PAPER P-1204

ANTAGONISTIC GAMES

Lowell Bruce Anderson

August 1976

<> | [NSTITUTE FOR DEFENSE ANALYSES
1DA | pROGRAM ANALYSIS DIVISION

IDA log No. HQ 76~18403
Copy '3 of 225 copies

LIBRARY

FTROMNICAL REPORY SECTION
NAVAL FQETQRADUATE SCHOOL
MONTERSY, CALIFORNIA 93940

A 030148




The work reported in this publication was conducted under IDA's
Independent Research Program. Its publication does not imply
endorsement by the Department of Defense or any other govern-
ment agency, nor should the contents be construed as reflecting
the official position of any government agency.




PAPER P-1204

ANTAGONISTIC GAMES

Lowell Bruce Anderson

August 1976

)

1DA

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION
400 Army-Navy Drive, Arlington, Virginia 22202

IDA Independent Research







FIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
P-1204
4. TITLE (and Subdtiile) 3. TYPE OF REPOAT & PERIOD COVERED
Final

ANTAGONISTIC GAMES

6. PERFORMING ORG. REPORY NUMBER

7. AUTHOR(s, 8. CONTRACT OR GRANT NUMBER(:)
Lowell Bruce Anderson IDA Independent
Research
9. PERFOAMING ORGANIZATION NAME AND ADDRNESS 10. PROGRAM ELEMENT, PROJECTY, TASK
Institute for Defense Analyses ARES S WGSRK UNIT NUMEESS
ram Anal sis Divisio
., Arlington, VA 22202
11, CONTROLLING OFFICE NAME AND ADORESS 12. REPQOAT DATE
August 1976
13. NUMBER OF PAGES
22
14, MONITORING AGENCY NAME & AODDRESS(i! difteren! lrom Contrailing Ollice) 1S. SECURITY CLASS. (of thia report)
Unclassified
1Sa DECLASSIFICATION DOWNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (ol thie Reporl)

This document 1s unclassified and suitable for public
release.

DISTRIBUTION STATEMENT (of the abetract entered In Black 20, (I dillerent trom Report)

. SUPPLEMENTARY NOTES

Antagonistic games, game theory, general-sum games

€Y WORDS (Coniinue on reverse side I/ necessary and tdenttly by block number)

games, strength-ratio games, military cperations res ¢
military applications, tactical air forces, strength
ratios, force ratios, and loss ratios.

20, ABSTRACY (Conitnue on reverss aide (| necescary and identily by bleck number)

This paper defines two subsets of noncooperative,
finite, two-person (bimatrix) games. The first subset,
called antagonistic games, consists of bimatrix games Iin
which if one player does better, the other player necessari-
ly must do worse (where better and worse are determined by
comparing the payoffs that result from playlng two alter-
native pairs of actions). Zero-sum games form 3 _Dropep

D b 1473 EDITION OF | NOV 65 13 OBSCLETE "u“
D f JAM 73 Vi
SECURITY CLASJIFICATION O i E "en Nota FEntered)




UNCIASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entersd)

subset of antagonistic games; the distinction is that for
zero-sum games, when one player does better the other must
do worse by the same amount. The second subset considered,
called strength-ratio games, 1s the subset of antagonistic
games that has the additional property that if both players
play pure strategies, then the payoff to one player 1s the
inverse of the payoff to the other player.

Results and counterexamples are given that relate some
standard theorems on zero-sum games to the corresponding
conjectures on antagonistic and strength-ratios games.
Alternative utilities for strength ratios that convert
strength ratios into zero-sum games are given. Applications
of considering payoffs based on strength ratios occur, for
example, in defense analyses, where net assessments of
forces and potential losses are usually measured in terms
of ratios, not differences, in.strengths.




ABSTRACT

This paper defines two subsets of noncooperative, finite,
two-person (bimatrix) games. The first subset, called antagon-
i18tic games, consists of bimatrix games in which if one player
does better, the other player necessarily must do worse (where
better and worse are determined by comparing the payoffs that
result from playing two alternative pairs of actions). Zero-
sum games form a proper subset of antagonistic games; the dis-
tinctlion is that for zero-sum games, when one player does
better the other must do worse by the same amount. The second
subset considered, called strength-ratio games, is the subset
of antagonistic games that has the additlional property that if
both players play pure strategles, then the payoff to one
player 1s the inverse of the payoff to the other player.

