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FOREWORD
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Propulsion Laboratory, Air Forcoe Systems Command, Wright-Patterson
AFB, Chio under Confract F33615~73-C-2046 for the pericd 1 May 1973
to 31 May 1976. The work herein was acconplished under Project 3066,
Task 306603, Work Unit 30660334, "Investigation of Rovating Stall
Phenomena in Axial Flow Compressors," with Mr. Marvin A. Stibich,
AFAPL/TBC, as Project Engineer. Dr. Gary R. Ludwig of the Calspan
Corporation was technical. wonsible for the work. Other Calspan
personnel were: Joseph P. Neunl, Junn C. Erickson, John A. Lordi,

Gregory F. liamicz, and Rudy h. Arendt.
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ABSTRACT

Ti:is report presents the results of a research program that had two
major objectives. The first objective was the development of a prototype
rotating stall control system which was tested both on a low speed rig and a
J-85-3 engine. The second objective was to perform fundamental studies of the
flow mechanisms that produce rotating stall, surge and noise in axial flow
compressors and tiacreby obtain an understanding of these phenomena that would
aid attaining the first objective. The work is reported in three separate
volumes. Volume I covers the fundamental theoretical and experimental studies
of rotating stall; Volume II covers the theovetical and experimental studies of
discrete-tonc aerodynamic noise generation mechanisms in axial flow compressors;
and, Volume III covers the development and testing of a prototype rotating stall

control system on both the low speed test rig and the J-85-5 engine.

Volume I describes the theoretical and experimentsl investigation of
the influence of distortion on the inception and properties of rotating stall
for an isolated reotor row, and the effects of close coupling of a rotor and
stator row on rotzcing stall inception. The experiments were conducted in the
Calspan/Air Force Annular Cascade Facility, which is a low speed compressor
research rig. In addition, the previously developed two dimensional stability
theory ftor prediction of inception conditions was extended to include the
effect of compressibility and the development of a three dimensional theory
was initiated. These studies led to the following key results. The experi-
mental studies of distortion show that for a single blade row the response of
the blade row to the distortion and rotating stall are uncoupled phenomena and
may be explained on the basis of a linearized analysis. The experimental
studies of a closely coupled rotor-stator pair show that the addition of a
closely spaced stator row downstream of a rotor row delays the onset of rotating
stall. Moreover, the corresponding theoretical analysis predicts this trend
although quantitative agreement is hampered by the lack of appropriate steady-
state loss and turning performance for each'bladé‘row at the required operating
conditions. The theorctical investigation of the effects of compressibility

for wholly subsonic flows outside the blade rows indicates that the effects of
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compressibility do not alter the mechanisms of rotating stall as deduced from
the incompressible theory in that the rate of change of the steady state loss
curve with inlet swirl is the dominant blade row characteristic affecting its
stability. Therefore, if the steady state losses are known for the compressible

flow condition, the lineavized stability analysis is expected to apply.

Volume II describes a theoretical and experimental study of discrete-
tone noise generation by the interaction of a rotor and a stator, and the de-
velopment of a direct lifting surface theory for an isolated rotor. An approxi-
mate model has been developed to predict the sound pressure level and total
power radiated at harmonics of the blade passage frequency for a rotor-stator
stage. The analysis matches the duct acoustic modes for an annular duct with
an approximate representation of the unsteady blade forces which includes com-
pressibility effects. Measurements were made of tge sound pressure levels
produced on the duct wall of the annular cascade facility by a rotor-stator
pair. Predictions which indicated that only the fourth and higher harmonics
could be excited at conditions achievable in the facility, were borne out by
the experiments. The calculations of the sound pressure levels for the propa-
gating modes were significantly below the measured values. This discrepancy
is believed to result from inaccuracies in existing models of rotor wake
velocity profiles, which are shown to have a strong influence on predictions
of the sound pressure levels of the higher harmonics. Volume II aiso contains
the formulation of a direct lifting surface theory for the compressible,
three-dimensional flow through a rotor row in an infinitely long annular duct.
A detailed derivation is given for the linearized equations and the corres-
ponding solutions for the blade thickness and loading contributions to the
rotor flow field. The governing integral equation for tne blade loading in a
lifting surface theory is obtained for subsonic flow and progress on its

solution is reported.

Volume III describes the development and testing of a prototype ro-
taiing stall control system. The control system was tested on the low speed
compressor research rig and on a J-85-5 turbojet engine. On the low speed
research compressor, the control was tested in the presence of circumferential

inlet distortion. These tests were performed to demonstrate the ability of
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the control to operate satisfactorily in the presence of inlet distortion and
to aid in the selection of stall sensor configurations for the subsequent
engine tests. The control system was then installed on a J-85-5 jet engine and
its performance was tested under sea level static conditions, both with and
without inlet distortion. On the engine, the stall control was installed to
override the normal operating schedule of the compressor bleed doors and inlet
guide vanes. The J-85-5 was stalled in two ways, first by closing the bleed
doors at constant engine speed, and second by decelerating the engine with the
bleed doors partially closed at the heginning of the deceleration. A total of
41 compressor stalls were recorded at corrected engine speeds between 48 and
72 percent of the rated speed. In all cases, the control took successful
remedial action which limited the duration of the stall to 325 milliseconds

or less. >



TABLE OF CONTENTS

Section Title Page
I INTRODUCTICN . . . . . v o v it e v v e e e e e e e e e e e 1
II EXPERIMENTAL ACOUSTICS RESEARCH. . . . . . . . . . . . . . . . 3
A. DESCRIPTION OF ANNULAR CASCADE FACILITY . . . . . . . . . 4
P. NOISE GENERATED BY ROTOR-STATOR INTERACTION . . . . . . . 5
C. ISOLATED ROTOR MEASUREMENTS . . . . . . . « . . « « . . . 11
D.  CONCLUDING REMARKS. . . . . . . . . . . « . v v .. 13
111 APPROXIMATE MODEL OF ROTOR-STATOR INTERACTION NOISE. . . . . . 15
A. ACOUSTIC ANALYSIS . . . . . . . .« « o v v v v v v .. 18
B.  AERODYNAMIC MODEL . . . . . . . . v v v v v v v v v . 20
C.  COMBINED AERQO-ACOUSTIC ANALYSIS .. . . . . . . . . . . . 23
1. Pressure Mode Amplitudes . . . . . . . . . . . . .. 26
2. Sound Pressure Level and Total Radiated Power. . . . 29
D. COMPARISONS OF THEORY WITH EXPERIMENT AND DISCUSSION. . . 34
E. ADDITIONAL NUMERICAL RESULTS. . . . . . . . . . « . . . . 43
F.  CONCLUDING REMARKS. . . . . . . . . . « o . v o o v . .. 46
v DIRECT LIFTING SURFACE THEORY FOR A COMPRESSOR ROTOR . . . . . 48
A. DERIVATION OF MODEL EQUATIONS AND GREEN'S
FUNCTION SOLUTION . . . . . . . . v v v v v v v v v . 52
B.  MASS SOURCE AND PRESSURE DIPOLE SOLUTIONS . . . . . . . . 58
C. FLOW FIELD OF A NONLIFTING ROTOR (THICKNESS PROBLEM). . . 68
1. Solution for the Velocity Potential. . . . . . . . . 68
2. Expressions for the Velocity Components and
Pressure Perturbation. . . . . . . . . . . . . . .. 73
3. Behavior of the Velocity Components at the
Blade Surfaces . . . . . . . . . . .. .. ... .. 74

vii




TABLE OF CONTENTS (Cont'd.)

Section Title
v DIRECT LIFTING SURFACE THEORY FOR A COMPRESSOR ROTOR
D. FLOW FIELD OF A LIFTING ROTOR (LOADING PROBLEM)
1. Solution for the Perturbation Pressure .
2. Expressions for the Velocity Components.
3. Behavior of the Velocity Components at the EBlade
Surfaces and Across the Trailing Vortex Wakes.
E. DIRECT LIFTING SURFACE THEORY .
1. Formulation of the Integral Equation .
2. Progress Toward the Solution .
F.  CONCLUDING REMARKS.
s SUMMARY AND CONCLUSIONS. . . . .
APPENDIX A DEFINITION OF RADIAL EIGENFUNCTIONS .
APPENDIX B EXPRESSIONS FOR ROTOR-STATOR INTERACTION FORCES .
APPENDIX C MASS AND MOMENTUM BALANCES FOR SINGULARITY AND
ROTOR FLOW FIELDS . .. . .
REFERENCES . . .

viii

: Page

82
82
85

88

. 102

102
108

112

114

116



FIGURE

1

ILLUSTRATIONS

TITLE

Test Configuration for Acoustic Studies of Rotor-Stator
Interaction .

Sketch of Acoustic Probe Calibration Apparatus.

Acoustic Probe Calibration Results, Pure Tone Excitation.

Calibration of Microphone in Acoustic Probe .

Oscilloscope Records of Noise Signal From Rotor-Stator
Interaction .

AN

Uncorrected 1/3 Octave Spectrum of Outer Wall Sound Pressure

Level From Rotor-Stator Interaction

a. Rotor RPM = 1130 .
b. Rotor RPM = 1155 .
Rotor RPM = 1163 .
Rotor RPM = 1170 .

Experimental Outer Wall Sound Pressure Levels From

Rotor-Stator Interaction, Stator Stagger Angle = 37.2 Deg .

Experimental Outer Wall Sound Pressure Levels From

Rotor-Stator Interaction, Stator Stagger Angle = 28.2 Deg .

Blade Tip Passage Pressure Signals on Isolated Rotor at
Various Rotor Speeds, Chordwise Location = 18%,
Axial Velocity, U, = 60 ft/sec

a. Rotor RPM = 600, Inlet Swirl Angle, /3rﬂ, = 52.0 Deg .
b.  Rotor RPM = 700, Inlet Swirl Angle, A, _ = 56.2 Deg .
c. Rotor RPM = 800, Inlet Swirl Angle, Py = 59.7 Deg .
d. Rotor RPM = 900, Inlet Swirl Angle, /3,  _ = 62.5 Deg .

ix

PAGE

139

140

141

142

143

144

146
147

148

149

150
150
151
151



ILLUSTRATIONS (Cont'd.)

FIGURE TITLE PAGE

10 Blade Tip Passage Pressure Signals at Various Chordwise

Locations on Isolated Rotor During Rotating Stall . . . . . . 152
11 Acoustic Model. ... . . . . . . . v e e e e e e e e e e 153
12 Aerodynamic Model . . . . . . . . . . . . e oo e 154
13 Classification of Pressure Waves. . . . . .« . +« « « « . « . . 155
14 Asymmetry in Angular Deviation Between Dipole Axis and

Propagation VECTOTS . . . . .« « « v w o o 0 v 0 v v e e 156
15 RMS Wall Pressure at Fourth Harmonic cf Blacde Paszage

Frequency Vs Rotor RPM; Msan Stator Stagger Angie = l7.2 Leg. 127
16 RMS Wall Pressure at Fourth Harmonic of Blade Passage

Frequency Vs Rotor RPM; Mean Stator Stagger Angle = 28.2 Deg. 158
17 RMS Wall Pressure at Fifth Harmonic of Blade Passage

Frequency; Mean Stator Stagger Angle = 28.2 Deg . . . . . . . 159
18 Theoretical SPL and Total Radiated Power at Blade Passage

Frequency Versus Rotor RPM; Mean Stator Stagger

Angle = 37.2 DeE. « + v v v e e e e e e e e e e e 160
19 Blade Geometry and Blade-Fixed Coordinate System. . . . . . . 161
20 Coordirate System Aligned with Undisturbed Flow Direction . . 162
21 Blade Surface GEOMELTY. . . « v v v v v v 4 v v v e e 163
22 Generalized function, z}- ., Defined By Eq. (126) . . . . . . . 164




TABLE

TABLES

TITLE

Comparative Influence of Various Wake Profiles on Acoustic
Predictions .

Comparison of Modal Amplitudes Computed by Clark et al.
with Present Theory . . e e e e e e e

Coefficients in the Expression for the Normal Velocity
Component of a Lifting Rotor, Equation (172).

xi

T T

PAGE

42

44

101



SYMBOLS

Separate lists of symbols are given for Scctions I11 and IV,
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dg,dg blade spacing
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4 hub/tip ratio, 7,/ #
& acoustic wave number, A 80/a,
#,,,» Equation (18)
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SYMBOLS, SECTION III (Cont'd.)
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R

unsteady load harmonic index
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My axial flow Mach number
NF harmonic of blade passage frequency
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P pressure perturbation -
#,n, Fourier decomposition of pressure field, Equation (6)
7b::: pressure modal amplitude, Equation (18)
pe total sound power radiated along the duct, Equation (28)
Fﬁ;f sound power in (n,m) mode
? dynamic pressure
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acoustic source distribution, Equation (4)
Fourier decomposition of source distribution, Equation (7)
sound pressure level, Equation (23}
time
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(1-m /2

Dirac delta function
Fourier transform variable in axial coordinate

azimuthal coordinate
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denotes time average over one blade-passing period
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ﬁ vector defined in Equatioﬁ (63)
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(2)
8,.84 imaginary part of coefficient defined in Equation (173), see Table 3

c blade chord

Ca axial projection of blade chord

(L)
Cpmeg coefficient defined in Equation (173), see Table 3
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2

D dipole strength

D,.e# quantity defined in Equation (167) )
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Equation (110)

M
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G Green's function
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xvii

e R AR R A A Tt e L € A A e



I,

[

Iz

SYMBOLS, SECTION IV (Cont'd.)

ratio <. hub radius to tip radius

Heaviside step function

surface integrals in Equation (66)

integral of pressure perturbation along streamlines
integrals defined in Appendix C

radial mode number

radial eigenvalues

operator defined by Equation (58)

quantity defined in Equation (173)

multiple of blade number for azimuthal mode, n = m§8
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SYMBOLS, SECTION IV (Cont'd.)

ogr () +1 for arg > 0, -1 for arg < 0

S surface area

S(r,%) function defined in Equation (121)
t blade thickness

Tmek quantity defined in Equation (131)
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V volume

V..8& quantity defined in Equation (117)
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x normalized axial coordinate, Equation (179)
Zz axial coordinate
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local vortex strength
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SECTION I
INTRODUCTION

The useful operating range of a turbine engine compressor is greatly
influenced by its stalling characteristics. The optimum performance of a
turbo-propulsion system is usually achieved when the compressor is operating
near its maximum pressure ratio. However, this optimum is generally not
attainable because it occurs close to compressor stall aad unstable flow con-
ditions. Because of the serious mechanical damage that may result during com-
pressor stall cycles, a factor of safety (stall margin) must be provided
between the compressor operating line and the stall boundary. This is usually
done by prescheduling the primary engine controls. However, the prescheduling
approach can lead to the requirement for a large stall margin in order to keep
the engine from stalling under all possible transient and steady state flight
conditions. It is clear, then, that an engine control system that can sense
incipient destructive unsteady flow in a compressor and take corrective action
would aliow for reduced siall wargins in the design and thus lead to large
engine performance and/or efficiency gains. Recognition of this fact has been
the motivation for a continuing program of research that the AFAPL has sponsored

at Calspan dating back to 1962.

The work at Calspan has been both theoretical and experimental in
nature and has been aimed at obtaining a sufficient understanding of the rotat-
ing stall phenomena such that its onset and its properties can be predicted
and controlled. The capability of predicting the onset cf rotating stall on
isolated blade rows of high hub to tip ratios in low speed flows was demon-
strated in Reference 1. In addition, the basic feasibility of developing a
rotating stall control system was demonstrated in the Calspan/Air Force Annular
Cascade Facility. This present report summarizes the latest three year
research program at Calspan. The specific goals of the present program were
to extend the fundamental studies of rotating stall to consider the effects of

compressibility, blade row interaction and inlet distortion; and to extend the




fundamental aerodynamic and acoustic analysis of flow through a compressor.
In addition, the rotating stall control system was validated by successtul

¢round tests on a J-85-5 turbojet engine.

The work is reported in three separate volumes. Volume I entitled,
"Basic Studies of Rotating Stall', covers the theoretical and experimental
work on the effects of distortion and close coupling of blade rows on rotating
stall inception and properties. In addition, the theoretical analysis of com-
pressibility is treated in the two-dimensional approximation and the initial
development of a three-dimensional theory is given. Volume II entitled, "In-
vestigation of Rotor-Stator Interaction Noise and Lifting Surface Theory for
a Rotor", describes the development of a linearized lifting surface theory for
the subsonic compressible flow through an isolated rotor row. In addition, a
theoretical and experimental study of the noise generated by the interaction
of a rotor and stator is described. Volume III entitled, '"Development of a
Rotating Stall Control System', describes the d;Velopment and testing of the
control system installed on a low speed research compressor and on a J-85-5

turbojet engine.

In the current three-year segment of the ongoing research program on
rotating stall, the scope of the investigation was expanded to include studies
of the aerodynamics and acoustics of axial flow compressors. Volume II con-
tains the results of this aspect of the program, which consisted of two basic
parts: the theoretical and experimental investigation of discrete-tone noise
generation by the interaction of a rotor and stator, and the development of
the three-dimensional direct 1ifting surface theory for a compressor rotor.

An approximate model has been developed to predict the sound pressure level
and total power radiated at harmonics of the blade passage frequency for a
rotor-stator stage. Also, measurements were made of the sound pressure levels
produced on the outer duct wall of the annular cascade facility by a rotor-
stator pair. In the development of a direct lifting surface theory, the
governing integral egquation relating the rotor blade loading to prescribed
incidence and camber lines has been formulated and progress made toward its
numerical solution. The experimental and thecretical studies of rotor-stator
interaction noise are reported in Sections II and III, respectively. The

direct lifting surface analysis is presented in Section IV.
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SECTION II
EXPERIMENTAL ACOUSTICS RESEARCH

As a part of the work under a previous program, Contract AF 33(615)-3357,
an annular cascade facility was designed and fabricated. Its principal purpose
is to provide fundamental experimental data during and prior to the occurrence
of rotating stall in order to improve our understanding of the phcnomena and
for use as a guide in improving the theoretical analysis. In addition to the
study of rotating stall, the facility has also been used to provide acoustic
data for comparison with theory and to evaluate the operation of a prototype
rotating stall control system. The fundamental experiments on rotating stall
are described in Volume I of this report and the control system tests are
described in Volume III. This section of Volume II presents the results of
the acoustic experiments. -

Y

Two sets of experiments were performed in support of the theoretical
developments described in Section III and IV of this volume. The first set of
experiments were designed to provide data for correlation with the approximate
theory of Section III for the prediction of rotor-stator interaction noise.

In these experiments, the far-field sound pressure levels generated by roto-
stator interaction were measured in the constant area annulus upstream of a
rotor-stator stage. These measurements were performed over a range of rotor
speeds for two different stagger angle settings of the stator blades. The
second set of experiments were intended to provide a measure of the tip pressure
loading on an isolated rotor for comparison with the direct lifting surface
theory of Section IV. In these experiments, time-varying records of the outer
wall static pressure fluctuations caused by blade tip passage were obtained

for a number of different chordwise locations on the rotor blades. The scope

of these tip loading experiments was very limited.

The order of presentation of the experimental studies in the remainder
of this section is as follows. A brief description of the annular cascade

facility is presented in Section II-A, Section II-B presents the results of
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the measurements of noise caused by rotor-stator interaction. This is followed
by the presentation, in Section II-C, of a typical set of results obtained for
the blade passage fluctuations on an isolated rotor. Finally, some conciuding

remarks on the experimental studies are presented in Section II-D.
A. DESCRIPTION OF ANNULAR CASCADE FACILITY

A detailed description of the annular cascade facility has been pre-
sented in Reference 1, and further details are given in Volume I of this

report. Only a brief description of the facility is given here.

The annular cascade facility consists of a test section built around
the outer front casing of a J-79 jet-engine compressor with a Calspan fabri-
cated hub. The facility includes a bell-mouth i:let on the outer casing and a
bullet nose on the hub to provide a smooth flow of air to the test section,
Outlet ducting is connected to an independently variable source of suction to
provide the required flow through the annulus. An electrically powered two-
speed axial flow fan is used as the source of suction. Continuous control of
the mass flow is achieved through the use of variable inlet guide vanes to the

fan and a variable damper in the fan exit flow.

The test section of the annular cascade forms a circular annulus with
an outer diameter of 29.35 inches and an inner diameter of 23.35 inches which
provides a hub-to-tip ratic of 0.80. The outer casing will accept up to six
variable stagger angle stator rows. The hub has provision for two rotor rows
at the third- and fifth-stage rotor locations of the J-79 compressor. At the
time the acoustic studies were performed, either rotor row could be rotated
while the other was held fixed or both rows could be rotated together. The
rotor assembly was powered by a 24 horsepower hydraulic motor. Rotational
speed was continuously variable in either direction between zero and approxi-
mately 1500 rpm. An external hydraulic pump system powered by a 30 horsepower

electric motor was used to provide power for the hydraulic motor.



Although the speed range of the rotor was restricted at the time of
these tests, it was possible to perform acoustic tests for comparison with the
theory of Section III. The flexibility of control and the relative absence of
background noise in the facility are features which were highly useful in the

performance of the tests.
B. NOISE GENERATED BY ROTOR~STATOR INTERACTION

The configuration of the annular cascade used for the rotor-stator
interaction studies is shown in Figure 1 along with some details of the micro-
phone-probe assembly used in the acoustic work. The rotor-stator stage
studied is designated Rotor Set No. 1 (46 blades) and Stator Set No. 1 (54
vanes) in Reference 1. These are modified blade rows from the fifth stage of
a J-79 compressor. Their characteristics and performance when used as iso-
lated blade rows in the annular cascade have been presented in Reference 1.
The mean stagger angles (at mid-annulus) were @, = 40°, o= 37.2° or 28,2°,
and the semi-chords C, = .0604 ft. and ¢, = .054 ft. The axial separation
of the iid-chord planes was b = .125 ft.

The sound pressure levels produced by rotor-stator interaction were
measured on the outer casing upstream of the rotor. In taking these data, the
fan system downstream of the annular cascade was turned off and the fan was
allowed to rotate freely under the influence of the flow generated by the
rotor in the annular cascade. In addition, all dampers in the downstream
drive system were opened wide. It was convenient to use this wide open con-
figuration because it was found to provide nearly constant inlet swirl angles
relative to the rotor. That is, the mean axial velocity in the annular
cascade increased in direct proportion to the rotor angular velocity. This
feature made application of the rotor-stator interaction theory much simpler
because the dimensionless steady state loss and turning performance data for

the rotor also remained approximately constant with changing rotor speeds.




A Bruel and Kjaer (B & K) acoustic-probe with its tip flush with the
inner surface of the compressor casing was used in combination with a B & K
condenser microphone and sound level meter to measure the interaction noise.
The sound level meter output was recorded on an instrumentation quality FM
tape recorder. The recorded data were processed later on a modified General
Radio Type 1921 real time analyzer to obtain one-third octave spectra of the

signals.

The tape recording of the noise was necessary because the rotor-stator
interaction harmonic frequencies were above the frequency range available on
the real time analyzer. The maximum frequency accommodated by the spectrum
analyzer is the third octave centered on 2500 Hz while the ncise harmonics
extended up to approximately 5000 Hz. The effective frequency range of the
noise spectrum was reduced by a factor of four by recording at 30 ips and playing
back for spectrum analysis at 7-1/2 ips. Absolute calibration of the complete
system including the tape recorder was obtained by recording a 114 db signal
from a General Radio microphone calibrator at the beginning and end of each
tape. These calibration signals were used to set the gain of the overall

svstem when played back through the spectrum analyzer.

Within the frequency range of interest, the response of the microphone-
sound level meter system was essentially flat. However, the acoustic probe
assembly introduced frequency dependent distortion to this flat response.
Thus, it was necessary to obtain a calibration for the complete system in-
cluding the acoustic probe. A sketch of the acoustic probe calibration
apparatus is shown in Figure 2. All of the apparatus shown in the sketch is
manufactured by B § K. The calibrator consists of a small cavity into which
sound 1is introduced by an earphone speaker. For a given excitation of the
speaker, the sound pressure level in the cavity is measured by the microphone
in its reference level location (position #1). The acoustic probe is in
place during these measurements with a dummy microphone inserted in its end.
Following the reference level measurements, the microphone is inserted in the

acoustic probe (position #2) and the dummy microphone inserted in the reference
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level Jocation (position #1). The sound pressure levels detected by the micro-
phone in the probe are then determined for the same speaker cxcitation as used
in the reference level measurements. The difference between the two sets of

measurements provides a frequency dependent calibration for the probe.

In the current work, the probe was calibrated first without any steel
wool damping material in the tube. This calibration showed a rather large
(12 db) probe resonant peak at approximately 1900 Hz. he probe was then
calibrated with three different degrees of stecl wool damping and a finai
damping configuration was selccted for use in the noise measurements. The
sound pressurc levels measurcd with pure tone excitation of the earphone
speaker are shown in Figure 3 for the frequency range of interest and for both
microphone positions in the calibrator. Both curves drop off at high frequency
because of frequency response limitations on the earphone speaker. The dif-

ference between the two curves provides the calibration of the agoustic probe.
p p

The probe calibration is shown in Figure 4. The circular points were
obtained with pure tone excitation of the speaker at the indicated frequencies,
These values must be subtracted trom the measured noise levels. A second
calibration result is also shown on this figure as solid straight line segments,
This wa, obtained by exciting the speaker with pink noise and analyzing the
result on the 1/3 octave real tine analyzer. The effective 1/3 octave band-
widths of the rusults are represented by the length of the horizontal portions
of the segmented curve. If allowance is made for the larger bandwidth of the
1/3 octave analyzer, the agreement between the two calibration curves is very
good. Since the rotor-stator interference noise was very closc to a purc tone,

the pure tone calibration curve was used in correcting the measurcd results.

The pure tone naturc of the interference noise is illustrated in
Figure 5. This figure shows photographic oscilloscope records of the unfiltered
output from the sound level meter. In the upper photograph, the top trace is
generated by the noise sagnal and the lower trace is the output from an audio

oscillator tuned to the same frequency as the predominant noise harmonic.,
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The jitter in the upper trace signals is caused by the presence of frequencies
other than the predominant harmonic. Tuning of the audio oscillator was
accomplished by setting the oscilloscope trigger mechanism to fire on the
audio oscillator signal and then adjusting the oscillator frequency until a
stationary noisc signal was attained, This procedure led to a number of
possible oscillator frequencie:z for the noise harmonic. The correct freguency
was difficult to determine because of the jitter in the noise signal. The
oscillator frequency was then determined Ly forming a Lissajous figure from
the noise and oscillator signals. The lower photograph in Figure 5 shows the
Lissajous figure corresponding to the upper photograph, The multiple ellipses
in the lower photograph show that the noise and oscillator signals are cor-
rectly matched in fundamental frequency. The multiplicity of ellipsas arises

from the same reason as the jitter in the upper photograph.

