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"HOOL

ABSTRACT

A frequency dependent analysis of a shielded edge-guided

mode isolator is presented. A Fourier transform technique is

applied to the boundary expressions of a structure built on

a dielectric substrate, and the resulting equations are

solved for the wavelength ratio. By using perturbation

analysis and the results obtained for the dielectric case,

solutions for the normalized propagation constant and

attenuation for waves traveling in the -Z and +Z directions,

in a structure built on a ferrite substrate, are obtained.
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INTRODUCTION

The analysis of various configurations of microstrip

transmission lines, is of great importance, primarily, to

the industrial area, since these kinds of transmission lines

are easy to manufacture, and they are suitable for use in

microwave integrated circuits due to their small dimensions.

Two major groups of microstrip transmission lines can

be defined, related to the substrate material that is used.

These are the dielectric and ferrite substrate groups. This

study presents the analysis of a new type of ferrite built,

shielded microstrip isolator, using the edge-guided mode of

propagation.

It was shown by M. E. Hines [Ref. 1] that an edge-guided

mode of propagation occurs in a wide microstrip transmission

line using a ferrite slab magnetized perpendicular to the

ground plane. The R. F. fields patterns in such a structure

are shown in Figure 1 [Ref. 1].

Propagation occurs in both +Z directions with equal

phase velocities and loss, and the R. F. fields patterns are

mirror images for both directions of propagation. In the

dominant mode the energy is shifted from one side to the

other with reversal of the direction of propagation. Hines

suggested that this phenomenon could be used in the analysis

of nonreci procal devices such as isolators, phase shifters
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Figure 1. R.F. Fields of Dominant Mode in Micro
strip Line. D.C. Magnetic Field in

-y Direction.



and other components, where nonreci procal behavior can be

attained by perturbing the structure in an asymmetrical way.

To achieve isolation, a resistive load can be placed

only on one side of the structure; thus high transmission

loss occurs for the propagation direction for which the

energy is concentrated on the lossy side, and lower loss

results for the opposite direction where the energy is

concentrated on the other side. The disadvantage of this

field displacement isolator was the small ratio between

backward and forward losses, which was not sufficient for

isolation purposes.

An improved edge-guided mode isolator was suggested by

K. Araki , T. Koyama and Y. Naito [Ref. 2] for which no lossy

electric material was used, but instead one edge of the

conducting strip was shorted to ground.

This isolation structure, shown in Figure 2, was built

and tested and the experimental result showed large attenua-

tion in the backward direction and small insertion loss in

the forward direction.

The following study is an investigation of the theo-

retical behavior of a model for this isolator structure.

The exact configuration of the isolator model is shown

in Figure 3. Since most of the field is confined in the

dielectric substrate then the left, right and upper conducting

walls of the shield have negligible affect on the electric

and magnetic fields configuration, thus the model which is



ground
plane

conducting
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Figure 2. Isolator Structure.

easier to analyze can replace the open boundary -isolator

configuration [Figure 2J. The shield is a rectangular wave-

guide which implies that the highest frequency of operation

should not exceed the cut-off frequency of the TE,
Q

mode of

the waveguide.

The mathematical method which was selected for this

study was used in earlier works like references 3, 4, and

5. This mathematical method can be used for calculating

wavelength ratio and characteristic impedance for non TEM,

TE or TM transmission lines. Essentially, this method deals

with the boundary conditions of a structure, after they were

transformed into the spectral domain. Then by using the

10



method of moment [Ref. 4] and assuming either current density

distributions or electric field distributions (depending on

the structure) numerical solutions for the wavelength ratio

and the characteristic impedance can be obtained.

In essence, the analysis procedure is a complete

solution for the dispersion characteristics of a structure

built on a dielectric substrate, and then by applying

perturbation theory, the phase and the attenuation constants

of a structure built on a ferrite substrate are obtained.

This ferrite built device is the isolator.

11
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II. DISPERSION CHARACTERISTICS ON DIELECTRIC SUBSTRATE

A. FIELD AND BOUNDARY CONDITIONS

Assume waves are propagating along the structure shown

in Figure 3, in the -Z direction such that the propagation

term is e
jw yZ

where a is the radian frequency, and Y=a+jS

is the propagation constant. We assume from now on that for

the dielectric substrate y is pure imaginary, hence a=0.

Later we shall see that for the ferrite subststrate, y is a

complex number including both terms a and 8.

The longitudinal components of the electric and magnetic

fields can be expressed in terms of the scalar electric

e h
potential

<f>
and the scalar magnetic potential $ as

Ez. = K Ci
2 ^(x,y)e yZ

(1)

Hz. = K Ci
2 ^(x,y)e YZ

(2)

2 2 2
where Kc = K. + y i = 1 ,2 defining the spatial

regions of the structure (Figure 3). Using the two field

expressions (1) and (2) together with Maxwell's curl

equations leads to the transverse components of the electric

and magnetic fields as follows:

13



Ex,.

E
*i

34.

lx~
(y-t1 - jcoy, -^-) e^

z
3<f>:

i ~3y

»#5 34?

^1F +
J-«i 17") eY2

34? 34
1

?

ly-sr
+

J-"i ir»
eYZ

3 4. 3 4 T

1-1,2

(3

(4

(5

(6

Applying boundary conditions at the interface between

the dielectric substrate and the bottom wall of the waveguide

(y=0), and assuming perfect conducting walls, tangential

electric fields should be zero or explicitly writing

Ex 9 (x,0,z) = (7)

Ez
2

(x,0,z) = 0. (8)

At the interface between regions 1 and 2, (y=D) the

tangential electric field must be continuous:

Ex, (x,D :
z) = Ex

2
(x,D,z

Ez
1

(x,D,z) = Ez
2

(x,D,z

(9)

(10)

The electric fields at the interface between regions

1 and 2 exist only in the dielectric portion of the interface

and can be wri tten as

:

14



Ex-! (x ,D,z

Ez, (x ,D,z

on strip

e
x
(x)eYZ W<X<A

on strip

e
z
(x)e

yZ
W<X<A

(11)

(12)

The tangential magnetic fields at the interface are

discontinuous by the surface current densities, and assuming

i nfi ni tessimal ly thin strip (can be considered as current

sheet) the following boundary conditions can be written at

y = D

W<X<A

Hx
1
(x,D,z) - Hx

2
(x,D,z) = (13)

Jz(x)e
yZ

on stri

Hz, (x,D ,z) - Hz
2
(x,D ,z) =

W<X<A
(14)

Jx(x)e
yZ

on strip.

At the interface between region 1 and the upper wall of

the waveguide (y=H) the tangential electric fields must be

zero or explicitly writing

Ex^x.H.z) =

Ez^x.H.z) = 0.

(15)

(16)

Substituting the field expressions of equations (1)

through (6) into the boundary condition expressions of

equations (7) through (16) yields the following equations:

15



3*?(X,0) 3*5(X,0)
- j uu 2 —^- =

3X 3y
(17)

Kc
2

2 ^X' ) = ° (18)

3*f(X,D)
Y K jo,y

1
—^

= y—=^ J»V
2 3 y

3*"(X,D) 3 4>2(X,D)
^

3*2(X,D)

3X

K C]
2

<D®(X,D) = Kc
2

2 ^(X,D)

(19)

(20)

3*®(X,D) 3<f>"(X,D) r on strip

3X
Jojy

1 3y ex(x) W<X<A
(21)

K Cl
2 ^(X,D) =

on strip

e (x) W<X<A
(22)

3*"(X,D)

3X
+ jwel

3^(X,D)

- (y
3*o(X,D)

+ jwe2

sy

3<J>®(X,D) (0 W<X<A

sy
-)
=

Jz(x) on strip

(23)

2 .h 2 ,h
(0 W<X<A

:c" oVCX.D) - Kc; <fr"(X,D) = <
1 ^ ^ (Jx(x) on strip

(24)

3^(X,H)
- Jcoy

3<f»"(X,H

1 3y
=

Kc.,
2

4>*(X,H) = 0.

(25)

(26)

16



B. SPECTRAL DOMAIN TRANSFORM

e h
The scalar potential functions

<f>..
and <j> . must satisfy

Helmholtz's equations in the two spatial regions, thus

(v
xy

+ Kc
i

} *i(
x '^ =

° (27)

(v
xy

+ Kc
i

} O^*'** = °

2 2 2 2
where Kc' = y + K^ = K^

(28)

.2 .

6 and vxy is a two-dimensional

Laplacian operator.

As was suggested by Itoh and Mittra [Ref. 3] a Fourier

transform was used in the a domain. The transform is defined

by:

F [^ (x,y)] = *. (a,y) = f $.( x,y) e
JaX

dx (29)

i = 1,2.

Since the structure is closed boundary, a finite Fourier

transform must be used instead of the infinite Fourier

transform. The finite Fourier transform is given by

F
x C* 1

(x,y)] = ^.(any) = / ^.e
janx

dx (30)

where an =

and

2»7T»n

F
x£

A

3<J>
i
(x,y)

3X
] = - Jan F [*

i
(x,y)]. (31)

17



By using equations (30) and (31), a general transform

of equations (27) and (28) is given by

3<j>-(x,y) ' a*?(x,y)
7

F
x[—

S

]
+ F

xt——2 ]
+ Kc?F r*.(x,y)] = (32)

x
3x^

x
ay

ixi

Or explicitly writing:

3 *.(ai\y)
2

"2— Y.j *• (an,y)
ay

(33)

? 2 ? 7
where Y - = <*

n
+ 6 " K

i
i = 1,2

Equation (33) should be analyzed for both regions 1 and

2, and the solutions will be the transforms of the electric

and magnetic scalar potentials for both regions.

