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ABSTRACT 

This paper defines two subsets of noncooperative, finite, 

two-person (bimatrix) games.  The first subset, called antagon- 

istic  games,   consists of bimatrix games in which if one player 
does better, the other player necessarily must do worse (where 

better and worse are determined by comparing the payoffs that 

result from playing two alternative pairs of actions).  Zero- 

sum games form a proper subset of antagonistic games; the dis- 

tinction is that for zero-sum games, when one player does 

better the other must do worse by the same amount.  The second 

subset considered, called strength-ratio  games,   is the subset 

of antagonistic games that has the additional property that if 

both players play pure strategies, then the payoff to one 

player is the inverse of the payoff to the other player. 

Results and counterexamples are given that relate some 

standard theorems on zero-sum games to the corresponding con- 

jectures on antagonistic and strength-ratio games.  Alternative 

utilities for strength ratios that convert strength ratios into 

zero-sum games are given.  Applications of considering payoffs 

based on strength ratios occur, for example, in defense analyses, 

where net assessments of forces and potential losses are usually 

measured in terms of ratios, not differences, in strengths. 
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I.  INTRODUCTION 

Two-person noncooperative games are generally classified 

as to whether or not they are equivalent to zero-sum games, 

with usually no distinction being made among the various types 

of games which are not equivalent to zero-sum games.  The pur- 

pose of this paper is (a) to discuss another subset of two- 

person games, which we call antagonistic games; and (b) to 

present a method for converting some antagonistic games into 

zero-sum games.  All games considered in this paper are assumed 

to be noncooperative, finite, two-person (bimatrix) games. 

A.   DEFINITION OF ANTAGONISTIC GAMES 

Let Blue and Red denote the two players and let the pay- 

offs to them be denoted by Pb(x,y) and P (x,y), respectively, 

when Blue plays (possibly mixed) strategy x and Red plays 

(possibly mixed) strategy y.  For simplicity, we will not dis- 

tinguish an action from the pure strategy that plays that 

action with probability one, and we write P, (i,j) in place of 

P,(x,y) when Blue plays the pure strategy that selects action 

i and Red plays the pure strategy that selects action j. 

(1) DEFINITION. A two-person game with payoff functions Pfe 

and P is called an antagonistic game if P, and P have the 

property that 

(2) Pb(i,j) > Pb(k,£) if and only if Pr(iJ) < Pr(k,JL) 

for all pure Blue strategies i and k and all pure Red strate- 

gies j and £. 



Condition (2) defines a very natural subset, of two-person 

games; namely, those games in which if one player does better, 

the other player necessarily must do worse (where better and 

se are determined by comparing the payoffs that result from 

playing two alternative pairs of actions).  Zero-sum games 

clearly form a proper subset of antagonistic games; the dis- 

tinction is that for zero-sum games, if one player does better 

the other must do worse by   the  same  amount.     Accordingly, it 

is reasonable to ask how many of the results concerning zero- 

sum games extend to all antagonistic games.  Roughly speaking, 

the answer is that results involving mixed strategies do not 

extend to all antagonistic games, but results limited to pure 

strategies generally can be extended.  Specific theorems and 

examples are given in Section II. 

It should be noted that some translations of Russian 

publications on game theory define the term "antagonistic game" 

equivalently with the term "zero-sum game."  Since "zero-sum 

game" is the standard terminology outside the Russian litera- 

ture, we make the above, more general definition for "antag- 

onistic game." 

B.   DEFINITION OF STRENGTH-RATIO GAMES 

A subset of antagonistic games that is essentially dis- 

joint from the set of zero-sum games can be defined as follows:1 

(3) DEFINITION.  A two-person game with payoff functions Pfe and 

Pr is called a strength-ratio game if 

Pb(i,j) - [Pr(i,j)]"
1 > 0 

for all pure Blue strategies i and all pure Red strategies j. 

^e game whose payoff is 1.0 to each player for all possible strategies 
is both a strength-ratio game and a constant-sum game (which is equiva- 
lent to a zero-sum game). With this exception, the set of strength- 
ratio games is clearly disjoint from the set of constant-sum games. 



We call these games "strength-ratio games," rather than 

just "ratio games," in order to distinguish them from ratio 

games as defined by Schroeder (1970) [6]. 