The procedure described in the previous paragraph was used to determine
the frequency of the predominant pure tone noise for all tests where a strong
blade row interaction signal was obtained. Thus, it was possible to identify
accurately which harmenic of rotor blade passage frequency was being excited

by the interaction mechanism.

Samples of the one-third octave spectra of the interaction noise are
shown in Figures €a through 6d. These figures are direct reproductions of the
output from the spectrum analyzer. Absolute sound pressurc level for any
one-third octave band is obtained by correcting the relative db levels for
system gain and for acoustic probe response. The frequency dependent probe
response correction has been discussed previcusly. The system gain correction
is independent of frequency and is noted on the lower right hand side of each
figure. For the particular examples of Figure 6, system gain is corrected for

by adding 80 db to all relative levels.

Figures 6a through Ad have been chosen to illustrate the extremely
sharp rise in interaction neise as rotor speed is increased over a very small

range of rpm from below cutoff to above cutoff of the fourth rotor blade

passage harmonic. ligures 6a and Ob correspond to conditions slightly below
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wutoff. Here the noise spectra are generated primarily by turbulent pressure
fluctuations within the boundary layer on the outer wall and by the free-
wheeling fan downsiream of the annular cascade test section. Tigures 6¢c and
6d show the sharp rise in fourth harmonie interaction noise as the rotor rpm

increased to above cutoff conditions. This rise can he seen in the third

b]

ootave bands centered at Mz x 1/4 = 800 and 1000. Both of these third octave
bands respond because the pure tone frequency is nearly mid-way between these
two bands. The measured pure tone frequency is shown on the lower right hand
side of Figures 6¢ and 6d. It can be seen that the puvre tone frequency is
approximately 3600 Hz for both figures corresponding to Hz x 1/4 = 900,
The correct sound pressure level for the pure tone signal was obtained
. from spectra such as shown in Figure & by combining the two third octave band
: Tesponses closest to the pure tone frequency and then correcting the indicated
SPL for acocustic probe response at the measured pure tone frequency. An

example of the procedure for the data of Figurc 6d is as follows.

Relative Level for third octave centered at Hz x 1/4 800 is 34.75 db

Relative Level for third octave centered at Hz x 1/4 1000 is 39.25 db

Combined Relative Level = 20 log [:101;_1 éi%%E + 1og-1 égiégl = 43,3 db

Combined Llevel Corrected for system gain = 43.3 + 80 = 123.3 db
Probe response at purez tone frequency (3610 Hz) = -4.7 db (from Figure 4)

Corrected purc tone Sound Pressure Level = 123.3 - (-4.7) = 128.0 db.

The pure tone frequency in all cases where it was measurable corres-
ponded very c<losely to either the calculated fourth or fifth harmonic of rotor
blade passage frequency. For the example given above, the calculated fourth
harmonic of roter blade pascage frequency is 3588 Hz and the mecasured pure tone
frequency is 3610 liz. The difference between the two is within the accuracy
of the audio oscillator used in the measurements. For conditions below cutoff
such ns shown in Figures %a and ¢b, the sound pressure levels for the fourth
blade passage harmonic were estimated from the data using the calculated fourth
harmonic freguency and the measured lovels in the two third octave bands closest

to this calculated frequency.
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The results of the interaction noise measurcments are summarized in
Figures 7 and 8 for rotor specds ranging from below cutoff to the maximum
speed available. Figure 7 shows the results obtaincd for a stator stagger
angle of 37.2 degrees and Figure 8 show, the results obtaind for 28.2 degrees.
In both figures, an estimate of the background level in the third cctave band
closest to the measured pure tone frequency is also shown. This was ohtained
by inspection of the third octave bands on each side of the bands used to
calculate the pure tone levels and must be considered highly approximate in
naturc. Any data point for harmonic level of the SPL within about 10 db of
the approximate background level probably contains a certain degree of back-
ground noise from the mechanical systems or the turbulent wall pressure
fluctuations. The closer the data point is to the approximate background

level, the larger the contribution will be,

Most of the data shown in Figures 7 and 8 correspond to the fourth

harmoni¢ of rotor blade passage frequency. The fifth harmonic was generally
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masked by the background nolse ievels and could no

a stator stagger angle of 28,2 degrees, the fifth harmonic was detectable at
moderately low rotor speeds, where the background noise level was low but the
rotor speed was high enough to allow propagation of this mode in the annular

dust systen. The results are shown on the left side of Figure 8,

It was not possible to obtain interaction neise signals at harmonics
of blade passage frequencies below the fourth harmonic. The gencration of
lower harmonics would require either a greater rotor speed capability or else
blade configurations that are not available to the annular cascade in its
present configuration. 1Tt is unfortunate that the generation of lower har-
monics was not possible because the prediction of harmonics as high as the
fourth presents a test for the interaction theory which may be more severe
than is warranted in the present state of the theoretical development. Never-
theless, these data have been used for comparison with the theoretical pre-

dictions in Section IIl, and are discussed more fully there.
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C. ISOLATED ROTOR MEASUREMENTS

In addition to the roter-stator interaction noise experiments described
above, measurements were made of the fluctuating wall pressures produced by an
isolated rotor. These measurements, which were intended to provide information
on the blade tip loading, were taken at six chordwise locations along the

outer casing wall,

The configuration of the annular cascade was similar tc that shown in
Figure 1 but with the stator row removed, Rctor Set No. 1 was used with the
blade stagger angle set at 40 degrees at mid-annulus (48 degrees at the tip).
As noted earlier, this rotor set had been studied previously to determine its

steady state turning and loss performance (Reference 1).

Pressure fluctuations produced by the passage of the blades were
obtained at rotor speeds of 600, 700, 800, 900 and 1000 rpm, while the mean
axial velocity through the test section was held at 60 ft/sec. At the lowest
rotor speed, the rotor blades were very lightly loaded, while at the highest

speed the loading was large enough to induce rotating stall.

The pressure signals were measured by a Setra Systems Model 242 TC
pressure transducer closely coupled to a hole in the outer casing of the annular
cascade. The time-varying pressure signals were recorded photographically from
a dual trace oscilloscope. A second signal was used to indicate roter blade
poesition. This signal was generated by a magnetic pickup which sensed hlade
tip passage past a point or. the outer casing of the annular cascade. Instan-
tancous blade positions with respect to the pressurc signals were calculated
from the magnetic pickup signals and the gcometric relationship between the

magnetic pickup and the pressurc tap.

The six avial! stations used for the wall pressure measurcments were
situated at 13, 18, 32, 49, 64 and 79 percent of the rotor chord. A set of

results is shown in Figure 9 for the station at 18 percent of the chord.

1l
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These results are typical of the measurements at all six chordwise measuring
stations, Parts (a) through (d) of Vigure 9 show the records obtained at

rotor speeds between 600 and 900 rpm. The relative inlet swirl angle at the
rotor tip is indicated for each rotor speed. The instantaneous locations of
the blade pressure and suction surfaces with respect to the pressure signals

are shown also.

As expected, the maximum amplitude of the pressure fluctuations in-
creases with increasing rotor speed. (Note that the scale for pressure
signals varies for different rotor speeds. The scale in each case is indi-
cated to the left of the pressure signals.) However, the shapes of the
fluctuating pressure signals are unexpected. The data records show that the
maximum wall pressure 1s reached well ahead of the blade pressure surface at
all rotor speeds. Moreover, a double pressurc peak occurs at the lower rotor
speeds, onc azhead of the rotor pressure surface and one approximately at the
location of the pressure surface, The peak in pressure at the rotor pressure
surface hegings to disappear as rotor sheed is increased, The reagon for the
unexpected shape of the pressure signals is not definitely known. However,
it is speculated that the results may be caused by three-dimensional effects
associated with the relatively large clearances between the rotor blades and
the outer casing. As explained in Volume I, a blade tip clearance of approxi-
mately 0.05 inches was required to compensate for thr slightly oval shape of

the production J-79 casing which forms the ocuter wall of the annular cascade.

The fluctuating wall pressures recorded during rotating stall are
shown in Figure 10 for ail six chordwise locations. Although the rotating
stall phecnomenon is beyond the scope of the direct lifting surface theory,
these data are presented as being of general interest to thc overall progranm;
pressure signals such as the ones chown in Figure 10 are used as stall de-
tectors in the rotating stall control system which is described in Volume III

of this report.

12
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The rotor speed for the recurds in Figure 10 was 1000 rpm and the mean
axial velocity was 60 ft/sec. The os¢illoscope sweep speed in Figure 10 is
much slower than in Figure 9 sc that the blade passage pressure pcaks are
highly compressed. The interest here is centered on the pressure fluctuations
during passage of a rotating stall cell. Each photograph in Figure 10 shows
the passage of two stall cells, The phase relationships between the separate

photographs have no meaning since the records were not obtained simultancously.

Figure 10 illustrates that the character of the stall cell passage
signals change considerably with chordwise location on the rotor. Near the
leading edge, the stall passage signals coincide with an amplitude reduction
in the blade passage signals. In this region the combined maximum amplitude
of the pressure signals during stall passage is almost the same as the blade
passage pressure amplitude between stall cells. In contrast, near the trailing
edge the passage of a stall cell coincides with an increase in amplitude of
the blade passage signals and the ccmbined maximum amplitude is larger than

the blade passage amplitude between stall cells.

The rotating stall control system detects unusually large peak
amplitudes in pressure signals such as shown in Figure 10. Control action is
taken when these peak amplitudes rcach a predetevming! rofercace value. It
is required that only those fluctuating pressure levels associated with rota-
ting stall should initial control action, Tests of the control have shown
that the best performance is obtained when pressure signals, due to blads
passage, are removed hy low-pass filters. It is clear from Figure 10 that
elimination of the blade passage signals will greatly improve the signal to
noise ratio for stall detection purposes. This is true even for the pressure
tap locations near the blade trailing edge since the blade passage pressure

fluctuations still have an appreciable amplitude between the stalli cells,
D. CONCLUDING REMARKS

The results of two separate experimental investigations have been

presented in Section Ul. In the first investigation, Section II-B, the

13

o - AT R s HEIEL et e b T a e
e AL B A o S i . AL T e




far-ficld noisc generated by retov-stator interaction was measured to provide
data for correlation with the approximate theory preseuted in Section 11,
In the sccond study, Section II-C, the fluctuating outer-wall static pressures

generated by passage of the blade tips of sn isolated rotor were measured to

provide data for comparison ..ith the direct lifting surface theory of Section IV.

The rotor-stator interfercnce noisc studies presented in Section II-B
consisted of measuring the sound pressure levels in the comstant area annulus
far upstrecam of a rotor-stator stage. The measurements werc made at a series
of rotor specds for two stagger angle settings of the stators. The results
contained detcctable pure tone components only at the fourth and fifth har-
monics of blade passage frequency. The generation of lower harmonics was not
possible because the rotor speed capability was limited at the time of the
tests. Since the performance of these tests, the rotor speed capability of
the test rig has been increases. It is planned to use this capability to
perform additional measurements for conditions in which lower harmonics of
blade rassage frequency are propagating. The results of the current tests

are compared with theorctical predictions in Section ITI.

The isoiated rotor studies of Section I11-C were intended to provide
a measure of the blade tip pressure loading for comparison with the predictions
of the direct lifting surface thecory of Scction IV. However, the theoretical
development had not reached the stage where quantitative predictions could
be made, Thus, samples of some of the data are presented as of interest in
themselves., Inspection of the results suggest the meusured pressurcs may
have been influenced by rotor tip clearance etfects, As such, the results
may not be predictable by the direct lifring surface theory. Nevertheless, a

compurison between theory and experiment would still be of interest.
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SECTION II1
APPROXIMATE MODEL OF ROTOR-STATOR INTERACTION NOISE

The interactions between rotor and stator blade rows have long been
recognized as a major source of noisce in subsonic acial flow fans and com-
pressors.  The interactions consist of fluctuating forces which arise bhecause
oif the motion of the blade rows relative to one another, and in turn, act as
acoustic sources. Out of practical necessity, little detailed attention can be
paid to the interaction noise at the design stage, where each row is usually
modeled as an isolated two-dimensicnal cascade in a steady undisturbed flow.
Interactions can be kept to a minimum by spacing the rows several chord
lengths apart, but the designer is generally working under size and welght
constraints as well. This portion of the report presents the results to date
of a combined theoretical and experimental program aimed at a better under-

standing of rotor-stator noise gemeration, and methods for its alleviation.

Many investigations have appeared in the literature which treat both
the aecrodynamic and/or acoustic aspects of the problem, e.g., References 2-24,
which is by no means an all-inclusive list. Because of the complexity of the
problem, the various theoretical models represent several combinations of
simplifying assumptions needed to make them amenablce to analysis. These include
the use of free-field vs. ducted boundary conditions, two-dimensional vs. axi-
symmetric blade rows, and various degrecs of apprrximarion to the unstcady acro-
dynamic processes. Probably the most universal approximation, and thie most
restrictive, has been the use of incompressible flow theory to estimate the
fluctuating blade loads. Strictly speaking, this restricts the range of

validity of these models to very low flcow speeds.

As the speeds of modern turbomachivery arc definitely subsonic, and
often transonic, the need to include compressibility effects is obvious. The
gozl of the present theoretical work is to incorporate a compressible flow
acrodynamic model into the prediction of rotor/stator interaction noise.
Published investigations, which allow for compressibility effects in the pre-

diction of unsteady aerodynamic loads, include those by Kaji and Okazaki,zz

2 - -
M:mi,"3 Osbornc,"4 Whitcheadzs and Fleeter.®
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Kaji and Okazaki treat the near-field acrodynamic and far-{ield
acoustis regions of the flow in a wunified lincarized trcatment.  Their analysis
is the most complete because it includes the upwash velocities on each blade
generated not only by the forces on that same blade, but also by the forces
(both steady and unsteady) on all the other blades in that same row, as well
as those from blades in the neighboring row. Unfortunately, this requires one
to solve simultancously for the loading distribution on both rows using a pair
of coupled singular integral equations. Mani23 simplificd the problem some-
what by neglecting the influence of the unsteady loading on the neighboring
row, It is still necessary to solve a pair of integral cquations to obtain the
usteady loading on both rows, but the two arc no longer coupled. Similarly,
the zerodynamic analyses in References 25 and 2¢ require the numerical solution
of an integral equation for the loading on each row. These analyses are all

based on two-dimensional cascade models.

It is ultimately hoped that our work on the three-dimensional lifting
surface theory tor annular blade rows can be applied to the rotor-stator
interaction problem. This would amount to the extension of the Kaji and
Okaczaki analysis to include three-dimensional effects, and is expected to lead
again to a pair of coupled integrul equations, probably even more complex than
theirs. Hence, it is likely that morc experience with the problems of steély
and unsteady flow through an isolated rotor (reported on in Section IV, below)
would be needed before applying such an analysis to rotor-stator interazticn.
In the 1interim, however, it was felt that our understanding of the basic
mechandsms ¢ould benefit greatly from the application of a simpler mcdel, and
the comparison of its theoretical predictions against the acoustic data taken

in the annular cascade (see Section I1).

The theory developed under the current pregram avoids the necessity
of solving integral eguations, and Ehus considerably reduces the complexity of
the analysis, as well a. computing times. In this simplified model, the aero-
dynamic and acoustic problems are treated individually and then matched together.
24,27

The aerodynamic analysis is that published by Osborne, which essentially

represents the compressible extension of the now classic analysis by Kemp and
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Sears. ™’ Osborne's results are closed form expressions for the unsteady
blade loads on both rotor and stator which are easily accommodated in the
acoustics calculation, since no numerical techniques are required. The

principal features of this model are described in Section III-B below.

The Osborne aerodvnamic analysis models each row as a two-dimensional
cascade, which is strictly justifiable only at large hub/tip ratios; even then,
&kCunezs has shown that in certain types of transonic flow, no logical two-
dimensional cascade limit exists. The acoustic analysis described in Section IIIL-A
below emplovs axisymmetric annular blade rows housed in an infinite hard-walled
cvlindrical duct with a uniform axial flow. Accordingly, Osborne's expressions
for the fluctuating loads are applied on a strip theory basis at each radial
station. This procedure was followed so thas in the event a truly three-
dimensional aerodynamic analysis becomes available, it can more easily be in-
corporated in the model.

The combined aero-acoustic analysis in Section III-C results in easily
evaluated expressions for the sound field in terms of the same duct modes
studied previously by Tyler and Sofrin and Morfey‘s’6 A computer program has
been written to evaluate the modal amplitudes in terms of blade row steady
ioadings, stagger angles and drag coefficients. From these amplitudes, the
total radiated sound power (either upstream or downstream), as well as the

mean square pressure at any given point in the duct may be obtained.

Se~tion III-D contains comparisons made between the theoretical pre-
dictinns and acoustic data taken in the annular cascade facility. Additional
rumerical results are presented in Section III-E to better illustrate the
cffects of compressibility. Section III-F summarizes the findings and makes

suggestions as to how the theoretical model can be improved.



AL ACOUSTIC ANALYSIS

In the acoustic model studied, the blade rows are assumed to be
housed in an infinitely long hard-walled cylindrical duct, as shown 1in
Figure 11. The hub and tip radii are denoted by r, and r; respectively, and
a uniform axial flow at Mach number M, 1is assumed. In describing the flow
field, we will use Lighthi11’529 acoustic analogy procedure as later extended
by Curle30 to allow for the presence of solid boundaries. That is, rather than
having the blades impose boundary conditions on the equations of motion, we
represent them as distributed sources of mass and momentum which arise from
the blades' thickness and loading, and imagine the fluid to be otherwise un-
bounded in the annulus formed by the duct walls. The linearized, inviscid

conservation equations of mass, momentum and energy in duct-fixed coordinates

are then:
AN
Dp - n
—_— + vVv. v =
D+ P Q
0F | oL |
= . +
P Dt P (2)
bp _ 1 DOr
Dt al Dt (3)
Here 9’ is the linearized substantial derivative
D
_— = -—?— + Ux. _3__.
Dt 7t dx

and © , o and v are the perturbation <ensity, pressure and velocity fields,
respectively. The quantities a, and Uy represent the undisturbed sound speed
and the axial flow velocity, respectively. @ is the rate of introduction of
mass per unit volume per unit time, and F is a force per unit volume; both
are functions of X and t . Equations (1)-(3) are easily manipulated into

he foilowing form

. D'p 2 Lo
2 a V [ N
a Dt Dt

-V - F = S(f,t) ()



The only boundary condition imposed on this equation is that the radial
velocity vanish at the duct walls. Using Equation (2), this is expressed in

terms of - as

I
= 0 at re=r. ., r

5? Ll
In order for Equations (4) and (5) to be of any use, one must have a
priori knowledge of the acoustic source distribution, S¢( X ,t). Thic is dis-
cussed in the next section; for now we simply observe that solutions of (4)
and (S) can be obtained using a number of methods. The present analysis uses
a Fourier-Bessel transform decomposition. That is, we define transform varizbles
Ppp (Gow) and S, (4,w), corresponding to -0 (X,t) and § (X, ) , which

. . . N .
are expressed in the cylindrical polar coordinates of Figure 11 as:

, ' M S $2
£, (T w) = 2n1j/da’9nm(ynmf)r dt [ dxe
) Yo o

am . (6)
i -tné
-/dee Pp(ra,8,x,t)

o

!
Snm(z'w> = 2,_.[1/
+

ir .
~-tnfb
-/dae S(r. o, 8, x,¢t)

o

] oo -

~(wt + 8 X)
drﬁnm(l}'nmc‘)tf'\/‘o’.f dxe

- D0 -0

(7)

Here r =+ r/r. is a convenient dimensionless radial variable and 4 = r,/r.

is the hub/tip ratio. The functions R, (¥,.¢) arc the set of orthonormal
radial eigenfunctions imposed on the system by Equation (5); they are a linear
cemtination of the Bessel and Neumann functions, and are described more fully
in Appendix A, The corresponding eigenvalues, v, , are determined bv the

nm
condition
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By substituting for  and $ 1in Equation (45 in terms of the in-
verse transtorms appropriate to (6) and (7), one can show that Equation (4) is
then automatically satisfied when the tran form variables have the following
relationship to each other,

2 2 - !

Prn = Snm (ﬁzﬁl-lMxt’, £ - ’€V+/J‘nm) (9)
where
n) 2 2 Vhm
A = = B (=M Pr.n = —;T—

Thus, once S is known, S, and g, follow from Equations (7) and (9),
respectively, The solution for the pressure field is then obtained as the

inverse transform of Equation (6). Combining thcse steps we obtain,

) @ .
" 0 r (Wt +5X) o 2
PR, - dw | dce oz
4T j Ne=m pnsC
J. (10)
Bk l.r-9

\Snm(t),: w) 'Qnm(v-nmc-)e
ﬁlfz-zsz,' A-R+ ,u.'znm

whure cverything on the right is presumed known. For the present study of
rotor-stator interaction noise, we are concerned with the fluctuating torces,

and so drop the source term appezaring in Equation (4).
B. ALRODYNAMIC MODEL

It remains then to specifv the form of the unsteady forves £ exerted
by the bLlades on the air, For the reasons discussed above, the linearized
gerodynamic analysis of Osborne %Y was chosen for this purpose. Briefly srtated,

the principal assumptions in this analysis are:

(1) Each blade is represented by a two-cimensional cascade in

evaluating its induced velocity tield.

-
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() The steady part of the circulation about each blade, and hence
its influence on a neighboring blade row, is much greater than
the unsteady circulation. The latter is neglected, aleng with

any associlated shed vortigity.

(3) Unsteady velocity gusts parallel to the blade chord are
neglected. This is safe provided the steady state angle of

. .31 . .. L. . . .
attack is small, which is implicit in the lincarization.

(4; Isolated two-dimensional airfoil theory is used to estimate ' -

27
blade response to gusts perpendicular to the chord.

As in the original analysis by Kemp and Scars, Osborne considers a
single stage consisting of a stator followed by a rotor (see Figure 12a).
Since we have assumed a uniform axial velocity in the duct as the undisturbed
state 1n the acoustic model, the lincarized snalysis is strictly applicable
only te stages with small stator stagger angles. Three intervaction mechanisms

are consldered:

(a) Rotor unsteady lift fluctuations due to its passage by the

steady upstream stator loads.

(b) Rotor unstcady lift due to its passage through the viscous

wakes shed by the upstream stator.

(¢) Stator unsteady 1ift due to the passage of the steady rotor
loads.

For brevity, items (4) and (¢) are usually referved to as potential inter-
actions since they would be present ceven 1f the fluid were ideal. Item (b)),
referred to as the viscous interaction, requires the presence of fluid friction.
The potential interaction analysis involves the blade aerodynamic response to

a generalized Kemp-type gust upwash, whereas the viscous interaction is modeled

as the superposition of responses to a frozen sinusoidal gust.
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The sectional 1ift per unit span on the zeroth blade given by
Osborne for euach of the above mechanisms may be svmbolically expressed in

blade-referenced <oordinates as

; = ¢21/"t .
Lottty = 51 2 ch (11a)
l——u
- L2yt
¢ Iy frT 11b
LR\t) - 3 L )ll 4 ( )
_l-—m
Ayt (11¢)

(4
¢ = ! o
Ls‘t) :2—§ .Zié'

L
|
8

where X X£ and similarly for Y, and Z,

The subscripts R and S refer to a blade member of the rotor and stator

nn
Ui

ous, 2, b, o) suffi
cquation numbers refers to their corresponding interactions (a, b, ¢) above.
The X; , Y, , and Z, are the amplitudes of the fluctuation at each harmonic
of the tfundamental frequency, whether z, or 7z . (¥ote: since we are not
explicitly concerned here with the noise field generated by the steady rotor
iocad, the £ = 0 term in [lla, b] is ignored.) These cocfficients are given
explicity bv Osborne as functions of blade row stagger, spacing and gperating
conditions. The full functional relationships would needlessly confuse the
analysis that follows, and sv they are given in Appendix B. Since Osborne's
model is a two-dimensional one, Xy Ye and zl are independent of spanwise
location in his analysis; in the strip-wise apnlication of his results to our
annular duct model, they sre assumed to be implicit functions of the radial

coordinate r shown in Figurc ll.

The fundamental frequencies 2z, and %, correspond to the radien
frequency with which a rotor blade (stator vune) encounters a stator vane
(roror blade). In the cascade model, this is rclated to ihe rotor tangential
velocity divided by the stator vane (rotor blade) spacing. In the present
circular duct mudel, this translates inte the product of the stator vane (rotor

blade) number times the angulor velocity of rotation, i.e.,




|

coidds rAAE T

r{l ril (12)
— ~«~ VO, 2, a an — = B0

where V and B are the numbers of vanes and blades, respectively, o, and

Je their spacing, and n is the shaft frequency in radians/scc.
C. COMBINED AERO-ACQUSTIC ANALYSIS

Equation (4) shows that the contribution to the source distribution

S (% ,t) from these fluctuating forces per unit span is in the form of
minus the divergence of the fluctuating forces per unit volume, expressed in
duct-fixed coordinates. That is, the blade rows arc imagined replaced by a

fictitious distribution of acoustic dipole singularities, stationary in duct

coordinates, whose magnitude and phase are in accordance with Equations (lla-c).

To determine this distribution, some a,sumption must be made regarding the
spatial distribution of blade forces in the axial (x) and azimuthal (&) co-
ordinates, For simplicity, we have initially assumed each blade (vane) to be
represented by a line dipole located at its mid-chord. (More sophisticated
models employing a chordwise distribution of lgading can be treated, as this
assumption is not crucial to the acoustic analysis.) Noting that Osborne takes
the rotor as having velecity U (= r) in what we define as the negative &
dircction (Figure 1la), the fluctuating force field corresponding to Equations

(lia-c) may then be cxpressed in duct-fixed coordinates as

s s L5 sgee i s 3

] R(x,-)] = 5 ; (, e 2 d\r trflt - 5 ) Sex-x,) (13a)
z o0 ?-o

- - ~ —ilve 8-1 y

[Pk, o] = L5 ve I &(revrac-"2il) 620 (130
Amces 1:0 8

-~ . ~ AB(st +8) v-r artir

,Fs(x,r) = -2’-5_ Z,¢ Zd(re-—-vf-)é(x—xs) (13¢)
v - 7'0

where x, , X, are the axial locations of the stator and rotor dipoles. The

dipole axes are perpendicular to the rotor blade (stator vane) chord lines,
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which, in turn, are inclined 2t an angle @, ¢ from the axial direliion,
as in Figure 12a. Hence, the divergence of the forces occurring at tae rotor

can be shown 1o be (neglecting any contribution from the radial direction):

- cos o F PV = (o
V. £ 5('”"}—:"55*'&““0'”_3—2’)":“'

v = col d x /] l,,z: ‘ (15)
= - N - !
s ( ro8 T T T >' ;
- Substitution of Eyquations (l13a-c¢) into the above exprcssions gives the

following contributions to § from each mechanism:

- y = ive v B-1 },rr
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Substituting kEquations (16a-c) in (7) then gives the expansion coefficients
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where the sum over the integer N has replaced that over £ . The notation Z.
indicates that Equation (17) should be viewed as n being a fixed integer and
allowing only thosc teims in the sum over N which give integral values of £ .
This restriction arises because of the following identity which is used in the

derivation of Equations (174) and (17b).

