this context, cf. [3], that an algorithm similar 

to that in the Lulejian-I model is known to yield neither optimal 

strategies nor the correct game value.  The second optimized 

process is the choice of proportions of supplies (general supplies, 

engineering supplies, and transport vehicles) entering the logis- 

tics network described in Section l\.     Finally, the choice of 

sectors of initial attack and initial massing of forces may be 

optimized.  The latter problem is clearly important and not 

well-treated in other, similar models.  It is a positive aspect 

of this model to have included (albeit not necessarily entirely 

accurately) the phenomena of initial attack conditions. 

A second emphasis of the Lulejian-I model is upon the 

effects of supply movement and supply shortages on theater- 

level combat results.  To this end the model includes a notional 

logistics network on each side, through which supplies flow 

from a "port" to forward supply depots and to combat sectors; 

this network is discussed in more detail in Section 4.  The 

effect of not enough supplies is a linear degradation of the 

effectiveness of combat resources requiring the supplies in 

question.  That is, if there are AQ resources present, each 



of which requires (on a particular day) r units of supplies, 

and if S units of supplies are available that day, the effective 

number of resources (as used in attrition computations, for 

example) is 

A = A0 mind, jj-> . 

This makes sense provided one interprets the situation as being 

that A of the resources participate in the combat at full effec- 

tiveness, while the remaining AQ - A resources are able neither 

to inflict nor to receive attrition.  Indeed, "grounded" re- 

sources cannot be part of any interactions.  For resources such 

as aircraft this is plausible, but for "grounded" ground combat 

resources (which move along with their companions) the plausi- 

bility is less.  Provided it be interpreted as we did above, 

the linear form of the degradation seems reasonable.  Other 

models, however, treat the problem differently. 

A third (after the optimization algorithm and supply repre- 

sentation) emphasis of the Lulejian-I model is on an iterative 

method for joint computation of FEBA movement and attrition to 

ground combat maneuver forces, whose stated purpose is to take 

explicit account of the tradeoff between position and casualty 

rates which occurs in a combat situation.  The mathematics of 

this procedure will be discussed in Section 7; the following 

comments are relevant at this point.  First, the inclusion of 

this procedure represents a behavioral  assumption about combat 

situations and, more specifically, about commanding officers1 

decision-making processes.  The assumption is that combat 

decision makers do trade off casualty rates and position, 

ordinarily by yielding position when casualty rates exceed cer- 

tain acceptable levels and (but to a lesser extent) seeking 

to advance and cause enemy casualties when their own side's 

casualty rates are sufficiently low.  Thus, the defending side 

will cease to hold a position (while the attacker will cease to 



advance) when casualty rates exceed the thresholds.  This 

assumption is praiseworthy on two grounds:  there is too little 

attention devoted in combat modeling to this obviously important 

problem of behavioral assumptions and the representation of the 

behavior of combat decision makers; and this particular behav- 

ioral assumption appears to be eminently reasonable.  On the 

negative side, the procedure increases the computational com- 

plexity of the model as well as the number of computations 

required, and is hence possibly one reason for the uniformly 

simple attrition structure of the model, which is discussed in 

detail in Sections 5 and 6.  As seen in Section 7, there are 

also difficulties with both the computational iteration scheme 

in the model and the interpretation of that scheme as actually 

representing the tradeoff it is alleged to represent.  The 

tradeoff also fails to take into account the asymmetry of the 

attackerTs and defender's goals.  While it is plausible that 

an attacker will continue to advance if casuality rates do not 

exceed threshold values, the defender may not seek to push 

back the attacker if his casualty rates are sufficiently low. 

That is, the defender may simply hold his position but at 

the cost of fewer casualties.  It does not appear to us that 

the computational procedures of the model account for this 

phenomenon. 



3.  GEOGRAPHY 

The geographic structure of the Lulejian-I model Is con- 

ventional, as represented by the figure below. 

SEGMENTS SECTORS 

REAR REGION 

-AIR DEFENSE 
REGIONS 

FEBA 

12-9-7*-3 

There may be up to ten sectors in which close combat occurs and 

in which the two sides are separated by a FEBA line; each sector 

may be composed of at most fifteen segments whose boundaries are 

parallel to the FEBA and perpendicular to the boundaries between 

sectors.  These segments serve mainly to distinguish different 

kinds of terrain, of which three are permitted in the model. 

Sector boundaries are necessarily the same on both sides of the 

FEBA; the principal attrition and FEBA movement computations in 

the model are carried out individually for each sector. 

Each side may have two air defense regions whose shared 

boundary evidently need not be at symmetric locations on the 

two sides.  The depths of the air defense regions may also 

differ from side to side, but apparently not within one side. 



Contained in each air defense region are an air base and related 

supply stockage system.  The logistics network discussed in 

Section 4 runs from the rear region to the combat sectors.  In 

general, the geographical representations in the Lulejian-I 

model are less detailed than those in comparable models such as 

IDAGAM I [1,2]. 



4.  RESOURCES AND RESOURCE ALLOCATIONS 

The following broad classes of resources are modeled in 

Lulejian-I. 

A. Maneuver forces:  3 battalion types 

3 types of tanks 

3 types of armored personnel carriers 

3 types of antitank weapons 

3 types of mortars 

1 type of hand-held weapon. 

B. Artillery forces:  6 types 

C. Attack helicopter forces:  2 types 

D. Tactical air forces 

5 types of tactical aircraft 

Aircraft shelters 

Airlift aircraft. 

Each side may have up to six national participants whose 

battalions may be structurally different.  Usually, but not 

necessarily, the three battalion types are infantry, mechanized 

infantry, and armored battalions.  Although bookkeeping in the 

model is done at the battalion level, the engagements it seeks 

to represent are of division- or corps-level magnitude. 

Tactical aircraft may perform air defense, air base at- 

tack, supply interdiction, close air support, air defense sup- 

pression, and escort missions.  Relative capabilities of air- 

craft types in the various missions are provided as inputs by 

the model user; daily allocations of aircraft to missions are 



computed using the two-sided optimization procedure discussed in 

Section 2. 

The Lulejian-I model includes the following kinds of supplies, 

which must pass from a "port" to the forward combat area through 

the supply network (discussed in the next paragraph). 

• k  types of battalion-sized combat units 
(usually infantry, mechanized infantry, armored and 
SAM battalions) 

• 4 types of individual combat units 
(usually individual infantry, APC, tank and SAM 
replacements) 

• General supplies 

• Eridges to restore or increase network capacity 

• Empty logistics vehicles. 

The supply network is linear, as shown in the diagram below. 

"Port" Forward Combat Areas 

Supply Network 

The term "port" is used here only in a generic sense and repre- 

sents simply the entry point of the supply network.  Port capacity 

is limited. 

Time required for vehicles to transit from the port to the 

forward combat area is a function of the length and capacity of 

the network.  The latter can be increased by the addition (notion- 

ally) of bridges and decreased as a result of interdiction by 

enemy aircraft.  In addition, enemy aircraft can destroy vehicles 

and supplies traveling through the network. 

It is assumed that the battalion-sized units themselves 

possess enough transportation vehicles to reach the forward 

areas; these resources enter the supply network immediately 

upon arrival at the port.  The remaining resources are stock- 

piled in the port pending availability of transport vehicles, 
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and arrive at theC^orpin proportions determined by the optimi- 

zation algorithm. However, so far as airlift capacity permits, 

individual infantry replacements are airlifted to the front. 