For region 1

2 - 2 * «
2

ir
2

Y
l "

a
n

+ 6 ~ K
l

(34)

i

2-
Where K, = u I e n y n = t-t andM xo

2tt

A
'

Substituting K, and 3 into equation (34) obtains

2 TT X 2 r / Xo \ 2

xo ; U
X
rJ 1]. (35)

18



x' is the effective structure wavelength and is related to

the free space wavelength x by

xo

£ r-

> x
xo

^eff
(36)

where e r
e ff

is the effective relative dielectric constant

of the device.

Since e r-j
= 1 in region 1, equation (36) can be

rewritten as

Xo>X
xo

(37)

£r eff

By using equation (37) together with equation (35) one can

find that

2 2
Y

l

> a
n

(38)

Therefore y, is always a real quantity.

For region 2:

2 _ 2 .
ft
2

(39)

2tt
where K2 = u ZyTeT =

t-q- ^yr o z ro •

By substituting K
2

and 6 into equation (39) one can obtain

2 ,277 AO
- (3^) Ut^T

Z
= (pr) ] . (40)

19



From equation (40) it is clear that y 2
can De either

a real or an imaginary quantity, depending on the value of

an

.

Y 2
will be imaginary for

- W* [ur,«r:
2ttJ rr) ] < an < f^i [yr2£r2 - (y) ] (41)

and wi 1 1 be real for

2tt*J
< an < - ttt" Vro^rxo 2" r 2

i&

2tt Vlur 9 e rxo ""2 6r 2
(*M

(42)

The last two equations should be carefully observed while

solving equation (33).

For region 1 equation (33) can be written as

3*-, (an,y)
= Y-| *

1

(an,y) (43)

and the solution has the form of

*-|(an,y) = A(an) cosh y-| -y + B(an) slnhy'^-y (44)

For region 2, two solutions do exist corresponding to

the real and imaginary values of y? •

20



For y 2
real

*
2
(cm,y) = C(on) cosh Y 2

y + D(an) sinh y 2y ( 45 )

and for y
2

imaginary

it M

$
2
(an,y)=C(an)cosy

2
y + JD(an) sin y

2
y (46)

where y 9 = jy

After knowing the solutions for *j(an,y) and $
2
(an,y),

one can write the transforms of $?, $5, <$>-,,
<f> 2

in both regions

as follows.

Region 1 D<y<H

f(an,y) = A
e
(an)cosh Yl (y-D) + B

e
(an) sinh y^y-D) (47)

*!j(an,y) = A
h
(an) coshy^y-D) + B

h
(an) sinh y^y-D) (48)

Region 2 0<_y<_D

C^(an) coshy
2
y + D^(an) sinhy

2
y , (y

2
real) (49)

(an.y)

*
2
(on

1
y)

C^(an) cosy
2

y + jD^(an) siny
2

y, (y 2
imaginary)

(50)

C[](on) coshy
2
y + D

H
(an) sinh y

2
y, (y

2
real) (51)

C
T
(on) cosy

2
y + jD

T
(an) siny

2 y, (y 2
imaginary)

(52)

21



Superscript (e) indicates the electric field case and

(h) indicates the magnetic field case.

All coefficients that appear in equations (47) through

(52) can be determined by the boundary condition expressions

The above can be done by taking the Fourier transform of

equations (17) through (26), substituting the field

expressions for both cases of y 2
> rea ^ and imaginary, and

finally solving for the coefficients.

The following equations are obtained:

Hyperbolic Case (y ?
- real)

jonyC^(an) - jcou2Y2 D
H^

an
^

= ° (53)

Kc
2

2
C®(an) = (54

Kc,
2
A
e
(an) = J

z
(an) (55)

jan Y A
e
(an) - jwy.,Y-|B

H
(an) = £'

x
(an) (56)

Kc,
2
A
h
(an) - Kc

2
[c[j(an) coshy

2
D + d[] (an ) si nhy

2
D] =

J
x
(an) (57

22



•janyA (an) + jue-j Yi B
6

( a n] (58)

- {-jany[C[j(cin)coshY
2
D + D[](an)sinhY

2
D] +

+ jaje
2
[Y

2
C
H(

an ) sinh Y2 D + Y
2
D
H(

an ) cosh Y2 DU = J
z ( an

2„e 2 r ,e
Kc-jA (an) = Kc

2
[C^(an)coshY

2
D + D^(an )si nh Y2 D] (59)

e h
- jan Y A (an) - j to y

1
y

1
B (a) = (60)

- janY[C„(an)coshY
2
D + D

H
(an)sinhY

2
D] -

- jajy
2
Y
2
[Cu (an)sinhY

2
D + Dm (an JcoshY? ]

- jan Y [A
e
(an)cosh Yl (H-D) + B

e
(an )si nh Y] (H-D ) ] - (61

- j U y
1
Y-,[A

h
(an)sinhY

1

(H-D) + B
h
(an ) cosh Yl (H-D) ] =

Kc^[A
e
(an)cosh Yl (H-D) + B

e
(a) si nhy-, (H-D ) ] = 0. (62)

The coefficients for the hyperbolic case are obtained

as fol 1 ows :

C^(an) =

e
E {an)

A
e
(an) =

Z
g

Kc^

(63

(64

D[J(an) = (65)

B
n
(an)

any

uw-jY-j Kc
-|

1
Y

1

(66)

23



Du(an) = «—

'

ff (an
Kc

2
^sinhy

2
D

z
(67)

C„(an) = -

any

Kc« u>u
2 y 2

si nhy
2
D

E
Z
(an) + j

U y
2
y 2

Sinhy
2
D-X
£ (an)

_ ctgh Yl (H-D)
B
e
(an) = -\ ^

z
(an)

(68)

(69)
Kc

, an-y •ctghy, (H-D)
A
h
(an) =

ajy-jy-jKc^
2 a'

z
(an) - j

ctgh Yl (H-D)

uau-j Y-j X
£ (an) (70)

When substituting equation (63) through (70) into

equations (57) and (58) one can form two sets of equations

F
l

]

,

(an,3)£'
x
(ctn) + ?*

( an ,3 ) £, (an ) = Jjan (71)

F-
H
(an,3)ff (an) + F ,

H
(an , 3 ) S. ( an ) = <7_(an) (72)

or in matrix form

>
1

H
(an,6) F

2

H
(an,

F
3

H
(an,3) F

4
"(an,3)

^(an

L
*
z
(an)

J (an)

^
z
(an)

(

(73)

where y = j

The elements of the matrix [F ] are given as follows:

24



F^Un.B) = - j

Kc^ctghy^H-D)

uU-jY]

Kc
2
^ctghY

2
D

wy
2 Y2

(74)

F "(an,e) = j

anBctghY-] (H-D) a sctghYoD

toy-, yin toUoY
2

?
2

(75)

F
3

H
(an,e) = - F

2

H
(an,3) (76)

F
4

(an ,3) = j

(one) ctghY-j (H-D) oje^^tghy^H-D

uy-j Y -j
Kc

-j

77)
Kc

| £2 Y 2
ct9 'lY

2
D

(
an S) ctghYp

Kc Kc
2

wy
2
Y 2

The same method can be applied to the trigonometric case

(y 9
imaginary) and the following equations are obtained:

C^(an) = 78

D^(an) =

D
T
(an) = - j ^

Kc
2

sinY
2
"D

S
z
(an)

(79)

(80)

C T (an) =
2

an y £,(an) - j

Kc
2

wy
2
Y
2
"sinY

2
'D y 9 Y 9 "siny 9 "D2

Y 2

E
x
(an

(81)

K Cl
2
A
h
(an) - Kc

2

2
[c!f ( an ) cos y 2

"D + j d!J (an ) si n Y2 "D]

= J
x
(an) (82
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janyA (an) + jwe , y
i

B

e
( an ) - j anyCy ( an ) COS y. "D +

(83
nr»e+ a)e

2 Y 2

"
Dj(ctn)c0SY

2
"D = J" (an) .

When substituting equations (69), (70) and (78) through

(81) into equations (82) and (83) one can obtain the matrix

form

r
FJ(an,8) F

2
(an,e)

F^an.s) F^(an,S)

S
x
(an

E
z
\an

^
x
(an)

eT
z
(an)

(84)

where again y = js

and the elements of the matrix [F ] are given as follows:

F, (an, 3) = - j

F
2

' (an, 3) = j

KCl
2
ctghYl (H-D) Kc

2

2
ctgY

2
"D

uU-jY-j wy
2
Y
2

anSctghy-, (H-D) an8ctgY
2
"D

u)]i
1
Y

1
wy 9 Y2 r 2

F
3

' (an, 3) = - F
2

(an, 3)

(85)

(86)

(87)

F
4

' (an, 3) = j

(an 8) ctgh Y -,
(H-D) we-, Y] ctgh Yl (H-D)

1
Y

1
^

1

Kc

(88)

an8) ctgYo"D we 9 Y ? "ctgYo"D2
r 2

KC
2

cop
2
Y
2

"
Kc
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Expressions (73) and (84) can be written in a general

form as

F^Un.e) F^ T
(an

L
F^ T

(an,6) . F^ T
(an,3)

£
x
(an)

E
z
(an)

«/
x
(an)

L
J"
z
(an)

(89)

from which solutions to E (an) and E (an) in terms of j (an)

and J (an) can be obtained as follows:

H,i
<7 (anjF"' 1

(an, 3) - J (an )F 9
n

'
'
(an ,8

)

H,T (90)

x
v— ,.