Results and counterexamples are given that relate some
standard theorems on zero-sum games to the corresponding con-
Jectures on antagonistic and strength-ratio games. Alternative
utilities for strength ratios that convert strength ratios into
zero-sum games are given. Applications of considering payoffs
based on strength ratios occur, for example, in defense analyses,
where net assessments of forces and potential losses are usually
measured in terms of ratios, not differences, in strengths.
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I. INTRODUCTION

Two-person noncooperative games are generally classified
as to whether or not they are equivalent to zero-sum games,
with usually no distinction being made among the various types
of games which are not equivalent to zero-sum games. The pur-
pose of this paper is (a) to discuss another subset of two-
person games, which we call antagonistic games; and (b) to
present a method for converting some antagonistic games into
zero-sum games. All games considered in this paper are assumed
to be noncooperative, finite, two-person (bimatrix) games.

A. DEFINITION OF ANTAGONISTIC GAMES

Let Blue and Red denote the two players and let the pay-
offs to them be denoted by Pb(x,y) and Pr(x,y), respectively,
when Blue plays (possibly mixed) strategy x and Red plays
(possibly mixed) strategy y. For simplicity, we will not dis-
tinguish an action from the pure strategy that plays that
action with probability one, and we write Pb(i,J) in place of
Pb(x,y) when Blue plays the pure strategy that selects actlon
1 and Red plays the pure strategy that selects action J.

(1) DEFINITION. A two-person game with payoff functions P,
and Pr is called an antagonistic game if Pb and Pr have the
property that

(2) Pb(i,J) > Pb(k,z) if and only if Pr(i,J) < Pr(k,z)

for all pure Blue strategies i1 and k and all pure Red strate-
gles jJ and 2.




Condition (2) defines a very natural subset of two-person
games; namely, those games 1n which if one player does better,
the other player necessarily must do worse (where better and
worse are determined by comparing the payoffs that result from
playing two alternative pairs of actions). Zero-sum games
clezrly form a proper subset of antagonistic games; the dis-
tinction 1s that for zero-sum games, 1f one player does better
the other must do worse by the same amount. Accordingly, it
i1s reasonable to ask how many of the results concerning zero-
sum games extend to all antagonistic games. Roughly speaking,
the answer is that results involving mixed strategies do not
extend to all antagonistic games, but results limited to pure
strategies generally can be extended. Specific theorems and
examples are given in Section II.

It should be noted that some translations of Russian
publications on game theory define the term "antagonistic game"
eguivalently with the term "zero-sum game." Since "zero-sum
game" 1s the standard terminology outside the Russian litera-
ture, we make the above, more general definition for "antag-
onistic game."

B. DEFINITION OF STRENGTH-RATIO GAMES

A subset of antagonistic games that 1s essentially dis-
joint from the set of zero-sum games can be defined as follows:!

(3) DEFINITION. A two-person game with payoff functions Pb and
Pr is called a strength-ratio game if

Py(1,3) = [P (1,171 > 0

for all pure Blue strategies 1 and all pure Red strategies j.

The game whose payoff is 1.0 to each player for all possible strategies
is both a strength-ratio game and a constant-sum game (which is eguiva-
lent to a zero-sum game). With this exception, the set of strength-
ratio games 1is clearly disjoint from the set of constant-sum games.
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We call these games "strength-ratio games,'" rather than
Just "ratio games," in order to distinguish them from ratio
games as defined by Schroeder (1970) [6].

= BACKGROUND

Measures of effectiveness used in defense analyses are
frequently in the form of ratios of strengths of the two oppos-
ing sides (where "strength" is usually stated in terms either
of resources or of capability to inflict losses). One exception
to the use of ratios has been in the development and use of game
theoretical models of combat. In these models, the measures are
assumed to be differences in strengths of the two sides in order
to make the resulting games zero-sum games. Clearly, different
results can be obtained depending on whether the measure used is
the difference or the ratio of these strengths. Pugh and Mayberry
(1973) [5] use this observation to motivate a discussion that
applies to all nonzero-sum games. In Section III, we show that
this observation need not 1limit an analysis to those results
that apply all nonzero-sum games. In that section, we give a
procedure which produces a zero-sum game that is based on
strength ratios, but is not equivalent to the corresponding

strength-ratio (and hence nonzero-sum) game.