Ground forces emerging from the network enter ground force 

reserve pools (battalion-sized units) and replacement pools 

(individual units) and thereafter are allocated in a manner 

described later in this section.  Supplies are allocated to 

the two region depots and two air base depots on the basis of 

relative requirements that day.  Empty transport vehicles re- 

enter the network and return to the port. 

The equations used to compute the amounts of supplies 

entering the network, attrition to vehicles in the network, 

network capacity and output as a function of capacity and usage, 

network damage, and interdiction are all exponential equations 

of the type discussed in Section 5.  Rather than present these 

equations here we refer the reader to Section 5 for details. 

The comments made there concerning exponential equations are, 

of course, equally pertinent here and perhaps even more so to 

nonattrition equations of exponential form.  For those there 

is no underlying and rigorously derived equation. 

User-specified or internally fixed and user-parameterized 

decision rules are used to control all aspects of ground force 

allocation other than the initial massing and initial choice of 

sectors of attack (discussed in Section 2); namely, selection 

of offensive/defensive postures in each sector, allocation of 

reserve battalions and replacement to sectors, and allocations 

of battalions into and out of a pool of "fought-out" units 

which have been withdrawn from on-line duty and cannot yet be 

recommitted to battle.  After a period of time in the pool 

fought-out battalions enter reserve status, at which time they 

may re-enter combat.  Replacement troops may be identified with 

a particular national participant and their assignment may be 

restricted to battalions of that participant. 

11 



Ground force allocation computations are made last for each 

simulated day of combat and are made in the following order: 

1. Determination of "fought-out" battalions and their 
transfer to pool; 

2. Allocation of individual replacements to on-line, 
fought-out, and reserve battalions; 

3. Determination of fought-out battalions to be returned 
to reserve status; 

4. Selection of postures for next day; 

5. Allocation of reserve battalions to sectors-. 

One of the four following replacement policies is chosen by 

user-prescribed input; 

1. Pure unit replacement—replacements are allowed only to 
reserve battalions; 

2. Modified unit replacement—replacements are sent first 
to reserve battalions and, if possible, then to fought- 
out battalions; 

3. Modified individual replacement—individual replace- 
ments are sent to on-line, reserve, and fought-out 
battalions, respectively, in order of decreasing 
priority; 

4. Pure individual replacement—individual replacements 
are allowed only to on-line battalions . 

The exact equations used for the various computations will 

not be reproduced here; the reader is referred to [8]. 

Posture determination is based on a complicated set of 

rules involving the preceding day's posture, exposed flanks, 

success of the preceding day's attack, the number and length 

of exposed flanks on both sides, and FEBA movement in adjacent 

sectors on the preceding day.  The model represents three 

basic postures:  attack, hold (a hasty defense), and delay. 

We can find no evidence of a capability to model prepared 

defenses.  The daily situation in a sector may thus be one 

of the following:  an attack against a hold posture, an attack 

against a delay posture, or both sides holding (no attack).  A 

12 



flank is exposed if the adjacent portion of the next sector is 

occupied by the opposition and critically exposed if its length 

exceeds a user-prescribed value.  Withdrawal always occurs to 

reduce the length of a critically exposed flank.  The precise 

rules for posture determination may be found in [8], 
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5.  THE EXPONENTIAL ATTRITION EQUATION 

Virtually all attrition computations in Lulejian-I employ 

a particular exponential attrition equation, so it seems worth- 

while to consider that equation in some detail before discussing 

its application in the model.  The generic attrition equation 

used in Lulejian-I is of the form 

(1) AT = T 

where 

KPT) 
T = number of targets , 

AT = attrition to targets , 

S = number of shooters, 

and where p is a "kill potential per shooter," which may depend 

(in the model) on exogenous factors such as shooter and target 

type or terrain, but must be independent of S and, especially, 

of T.  This seems to make physical sense only if T is so large 

relative to S that detection is essentially no problem and 

attrition thus depends only on the killing capabilities of 

each shooter.  S must also be small relative to T in order 

that no target be attacked by more than one shooter. 

It seems useful to seek, in the spirit of [6], a set of 

carefully stated assumptions that leads to (1) or—more pre- 

cisely—to an equation of binomial form to which (1) is an 

approximation.  Additional comments concerning the various 

attrition equations discussed here can be found in [2] and 

[6].  Here is one such set(of assumptions that confirms the 

heuristic remarks of the preceding paragraph. 
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1) At a fixed time all T targets become vulnerable to 
detection and attack by all S searchers; 

2) The probability that the i  searcher detects one or 
more targets is d for all i = 1, . .., S, where d is a 
constant in [0,1].  We emphasize that d is a function 
of neither S nor T; 

3) Every target is equally likely to belong to the set of 

targets detected by the i  searcher.  Of the targets 

detected by the i  searcher, he chooses exactly one to 
attack, according to a uniform distribution over those 
targets he has detected and independently of the de- 
tection process; 

4) The conditional probability that a searcher kills a 
target, given that he attacks it, is a constant k; 

5) No searcher may attack more than one target; 

6) Detection and attack processes of the different 
searchers are mutually independent. 

Consider now the j   target.  The probability that this 

target is attacked by the i  searcher can be expressed as 

P{S, attacks T } = P{S makes a detection} 

• P{S attacks T |S makes a detection} 

since targets are indistinguishable.  Consequently the probability 

that T is killed is 

S 
P{T. killed} = 1 - (l - 4*r)  , 

so we have the following result. 
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PROPOSITION.  Subject to assumptions 1) to 6) above, 

S 
(2) E[Targets killed] = T[~1-(1 - ~-) 

3 
If in (2) we approximate (l- -jp-)  by exp(--^r-) and put p = kd 

(which now has the interpretation as the probability that a parti- 

cular searcher kills some  target), then we obtain (1).  If, on the 
S 

other hand, we approximate ^L - -^r)  by 1 - -7p, i.e., the first two 

kd S terms of the binomial expansion of (1-^=-) , then (2) becomes 

(3) AT = kdS , 

which is an attrition equation of Lanchester square form.  Note 
kd that the approximation leading to (3) requires that yS be small, 

the physical interpretation of which is that there are so many 

targets, all searchers can simultaneously bring their capability 

to bear on (different) targets.  This interpretation is consis- 

tent with both that of Lanchester and that of the work of Karr 

concerning stochastic analogues of Lanchester processes [5]. 

An interesting comparison arises between (2) and the 

binomial attrition equation derived in [6].  In [6], subject 

to a one-on-one detection hypothesis, one obtains the equation 

(*0     E[Targets killed] = T{1-(1 - |[l-(l-d1)
T])S} , 

where d-, is the probability that a given searcher detects a 

given  target.  In this case the probability that a given 

searcher detects some  target (i.e., one or more targets) is 

17 



(5) d(T) = 1 - (l-d1)
T , 

which is a function of T rather than a constant, as in (2). 

Using (5) we can rewrite (4) as 

E[Targets killed] = T[l-(l - ^^) 

which illuminates both the similarities and the differences 

between (2) and (H). 