4V an
> = T^HTT

z x-.y. 2

F
1

n
''(an,B).F

4

H)T
(an,3) - F/ ' T

( an , 6
) •

F

3

H ' T (an

- /
x
(an)F

3

H ' T (an,3) + <7

2
( an )

•

F^ ' T
( an , 3

)

*
Z

an
F

]

H)T
(an,3) F^'

T
(an,3) - F^

jT
( an , 3 ) • F^'

T
( an , 3

)

(91)

Define the following terms

DN = F
t

]

, ' T (an s 3) F^'
T
(an,3) - F^'

T
(an , 3 ) F^

'

T
(an , 3 ) (92)

H,T
1 (an, 3)

H,T

H,T
4(an ,3)

F
H,T

= 2(an,3)
M
2(an,B) DN

(93)

(94)

p H,T
H,T _

' r
3(an,3) _ M

H,T, ,

3(an,3) " DN
M
2

Un ' 3j (95

H,T
4(an,3)

F
1

H ' T (an,3)

DN
(96)
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which lead to the final expressions

S
x
Un ,H,T H,T

= M^ (an,s) j x
(an) + MjJ' (an, 8) j z

(an) (97)

E
z
(an) = M^ T

(an,e) J"
x
(an) + MJJ'

T
(an,e) j z

(an) . (98)

C. DETERMINENTAL EQUATION

Nothing seems to be gained so far since neither the

electric field and the current density components nor their

transforms are known. In order to simplify equation (97) and

(98), the method of moments [Ref. 4] is applied in the

spectral domain. Define a scalar product over the domain

-=°<an<°° according to reference 6 as

n = oo

(99)a(an ) ,b(an ) > = V] a(an)«b (an).

Thus when applying this concept to equation (95) and (96)

and choosing a(an) = 3 (an) or j (an) and b(an) = J"
x
(an) or

J (an) respectively, one can obtain

,H,T ,H,T
^"''(an.e) J"

x
(an), ,/

x
(an)> + <M£ ' (an ,6 )jz

(an ) >t7)(
(an )> =

(100)

H,T ,H,T
<M3 » (on,8)J"

x
(an) ,J

z
(an)> + <M^ ' (an , 6 )j (an ) ,j z

( an ) > = 0.

(101)
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By using Parseval's theorem it can easily be shown that

the right hand side of the above two equations is equal to

zero, due to the orthogonality of "E (on) and J (an), and

*
x
(an) and ^(an).

In general, one can expand each current density component

in a set of basis functions such as:

k = l
K

(102

J
x
(x) = 2]a

2k
g*

k
(x) .

k=l

(103

In the following analysis, one term approximation is used

since it was found to be less complicated, without much

degradation in the accuracy of the final results.

So with

J" (an) s F{al»f
z
(x)} = a-|f

z
(an (104)

and

./(an) s F{a .g (x)} = a 9 -g v (an2 3 x 2 *x
(105)

equations (100) and (101) become

00 CO

a
2 E M

i'

T
(^,8)|g

x
(an)|

2
+ 3] £ M^ T

(an,6)

n = -*> n = -<»

f
z
(^n)9

x
(ctn) =

(106)
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V M

H ' T(ctnj3)
9x

(ctn) f
z
(an >

+ 3
1 I>4

,T
( an > e

n = -oo

(107)

|f
7 (an)|

£
= 0.

From the geometry of the device (Fig. 3) and the loca-

tion of the coordinate system it is clear that all choices of

current density distributions, J (x) and J (x), are neither

even nor odd functions.

Each current density distribution can be expressed as

a linear function of even and odd functions as follows:

J
z
(x) = ^if

l

zeM + f'
z0

(x)] (108)

J
x
(x) = a

2
[g xe

(x) g; (x)] (109)

When taking the Fourier transform of equations (108

and (109) then according to reference 7, the following

transforms are obtained

(an) = a
1

[f
ze

(ctn) + jf
zo

(on)] = a^Un) (110)

^
x
(an) = a

2
[g X e

(an) + jg xo
(an ^ = a

2 g x
(an (HI

In order to solve equations (106) and (107) for the

non-trivial solution, the determinant of the coefficient

matrix should be set to zero for all sets of physical para-

meters, at each frequency of operation. The above can be
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achieved by finding the appropriate B that satisfies this

requirement. From that B the dispersion characteristics of

the device can be calculated.

The determi nental equation has the form of

£ M^ T
(an,s)|g

x
(an)|

H,T£ Mj''(an,3)|f
2
(an)|

]T M^ T
(an,B) - f

z
(an) g*(an

,H,T£ M5»'(an,B)

_i L_n = -°°

9 x
(an)f

z
(an) (112)

By investigating equations (93) through (96) one may

observe that M,(an,e) and M
4
(an,B) are even functions, while

M
2
(an,B) and M

3
(an,B) are odd functions.

Using this information together with equations (110) and

(111) leads to the final expression of the determi nental

equati on

,H,T£ M!J»'(on,s) |g x
(an)|

n =

M^'
T
(an,B)|f

z
(an)|

2

,H,T^ M^'
1

(an,B) • B(on)

n = _,

(113)

where

B(an) = - f
ze

(on) • 9 x0
(«n) + f

z0
Un) • g xe

(an). (114)
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In addition to the requirement that the determinant of

the coefficients matrix should be set to zero, one can see

from equations (106), (113) and (114) that the ratio of the

two coefficients has the form of

h
=J

]T M^ T
(an,3)|g

x
(an

1-,

n = -(

Y^ M
2

,T
( an ' e ) B ( an

(115

Since the expression in the brackets is a real quantity,

it is well understood that there is a 90° phase difference

(in time) between the two current density components.

D. CURRENT DENSITY COMPONENTS

After the determi nental equation was simplified as shown

in equation (113), the two current density components J (x)

and J (x) were approximated, thus that the equation could

have been solved. Various one term approximations were

investigated and the set of components that was chosen to be

substituted in the determi nental equation was the one found

as the best approximation of both current distribution

components .

The approximated current density component in the

z-direction has the form

20^

J
z
(x)

a
l
e on the strip

el sewhere

(116)
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and in the x-di recti on

irX
a
2

C0S2F on the stri P

x
(x) - (117)

el sewhere

The two current density components are shown in Figure 4

X

Figure 4. Longitudinal and Transverse
Current Density Components.

It is clear that the ratio a
3
/a

]

= e
20

= 4.85-10 8

indicates that most of the current that flows in the z-direction

is concentrated at the right edge of the strip [Fig. 3]. On

the other hand the choice of J (x) indicates that there is no

current in the x-direction at the right-edge of the strip.
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Computer output indicated a frequency dependent of the

ratio a^/ a, as shown in Figure 5. This curve was plotted for

D =0.125" w = 0.45" c
r

= 16 and a
]

= 10" 10
.

* °3/-

180

160-

I40-

120

100-

80-

6C-

40-

20-

-, *- FREQ (GHz)
5

Figure 5. Ratio of the Maximum Current
Density Components

From Figure 5 one may learn that the transverse current

component on the strip increases relative to the longitudinal

component, as the frequency increases.
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The Fourier transforms of the current density components

are given as:

J
z
{*

f 20^-

n) =

J
a ie

w
e
Jan '

dx = a , -f (on) = (118

20, 20— (e cosanw-1
w

20
+ e -an-sinanw

20
2 2

((£) + (an)

20 20 20
-an(e cosanw-1) + —e sinanw

(^) + (an)

'x<.„)=/ a
2
COS

2w
e a

2 .g x
(an) (119)

= a. 2w
cosanw

k> - <•»>

+ j 2w
sinanw + an

<5w>
(an)

where the even and odd components of each transform can be

identified by refering to equations (110) and (111).

After substituting equations (118) and (119) into

equation (113), the determi nental equation was programmed into

Fortran language and the root 6 that set the determi nental
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equation equal to zero, was found by an iteration method on

a digital computer. From the value of 8, X'/X could easily

be calculated.

Figure 6 shows:

1. Computed and measured x'/x vs. frequency for

D =0.125", W =0.45", e = 16.
r

2. Computed X'/X vs. frequency for D =0.025",

w =0.45", e
r

= 16.

Both curves are plotted for A = 0.9", H = 0.4".

It can be seen that there is a good agreement between

experimental and computed wavelength ratio. The highest

deviation is on the order of 10 percent which can be attributed

largely to the experimental apparatus.

One can learn that the wavelength's ratio is directly

proportional to the dielectric substrate width', which implies

that the fields are more confined in the dielectric substrate

as its width decreases.

E. AVERAGE POWER FLOW

For later discussion of the characteristics of the device

built on ferrite substrate, a perturbation technique is used.