C.   BACKGROUND 

Measures of effectiveness used in defense analyses are 

frequently in the form of ratios of strengths of the two oppos- 

ing sides (where "strength" is usually stated in terms either 

of resources or of capability to inflict losses).  One exception 

to the use of ratios has been in the development and use of game 

theoretical models of combat.  In these models, the measures are 

assumed to be differences in strengths of the two sides in order 

to make the resulting games zero-sum games.  Clearly, different 

results can be obtained depending on whether the measure used is 

the difference or the ratio of these strengths.  Pugh and Mayberry 

(1973) [5] use this observation to motivate a discussion that 
applies to all nonzero-sum games.  In Section III, we show that 

this observation need not limit an analysis to those results 

that apply all nonzero-sum games.  In that section, we give a 

procedure which produces a zero-sum game that is based on 

strength ratios, but is not equivalent to the corresponding 

strength-ratio (and hence nonzero-sum) game. 





II.  ANTAGONISTIC GAMES 

In this section we consider the following four questions: 

1. Do all games satisfying condition (2) satisfy the 
corresponding condition for mixed strategies, i.e., 
do antagonistic games satisfy 

(H) Pb(x,y) > Pb(z,w) if and only if Pr(x,y) < Pp(z,w) 

for all (possibly mixed) Blue strategies x and z and 
Red strategies y and w?  (Zero-sum games clearly 
satisfy this condition.) 

2. Do all pairs of equilibrium strategies of antagonistic 
games give the same payoff to Blue (and, symmetrically, 
do they all give the payoff to Red)?  If not, can any- 
thing be said about different equilibrium payoffs? 

3. Is there any relationship between the equilibrium 
strategies of the zero-sum game whose payoffs to Blue 
are given by P^ (or the zero-sum game whose payoffs to 
Red are given by P ) and the antagonistic game whose 
payoffs are given by (Pb,P )? 

4. "Threats" cannot be made in two-person zero-sum games, 
but they can be made in two-person nonzero-sum games. 
Can threats be made in antagonistic games? 

The answer to question 1 is no.  Counterexamples can easily 

be constructed from the examples given in answering the other 

questions below. 

Questions 2 and 3 involve pairs of equilibrium strategies, 

which are defined as follows: 

(5)   DEFINITION.  A pair of strategies (x*,y*) is called a pair 

of equilibrium strategies for the two-person game with payoff 

functions P. for Blue and P for Red if b r 



PbU,y*) < Fb(x*,y*) 

for all Blue strategies x and 

■ . 0 < Pr(x*,y*) 

for all Red strategies y.1 

The answer to question 2 above is given by the following 

(6)   THEOREM.  All pairs of pure equilibrium strategies of an 

antagonistic game give the same payoff to Blue and the same pay- 

to Red.  Further, the payoff to either side from a pair of 

pure equilibrium strategies can be less than, but cannot be 

greater than, the payoff from a pair of equilibrium strategies 

that are not pure. 

PROOF.  Suppose (i,j) and (k,0 are both pairs of pure 

equilibrium strategies.  Then 

?J*>i)  1  PK(i,J) . 

and so 

(7) Pr(k,j) > Pr(i,j) , 

by the condition for antagonistic games.  Since (k,£) is also a 

pair of equilibrium strategies, 

(8) Pr(k,j) < Pr(k,Ä) . 

Combining   (7)   and   (8)   gives  that 

p
r(i>J)  <  Pr(k>*)   - 

Thus,   by  symmetry,   all  pairs  of pure  equilibrium strategies  for 

lk well known theorem is that there exists at least one pair of equilibrium 
strategies for any finite two-person game—see, for example, Owen (1968) [4]. 



antagonistic games have the same payoff to Blue and the same 

payoff to Red. 

Now suppose (i,j) is a pair of pure equilibrium strategies 

and (x,y) is a pair of mixed equilibrium strategies, and let x 

be the probability that Blue plays action k under strategy x. 

Then 

Pb(k,J) < Pb(i,J) 

for all k, so by the condition for antagonistic games 

V*>J) - Pr(i'j) 

for all k, and so 

PrU,J) ■ I  xkPr(k,j) > Pr(i,j) . 

Since (x,y) is a pair of equilibrium strategies, 

V*>3) - Vx>y) ' 

and so 

V1J) - Vx'y) ' 
Thus, the payoff to Red from any pair of pure equilibrium stra- 

tegies must be less than or equal to the payoff to Red from any 

pair of mixed equilibrium strategies. Clearly, the same state- 

ment also holds for Blue. 