. an

g1 i (dvan) 2gt B wren LV+n = NB N=o,t1,t2, ..
e =

5:.0 o OTHERWISE

Similariy, in the case ot Equation (17¢), use was made of
Ay

ENAC TR V  wHeEN dB-n « NV N= o, 21,22,
e =

2 o UTHERWISE

iv°

Physically, these identities reflect the phasc cancellations in the duct which
allow only a restricted ser of loading harmonics to generate a given azimuthal

mode.
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1. Pressurc Mode Amplitudes

Substitution of Equation (17) into (10) pives the desired solution
for (he acoustic pressurce field. The integral over w is rendered trivial hy
the prescnce of the delta functions in Cquation (17). The integral over @
¢an be handled in a straightforward manner using contour integration ih the
complex g plane. The integrand exhibits two simple poles on the real axis.
The physical requirement that all waves generated by a row should propagate
away from it determines whiclh half-plane the poles should be considered to

lie in, and the value of the integral can then be found from residue theory.

For the sake of generality, pressure waves gencrated in the upstream
direction uy cither row are referred to with a superscript "u', and thosc in
the dowistrcam direction witih 2 "d". A suabscript of either 1 or 2 will be
used to denotc whether they originated at the upstream or downstream blade row
(sce Figure 13). (In tnis simplified model, no allowance is made for the 1ve-
flection or transmissivn of waves by a neighboring row once they arc generated.)
This formalism allows us to present results for either the stator-rotor case
discussed thus far, or the rotor-stator case to be discussed shortly, within
the same context. Then, each harmonic of the pressure ficld i1s found to con-

sist of four sets of waves as given below:

. . Mo
(n, @+ iwt-¢ {-&n - ——BTJ X
o d e ]
oy = Re L L Pop Rom (Vom )€ (18a)
n, rn,
& M
aneuwt-t[inxm,'?rx}l
¢ <
Py " RLL R, R Uy, (18b)
2
, . . M .
‘n’9+bwt‘"‘[*f\ m,’ *ﬂ;’-] x
- w - (18¢)
2 = Re L2 P m Rom (Vnm 7)€
. - 404
inBriwtri d, o0, '—}ET%} sy ‘
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H
X Y e N ;
w = N.B8n >0 By = 3 A - B u !
i
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1s the particular harmonic of blade passage frequency being considered.

The values included in the sum over the azimuthal and radial mode numbers,

n and m , will be discusscd shortly. Equations (18a-d) hold regardless of

the relative positions of the rotor and stator. This need not be specitfied

. N - .d . .
uritil the mode amplitudes o .- , which are in general complex, arc calculated.

For the stator-rotor case discussed ahove, these are:

* My

;L(*n'rﬂ.t /‘*1 )xs [»‘
wd € )
nc:n i _—V j pn'm,cvn ~. ) {
e s 5 40 m, )

(19b)

where

noo= £ B-NV; 4 = N g N=0,:1, 22
and

Fe (*n,m_‘l ‘%47“) xq T 2
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. ) a aT , , ,
FoAaemay (f n;mféM"‘)J [Xlz‘as)“n»‘f)+y11‘°‘s»°‘n»U)]d"

where

nyo= NB -V, NaN,; 2 =

1+
i+
1)

The upper signs apply upstrcam, and the lower signs downstream,

In many applications, particularly high bypass rario fans, the per-

tinent geometry is that of a rotor upstrcam of a stator (outlet guide vanes),

The same three interactions (3, b, c¢) listed at the bheginning of Section II1-B

are still involved, provided one interchanges the words rotor and stator.

Rather than having to redo Osborne's entive analysis, the appropriate forces

can be obtuined from his present expressions using a simple transformation

discussed in Appendix B, and the results written down dircctly:
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n"= NB‘.I,V,N’N{, _21:':7’11.
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where
n, = l; B -NV: L= N,y N=o, 1, 22

Equations (18a-d) express the pressure tield as the superposition of

the same spiral duct modes studied by Tyler and Sofrin,4 and Morfcy.5’°

Note
that the rotor-gencrated field is made up of modes with azimuthal order

N:B -2V, where N BN is the acoustic frequency and 2V the blade loading
frequency. The stator-generated field on the other hand is composed of modes
with azimuthal order {8 - ANV , wherc both the acoustic and vane loading rre-
quencics = £Bn = N:/Bn . These rules for determining the azimuthal modes
over which one must sum in Lquations (18a-d) are a result of the delta functions
invelving w in Equation (17} in conjunction with the special relationships
between n , N and £ given there. Interecstingly, one can see that the rotor
and stator always will each excite the same set of {n,m} modes. These obser-

vations hold irrvespective of which is the upstream row,

28




Here we are concerned only with the radiated field, and so only those
modes above cut-off, i.e., for which #, ., i»> real, need pe considered. This
allows one to put an upper limit on the value of the radial index m , for a
given frequency w and azimuthal mode number »~ . (The form of the result for

modes which are cut off is thc same as (18), except thiat +# is then

nmm

imaginary; 1ts sign is determined from the physical requirement that the mode

decay, rather than grow, exponentially.)

The mode amplitudes given by Equations (19a-d) are singular right at
the cutoff condition for any one mode, # = £, ., as first reported by
McCune23 in his study of the disturbances generated by the steady loading on
an isolated rotor. 1In References 22, 23 and 25, which treat the aerodynamic
and acoustic fields simultanesusly in a two-dimensional cascade model, no such
resonance is predicted since the unsteady loads {which we have assuned as given
a priorij apparently vanish at this condition, due to & strong interaction
between the two tficlds., The experimental results discussed below and in
Section 11, however, indicate that the sound levels ave significantly higher

near such a condition.

Sound Pressure Level and Total Radiated Power

Once the pressure mode amplitudes, 7ﬂzﬁf , have been determined trom
Lquation (19), expressions for bath the mean square pressure at any point in
the duct and the total radiated power are easily derived for any given frequency.
We denote time averages over one blade passage interval by <2 . Then sinrce

everything is harmonic in time,

a2 .
) 1>u,d~ B (20
R L
L 4
where
2
w.od w,d u.d (21}
'11 = ..'O' “ of:)).
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w.a

and o %% is the magnitude of the sum of the signals trom both rows, i.e., the

L L ewt . . . . . . .
coctticient of ¢ in Equation (21), after substituting from (1%) and {19)

as appropriate.  The result is easily shown to he:

. * My
<‘F’ > = E Z Z Jpn'm' Rn,nw'(vn m cle
nyom, !
M. 2 22)
. «. d (rﬂla X {*"’aw'a, —/-3-{-‘/' x |
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n, my 2 12 2
&M 2
w0t L)l
It “w & o, d Ty Lo, v, = T4
=._2_IZ z (- n'mid--pﬂm)/?ﬂm(vﬂm\)e /
I".'n:. ™" * ]

The last equality follows from the fact that the two blade rows always cxcite
the same set of {nm} modes, (but with different amplitudes, of course).
Note that < “ % is a function of 2,7 = .o, and 8 , but is independent of
time; the dependence on x and € will also disappear in situations where only
one mode 1s excited. The sound pressure level, SP'L, then foliows from
(pry™e (23)

o .
SPL = :O,&ygm —_—
P rer

-4 2
there w0 7 2 x 10 dyne/cem

To obtain the total sound power radiated along the duct, P “°

, WC
mst evaluate (Reference 6)
[‘, AT
u,d 2 F w, o g w, o IV'.x 2 LG
P = rrJ'/[('+Mx)(1b“) + 0, a, M (u’) +-—a (o) Jo‘dcroée
. o -
A0 (24)
where w is the axial component of the acoustic perterbation velovity. The

last term is proportional to the iategral of Lyuation (22) over the duct cross-
section; it simplifics considerably duc to the orthogonality properties of the
trigonometric and Bessel functions and the fact that, for two couplex

quantities,
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The integral of <p*>™ then reduces to
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5 2
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(25)

The other terms in Equation (24) involve the axial velocity in some
form. For every pressure wave with amplitude -pt‘:i there is a corresponding
velocity wave with the same spatial and time dependence and an amplitude of),
say, u. %% . The two amplitudes can be relared through the axial component of

the momentum equation:

du du ;A
-t A M, —— = - — — 26
it > Ax e, 8x (26) 1
which Tujuires that
2
“u-.d. ~ H:":. 'Pu._d. gu,d- - ¥ ﬁ —énm ——__'& /\'17‘ ('77J
nm ,au nim nrm .& t ﬂJ.Mx _&nm

The quantity 9,,,: may be thought of as the dimensionless acoustic admittance
of an (~,») mode. For the plane wave mode with no axial flow, n=meM_ 0,
it reduces to +1, as expected. Since 2.5 is a real, constant multiplicative
factor independent of x, r and &, the contributions to P+ from the first

two terms in Equarion (24) can be written down directly from (25).

The complete result can then be reduced to:

i
o Yo "(-lm1‘m3_

+ !'an 2+ 1l»pn ", l l-pnm l L.Oﬂ\ll/llj ‘Pn,m,"’"‘? ‘an ,)J (28)

which is written in such a way that P“and P% are both positive, i.e., power is

always radiated away from the stage.
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The terms involving the squares of the mode amplitudes represent the power put
out independently by cach blade row, assuming only its radiation was proesent.
The last term represcnts an interference between waves emanating from the
separate rows; this would be zero if the two blade rows radiated independently

. . el “w,d
of one another, i.e, if (arg 4>ﬁ,n' - arg'p";m,) were random.

1f the acoustic interfercnce effect is sufficiently strong, it may
be possible to 'tune' the rotor-stator stage to minimize radiation at a given
frequency by ad,usting the inter-row separation [x, - x| (sec LEquation (19)).
To achieve maximum benefit, Equation (28) indicates that [, | should ap-
proximately equal ]doﬁ:ih . However, most modern turbofans are designed with
maximum rotor-stator separation, subject to size and weight constraints. This
usually results in negligible potential interactions between rows (they decay
exponentially); practically all the noise then results from the viscous wake
impingement on the downstream row, i.e., in our notation, [5 7 [ | P |-
These arguments suggest that moving the rows cioser together until they play
roughly equal roles mey lcad ©o noise reduction at a given frcquency, if their
signals can be made to destructively interfere. This would probably be useful
only in situations where the acoustic field was dominated by a single
mode. Whether the benefits of such a scheme could be realized in practice
would depend on several factors not included in the present model. One would
also have to consider if such gn optimwn separation would have an adverse af-

fect on the other harmonics in the spectrum.

Useful qualitative conclusions regarding the variations in upstream
and downstream radiated power which result from changes in axial Mach number
and frequency can also be drawn from Fquation (28). The arguments below apply
to radiation from a single rotor as well as from a rotor-stator pair, due to
the absence of transmission and reflection effects of the other row. Hence
for the sake of simplicity imagine the mode amplitudes of one row, say the
rotor, to be dominant aver those of the other row. First we consider the

situaticn with no mean flow. In this case, Equation (27) shows

o aavan A A
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u, nra
Lom Ao = 3ol (29)

M s ¢} #

. . . w.d . .
and the power contained in any one n,~» mode, call it F_ . , is proportional

to (from Egquartion (28)):

u, &n s 2
bom P e 220l (50)
M,—=0 #

Now, from Equation (19) we see that the only thing differentiating |5, |

from Lpf",| is the sign of that term in the integrand beginning with sin «, -

1f the integrand is not very sensitive to variations in radius, Equation (30)

can then be written approximately as

n cot &, 2
£ r. g ; %nm ‘
Z P,t.‘,:‘ o nem T ]
l*'1,_——>0 * '&nm ’
which, after scme re-arvangement gives
————— 2
”n C&’CC\'.R 74y 2
Pd — -+ Y—L‘—-—
b om o | RAT * # 1 (31)
Mo—=0 P:m 2.?0{0‘" - /J_l/i’l'_'q)?
‘&_ r‘_r T 1 \\ -k /s

This result is in agreement with that of Morfey in Equation (49) of Refcrence ¢,

if there one sets M, =0 , interchanges » and m, and ncotes that in his nota-
tion, €/ 4G, equals cet dg/{As.¢) in ours. Equation (31) indicates that even
when M, = 0, equal amounts of power do not radiate to either sidec of the
blade row. This results from the fact that the relative angle betwecen the
dipole axis and the propagation vectors of the acoustic mode, say ¢:;$. is
different on the two sides of the blade vyow. The situation 15 shown

schematically in Figure 14.

The geometrry of Figure 14 suggests that this asymmertry in radiated
power should disuappear for modes propagating very near the duct axis, which

bhappens weli above cut-off., In this case

33

TV R PO -t e e

M IS e S e Sy



"

7 Vo n
> e S} (32)

3
-A.r.r

+* .%/;

and the ratio in Equation (31) approaches unity.

In fact, this can be shown to be true in the morc general case with

axial flow; Equation (27) then yields,

. w,d
ﬁ‘ffg LAen = w (33)
The first factor in Equation (28] then becomes
. RN “w,d «w. d _ 2
i’.;/m 4'(1+..7‘)an 1‘_:,,’?nm‘z)."‘1x! = (1% ML)
/S%ﬂr"‘—’
and it can be shown, again using Equations (19) and (32), that
w,a BN
SE T e
Henee, while Fﬁ:, and E:L will still depend individually on M, , their ratio
Pd
dim 2w (35)

B et Fnin

will always approach unity for modes weil abtove cut-off, again in agreement
with Reference ¢. Care should be taken not to apply this result very near
the condition of transonic axial flow, M, =1 . Here the upstream radiated
power will vanish, whereas that in the downstream direction remains finite,
in violation of Equation {35). This is because the linearized analysis on

which these results are based is invalid right at the transonic condition.
D. COMPARISONS OF THEORY WITH EXPEPIMENT AND DISCUSSION

This section presents comparisons between numerical predictions from
4 cumputer program based on the preceding analysis and the accustic data de-
scribed in Section II. Unfortunately, as pointed out in the discussion of

Sectien 11, acoustic data could be obtained only for the tourth and fifth

34



the turning performance and visccus losses across each row. For example,

to the total pressure loss coefficient,‘ﬁc?r, by the following

. o 3
('D = ACFY 2e o /6,’,‘

where DRAG / SPAN
C, = ——F——
P Vm @
TOTAL FRESSURE LOSS RACROSS ROowW
AC#T = ; 2
T LUy

must be measured in coordinates fixed to the blade row. Since <o/, =
V., being the vector mean of the velocities upstream and Jdownstream of the
Anr

blade row, and d = 5 Equztion (36) beconmes:

3
c, = TAChnm T <y.£\
Bc Voa/

where B is the number of blades and everything on the right hand side is

either known or mcasured.

the turning performance through:

35

harmonics of blade passing frequency. As seen below, this seriously hampers

one's ability to draw meaningful conclusions concerning the model's validity.

The basic¢ inputs required by the computer program are the geometries
of the two blade rows, the steady lift on each of the blades, and the drag co-
efficient of the upstream row, which in the case of the present experiments,
is the rator. Since at the speeds encountered in the experiment compressibility
effects should be negligible, and the hub/tip ratio is large, a two-dimensional

incompressible theory can be used to relate the lift and drag on each blade to

Horlock32 has shown that the drag coefficient, C;, of each blade is related

B, is the mean flow angle, d the blade spacing, ¢ the scmi-chord, and p the

fluid density. It is important to note that 3, and the total pressure loss

Also, the 1ift ¢oefficient on each blade, C, » can be ottained from



ol
C = —;(mm/a,-tmﬁZDWﬂm-Caw”’ﬁm (40)

where 3 and ﬁg are the upstream and downstream flow angles, respectively.
Letting
v, + U,

Uh.l_ = Uxtam/j,'l v,, = ~ £ (41)

vhere v, and v are the tangential flow velocities, again measured relative

to the row, and substituting for d s fBn and C, from above, we obtain

i
Tr 2{v, - v} U, U
CL - - [ 1 1 _ mg,t Ac-p_l lf42)
BC Vm v)n T
Now the lift force is actuallv put intec th: roter-statcr interaction noise
program in the form of the Glauert coefficients A, , required by Osborne’s
theory (see Appendix Bj. The first two of these, A, and A, , are respectively

the blade angle otf attack and the ratio of maximum camber to blade semi-chord,

assuming a circular-arc profile. They are related to C, by
€ = an(A, +A) (43;

Since the angle of attack A, is simply the mean £low angle minus the known
geometric blade stagger angle, Equations (42) and (43) are sufficient to de-
termine A, ; for n greater than one, the A, are assumed to be zero. In this
way the A, are computed in such a manner as to usc the actually measured

steady ioads in the Osborne theory.

For the present acoustic experiments all quantities on the right
hand side of Equations (39)-(43) are either known or measured in the case of
the rotor, for which data were taken were over a wide range of conditions in
the previous program.l Unfortunately, since stator performance data weve
obtained near rotating stall inception, they do rot include the range of inlet
conditions covered by the present experiments. Conseguantly, stator tutning !

performance was inferred from design data made available by the manufacturer

for the corresponding stator in the comp!=te J-79 engine. The sutlet flow




angle at design was assumed to apply for all incidence angles away from the
design value {corresponding to a high solidity approximation). The outlet
angles at the off-design stator stagger angles used here were assumed to
differ from the Jesign value by the same amount as the stagger angle differed
from the design stagger angle. Viscous losses were assumed negligible for

the stator; this is a safe assumption since A Cp, has a relatively weak influ-
ence in Equation (42) and the ¢, of Equation (39) is not needed for the down-
stream row. The rotor mid-chord location was chosen as Xg = 0 . Hence, the
coordinates of the probe in Figure 1 were x = -.979 ft., r = r, = 1.223 ft.,
and 8 = 0°.

Due to the large hub/tip ratio of apout 0.8, the dimensionless
steady 1ift and drag cocSificients used by the program were inpuc as constants
independent of radius. These were computed from the radially averaged turn-
iflg and loss data of Keterence 1. The lift and dragz forces du, of course,
vary with radius, because all the velocities scale with the rotational speed,
{Lr . To check the validity of using the radialily averaged coefficients, one
case was also run with a four-point radial distribution of these coefficieuts
(also measured in Reference 1). This produced enly minor differences in

the results.

Figure 15 compares the experimental measurements of r.m.s. wall pres-
sure described in section Il for the fourth harmonic of blade passage frequency
with the computer predictions for the mean stator stagge:r angle of 37.2°.

The axial flow velocity and rotor rpm were varied in such a way that the
relative rotor inlet angle, and hence also turning performance, of both rows
was held constant for all conditions shown. Figure 16 shows the same compari-

son for a mean stator stagger angle of 28.2°.

The comparison of absouﬁn:levcls is seen to be rather poor, although
the shapes c¢f both curves are in general agrecment. For example, in Figure Is
both experimental and theoretical curves are characterized by two rather well

defined peaks, at approximately 1170 and 1445 rpm in the experiment, aud 1150

and 1413 rpm in the theory. Similar behavior is exhibited in Figure 16, As
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explained under the discussion of Section II, discrete-tone noise signals
could be cbtained onlv atr the fourth and higher harmonics of blade passage
frequency in the accessible rpm range of thc annular cascade experiments.

The left hand peak in the theoretical curve corresponds to the operating
point where the n = 22 acimuthal and m = 1 radial order mode for the fourth
harmonic of blade passage frequency exceeds the theoretical cut-off condition
and begins to propagate. The peak at the higher rpm corresponds to where the
n =22, m = 2 mode begins to propagate. These peaks arc a result of the
acoustic resonance that cacurs at the cutr-off frequency of any mode, due to
the vanishing of +__ in the denominator of the modal amplitudes 4% (sce
Equation {19)). The height of the thecoretical curve is limited only by the
precision of the computer. The level and shape of the experimental peaks

in these regions are heavily influenced by factors not included in the ideal-
ized model, e.g., non-linearities, viscous effects, and radial variations in
axial velocity. 1In view of this a small discrepancy between the locations

of the experimental and theoretical pcaks, here about 20 rpm, is to be expected.

Note that the pressure levels rose slightly from Figure 15 to
Figure 16, nrobably a result of tilting the stator load vector closer to the
angle of propagation of the acoustic mode, as well as a modest increase in
flow velocity. Again, it is encouraging to note in this regard that theory

and experiment rose by roughly the same amount

Figure 17 contains limited datu for the fifth harmonic noise of the
same rotor-stator pair as Figure lo. The fifth harmonic excites propagating
mcdes at a much lower tpm. In this case only the n = 14, »m = 1 mode is
present, the rpm at which it theorctically exceeds cut-off being just to the
left of that shown in the figure. Here, the shapes of the twc curves atve
only marginally similar, and the discrepancy in absolute levels is even wider

than in Figures 15 and 16.
This discrepancy in absclute level between theory and experiment
bears further discussion. For the experimental totor-stator stage having

46 blades in the rotor and $4 hlades in the stator, the n = 22, m = 1,
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2 nodes in Figures 15 and 16 are generated by the third loading harmonic on
the rotor in concert with the fourth leading harmonic on the stator (see Equa-
tions (19c, dJ)}. Moreover, computer results indicate that at these conditions
the potential interactions between rows are negligibly small in comparison
with the viscous interaction. Hence, the question is reduced to how well the
model can predict the noise resulting from the fourth loading harmonic on the
stator induced by its passapge through the rotor viscous wakes. (Figure 17
involves the fifth harmonic of stator loading, and hence is an even more
severe test of the model.) Since the velocities involvid are all low enough
to be considered incompressible, we arec essentially dealing with the original

2,3

Kemp-Sears model to which Osborne's analysis reduces in this limit. It is

felt that the following are the most likely sources of the discrepancy:

@ Poor modeling of the viscous wake defect at the higher harmonics
® Inaccuracies in turning performance and loss data used as inputs

@ Inadequacy of strip-wise application of isolated airfoil theory

in predicting unstcady loads
Each of these is discussed individually below, beginning with the last.

The ad hoc application of a strip theory aerodynamic analysis for
predicting unsteady loads in a three-dimensional annular flow is open to
question, although the large hub/tip ratio and large number of blades in this
case would seem to justify it. Also, since the solidity 1atio, 2¢/a is
near unity, the use of isolated airfoil theory in estimating these loads
intreduces some error. These questions are particularly crucial with respect
to phase variations in loading along the span, as these critically affect
the radial integration involved in the modal pressure amplitudes, +::Qf in
Equation (19). It is difficult to assess the importance of these approxima-
tions in the absence of any experimental data on the load fluctuations, or
a truly three-dimensional annular cascade theotry for unstcady flow through a

blade row.
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The inaccuracy invelved in estimating the steady loading and viscous
losses on the rows is also difficult to assess. The principle reason is that
such data as were obtained weve measurcd with the row operating in isolation,
since at the time their use in the present investigation was not envisioned.
flence, the performance of both rows may have becn somewhat different from
that assumecd. This could significantly affect the potential interactions.
Since these were found to be negligible as noise sources at these ¢onditions,
a strong variation in loading would probably be needed to appreciably change
the acoustic predictiens. The prediction of viscous wake interaction, how-
ever, might havc been considerably improved if more detailed knowledge of the
blade wake structure had beepn available. This is discussed at more length

below.

With regard to the wake modeling, both Osborne's analvsis and the
previous work of Kemp and Sears made use of empirical laws for the wake width
and velocity defect suggested by Silverstein et a1,33 based on iselated air-
foil data. In particular the decay of the wake centerline dynamic pressure,

g, . 1s assumed to follow

qg. +.844C," -
te ooy o D (44)
g X . 0.4

vhere Qe is the free-stream dynamic pressure, x the distance downstream of the
blade mid-chord position, and ¢ the serni-chord. From this, the centerline ve-
locity defect, w , was inferred, assuming it to be a small perturbation of
the free-stream flow. In the present experimental configuration, there is
roughly a one semi-chord saparation betweet. . . rotor trailing edge and the
leading edge of the stator. Equation (39), in c¢onjunction with the loss data,
indicates a votor £, of 0.16. For such a high drag cceffizient, Equation (44)

predicts a negative value of dynamic pressure, and is clearly inapplicable.
[

Partially for this reason, and also becausc it was fecit that the
radially averaged loss data were perhaps unduly influenced by viscous losses
at the inner and outer duct walls, the value of (, used in the calculations

presented here was lowered %o 0.10. To indicate the uncertainty involved in

40




estimating u., an alternute correlation proposcd by Dittmar (Refercence 17
Equation (7,), ard based in part : . the cascade data of Lieblein and Roz.xdc:bush,:"1
wag evaluated for the same conditions. It indicated an increase in o, by a
factor of about 1.5. Since the unsteady loading is proporticnal to o, , and
only onc modc is propagating over most of Figures 15 and 16, one would expect

this to raise the theoretical SPL by about 4 JB.

In additior to this uncertalnty, a surprising veriation was noted in
the zalculations. That is, when Cp, was lowered from .16 to .10, there was a
rise in the predicted viscous interaction force, and hence duct wall pressure,
in sharp contrast to the conclusion of Kemp and Sears® that such loading ap-
pears to be linearly proportional to ¢, . The observed behavior can be traced
te an exponentiali factor in the load prediction (see Appendix B (¢)) whose
argument is propoitional to minus the product of C, times the square of the L
load harmonic index. Clearly, for the high drag cocfficient and load harmonic ij

interest hore, tnis exponenilal decay dominates any linear variation.

The above anomalous behavior strongly suggests that the viscous wakes
are not modeled accurately enough to predict the higher loading harmonics on
the downstream row when the rotor and stator are in close proximity to one
another, and the wake structure is accovdingly changing rapidiy. Table 3
further supports this contention. The first two entries in the first column

give the velocity defect profile assumed by Kcmp—Sears-Osuorne,s’z

and that
originally suggested by Silverstein et al, as a fit to their isnlated airfoil

data. Here w is the velocity defect at any distance g from the wake centerline,

and Y is the wake half-width., The last entiy is suggested by the resent L
authors as fitting the Silverstein data neariy as well, at least within the
experimental scatter of about :.10 in W u, she«n in Figure 42 of Reference 33.
All three are normalized in such a way as to produce the same total mementum
defect in the wake flow. The second column gives the relative magnitude of
the fth narmonic in the Fourier expansion of an infinite train of such pulses
spaced a distance g, apart. Since this is the only change that would be in-
volved it a different profiie were assumed, the influence on the theoretical

predictions can be casily assessed. The first entry is the exponential discussed
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above, tut written in terms of Y rather than ¢, for the sake of simplicity.
The rext two ¢ntries show how this factor wenld change if one or the other of
the substitute proriles had been assumed. The resulting changes in the pre-
dictions are shown in the last ¢clumn 1or Y/ay <oe &g (actually Y a4 cow 0,
for the present case of a Totor-stator) = 2653 appropriate to the present
conditions, and the first, fourtn, and tenti loading harmonics. Note that the
firvst harmoni¢ is relatively insensitive to the choice of profile, buc at
higher values of 2 such as necded here, the choaice is critical. Had the last
profile heen used in the calcularions, in conjuncrion with the ajternate
estimace 0f «, discussed abeve, 1t is seen thit ke theoretical curve in

Figure 15 would be almust 12 dB higher.