One of the entries to the perturbation expression is the

average power flow in the device built on a dielectric

substrate .

A general expression for the time average power flow in

the direction of propagation is given by
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1

FREQ CGHzD

Fiqure 6. ComDuted and Measured Dispersion Characteristics
for D = 0.02 5" W = 0.45" and D = 0.125"
W = 0.45" with e =16.
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Pave = i Re // (ExH*)-a, da (120)

Since (ExH*)-a = ExHy* - EyHx*

and da = dx dy

then equation (120) can be rewritten as

Pave = - i Re If (ExHy* - EyHx*) dx dy
c

S

(121)

The minus sign was added in equation (121) to make the

result positive (recall propagation in the -z direction was

assumed )

.

Both the electric and the magnetic fields are known in

e h
terms of the scalar potentials $ and cj> thus substituting

equations (3) through (6) into equation (121) and using

y = jS for the waves traveling in the -z direction, leads to

the following expression

P; ave
(
(f

3<fr

e
3*5 3(j,J

3 V

1 3X

1/
3d). 3 <j)

• 3 <j> 3 <j>
•

U*TT + ^iTT^ (j6TT"
+ jU£

i Tr ] dW (122)
y

i = 1 ,

2

Subscript i denotes the spatial regions, air and dielectric

substrate respectively, for which equation (122) must be

eval uated .
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The total average power flow in the device is the sum

of the spatial power components that flow both in the air and

in the dielectric substrate as shown in the following equation

Pave
JoT

= P-jave + P
2
ave (123)

Applying Parseval's theorem to equation (122) obtains

CO

2

P^ve =

n = -oo J
*

an co6e
i

|

$.. (an ,y )
|

an ugy
i

| $.j (an ,8 ) |

- uSu^

2

3$"(an,y

9y

Be .
|

3<j>
i
(an,y)

jane'
3y

h
* 3^-(an,y)

3y

h
* a$-*(an,y)

'i 3y

+ janK'

dy

* 3*"(an,y)

3y

(124)

3*5*( an >y)
*

n

- (an,y)—

The limits of integration depend on each region and are
H D

C for region 1 and C for region 2.

D

After obtaining the general expression for average power

flow, one can apply it for both regions.

Recall equations (47), (48), (64), (66), (69) and (70)

and have the first two modified, the following equations can

be obtained
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(an ,y) = A (an) sin h Y , (y-H) (125)

1
(an,y) = A (an) cos h Y] (y-H) (126)

where

-e
A (an)

£
z
Un)

Kc
1

sin h Yl (D-H)

-h
A (an) = - j

anB£ (an

)

Kc
- ^(an)

(127)

(128)

iy lYl sin h y-| (D-H)

After using the modified expressions for *,(an,y) and

h
*-|(on,y) in region 1, and integrating with respect to y

one can obtain

p
i

ave = u Re Zr
sin h2 Y] (H-D)

(129)

(H-D)
7

-e 2
7

-h 2

ctn e, |A (an)
|

+ yi Pi |A (an)|
1

H
l

sinh2 Yl (H-D)

2 Y
(H-D)

-h

+ Y] e
]
|A (an)| + Jan

an y
1

| A (an) | +

,-e -h*
A (an)A (an) -

-e* -h
K^A (an)A (an) sinh2 Y] (H-D)
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In region 2, there are two expressions depending upon whether

y
2

is a real or imaginary quantity. As in region 1, the

integration with respect to y can be done analytically, and

the following equations are obtained.

2

P
2
ave

H
= 1^ Re £ -

n =

an
2
e
2 |

D^(an)
|

2
+ (130)

Y
2

M
2 I

C
H^

an
) I

sinh2y
2
D

an y
2 |

C„(an)
|

+

y
2

2
e2 |D^(an)|

2
si nh2yoD

+ D + jan Dm ( an

)

Cm ( an

K
2

2
D^*(an) C[j(an) sinh 2y

2
D

and for y
2

imaginary, (y
2

= Jy
2

"

i vM
ave

T
=

4A
Re Z^f 6

2
i n e |

i,2
i r h I 2

an e
2 I

D
T |

+ y
2

u
2

|

C

t |

(131

D -

2y
2

" an u
2

| Cj |
+

2
, n e,2e 9 |

D D +
2y

2

"

+ an
2
D*C?* k|c*D«* sin2Y

2
D
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D^(an), C
H
(an), Dy(an) and Cj(an) are given in equation (67),

(68), (80) and (81) respectively

The total power in region 2 becomes

P
2
ave = P

2
a ve

H
+ P

2
ave

T (132

Detailed development of equations (129) through (131)

is given in appendix A.

Curves of a-domain power distributions for regions 1 and

2 are shown in Figures 7 and 8 respectively. The ratio of the

power carried in each region to the total power carried in

the device for various parameters, is plotted as a function

of frequency in Figures 9 and 10.

Several facts can be studied from the graphs.

(a) The amount of power carried in each region is
frequency dependent.

(b) As frequency increases relatively more power is
carried through region 2, the dielectric substrate.

(c) Relatively more power is carried through region 1

as the permittivity is lowered.

(d) In the low frequency region, more power is carried
through region 1 as the substrate thickness increases
At high frequencies the power carried in region 1

approaches the same value, for all values of
substrate thickness.

(e) As strip width increases more power is carried
through region 2, the dielectric substrate,
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IP, (*i<39 )

Fiaure 7. Average Power Distribution in Reoion 1 Vs.
n (an) for f = 4GHz, D = 0.125", W = 0.45"
e = 16.
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Figure 9. Average Power Ratio in Regions 1 and 2

Vs. Frequency for = 9.
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P| - power in free space region

P - power in dielectric region

--T-h
PT

D (cm)

0.0635 0.03175

W(cm) 1,143

T , , , r-*- FREQ(GHz)12 3 4 5

Figure 10. Average Power Ratio in Regions 1 and 2

Vs. Frequency for e = 16.
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III. PERTURBATION ANALYSIS OF EDGE-GUIDED

MODE ISOLATOR ON FERRITE SUBSTRATE

A. PERTURBATION EXPRESSION FOR PROPAGATION CONSTANT

Perturbati onal analysis is used to determine solutions

for perturbed problems slightly changed from other problems

to which solutions are known. The study that was done up

to this point obtained a solution for the propagation

constant of an electro-magnetic wave traveling in a struc-

ture as shown in Figure 3. The goal of this study as was

stated in the introduction, was to investigate the character-

istics of waves traveling in the same structure as shown in

Figure 3 but built on a ferrite substrate. This goal could

be achieved by using the perturbation approach considering

the dielectric case as the unperturbed problem, and the

ferrite case as the perturbed problem.

A perturbati onal expression for the propagation

constant due to small changes of a material type in a

guidance structure is given in reference 8 as

J* // [U [A Xe ]-E'-E*) + (y [Ax m
]-H'.H*)] ds

Y
' + Y

* = AS (133)

// (E*xH' + E'xH*)-a._ ds

S

where primes denote perturbed quantities
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When external magnetic susceptibility is used, and

assuming that the dielectric constant remains unchanged,

hence [ax ] = then unperturbed magnetic and electric fields

are used instead of the perturbed ones, and equation (133)

can be rewritten as

Y" =

jwu // [x m
]'H.H ds

AS

//(E*xH + ExH*).a
z

ds

(134)

In the above equation the following notations are used

y ' = ct ' + jS' perturbed propagation constant

Y = a + j3 unperturbed propagation constant

AS cross section of waveguide which is

perturbed by a change of the
material type

S waveguide cross section

x
e external magnetic susceptibility tensor

H and E unperturbed magnetic and electric
fields

The external D.C. magnetic field is applied perpendicu

lar to the direction of propagation as shown in Figure 11.
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Figure 11. Shielded Isolator Structure
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According to reference 1 the lines of the magnetic

field lie in Z-X plane hence an interaction between the R.F.

field and the ferrite results when the D.C. magnetic field

is applied perpendicular to Z-X plane.

The direction of the applied magnetic field implies no

R.F. demagnetization in the y direction. Thus the external

magnetic susceptibility tensor is given by

Cx m ]
=

xz

x zz

Y "- +Y -- +A xxaxax A xzaxaz

zxazax zzazaz

(135

and the integrand in the numerator of equation (133) can be

expl i ci tly wri tten as

[X^-H-H = [ Xxx H
x Xx2 H

z
]H

x [ Xzx H
x x zz

H
2
]H

z (136 )

The denominator of equation is simply 4Pave so one can

rewrite equation (134) as

137

Jwy,
I J;

( *xxl H
x|

2
+ * Z2

|H
Z |

2
+ X xz

H
z
H
x +Xzx H

x
H* )dxdy

4 Pave
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B. MAGNETIC SUSCEPTIBILITY TENSOR ELEMENTS

According to small signal approximation of the equation

of motion in reference 8 two frequencies can be defined as

w
z

= K ' N
y "m

+ N
z

UJ a u
o " u

m < 138)

"x
= K - % »

m
+ N

x
u
m> = % " V < 139 >

where

oj = Y Hoy

m ' s

Y = 1 . 4-g[MHz/oe] =0 . 879 -g[Mrad/oe]

g = Lande' factor (
a 2)

Hoy = applied D.C. magnetic field in y direction [oe]

4ttM
3

= saturation magnetization [Gauss]

N ,N ,N = Demagnetization factors (in this case

N
x

= N
z

= 0, N
y

= 1)

Define the ellipticity of the normal modes of the

uniform precession [Ref. 8] as:

e n =1/— (140)
O T W

7

and Kittel resonance relation for an ellipsoid [Refs. 8 and 9]

as

r
=
Vu

x"
u

:
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The Landau-Lifshi tz damping factor is defined in

reference 9 as

= YAH
(141)

where AH is the line width of the ferrite.