All that remains is to give an example of an antagonistic 

game that has a pair of pure equilibrium strategies, and has a 

pair of mixed equilibrium strategies with a greater payoff to 

each side than the pure equilibrium strategies give.  Such an 

example with three actions for each side is: 



BLUE 

1 

2 

3 

RED 

1 2 

( 1, 1) ( 2, 1/2) 

( 1/2, 2) ( 10, 1/10) 

( 1/2, 2) ( 1/10, 10) 

( 2, 1/2) 

( 1/10, 10) 

( 10, 1/10) 

where the terms in parentheses correspond to (P (i,j), P (i,j)) 

for Blue playing action i and Red playing action j.  The pair 

of strategies ( 1, 0, 0), ( 1, 0, 0) is in equilibrium with a 

payoff of 1.0 to each side; and the pair of strategies 

( 0, 1/2, 1/2), ( 0, 1/2, 1/2) is in equilibrium with a payoff 

of 5.05 to each side. U 

The answer to question 3 is given by the following 

(9)  THEOREM.  Let P and Pr be the payoff functions for an 

antagonistic game.  Then the following conditions are.equivalent 

(a) the pair of pure strategies (i,j) is an equilibrium 
pair for the antagonistic game, 

(b) the pair of pure strategies (i,j) gives a saddle- 
point for the zero-sum game whose payoff function 
to Blue is Pb, 

(c) the pair of pure strategies (i,j) gives a saddle- 
point for the zero-sum game whose payoff function 
to Red is P . r 

In particular, the antagonistic game has a pair of pure equili- 

brium strategies if and only if the zero-sum game whose payoff 

function to Blue is P. (or the zero-sum game whose payoff func- 

tion to Red is P ) has a saddlepoint. 

Let P = -P. so that P denotes the payoff func- r    b r PROOF. 

tion to Red for the zero-sum game whose payoff function to Blue 

is P , and suppose that (i,j) gives a saddlepoint for this zero- 

sum game.  Then 

8 



(10) p£(i>*) £ Pp(i*J)   for all Ä. 

Now suppose that there is a (possibly mixed) Red strategy y 

such that 

Pr(i»y) > Pr(i,J) • 

Then there must be some pure Red strategy &' such that 

Pr(i,0 > Pr(i,j) 

but then 

Pb(i,l*) < Pb(i,3) 

by the condition for antagonistic games.  This inequality gives 

that 

pj(i,0 > Pj(i,j) 

which contradicts (10).  Therefore 

V*>y)  - Pr(iJ) 

for all Red strategies y.  Applying the identical argument to 

Blue strategies gives that (i,J) is an equilibrium pair of pure 

strategies for the antagonistic game. 

Now suppose that (i,j) is an equilibrium pair of pure 

strategies for the antagonistic game.  Then 

Pr(i.*) £ Pr(i»J) 

for all pure Red strategies I.     Therefore, by the antagonistic 

game condition, . 

Pb(i,l) > Pb(iJ) 

and so 

Pj(i,0 £ Pj<i.J> 

for all pure Red strategies Ä.  By the equilibrium assumption, 



VkJ) - pb(1'J) 

for all pure Blue strategies k, and so (i,j) is a saddlepoint 

for the zero-sum game whose payoff function to Blue is P. . 

Interchanging the roles of Red and Blue completes the proof. \\ 

The answer to question H  depends on how one defines 

"threats." For the purpose of this paper we give the following 

(11) DEFINITION. A threat to Red by Blue in a two-person game 

is said to exist if there exist three (possibly mixed) pairs of 

strategies (x-^y^, U2,y2), (x^y^) such that: 

(a) x1 maximizes 
p
b('>y-.)> 

(b) y2 maximizes Pr(x2,-), 

(c) Pb(x1,y1) > Pb(x2>y2), 

(d) Pr(x3,y3) > Pr(x1,y1) > Pp(x2,y2). 

In this case, we call y.. Red's compliance strategy and call x2 
Blue's threat strategy. 

The rationale behind this definition is as follows.  Blue 

threatens to play x2 unless Red plays y_.  If Red complies and 

agrees to play y.. , and if Blue can enforce this agreement, then 

Blue can maximize over his possible payoffs and (11a) follows. 