It would be presumptuous to suggest that this constitutes a better
model for the wake properties in the present cace, or any other, simply because
it correlates better with our scoustic data. But it is ¢lear thavw the prediction
of higher harmonics is too sensitive to the detalls of wake structure to be re-
liable, and for these we have had to rely on isolated 3irfoil data. Moreover,
recent experimental work20’35’36 has shown that the wake propertic: for cascad-
ed airfoils and roter blades can differ significantiy from these for an isolatud
aivtoil. Hence it iy felit )likely that the theory could benefit from a refined
viscous wake mudel which better reflects the true situation. Also, if thaey
should prove possible, comparisons of the theory against acoustic data for the
lower harmenics in the spectrum would be very valuable. These are !ess sen-
sitive 10 detailed changes in wake structure, and would allow a better assess-

ment of the validity of ¢ther portioves of the theoretical model.

E. ADDITIONAL NUMERICAL KLESULTS

In addition to the shove cowparisons with experiment, which all in-
volve incompressible flow, some calculations have buen performed to show the
influence of compressibility on the radiated noise. One of the test casces
presented by Clark, et al. (Reference }y, Vol, ILl, p. §9) involved tne cal-
culation of the upstream pressure amplitudes gencravted by the potential inter-

action on the upstream st tor of an inlet stator-rotor pair. The present
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program was run using the same input conditions as given there (see test

case #2, subroutine package AABfA). Briefly, the stator and rotor were housed

in an annufar duct with hub/tip ratio of .35, and axial Mach number of 0.5.

The rotor (15 blades) had a tip Mach number of .875 and was located a distance
r. /5 downstream of the stator (10 vanes). 1In this casc the potential inter-

action on the upstream stator was dominant. The amplitudes

2 o, “
2T I‘Pn|m1l //90 a'o

as used bty Clark, et al.19 are compared wit.. the present predictions in

Table 2.

Table 2

COMPARISON OF MODAL AMPLITUDES COMPUTED BY CLARK ET AL, 1°

WITH PRESENT THEORY

n I m Clark et al.19 Present Thcorij
1 i
1 4.72 x 1073 8.92 x 1073
-7 -
-5 2 3.14 x 16 © 2.08 x 10 ©
3 7.46 % 1072 - 3.83 x 1077
i
l s _3
| ] 1.54 x 107 5.36 x 10
_‘\
45 2 5.07 x 107" ! 1.91 x 10°°
| l -2 | )
I | 3 .94 x 10 | 3.84 x 10

This particular calculation in Reference 19 also assumed a line
dipole model for the blades, and so the differences in the predicted values
are largely a result of using the Osborne rather than Kemp-Scars aerodynamic
analysis. As one might expect, the inclusion of compressibility (the relative
Mach numbur at the stator was about 0.5) had a noticeable effect, generally

decreasing the modal amplitudes.
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In the acoustic experiments performed under the current program, the
fundamental blade passing tone could not propagate owing to power constraints
in the annular cascade (sce Section II). However, calcuiations indicate that
it should begin to propagate above rcughly 1700 rpm. To study its behavior,
and give some idea of how the thecretical predictions vary over a wider range
ot conditions than those above, the calculations in Figure 18 ure presented.
The inputs arc the same as in Figure 15, except that the rpm and M, were in-
creased, again propertionately, into the subsonic regime. Thus, when this
tone first begins to propagate at the left f the figure, the relative Mach
numbers of the rotor and stator are approximately .15 and .11, respectively.
¥Wheu 8700 rpm is revached, these are .77 and .56, and the first four radial
modes of the n = -8 circumferential mode are propagating. The rpm at which

each of these starts to propagate is shown at the bottom of the figure.

The upper curve gives the variation in SPL at the same location as
before. As enjected, there is a large inciease in sigpal over the fourth
harmonic »f Figure 15. The lower curve in Figure 18 is the total power radiated
in the upstream direction., Straight line segments have been used to connect
the computed points for ease of visuali:zation only, and should not be assumed
to accurately depict the true curve. The curves exhibit a rise just above each
cut-off frequency, due to the acoustic rescnance for that mode, as discussed
previously; agair it should be erphasized that the levels computed very ncar
these frequencies are open to question because they represent singulart points
in the solution. In fact, the rise becomes harder to resolve as rpm is in-
¢reased. This results because as increasingly higher order radial maues get
turned on, the integrand in the radial integration in Equavion (19 osciliates
more. The value of the integral itself thus approaches zero, and so one must
be extremely closc to the cut-off frequency before the pressure amplitude begins

to diverge.

The behavior of the SPL curve in Figure 13 1s much wmore unpredictable
than that in Figure 15. 71his is because over most of the rpm range more than
one mode is prepagating, and so the interference between modes described by

Equation (22) comes into play. No doubt at some other point in the duct this




curve would look quite different, duc to its complicated dependence on observer
position and frequency. At the highevr rpm values thc curve begins to smoota
out somewhat, probably because as the signal is distributed amongst more modes,

the constructive and destructive interferences tend to cancel one another.

The curve representing total radiated power is much more well behaved,
since it represents an integral over the duct c¢ross section, thus removing any
depcadence on position. With the exception of the resonance peaks, it exhibits
a smooth iise as relative velocity is increased, as expected. The interference
effects between waves from the rotor and stator described by Equation (28) do
not arise, since the computer results again indicate that *’imwa >> 43:M“r
The leveling off and subsequent decay of the curve in the higher rpm regiaon
is net surprising. Upstream radiated power must go to zeto as a sonis axial
flow velocity is approached; hence the presence of a maximum in the subsonic
regime is to be expe.ted. However, as Osborne's theory becomes more approxi-
mate a5 thie veiative Mach number is increased., whether the locaticn of the
pcak is accurately predicted is open to question. Subsequent to the completion
of the present work, Amiet37 presented an approximate analysis of compressible
unsteady airfoil theory which also makes use of asymptoti~ techniques. His
analysis complements Oshorne's in that 1t becomes more exact as the Mach nunber
and/or reduced frequency increases, and so should prove useful in the ligher

subsonic regime.

The computing time needed to gencrate the numerical results in
Sections 111-D, ¥ above on an IBM 370/108 varied beiween approximutely 1 and

10 secconds per puint, depending primariiy on the numb.r of propugating modes.
>
F. CGNCLUDING REMARKS
A compressihle two-dimensional analysis of the acrodynanic forces
generated by rotor-stator juteraction has been matched, on a strip-theory basis,

to the well known three-dimensional annular duct acoustic modes. Expressions

have been derived for both  he mean square pressure at any position in the duct
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and the total power radiated at harmonics of blade passage frequency. The
mean square pressure signal is scen to be subject to interferences between

the various propagating modes. The total rad:ated power is the sum of inde-

pendent contributions from each mode, but is still subject to interference ef-

fects between waves generated by each row within the same mode. These are
evaluated easily on a computer in terms of stage operating conditions and

geometry.

Experimental acoustic data were taken in the annular cascace facility,

as described under Section II, to provide a means of assessing the validity

of the theoretical model. Data on blade row stcady-state performance and

losses had been taken in the annular cascade facility under a previous program.

These were used as inputs to the theory to calculate 8PL at the outer wall,

and the results were compared with the acoustic data for two configurations of

a rotor-stator pair. Unfortunately, power constraints in the rig allowed only

the fourth and higher harmonics to be studied, which is felt to be a rather

severe test of the theory. Althcugh it was able to predict cutoff frequencies

and follow trends in the data adequately, the theory significantly under-

estimated absolute lcvels.

The most likely source for the discrepancy is felt to be in the viscous

wake modeling, which at present is basced on isolated airfoil duta,  Recent
experimental work by others has suggested that the structuve of cascade and
rotor wakes can be significantly different, and this is expected to have a
strong influence on the higher harmenics. It is felt that the theoretical
model could tenefit from a closer examinat on of such cascade or rotor wake
data as are available, as well as an improved acrodynamic load model at high
redaced frequencies and Mach numbcrs.‘7 It is also hoped to obrain more
acvustic data in the annular cascade facility, which has been repowercd and

will now allow the propagation of lower harmonics in the spectrum.
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SECTION TV
DIRLCT LIFTING SURFACE THEORY FOR A COMPRESSOR ROTGR

Increased emphasis on reduction of the size, weight, and noise out-
put of axial flow turbomachinery demands improved understanding of the flow
through high-speed fan and compressor blade rows. As more detaiied questions
are asked about modern biade row perfcrmance, the esscntially threc-dimen-
sional character of the flow takes on increased importance. The tash of
calculating the fully nonlinear, threc-dimensional,viscous flow through inter-
acting blade rows 13 a formidable one indeed. <Consequently, some approxima-
tions are required in order to obtain a tractable model, the most familiar
heing the idealization of inviscid flow through a two-dimensional cascade.

A lincarized analysis of the steady, inviscid, three-dimensional flow through
an isolated rotor contains impoertant fcatures not present in the ccrresponding
two-dimensional cascade approximation. For example, though restricted to
lightly loaded, thin blades, it does include disturbances induced by the
trailing vortex wakes which result from spanwise variations in the blade
circulation. Also, modern fans and compressors often operate with a transunic
intiow that is subsonic over the inner portion of the hlade span and super-
sonic vver the outer portion. At Mach numbers where shock losses are small,
the lineavized, three-dimensional analysis remains valid, bur it dves not

5
have a well-defined two-dimensional ].imit;.”8

The smail-perturbation approach to three-dimensional ¢ompressor
flows was pionzercd by McCunczs’41 whoo, in the spirit of lineurized wing theory,
separated the thickness and loading contributions to the rotor disturbance
field. In his-original papers, McCunc treated the thickness problem for the
sutsonic, transonic, and supersonic flow regimes. Later, Okurounmu and

A0
Mctune © % employed a vortex representation of the blade row to solve the
indirect lifting problem, i.e., that in which the disturbancea field, along
with the blade geometry needed to produce it, are determined from a prescribed
distribution of blade loading. Lordi*?-45 has investigated the acoustic im-
plications of bath of these analyses; the sound radiation from an isclated
rotor operating at supersonic tip specds was evaluated for various th.ckness

and loading distributions.
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While the thickness and loading contributions to the rotor disturbance
ficld can be treated separately in the linearized analysis, they are not
entirely independent. 1In order that there he no loading contribtution to the
flow field associated with a given distribution of blade thickness, this
thichness must be distributed about an unknown camber line. The cumber lines
required for the rotor to be uinloaded must be determined as part of the
solution to the thickness problem, in much the same way as the camber lines
corresponding to a specified loading distribution are computed. Erickson,

Lordi, and RaeJo presented results for thickness-induced camber lines at high
subsonic tip speeds. They alsc have computed the camber lines required to

produce given leading distributions, a3 have Ckurcunmu and McCune 43

A major objective of the preseav program has been to develop a iy ‘
linearized analysis of the direct lifting surface problem for the cempressible,
three-dimensional flow through a rotor ruw. In contrast to the indirect load-

ing problem, the direct problem refers to the situation where the blade inci-

PR NI

dence and camber lines are given, and the resulting blude loading must be

determined.  Once the blade loading is known, the cvaluation of the rotor

flow field is accomplished in the same way as in the indirect case. The
solution of the direct problem, together with the existing solution of the ;
thickness problem, would permit computation of the acrodynamic and acoustic :
performance for a rotor row of given geometry ac specified operating conditions. :

In addition to providing a predictive capability for steady flow at off-design
conditions, the successful analysis or the direct lifting surface problem pro-
vides the basis for examining three-dimensional flows which are unsteady in
rotor coordinates.

‘R‘,:;E »

n ‘;‘;3‘ wa

In the thickness and indirect-loading analyses, the flow ficld
quantities axre four. by evaluaticn of integrals which express the superposi-

tion of the appropriste singularity solutions e.g., sources in the thickness
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casc and vortices iu *he loading case. Howzver, direct lifting surface
calculations entail the solution of an integral equation, which for a ducted

rotor has a very complicated kernel function. Somc progress on the direct
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loading problem has been reported by other investigators. Dharwadkar and

543
McCune 18,

have obtained a soluticn using a lifting-line approximation. Namba
has reported a direct lifting surface analysis including some numerical
examples.  MNamba’s approach closely parallels that presented here and frequent

reference to it is made throughcut the report.

Our initial approach to the direct lifting surface prchlem was to
generalize the formal relationships between the blade camber lires and the
blade loadings which were derived in Reference 46. In this way, an integral
equation for the blade loading was obtained in the framework of the vortex
theory of Qkurounmu and McCune.42 This formilation of the direct liftiny
surface theory produced an integral equation which not only contained the
expected complexities in the kernel function, but moreover would require
repeated evaluations of both ordinary and modified Bessel functions of large
order. The appearance of both kinds of Bessel functions is a ccnsejuence
of tie way in which the trailing vortex wakes are handled separately from

the bound vorticity at the blade surfaces.

At this point, an alternative formulation of the lifting surface
problem was sought by using a pressure dipole rather than a vortex representa-
tion of the blade surfaces. In principle, the two approaches should resuit in
the same poverning integrai eauation for che blade loading. However, it was
felt that an alternative derivation, as is often the case in petential theory
for complicated geometries, would vicld an alternative form for the result.

A simpler form did indeed result from the pressure dipole approach, the main
difference Veing the absence of the moditfied Bessel functions of large order

which appear in the vortex formulation.
At about the time we began to pursue the pressure Jipole representa-

Do 48 . . .
tion, Namba's initial report ™ appeared. There are important differences

between our formulation and his. Furtherwmere, the initial sulution for the
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pressure field which we obtained with the dipole representation failed to
vield correct limits. In particular, the pressurc rise between points far
upstream and downstream of the rotor did not agree with that from the vortex
theory, ¢r with Namba's version of the dipole formulation. These discrepan-
cies prompted a complete review of our analysis. A crucial revision has been
rnade in the pressure dipole solution which led to a limiting pressure visc
across a lifting rotor that now aprecs with the vortex theory result, but

still differs from Namba's.

In the material which follows, a detailed account is given of the
linearized solution for the three-dimensional, compressible tlow through a
rotor. This formalism is presented not only because of its relevance to
establishing the correct integral equation in a direct lifting surface theory,
but also because of its general importance to other aspects of the flow
through rotaring hlade rows. In Section IV-A, the derivaticn of the line-
arized equations is reviewed and a formal sclution of them is obtained basec
on Green's theorem. In Section IV-B solutions are found for the disturbance
fields of a point scurce of mass ard a pressure dipole. Next these singu-
larity solutions zre used as the Green's functions to determine the flow
fields produced by rotor thickness and loading distributions. Discussion
of the thickness contribution is included here because cf its role in deriving
a correct solution for the entire flow fieid, and also to point out omissions
in earlier results. In the respective presentations of the thickness and
loading solutions in Sections IV-C and IV-D, the flow fields are shown to
display the correct discontinuous behavior acress the blade surfaces and
trailing vertex wakes. Demonstrations that the results for a mass source,

a pressure dipole, and the thickness and loading problems satisfy glohal mass
and momentum balances appropriate to the noninertial reference frame are
collected in Appendix €. In the final part of the main text, Section IV-E,
the poverning integral cuuation for the direct lifting surface theory is

derived and the progress made on its solution is reported.
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A, DERIVATION OF MODEL EQUATIONS AND GREEN'S FUNCTION SOLUTION

In this section, the lincarized equations and a formal integral
represcntation of their solution are developed for the flow through an isolated
rotor row in an infinitely long annular duct. The keyv assumptions in the
analvsis are that the undisturbed axial velocity is uniform and subsonic,
and that the disturbance field of the rotor is a small perturbation about
the resulting helical inflow seen by an observer in blade-fixed coordinuates.
Both compressibiliiy and three-dimensional effects are included. While
not a fundamen<al restciction in the analycis, attention is confined to
subsonic relative tip speeds. The required extensions to superscnic tip
speeds are indicated at several points in the derivations. As a consequence
of the linearization, the blade surface boundary conditions can be separated
into thickness and camber line contritutions and their assccilated flow field
solutions superimposed to find the overall disturbance field. This separa-
tion is cffected by requiring the rotor blades to be locall, unloaded in

the thickness case and by assuming that the blades have vanisuing thickness

in the loading «<ase.

The geometry of the blade-fixed coordinates is illustrated in
Figure 19 for a rotor rotating in the negative @ direction with angular
velocity w . The full nonlinear eyuations for the flow through such a blade
row il a cylindrical coordinate system fixed to the rotor have been given by
50

Wu These equations can be lincarized by writing the veleocity in blade-

tfixed cocrdinates as

w = U, + 7

R (43)
where U, is rthe undisturbed velocity,
UR » u ﬂz + odr"eg (4())
and U is the perturbation velocity with components v, , vy, vy . The fluid

pressure and density arc expanded in a similar way; the undisturbed quantities
arc dencted by 4, and 0O, , the perturbation quantities by » andp . Sub-

stituting these definitions into Wu's equations and linearizing the result by

52




neglecting the products of perturbation quantities leads to the following
vector forms of the steady flow continuity and momentum cquations, to first
order.

Gy U0 ¢ pu(9e ) -0 )

(U -9, +(Ug V)T + 2w (0,2, - v, 2,) ~ - Up (48)

Paying careful attention to the proper differenriation of the un.t vectors,

the component form of the momentum equation can be expressed as

du, 3p
Po Yz 7S = - T (49a)
av'g y dp
Pa Un s " T F 57 (49b)
oy S0, L ip .
Lo Ug 5 PP (39¢)

————————y

r

a2 ] . . . .
where U, = ¥J +w?r” and S is the coordinate along the helical undisturbed

streamlines.

From this basic set of ceonscrvation cquations, we can develop the
governing equations for either the perturbation pressure or the velccity
potential, the sclutioas of which can then be used to obtain the remaining
flow field quantitics. First, the € and 2 corponents of the momentum equa-
tions are cast in terms of distance along the undisturbed streamlines and
the direction nermal to the streamline and radial directions. Unit vectors

in these directions, which are illustrated in Figure 29, are

§ « &, mmy v E ey (504)
o= By ool - &, aum Y (50b)
where ¢ = tan”’ wr/U . The divectional derivatives along 5 and 2 are

relarced to the partial derivatives with respect to & and 2 by
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FE ,+(_£__); (U 40 az) (51a)
U
é g i wr g
i e (7 ie T w) o
V’*(T/

With these results the 5 and n components of the linearized momentum equations

become
duy 2p
Pm Vg = T T s (52a)
3 (?P
o U n . _ 7
PrSr 75 T (52b)

This form of the linearized momentum equations is useful in relating results
for the pressure and velecity fields. For subsonic flow where disturbances
decay far upstream, Ig. (52a) can be integrated along the streamlines te

obtain
P = - Pr g Vs (53)

The normal momentum ¢quation, Eq. (52b), plays a central role in the direct
lifting surface theory. It contains the upwash velocity, v, , which is
rclated to the blade camber line in order to derive the integral equation

for the blade loading. The above equations have the same appearuance as their
counterparts in isolated airfeil theory because che linearized substantial

derivative, U is independent of radius. It s oculd be noted that the

4.
R 35 !
noninertia) accelerztion terms enter only through the curvature of the un-

disturbed streamliues.

The governing equation for the perturbation pressure is derived by

introducing the assumption that the disturbance flow is isentrepic so that

P o= 0np .
(54)




where 2, 1s the undisturbed sound speed. Using this relationship to eliminate
the density, and then combiningi¢<{% of the linearized continuity equation

with the divergeuce of the momentum equation lcads to

2 2

U d -+
v - 2 L = 0 £Gh
_P a: asl ( .

There are several ways tc demnonstrate that the veloclity peilential
satisfies the same governing differential equation. McCunc,41 starting in
flui "-fixed coordinates where the disturbance potentiali satisfies the wave
equation, obtains this result by transformation te the biade-fixed system.

Wu v derives the nonlinear potential equation whi¢h, wher linearlzed, reduces
to the same result. Here we note that the linearized momentum equations,

in the streamline-normal coordinates, indicate that the velocity components
are proportional to the gradient of the integral of the pressure along the
inc3, a scalar funciion. Accordingly, 1t a2 sg¢alar velocity
potential, defined such that 7 = V4 , is introduced into Eqs. (47) and (52a),

the results may be combined with Eq. (54) to obtain

P Fy
2 Ueg 49
Vg - =5 —— =0 (56)
O 45
This equaticn is the same as that given for 4 in Eq. (55), and when expressed
in cylindrical c¢oordinates lcads to the same form of the governing equation

. . 41 .
for the velocity potential that McCune = obtained.

The fermal solution of the governing differential ¢quatrioen for
. . . S .
{or 4 ) is derived from Creen's theorem, which states that ! for two scalar
functions ¢ and G ,

J G P 2. ,
/(cﬁ—aii)ds--f(wawnv Gldv (57)
s ¢V dv J

4

where the surface .S encloses the volume V and # is the normal tc the surface
S directed into V . The following development, while carried out for the

velocity potential applies as well to the pressure perturbation.  As shown
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above, ¢ sati-fies the equation Ld = 0 where the operator L is defined by

P (55)

and where we nave introduccd the undisturbed relative Mach number scen in
.. . . . 2 .
blade-tixed coordinates, Mg = Up/a, . If we eliminatc ¥ in terms of the

operator /. in Green's theorem, we get
I g

[ 2 [ A . 2 4@ e UG
[(Gaz/' yau\u..s'. ‘/(GL@-qu)dv-/v(GM - - M El)av

J{, / R 951 Rr y
(549)
The second volume integral on the right-hand side can be rewritten
as
f g2 39 2 3% VT, 16 .
HGM, == - gM, <= )dV = 1, = (Ggr, L2 _ pp L2
J\x & 352 g Mg 95"){1 J/‘/\'R PP kG iq = q e aS)dV
v v
(60}

I;i this form, the volume integral can be converted to a surfacc integral by
applying the divergence theorem to the product of a scalar function @ and

a vector A .

r " - - -
/(\7-17)@ dV+[(ﬂ-V)@d.V =~/7J~(ﬁ<§)d5 (e1)
vy Jv S

The veolume integrals in the divergence theorem can be identified with the

volume integral on the right-hand side of Eq. (60} if

iq G
a GM, — ~ gM, —— (62)
2 e 95 A 3s
and R
A = /”1R S ((‘,3)

where the cylindrical-coordinate form of [gq. (63) reaudily shows that V-A vanishes.

Using kqs. (61)-(63) in Eq. (60}, Green's thecoremn takes the form
2 3 - L
f(G g2 . G’;%) ds = —/u,uy--az‘a)d.v +/ V. (AP)d.S  (03)
g

dv
v 5

56
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where ¢ and A are given by Eqs. (02) and (¢3).

This relationship c¢an be used to express the velocity potential in
terms of surface integrals which bound the region of solution by the usual
Green's function technique. The scaiar function & in Eq. (64) is chosen
to be the Green's function having the property that it is the solution to
the governing differcntrial equation for a point disturbance. If 7 and 7,
denote the obscrvation point and the source point, G(F,r, ) satisfies th

equation

LG(AT)Y = 6(r-1) (65)

o o

where ¢ denotes the Dirac delta function. If the integrations in kq. (64)
are taken to be over the source c¢oordinates, and within the region of interest
L, §(r)=0,then the following integral =xpression is obtained for the ve-

locity potential.

[lo7.2) 2% - g deas, - [ 982] a5 oo
v, e

n

-}) o
A 7z

The term @(7) is the result of integrating 7)) L, G(r, 7} over the valunme,
which requires that the Creen's function determined from Eg. {65) also has

the property

L, G (A,

4

o}

) = G (7, -7) ' (6™

An alternative approach to the integration over the region containing the
singular point, which may be mory rigorous, 1s to exclude this point tfrom
the volume integral by surrounding it with a vanishingly small surface.
Then the functions ¢ and G are continuous and differentiable throughout the
region of intersst, and the volume integral in Zq. (64) vanishes. liowever,
there would then be a contribution from the integration over the surface
enclousing the point o F; . It has been demonstrated, using the Green's
function determined in the subsequent section, that the integral over such
a surface yi lds the same re¢sult as the volume integral over the delta
functicn. Throughout the derivations which follow, the generalized function
approach is used to handle point singularities because the presentations

are thereby shortened considerably.
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In the present application, the surfaces over which the inte,rations
rust be done In Eq. (66) inciude the blade surfaces, tha. duct walls, and the
surfaces normal to the duct axis at large distanzes upstrean and downstream \
ot the blade row. The evaluation of the surface integrals is simpiified
considerably through the use of a Green's function which satisfies the same
boundary conditions at the duct walls as the velocity potential. Then the
surface integrals over the duct walls vanish identically ard, in a direct ‘
parallecl]l with isolated wing thecory, the velocity potential for a rotor can
be found by superimposing the solutions for singularities which are distributed
oniy over the blade surfaces. The Green's function G(7, 7 ) can be identified
with a mass source, and then %{i: corresponds tc¢ a fluid doublet. In the
lincarized analysis, where thickness and loading effects are scrarable, the
source solutions can be used to repiesent the flow about a nonlitting rotor
and the doublet solutions ecmploved for a lifting rotor. lHowever, it is more

convenient to treat the loading case in terms of the perturbation pressure

-

Lecause the tlade beundar; conditions arc expressed in s simpler form and
further, integration over the blade wakes is avoilded. Since the perturbation

pressure satisfies the same equaclion as the velocity potential, the formal

solution given in Lq. ({0) also applies to the pressure field. Here the

Green's furctinn is interpreted g+ & pressure monopole and i*, in tuin, s

differentiated to find the disturtance field of a pressure dipole. The pres-

sure field of a lifting rovor can tiizn be Ffound by zuperposition cf the

nresserce dipole solution,

In the next section, the solution: for a peint source of mass and

« piessure dipole are found for the ducted geometry.

B. MASY SOURCE AND PRESSURL DIPOLL SOLUTIONS

The governing differential equation for the velocity potential giveu
in Bq. (56) can be expressed in cylindrical coordinates by using ig. (31a;.

Then, the velocity potencial due to a source located at r 6, , 2

o 1

o




rotating reference frame and having a mass additien rate of 0,& satisfies

the equation

ﬂzc’d’ L é ,fi’),,(_’__:_{z. 3’@_.2(4.”1 P
iz’ r ér dr rt ﬂ—pz) 76" do J276 (v8)

S¢r-r,)yd@-6)4((:zZ-2,)

-
vhere M is the Mach number based on the undisturbed axial velocity, U/ay
2 P . - . .
and 87 = 1~-M" . In this forn the homogencous equation is separable and,

oo 41 . . . . .
as originally shcewn by McCune, it possesscs the following eigentunction

solutions when the boundary condition of no flow through the walls is enforced.