In this study the ellipticity e is equal to 1 and

w
r

= % " u
m'

so by takin 9

and knowing that [Ref. 8]

then the susceptibility elements can be expressed as

(142)

(143)

w
m
w
r^

u
r

" w
'

u
m
u
r
u a

(144)

x" = y"A xx A zz

go„,o) aTa)^ + go ( 1 +a ) 1
m r

145)

x xz x zx " J
'

wu
m

[a)
r

- U) (1+a )]

(146)

2 a) a) m O) v,am r
x xz~~ x zx~ J A

(147)

and

r
2 2 n . 2 x -.2 ,.222

A = It* -oj (1+a }J + 4co
r

a) a (148)
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Since
*xx

=
*zz

and
*xz x then one can simplify

the perturbation expression given in equation (137) as

fol 1 ows

/ / Cx xx
(|Hx|

2
+ |H

z |

2
) + X XZ

(H
z
H
yx
*-H

z
*H

x
)

Y' * Y* = J"y n^ave < 149 >

C. COMPUTATION OF PERTURBATION EXPRESSION IN THE
SPECTRAL DOMAIN

In order to solve the perturbation expression [Eq. 14 9],

the magnetic fields, H and H were substituted in terms of

the scalar potentials as follows

jwu DAi
_ 3*

2
(x,y) uy

2
3<J>o(x,y)

4Fave ff )^ { -^' 3x
+ Jwe

2 3y
) (150)

(+j

34>
2
(x,y)

3X

3* 9 (x,y) 4 ,h
- jcoep —^- ) + KcJ <j>

2
(x,y)] +

sy

2,h
2x xz

[Kc
2

* 2
(x,y)(+je ^

3<l>
2
(x,y) 3<l>

2
(x,y)

" jwe
2 3^

] dxdy-

The upper and lower signs denote waves traveling in negative

and positive z-directions respectively.

Apply Parseval's theorem

Y + y

T)= -oo *t)
'

4 M h
Kc; )|*"(an,y)| +

2 (151

2 / i- 2

3$
2
(an,y) 3$«(an ,y

+ j3ana)e
2
($

2
(an,y) g- $

2
(an,y) ^ )

+
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2 9 3$?(an,y)
1 ay '

J

(151)

.2.h h*+ 2 X X2
Kc

2
$
2
(an s y)[ + Ban$2 Un,y) - j^-^-] > dy

.

The integration with respect to y was computed

analytically for both regions where y 2
is either a real or

an imaginary quantity.

Recall equations (49) through (52)

. (C
H
(an) cosh Y? y

*|!(an,y) -J H 2

(c!f(an) cosY2 "y

y
2

real

Y
2

imaginary

a»f(an.y)
(^D^an) cosh Y2y y

2
real

/Y 2
"Dj(an) cosY

2
"y y

2
imaginary

Substituting into equation (151) for both hyperbolic and

trigonometric cases, and integrating with respect to y, one

can obtain:

For the hyperbol i c case
(152)

Jwu

8PaveA
n = -<

sinh2Y
2
D

2 2 2xi„h
xx L 2y

+ D][(0 an + Kc
2

) |C^(an)
|

+ u
2
£ 9

2
y ?

2
|Dy(an)

|

+ J6ana)Yp£o(c[l(an)D^ (an)
2

T 2 2
C
2 V1

C[j (an) D*(an)] -

o * h
sinh2Y

?
D

j2 x Kc
2
^ e

2
Y
2
D^ (an) C[j(an)C —

2 Yo

+ D]
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And similarly for the trigonometric case

(153)

Y + Y =
8PI

00 ' o

n = -<

+ u
2
e
2

2
Y 2

" 2 |Dy(an)
|

+ Banaic^ "
( Cj (an ) D^* (an ) +

+ c!f (an)D*(an))]

? H P * h
sin2y

9 D

2x xz
Kc

2
ue

2
Y 2 D

T
(^n)C?(an)[

2y
j + D]

!•

D. COMPUTATION OF NORMALIZED PHASE CONSTANT AND ATTENUATION

The perturbed and unperturbed propagation constants have

the form of

y' = a' + js' (154)

Y = jS (a = for dielectric case)

Thus the left hand side of the perturbation expression is

equal to

Y ' + y* = o' + je' + (-je) = a' + j(e' - s) (155)

Using equation (155) one can obtain

•' + J< 3 ' - B
> 8RV5TA Z (R

E
+ *V < 156 '

n = -co
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Figure 13. a) Attenuation and
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Traveling in +Z and -Z Directions for:
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= 2271. 42oe,

4nMS = 1200 Ga
L
g = 1 .99, e„ = 15.2
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or

3P
o Vave«A / j

(157)

n = -°°

B'/6 = 1 +
8PaveA^E (158)

Detailed development of the last two equations is given in

appendix B.

Figures 12, 13 and 14 were plotted for three different

values of external magnetic fields Hoy, hence for three

different resonant frequencies.

Several facts can be studied from these plots,

a. The ratio of backward to forward attennuation is

very large, as required for an isolator.

Both backward and forward attenuations increase

as the resonant frequency increases.

The ratio of backward to forward attenuation

increases as the resonant frequency increases.

The bandwidth of the isolator is determined by

the ferrite linewidth.

The normalized phase constants in both directions

are frequency dependent and exceed high values as

approaching the lower side of the isolator's

bandwi dth .

b.

c.

d.
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The region of negative values of normalized phase

constants was not investigated, thus at present no explana-

tion is obtained. .Hopefully laboratory measurements will

indicate whether it was an error due to the inherent

approximations of the perturbati onal technique, or how large

are the deviations from the correct results.
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IV. COMPUTER PROGRAMMING

The computer program that was developed for this study

was written in FORTRAN IV language and has three major steps:

1. Computing wavelength ratio \'/X, for waves traveling

in a device built on dielectric substrate (Fig. 3).

2. Computing power flow in a device built on

dielectric substrate.

3. Computing normalized phase constant BF/s, and

attenuation in db/cm for waves traveling in a

device built on ferrite substrate (Fig. 3).

These computations were done for both forward

and backward directions of propagation.

The computations of the wavelength ratio in step 1 were

made by finding the root 3 that solved the determi nental

equation (113). First, equation (113) was solved for an

arbitrary value of e» and then, by the use of Newton-Raphson

iteration method, s was computed until the change between two

3's in two successive iterations was in the 6th or 7th digit

after the decimal point. From the value of the last 8,

x'A could easily be computed.

In step 2 the power flow was computed for both hyperbolic

and trigonometric cases, depending whether y? was a real or

imaginary quantity. The computed 6, and the coefficient ratio

a
?
/a-, obtained in part 1, were used as entries in part 2.
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In step 3 both power flow and computed 3 were used as

entries. This step was executed twice each time for waves

traveling in both directions. The output of this step could

be obtained for only one value of the following parameter at

each run:

Ferrite linewidth
Applied D.C. magnetic field
Saturation magnetization and
Lande'-g of the ferrite.

All three steps could be calculated for different

values of frequencies strip's width and substrate's thickness

in one run.

The required input data to the program is given in

Appendix C.

The limits for all summations in the program were chosen

by a trial and error method, since there were no definite

limits that could be pointed out.

The upper and lower frequencies of operation are bounded

as f ol lows .

Lower frequency is bounded by the strip's width such as

A max

4.R
= W (159)

or

mm (160)
4WU^jpT2
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Approximated upper bound was applied according to

reference 10. This reference discusses the case of a

rectangular guide with dielectric slab perpendicular to the

electric field as shown in Figure 15.

J.
D

T
Figure 15. Waveguide Filled with Dielectric

Slab Perpendicular to the
Electric Field.

The guided wavelength is given as

X
9

*

n er2

(161)

The cut-off wavelength of this guide is the one that set

the denominator equal to zero, so from equation (161) one can

obtain

*o min " 2A (162)

and

max a
o mi n

(163)
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V. CONCLUSIONS

In this study* a theoretical analysis of a model for a

shielded edge-guided mode isolator was presented.

The analysis was based on a complete solution for an

unperturbed problem (the dielectric case) and then by the

use of a perturbation technique, a solution was derived for

a perturbed problem, (the ferrite case).

Final results indicated that above and below the

resonant frequency the forward attenuation is yery low -

negligible, while the reverse attenuation is high. These

are good regions in which to operate as an isolator. One

result which is still unexplained is that the normalized

phase constant is negative in the frequency region above

the resonant frequency.

A computer program was developed for all steps of the

theoretical analysis.
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APPENDIX A

AVERAGE POWER FLOW IN REGIONS 1 and 2

Equation (129) indicates the total power flow in region

1. In order to solve this equation both A
e

and A
h

should be

known explicitly.