(4)

II. ANTAGONISTIC GAMES

In this section we consider the following four questions:

4.

2.

3.

b,

Do all games satisfying condition (2) satisfy the
corresponding condition for mixed strategies, i.e.,
do antagonistic games satisfy

Pb(x,y) > Pb(z,w) if and only if Pr(x,y) < Pr(z,w)

for all (possibly mixed) Blue strategies x and z and
Red strategies y and w? (Zero-sum games clearly
satisfy this condition.)

Do all pairs of equilibrium strategies of antagonistic
games give the same payoff to Blue (and, symmetrically,
do they all give the payoff to Red)? If not, can any-
thing be said about different equilibrium payoffs?

Is there any relatlionship between the equilibrium
strategies of the zero-sum game whose payoffs to Blue
are given by Py (or the zero-sum game whose payoffs to
Red are given by P_) and the antagonistic game whose
payoffs are given gy (P

"Threats" cannot be made in two-person zero-sum games,
but they can be made 1n two-person nonzero-sum games.
Can threats be made in antagonistic games?

The answer to question 1 is no. Counterexamples can easily

be constructed from the examples given in answering the other

gquestions below.

Questions 2 and 3 involve pairs of equilibrium strategies,

which are defined as follows:

(5)

DEFINITION. A pair of strategles (x¥,y*) 1is called a pair

of equilibrium strategies for the two-person game with payoff
functions P, for Blue and Pr for Red if

b
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< Pb(x ,¥¥)

The answer to question 2 above 1s given by the following

(6) THEOREM. All pairs of pure equilibrium strategies of an
antagonistic game give the same payoff to Blue and the same pay-

-y

off to Red. Further, the payoff to either side from a pair of

pure equilibrium strategles can be less than, but cannot be
greater than, the payoff from a pair of equilibrium strategiles
that are not pure.

PROOF. Suppose (i,j) and (k,%) are both pairs of pure
equilibrium strategies. Then

P (k,J) < P (1,5) ,

and so

(7) P.(k,3) > P_(1,]) ,

by the condition for antagonistic games. Since (k,%2) is also a
pair of equilibrium strategies,

(8) P.(k,J) < P (k,2) .

Combining (7) and (8) gives that

P.(1,5) < P _(k,2)

Thus, by symmetry, all pairs of pure equilibrium strategies for

A well known theorem is that there exists at least one pair of equilibrium
strategies for any finite two-person game—see, for example, Owen (1968) [4].
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antagonistic games have the same payoff to Blue and the same
payoff to Red.

Now suppose (i,j) is a pair of pure equilibrium strategies
and (x,y) is a pair of mixed equilibrium strategies, and let x
be the probability that Blue plays action k under strategy X.
Then

k

P (k,3) < P (1,])

for all k, so by the condition for antagonistic games
Pr(k,J) > Pr(i,J)

for all k, and so

Pp(x,d) = I xPp(k,d) 2 B(,9)

Since (x,y) is a pair of equilibrium strategies,
P.(x,3) < P (x,y) ,

and so
Pr(i,J) < Pr(x,y)

Thus, the payoff to Red from any pair of pure equilibrium stra-
tegies must be less than or equal to the payoff to Red from any
palr of mixed equilibrium strategles. Clearly, the same state-
ment also holds for Blue.