A
wZ
n@ wn i}; fgi T Aak i (LY}
(pﬂ = &£ e Rnk(Knkoﬂh" ‘
The quantity K., is a normalized combination of the Bessel and Newnann functions

3 - . . - . 14 .
of order n as described in Apperuix A and 6 = r/r.. K,4 15 the £ eigen-
value of the cquations which result from the buundary cond:tion that 474~

vanish at the duct walls,

Rop (RJ = R 1) = 2 (7u)
wl:ere £ =7, /7, . The quantiry A 4 is defined by
nl Ko a2 s
Mok = e 1//7'4( n‘) - M oL
wry 8 n T

PP AL

with M, = Wry /&, . Transtormed to duct-fiacd coordinates, these

-4

homogeneous solutions represent the duct acoustic modes; Eq. (71) contains

the so-called cutoff conditien for the propagat:on of these modes.  When

7y 25 (Kog i, Aage becomes imaginary and the solutions in Eq. (t9) cor-
respond to propagating waves. The cutotf cordition can be stated approximately
as requiring that the relative Mach number at the tip radius must be super-
sonic for the source to excite propagating modes. Here we restrict attention

to the subsoric case whery the modes decay with distance from the source.
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In order to sclve Egq. (68) the form ef Eq. (69) suggests we assume
an expansion for & of the form

n{6-6)

o (4
g, = 2 d.pt2) C Roal(Hop ) (72)
a& @ .z,‘,{_-'
where ¢, will denote the solution for a mass source. Here # =1 for 7 >0

but #,+«0 for n=0 in order to include the moatrivial zero elgenvalue re-
quired to make the zeroth-order Bessel functions a complete set. In addition
we introduce the expansions of the delta functions in terms of the azimuthal

and radial eigenfunctions.

¥ ol ‘.9‘9,)

6(6-6,) = — . e (73a)
-271 N u -0
g (r-r 1 L4 .
-t — r Roe (K . G ) Rpa{Kng?) n¢o
r ke {73b)
P o0
ST e 2 i .l — y N I o~ i)
—L = e = L Ry Kop o) Rag (e ) n e 0
! O -4 )"r “ + 1

(73¢)
Substituting these expansions into Eq. (68), using the differential equation
satisfied by the radial eigenfunctiosns,

. g d R, Kb 2 -
- S ______f) ] (__*_ - _"_> Rop = 0 (74)
a.r

r
3
r { or (‘rl r

anéd making use ot the orthogonality properties of the azimuthal ard vaiial

eigenfunctions leads t9

2 . 2

1 a d‘”& 2tnw M d“?n‘ . ('nlu)z Kn&\d Olr(n&((}:) '"(2 z
— - o — ; = P N, 0 - )

dzt A o dZ ot q’) n# anr?* ’

75)
where K,g (%) is introduced as a shortened notation for Fag (K,.e %) .
The solution of this equation for §.g(2) can be found using Fourier transform

techniques. With the follewing definition of a transform pair
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Fai () = I e Frafé)d £ (Fua)
_ ® cf2 _ .
Tog (27 = € 4;.1&(5) a & (76b)

taking the transform of Eq. (75) vields
2 “‘E"Z.

2w M Aot KN - R a()e
| )] dus - @ ZorEe

—— —— e ——— FY ‘=9
@ al r ar?r, t77)

[ a2 2
[-ng

Solving for .;‘,,i, and taking the inverse transform,

o ‘{f(‘: Z—)
G g fZ) = ~ Qfoal®:) [ i ol
ok an®r? a* [ or AWM - ) (/(nz rtw?’ (78)
- o - —_ + — - —
5 [3‘0-0:: v ,5:. ) ,_T.x waJ) -

The integral in Eq. {78) can be evaluated by residue thecry, the rcois or the

denominator being

hd nw ™M . n & K_,,‘f' (L.)rr“)_;'

=z —_——— X ——e /’ 4 (
I;n‘ -9“0-3. " ﬂl Tt '\//3 n/

i (79)

Yor 2 >g, the contour is closed in the upper half-pilane aud encloses the

pule at & ={;&. for £+«2, the contour is closed in the lower half-plare and

encloses the pole at &£ = £, . This procadure ensures that the soluticr -
decays rather than diverging for 2~ te {or for supuersonic tip speeds, cor-

respa 's to outward moving waves),

The case n:o0, 4 -¢ deserves special attention., For these values of

n and & 1he integrand in Eg. (78) has a second-ordev pole at £ =0 . The

contribution frem this pole is included in the contour which encloses tie
upper half-plane (corresponding ro 25 2, ) and sxcluded from the contour en-
closing the lower half-plane (corresponding t¢ 2 <Z_ ). This choice is made

on the grounds that therc can be no steady perturbation at upstream infinity.

The integrated results for & . are

0l
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LnwM /—_ K a2 Wi
) l_ﬁl :(z Z:) B‘err Vql (‘71_‘) _(g_',) 12—301]
4) () & an(d;) (<4
nk = FR
4‘_[ﬁ rr a F] nk 2 ;2T \1.‘
p e R e
AR, , ;)
Qo,0 (2) = : (2-2,)H(Z-2,) (s0)

an /3" rT2

where H (2-7,) is the Heaviside step function and R, ,

With this result for $,y and the definition of A, in Eq. (71), Eq. (72) be-
cumes

o m - < s d Rn (’):,\ - dm)
0,750 - B 4)(;.-2_)#(5-;‘;-_._91_7[, 5o Lokl Teal
innt3 1A R (- A e WAL
U
r ca Mt A 3
crtp liatf-8 ) —— (2 E ) - LA
L 5 U v U (81)

The first term in the

so! rce solution has been omitced in previous

41,44-4¢ . :
' Except for the presence of this term, the abeve result can

treatments.
be integrated in the radial direcrio: to recover the line source solution
which McCune used to solve the rotor thickness probiem. The omission of this
term in the mass source (or pressure mornopole} solution aiso affects the fluid
doublet (or pressure dipele) soiution. The implications that omitting this
tern from the source anc dipole solutions would have to the results for the
rotor thickness and loading problems are elaborated upon helow wherc those

solutions are presented.

As a result ot ciscovering the omission of this term in previous
analyses, several checks were made on the revised source solution. The fiist
test made on the solution for ¢, was to substitute it back into Eq. (68),
and to verify that it was indeed the correct solution. In addition, the pres-
sure and velocity fields associated with the mass source soluticn were obrained
from the velociiy potentizl, and it has been verified that the solution displays

the properties of a mass source. The flow field quantities required for this




demonstration are the perturbation pressure, -py, and the axial and tangential
velocity components (UE)s and (vg,), . The velocity components are just the
appropriate derivatives of the velocity potential. The pressure perturbation
can be expressed in terms of V, and vy, by using £qs. (51a) and (53) together

with the definition of ¢ .

P o= =P (Vv v wry) (&N

The resulting expressions for the flow tield variables are

- - R ‘d, Pn (0”)
(W) = - ——Sysm I [ S BT,
H e B0 G e W Aag
e u _ (83a)
. w)
- ap [m (6-6,) +in ZH iu)-(z-z.,‘-)\,,* —U-’Z~Z,IJ
(w,), = q -,—/ z \H(Z'Z" "_Q: 2 2‘ E ) g 1)
27 an ﬂ r® 11~ 3 ™ ’; Nne-m Rat )nk (83!))
rooM . r MT gz ]
-Lm 175—1 - Ak Aﬁm\Z‘Z.)} J/ff’l_m (0-6,)+:n E‘a‘ m (£-2,) — X rp "L‘,"I"f"u!_]
a /2N @ o % RaE)R 4o
. o . Hz-z)- —2 7 T
5 Foo in st '\,_ﬁ"/ (2-£, 471//31r‘71 ,.,,4,,2;-1 Aok
. [_" - A (z-2 )]W[{n(&--é)s‘ Ln L i) A ez l]
B T Naw g (202 . AT U T TRy ’
(832)

where oc}m(Z-z,) is +1 for 2 >Z, and -1 for 2< &,

Now consider a control surface which encloses the peint source and
is bounded by planes normal to the duct axis at Z=Z < and by the duct
wulls. Next, the iinecarized pevturbativn in the mass flow rate through the
surfoces bounded by this contrel volume is computed. Since the source sofution
satisties the boundavry conditions of no tlow through the duct wail, the only

mass tlux is through the surfaces normal to the duct axis. letting




represent the first order terms in the axial component cof the mass flux,
Mo Pty v pU (84)
The density perturbation can be expressed in terms of ¥, and vy, using Eqs. (54)

and (82). As a result m becomes

. 2 2 /wWr
s py - et (50) (85)
If M= @ is the rate of introduction of mass by the source then we must have
for this control volume

S Lt

m -/ jr [r-:l(f) - m (-Z):l radrd @ (86)
r, "o

Taking the limit of this expression as £-~+ o and 2 — Z,, and noting that U,

is continuous at 2, , then i

fooan
~
M -// [,o,,,ﬂ" AU‘E} rdrdé (87)
r, ° '
where
= A

From Eq. (83b),

& ;2 o = (n($-8,) , ,
av, » s [(A) ] Rag @) Roned] a0

“ 27:/‘ r ne-m LN

tione b r e

Using the series expansiovns for the delta functions given in Eg. (73), this
last equation can be written
Q dr-r;;8(6-8,)

Av, = :
P 0 p (89)

Il
and hence the mass balance in Fq. (87) is satisfied.

AP e i, S

In addition to the demonstration of mass conservation for the aLove

contrel volume, a similar check has been made for the control volume obtained
by withdrawing the surfaces normal to the duct axis to the location Z =% w |,

It also has been shown thai the rvesults for the flow field of a point source

64

L e o e e v T AN YRk bl B A 53T
e TR e s e



arad

satisfy the axial component cf the linear and angular momentum balances for
this latter contrl volume. These tests on the scurce solution are given in
Appendix C together with comparable tests for the pressure dipole and rotor

flow field soluticas.

The velocity potential of a fluid doublet can be obrained from that
for a source in the conventional way, and the flow field produced by rotor
loading could be found by superimposing these doublet solutions. However, as
discussed in the previous section, it is more convenient tc work with the per-
turbation pressure in the loading problem. Such an approach is analogous to
the acceleration potential method in isolated airfoil theory where the dis-
turbance field of an infinitesimally thin, lifting surface is constructed by

the superpasition of pressure dipoles.

Since the rotor pressure field satisfies the same equation as the
velocity potential, the solution for a pressure monopele is mathematically
the same as the solution for & mass source. The corresponding dipole seolution
is found by differentiating the monopole solution. If the pressure monopole '
is to be uscd as the Green's function in the formal solution for the pressure,
then the required orientation of the dipoles is normal to the blade surfaces,
or in the linearized analysis, to the undisturbed stream direction. For a
dipole of strength D located at the point E and oriented in the positive n,

direction shown in Figure 20, the pressurc field, , is given by

L e (90)

where G(-,7,) is the source (or monopole) solution given in Eq. (81) with

unit strength. Performing the indicated aperations in Eq. (99},

wry & Ry R L (0)
o, = L e, 2( o (_..2__.__,1\ H{z-z ),.21 7, _‘_":{'__._.,_'i_f.r
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As with the result for ¢, this solution for p_ has been substituted into the
governing differential equation to verify that it is the correct solution.

Forming the quantity L., , where L is the operator defined by Eq. (58), vields

the result

» i [ 8(r-n)88-6)60z-2,)]
° in, | . J (92)

when the series expansions in Eq. (73) are used for the delta functicns.

The velocity components associated with the dipole field are obtained
by integrating the momentum equations, Eq. (49), along the undicsturbed stream-
lines. Consistent with our generalized function approach in vreating singular
points, a delta-function body force is included in the momentum equations.
Ther:, the resulting expressions for the velocities are valid everywhere in the
duct, including points which'lie on the streamline that passes through the
dipole location. Otherwise, the expressions would not be valid in a small

region en¢losing this streamline,

It is convenient to work with the streamwise and normal velocity
companents, both because fewer integrals have to be evaluated and because the
body force term appears only in the normal momentum equation. The dipole
exerts a force per unit volume on the fluid, ﬁ; , which is in the negative n
direction and expoessed by

};‘.) . 2D d(r-f.)d(ér-é.)d(z -Z)

©

(93)

The streamwisc velocity component is simply proportional to the prussure by
Eq. (53, which was derived by integrating the streamwise momentum equation.
Integrating the radial and normal momentum equations along the undisturbed

streamlines vields

5
(5°) ,
(W, « -t [ L1212 |
rD " " 9:‘\
Pw Yz ar (94,
3 b
J (s") , '
(o), = - ' L7 os 4+ L. [F(y)ds’ (95)
nb Y ] ' 0
/oev R o0 n /{"adp i
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The integrations along the undisturbed streamlines can be done by expressing

o9 in terms of d2 .

which is defined by

Along these streamlines, r and the helical variable, 7

w
= 9 - Z=Z (90
4 J )
remain constany, and the arc lerngth along the streamlines is
.- -
o5 = «/H(.‘if_) oz (97)
Y U
Making this change in the integrals, Eqs. (94) and (95) become
P ~ 2 2
! , ’ Wik .
(v), = — -— —-/-4'3 r@ e ~— + 4 2 )d2’
ne PaulU dr %o ( u d ) (98,
-
; v 2 e
1 . [os) . , 1 ’ LA)Z‘ , .
(v,), = = —— — (re@= — +8,2)dZ2 + —— [ F (r, 8 « =+ Z')de
n’p qu an/'PD ? U ;) ) MU 0(' i ;J s
- —cw

we need 10 evaluarte two integrals, the st

The results are

(99)
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These expressions can be substituted into those for (vU,), and (V,), to complete
the derivation of the velocity components. Also, the velocity components

(Uy), and (V). are related te (U5), and (V,)p by

o
Uy = U, am Y+ U, oo (10la)
v, = Y eev y - U, Y (iClb)

These results for the flow field of a pressure dipole have been
shown to satisfy the mass and momentum balances given in Appendix C. The
dipole solution possesses the appropriate preperties that it dees not intro-
duce any mass into the flow, and exerts a force D on the fluid. In the next
two sections, the source and dipole sclutions in Eqs. (81) and (91) are used
as the Green's functions to construct the flow field produced by a rotor with

distributed thickness and loading.

C. FLOWw FIELD OF A NONLIFTING ROTOR (THICKNESS PROBLEM)

1. Solution for the Veclocity Potential

In the previous two Ssections, the foundation has been laid to develop
the solution for the thickness contribution to the flow field of a rotor in
an annular duct. The source solution given in Eq. (81) can be used as the
Green's function, G (7, r,) in the integral representation of the velocity
potential in Eq. (66). The solution for a source of unit strength (@ =1)
satisfics Eq. {65) and also has the preperty required by Eq. (67). The
integrations in Eq. (66) must be done over the following surfaces: (i) the
duct walls, (ii) the su.faces normal to the duct axis at large distance from
the rotor, and (iii) the blade surfaces. In describing the integrations
over each of these subsurfaces, I, and I, will refer to the first and second

surface integrals ir Eq. (66), respectively.
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bde o

(1)

(i1)

Along the inner and outer Juct walls the boundary condition on
CV(::D) is that the normal derivative vanish corresponding to no
flow through the walls. Since the Green's function we have found
satisfies the same boundary condition, I, vanishes for this surface.
For the outer wall 2, =- &, while for the inner wall ,= &, .

From Eq. (63) we sc¢e that Z,-R=0 along both the inner and outer

walls, and so I, also vanishes at the duct walls.

For the surfaces normal to the duct axis at g ,~+« and 2,~"%, Z,
is ‘Eé and +EA Tespectively. Over these two surfaces the sun of
the integrals I, and I, become
3G w 19
141 MG(M = ,,>
2 f/ az ‘?az 4w 06,
/ d
g (M. 2 2N gy
A r, dap VvVl 7 jj
g, +@
(102)
\
. [[( 99 _ i§_>_mg/M5_<?+r)_.L’i’l)
Jo aZo az k Zo a’w ae‘ /
rH
/‘
+M¢( 26 cg.__ég.)} ndrdé
) a‘w 090 ’
P -0
Consider the integrand at Z-=+oe first. In this case Z < Z, and so

the first term (ne<o, #-0) in G (7, 7, ) is zero. The remaining

terms in G (r:, r,) decay exponcntially. The same: behavior holds for

d : - ‘ . .

ag and d(' . Since dtry) and its derivatives must be bounded, the
(‘

:mtc.gxdnd vanishes as Z,-— +o . Next, consider the integrand evolu-

ated at Z,—»-w . Here Z > 2, and the ¢, st=0 term contributes
to both & and -‘;-% ; the remaining terms in &, %-g—' , and Sé decay
exponentiaily. For subsonic flow, ¢ and the velocity components

obtained from its derivavives are requircd to vanish far upstream of
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the blade row. Note that & diverges linearly as Z -+ -« and so the
velocity fiecld must fall off faster than this in order for the inte-
grand to vanish. We shall sec that ihe velocsity tieid decays ogpn-
nentially upstream of the rotor. llence, the integrancs vanisk ror
Z,~ - also, and the integrals I‘ and iz make no contriburion 2long
the surfaces normal to the duct axis. For supersonic tip speds,
acoustic waves propagate away trom the blade row and these surfnce
integrals should be re-examined.
¢ii11)} In the linearized analysis, the blade Tow 15 assumed to make only 2
slight perturbatior of the {ree-stream flow. Consiste with this
assumption, the blade surface boundary conditions are applie« along
the undisturbed stream direction. In this approximaiion, the nor-
nals to the upper und lowsr blade surfaces are, respzctively,

7 W + N =’i(

L ]!

N
P T4 . 3 LT H
Rl 2 a -~ ¢ a -

~
[
i
~—

-t
where ¥, = tan (wr, /UJ)., From Eqs. (03) and (173) 1t can be
seen that ¥, -/ vanishes and thus, in the linearized approximation,

] contains no contribution from the blade surfaces.

The separction of the rotor flow field into the thickness and load-
ing contributions is made by prescribing that there be no pressure difference
acrtoss the blade surfaces in the thickness casec, or that the blades are lo-

cally unloaded. If the pressure is continuous acrouss the blade surface, then

v, and ¢ are also. Hence, because of the opposite signs of 76 on the

% iq

upper and lower surfaces, only the part of the integrand in I, containing &G 7

contributes to tne integration over the blade surfaces.
Except for this contribution from integrating I, over the blade

surfaces, all the surface integrals in Eq. (66) vanish.
for ¢ has been reduced to

PF) -fc;(?,ﬁ)a(;f)wo (104)

Thus, tne expression
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where J, denotes the surface area of the rotor blades projected on tie un-

;g) represents the difference in rormal
+

velocity across each blade surface., This expression is the same as the

disturbed stream surface, and A (

familiar result in isolated airtoil theory that the effects of wing thizkness
can be represented by the supesposition of sources whose strength is c¢qual

to the discontinuity in v, at cach point.

The lineurized form of the blade boundary conditions is

( N in
L U fu 2 _S;e (165)

n R 25 n

w
ayl =

where N and M, are the distances to the upper and lewer surfaces. measured
normal to the undisturbed stieam direction, § . The quentities %, and %/

3.

can be expressed in terms of a Lizde tni.kness and a blade incidence plusc
vamber line in the conventional way as illustrated in Figure 21. However,

for a rotor the blade thickness and camber are nor independent becaus.., as
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to account for loadings which would otherwise be induced by blad¢ interterence

effects. 1f t(>5,7) ropresents M (s, r) - ZNI(S,rJ tlen,

ﬁ?u {(3,r)

H

N A(s,r) + t(5,r)

A
2

(106)
N, (s,r)

i

. o e
m. s, r 5 s, r)

where M (s r) is the camber line, which consisis of two parts, a tihickness
part, M., and a leoading por:, Wuk. From kEqs. {105) and (106,, the dis-
convinuity in the normal veiccity across the blade surface is then related
to the thickness distribution by

L, dt
AUn = Ug —8-5— (1o07)

For a rotor with H equally spaced blades, the blades lie on the

surfaces 2 = 4;71/5, 1 0,8 .7 where ¥ is the helical variable defined
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bv Lo (90). It is convenient %

projecting them on the r, , 2, plane so that

Y
S . ‘\/, “ . 108
ol a (U / df; [1}_ ( )

-

o do the integraticn over these surfaces by

With the blade lecading cdges located at

Z, = o , the velocity potential is
fq rc&ﬂ
8 -1 24T
g (r,8,2) = } L av,(r,2,)G{(rs.2;,r,5, = ~1~,£o>
W f
; ‘r o
- .&)fxl’ (109}
R e B
U

While not c¢rucial to the ensulag analysis. it is convenient to assume that
A the axial projection of the blade chord is a constant, ¢, , and that the
' radial and axial variations of Av, (and t ) are factorable 50 that

NG e
Feny @) <1/ 1e (Z2) aw, < 1/0e (S2) g &
a y \ Lj r

With these assumptions, the expression for the velocity potential bLegomes

cﬂ(r:z)—/'ii-’ a Ct{ ' (5 Yi-z,) Hd(z-2) '
' ! - H N S £ T, ’ - T, TOTTTeeET
grod, J, 2w b A e pin’
5 Z"- "’7\./& L."?n‘q{(/‘ r . L3 T N w 7.7
’ e }w:zn'?——-~)+~-f—( -2,
R TR L P Ve S et /
U
WAL 7 _ , (111)
- ;z-zd]Jf}rftg)?(zo)azodro

The summation over the number of blades can be done by using the identity

25:-1 c..:.n (ig_r!) {O ro# m B
?-o

where m is an integer.

B n = mB (132)

The resuit Zor the velocity potential beceomes
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J(r,2,2) = B‘__; [r,/c‘-‘{(_ﬁ_’ﬁ)(z-zd) H(Z-2,)
AT, (113)

R (03) Romog 107
m8 # 0% ') .fsz%'*Amsf"z.zoxz'—’eﬂ}
. WApk ) )
U

’h
-4 5
m

- for) 5{.&,) dzZ, dr,
where we have introduced the nctation

A s (E ) = -‘(‘Ji [L;j'jg - Ak (2 —3J>‘} (11d)

2. Fxpressions for the Velocity Conponents and Pressure Perturbation

Hsving this sviution for the velocity potential, the other flow
field variables can be found Dy taking the appropriate derivatives. The re-
sults for the velocity components are givea in terms of v, , v, , and v,
which are related to d by

. . id ] Jd’) L sa)
v — e (1152
s a5 Mirlwrs U a4z r, e )
19 T g wr ,
Vv, = o— o e T - r115b)
In r 38 /4 voo®
v, = 29 (115
ir

The pressure is simply propertional to vy by Eq. (53). The resulting expres-

sions for the velocity components are

>
w0

T Ca
O 2 e / {( = ) H(z -2,)- - 2 'f‘ Rog#(0) R #(02)
5 *pd A /T‘)—;: * J \\ 1-4° ‘ 4 7;149 ;:v @ A *
an 3, V,' + \__U_ £ % - e
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00 fpar
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240 [LmBZ,’ +_Am3*('2,20)(5-56)}}1"(/;) {’2(2‘) az, dr,

where the prime on r,.gg wenotes differentiation wich respect ta the argument

and

X

Voeg (7, B, 2,) = Lr:B L [[ms s 7 Asr A9 (22| (117)

<
vy

also has been introduced.

These results for the flow field of a nonlifting rotor are shown
to satisfy the mass and momentum balances in Appendix C. For subsonic flow,

there should be no net foice or work done by the rotor. The derivaiions
presented in the appendix have verified that this is so. Another check which

has been made on these expressions is that they display the correct behavior

at the blade surfaces

3. Behavior of the Velucity Components at the Blade Surfaces

The expressicns given for the disturbance velocity field contain
doubly infinite series expansions in the duct eigenfunctions. In order to
demonstrate that the velogity components display the correct behavior at the
blade surfaces, the convergence properties of these series need to “e gon-
sidered. Terms in the m summations which are of order (m8) ™" are expected
to lead to divergent sevies, or series which do not converge unitormly.

The manipulations performed below are aimed at identifying those terins whi-zh
are O(rY)B)-,and hence are potentially divergent., Furthermore, within th. .

group of terms, we wish to isclate a series for which the 4 summation can be




Jdone analvtically and for which the m summation does not converge uniformly
for all values of the 4 coordinate. It can be anticipated that such a series

preduces the discontinuities in tie surface quantitics which occur as changes

in § are made which correspond to ¢rossing a blade surface. For the remainder

of this section our attention is confined to points within the blade row,

i.e., for 0« 2% (C, .

First we wish to show that v, is cantinuous across the blade sur-
faces. This demonstyation also provides a check on the assumption that the

blades are locallr unloaded by virtue of the relationship between 4 and vy
The fivst step in examining the value of vy at the blade surfaces
is to carry out an integration by parts in the integral cver 7, . After the

first integration by parts the expression for vUg is

e [

8 ' o e = R VR
v — —2— g(zJH(z-z,)dz -y 7 mod () Fmg 7o)
2 2 wr Ak 1-H L) e W Sk
2B H(U) ., o 2
(m84 A gl 008 A aalZ,C) (B-Co)
- e ?(a)c - g(c‘_)e
(113)
Co _
Nk (2, 2,)(2-2,) g )
* € S d gz f(r,) dr,
-} az‘

Were it not for the # -dependence of the factors other than Rogh s
the # -summations in this expression would be just the Fourier-Bessel series

sxpansion of the form (see Appendix A)

H

L.
fr) = J Qm“(r)/ FU) Rmsa(0;) 6 d as
*= 1

4,
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Since {¢r) must be independent of the order of the Bessel functions in this
exparsion, the product K, gp(0) R .4 0) need not be considered in determiring
the m -dependence of each term in the double series. The zocfficients in

the series containing ?(o) and ?<c¢,) are inversely proportional to A,mgk
which is O¢mg;, but the expencntial factors in these terms prevent the
series from diverging, except as the leading or trailing edge is approached.
There, unless the slope of the thickness profile vanishes, the series diverge.
The divergence of these scries produces the singularities in the pressure
which typically occur at the leading and trailing edges of subsonic airfoiis.
The divergence of thc surface pressure at these points is evident ia the
original results of ka:C.‘une,‘u as well as in the surface pressure results ac-

companying the thicknecss-induced camber lin2s presented in Reference 46.