If in (4) we first make the approximation 

(l-d^ ~ 1 - djT , 

and then the approximation 

(l-kd1)
S - 1 - dkxS , 

then (4) becomes 

(6) E[Targets killed] = kd^T , 

which is of Lanchester linear form.  Thus the linear-law version 

of the attrition equation to which the prototype Lulejian-I 

equation (1) is an approximation is the so-called "Kent equation" 

(4).  If it were desired to modify Lulejian-I to Include linear- 

law attrition for situations in which the one-on-one detection 

hypotheses seem more plausible than the hypotheses of (2), then 

(4), or some exponential approximation thereto, would seem to 

be the proper equation to use. 

Incidentally, the observation that (2) represents a form 

of square-law attrition and (*0 a form of linear-law attrition 

buttresses the square-law/linear-law distinction made in [5] 

and [7], as opposed to other, previous distinctions.  In the 
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context of both the continuous time stochastic processes dis- 

cussed in [5] and the instantaneous processes discussed here, 

it is the linear-law process which involves one-on-one detections 

and the square-law process which has engagement rates (detection 

probabilities) independent of the size of the opposing force. 

It was noted in [6] that there are formidable computa- 

tional difficulties, although no theoretical ones, involved in 

generalizing (*0 to the case of several types of searchers and 

targets, with detection and kill probabilities dependent on the 

type of target and type of searcher.  The difficulties (cf. 

p. 25 of [6]) arise mainly from the fact that each shooter can 

attack at most one target.  Because in the context leading to (2) 

the probability of detecting some target does not depend on the 

number of targets, derivation of the heterogeneous analogue is 

not so difficult. 

Indeed, consider the following set of assumptions: 

1) There are M types of searchers, S(i) searchers of type 
i (i=l,...,M), N types of targets, and T(J) targets of 
type j (j=l,...,N); 

2) At a fixed time all targets become simultaneously vul- 
nerable to detection and attack by all searchers; 

3) The probability that a particular searcher of type i 
detects some target (of any type) is d., where d. does 

not depend on the numbers of targets present; 

*0 All targets are equally likely to belong to the set of 
those detected by a particular searcher and of this set 
he chooses exactly one to attack, according to a uniform 
distribution and independently of the detection process; 

5) The probability that a searcher of type i kills a target 
of type j, given that he attacks it, is k... 

6) No searcher may attack more than one target; 

7) Detection and attack processes of all searchers are 
mutually Independent. 
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One can then derive the following result. 

PROPOSITION.  Subject to assumptions 1) to 7) above, for each j 

S(i). 

(7)  E[type j targets killed] = T( »KU-^) 
where 

T = T(l) + . . . + T(N) 

is the total number of targets. 

Making the same exponential approximation in (7) that yields 

(1) from (2) gives 

[l-exp(- | ^ k^Sd))] , (8)  E[type j targets killed] ~ T(j) 

while making the approximations involved in putting 

M  /   k..d.\S(i)        M  k..d.S(i) 

yields 

M 
I 

i=l 
(9)     E[type j targets killed] , ^lll J^ k^d^U) 

Now equation (9) is precisely analogous to the heterogeneous 

stochastic Lanchester square-law attrition process S3a of [5], 

so (7) is in fact a heterogeneous Lanchester square attrition 

equation.  Moreover, the fact that (9) is analogous to process 

S3a of [5], rather than process S2 there, furthers the asser- 

tion made in [5] that S3a, and not S2, is the appropriate 

heterogeneous analogue of process SI of [5]. 
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We now consider the attrition computations in the Lulejian- 

I model in more detail.  First of all, equations (7) and (8) 

appear nowhere in the model; instead the model aggregates tar- 

gets into a single class with kill probability, by type i 

searchers, of 

i  N 

(10) k± = | I  k±JT(j ) . 

Attrition is computed and then allocated among target types on 

the basis of numbers of targets present, rather than on the same ■ 
basis used in (10).  Consequently, 

E[type i   targets killed] = T(j ) 11-exp (- ±    I    k^SCDjJ . 

In several instances, the model represents detection and kill 

separately.  For example (in the homogeneous case, for simplicity), 

the expected number of targets detected would be given by 

(lla) Td = T(l-e"
dS/T) , 

where d has the interpretation of a detection probability inde- 

pendent of the number of targets.  Attrition would then be 

/  -kS/T \ 
(lib) AT = Td(l-e    

aj , 

where k is a probability of kill.  Substitution of (lla) into 

(lib) yields 

AT = T(l-e-dS/T)(l-exp[-kS/T(l-e-dS/T)])  ; 

—dS/T 
if one approximates, in the third factor, (1-e    ) by dS/T, 

this last equation simplifies to 

(12) AT = T(l-e-dS/T)(l-e-k/d) , 

which is qualitatively the same as (1) insofar as dependence on 
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S and T.  Hence the preceding comments concerning equations (1) 

to (8) are germane to the attrition computations in Lulejian-I, 

even when detection and attrition are computed using separate 

equations. 

Incidentally, it seems inappropriate to us that S should 

appear in (lib) rather than dS, which is the expected number of 

searchers that have detected some target, unless the intention 

is that all searchers can attempt to kill detected targets, 

whether or not they have themselves made a detection, which 

seems implausible to us.  With this modification, (12) becomes 

AT = T(l-e~dS/T)(l-e~k) 

-kT(l-e-dS/T) ; 

our previous comments remain relevant. 

Use of exponential approximations of the form (1) or (8) 

to binomial equations such as (2) or (7), respectively, has 

both good and bad aspects.  The main favorable point is compu- 

tational efficiency:  the time required to perform an exponen- 

tiation is approximately half that required (in (2), for ex- 

ample) to raise the quantity (1-kd/T) to the power S, especially 

when S is not an-integer.  When an equation is used many times 

in a model (there are even iterative calculations of close com- 

bat casualties, as described in Section 7), the reduction in 

computer time is significant.  On the other hand, if the quan- 

tity kdS/T is ever very large (i.e., the approximation of (2) 

by (1) is not accurate), the error incurred using exponential 

approximations will then propagate (perhaps compounding itself) 

through subsequent calculations.  There appears to be no way of 

ensuring, a priori,  that such situations will not arise.  Possi- 

bly less error would arise (especially for moderately large 

values of S) if in (2) one simply replaced S by its integer 

part (or rounded to the nearest integer).  With careful 
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computation of integer powers of (1-kd/T) the time required 

should not greatly exceed that needed for the exponential 

equation (1). 

We wish to point out that computational efficiency is 

not the usual justification for the use of (1) as opposed to 

(2).  In the first place, it is not clear that (2) was known 

previously; the equation (1) may have been chosen simply on 

an ad hoc  basis, being justified—as is often the case—on the 

basis of monotonicity and limit properties.  Other, similar 

justifications advanced in the report [8] are that exponential 

equations account for "overlap" and decreasing marginal returns 

To summarize, we have the following objections to the 

overall attrition methodology in Lulejian-I, aside from con- 

siderations of whether the underlying assumptions are believed 

satisfied in certain combat situations: 

1. There is no representation of linear-law processes in 
which one-on-one detections are crucial.  This seems 
especially questionable in the context of tactical 
air combat. 

2. An aggregated equation is used instead of the correct 
(at least in terms of the underlying assumptions) equa- 
tions, namely (17). 

3. The use of potentials obscures important physical dis- 
tinctions and computation of them may involve assump- 
tions inconsistent with those underlying the attrition 
model itself. 

The next section of this paper contains more detailed 

descriptions of the attrition calculations in Lulejian-I. 