All that remains 1s to give an example of an antagonistic
game that has a pair of pure equilibrium strategies, and has a
pair of mixed equilibrium strategies with a greater payoff to
each side than the pure equilibrium strategies give. Such an
example with three actions for each side is:




RED

1 2 3
1|1, 1) (2, 1/2) ( 2, 1/2)

BLUE 2 |( 1/2, 2) ( 10, 1/10) ( 1/10, 10)
3 (( 1/2, 2) ( 1/10, 10) ( 10, 1/10)

where the terms in parentheses correspond to (Pb(i,j), Pr(i,j))
for Blue playing action i and Red playing action j. The pair
of strategies ( 1, 0, 0), ( 1, 0, 0) is in equilibrium with a
payoff of 1.0 to each side; and the pair of strategies

(o, 1/2, 1/2), ( 0, 1/2, 1/2) 1s in equilibrium with a payoff
of 5.05 to each side. U

The answer to question 3 is given by the following

(9) THEOREM. Let Pb and Pr be the payoff functions for an
antagonistic game. Then the following conditions are. equivalent:
(a) the pair of pure strategies (i1,)) is an equilibrium

pair for the antagonistic game,

(b) the pair of pure strategies (i,)J) gives a saddle-
point for the zero-sum game whose payoff function
to Blue 1is Pb’

(¢) the pair of pure strategies (i,j) gives a saddle-
point for the zero-sum game whose payoff function
to Red is P_.
r
In particular, the antagonistic game has a pailr of pure equili-
brium strategies if and only if the zero-sum game whose payoff
function to Blue is Pb (or the zero-sum game whose payoff func-
tion to Red is Pr) has a saddlepoint.
0
PROOF. Let Pr
tion to Red for the zero-sum game whose payoff function to Blue
i's Pb’ and suppose that (i,J) gives a saddlepoint for this zero-
sum game. Then

-Pb so that Pg denotes the payoff func-




(10) PO(1,8) < PO(1,§)  for all %.

Now suppose that there is a (possibly mixed) Red strategy y
such that

Pr(i,y) > Pr(i,j)

Then there must be some pure Red strategy £° such that

P (1,27) > P_(1,])

but then

Pb(i,z‘) < Pb(i,.j)
by the condition for antagonistic games. This inequality gives
that

0 . 0
PO(1,27) > PO(1,])

which contradicts (10). Therefore
P (1,y) < P (1,3)
for all Red strategies y. Applying the identical argument to

Blue strategles gives that (i,J) 1s an equilibrium pair of pure
strategies for the antagonistic game.

Now suppose that (i,j) is an equilibrium pair of pure
strategies for the antagonistic game. Then

P.(1,2) < P (1,])

for all pure Red strategies &. Therefore, by the antagonistic
game conditilon, .

| v

Pb(i,z) Pb(i,J)

and so

0 0
PO(1,2) < PO(1,3)

| A

for all pure Red strategies 2. By the equilibrium assumption,




P (k,j) < P (i,3)

for all pure Blue strategies k, and so (i,j) is a saddlepoint

for the zero-sum game whose payoff function to Blue is Pb‘

Interchanging the roles of Red and Blue completes the proof. U
The answer to question 4 depends on how one defines

"threats." For the purpcse of this paper we give the following

(11) DEFINITION. A threat to Red by Blue in a two-person game
is said to exist if there exist three (possibly mixed) pairs of
strategies (xl,yl), (x2,y2), (x3,y3) such that:

(a) x. maximizes Pb("yl)’

1
(b) y, maximizes P_(x,,-),

(¢) P(x,¥y) > P(xs5,¥5),
(d) Pr(x3,y3) > Pr(xl,yl) > Pr(x2,y2).

In this case, we call Yy Red's compliance strategy and call X5
Blue's threat strategy.

The rationale behind this definition 1s as follows. Blue
threatens to play X5 unless Red plays vy If Red complies and
agrees to play Yy and if Blue can enforce this agreement, then
Blue can maximize over his possible payoffs and (1la) follows.
To exclude "idle" threats, suppose that if Red does not agree
o In this case Red
can maximize over his possible payoffs and (11lb) follows. Blue
would not threaten Red into playing Yi if Blue could do at
least as well by himself with y, and so (11c) follows. Finally,
Blue cannot threaten Red with x2 to force Red to play y1 if
Pr(x2,y2) > Pr(xl,yl); and Red is not threatened into playing
Y if yl is the best Red can do--i.e., there must exist some

to comply, then Blue is required to play x

10




strategy pair (x3,y3) such that Pr(x3,y3) > Pr(xl,yl); and so
(11d) follows.!
Given this definition, can an antagonistic game have a

threat?? The following slight change to the example following
Theorem (6) gives an obvious threat to Red by Blue