Recall

A
e

( n) =
£ (an)

Kc, sinhy, (D-H)
(A-l

A
h
(an j[-

an8£ (an)

Kc
r~ - g

x
(an)]

M p lYl s1nh Yl (D-H)
(A " 2

H,T H,T
^
x
(an) = M^' 1

(an,S)Jr

x
(an) + M

2

n>
' (an,3)^

z
(an) (A-3)

5
z
(an) = M

3

H ' T (an,6)«/
x
(an) + M

4

H
'
T

( an , $ )J
z

( an ) (A-4

Since M^'^an.B), M
2

H,T
(an,8), M

3

H ' T (an,8) and

H T
M. ' (an, 8) are imaginary quantities, one can define

H,T H,T
M, ' (an, 6) = jm. ' (an

H,T
M
2

n>1
(an, 6) = jm 9

n
''(an,B)

. H,T
^2

'

M
3

H,T
(an,8) = jm

3

H ' T (an,8)

M
4

H ' T (an,8) = jm
4

H ' T (an,

(A-5)
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Furthermore, referring to equation (115) one can assume

that a
2

is a real quantity and a-, is imaginary quantity

So one can write ,

a
l

=
J a

l

(A-6

where a, is real quantity.

Substituting equation (A-5), (A-6), (110) and (111)

into equations (A-3) and (A-4) one can obtain

£
Y Un) = E (an) + jff (an)
A A -I An

ff(an) = £ (an) + jff (an

(A-7)

(A-8)

where

E (an) = i^ m
1

H,T
(an,3)g

xo
(an)

1 i
1

(A-9

H ' T (an,6)f
ze

(an)]

*
x

(an) = i-jC— • m
1

H ' T (an,6) 9 xe
(an) -

2 3]

- m
2

H ' T (an,B) f
z0

(an)]

(A-10)

'

z
(an) = »,[- -T-

m
3

H ' T (an,6) 9 x0
(cm) -

1 a
1

(A-ll)

m
4

H ' T (an,8) f
ze

(an)]



E
z

(an) = ^[-i m
3

H ' T
( a n,B)g xe

(an)
2 9]

- m
4

H ' T (an,e)f
zo

(an)]

(A-12)

and

y^m
?

H ' T (gn,3)B(an

2 n = -<

^m
1

H ' T (an,8)|g
x
(an)|

1

n

(A-13)

After investigating equations (A-9) through (A-12) it

could be seen that E (an) and E (an) are even functions,
x

1
z
2

while E (an) and E (an) were odd functions. Substitution
-
x
2

z
l

of these functions into equations (A-l ) and (A-2) led to

- p _ u

explicit expresions of A (an) and A (an), hence the power

flow in region 1 could be calculated.

It is clear that the power flow in region 2 for both

the hyperbolic and trigonometric cases could be calculated

in the same way since the coefficients DJj(an), C,,(on),

Dj(an) and C
T
(an) are functions of E (an) and E (an) which

their explicit expressions are given in equations (A-9)

through (A-12).
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APPENDIX B

NORMALIZED PHASE CONSTANT AND ATTENUATION

As was statecMn equation (157) and (158)

wy
o

a -

8PaveA
n = -oo

ojy

E'« (B -"

s '^ '
+ whtK Z R

E
(B " 2)

n= -°°

So in order to calculate a' and B'/B, both I and R
£

should

be known expl i ctly

.

For the hyperbolic case, equation (151) had to be divided

into real and imaginary components.

Recall equations (67) and (68) and substrate equations

(A-7) and (A-8) for £ (on) and g (an) one can obtain

C[!(an) = 1.
h n

([- -^V^ 7
(an) + E

Y
(an)] + (B-3)

+ j[^V^ 7
(an) - E (an)]}

KC2 1 ]

Du(an) = ^ [*_ (an) + jff (an)] (B-4)
Kc„ sinh Yo D

z
l

z
2
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Substituting equations (B-3) and (B-4) into equation

(152) and separating to real and imaginary parts, the

following equations are obtained

2 _2 . „ 2

RI
an + Kc

1 2 2 I
w ^2 Y 2

{[_ 6an

K
2

2 z
2

^
7 (an) + 5" (an)] + (B-5

X
2

Kc^ z
l

x
l

2 2 2

Sp- IX Man) + z? Man) +

KC.
4 Z

l
z
2

I 2Ban r3an r„ 2 # „ % . „ 2, xn+ p- { p- IX (an) + e 7
(an)] -

KCg K
2 ] 2

(an)£ (an) - £_ (an) v (an)}
Z

l

X
l %

RI
?

= —- [ff (an)]? (an) - £- (an)* (an)]
? 1 / 7 1

(B-6)

RE =
[

Im =
[

ctghypD— + *
Y
2 sinh y

2
D

ctghy
2
D

D

][-|
X- RI

1
+ -p- RI

2 ] (B-7)

][-
XX

Y 2 sinh
2
Y
2
D
JL RI

1 2
,N1

2
RI 9 ] (B
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Similarity for the trigonometric case the coefficients

Cj(om) and D-j-(an) can be expressed in terms of # (an) and

j (an) as follows

c!f(an) = ] {[^V * (an) - 2? (an)] + (B-9
wy

2
Y2Siny^D Kc

2

z
2

x
2

Ban

Kc^ z
l

x
l

Dy(an) = - j * — ZT_(an)
Kc

2
siny

2
D

(B-10)

and both the real and imaginary parts of equation (152) have

the form of

? ? 2
8 arT + KC/

a n 2

RI
1

=
2 2 „2 U^^V *

z
(an) - £

x
(an)] + (B-ll)

+ [- ^T^, (an) + * (an)] } +

Kc
2
^ z

l

x
l

2 2 "2
U £o Yo O ?

V^- [*
2
(an) + 2? ^(an)] +

Kc,

- 2Ban r Ban r 2, „\ _ 2, xn+ 2 { T L ^7 (
an

)
+ E

-,
(an)]

Kc
2

Kc
2

z
l

z
2

- 2?, (an)2Tv (an) - E_ (an)Z7 (an)}
z

l

x
l

Z
2

X
2
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RI
2

= " T~ ^E y (<*")£ (<*n) - 2 (an)tf (an)]
t- M o A -I Zp Ap Z-i

(B-12)

n ctgyoD
Rp = [ 7-rr1 + - i ] C-^RI, :+ -¥ RI 9 ] (B-13
E

~ L
—

Z
sin y

2
D

!
m = t—

z

Y
2

ctg Y o"

"T" RI
1

+
"T" Ki

2

InSgD Y 2

I—] [-
xx

RI
xz

RI,] (B-14)

After substituting properly equations (B-7), (B-8), (B-13)

and (B-14) into equations (B-l) and (B-2) the later can be

solved for the attenuation and normalized phase constant.
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c
C APPENDIX C

C COMPUTER PROGRAM
C
C
C
C THEORY OF FIELD DISPLACEMENT DEVICES

C SHEILDED EOGE GUIDED VOCE ISOLATOR
C (BOX'S DIMENSION 0.4"*fl.9")

-C THIS PROGRAM HAS THREE MAJOR STEPS CORRESPONDING TO
C THE STEPS OF THE THEORETICAL ANALYSIS OF THE DEVICE.
C THE THREE STEPS ARE:
C 1.COMPUTING WAVELENGTH PATIO OF THE DEVICE BUILT ON
C DIELECTRIC SUBSTRATE.
C 2. COMPUTING POWER FLOW IN THE DEVICE.
C 3. COMPUTING NORMALIZED PROPAGATION CONSTANT AND
C ATTENUATION IN CB PER CM OF FERRITE 3UIL t DEVICE
C BY USING PERTURBATION THEORY ANC CATA CBTAIN'EC IN
C STEPS 1 £ 2.
C
C PROGRAM ACCEPTS FOLLOWING DATA:
C
C 1. FIRST CARD-L1,M1,MN1 FORMAT

(

I ( I 2, X2 )

)

C LI -NUMBER OF FREQ. CATA CARDS.
C Ml -NUMBER OF STRIP WIDTHS DATA CARDS.
C MN1-NUMSER OF SUBSTRATE THICKNESS DATA CARDS.

2. SECOND CARD-(FREQ(L) ,L=1,L1 ) F0PMAT(D9.2)
C FREQ(L) ARE THE FREQUENCIES IN HERTZ AT WHICH THE
C COMPUTATIONS ARE EXECUTED.
C NUMBER OF • •SECOND 1 • CARDS = L1.
C

2. THIRD CARD-(W(M) ,M=I,M1) pORM AT (D10.4

)

C W(M) ARE THE VARIOUS STRIP WIDTHS, IN ^T5RS.
C NUMBER OF ••THIRC" CARCS=M1.
C
C 4. FOURTH CARD-(D( MN),MN=1,MN1 ) FORMAT (D 10. 4)
C D(MN) ARF THE VARIOUS SUBSTRATE THICKNESS, IN METERS,
C NUMBER OF '» FOURTH* • CARDS=MN1.
C
C 5. FIFTH CARD-EPSR ^ORM AT ( F5. 2 )

.

C EPSR- RELATIVE DIELECTRIC CONSTANT.
C
C 6. SIXTH CARD-CELTh FORM AT ( D12 . 3

)

DELTH-LINEWIDTH OF FERRITE IN OERSTEDS.