Inasmuch as essentially only one attrition equation is used, 

the descriptions concern largely the computation of potentials 

and the order of interactions, and also determination of the 

numbers of weapons entering in various interactions. 
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6.  ATTRITION COMPUTATIONS 

Tactical Air Combat Model 

The Lulejian-I model represents weapon system performance 

degradation due to Insufficient supplies by means of capability 

factors of the form 

a 
c " V    ' 

where 

c = capability factor, 

a = allocated supplies, 

r = required supplies. 

One should best envision the fraction c of the weapon under con- 

sideration as receiving a full allocation of supplies with the 

remaining force "grounded." Thus the number of tactical air- 

craft allocated to mission type m is 

(13) A(m) = A • f(m) - s(m) . c, 

where 

A = total number of available aircraft, 

f(m) = fraction of aircraft allocated to mission m, 

s(m) = sortie rate on mission m, 

and c is as computed above.  The allocation fraction f(m) is 

computed by the optimization algorithm discussed in Section 2. 

Aircraft are further allocated to CAS and interdiction missions. 

Suppression aircraft associated with attack aircraft assigned 

to interdiction targets may suppress area-deployed air defense 

artillery (ADA) on a fly-by basis.  This results in no kills of 
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ADA but only in reduced effectiveness, according to the equation 

(It) f = 1 - exp[- i I  A(i)3(i)] , 
a  i 

where 

i = suppression aircraft type , 

A(i) = number of type i suppression aircraft? 

3(i) = area suppressed by one type i aircraft, 

a = area over which ADA is deployed, 

and f is the fraction of ADA sites suppressed. 

Attacking aircraft are then subject to attrition by area- 

deployed ADA, first by SAMs and then by AAA, because SAMs have 

greater range.  Kill potentials are computed using the equations 

(15) k(s) = n(s) . c • p1 • p2 

k(a) = n(a) • c J p , 

where 

n(s)[n(a)] = number of unsuppressed SAM[AAA] sites, 

c = capability factor, 

P1 = tracking probability for SAM, 

P2 = probability of kill given tracking, for SAM, 

p = kill probability for AAA. 

As discussed in Section 2, the probabilities p, and p must refer 
to "some attacking aircraft," not "a particular attacking air- 

craft" and must be independent of the number of attacking air- 
craft.  Attrition to aircraft by SAMs is then 

(16a) AA(s) « A(l - e'
k(s)/A) ; 

and that by AAA is 

(16b)      AA(a) = (A - AA(s))(l - e"
k(a)/(A-AA(s)>) . 

As mentioned in Section 5,   losses are allocated on the basis of 
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numbers of aircraft of various types present, whereas p , p , p 

are computed by weighting type-dependent probabilities.  Con- 

sumptions of SAMs and AAA ammunition are also computed. 

The air battle proceeds in the following manner:  escorts 

of attack aircraft seek to engage aircraft of the defender. 

Unengaged defenders, together with a user-input fraction of 

engaged, but surviving, defenders (with suitably degraded effec- 

tiveness) then engage the attack aircraft.  All engaged attackers 

abort their mission.  We now give a more detailed description. 

First the defense must detect the attacking force and vector 

aircraft to engage it.  The number of attack aircraft detected is 

(17) A2 = min M, A^l - e    1)\ , 

where 

M = maximum number of aircraft the defense can detect, 

A, = A - AA(s) - AA(a) = number of attacking aircraft 
which have survived area-deployed ADA. 

The remaining A - A attacking aircraft are not detected and pro- 

ceed unmolested to their targets.  We can find no rigorous deriva- 

tion of (17); some of the comments in Section 5 are applicable to 

it.  Note that M is independent of the sizes of defending and 

attacking forces and so presumably represents a single, centralized 

detection system such as AWACS or ground-based radar. 

Engagement potential of type i escorts against type j 

defenders is then computed to be 

(18) p(i,j) = E(i) D(J)  r(l,j) , 
I D(k) 
k 

where 

E(i) = number of type i escort aircraft, 

D(j) = number of type j defender aircraft? 

27 



r(i,j) = engagement potential of one type i escort against 
only  type j defenders, 

and where p(i,j) is the potential of type i escorts to engage 

type j defenders.  Note (once more) that the r(i,j) are inde- 

pendent of the numbers of defenders present and are presumably in 

units of "type j defenders per type i escort."  The number of en- 

gaged defenders of type j is thus 

(19) D1(J) = D(j)(l - exp[^-y I  p(i,j)]) . 

The "derivation" of this equation given in the report [8] invol- 

ving Poisson distributions is incorrect.  It would imply that the 

engagement potential of escorts is always fully realized. 

As a consequence of (19) the number of type j defenders 

engaged by type i escorts is computed to be 

(20) Vi,j) = Dn(j)  P
(1>J}  . 

1        1 I  P(i,k) 
k 

The number of type j defenders killed by type i escorts is 

therefore 

(21) AD1(i,j) = D1(i,j)(l - exp[-p(i J)k1(j,i)/D1(i J)]) , 

where k is the probability of kill given engagement, while the 

number of type i escorts killed by type j defenders is 

(22) AE(i,j) = p(i,j)(l - exp[-p(iJ)k2(j,i)/D1(i,j)]) , 

where the kp(j,i) are probabilities of kill given engagement 

and p(i,j) is given by (18).  The logic behind (22) is that 

each type i escort is involved in p(i,j)/E(i) engagements with 

type j defenders and vulnerable in each of them. 

The interaction between defending interceptors and attack 

aircraft is treated analogously, so we omit a detailed description, 
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A certain fraction f of type j defenders that are engaged but 

not killed by escorts are allowed to engage the attack aircraft. 

These are treated as different types of defenders in order to 

reflect differential effectiveness. 

No other interactions in the model are represented in such 

detail; as previously noted most attrition calculations are 

performed with weighted parameters and aggregated forces.  The 

objective is to obtain numbers of kills as a function of the 

type of killing weapon.  In general this appears to be an ex- 

tremely difficult theoretical problem, although it can be handled 

fairly easily within the context of the continuous time stochastic 

Lanchester processes discussed in [5] by enlarging the state 

space; the computational difficulties are always severe.  A 

difficulty in attempting to allocate kills on the basis of the 

killing weapon, within the context of (7) or (8), is that some 

target may have been killed more than once; i.e., by more than 

one searcher.  Such "overkills" cannot be sensibly allocated. 

In equation (7) 

1 -  n  (1 - k,.d,/Tru; 

i=l      1J * 

is the probability that a given target of type j is killed (by 

one or more searchers).  The conditional probability that it is 

killed by one or more type j searchers, given that it is killed, 

is therefore 

(23) q(i,j) = 
1 - (1 - ki.i 

d /T)S(i) 
i 

• 

1 - 
M 
n (l - k»jV*>8U) 

The "overkill" alluded to < above is reflected in the fact ; that 

I  q(i,j) may 
i 
to 1 (or if 1 

exceed 1. If , however ', it is sufficiently close 

for each j the q(i,j) were linearly normaliz :ed 

to sum to 1) then the < expe< :ted number of type j targets killed 

by type i searchers become! 5 . 
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[1 - (1 - k.,d./T)S(i)] 
AT(i,j) = AT(j) iJ_i ^^ . 

I   [1 - (1 - »<4jV
T)    ] 

Note that this is not the same as the equations used in Lulejian-I. 

Interdiction aircraft are allocated proportionately to target 

types, and CAS aircraft to sectors, on the basis of numbers of 

battalions present; ADA suppression aircraft assigned to interdic- 

tion aircraft are allocated in the same proportions. 