To exclude "idle" threats, suppose that if Red does not agree 

to comply, then Blue is required to play x~.  In this case Red 

can maximize over his possible payoffs and (lib) follows.  Blue 

would not threaten Red into playing y-, if Blue could do at 

least as well by himself with y? and so (lie) follows.  Finally, 

Blue cannot threaten Red with x2 to force Red to play y.^ if 

P (x2,y2) >_ P (x.,y1); and Red is not threatened into playing 

y  if y. is the best Red can do—i.e., there must exist some 

10 



strategy pair (x-,y3) such that Pr(x ,y ) > P^x^y ); and so 

(lid) follows.■ 

Given this definition, can an antagonistic game have a 

threat?2 The following slight change to the example following 

Theorem (6) gives an obvious threat to Red by Blue 

RED 

1 2 3 

1 r( 1, 1)     ( 2, 1/2) ( 2, 1/2) 

BLUE   2  ( 1/2, 2)   ( 10, 1/10) ( 1/100, 100) 

3 L( 1/2, 2)   ( 1/10, 10) ( 10, 1/10) J 

Blue can threaten to play x?  = ( 1, 0, 0) unless Red complies 

and agrees to play, say, y = ( 0, 98/100, 2/100).  This stra- 

tegy is not the only possible Red compliance strategy, but all 

other compliance strategies must also be mixed strategies. 

(12) THEOREM. If a threat to Red by Blue exists in an antagon- 

istic game, then Red!s compliance strategy (y-,) cannot be a pure 

strategy. 

PROOF.  Suppose that y. is a pure strategy, say j.  Let i 

be a pure Blue strategy that maximizes P (i,j), let Xp be Blue's 

threat strategy, and let £ be a pure Red strategy that maxi- 

mizes P (x ,•).  Then 

(13) P.(i,j) > Ph(k,j) 

2Note that conditions (11a) through (lid) are not similar to Nash's condi- 
tions for resolving threats; these conditions serve only to define threats. 
Note also that the results that follow do not depend on (lid). So if one 
wishes to define "threat" in such a way that BrTer Rabbit is threatened 
by the briar patch, then condition (lid) can be deleted and these results 
still hold. 

2Clearly it is possible for an antagonistic game not to have a threat, 
since zero-sum games are a subset of antagonistic games. 

11 ' 



for all pure Blue strategies k, and 

(HO Vx2»° > Pr(x2,j) 

From (13) 

Pr(k.J) 1 V*.J) 
for all k, and so 

(15) VVj) > Pr(i,j) • 

Combining (1*0 and (15) gives that 

Pr(x2,D > Pr(i,j), 

but this contradicts (lid) which says that 

Pr(i,j) > Pr(x2,0 • 

Therefore y- cannot be a pure strategy. 

Theorem 12 is of interest for the following reason.  One 

can conceive of several ways to enforce an agreement to play a 

pure strategy.  For example, the resources that would allow a 

side to play any other strategy but that particular pure strate- 

gy could be altered or dismantled.  However, it is considerably 

more difficult to conceive of realistic ways to enforce an agree- 

ment to play a mixed strategy if one of the actions in that 

mixed strategy produces a greater payoff to the "threatened" side, 

Theorem 12 states that all compliance strategies in antagonistic 

games are mixed strategies; and so each compliance strategy must 

play (with positive probability) at least one action that has a 

greater payoff to the threatened side than that compliance 

strategy gives.  Thus, while threats can exist in antagonistic 

games, it may not be realistic to ignore questions concerning 

the enforcement of the strategies involved in those threats. 

12 



III.  UTILITIES FOR STRENGTH RATIOS THAT YIELD ZERO-SUM GAMES 

Since strength-ratio games are a subset of antagonistic 

games, the theorems of Section II also apply to strength-ratio 

games.  Further, the examples in Section II are intended to 

indicate the limitations of attempting to extend additional 

results from zero-sum games to antagonistic games; and since 

both of these examples are also strength-ratio games, they also 

indicate that the same limitations apply even if one considers 

only strength-ratio games.  Thus, we do not attempt to find 

results peculiar to strength-ratio games in this section.  In- 

stead, we give alternative utilities for strength ratios. 

These utilities are relatively plausible, and games based on 

these utilities are zero-sum games, not strength-ratio games. 

Let S, and S be two functions, each mapping the cross 

product of the Blue and Red pure strategies (actions) into the 

positive reals.  We call Sw and S Blue's strength and Red's 
D r 

strength,  respectively.1 

It  is reasonable to believe that  each player might want  to 
maximize the ratio of his  strength to that  of his  opponent,  as 

^or defense analyses, strength ratios can be thought of as the ratio of 
quantities possessed by two opposing forces (i.e., force ratios).    Ex- 
amples are the number of warheads as a measure for strategic forces, the 
total available firepower as a measure for conventional ground and air 
forces, or the tons of ordnance that are delivered in support of ground 
forces as a measure for tactical air forces.    Alternatively, another type 
of strength ratio useful in defense analyses is the ratio of the capability 
of the two opposing forces to inflict losses on each other (i.e., loss 
ratios).    Examples are weapon-loss ratios or loss-rate ratios for con- 
ventional forces, and the ratio of the fractional value of each side's 
economy that would be lost for strategic forces. 