Each antegration by parts over Z, intreduces another factor of
-1 . B . -
(mB) in ecach term i¢ double series. A secona integration by parts in

the v, cxpression produces the following results,

T C-l.
B8 2 / = » RMB{ (g) ‘?MB&(O:)
v, = —_— (E)H(z-2)d 2 - =
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27 r 1t | ——- r, ¢ U e
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(119)
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The second integration by parts yields integrated terms which are

proportional to 9’(3,) . evaluated at #Z,= 0,2, and C. . These terms

-2 . - R
are O (mg)”" and so the corresponding series arc uniformly convergent.

Hence,
away from the leading and trailing edges, all the series in wzg arc uniformly
convergent for all values of ¥,

inciuding those at the blade surtaces. It
can therefoie

be concluded that u; and p are continuous across these surfaces.

- . . . 247
The same is not true of 7, , however, which must be discontinuous at ¥ = s
by an amount dictated by the boundary condition, Eq. (107).

We have already evaluated the v; contribution to the expression

given for ¢, in Eq. (115b), and shown it to bec continuous.

in py, must then ccme from the %g contribution. After performing a single in-

tegration by parts on the 7, integral,

Any discontinuity

iq
the expression for 5=- becomes

37
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;,‘,0\ jo] ! o, 20 .’.)’YIB‘
.-"1—“- = - e / Z .Q .,BQ(GK/‘ Pmst (G:/\S
0?,")/.'2 47T/3’r'T’ jr 12.-~ reu "
H
- A
([mB) 292 go g moRlE
e (tm +
':)_y(w_szl nox) WAmsk A p(2,0)
(T 8* me 7
(120)
A npk (2,C0)(2-C) S Ampa (2 \
«) wmok ' “a. A ) o
_ g al £ - 1 / e _Z d.z {(/'a)d'"o
WAngh A, a8 (E, Cu) WAmgd Amea(Z,2,)
J U

where the prime on the summation indicates the » = ¢ term is excluded. The
leading and trailing-edge terms behave as discussed above, while the re-

. -4 . . . .
mainiin_ integral is (O (mB) " as in the v, expression. lowever, the first

of the integrated terms is 0 (m8) ' and does not contain the exponential

factors which appear in the lcading and trailing edge terms. This term,

which may diverge, or at best not converge uniformly, will be found to produce
a discontinuity in v,
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Next we consider the behavior of the first term in ?Zrl'iby defining
the double series 5S¢, ¥) to which this term is proportional.

) B 7 e - ben (MEE)
St &) = £ s R (T) Ronpn (03) o2
7 w,}).l" m”%‘:” me# B& £
U N
| ’ 1 Flepydr, 2y

. 1 mBk
2 J
Substituting Eqy. {71) for A ,,.ge in the bracketed factor yields
wry N>
: (7)
H /5"" (/\MB" \2 < n\8k> l‘)r >
/3’ mB8 /

If the quantity (wr . u)?/ [7‘ (wr; / U):] is added and subtracted to this

term in brackeis, and the ~, integration is doiic term by term, the functiorn
S(r,%) becomes
3 ® an(mBZ)w~ ' r, fr)
S ) = =~ Z Z Rmﬂﬁ(a_) RMBkCJ;) > TR T da
T ey mB # - ] (&)
A U
B & C om(mB2) 1
+ =0 L Rupald)
T et #es m8 r KmBi) wry -I
= ( (123)
[\ m8/ J

1 Km 2
f - [ff— r} (——3’—*) ] Roes(G) fryd r,

The & summation in the first line of Eq. (123) is just the Fourier-
Bessel expansion for the bracketed function in terms of the radial eigenfunctions.
Performing this summation and using the equation satisfied by the radial

eigenfunctions, Eq. (74), to substitute in the sccond integral, S(r,2) can

be written
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rior; 5 ®  sn(mB2) = - e (m B2
5(/25’/‘: ~ iz i Z Z_‘ pw‘)ﬂi(f)—‘\ —/
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1 d d R, fuyy 1213
(C nBJ) ° _ dr‘; { +)
{-(Kmﬂbl (WG)"} dr, ar, ;+(WG)L
— )t | - T U
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Now, the eigenvalues K, arc all greater than m§, being O0(m8) for large

m B , and the remaining integral can be integrated by parts.

[& (o L) L0 HR T s
dn VN dn / 1+(U"Ur°)l ’ 1+(_—U5_)2 o

7

' d R [ foyr,
[ dEess L]
ar, dr _1+(—U4)

Ty

The integrated term vanishes because each radial eigenfunction identically
satisfies the boundary conditions at the duct walls. Another integration by
parts could be done but it does not appear worthwhile. The important point
to make is that each m,# term of thc double series in Eq. (1Z4) is at most
of order (m 837 . Here again this series is then a regular series, and the
first series in Eq. (124) is the only remaining contribution to S(r, %)
which could contain a discontinuity. The single summnation on the right-hand
| side ¢f Eq. (124) is proportional to the Fourier series expansion of the

generalized function, g; , which is defined by

. (24+07 2y c 2 e i .

b = - — <« < _— + 1 « « O, 1,... a-1

¢ 8 8 B ¢ ‘ ’ (126)
This function, illustrated in Figure 22 was first used hy Reissncrs2 in his

representation of a propeller wake. It can be shown that the Fourier series

representation of ;} is
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_ o am (mB8E)
TRl T (127)
With these results, the expression for S(r.,Z) bccomes
: B rfir g = = sam (mB 2
S(r. - - __) g N A R -
L") (.27'[ ‘7; 7+’_“£_‘_ * T Z_‘é—' mQ*(o_) (mB)B
J ~
r. , (128)
1 di, o fory e, ]
- - : [ n y ”a& a [ T a&;;_zj dr
J( m8h \ +/1,ur‘1_>] Jf‘,‘ ‘o df; ]+<_J.‘.)
L mB / ( U J

. . . i AT
As can be seen from Figure 22, the generalized funcrion :} has a jump of(- =)

as £ crosses a blade location moving in the direction of increasing g . The
contribution to §§->,; from the term containing S¢r, ) is simply 212 S(r, 2>

Combining this result with Eq. (115b) to find the corresponding term in v,

. . 27037, LTS
and tnen forming the difference v, (r, 2, & = “25 J~- vz, f='§‘),thc con-
tribution of that term is

"

argt , znj“ ) 9@
v (rE, g s c2t ) - (re,d s =) s o=t ()
( g ’ Yo (T

and the definition of the functions f 2nd g in terms of A v, given in Eq. (110)
is retrieved. Since the other contributivac to ir, are continuous for all
values of 4, and for values ¢f Z away from the leading and trailing edges,

we have succeeded in showing analytically that our result for the velocity

field does in fact contaln the corcect jump in normal velocity across the

blade surfaces. |
iq . ) , ‘
77 are caliected to find the whole ex-

pression for v, according to Eq. (1l5b), the answer is

If the results for w; and
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m8 U/
0 7 ahw o [t ] 5 ) s
(rhﬁ," \-/ ° ar, CL'; 1 + .(A_)..E\z 271'/52/}2 Y+(£\l 1_‘;"",
' ’ (5 V 5/
[
. £0r) g(2,) H(7-2,)d 2, dn + 8 .
’ ¢ e 2,34/ wWr 2 130
%L% 4 H]/+(77) (130)
rf
sz R 6;) Rogaic) «mfg Aongp(2.0)2
< 5o B ( mBR T . JTorn (12, 0)e
e Bt ) (mB N 4 mek (T B,
T e S e (7)Y Amaa
¢
A mpn (000 (22 Cad - 2 (EZ-2)
- ? (CC‘-) Tﬂsk("l Z)Cg_>e ” * + e B&(E’L’ o
a
o
* Tmge(r: 2, 5,) —t dZ, rp fir,) dr,
CLZo
where

2
(m8) 1
Tgg (2,20 == =L ['_"_; ~imB Apy ogn(E-d,) |
o o r (131)

W M*(m8)? 2
+ --U—- [-——;‘;——— -+ Lmﬁf\ms* -O?M (Z—Zo) -+ )'""5‘& ]

The first term in v, contains only the symmetric discontinuity and
hence makes no contribution to the continuous part of », at the blade surfaces.
When evaluated at a blade surface the second term in u, vanishes and the re-
maining terms represent the continuous part of v, , or the thickness-induced
camber lines. The third term in the avove expression, aud the first term in La.
(119), come from the ~a+¢0, #.c tarm omitted from previous treatments of

the thickness problem. The camber line calculations of Ref. 46 and the surface

81

W b 1



—

pressure catculations of Reference 41 should be corvected for the presence of

- du(r, s s tir, 2) .
these terms.  Siace bg -—%gnl , which may be written as U i”}}"’ , 1S Pro-

portional to ?(z) , these contributions to both ¥, and w ars proporiiunai tao

the chordwise variation in the local thickness distribution. Turthermore,

these terms make no contribution to the disturbance ficld upstream or Jdownstrceidm
of the blade row, and therefere, the acuustic calculations of References 44 and

4% are unatfected by their inclusion.

The above manipulations of the expressions for the perturbation ve-
locities apply for points within the confines of the rotor row, i.c., for
0 € Z%¢, . If the integrations by parts are done for field points upstrean
and downstream of the blade row the singularities encountercd at the leading
and trailing edges remain but the velocities evervwhere else in the flow arc

found to be continucus.

The final expre
MY

s

sions presented for v, and v, in Egs. (119) and
(130) have been snown to have the correct behavior at the blade surfaces,
Moreaver, in the course of demonstrating this, thesc results have been put in
a forn which siould facilitate the compntation of the surface pressure and the

thickness-induced camber lines ter nonlifting rotor blades.

D. FLOW F{ELD OF A LIFTING ROTOR (LOADTNG PROBLEM)

1. Solution for the Pevturbation Pressure

The determination of the pressure field produced by a lifting rotor
closely parallels the solution procedure for the velocity putential in the
thickness problem. The Green's function is the same, though now its interpreta-
tion ic in terms of a pressure monopole. The forimal solution for p is identical
to that given in Eq. (66) for @ , except for the replacement of ¢ with p .

In addition, both of the integrations cver the duct walls and the surfaces at

7, = T® vanish as beforc, as does the integration of 2 - (A $) over the blade

b'\




surtaces. The remaining integral over the blade surrfaces distinguishes the

N
-~ - . ~ o b -
litting case from the thickness case. Here the magnitude of ;:— 1s the same

on both sides of the biades because ¥, must be continaous. Since the nornsls

to the upper and lower surfaces lie in opposite directions and ¢ 7 r, 7)) is

. . - d
continuous across the blades, the integral of & ?%}- over the blade sur-
°

faces vamishes. Thus the integral representaticn of the solurion for the

pressurce fizld reduces to

w(r)

=
J i’?.

[Ap(f;) 26 a5, {132}
L

where S, is the projectior of the blade surface on the undisturbed stream di-

rection and

2" , zﬂ;*
Ap = nLyE 8, s —%~ |-l Z L =
PEoP(n L8 s o(n. 2, 8- 55 ) 159)

ntegrand in Eq. (132) has been reversed from that in Eq. (66)

the

~

The sign o

ined a5 a pusitive number.

If we substitute the pressure dipole solution (Eq. (91)) with unit
strength for g%r and, exactly as was done for ¢ in the thickness problem,
carry out the summation over the number of blades, we get the foliowing result
for the pressure ficld of the rotor
N
/ Ap(2)H(Z-2)d2,

o

[N
6 - d Rma‘(d)fr‘?pqﬂk(d:) -~
+ IS Z‘ L
spint ) e e WAmag
N

U

s 8
an Bty

X m,[mst ¢ Mo (2,202 -2 Vg (2,2, ) apls, 2, dz, an

where we have introduced

— .
Apl(Z) = ——“—-:/ Ap (i, 2,0 da
7'}.‘ &




and the quantities A ,.g¢(2,2,) and Vg (7, , 2, 2,) are defined in Egs. (114)
and (117).

The first property of this solution to be examinced is the limtiing
pressure risc between points far upstream and far Jownstream of the blade row.
Since for subsonic flow the solution decays as & - -« , the limiting value
of the static pressure rise is simply the limiting value of p for z-= +=o .,
All terms except the first decay and so

w8 rle

PE+2) = —— Apiz)d z, (136)
anp U,

This result agrees with that cbtained from the vortex theory of Okurounmu and
McCuncﬁz In the present formulation its origin is in the =0, #2090 term in
the dipole sclution. When we initially considered the pressure dipole formula-
tion of the loading problem, this term was omitted, and the erroneous result

of no limiting pressure rise was found. After tracing the difficulty to a
missing term in the source or monopole solution, that solution was revised

as discussed in Section I%-B. When the corresponding correction was made in
the dipole solution, the result for the pressure rise given in Eq. (136) was

obtained.

Namb349 reports a limiting static pressure rvise even though his mono-
pole and dipole expressions do not contain the n<o, » <0 terms found here.
tlowever, his result for the pressure rise differs from Eq. (136) in two respects.
First of all, he finds a nonvanishing pressure perturbation for Zz =-e , one
half of the static pressure rise occurring between upstream infinity and the
rotor with the other half occurring downstream. Alse, his result contains
a "scale factor' which introduces an additional radial dependence into the
inteyrations over radius in Eqs. (134) to [136). bLascd on the tests we have
made on the singularity solutions, and those described below for the flow

ficld of a lifting rotor, we have concluded that this factor should not be

present.




2. Expressions for the Velocity Components

In the pressure dipole representation of the blade row, the velecity
field must be found by integrating the momentum equations along the undisturbed
stream directicn. This situation in the dipole approach somewhat compensates
for avoiding the distribution of singularities over the blade wakes, as would
be rnecessary if fluid doublets were used to find the velocity potentiai. As
for tlhe thickness case the velocity field will be found in terms of the com-

ponents v, , v,

-, and v,

-

For subsonis flow the streamwise velocity perturbation, vy , is
- d . . . . J
found from Eq. (53). If 7%% is expressed in terms of the derivatives 7%;)
- . . . &
and f%')z - then integration of the normal momentum equation, Eq. (521b),

along the undisturbed streamlines yields

5 s 2
Un=(i:‘) * U fi(u“’fﬂzi If-,o(r,[,',f')a'_z'
7 pala paly L7 ur /i ag
' g re -
T [ R siar

where Z is a dummy variable of integration. Notc that r and Z are held
constant in this integratien. In keeping with the generalized function appreach
to the singularities, a body-force term representing the blade forces, Fa ,

has been included. Since this force acts normal to the undisturbed stream
direction in the lincarized thcory, it appears only in the y, expression.

Before proceeding further, this contribution to v, is evaluated. Each blade

contributes a force per unit voiume of
-Aap ('f.S)cf(n-ﬂJ')

where A is the unit vector norma! to the undisturbed stream surface (sce

Figure 20), A is a coordinate in this direction, and A, is the value of n at
. . U -t . .
the 4 th blade. The total force on the fluid duc to the 4 ! blade, F} is then

?

-
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- rer
Fooso- / /5;3-::-(r.5)cf(n-n;)d53 dn = —fﬁamr-.s)d Sp (138)
' i i

Returning to the term in question, the coordinate ~ is expressed in terms of
L and r by

TEan (139)
re (25)

and so we must have

Ve (B55)

§in-ng) = ———— =t G (5.2 (140)

Substituting these results, the term in v, containing the body-force repre-

sentation of t<he blade forces is

)j Ap(rz') H(z-2)d 2’
o (141)

where we have accounted for the fact that the blades are located on the sur-
247t

faces £ = —g— , betwecen the axial stations £-¢ and Z =¢, . As we shall
se¢, this term will be cancelled by other terms in y, . For now the remaining
terms in v, will be designated VA . If the blade forces were treated as

surface forces, then only v, would be present at this point; the delta func-
tion terms still present would be excluded from the value of v, on the blade

surface on the grounds that the singularitvies are within this surface.

The expression for v, which results from integrating the radial

momentum equation, Eq. (49a), 1is
i
1 - . ’
vy oe- = | wr 2 z)da (142}
Pal dr /

Egs. (137) and (142) show that the calculation cf the velocity components re-
quires the integration of # along the stream direstion. The required integral

is denoted by I (2) where
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2
I¢2) x_/‘,p(r.z;’,z’)dzl

(143)
Substituting for 4, from Eq. (134} and doing the z integration yields
8 “
Izy = —22 Aplz,) (Z-2,)H(Z-2,)d &,
FR -7
3 [ C'._~ - RMB* () Rmah(d;) mBZ
LY ,{:..Q.Z,,., A ok ¢ (144)
r I'" o U
i, 1 b}
2m8 Amgy | 10 (52) ] » Viga (1) 2,2,) “moal#.2.)(Z-2)
H(z-z e -
frmB\* 2 ] ’ “n o A omge(Z.2) .
I /3‘) “Amedy boUu "

Lp (rn E,) d 3 dr,

Now the resulis for p and I(z) can be combined according te Eq. (137)

in order to obtain v, . Since the explicit representation of the blade force

. o . - . . ’
is omitted, the remaining terms are dencted v, .

o Lo
: 8 o o .
w, = - — L [ ap(g,) H(Z2-2,) d 2
anAY gl ./0
1 ! u"‘r\)l rr Ca - ‘:
8 T [ 7 . emé3

* T or 2 L Repe (@) Reggraie
,Zilﬁ rr 2 U,y U-« v, Y me-m &y .
‘x 2 I
(&)’ [ ' _Lj_:) - 2
TR | HECA) AR, ) de,drn (145) E
—e——— - 3 ——— T
( ﬂl 7 mﬂﬁ - U A
fr (‘r.. - :’;
. 8 [7T78 5 Russ @) Rusats) cmod o
+ - L ) R € Venoa (72,8, ) i
G A L Ug o, J, i ke _...Df_':.é_t
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( A ge (2.2
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The expression for v, , obtained by combining Egqs. (142) and (144)

is,

vo= -

r

8 fT [} Z- Rn:\B&(r)'QmB#((’?) / Kmok> «mbg
— e e
<711 ﬂzr: /’.‘“ 1) ‘/r“ Jo ” ' YS! _uif'.';’l:._‘ \ e

c-o0 T

1+
: ; Y

PR EA g (22 wr, mBy 2 ] 4 (2,2,)
U . ‘I:(—T/ + A J -y d s %o

1 Veng# (1o, 2, Z,)
+

Mg (2,22 2,)
aplr,,2,)d2, dr, (140)

Particular note should be paid to those terms in v, and v, which do

not decay downstream of the rotor. These terms, which are preser.. within the

»

blade row and downstream of it, represent ihe coniribution of the trailing
vortex wakes to the velocity field. The flow field produced by these wakes
has a helical pattern and,as a consequence of the linearization, the wakes
coincide with the undisturbed stream surfaces on which the blades lie. Therc

are no wake terms in o or vy , which should be continuous across these sur-

faces.

The results given in this section for the lifting-rotor fiow field
satisfy the global mass and momentum balances presented in Appendix B. In the
next section it is demonstrated that the velocity perturbaticons found for the
lifting rotor also exhibit the proper behavior ar the blade surfaces.

3. Behavior of Velocity Components at the Blade Surfaces and
across the Trailing Vortex Wakes

The properties of the above solution for the velocity field of a
lifting rotor can be gxamined in much the same way as was done in the previous
section for a nonlifting rotor, although the loading case is somewhat more

complicated because of the presence of the trailing vortex wakes. Again the
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streanwise, normal, and radial components, vy, %, , and v, , are considered.
First the behavier of v, is treated, followed by p. . The examination of w,
will be done last because it provides a natural transition to the discussion

of the direct lifting surface theory in the nert section.
a. Streamwise Velocity Component

Since %; is proportional to o , it must contain a discontinuity
across the blewde surfaces which is in the same proportion to ths blade loading,
Ap . Therefore, it 1s equivalent to demonstrate the proper behavior of vy
at the blade surface by showing that the solution for the pressure field
contains the ccrrect discontinuity. Again this is done by crdering the series
expansions in (ma)’ and, in particular, isolating a series fer which the £
sumnation can be done and for which them summation yields the generalized
function &

}

As before, the first opevation on the expression for . is to per-
form an integration by parts on the Z, integral. The result, a’ter some

rearrangement, is

2

w8 R IR gg (751 emBE
- — Ap(z,)d 2, + —-——-ﬁ, MEECS b T-—f’i- Pid
2”/3 u A /3 “ / we-® *-l _'_'_:_’__._'-_S_A.
Vimgt (5.2, 0) ~tmaa(2.002 Vioanirs, 5:00) Tmek 260300
: IAp(r, .0) Ml SACMLL AP -~ AP, Ca) 15‘—--——---—~- e
L N ep(2,0) Aempte (2, C)
o Vv 2,2,)(2-2,)
”m (':: z, E") - 0"{ 1 24 b
47‘/ ek e P el T Lo [A—f—‘(r‘..rl.)}di’., (147)
A ge( &, 2,) Z,
(2]
2 A . - - Api !
+2mBA_sa " B Apis, Z) e,
(-‘"‘—') F + )‘nnﬂﬁ]
L U - ‘~k ﬂ

In order to ¢ scus3s the behavior of the various terms in this form, it is

convenient to write
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z
wB _ .
b= o /52L)j AplZ)d e, + P+ 04 P41 b, (143)

where p refers to each of the series in braces in bEq. (147), numbored scquen-
tially. Each of the m& terms in p and p, are D(m8)7" and are wultiplied

by the loading at the leading and trailing edges, respectively. In add.tion,

. . . “Ampk 52 i .
the terms in 4 vcontain the exponential factor & mE¥ T while those in
whmax, ~z . -
12, contain €7 J Ca-2) Awvay from the leading and trailing edges,

the presence of these factors azcelerates the cor~msence of the series,
However, at the leading or trailing edge, one or the other ¢f the cxponent:rals
approaches unity and the series can diverge. Atv the trailing edge ap should
vanish ac~ocding to the Kutta coadition, and the convergence properties of

the sevies in 4, depends oa the behavior of Ao as » —=J, . At the leading
edge, the linearired analysis contains a singularily in the loading, and so
the series for 4 can be expected to diverge there. The behavior at the lead-
ing and trailing edges is more difficult to understand thun it was in the
thickness case where the slsopes of the thickness profile ave well defined.
Because of their impact on lifting surface calcul- tions, these terms axe

examined further in the next section.

The series represented by 4, contains the integral which remains
after the integration by parts. Integrariorn of the exponential facters over
#, 1utroduces a factor which is 0(mB)" and se each term in £, 15 at most
O (mB)7°, 1t has bern verified that successive integration by parts produces

. . -1 . . -
rerms of higher order in (mB)  and so this series is conve:gent
gelit,

dext consider the series denoted by £, . It is this contribution
to » that wili be shown to concain the discontinuity across the blade surfaces,

First the vxpression for 4o, is rewritten in the form

. . . < (rn B ]
'P‘i S i LE Z 'I?MB'Q(/"WS#F) - Z_;{) - ‘
n vt k= rn B _.L, - /3‘(..’12'.’&‘! z
/3: mnB/
. !+ (.u_J‘r’.)A.]
¢ A—p(r,,i_') ——-—;)—r-_ \1 E pma*(K‘ﬂ’:5k 95 7 J;G:a: (1;9)
S (5=
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The expression for 4, is now seen to be -S(r, &), the double series function
defined in Eq. (121),if we identify {(r,> in Eq. (121} with the quantity

14-(“:]’;1)

r

o

Aplrn, 2)

When the final expression obtained for S (~,Z) in Eq. (128) is used here,

then
8 g = = ,&m(‘rhﬁﬁ) |
. = - Ap(r, ) + — Rm (o
Po ot o 5 ar w &k Ko TG [(Emetys (22)]
rmB U
e ]

Ancther integration by parts may be done in the second term in g, . The

integrated term vanishes as a consequence of the boundary condition that %ﬁ

vanishes at the hub and the tips. The final result for 4, is

8 B = = an{mBE) f
Pam g B Ar@ B L Z Fmea (T — oy [(K,,,”)l X (wr;.)’-]
r mB8 u
'memQ(":) —,—?—[f 3‘? Ap(r;,Z)]d-r;
- 75 ’; (151)

H

The t:2rm contalning the generalized function :jis the term which
contains the discontinuity in p ; all of the remaining texms converge uniformly
for all ¥ awa) from tha leading or trailing edge and, hence, are continuous
across the blade surfaces. If the difference in 4 across the blade surfaces
is formed, p (r, 2, g‘-‘%{--)— o(r,z,4- f_;_;j_") , then because of the nature
of the function :i » it can be seen that the definition of Ap given in Eq. (133)

is recovered.
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Collecting the evaluations of the various terms, the expression for

the perturbation pressure at pcints within the blade Tow is

& m R (07) e (MBZ)
M1 Rat (MB) [\——;,_E— 4 (T) J
7 ¢
| 3 3 i wd '
o | Rpaata - [n, < Ap(/:,?.)J dr v+ =25 | Aprz)Hiz-2)dz2,
g ar, a7, an U
"
a ["'-. o Royph (TR gg(B) mOE
e 22 X €
“n B n" J maem gy wAmask
" U
Vg2 (7. 2,0) Hmoa(20)2 (152)

Vs (7, 2,00 ~~mai'ZCe)(2-6)

- Ao(r .00 4
Y NS
C
roe . 2 (a-z,) -
Vv, rL,8,2,)  Aaeal®iB) .) 3 )
| Yopplno®E) = [ar (5,2, dz,  ar
v ‘/\“mﬂi(z’zo) 92‘. /

When the first two terms are omitted, this expression for £ is valid
upstream {Z < 0) and downstream (2 >¢,) of rhe tlade row. Thus, away from
the leading and trailing edges,  (and hence vy ) is continuous in these re-

s

gions, and in particular, across the blade wakes.

b. Radial Velocity Component

Next, the properties of the expression for the radial velocity are
examined, focussing on the terms due to the trailing vortex wakes. The radiai
velocity is tangential to the wake surfaces and should be discontinucus across
them. This behavior can be demonstrated simply, if we consider points far
downstream of the rotor where all other terms except the wake term have de-
cayed and Eq. (1467 becomes
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Kogx ] 1+ u.'_>
. Do | ——— — Y ap(g,2,)dz, drn
haekid 3 L LA ( meg) (W ,>
U A ~ B ]

- . . . . dp,
Comparing this eyuaiiwn wiih Ly. (145) shows that v, 15 preportional e v
Taking the derivative of the expression for #, in Eq. (151) and using the

result in Eq. (153), then

Bz d Ca.
Ur(E**°)=—m a—:d/ AP(r.z,)dZ,
o

(154)

+

B f"~)= - Rm='="‘”(“¢ ) i (mBY)
Rp,l ; ey fun [(Kms& :f(‘*’_rr)x] (m8)?
T

i $ap(r, ]
f R ealTa) ai [f; ﬁ_i____’z._J dr, 42,
r L af;

“

At this point we introduce the blade circulation, M , whiczh is defined

by

Mery = /g(,,s)ds (155)
Yo

where ¥ (r,S) is the local vortex strength.

am4{” 2my’
J(r,s) = av, = 1, (z;= -3—’/) - zrs(zﬁ 5"’ /) (156)

Substituting for AV, in terms of A4 using Eq. (53) and transforming the stream-

wise integration to an integration over £ , the circulation is expressed in

terms of Ap (r,2) as




~Co

M= - -.__’.._/ Ap(r Z) dF (157)
Faet J,
Thus
. : K
ca R (o) [ LmE#k
, . - r 8 &
Ur(Z"““’) . i ‘_1_[_‘ ...._..._5_ ! Z —— ( T )
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A.L‘-ﬂ (mBr) /"',- i i 3
(mg)* ), Lr" A AMC,J.)J fmaw (72 o 1,
it (158)

The 5, term produces the expected discontinuity in v, across the wakes while

the second term is centinuous. Forming the difference in v, across the

blade wake locations accerding to the same convention adopted for asp,
247y

av. = v ( .-_-E.I.l‘_—)—-v(fs——-—).wc get
r r: ) ryvg 8 . |3

di
Ay, = T (159}
Notice that in this convention I is negative when o4 15 positive and work is
done on the fluid. This result for the jump in v, across the wakes is the
same as for an isolated wing. The difference here is that the trailing vortex

wakes are helical rather than plane surfaces.
¢, Normal Velocity Conmponent

The final task of this section is to develop further the expression
for the normal component of the perturbation velocity. As with the expression
for # , the terms in vﬁ arc numbered to facilitate the following discussion.
From Eq. (145)

Cﬂv
: w B wir 1 /‘ - .
voow 22 (_ﬂ) —— | AP(Z) HGF-2)d &, + (V) + (V). (160)
2 C L4 L4 n n
7 angiu VU pul, Jo ! 4
The term labeled (27,) ~ contains the wake term, and can be rewritten as
follows :
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vy 8 [ (%)

r

(161)

- (mBe
/ / Z Rms*((f') Rms,(o’;): H(2-2))

mas ~e fag

! Tt (l‘ﬁ)A

ik
<-.U / -

ap(n,z2)nd2 dn

T

where it is recalled that the prime on the m sumpation denotes that there is

no m:o term. The #-summation can be rearranged using the same techniques
employed to evaluaze the series function 5 (r,2) 1in Secrion 1V-¢-3.

expression for (¥,), , is

8 1+( )

The resuiting

/" . m B85
(v,) = — ———— Z 2 Ragpto)e Y(Z-2,)
n’y a7 /Cm Ugr" ‘/c Ma-00 fray ™m
r}
1
{ [ Op (0, 3) R, ea(0) G Ao+
Il o Fa s - ] ,(' \2 . f 2
j g)*| [/ Lmuk oot
* (M)[(nﬂ6/+uj
/r' 162)
d Fl , . — L
VLA [C i A‘P'\’:.Z.IJ R ga (52) d’;} d 2z,
I

The 4 summation which inciudes the first zerm in braces is just the Fourier-

Bessel expansion for Ap(r, 2,). The corresponding =~ summation alsc can be

evaluated if the appropriate m=0 term is added and subtracted soc that the
following relation can be used.