RED
1 2 3
1 (1, 1) (2, 1/2) ( 2, 1/2)

BLUE 2 |1( 172, 2) ( 10, 1/10) ( 1/100, 100)
3 L(1/2, 2) ( 1/10, 10) ( 10, 1/10)
Blue can threaten to play X, = ( 1, 0, 0) unless Red complies
and agrees to play, say, y, = ( 0, 98/100, 2/100). This stra-
tegy 1s not the only possible Red compliance strategy, but all
other complliance strategies must also be mixed strategies.

(12) THEOREM. 1If a threat to Red by Blue exists in an antagon-
istic game, then Red's compliance strategy (yl) cannot be a pure
strategy.

PROOF. Suppose that Yy

be a pure Blue strategy that maximizes Pb(i,J), let Xy be Blue's

is a pure strategy, say j. Let 1

threat strategy, and let & be a pure Red strategy that maxi-
mizes Pr(x2,-). Then

(13) P (1,1) 2 P, (k,J)

!Note that conditions (1la) through (11d) are not similar to Nash's condi-
tions for resolving threats; these conditions serve only to define threats.
Note also that the results that follow do not depend on (11d). So if one
wishes to define "threat" in such a way that Br'er Rabbit is threatened

by the briar patch, then condition (11d) can be deleted and these results
still hold.

2Clearly it is possible for an antagonistic game not to have a threat,
since zero-sum games are a subset of antagonistic games.

11




for all pure Blue strategies k, and
(14) P (xz,a) > Pr(xz,a)
From (13)

P.(k,3) > P (1,3)

for all k, and so

(15) P_(x,,8) 2 P_(1,)

Combining (14) and (15) gives that

but this contradicts (11d) which says that

Pr(i,j) > Pr(xz,ﬂ)

Therefore ¥y cannot be a pure strategy. U

Theorem 12 is of interest for the following reason. One
can conceive of several ways to enforce an agreement to play a
pure strategy. For example, the resources that would allow a
side to play any other strategy but that particular pure strate-
gy could be altered or dismantled. However, it is considerably
more difficult to conceive of realistic ways to enforce an agree-
ment to play a mixed strategy if one of the actions in that
mixed strategy produces a greater payoff to the "threatened" side.
Theorem 12 states that all compllance strategies in antagonistic
games are mixed strategies; and so each compliance strategy must
play (with positive probability) at least one action that has a
greater payoff to the threatened side than that compliance
strategy gives. Thus, while threats can exist 1in antagonistic
games, i1t may not be realistic to ignore questions concerning
the enforcement of the strategles involved in those threats.

12




ITI. UTILITIES FOR STRENGTH RATIOS THAT YIELD ZERO-SUM GAMES

Since strength-ratio games are a subset of antagonistic
games, the theorems of Section II also apply to strength-ratio
games. Further, the examples in Section II are intended to
indicate the limitations of attempting to extend additional
results from zero-sum games to antagonistic games; and since
both of these examples are also strength-ratio games, they also
indicate that the same limitations apply even if one considers
only strength-ratio games. Thus, we do not attempt to find
results pecullar to strength-ratio games in this section. In-
stead, we give alternative utilities for strength ratios.
These utilities are relatively plausible, and games based on
these utilities are zero-sum games, not strength-ratio games.

Let Sb and Sr be two functions, each mapping the cross
product of the Blue and Red pure strategies (actions) into the
positive reals. We call Sb and Sr Blue's strength and Red's
strength, respectively.'

It is reasonable to believe that each player might want to
maximize the ratio of his strength to that of his opponent, as

'For defense analyses, strength ratios can be thought of as the ratio of
quantities possessed by two opposing forces (i.e., force ratios). Ex-
amples are the number of warheads as a measure for strategic forces, the
total available firepower as a measure for conventional ground and air
forces, or the tons of ordnance that are delivered in support of ground
forces as a measure for tactical air forces. Alternatively, another type
of strength ratio useful in defense analyses is the ratio of the capability
of the two opposing forces to inflict losses on each other (i.e., loss
ratios). Examples are weapon-loss ratios or loss-rate ratios for con-
ventional forces, and the ratio of the fractional value of each side's
econamy that would be lost for strategic forces.