13 



opposed to maximizing the difference to their strengths.  But, 

for example, it may not be reasonable to assume that Blue is 

indifferent between (a) a 1-to-l strength ratio with proba- 

bility 1, and (b) a 9-to-5 strength ratio in his favor with 

probability 1/2 and a l-to-5 strength ratio against him with 

probability 1/2—which is what equating Blue's utility with the 

numerical value of the strength ratio would give.  It seems 

generally more reasonable to assume that Blue is indifferent 

between (a) a 1-to-l strength ratio with probability 1, and 

(b) a 5-to-l strength ratio in his favor with probability 1/2 

and a l-to-5 strength ratio against him with probability 1/2. 

One way to incorporate this second indifference into a 

two-person payoff structure is as follows.  Let 

Qb(iJ) 

sb(i,j) 

sr(U) -  1 

1  - 
Sr(iJ) 

Sb(i,j) 

S.(i,j) 

s (ij) 

and 

Qr(i,J)  = 

srd,J) 
sb(i,j) 

- 1 

sb(i,j) 
1 - S7T7JT 

s   (i,j) 
if sfTTTTT^1 

Sr(iJ) 

for all pure Blue strategies i and pure Red strategies j, and let 

the payoffs to Blue and Red be given by 

Pb(x,y) = I    xiQb(i,j)yj 
i 9 3 

Pr(x,y) = I xiQr(iJ)yJ 
i > «J 

It 



for all Blue strategies x and Red strategies y.  Note that these 

payoff functions are defined symmetrically in terms of Blue and 

Red, and they have the property that a Blue favorable n-to-one 

strength ratio has the same additional utility to Blue over a 

one-to-one strength ratio as a one-to-one strength ratio has to 

Blue over a Red favorable one-to-n strength ratio. 

If P and P are defined as above, the resulting game is a 

zero-sum game (it is easy to check that Q,(i,j) + Q (i,j) = 0). 

Accordingly, strength ratios can be considered in a reasonable 

way within the context of zero-sum games, which allows an analy- 

sis to consider strength ratios without restricting that analysis 

to only those results that hold for all nonzero-sum games.1 

A more general definition of & and Q is as follows.  Let 

f be any odd function (f(-x) = -f(x)).  Then if Q. is defined by 

Sb(i,J) Sb(i,j) 
f(o/< <N - 1) '5 

■ r 
TT7IT " 1]       if s (ij) - 1 

(16) Qb(i,j) - 
s (i,j)       s (i,J) 

f(1 - s^üTT>       lf s^TTir < x 

and Q    is defined  symmetrically,  the resulting game has the 
characteristics described above   (in particular,   it  is a zero- 
sum game).     This more  general definition can be used  if utility 
does not  increase  linearly with strength ratio. 

Finally,  we remark that the payoff structure described 
above   is   implicitly  contained  in  two existing game  theoretical 

1 If, for a particular problem, the utility functions for the two players 
are known and these known utilities result in a strength-ratio game as 
defined in Section I, then the above method cannot be applied.    But if 
the strengths S.   and S   represent physical quantities and an analyst 

must develop a payoff structure based on these quantities, then the 
above structure appears to be plausible and useful. 

15 



models, but the descriptions of these models do not explicitly 

Point out that this structure is there.  The two models are 

the OPTSA models (see Bracken, Falk, and Karr (1975) [2], and 

Anderson, Bracken, and Schwartz (1975) [1]) and the ATACM 

model (see Fish (1975) [3]).  For both these models, S can be 

interpreted as Blue air firepower delivered in support of 

ground operations in a conventional war, and S is the same for 

Red.  Both models consider S - S as a possible payoff for Blue, 

Both models also consider "ground movement" as a payoff measure, 

where ground movement is a function, f, of strength ratios where 

the Blue strength consists of the Blue ground strength plus S, , 

and the same for Red.  By zeroing out the ground strengths and 

by interpreting f as a utility function as in (16), the struc- 

ture described above is obtained.  Thus, both these models as 

currently programmed can use ratios of air firepower as well as 

differences in air firepower as measures of effectiveness. 

16 
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