LenB Y 8-1 J \
s 12,05("' B/ {163)

8
am

I8

Then (v,), , becoues
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;4 (.‘_’_r)' 4o . C. 8 7+<i:)
24T
i 2  — - SE)H(Z- z-_—ﬁ”
Ca + [0 - -
ap(r ) H(ZZ)dZ + & L_\_U_)_J. J (164)
JO . 2 /O“U e-m ke
2 m8 r,
e H(2-2
R0 2-2,) f I [, 3 M(c,z,ﬂﬂ’m“coadwz
(mb T(& msk) (ur,)v Tu oLt ln -
L m8 U _‘

The first term precisely cancels the blade force term in v, , reprosented as
a volume distribution of dipoles in Eq. (141). Thus, we can drop the prime

on v, and the expression is valid anywhere, including on the blade surfaces.

The next operation performed on v, is an integration by parts over

Z, in (v,),
, R ()R ) m8%
- - ”m T . . A m
(v,), = 8 /f Z ° Al e
an Bl p, U TR W/\lr)ng-k

N mgh(2,0) 2
c L ga (N 2, 0)8p(r ) e

.'ng*(£,€,_>(1'-€-.)
= Lregk{nn R, 2,C,) Ap(r,c)e

c

- Ak (2,2,0(2-2) s
/Lntsh(f' f;)Z,E’)C z LA-P "’Z’)]

+

2imB WA, [ wr 1*(“:;;)2 7+(%£)1 (165)
" Drax U U ey wr
u U
1+(i"7';). e "’f) (’”5
:_l) (%27 Dras AP(C'EM} o
U )
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where

Voaa(r, ,2,2) | wr (mB - i
ot - L) (ot [

_A-maé(a\z.) U _/\.mﬂ*('z_i“)

and (166)

" mB\? L2
Imgh (' z> t Amse

3

3 (167)
Except near the leading and trailing edges, the first threec terms
in (U;)z are well-behaved. In the integrated terms evaluated at 2Z2,= Z ,
the last three terms in Eq. (165), the r -dependence has been factored in a
special way in order to demonstrate that v, is continuous across the blade
surfaces. The first of these terms comes from the g -contribution to v in
Eq. (137); the other two of these terms derive from the I(z) contribution to
! . .
——- times the dis-~
) . Fee Un
continuous part of e, isve @ in Eq. (149). Hence it u, is to be continudus

U, . The first of the last three terms is just (wWr/y)

across the blade surrfaces, then the last two terms must cancel this discon-
tinuity. In order to simplify the demounstration that such is the case,(v;)l

ic further subdivided.

(v,), = <y, + (v,), (168)

where (U,,)3 includes the terms contuining L,nG* and (V,2, can pe written,

using the definition of O, gp in Eg. (167), as

"
(v,), = = ;ﬁ—;—z jl é:.é,. Rooa (R aalds) 'Mnf:‘g:) [-—;B(TB)JA
- r, L( /3:\) */\ma&_]
e [ GE T )
Jd ()’ J ] ‘*&"w J (163)
wr wi)”
-2 {1;1 £;FT” r1¢‘i:U g ;, 1] 2pln E)r dr,
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Now the series containing the first two terms in braces are in the sane form
as the doubly infinite series evaluated already. The third term in braces
can be manipulated in much the same way; the factor containing X a3 is re-
written using Eq. (122) and the quantity (“ ‘) // 1+ (fﬁfi)l] is added and
subtracted to it. When these operations are completed, the form of (v,), 1is

r A
8 - o ¢ VZ)
(v, « ~—==— | 3 J Ropga IR 54(5%) —
i (R G
. = -
(mB)? (<wr‘){1*(%’.—') F1e EJC)
s —) | —— | - =
FOR ANV S D
1+ -‘:—3:-2} Frz K 21
- AL (-»"—‘—"—‘"—) ap(r.2)r,d,

= [ ) e

1f the results for S/r,€) in Eq. {121) and 4, in (149]) are used to evaluate
the series corresponding fo the first two terms in hraces, the respective con-
tributicns to (Uh)q which contain the generalized function, ﬁ}, cancel. Thc
differential equation satisfied by the radial eigenfunctions, Eq. (74). can
be used to substitute in the third ternm and then an integration by paris

carried out. The final expression for (V,), is

Rmf* (e} Al./n MBC

vy, = = P

, wr 3 wr y?
[7 dRe4(%) Pl 7/
N ok ....0._ AP(,;,E) ] - __.__(_-g_\_ _.—..(—...q__/_... )
o i, (_5‘3._)‘ ;e /Wyt U7l
[ U L /
wrr\l wr 2
- (-U‘. ’+ -U—) ] rdr
K. ap) wr, ’} fwryd o o
[(‘an)*(ur) U T
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The series in (v,), are uniformly convergent, as are tic remaining
terms in v, , and so we conclude that v, is continuous across the blade sur-
faces. As a prelude to evaluating the full expression for v, on the blade
surfaces, in order to establish the integral equation for the
we collect the result for v,.

blade lecading,

C._
L ] e
-~ . (-—— | sping)H(z-2)d2,
R P URI J, ’
r Ca ‘.MB;’
o L= [T e e
2T fm Upr L ’ a0 ker (g | [ KmpaN fwrnA]
e Ly mbB U J
-
7
7, e ‘o (172) 5
f‘,r .
B ! 2’: ; ‘anﬂ*(f) Pmaﬂ(o:) tmBg v
Yy Al A 7, L, & .
"Trld r) pNUK4./ ™S e *" wr\f:’o__* _."-
g U &
A pap (2,00 2
AL g(r,rn E,0) ap (1, ,0) € 3
od
A gk (B, C )T -C) %é
s L-L"l \E- “ g
= Loga(ron,2,8)ap(r, e T
/“c‘ A ga (22 )(#-2,) i
MRS e SN L, 1)
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where (v,),, given in Eq. (171), is not written out because 1T vanishes on
the blade surfaces. The quantity L,.aa(n7r,, 2.2), defined by Eq. (166),

has been rationalized and written in the form

Lot (e, 2,E,) = L Cr:;* (z,z,)( 2 27 (173)
Dmd’* \ U u
€2) r ,«;\ [£3) i UJ’;.-I
F e (220 (e 2 ) ¢ Can (2,2 (4

wherc D _.4p is defined in Eq. (167). The coefficients of the different radial
factors in Eq. (173), Cﬁjak (&,2,) , are complex quantities, i.=.,

(L) 2) S
C""’a* (Z,Ee) - pmG‘ -+ La'weﬁ(zlzo)

. : . 1 2 . .
The real and imaginary parts, A4 and 8,44 (2, %), are written out in
Table 3.

The formulation of the loading problem with the pressure dipole
approach is now complete. Expressions given in Sections IV-D1 and IV-D2 for
the pressure and velocity fields have been shown to satisfy global mass and
momentum conservation, and to display the correct behavior at the blade and
wake locations. The result given in Fq. (172) for the normal or upwash velocity

is used next to develop a direct lifting surface analysis.
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TABLE 3

Coefficients in the Expression for the Normal Velocity
Cemponent of a Lifting Rotor, Ey. (172)
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E. DIRECT LIFTING SURFACL THEORY

The formal solution for the loading contribution to the flow field
of a rotor can now be applied to the direc* lifting surface problem. An
integral equrticn is dovived which relates the unknown blade loading to a
specified blade geometry. This derivation is accomplished by evaluating the
normal component of the perturbation velocity, Eq. (172), at the blade surface,
and using the flow tangency condition to rtelate it tc¢ the blade camber line.
The resuiting linear integral equation for 44 is then nondimensionalized, and

what appears to be a promising solution procedure is discussed.

1. Formulation of the Integral Equation

Due to the periodic nature of Eq. (172), and the fact that all

blades are assumed identical, it makes no difference on which of the blade

. . v 2114 \ c. -
surface streamiines, & = —gf 7 - 0, 1, 2..., we choese to specify condit:

~r O
Two simplifications are immediately apparent when v, is evaluated at a blade
surface: (v,), , as given by Eq. (171}, vanishes, and in the other terms

of Eq. (172), thc complex exponentials invelving # become univiy.

At this point some discussion of the integrated terms proporcional
to &2(r, 0) and Ap(r, ,C,) is in order. Analogous t¢ subsonic isciaced
airfoil theory, the Kutta condition is assumed to be satisfied at the trailing
edge; i.e., the loading 4-p(r, , €, ) vanishes so that this term need no longer
be carried. The leading edge term, on the other hand, poses a problem of
interpretation. The loading on a subsonic, isolated airfoil is known to ap-
proach infinity as the minus one-half power of the distance from the leading
edge.53 Again, we can expect analogous behavior in the present situation, im-
plying that the quantity A+ (r, 0) is singular. Tnis also impiies that the
integrand containing dAp/dZ, now contains a minus three-halves pover
singularity, which is not integrable in the usual sens:. However, note tha:
the criginal expression for VU, before performing the integration by parts
with respect toc Z, , Eq. (143), involved only integrations over Apir,,z,) .
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Hence it contained cnly an integrable singularity, and weuld thus give a finite
result., This strongly suggests that the infinities in Eyg. (172) are

self-canceiling, and that only the finite part of the expression remains.

Following Mungler,s4 the singularity in the integrarnd con be dis
plaved explicitly, with the other factors being expended in Taylsor series in
the vicinity of the leading edge. Such a procedure shows that the infinities
do indeed cancel, and that the appropriate wa,/ to write the terms in guestion is
with the leading edge term proporticnal te Apr,,€), and the lasu integral
taken with £ as the lower 1limit of integration, where € is some small but
finite number. This will always vield a finite result, and amounts to neg-
lecting the contribution from a strip of wid:th € near the leading edge. How-
ever this contribution is easily shown to be of order € “* and hence can be

made negligible by chocsing € sufficiently small.

It is also useful to eliminate any complex yuantities from the
expression for v, , since an physical grounds it must be a rcajl guantity,
This can be verified from Eq. (172) by first recognizing that tne Q,“Bk
are real and are odd funcvions of the index m; thus, the product R ga(r) R, 52(0;)
is even with respect tom . From here it is easy to show that thel-») terms
are the conjugates of the corresponding (+#m) terms, and 5o the deubly in-
finite sum over m will always yield a real result for 77, . This suggests the

calculation can be shortened considerably by considering only m > o , i.e.,

oo s

«”0 0 =
= R by - r, I p
é.f..) 22, Fe < 0 25.01' P90 R ) (173)

where & .., , the Kronecker delra,

6""/‘ - 1 o oa

- 0 rey oA

is used tc avoid couniing the zeroth tern fwice.
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Th2 next stcr is to reiate . on the left-hand side of Lqy. (172)

to the prescribed nlade geometry, which in the loading case means the blade
camber line. (As used here, the cambeér line inciudes any mear angle of attack).
As pointed out in Section IV-C i1, this is nct as straightforward as it is in
isolated airfoil theory because of the sc-called 'cambes due to thickness'.

A row of blades with this camber distriburion is by definition unloaded, and

so represents the zero resference in any loading calculation. Thus, v, in the
loading case must be continucus across the blades and satisfy the flow tangency

condition with respect to the following camber line,
e T 3
ﬁﬁcL‘“") - 9& s, r; 4767(5 ) {174

where ¥, is the geometric camber of Figure 21 and ey 15 the thickness-induced

camber given by

2 ) '
e T W o @8
‘R g
@ -
z (175)
’ ’
) —U.— lzjf'l)(lor”‘d'Z

Here {v,) ., 1is the portion of v, in Eq. (130) which is continuous
across the blades, and the integral is understood to be along &-0 at constant
radius.

For a blade with thickness, it is assumed now that 91 has been
determined so that 4], is known; alternstively, one can consider the results
below as applying to a %lade with zero thickness, in which case % . is ob-

viously zero. In either case, the left hand side of Eq. (172) is replaced by

(U;)K-o = Ue

in, s, r))
ds

n,r

(176)
- U ‘i%_.___“‘*-”)
e,r

dz
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12 insure that the flow remains parallel to the loading camler line. Here

. , R el

M,.(2,r) is understood to be “"Ic‘_ (3 =1/1—:(%£) #.r ) when hoth § and 2 are
assumed to originate at the leading edge of the rcference blade, and use has

been made of Eq. (Sla).

When all the above steps are taken, Eq. (172) yields the following

integral equation forap:

PYE s 2

1M, 2 r) (=C) A
U -____‘it_.__.) - Y ,’ dz, [d G apin, 2)d
iz o.r T Op Ug r /5 SR L

el (5] [ . [ sz z
- S ——— {/Ap(f.z,)H(z-z,)dz,— —_— dz, ) 7

JTTIO,,U‘,!‘ A* :_)Uf,_) Ja mas Aot
R yHE-z) [ aA
mek (7 £-2, .p £
Dot / (7 ”""*(”}
lasl
H
;
T om (1o 28, )R ea (TR sa(0) Aot T
-—--—-——5 = | 2 L w) = 2 th(r e ™
/6 . e fe? -(—J—- Amﬂi Dmok

7z, U v
€
« 's r, 3} wr wry'
*Gmu(iiﬁ(z*“?) Gm“(LZJ(T—TT)]‘iZJ dr,
(177)
where for convenience we have defined

1) o) mB ’“ m8 W
Grogp(2,2,) = Ao, 00 — = (z-2) - B pe(8,8,) 0» — —(Z2-2,) (178)

for 4 = 1,2,3; the H & ‘s and 5 & ‘s are as given in Table 3.
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Before considering the nature of this equation, it is convenient
to nondimensionalize the variables. In the radial direction, we retain the
use of ¢ - {% as the dimensionless variable. For the axial direction, in
keeping with the usi: 1 convention in isolated airfoil theory, we nondimen-

sionalize by &/2 and shift the origin to midchord. Thus, we define

Z_E"_
X - 2. (179)
Ca
A
so that now the blades lie between A%< ¢~ <7 and -1 € x & I, For convenience

in specifying the blale row geometry, we also define the parameters

D
o
3

(%
b = =

N, = — (180)

@, is the inverse of the usual flow coefficient at the tip;32 1, can be re-
lated to either the aspect ratio or the solidity at the tip (based on (.
rather than ¢ ):

. r.- r, r‘T 1- 4
Aspect ratio = = —(1-4) =& — {181)
C, - 27+
I N . - - BCI- _ 5'21 .
Solidity at tip = = — (182)
RITT. v

(78]
™3k

and U,.p4 are already dimensionless, we nced only rewrite them in terms of

. ; : . ) [
We next note that since quantities like A, gp, U,.pg ,/Qng , 8

the above. Hence, we get

B [( Kms,l 2 ¢, M)z_] A
- | m #0

@, . A . 1
X LJF b £l (183) . :
m g R K
X

Rete co

o i
Alsc

B * Km ? 1
I\/rlgfi’ / [( r 5'{"\ * d‘>":.1! mEe
Doow = (Ko ¥ g . (184
! ,nw,) Cok i




and
n o
75? @, N, (x-x,)

Gm . o)) B
(X, Xg) = A g too vE b N AR-X,) = B ag (X, %X, ) aum
(185)

m8i
The expressions defining F?,Lf;& and B,(fg,q. can be used as they stand in Table 3.

As for the dependent variables, such as velocity and pressure, it

is natural to normalize them by the axial velocity, U , and dynamic pressure,

%f;,UJ, respectively. Thus we define
~ - 1_2 f;\ - '??7:1. -~ -0
n . —_— - .
U et Ca * z ,01,‘,U’L (186)
With these definitions, Eq. (177) becomes:
A +1 1
Mo, Boin,o [ -
- °> = - ! - - /dX, doa, ap (d,,%X,) 0
X o0 anBO-AY G+ e J,
-1
Bn (regley s (17 O
- -2 ’ Lp (o XIHX-XydX, ~ 2] dx, F 2
4T i/ (/Scpr)/, e B
-1 =
R ga(@ H(X-X) [ PR 747
o - A
B T TN [ de (Q g 'P) Regg (73)
DMB* % 36—; 30';

H
® 2 (’_ %dma)p‘mﬂ-’t(d‘) RME"(J;)

8
+ -3 2 2,72 [ Z 2
T ¢’r 46 (’+ ¢r a’) ‘IA mia ke )\»»8* D —aR

- _)‘r"'"ﬂ ¢r qf(x+:) 2 1)
s Aap (0, ,-1+€) e [¢r Goaa (X ~1) (T 0y) _

a4 f, -2 (3) Y]

2
t Gmai(x . ’)(

NI

1 r"l’Y A -’\ ¢ ’x_x
Jax ek Y, n, ol 2 )
/ 7 X [cp, Gga (X X2 (T ) ‘
-1t€ L
@ T o -2 ) 1]
+ GMSQ(X"{'0>(}:-+ F;:')"(pr Gm&"(x”\.)(ﬂ_f,)ljd)(a} d.a';
(187}
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The next step is to consider the behavior of the integrand. 1In

isolated airfoil thcery, singularities generally appear as the source (6, ,x)
and fieléd (¢, x) point. approach one another, and we wmust expect such benavior
here. In our case however, they would appear as divergent series, so that
the nature of the singularivy is not immediately obvicus. Preliminary con-
sideration of the series in [q. (187) when the source and field points coincide
suggests that for fixed % , the terms in the integrand decay only as (naB)",
and for fixed m& as (#)™', thus indicating potential convergence problems.

(It should be noted here that this in nc way contradicts the earlier statement
that the m series occurring in EBq. (172) for v, is uniformly convergent.
There we were considering the integrated expression for v, , and hence could
make the use of the fact that the integration over z, of the exponential argu-
ents would vield an extra factor of (mB) . Here we are considering the be-
havior of the integrand near x » X, , at which point the expcnentiais aill

Avimra 0
aule e

unity, and hence cannot aid in the convergence).

The nature of these singularities has not yet been determined, and
so o detailed discussion of the convergence of these series is deferrsd until
then. Once the form of the singuiarity is determined, it is anticipated that
its influence can be subtracted out and isolated, much as the discontinuous
portions of p and v, were isolated in Section IV-D-3. In addition to facili-
rating the evaluation of the improper integrals which occur, the isolation of
the singularity will serve another very useful purpose. In any numerical
scheme, the infinite series over the azimuthal and radial mode numbers must be
truncated after a finnte number of terms; since all series would be convergent
after the above separation, a much better estimate of the truncation error

should result.

2. Progress Toward the Solution

Despite the fact that this singularity has not yet becn isolated,
some progress has been made toward the inversion of Eg. (187). This

equation is obviously too complex to hold any hope for an analytical solution,
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and $o various numerical schemes employed successfully in past lifting-surface

. 5 : . -
studlesss’ ® have been reviewed. The schemes all appear to fall into onc of

two basic categories. The first involves the idealization of the distributed
1nading as a lattice of discrete loading elements (i.e., vortices, dipoles,
etc.) whose strengths are constant, but initially unknown. The second ap-
proach is to represent the contiruous loading as a double series of suitable

functions in the. chordwise and spanwise variables, the coefficients in which

are initially unknown. This is also sometimes referred to as a kernel func-

tion approach.

In either case, one then requires thuat the velocity be parallel to
the blade surface at each of a set of suitably chosen collocation points.
This reduces the integral equation to a set of simultancous linear algebraic

equaticns which can be expressed as a matrix eyuation. The rank of the marr.x

equals the number of unknowns, which in turn equals the number of corlocation

points for the system to be determinant. One can also choose the number of

collocation points to exceed the number of unknowns, in which case the boundary

- e . 56,57
condition at the surface can only be satisfied in a least-squares sense.” ’

The solution of a matrix equation, whether for the unknown strengths
of the source lattice or fosr the unknown coetficients in the series expansion,

is thus common to both approaches. This portion of the solution is relatively

straightforward and vapid. It is in determining the elements of the coeffi-

[
cient matrix that the most time is usualiy consumed, v ard 1t is here that the

two techniques differ significantly, with each having advantages
prublems,

in ¢certain

The greatest advantage of the lattice methods is that no numerical
quadratures arc needed to determine the cuefficient matrix. Moreovevr, pro-
vided the source and collocation points are never coincident, the problems
mentioned above in treating the singularicy are evidently avoided.58 However,
since one only solves for the loading at a set of discrete locations, there ir SE
some ambiguity invelved in how best te interpolate for the leoadings at Qther
positions. (A general discussion of this point is given in Chapter 3 of
Reference 57.)
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We feel that the series expansion appreach has several overriding
advanitages in the ; vesent problem, the principal one being that it enables
one to express the louding, as well as its derivatives, uniquely at every
point on the surface. Through judicicus cheice of the loading functions in
the series expansion, one can also include the appropriate behavior at the
leading and trailing edges automatically.53’55 The principal disadvarntage is
that numerical quadratures usually are vequircd for the elements of the co-
efficient watrix, which for our kernel function would likely be ratker time-

consuming.

Fortunately, there appears to be a strong possibility that, once

the singularity has been treated sepuvately, the remaining spanwise integrations

can all be doae analytically. To see this, note that the ¢, integrals ir

=, ~e \ s paaes te - S s .3 <3

Eq. (187 invelve only products of ;7 R, 40X, 42 03) with a9 or its
dervivatives. Furthel, if we expand the radial dependence ¢of A4 in a simple
power series, then the integrals will still involve only products of B,gwith
tegral powsrs of ¢, . Then, since the £y 2are linear combinations of O
59

A

and Y,.p (see Appendix A), use can be made of the indefinite integral:

‘J:'\(‘;;)

[oe ) ‘
| & 7{ xf ot = (uen-1)Y Y () 5#_,.n_1({)

(188)

» I']n-v(z‘} )
lyr'—’(&:) FRE I ]

vhere pn and ri ave each integers, the 5, , are lommel's functions -nd £ is a
dummy vailiable for  po; . Refereace 59 gives an casily used asymptotic ex-
pansawn fur the evaluwation of the S, , valid for large argpument. Since
Foag T, whers e m3 , can be shown to be of the sane order as the number of
blades, this should be applicavle in the majority of cases encountered in the

pPreseut probien,
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One further peint needs to be made regarding the radial variat:ion
of Ad, and that concerns its behavior as the hard walls at ¢=4 and 1 are
approached., In isolated airfoil rheory the loading at the tlps must vanish
since no pressure differential can exist off the airfoil. However, in the
present problem, since we have not allowed for th: effects of any clearance
between the blades and the walls, the hard-wzll bounduary conditions require
instead that there be no radial pressure gradient there, so

—aa—j—_f = 0 o= A, 1 (189)
This requirement can be satisfied easily by a pewer series, and is another
advantage of using such an expansion in the radial coordinate. In fact, if
cne assumes an expansion with N unknown coefficients, two of these can be
expressed as linear conbinations of the remaining (N-2) using the two condi-
tions embodied in Eq. (189). This allows one to reprecent the radial
variations with a power series two crders higher than the number of unknown

coefficients one is willing to include.

As for the chordwise variation, it is very doubtful that a simple
power series expansion in x, would be adequate. This i: because of the need
to represent the behavior near the blade leading and tralling edges, where
Ap and/or %%gi have singularities. Accordingly, an expansion which represents

e

such behavior explicitly will likely prove necessary, i.e.

e .
Ap (o X)) = A5 s+ N -xD F A Bk, (180)
144, "

where cach of the A is a power series in ¢. as discussed above, and the 7,

ic a suitacly chosen set of finite polynoni~ls, each of order . . Such a

representation automatically exhibits the appropriate (1 ¢ xaf'H behavier

near the leading and trailing edges, respectively.s3 Unfortunately., it also
wvequires the use of numerical integrations ~ith respect to X, . The effi-
ciency and accuracy of these integrations can be affected by the form as.umed
for the set of polynomials P and various alternatives dlscusscd in Refs. 55

and 60 are being considered. Once tne terms containing the singularity that
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occurs at the coincidence of the source and field points has been isolated and
the mathematical caaracter of the nonsingular portion of the integrand has
been established, a choice for the form of the Fi will be made and efforts to

obtain numerical results will begin.
F. CONCLUDING REMARKS

A linearized direct Jifting surface theory has been formulated for
the compressible, three-dimensional flow through a rotor of specified geometry
in an arnular duct. In arriving at this formuiation, the overall subject of
the lincarized analysis of three-dimensional compressor flows was reviewed in
detail. This review was made necessary by difficultices encountered in early
phases of the work. Initial attempts to derive the loading contribution to
the flow field of a rotor by the superposition of pressure dipole solutions
met with two problems. The solution for the rctor pressure field did not

nes =1

iel nct pressue Tice between poinrs far upstream and downstream of the
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Furthermore, it did not agree with the result obtaind by Namba ? in a

similar investigation.