13




opposed to maximizing the difference to their strengths. But,

for example, it may not be reasonable to assume that Blue is
indifferent between (a) a 1-to-1l strength ratio with proba-
bility 1, and (b) a 9-to-5 strength ratio in his favor with
probability 1/2 and a 1-to-5 strength ratio against him with
probability 1/2--which is what equating Blue's utility with the

numerical value of the strength ratio would give.

It seems

generally more reasonable to assume that Blue is indifferent

between (a) a 1-to-1 strength ratio with probability 1, and
(b) a 5-to-1 strength ratio in his favor with probability 1/2
and a 1-to-5 strength ratio against him with probability 1/2.

One way to incorporate this second indifference into a

two-person payoff structure is as follows. Let

5.(5,5) T °

N SR

Sb(i,j)

and

Sr(i,j)

5,53 " 1
Q(1,1) =

5, (1,3)
i- SR EWD)

8, (4,3)
szt

5, (1,3)
2 gmgreny

S_(1,J)
17 =& —~ > 1
SbZi,J5 -

S.(1,3)
e §BT3737-< 1

for all pure Blue strategies 1 and pure Red strategies j, and let

the payoffs to Blue and Red be given by

Pb(x,y) &

Pr(x,y) =

X,Q (i,J)y
Ly 1l .

i%j xiQr(i,J)yJ
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for all Blue strategies x and Red strategies y. Note that these
payoff functions are defined symmetrically in terms of Blue and
Red, and they have the property that a Blue favorable n-to-one
strength ratio has the same additional utility to Blue over a
one-to-one strength ratio as a one-to-one strength ratio has to
Blue over a Red favorable one-to-n strength ratio.

1f Pb and Pr are defined as above, the resulting game 1s a
zero-sum game (it 1s easy to check that Qb(i,j) + Qr(i,J) = 0).
Accordingly, strength ratios can be considered in a reasonable
way within the context of zero-sum games, which allows an analy-
sis to consider strength ratios without restricting that analysis

to only those results that hold for all nonzero-sum games.'®

A more general definition of Qb and Qr is as follows. Let
f be any odd function (f(-x) = -f(x)). Then if Q  1is defined by

S, (1,J) S, (1,4)
f(m—l) ifmil

(16) Q. (1,3) =
b
Sr(i,J) Sb(i,J)
f(1 - §ETT737) ir g;TTTFT <1

and Qr is defined symmetrically, the resulting game has the
characteristics described above (in particular, it is a zero-
sum game). This more general definition can be used if utility
does not increase linearly with strength ratio.

Finally, we remark that the payoff structure described
above is implicitly contained in two existing game theoretical

1If, for a particular problem, the utility functions for the two players
are known and these known utilities result in a strength-ratio game as
defined in Section I, then the above method cannot be applied. But if
the strengths Sb and Sr represent physical quantities and an analyst

must develop a payoff structure based on these quantities, then the
above structure appears to be plausible and useful.

15




models, but the descriptions of these models do not explicitly
Point out that this structure is there. The two models are

the OPTSA models (see Bracken, Falk, and Karr (1975) [2], and
Anderson, Bracken, and Schwartz (1975) [1]) and the ATACM

model (see Fish (1975) [3]). For both these models, S, can be
interpreted as Blue air firepower delivered in support of
ground operations in a conventional war, and Sr is the same for
Red. Both models consider Sb - Sr as a possible payoff for Blue.
Both models also consider "ground movement" as a payoff measure,
where ground movement is a function, f, of strength ratios where
the Blue strength consists of the Blue ground strength plus Sb’
and the same for Red. By zeroing out the ground strengths and
by interpreting f as a utility function as in (16), the struc-
ture described above is obtained. Thus, both these models as
currently programmed can use ratlios of air firepower as well as

differences 1n air firepower as measures of effectiveness.
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