In the first interaction, suppression aircraft are vulnerable 

to point target defenses—first to SAMs and then to AAA in the 

same manner as described by equations (15) and (16).  The calcu- 

lations are performed by using weighted parameters and aggregated 

numbers, but are disaggregated on the same weighted basis, thus 

preventing a possible inconsistency alluded to in Section 5. 

Suppression aircraft surviving point target ADA then attack 

these air defense sites, some of which are destroyed permanently, 

while others are suppressed for one day only.  Potential of 

suppression aircraft against air defense sites is given by 

(210 p = I   A(i)p(i) , 
i 

where 

A(i) = number of suppression aircraft of type i, 

p(i) = fraction of one ADA site suppressed by one type i 
aircraft, per sortie. 

It is assumed that not more than one ADA site can be suppressed 

on one sortie.  The number of ADA sites suppressed is then 

(25) N = N(l - e~p/N) , 

where 

N = number of ADA sites; 
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these sites cannot interact with attacking aircraft.  The number 

of ADA sites destroyed is 

(26) AN = qN , 

where 

q = probability an ADA site is killed, given it is suppressed 

Suppressed, but not killed, sites return to full effectiveness in 

the next day's combat.  Attacked but unsuppressed ADA battalions 

have decreased effectiveness against attack aircraft, losses of 

which are then computed in an entirely analogous manner. 

There is present in each combat sector additional ADA to 

defend against enemy aircraft on the CAS mission in that sector. 

As with the interdiction mission, the attack aircraft have ADA 

suppressor aircraft associated with them.  The number of sup- 

pressor aircraft engaged by SAM sites is given by 

(27) A1  = A(l - exp[- 2nrc/w]), 

where 

A ■ number of ADA suppressor aircraft attacking in the 
sector, 

n = number of ADA sites in the sector, 

r = site acquisition radius, 

c = capability factor based on general supplies, 

w = sector width. 

In order that (27) be plausible, the ratio r/w must be small. 

The number of suppressor aircraft destroyed by SAMs is there- 

fore 

(28) AA = Ax(l - exp[- nmcc
f ^2

/kl^ * ■ 

where c, n, A are as in (27) and where 

m = number of SAMs fired per site, 

c' ■ capability factor based on ammunition supplies, 
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q = tracking probability, 

qp = conditional probability of kill, given tracking. 

As discussed in connection with air-to-air attrition, a plausible 

interpretation of (27) and (28) requires that detection be 

carried out by a system physically distinct from the firing system 

and that there be some communication of detection information (as 

opposed to each site being able to attack only those aircraft it 

detects).  Note that while detection information is communicated, 

attacks are uncoordinated in the sense of being probabilistically 

independent; this seems implausible. 

The remaining A-AA suppression aircraft are then vulnerable 

to AAA sites and attrition is calculated entirely analogously to 

the preceding computations (using a two-step process).  ADA sup- 

pression is then computed in the same manner as described in 

equations (1*0 or (25). 

Aircraft losses to, and suppression of, ADA sites associated 

with logistics targets and air bases are computed analogously. 

The same is true for calculations involving attack aircraft 

assigned to the CAS mission. 

We next discuss attrition of aircraft on the ground at air 

bases.  Of the airlift aircraft at an air base, a user-input 

fraction are at risk.  The number of tactical aircraft at risk 

is determined by means of the equation 

(29)        B = I   (B(i) - AB(i))(l - s(i)cd(i)) , 
i 

where 

i = mission type , 

B(i) = number of tactical aircraft assigned to mission i, 

AB(i) = aircraft losses on mission i 9 

s(i) = sortie rate on mission i, 

c = capability factor based on supplies, 

d(i) = fraction of day required for one sortie on mission i; 
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and where B is the number of tactical aircraft at risk.  Tactical 

aircraft are sheltered, without priority as to type, to the extent 

possible.  Thus, of the B tactical aircraft at risk, 

(30) Bc = min{B,S} 

are sheltered, where S is the number of available shelters, and 

the remaining B = B - B are parked in the open.  Airlift air- u       s 
craft are never sheltered, even if shelters remain unoccupied 

by tactical aircraft. 

The Lulejian-I model treats aircraft in the open as "point 

targets" and aircraft in shelters as "area targets."  Kill poten- 

tial of attacking aircraft against unsheltered aircraft is 

(3D Pu = I  Ajkj , 

where 

j = type of attacking aircraft, 

A, = number of type j attacking aircraft not engaged by 
J   any defenses, 

k. ■ potential of one type j attacker, in units of expected 
^   number of unsheltered aircraft destroyed. 

Potential against sheltered aircraft is 

(32) ps = I  Vj , 

where I     is the kill potential of one type j aircraft against 

shelters, in units of area.  Since (as will be made explicit in 

(33) and (31*) below) no allocation of attacking aircraft to 

different targets is made, the potentials k and I.  must account 

for some sort of allocation of fire on the part of attacking air- 

craft.  Attrition to aircraft in the open is 

(33)        ABu = (B + Bu)(l - exp[- pu/(B * Bu)]) , 
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where B is the number of airlift aircraft at risk.  Attrition 

to shelters is 

AS = S(l - exp[- p /a]) , 
B 

where 

a = area initially  occupied by shelters. 

Use of the initial area implies that destroyed shelters are not 

discernible to attackers. 

The number of sheltered aircraft destroyed is then 

(3*0 ABs = 

AS  ,    if Bs = S 

AS§ ,    if Bs = B . 

As usual, losses to different types of aircraft are allocated 

proportionately. 

Ground Combat Model 

As is done for most air combat computations, all weapons 

within each weapon class (tanks, APCs, artillery, CAS aircraft, 

helicopters, mortars, and antitank weapons), are aggregated 

into one weapon type with averaged parameters for the purpose 

of computing ground combat losses.  Losses are allocated on 

the basis of numerical proportions. 

To begin, for each sector (calculations are done individ- 

ually for each sector) the number of on-line defending battal- 

ions of each type (infantry, mechanized infantry, and tank 

battalions) is computed by means of the equation 

(35)   B1(i) = B(i)[fQ + (fm-f0)(l - e'V^l - e    m)] , 

where 
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1 = battalion type (1 = infantry, 2 = mechanized infantry, 
3 = tank), 

B(i) = number of battalions in sector, 

f0 = fraction of battalions on line when no FEBA movement 
is occurring, 

f = fraction of battalions on line when maximum FEBA 
movement is occurring, 

F = maximum possible FEBA movement, 

AF ■ present day's FEBA movement, 

and where B,(i) is the number of type i defending battalions on 

line.  The iterative computation scheme discussed in Section 7 

in fact begins at this point. 

The assumptions leading to (35) are not easily discerned. 

When AF = 0, (35) reduces to 

B1(i) = B(i)[fQ] ; 

that is, when there is no FEBA movement the defender, through 

a combination (presumably) of choice and necessity, maintains 

a fraction f0 of his battalions on line.  On the other hand, 

if AF = F then (35) becomes m 

B1(i) = B(i)[fm3 , 

since in this case 

(1 - e    m) = (1 - e"1) . 

Thus (35) is just an interpolation: 

r    /"AF/Fm      -1\ A -AF/Fm\l 

Why an interpolation is appropriate is not clear.  Moreover, 

use of this form has implications concerning positioning of 

forces within a sector, the rate at which reserve forces may 

be committed to try to stem an advance, and the rate at which 
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reserve forces become "on-line" as the FEBA moves toward them. 