C 7. SEVENTH CARD-HO pORM AT ( 012 . 3 )

HO-APPLIED D.C MAGNETIC FIELD IN OERSTEDS.
C
C 8. EIGHTH CARD-AMAGS FORMAT ( Dl 2 .2

)

C AMAGS-SATURATION MAGNETIZATION IN GAUSS.
C
C 9. NINTH CARD-C- FORM AT ( F4. 2 )

C G- LANDE-G OF FERRITE.
C
C OUTPUT:
C
C 1. WAVELENGTH RATIO FOR DIELECTRIC SUBSTRATE.
C
C 2.M0RMALIZ C D PROPAGATION CONSTANT FOR BACKWARD AND
C FORWARD DIRECTIONS OF PROPAGATION.

3. ATTENUATION FOR BACKWARD AND FORWARD DIRECTIONS OF
C PROPAGATION.

C T HE OUTPUT IS PRINTED FOR ALL FREQUENCIES, STRIP
C WIDTHS AND SUBSTRATE THICKNESS.

C CAUTION: THE UPPER AND LOWER FREQUENCIES CF OPERATION
C

" ARE BOUNCED TO ELIMINATE UNOESIRED MCDES OF
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C PROPAGATION IN THE DEVICE.

C ALL COMPUTATIONS ARE PERFORMED IN DOUBLE PRECISION.

C LANGUAGE-FORTRAN

C PROGRAM DEVELOPED 3Y LT.J.G RAM SHARON ISRAELI NAVY-
C THESIS ADVISOR- PROF. CR. J.3.KN0RR.
C NAVAL POSTGRADUATE SCFCOL MONTEREY CALIFORNIA 92940
C FEBRUARY 1976

IMPLICIT REAL*8 (A-H.C-Z)
CI MENS I ON TOT (4) , FREQ ( 10 ) » W( 8 ) , D ( 8 )

ZZ=20.D0
S=O.DO

1 FORMAT (D9.3)
2 FORMAT (010.4)
3 FORMAT (3(12, 2X ) )

5 FORMAT (F5.2)
10 FORMAT (C12.3)
7 FORMAT (F4.2)

C
READ (5,3) L1,M1,MN1
READ (5,1) (FREQ(L) ,L=1 ? L1)
READ (5,2) <W(M) .V=1,M1)
READ (5,2) (D(MN) ,MN=1,MM)
READ (5,5) EPSR
READ (5,10) DELTH
READ (5,10) HO
READ (5,10) AMAGS
READ (5,7) G

C
PI=3.141592654D0
AMUl = 4.D0* c> m.DD-7
AMUR=1.D0
AMU2=AMU1*AMUR
EPS 1=1. DO/ ( 36. DO*P 1*1.0+9)
EPS2=EPS1*EPSR

C
C STEP1-WAVELENGTH RATIO CALCULATIONS.

C H-BCX'S HEIGHT
C

H=1.016D-2
C
C A-BCX'S WIDTH
C

A=2.286D-2
C
C FREQUENCY LOOP
C

CO 4000 L=1,L1
FRSQl=FREQ(L)/1.0D+9
3MEGA=2.C0*PI*FREC(L)
OMEGAl=OMEGA/1.00+9
WRITE (6,4)

4 FORMAT (//////////)
C
C PRINT OUT QP INPUT DATA
r

WRITE (6,199)
1 99 FORMAT ( 30X, 22H*****#****************>

WRITE (6,200) FREQ1
200 PO'MAT (30Xt8H* FP EQ1= , F5.3, 7H GHZ,2H *)

WRITE (6,201) CMEGA1
2C1 FORMAT (30X,9H* OMcGA 1= , F6. 3, 5H GRPS,2H *)

WITE (6,202) H
IQ2 FORMAT (20X,4H* H=,E11.4,5H MTR,2H *)

9C2 FORMAT* ?30X^4H* A = ,E11.4,5H MTR,2H *)
WRITE (6,207) F.PSR

207 FORMAT (30X,7H* EPSR= , F4. 1 , 9X , 2H *>
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WRITE (6,206) DELTH
206 FORMAT (30X,10H* OELTH= ,F7.2,5H CE *)

WRITE (6,210) HO
210 FORMAT (30X,10H* C.C

.

FLD= , F7. 2 , 5H QE *)
WRITE (6,212) AMAGS

212 FORMAT (30X,10H* S AT.

M

AG= , F7. 2 , 5H GA *)
WRITE (6,213) G

213 FORMAT (2CX,10H* LANDE-G= ,F4. 2 , 7X ,1H*

)

WOITE (6,208)
208 FORMAT ( 30X , 22H**********************//

)

C SET HIGHER FREQUENCY CF OPERATION
C

GM = 2.D0*A/DSQRT( l.DO-D (MN ) /H* ( 1 .0 C-l. DC/EPSR) )

FREQU=3.D8/GM
IF (FREQ(L).GE.FP.EQU) GC TO 40GC

C STRIP WIDTH LOOP
C

DO 5000 M=1,M1

C SET LOWER FREQUENCY CF OPERATION
C

FREQL*(3.0C+08/DSQPT( EPS P

J

)/(4*W(N) )

IF (FREQ(L).LE. F9EQL) GC TO 5000
WRITE (6,205) W(M)

205 FORMAT < 10X , 2Hw = , Fll .5//

I

C
C SUBSTRATE THICKNESS LCOP
C

DO 6C00 MN=l t MNl
WRITE (6,209)

209 FORMAT ( 20X

,

14HLAMBD A • /LAMBDA , ^X , 1HC , 15X , 4H8ETA/ )

Nl=101
11=201

C
C 6E T A-PROPAGATI0N CONSTANT

DBETA=1.0D-1
6ETA1=300.DO

10CO TQT( 1)=20.D0
DO 2000 K=l,2

BETA=3ETA1
IF (K.EG.2) GG TO 600
GO TO 700

600 6ETA=3ETA+D8ETA
700 AK1=0MEGA*DSQRT( AMU1*EPS1)

AK2=0 MEG A *DS QRT ( A MU2-EPS2)
AKC1S=AK1**2-BETA**2
AKC2S=AK2*-2-SETA**2

SUM1=0.D00
SUM2=0.D00
SUM3=0.D00
TTPWR1=0.D0
TTPWR2=0.D0
T0TPWR=0.00
GO TO 9

16 Nl=51
11=101

9 R<=11=0.00
PE22=0.D0
ZM11=0.00
ZV21=0.D0
N = -N1

DO 100 1=1,11
N = N+1
A 1 FAN=2.D0* p I~N/A

6 GAMA1*0S0RT( ALFAN**2-AKC1S)
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GAMA25=ALF4N**2-AKC2S
GAMA2=DSQRT(DABS(GAMA2S) )

A1 = 1.D0/DTANH(GA>1A1*IH-C<MN) ) )

A2=0MEGA*AMU1*GAMA1
A3=OMEGA*AiMU2*GAMA2
A4=ALFAN*BETA
A5*0MEGA*EPS1*GAMA1/AKC1S
A6=QMEGA*EPS2*GAMA2/AKC2S
IF (GAMA2S.GE. 0.000) GO TO 20

C TRIGONOMETRIC CASE
C

A7=DTAN(GAMA2*D(Mi\) )

F1=-AKC15*A1/A2+AKC2S/(A7*A3)
F2=A4*A1/A2-A4/(A7*A3)
F3=-F2
F4=A4**2*A1/(A2*AKC1S ) -A5*A1- A4**2/ ( AKC 2S*A7* A3 )-A6/A7
GO TO 30

C HYPERBOLIC CASE
C

20 A8=1.00/D7ANH(GAMA2*0(MN) )

F1=-AKC1S*A1/A2-AKC2S*A8/A3
F2=A4*A1/A2+A4*A8/A3
F3=-F2
F4=A4**2*A1/(A2*AKC1S )-A5*Al+A4**2*A8/< AKC2S*A3 )-A6*A8

30 DN=F1*F4-F2*F3
AML=F4/DN
AM2=-F2/DN
A.M3=-AM2
AM4=F1/DN
SN=DSIN<ALFAN*W(M) )

CN=DCJS(ALFAN*w(M) )

R1=DEXP(ZZ)
R2=(ZZ/W(M) )**2+ALFAN**2
R3=R1*CN
R7=R1*SN
Q=( (PI/(2.00*W(M) ) )**2-ALFAN**2)
GX1 = PI/(2.D0*WM) )*CN/C
rv-5— / m ii -5 r»n*ui.ui i * c m .». a i cami / r

'?2

/R20 8
C
C STEP 2 -POWER FLOW CALCULATIONS
r

AMP1=1.D-10
Z1 = -SUM2/SJ,M3
Z3=Z1*GX1
Z2=Z1*GX2
EZ1=A^P1*(-AM3*Z2-AM4*FZ1)
EZ2=AMP1*<AM3*Z3-AM4*FZ2)
EX1-AMP1*(-Z2*AM1-AM2*FZ1)
EX2=AMP1*(Z3*AM1-AM2*FZ2)
EZS=EZ1**2+EZ2**2
EXS*5X1**2+EX2**2
IF (S.EQ.l.DO) GO TO 18

C
C REGION 1 FREE SPACE
C

V0*GAMA1*(H-C(MN) )