None of these implications is explained in the report [8]. 

The next state of interaction represented is contacting 

of on-line defending battalions by attacking battalions.  The 

number of type i defending battalions contacted by attacking 

battalions is given by 

(36)     B2(i) = B1(i)fl - exp[- pi^ I  WjSjRU)]) , 

•rhere 

j = attacking battalion type, 

R(j) = number of type j attacking battalions, 

w = sector width, 

w = search width of type j battalion, 

s = advance rate (maximum) of type j battalions. 

Here again, the exponential equation seems to be used on a rather 

ad hoc  basis.  Note that B (i)/B (i) is independent of i; that is, 

the fraction of defending battalions contacted is the same for all 

battalion types.  This assumption that all battalion types are 

equally easy to contact seems implausible.  An analogous equation 

gives numbers R?(j) of type j attacking battalions contacted by 

the defense; contact is thus neither mutual nor symmetric. 

The next interaction is "location of opposing forces at 

the squad level," which should not be construed to mean that 

the Lulejian-I model operates at this level of detail.  On the 

contrary, it is more aggregated than IDAGAM I [1,2], at least 

in terms of attrition calculations.  The purpose of this parti- 

cular set of computations is to take into account, in a fairly 

explicit fashion, the effect of separation distances of oppos- 

ing forces.  More detailed discussions of the rationale for 

treating distance appear in Sections 2 and 7, which (briefly 

stated) is that each side can reduce its casualties to an 
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acceptable level by increasing the separation distance between 

the two sides.  The defender accomplishes this by retreating, 

the attacker by breaking off and withdrawing.  FEBA movement 

and ground combat casualties are, therefore, computed jointly 

using an iterative technique discussed in more detail in the 

next section.  Thus  "location at squad level" is but a surro- 

gate used to account for the effect of separation distances on 

ground combat attrition. 

The model keeps a record of nine separation distances (be- 

tween each kind of defending battalion and each kind of attacking 

battalion).  The number of located type i defending battalions is 

computed using the equation 

(37)      B3(i) =B2(i)(l -exp[- ^Py^ij]) > 

where 

B-.(i) = number of located defending battalions of type 1, 

p4 4 = "potential of type j attacking battalions to 
locate type i defending battalions," 

= separation distance between type i defending 
battalions and type j attacking battalions. 

The location potentials p.., so far as we can determine from 

[8], depend on neither the numbers of defending battalions nor 

the numbers of attacking battalions.  These potentials must 

also, evidently, be valid at unit separation distance.  In 

order that (37) have the proper dimensions, the p.. should be 

in units of distance, which we cannot interpret in a plausible 

manner.  Note that (37) also contains an explicit quantification% 

but without a physically plausible and rigorously stated under- 

lying assumption, of the effect of separation distance on the 

ability to locate opposing battalions.  Again, the exponential 

equation seems to have been chosen on an ad hoc  basis. 
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Similar equations give the numbers R-(j) of accurately 

located attacking battalions.  Located numbers of battalions 

are transformed to located numbers ID(I )of defending (attacking) 

infantry, numbers TD(TA) of defending (attacking) tanks, and 

numbers ?D(
p
A) of  defending (attacking) armored personnel 

carriers (APCs) in the obvious manner.  Similar notations with 

"~" denote contacted numbers. 

All contacted  infantry and armor are vulnerable to support 

fire from the opposing side (arising from support battalions, 

artillery, aircraft, and helicopters).  The number of defending 

infantry killed by support fire is 

where d is an effective density of defending infantry and f is 

the antipersonnel potential (APP) of support fire by the attacker 

(in units of area per day).  The computation of f involves sum- 

ming over the different types of support fire weapons; the contri- 

bution from each weapon type depends linearly on the number of 

weapons of that type present. 

Armor losses to fire from CAS aircraft and helicopters in 

support roles are computed in the following manner.  The number 

of defending tanks acquired for fire is 

D AD   D 

where 

T^  = number of defending tanks acquired , 

TD, T , P are as above, 

and where f is the antiarmor potential of support fire units of 

the attacker, in units of search potential per day, and is 

obtained by summing contributions from aircraft and helicopters. 
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The factor Tn/TD is the fraction of contacted tanks located and 

is asserted in [8] to account for information received from 

maneuver units.  We do not understand how it does so.  In order 

that (39) be consistent with the other equations in the model it 

seems necessary to include an additional factor of 1/T in the 

exponential term.  Acquisition of defending APCs and attacking 

armor is entirely analogous.  Antiarmor attrition potential p is 

obtained by summing contributions from CAS aircraft, helicopters, 

and artillery and is a linear combination of the numbers of wea- 

pons present.  Note that artillery are involved in attrition but 

not acquisition, implying further communication of information 

among various weapon systems.  The number of defending tanks 

destroyed by support fire is thus 

(«0)    <> - T<»(l - exp[- P/(T<1> ♦ ><»)]) . 

Losses of APCs and attacking armor are computed in the same way. 

Next we discuss computation of infantry losses due to oppos- 

ing maneuver units; in some sense this and similar equations for 

armor losses are the main attrition equations of the model.  Anti- 

personnel potential of attacking maneuver unit weapons is 

(41) P = o(IA - (1/2)AI^
1)) 

+ B(TA - (1/2)AT^
1)) 

+ Y(PA - (1/2)AP^
1}) , /' 

where a, 3, Y are per weapon antipersonnel potentials and are of 

the form c + d/R where c, d are constants (which depend on the 

weapon type) and R is the appropriate separation distance; cf. 

(37).  Here also IA, TA, P are the numbers of contacted  attacking 
A  A  A (1)  —TTT~ (1) 

infantry, tanks, and APCs, respectively, and ^  > TA  » PA  are 

losses due to support fire of the defending side.  The adjustments 

for losses represent an effort to account for the fact that all 
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support fire-induced casualties do not occur at one time.  This 

is one of the few attempts we have seen to deal explicitly with 

the problem of discrete computation of losses occurring over 

time; in most cases, however, fractional losses are sufficiently 

low that this adjustment does not cause a perceptible increase 

in the accuracy or realism of the model.  The number of defen- 

ding infantry killed by attacking maneuver unit weapons is then 

computed using the equation 

where 

p = APP computed in (41)% 

ID = number of located infantry, from (37), 

and other quantities are as previously computed.  The factor 

(1), 

(-V) is the fraction of contacted infantry which survive LD 

supporting fire.  It is assumed that the same fraction of located 

infantry survive and that only these are vulnerable to maneuver 

unit weapons.  Hence for purposes of computing each sideTs losses 

all support fire casualties are assumed to occur at once at the 

beginning of the day, while for computing potential to destroy 

elements on the other side a different assumption is made.  More- 

over, the exponential term in (42) should contain the same ad- 

justment as does the other factor; this is an inconsistency in 

(42).  Losses of tanks and APCs to maneuver unit weapons are 

computed using analogous equations, but taking into account the 

relative indistinguishability of tanks and APCs.  Thus, the 

number of defending tanks destroyed by maneuver units is 
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M-'K-VM-VflD- 
where p is now the antiarmor potential of maneuver unit weapons 

of the attacker.  Similarly, the number of defending APCs de- 

stroyed by maneuver units is 

(44)  AP ^■u-n D 

where p is again the antiarmor potential.  Note that the second 

inconsistency of (42) does not occur in (43) or (44). 