Vl=0MEGA*8ETA*FPSl/2.
V2=l.00/(0TANH( VO>*GAMAl)
IP (V0.GE.85.C0) GO TO 12
V3=(H-D(^N) )/( (DSINH( VO ) )**;
GO TO 11

l* V3=G.D0
11 V5=BETA/(2.D0*GM5G4*APU1)

V4=ALFAN*B£TA/AKC1S
'

"Zl+c

EZS*(V2-V3

>

V4=ALFAN*85T£/AKC1S
V6=(V4*EZ2-EX2)** 2+(-V4*SZl+EXl )**2
V7=V4*EZS-EZ1*EX1-EZ2*EX2
TR.11=-V1*ALFAN**2/<AKC1S**2)*EZS*(V^
TR12=-V5*ALFAN**2/(GAM£1**2)*V6*( V2+V3)
T> 1 -3 \l c + iuj. / W5 _ w C \•R13--V5*V6*( V2-V3)
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JR14=-Vl*(GAMAl**2)/( AKC1S**2 ) *EZS* ( V2+V3 )

TR156=ALFAN/(0MEGA*AML1*AKC1S)*(3ETA**2+AK1**2)*V7*V2
PWR1=-(TR11+TR12+TR13+TR14+7R156)/(2»D0*A)
IF (GAMA2S.LE.0.D0) GG TC 300

C REGION 2 HYPEReCLIC CASE

V10=GAMA2*D(VN)
V11=GMFGA*BETA*EPS2/2.C0
V12=1.D0/(DTANH(V10)*GAMA2)
IF (V10.GE.IJO.DO) GG TC 14
V13 =D(MN)/( (DSINH(ViO) J**2)
GO TO 15

14 V13=0.D0
15 V15=8ETA/(2.D0*GMEGA*/SVU2)

V14=ALFAN*6ETA/AKC2S
V16*(V14*EZ2-EX2)**2+(-Vl4*5Zl+EXl)**2
V17=(V14*EZS-EZ1*EX1-EZ2*EX2 1

TR21=-V11*ALFAN**2*EZS/(AKC2S**2)*( V12-V13)
TR22=-V15*ALFAN**2/GAMA2S*V16*< V12+V13)
TR23=-V15*V16*( V12-V13)
TR24*-Vii*GAMA2S/(AKC2S**2)*< V12+V13)*EZS
TR 256 = ALFA N/( GMEG A*AMU2*AKC2S ) * ( 3 E7A**2 +AK2**2 ) *V 17*V12
GG TO 801

C
C REGION 2 TRIGONOMETRIC CASE
C

3 00 V25=l.D0/< AKC2S*DSIN(GAMA2*D(MN) )

)

V20=CMEGA*BETA*E3S2/2.D0
V2I»OMEGA*BETA*AMU2/2.D0
DE71=V25*EZ2
C5T2=-V25*EZ1
DETS=DET1**2+DET2**2
y/26 =ALFAN*BETA*V2 5/(0MEGA*GAMA2*ANU2>
V27=l.D0/(QMEGA*AMU2*GAMA2*DSIN<GAMA2*D(tfN) )

)

CHT1=-V26*EZ2+V27*EX2
CHT2=V2 6*EZ1-V27*EX1
CHT$=CHT1**2+CHT2**2
V23=0SIN(2.00*G^MA2*D(MN) )/( 2 .D0*GAMA2

)

TR21=-ALFAN**2*V20*0ETS*(D(MN)-V2 8)
TR22=-ALFAN**2*V21*CHTS*(0(MN)+V23)
TR23 =-(GAMA2**2)*V21*Cl-7S*<D( MNJ-V28)
TR24=-(GAMA2**2)*V20*DETS*(0(MN)+V28)
TR25fc=(BETA**2+AK2**2)*ALFAN/2.C0*(DETl*CHTH-DET2*CHT2)

3G1 PWR2=-(TR2H-TR22+TR23+TR24+TR256)/(2.D0*A)
C
C TCTAL POWER FLOW IN FREE SPACE REGION
C

TTPWP1*TTPWR1+PWR1
C
C TCTAL POWER FLOW IN CIELECTRIC REGION
C

TTPWR2=T7PWR2+PWP2

C TOTAL POWER FLOW

T0TPWR = TCTPV»R + PWP1 + PWR2

GO TO 100

8 FZS=('1**2-2.D0*R3+1.CC )/R2
GXS=< (PI/(2.00*W(M)) )**2+ALFAN**2+ALFftN*°I/W(M)*CSIN

X(ALFAN*W(M) ) )/Q**2
T1N=AM1*GXS
T2N=AM4*FZS
B=-FZ1*GX2+FZ2*GX1
T3N=A,M2*B
SUM1-SUM1+T1N
SUM2=SUM2+T2N
SUM3=SUM3+T3N

100 CONTINUE

IF (S.EQ.l.CO) GC T 19
IF (TOTPWR.NE.O.DO) GO TC 17
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SUM3SQ= (SU^3)**2
T0T(K)*SUM1*SUM2+SUM3SC

m* mm j[£ (DABS(T0T(1) ).LE.1.C+C1) GC TH 3000
2000 CCNTINUE

DTCT=(T0T(2)-T0T( 1) J/DEETA
eETAl=DAES(BETAl-TCT< 1 )/DT3T)

60 IP (3ETA1.LE.AKL) GO TC 50
GO TO 70

50 BETA1=BETA1+1.D0
GO TO 60

70 GO TC 1000
30C0 WVLNG=3.0D+8/FR5Q(L)

RATI0=2.00*PI/(SETA1*WVLNG)
WRITE (6,211) RATIO, D(MN) , BETA

211 FORMAT (24X,F6.4,7X,E11.5,7X,E11.5>
GO TO 16

17 S=1.D0
C
C SIGN=-1.D0 PROPAGATION IN eACKWARC DIRECTION ( + Z)

SIGN=-1.D0
SCCO N1=1C1

11=201
GC TO 9

21 S=O.DO
6000 CONTINUE
50C0 CONTINUE
4000 CCNTINUE

C
GO TO 8001

C
C STEP3- CALCULATICNS OF NORMALIZED PROPAGATION CONSENTS
C ANC AT T ENUATIONS.

C
C HYPERBOLIC
C

GO to 25
24 V13=0.00
25

V13=C.O0
RE1= (V33+V34)*( V12+V13J/2.D0
ZM1=-RE1
RE3=V45*(V12+V13)
ZM2=-RE3
GO TC 23

C
C TRIGONOMETRIC CASE
C

22 V40=D(MN)/(DS!N(GA*A2*CIMN) )**2)
V41 = l.D0/(DTAN(GAMA2*C(Mi\i) )*GAMA2 )

RE1*( V33-V34)*< V4C +V4D/2.D0
ZM1=-RE1
RE3 = -V<+5*( V40+V41 )

ZM2=-RE3
23 REll*REll+°Ei

QE22=RE22+RE3
ZMU=ZM11 + ZM1
ZM21=ZM21+ZM2
GO TC 100
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19 G1=2.3D6*PI*G
CMGAM=G1*AMAGS
GMGA0=G1*H0
0MGAR*OMGAQ-CMGAM
DAMP=Gl*DELTH/(2.DO*OMEGA)
DELT=(OMGAR**2-OMEGA**2*(l.D0+CAMF**2) )**2 +
XA.OO*(OMGAR*OMEGA*CAMP)**2

C CALCULATION OF SUSCEPTIBILITY TEMSOR'S COMPONENTS

XXXl=OMGAM*OMGAR*((OMGAR**2-CMEGA**2)+(OMEGA*DAMP)**2)
XXX2=OMGAM*CMEGA*CAMP*(CMGAR**2+GYEGA**2*(l.O0+CAMP**2) )

XXZl=GMEGA*OMGAM*(OMGAR**2-OMEGA**2*( l.D0+DAMP**2) )

XXZ2 = 2«D0*0M = GA**2*0MGAf*0AMP*CI«GAR
RE=XXX1*RE11+RE22*XXZ1
ZM=XXX2*ZMll+ZM2l*XXZ2

904 FORMAT (///)
WRITE (6,904)
WRITE (6,904)

V50=OM=GA*AMU1/(4.CG*TOTPWR*DELT*A)
ATTEN=-ZM*V50
DB= 8. 6 85 8 8 963 80-02* ATT EN
BETAP=BETA+RE*V50
RAT=3ETAP/BE T A
IF (SIGN.EQ.l.DO) GO TC 81
WRITE (6,898) DB

393 FORMAT ( 10X , 21HBACKWAP C ATTENUAT I CN = , El 1 . 5 ,6H CB/CM//)
WRITE (6,897) PAT

3S7 FORMAT ( 10X , 21H3ET AF/ BETA 3ACKWARC =,=10.4//)
C
C SIGN=+1.D0 PROPAGATION IN FORWARD DIRECTION (-Z)
C

SIGN=+1.D0
GG TO 8000

81 *RITE (6,900) DB
900 FORMAT ( 10X , 20HF 3R WAR D ATTEN'JA7IG.N = , El 1 . 5 , 6H DB/CM//)

WRITE (6,399) RAT
899 FORMAT ( 10X , 20HBET AF/ BETA FORWAOQ =,E10.4//)

GO TO 21

3001 STOP
END
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