Hence the main ground combat attrition equation in 

Lulejian-I contains two inconsistencies, neither of which is 

likely (for small loss rates) to cause any practical effect 

on the results of the model, but each of which could do so in 

certain situations and each of which can rather easily be 

corrected. 

Attack helicopters are assumed to carry out grouped attacks 

so as to attempt to saturate AAA defenses.  After much argument 

the attrition equation derived in the report turns out to be 

(45) AH = cH , 

where H is the number of attacking helicopters and c is the maxi- 

mum "acceptable" attrition rate for helicopters. The helicopters 

are assumed to choose a standoff distance r such that (45) holds. 
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In this case, subject to the usual exponential attrition equation, 

one can compute that 

where 

N = number of AAA guns , 

a = kill potential per AAA gun at unit range. 

Thus kill potential of AAA guns against helicopters is inversely 

proportional to range. 

The support fire contribution of helicopters is also in- 

versely proportional to range and is given by 

W) fH = H £ , 

where 

p = support fire potential at unit range, 

and r is given by (46). 

The attrition equations described here are used in an itera- 

tive joint calculation of FEBA movement and losses, described in 

further detail in the next section. 
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7.  FEBA MOVEMENT CALCULATION 

A unique feature of Lulejian-I is its iterative method for 

joint calculation of attrition to ground combat maneuver forces 

and FEBA movement.  As previously discussed, use of this method- 

ology is justified by the behavioral assumption that combat 

commanders trade off casualties and separation distance, 

generally by withdrawing when casualties exceed acceptable 

levels.  We now give a more detailed description of the mathema- 

tical representation of this process in Lu3ejian-I.  For an 

alternative treatment of the problem we refer the reader to 

IDAGAM I [1,2]. 

We introduce the following notations, which are essentially, 

but not precisely, those of Section 6. 

IDdA] = total number of defending [attacking] 
infantry committed to battle, 

AI [AI.] ■ total casualties to defending [attacking] 
u       A   infantry, 

TQ[TA] = total number of defending [attacking] tanks 
committed to battle, 

AT [AT.] = total losses of defending [attacking] tanksj 

?D[PA] = total number of defending [attacking] APCs 
committed to battle, 

APD[AP ] = total losses of defending [attacking] APCs> 

R(U,V) = mean separation distance between type U 
defending battalions and type V attacking 
battalions (I - infantry battalions, P - 
mechanized infantry battalions, T - armored 
battalions), 

cD(U)[cA(U)] = maximum acceptable attrition rates for 
defending [attacking] battalions of type U. 

All losses are functions of the separation distances R. 
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The model assumes that movement of each type of weapon is 

directly proportional to the ratio of actual attrition to maxi- 

mum acceptable attrition.  Thus the forward movement of attack- 

ing the infantry is 

/   AI.(R) \ 
(48a) MA(1,R) - s(l - jrfijTj  ■ 

where S is the maximum rate of movement (achieved only if no 

casualties are suffered; i.e., during unopposed advance).  The 

movement is negative if and only if actual casualties AI. exceed 

maximum acceptable casualties C (1)1 .  Equations analogous to 

(48a) are used to compute the following quantities: 

M.(T,R) = movement of attacking tanks , 

NL(P,R) = movement of attacking APCs . 

Movement of defending infantry (with positive movement still 

in the direction of the attacker) is given by 

/AI (R)    v 
(48b) MD(I,R) - s(^cnr^- V • 

The corresponding movements of defending tanks and armored per- 

sonnel carriers are computed analogously. 

For purposes of consistency the model requires that all six 

movements M.(I,R), ..., MD(P,R) be equal (so that there is a 

well-defined "PEBA movement," namely, the common value of the 

six movements).  Thus one wants R to be such that 

(49) MA(I,R) = MA(T,R) = MA(P,R) = MpCl.R) = MD(T,R) = MD<P,R) . 

There are five independent separation distances (the remaining 

four can be computed from these) and (49) contains five equations, 
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Let us consider for a moment the meaning of the FEBA move- 

ment computation embodied in (48) and (49).  If the common value 

of the six movements is positive then 

1) The attacker receives fewer than the maximum acceptable 
casualties to all maneuver unit types; 

2) The defender receives more than the maximum acceptable 
casualties to each type of maneuver unit; 

3) The attacker advances. 

If, on the other hand, the common value is negative, then 

1) The attacker receives more than the maximum acceptable 
casualties to each type of maneuver unit; 

2) The defender receives fewer casualties than the maximum 
acceptable number; 

3) The attacker retreats. 

Only in the seemingly unlikely event that every maneuver unit 

type on both sides receives exactly its maximum acceptable 

casualties does the FEBA fail to move.  This seems implausible 

to us; a more realistic view would be that over a rather large 

set of force levels and capabilities no FEBA movement takes place, 

Observe, in all cases, that all types of maneuver units on 

a particular side incur the same ratio of actual to acceptable 

casualties, that (except if no FEBA movement occurs) exactly 

one side exceeds its casualty thresholds, and that the amount by 

which the advancing side Is below its thresholds is related to 

the amount by which the retreating side exceeds its thresholds. 

None of these mathematical assumptions is even physically 

motivated, let alone plausible or desirable. 

In order to avoid difficulties with S as the maximum FEBA 

movement, one must assume that 

AI.(R) 

(50) ^^12, 
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and similarly for other casualty ratios.  For this implicit 

assumption that actual casualties cannot exceed acceptable 

casualties by a factor of more than two we know of no 

physical justification, nor even of a plausibility argument. 

Thus the purpose of the iterative computation is to 

select values of R for the given day such that (49) is satis- 

fied, in which case that day's losses and FEBA movement can 

then be computed as described in Section 6 and (48), respec- 

tively.  The iteration process is thus the following: 

1. Choose initial estimates of R and AS (the common 
value of the movements when (49) is satisfied); 

2. Use the separation distances to calculate, by 
the attrition methodology described above 
(namely equations (35) through (47)), losses 
and, by (48), movements; 

3. Check whether the equations (49) are satisfied. 
If so, the computation is done.  If not, esti- 
mate new separation distances R and FEBA move- 
ment AS and return to Step 2. 

The technique used to produce new estimates for R and 

AS is essentially a gradient method (i.e., Newton's method). 

When the iteration scheme converges {if  it does; there is no 

proof in the report that it will, but experience seems to 

indicate that it does) the day's losses and FEBA movement 

have then been computed. 

More basic still are questions of existence and unique- 

ness of solutions to the system (49).  Neither of these 

problems is addressed in the report [8] nor is there any 

indication of their having been dealt with in another 

document.  The system (49) consists of five nonlinear 

equations in five unknowns; four of the nine equations 

presented in the report are identities and need not be 

considered when discussing existence, uniqueness and com- 

putation of solutions.  In the absence of linearity or a 
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surrogate such as convexity, there are few explicit results 

concerning existence and uniqueness of solutions to such 

systems of equations. 

To illustrate the difficulties involved, we consider a 

simplified situation in which there is one type of maneuver force 

on the defending side and two types of maneuver forces on the 

attacking side.  Suppose, for concreteness, that the defending 

side possesses only tanks and the attacking side possesses tanks 

and APCs.  The relevant numbers of resources are TQ, TA and PA, 

respectively; the respective attrition thresholds are cD(T), 

c.(T) and c.(P).  R(T,T) is the separation distance between de- 

fending and attacking tanks; R(T,P) is the separation distance 

between defending tanks and attacking APCs.  Without loss of 

generality, we assume that the maximum FEBA movement S is equal 

to one.  We then wish to solve the equations 

(51a) 
ATA APA 

< :A(T)TA CA(P)PA 

ATD 
-1  =  1 

AT, 

cD(T)TD cA(T)TA 
(51b) 

Based on Equations (35) through (47) we simplify the loss 

equations relating ATD, AT. and AP. to the separation distances 

to become 
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klTD W TA , TA|1 - exp^ 

(52) APA = P,|l - exp^f^ 

ATD - TD fl - exp (-TDR^T)JJ 

where k , k , Ä,, are constants representing the combined effect 

of various potentials discussed in Section 6.  Note that de- 

fending tanks are invulnerable to attacking APCs. 

The goal is to find values of R(T,T) and R(T,P) such that 

(51) is satisfied, where AT., AP  and AT are computed using 

(52).  We first show that there is a unique value of R(T,T) 

such that 

ATD     .   .     ATA 

i.e., there is a unique solution to equation (51b).  Using (52) 

this equation may be transformed to 

1      1      1   -klVTA R(T'T) (53)   2 " c^Tf! ~ c^TT + cTITJ" e 

-k2TA/TD R(T,T) = 0 

+  }       e 

Let us consider the left-hand side of (53) as a function f of 

—1/R(T T) 
a = e     '  .  If there is a unique root of the equation 

f(a) = 0 ,   a €[0,1] , 

then there exists a unique value of R(T,T) satisfying (53).  We 

observe from (53), however, that 
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(5i° f(0) - 2-^fry-^wy > 
which is strictly negative unless c.(T) = cD(T) = 1 and zero in 

this case, that 

(55) f(l) = 2 , 

and that 

k T     (k^/T )-l   k T    (k2TA/TD)~1 

(56) f (a)=^TTTf;a        +^ka 

which is strictly positive on (0,1].  It is immediate from (5*0, 

(55), and (56) that there exists a unique point a € [0,1] such 

that f(a) - 0. 

The preceding development fixes a unique value R(T,T) such 

that (51b) holds.  With this R(T,T) fixed, it remains to solve 

(51a) for R(T,P).  After obvious simplifications one can write 

(51a) as 

1  /  ~k lVTAR(T'T)\     1  /  -*VPAR(T>P)\ 

Recalling that R(T,T) is fixed, let us write a = e-l/R(T,P), 

whereupon (57) becomes 

/  -k T /T R(T,T)\ (58) ^i1-6 )-^r + ^n *V
PA a u    R  = 0 

Consider the left-hand side of (58) as a function g of a 6 [0,1]; 

we wish to consider existence and uniqueness of solutions to the 

equation g(a) = 0.  Proceeding as in (5*0 to (56), we see that 

-k,VT,R(T,T) 

-knTn/T.R(T,T)' 

1  /  -klVT AR(T'T)\    1 

B(1,. ^-.-wv«.») . 
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which Is positive, and that 

,        IT^ (JlT^/Pj-l 

8 (a) = cft(P)P  
a 

D   ,/  D' A' 

which is positive for a € [0,1].  If g(0) < 0, then there exists 

a unique a € [0,1] such that g(a) = 0, and hence a unique solu- 

tion R(T,T), R(T,P) to (51). 

If, on the other hand g(0) > 0 then there exists no 

a € [0,1] with g(a) = 0, and hence no solution to (51).  One can 

easily find combinations of parameters such that g(0) is positive; 

one such set is 

TD = TA 

kl= 1 

R(T,T) = 1 

cA(T) = 1/1 

cA(P) = 1/2 . 

In this case 

-klVTAR(T>T)\     1     „ ,«.,-!„  -1,   „,.,-1 1  /.  -^VTAR(T'T)\     1 - = (1/4) x(l-e x) - (1/2) 

a 4(.63) - 2 
- .52 . 

Consequently, equations of the sort used in Lulejian-I may fail 

to admit a solution at all. 

A second example further Illustrates the difficulties that 

can arise.  Suppose that each type of maneuver battalion is 

vulnerable only to opposing battalions of the same type.  In 

this case the attrition equations can be written for armored 

battalions as 
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(59) 

/  "klTD ATA = T^l-e 
-k^/T^T.T) 

ATD = TDll-e 
(~ 

-k2TA/TDR(T,T) 

for mechanized infantry battalions as 

APA " PA» 

(60) 

AP D 

-l1PD/PAR(P,P) 

-i2PA/PDR(P,P) 

and for infantry battalions 

AIA " h 
(61) 

D = W" 
-m2IA/IDR(I,I) 

Here k, , kp, £_ , I   , m.. , mp represent combined potentials. 

The analysis used in the first example shows that there is 

a unique value of R(T,T) such that 

AT 
1 - A 

AT D 
CATT7T;- C^T^ - 1 , 

where AT., AT are computed using (59); let us denote by b1 the 

common value of both sides of (62).  Similarly, there is a 

unique value of R(P,P) such that, subject to (60), 

,     A?A   _   ATD     , - b 

and there is a unique value of R(I,I) such that, subject to (61), 
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&IA      AID 

Now one of two cases must obtain.  The first is that b.., 

bp, b~ are not all equal; in this case there is no solution to 

(J49).  The second is that b.. = b  = b^ in which case there is 

a two-dimensional continuum of solutions to (^9), for no con- 

straints are placed on the values of R(T,P) and R(I,P). 

Either case is unacceptable to the user of the model. 

The examples above do not demonstrate that the system (^9) 

always fails to have a solution—only that in some cases a solu- 

tion may fail to exist.  In the sense that they represent situa- 

tions with special structure and are based on equations not 

exactly identical with those in the model, the examples are not 

fully general and the question of whether, when every maneuver 

battalion is present and vulnerable to all types of opposing 

battalions, solutions exist and are unique, is still open.  Our 

examples do demonstrate that there exist difficulties with both 

existence and uniqueness in certain cases; consequently such 

difficulties must be presumed to exist in all cases in which a 

proof to the contrary is lacking.  That is, until a proof is 

constructed that verifies existence and uniqueness of solutions 

to (49) in the exact form of the equations appearing in the 

model, the user who is scientific and rational must view the 

entire computation with suspicion.  When difficulties arise 

with special cases of a computational procedure, it is the re- 

sponsibility of the proponents of that procedure to rigorously 

identify those cases in which the difficulties do not obtain. 

In the absence of a rigorous mathematical proof (which, in 

view of the complexity of the model, we feel would be most dif- 

ficult to construct) empirical evidence may be useful if treated 

with the proper skepticism.  Convergence of the computational 

algorithm—if it is properly programmed and contains no hidden 
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devices that ensure "convergence"—is valid empirical evidence 

for the existence of solutions, but provides no information con- 

cerning uniqueness.  The same is true of observed smoothness of 

the dependence of solutions on parameter values.  Any extrapola- 

tion based on empirical testing, especially if qualitative (i.e., 

to different equations) should be regarded as unreliable. 

To conclude, we believe that (and it should be noted that 

the point is both philosophical and practical) the entire model 

must be viewed with suspicion, if not downright distrust, until 

and unless the existence and uniqueness question is settled. 

Our examples demonstrate that it is very much an open question 

at this time. 
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