The error in the pressure rise was traced to the omission of a term
in previous versions of the fundamental solution for a peint source. The
missing term in the source solution also led to an error in the dipole solution.
When these singularity solutions were corrected and the result for the pressure
field revised accordingly, then a nonvanishing pressure rise across the rotor
was found which agreed with the vortex theory result obtained by Ckurounmu

-

4
and McCune.

Both the thickness and loading contributions to the flow field of a
rotor vere rederived using the corrected singularity solutions. The implica-
tions of t'.e additional term in the source solutiorn to published reports on
tne thickness problem have been described. The solution for the loading problem
has been applied to formulate a direct lifting surface theory. There are two
remaining differences between our formulation and that given by Namba . 4°

First of all, therc is the difference which results because the additional
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term we found to be required in the dipole solution 1s not present in his.
Sceondly, our formalation does not contain his scale factor, a tunction or
radius which modifics the dipole strength. Wo ha.e concluded that this factor
should not be included on the basis ¢f several checks made on our analysis.
Both the thickness and loading contributions ta the rotor tlow field have been
shown to satisfy th2 global conservatien of mass and of the axial components
of lineur and angular momentun. In addition, the velocity components have
been shown to display the correct behavicr at the blade surtfaces and, in the

loading case, across the trailing vortcx wakes.

Progress has been made toward obtaining numerical solutions of the
integral equation for the unknown blade iocading. A kernel function method has
been chosen as the best approach; the loading is expanded in a double series
of suitable functions in the chordwise and spanwise variables, the coefficients
in which are unknown. The expected loading behavior near the blade leading
and trailing edges is ensured by the in¢lusion of appropriate factors outside
the double sum. The choice of the form of the cxpansion functions used to
represent the axial and ruadial variations is deferred until the singularities
in the integral equation have been isoclated. These singuiarities occur in the
kernel functiion when the source amd field points coincide. It is felt that the
same techniques vead to isol- Ce the discontinuitics in the pressure and velocity
fields can be vse: to determine the nature of these singularities, and work
along these lines has begun. Tha isolation of these singularitics should
accelerate the rate of convergence of the scries in the remaining portions of

the integrand, and cherefore, facilitate numerical evaluation of the solution,
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SECTIUN V
SUMMARY AND CONCLUSIONS

A theorevical and experimental investigation of discretc-tone roter-
stator interaction noeise, and the devclopment of a three-dimensional lifting
surtace theory for a rotor have been presented. In the experimental part of
the program, the souad pressure levels produced on the outer duct wall of the
annular cascade facility were measured for a rotor-stator pair. The micro-
phone probe was locatced in the far field upstream ot the blade rows and data
were taken for two stator stagger angle settings. In both sets of data the
rotor speed was varied continuously up to about 1450 rpm. A pure tone signal
was observed above 1100 rpm which was identified as the fourth-harmonic of
blade passage frequency. For one of the stator settings, some additional data
were obtained on the fifth harmonic ar about 600 rpm. Lower harmonics could

t ~ 3 v Aad T lels o . PO ~
nat bhe cxcited at the roteor gp GC1illY at ne tliive ol

these experiments.

A limited amount of experimental data were taken on the time varying
pressure signal at several chordwise locations adjacent to the blade tips of
an isolated rotor. These data were taken in an attempt to obtain information
on the loading at the blade tips with which to compare lifting surface calcu-
lations. However, the data appear to contain tip clearance effects which are

not included in the theory and would complicate such an eventual comparison.

An approximate model has been developed to predict the dJiscrete-tone
noise produced by thie interaction of a rotor and a stator. In this anaiysis
the acrodynamic and acoustic aspects of the problem are treated separately.
The sound pressure levels in the duct and total radiated power at the harmonics
of blade passage frequency are corputcd in terms of the propagating duct
acoustic modes. The amplitudes of these modes are related to the blade row
parameters through an approximate two-dimensional representaticn of the unsteady
blade forces. The main advance over previous approximate treatments of rotor-
stator noise¢ is the incorporation of an aerodynamic model that accounts for

compressibility effects.
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Sample calculations have been presented for sound pressurc levels and
totzi radiated power over a wide range of subsonic Mach numbers and comparisons
of the mode amplitudes were made with those predicted by an incompressihle
model. In addition, theoretical predictions were made of the discrete-tone
roisc to be expected in the acoustic experiments. The calculated sound
pressure levels were significantly lower than the measurcd values. Evidence
has been presented showing that the sound pressure levels at the higher
harmonics of blade passage frequency are sensitive to the uncertainties in the
data for wake mean velocity profiles. This should not be true for the funda-
mental and the lower harmonics and so, if the inaccuracies in predicting the
sound pressure levels of the fourth harmonic are duc to an inadequate wake
model, then berter agreement with experiment shouid result for lower ha=monics.
The annular cascade facility has been repowered so that higher rotor spccds
are now avaijlable. Turther acoustic experiments are planned in ordevr to obtaln

data on the lower harmonics.

Finally, @ direct lifting surface theory has been formulated for tae
compressible, three-dimensional flow through an isolated rotor. A pressure
dipole representation of the blade row was used to derive the integral equation
rclating the blade loading to a specified blade shape. During this development,
the omission of a term in previously published versions of the fundamental
source and pressurc dipole soluticns was found and corrected. A3 a result. a
general review ot the linearized analysis of threc-dimensional compressor rlows
was presented.  Both the thickness and loading contributions to the flow field

cf a rotor werc considered.

Work was begun on solving the governing integral equation using
numerical techniques anaiogous to these employed successtully for isolated

wings and cascades. A kernel function approiach has been chosen which in-

corporates the expected behavior of the loading at the blade leading and trailing

edges and at the duct walls. At present, the singularity in the kernel

function is being isolated and, once this 1s completed, programming snd numerical

evaluations of the solution will begin.
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APPENDIX A

DEFINITION OF RADIAL ETGENFUNCTIONS

This appeudix summarizes the definition and properties of the ortho-

norma} radial eigenfun ‘tions, &, - As used in Section ITJ
Jn'(u ) -
= 1T — _ _ Falaal
Rnrr\(lrnma‘) - ["’n(vrm“’) y' yn (Unrna‘)( // ‘I\Inrn
ﬂ(Uﬂn')) -
= an (Unmoﬁ/\/NnM

where J, and Y. are the Bessel functions of the first and secord kind, of

order n . The normalization factor N, is chosen such that

1

\./ OKIQnK(UnKo‘)Anm(v‘nmc-)d"T = ‘5'(/?"
4

where &, . is the Kronecker declta. This requires

2
. ;o (L4 n 1 , 2 noo\?

Noppe = == Z,w,,,nfr—( ]--Z (v, A [ﬁ— P;
m e U () nn  Op R ( vm) J

The set of eigenvalues v, corresponding to each function are solutions of

T (v m) T (U 4
Y () Y. (v A

which insures that Equation (8) will) be savisfied. The zeroth eigenvalue, v,

is zeru so that all the 2 __ are trivially zero, save for the ¢case n -0 . Then

1/
v m P - -1— - (-——-—l-&i> *

vo Qo Nqa N g -
The setr of functions R, is complete for any n, so that a function
can be represented on the interval 4 to 1 by the series

floc) =

Cnm pnrn ( Unm 0‘)
«0

ItV

where
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and n c¢an be chosen for convenience. These functions are discussed at more

2
length in the papers by .‘-lcCune"8 and Tyler and Sofrin.4 (Note that 1n the

lifting surface theory of Section 1V, a somewhat different notaticn is used.

There, # rather than m , is used as the radial mode index, and the eigen-

values are refecred to as K rather than v ,,.)
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APPENDIX B
EXPRESSIONS FOR ROTUR-STATOR INTERACTION FORCES

This appendir quotes the results of Osborne's analysis of the un-
2

) . S .24 .

steady compressible interactions within a stator-rotor pair, as shown in
Figure 12a. Some typographical errors appearing in Reference 24, and checked
with its authior, are also corrected. The notation used here is that of Osborne,

except where otherwise noted. Note in particular that "' was used for the

load harmonic index, in place of his "m", to keep consistent with the main

a) Rotor Unsteady Lift Resulting from Passage of Steady
Stator Loads

r -4
X, = Lg r,s/s, [1-i-ppe oo X |6, K, (L0y, 25, , My)

{- 2o, (S [ £ (1eitamag i L YA *\Lfr]}
n~

n Vg cor g

sy = S, e Joey RS N g gy
Ns1 S'Qa 5n1
~L U,
o= vnlo;e A X = a, +«a,

: -ix
8 = 1-c0-B)e amX , C =< A8 , D« R/A,
Iy = amc V(R +,A) L = pV,T

s

Mo = 2mCVal Byt By Ly= oV, T,
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d’ﬁ d-s
V v 2 V3 1
Moo B M S - _ s VRN
" g 2 My = . BR (7 MR) /3,_’ (i M’)
T fa) mn b o aanlLllAalambs 3w aha (Thniiamée avemancinm Af &hn seatAaw T ada
LT Snn ALT LT LUTI LW iCiiba 13 LHE ViadUuTi L TAPMAIIOLIVIL VL Vil QLal vl oo dus
shape. That is, if L, (X;) describes the stator blade shape, then
. -
Jx) = -~ A, -2 A cend
nat
where
X, = Cycoo C, & X, € ¢
An analogous expression defines the A, . The quentities K_and 7, will be
discussed further below.
b) Stator Unsteady Lift Resulting from Passage of Steady

Rotor Loads

r I
Z, = L [_;"ﬂ; [1—(1-/3R)c cos 7'\:] GyK (Lag, 16 Ms)

- : U U
dgy -io {-mhog [ (1 eitamog-d YKo L]
Gy = no;(&—i*)e "JWH e . Vs con &y Va }
et n R - A
T I TP A
¥ o= -indoe “E
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The function K _{ 2,6,M)represents the airfoil respense to a gen-
eralized Kemp-type upwash gust. In Equation (6} of Reference 74, it was given
as the sum of an infinite series of products of Bessel functions. Kemp38
iater showed that the series could be summed analytically, and gave the closed

form expression:
K@, 6, M) = J@) [Cia) T+ T ]+ [5—‘*_)?][_7,@) J6) - 3,013 3,68)]
with either & or s subscripts, as appropriate above. Here
JX) =2 Jx) - J(X)
and (x) is Theodorsen's function,

K, (« X)
K (0 X) + K (i X)

C{xX) =

where K, and K, are modified Bessel functions of the second kind with imaginary
arguments. This 1s the form for K_used in the present study; using it,
Osborne's original numerical results were reproduccd to within the reading

accuracy of his curves.




Furtherinore, 1t has recently been notcd39 that Osborne's original
asymptotic aerodynamic analysis does not appear to be consistent to first order
in his small parameter Pﬁ;J/zzijgl, as c]aimed.z7 After re-doing the analysis
starting {row the integra' equation for blade louding in unsteady flow, it was
found that all ot Osborne's expressions remained valid provided that T was
replaced by T ',“9 where

= [MPofm] a
=L 4ot
FMi o Bhe GeB)+ (1 -B) I M- Ln2; fco=0
again with either & or 5 subscripts. Accordingly, this revised definition of
7 was used in bhoth potential interactions above for the present study. Note

that this is no way alters the fact that tne equations still reduce to those

.. 2 . .
of Kemp and Sears™ av incompressible speeds.

. PV, C
Y, = - /; G, T (47,5 £0,)
ol
? . 1 1 ; - ___Hs v 2 * .r.t—r.i"_é
G V, 2.42C,%0im | 0.080; (C,,>/‘(Z "e‘ﬁ“’“e[ (Zas) z.c,J
v a4 - ut:2 il
+ Va (-42[— + 0.3) Cas g 2 Cs
-]
where
zZ, Vv,
Zoa (L e o, + = —1—> -0.7
Cy \ ¢, A j

and Z, is some chosen value cf X, between -C, and + ., , usually the quarter-
chord point. The other quantities arc given in a) above. As originally
derived by Osborne, T , which represents the airfcil response to a sinusoidal

gust, was given as

T(Lt,, 2a,) « J(lz) Shn,)
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wkere J(x) is defined above and Sx) is Sears' original incompressible

respornse function:

S(x) = - ! _—
XK Goxo + K o(0x) ]

However, Amiet*U has shown that if this expression is multiplied by the phase
(M, n . . .
factor ¢ *f ® , the result move closely approximates numerical solutions

for the loading. Thus, in the present study

B L'F(M)ﬂ,t
Tlry, 2a,) = JUATHS(A0)e

where £ (m) 1is defined in t) above. Note, however, that use of Osborne's
erigiral T , and not t° , is retained in this expression; also, the magnitude
remains unaffected. Again, the above results reduce to thcse of Kemp and
t‘lu.‘ﬂ

sears in the limit M =0 . (The factor e in G, is a phase shift reflecting

Osborne's alternate choice of the blade row positions at the instant t=o ).

Having quoted the aerodynamic expressicns appropriate to a stator-

rotor pair shown in Figure 12a, we new consider how these can be applied to

the rotor-stator geometry of Figure 12b. As noted by Osborne,24 the only thing
in his two-dimensional model which distinguishes the rotor from the stater is
that by definition the rotor is the blade row which moves with respect to the
duct. Since the row stagger angles, blade profiles, etc. all appear as input
parameters a Osborne's analysis, these are readily swizched. But the rac:
that it is now the upstream blade row which is moving is not consistent with
his modei. This is easily remedied by a Galilean transformation to coordinates

moving with the rotor, as in Figure 12¢, so that the stator now appears in mo-

tion. Noting the sense in which e, and «, are defined positive in Figure 12a,
a compacison of Figure 12¢ with Figure 12a suggests that the interaction forces
' in the reverse geometry of Figure 12b are direvctly related to those of Figure 12a

it one simply substitutes
o, = -& o, = ~ & Us=-U
in the ab:ve equations and reverses the subscripts /8 and § winerever apprepriate.

! At f.rst glance, the reader might be bothered that we appear to be computing
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the forces in the wrong coordinate frame, so to speak, i.e., with the stator
moving and the rcotor stationary. But we are only concerned with the force
magnitudes and thcir relative phasing between blades, which, of course, re-
main the same provided we always measure in a Galilean frame. In using these
forces in the subsequent acoustic calculations, we revert back to duct-fixed

coordinates [see Equatioms (13a-c) in the main text] .
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AFVENDIX C

MASS ARD MOMENTUM BALANCES FGR SINCULARITY AnxD
ROTOR FLOW F1ELDS

Tests pervormed on the souvce, dipole, and rotor flow field solu-
tions aurived in Section iV to determine if they satisfy global mass and mo-
mentum conservaticn are described here. 7The control volume employed is bounded
by the duct walls and the annular arcas perpendicular to the duct axis at up-
stream and downstream infinity {ses Figurc 1g9). Since this control volume
rotates with angular velocity w (in the negative £ -direction), the conserva-
tion laws for a noninertial reference frame must be used. The appropriate
integral forms of the equations for zonservation of mass, momentum, and
angular momentum for such a control volume have been taken from Ref. ol.

Then, these equations have been linearized <o that they are expressed in
terms of the undisturbed flow properties P, , U , and wr, and the perturbation

quantities g, LA s Ve Yy, and Uz . These equations were specialized

further to account for the fact that all the flow field solutioas decay at
upstream inrinity and satisty the ltwundary condition of no flow through the
drct walls. Attention has been confined to the expressions for mass conserva-
tion and to the axial compcnents of the momentum and angular momentum balancss.

Under the present set of assumptions, these expressions become

/_‘f-, AT
m - J / ( Puy Vs +IA’)[:), rdroé {C-1)
£ a0
6 9
Ay pan |
o . 1
o // \.2/0,,UU£ el +—p), rardé (C-2)
urN P r®
/,,ﬂ/‘rr S8
:}E = "‘2J. / \/‘/Ck(u.)/‘u;.)/‘dfdﬁdi! (C-3)
-l 4, @
~
-\";-/\-777
. 2 -
+ // [/Oa,Uf"Ué-fw" (Ipmva wpU)] rarddg
Yo B
#
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where M denotes the rate of introduction of mass into the control vslume

while 7, and J, arc the axial components of the net force ana torque on the

fluid. In the discussicn which follows, the flow field solutions obrained

for a mass source, pressure dipole, rotor blade thickness distriburion, and

rotor leading distribution are shown in each case to give the values of n,
#; » and ;; required to satisfy these conservation laws.

1. Mass CSource
The flow field due to a point source which is located av the point
(r,, 8, , £, ) was given in Scection IV-B. The mass addition rate into the

control volume, 7, due to this source is just the following volum: integral:

@ a7 r,

P ff /' P O(r-r,)d(@-6)d(2-2,) i R

1 j / Lom — rardfdz = p,d (C-4)
_huo Vr

P

a

This rate of introduction of mass must be balanced by the mass ilow out of
the control volume, as erpressed by Eq. (C-1}. Using Eq. (54) to eliminate

p in faver of o, that expression for M becomes

fo 227
£
mo= //(pm i, f oy y) rdédr (C-5)
J Ao
r o Z ~m
M
From Egs. (83b) and (83c), the limiting values of ¥, and o for 2 —w are
found to be
e
b () = M (..5;_ >
F E S L&
Z —ew s znﬁ’rr 1- 42 (C-ua)
- Q 2
Lom Y, ( )
7 - ’PS lon.' 277/84"74 ,_ﬁz {\L bb)
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Substituring these res.its into Eq. (C-5), it is easy to show that the inte-
gration yields %W-/;,Q and so the source solution satisfies global con-

servation of mass.

The presence of a source in a mear flow results in a force on the
fluid. To first order, the force due to a point seurcec of strength @ in an

undisturbed stream with velocity U, is

~

o 2”,,'} -
5 [ = dr-r)d(6-8,)d (-2
? - /Dno/ i ‘/ U, @ rdrdédz (c.7)
Yew Ju r, e
The axial component of this forcge, 7, . is PV @ . This force on the fluid
must be balanced by the momentum tlux and the pressure forces at the sucfaces

of the control volume. For the control volume being considered here, this

balance is expressed by Eqg. (C-2). Again eliminating A in terms of p , that
equation becomes
TS |
<
7} -\/‘\/‘[,2(0‘,.Uz/‘,_I + {1+ M )70:]{ rodQdr (C-4) !
I;‘ o '2""' ;

If the results tor (Ut% and g5 given in Eq. (C-6) are substituted in Eg. (C-8),
it is straightforward to show that this expression reduces to Fa = Aol Q
and kence the source solution also satisfies the axial component of global

momentum conservation.

In the present application, the presence of 2 source also results in
a torque on the fluid becausc the undisturbed stream has a rotational component.
Since the & -component of the undisturbed velocity is oo the axial component

of the torque on the fluid is

=

i ry
/1 -
dr-r)d(0-8,)dz~ z)
J, - 'D’J/‘/ f(wr)rQ ¢ ~rdrdéoz = /qau)r;"c?
-n 0 Tu

r
.

(€-9)



Conscrvation of angular momentum requires that this also be the result of
the integrations over the source sclution indicated in Eq. (C-3). First we

write Eq. (C-3) in the form
Jpo= m2d, v, (C-10)

where d, is the volume integral end <J, is the surface integral. From Eq. (83a)
it can be seen that (v,j, dzcays for Z -»m . F¥hen Eq. (C-6) is used for

the limiting values of (1) and <, the surface integral becomes similar to

H
those already evaluated in the Mand % expressions. The result for oJ, is

o . = (00, luQ"L‘—'_":"' (C-11)
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in Eq. (81), the following intermediate result needed in , can be obtained.

o an
gl /‘ ~ .
a ® Rog (03} d R_, ()
| U ABAdE = - e T - ok C-12)
J B} K., (el 4
Sm o ' \ U /

Also using the definitvion of A ; frem Ey. (71), the expression for <, at this

stage is
""
- A g (0,) o R g(r)
W = - 0 w o - 7l <
<, Pn Q;,, o [ - (C-13)

-

Next an integration by parts is carried out and Lys. (70) and (74) are used

in the result so that o, becomes

g, =~ fawl [ R’,,,(cr,)/ -;- Ratr)ecdo (C-14)
L XX
Y

The summation in (C-14), but tor the *=0 term, is the Fourier-Bessel expansion

for r,'/z in terms of the zeroth-order eigenfunctions, R,4(d;) . The
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final result for d, is

2
Omwr; 0- ’Gw “)a 2
2, = - > = (e (C-15)

Using Eas. (C-11) and (C-15) in Eq. (C~10) yields

-, a
‘]2 - pm &) ry Q (L-l())
which is the result required for the source solution to satisfy conservation

of angular momentum (see Eq. (C-9)).

2. Pressurc Dipole

The pressure dipole singularity should result in a net force on the
fluid, but it should not introduce any mass. Hence, in this case the rate
of mass addition to the centrol volume, 9, must be zero. Before substituting
the results for the dipole flow field into kg. (C-1) to check fur couseivation
of mass, these results are rewritten in a somewhat different forw. The in-
tegral of the dipole pressure field, 4, , along the stream direction as given
in Eq. (100a) is labeled I, (Z) . Then, from Egs. (99) and (100), the

normal velocity component is

1 (2 Sr-r,)d(z -2
- - ! d ol’) - D : ;c H(z -z ) (C—]_7)
e /ONU (7/1 Pa)U ra °

(v,)

an
is recalled that 7 is held constant in the integration along streamlines,

Now if £~ is written in terms of 3%;); i and f%)z ;0 @S in Eq. (115), and it

(v,), becomes

. Az 41 §(r-r)d(4-3,)
(v, = o S Y = V; +(E"_'.'_} o _ D H(z-2)
P U Pallr U 5 puU %
' (C-18) ‘
Using Eq. (53) to relate (i), to 4, and then using Eq. (10ib) %o obtain !
(rgl), from (vyp), and (vg), :
il 0 ux dir-r)dg- : :
(Ui)a - €, . w) : c . ,MV = . 4 4‘;) H(z 'l.) .
/O“'U PWU 3; )Ouu o N
(C-19)
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In order to evaluate the integral in Eq. (C-1) we need the limiting forms

of £, and g%“—‘- for # —~ @ ., These quantities arc found to be

5 D - 3
L% ] < ————e— . AL Y < s
z __m~pc 271/32,,.1_2 N ]-'ﬁl) (C-20a)
(C-20b)
iI ~ & ! © n(&-2) F3
lom _UL_)_. (o = - o hw S Q2 . n
= . (o x (TR a0 € -
7w U F] Z: P /3: ,,_rJ — é.- - é:' kY nk n? /\a
L ? + k]

Upon substituting for (), and 0, in Eq. (C-1}, the integral expression for

“m is written
- i) : . N
m w; Fode ot (C-21)

where

5 o 2m
4 o T/- / o ragdr (c-22)
r, Ye Z —+x
Y. a2
31 _(z)
Y = L ./‘ [‘ £ e roédr 27
‘\4 UJ / [U é‘g } a (C‘..’))
“, Yo & o
o [T Sirenidg-g) |
L = | 4 " rdédr (C-24)
Ty o ‘
Now, using Eq. (C-20a) in Eq. (C-22), Jf, is found to be
DAa"n ¥
g, = - - (C-25)

As a result of the ﬁ-incegration,tﬂq vanishes because the rn=0 tem is absent.

Also, since for fixed E,d8@-¢l&, we have

o4 = fi:ﬁ:ifh {C-20)

’ u
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When the results for J,, J,, and d, are added together./m vanishes as it
should.

As discvssed in Section IV-B, the pressure dipole exerts a force J
of magnitude D in th-~ negative n direction (see Figure 20). The =z -component
of this force, Fa »is D sin ¥, . The global momentumn balance as stated in
Eq. (C-2) provides a check on whether the dipole flow field is consistent
with this force on the fluid. Eq. {C-2) can be expressed in terms of the '
integrals «, , 4, , and J. defined above.

7, = Udy + 204, + 20 4, (C-27)

Using the results ir Eqs. (C-25) and (C-26), and the fact that ], vanishes,

the dipole flow field is seen to satisfy momentum conservation.

The force which the dipule exerts also results in a torque 2coting
on the fluid. The axial component of this torque, JQ ., 18 -Dry cos ¥, . In
order for the dipole flow field to conserve angular momentum, this also must
be the value of the integrals on the right-hand side of Eq. (C-3). 1In order

to simplify the description of these integrations, Eq. (C-3) is written

‘7& = -2, v d, +d, (C-28)
vhere
AT
”/‘ r ‘
4, = Pm“’/] /‘% rdrdfdz (c-29) |
:p [ "f" ‘
[rrpxm
- 3 2 -
4, = L UJ / Wa%l ridbdr (C-30) j
6, Yo F Sadd ;
i
!
/\rr n '
i .
gy = ‘JJ/ f r !-,oa,(v;)”+ P, U]! rd8dr (C-31) ’j
i Yo e !
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The radial velocity component for the dipole field is given by Eqs. (98) and
{(100a). 1If the @ und Z integrations in J“ are carrvied out, the following

result is obtained.

(4 27
f , Dam ¥, & Roa(q) dR, i)
/ J/ (v), dbdz = i . L i . (C-32
S Yo /:'-uU//s rp &« (UJ .> ar
U

Using Eq. (C-32) in Ea. (C-29) and substituting for A\, from Eq. (71), the

following intermediate cxpression for J, results.

- .
: [ e Ryl o R ()

4, = = Damy [ ] o Al (C-35

u Jpokes Koy ar w>3)

l‘(

This same integral was evalvated in the angular momentum balance for the mass
source, see Egs. (C-13) through (C-15). Using that result
r 2 + /‘1

B w . :2_1 L ' e T o
d, = E'DM%(z) Tl - (C-34)

The evaluation of ¢, requires the result for (v,), , which can be
obtained from (i), and (v ,), by Eq. (10la). Using Egs. (91, (53), and
(C-18) in Eq. (101a),

' dl,&) Dewow JSir-r0)d-27,)
Wolp = = =i~~~ — H(z-2,) (-39
/oa_ r 5 Pa r,
The limit of -ff_—" for Z — & is given by EqQ. (C-20b) anrd, since the & -inte- -?(

gration of this quantity vanishes, J, reduces to

47 = =Dr, e ¥ (C-36)

A
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The integral 48 is similar to the integrals Ja , £, , and J, done
in connecrion with the mass balance. Substituting into Eq. (C-31) using
Eqs. (54), (C-19), arnl {C-20)

e Cor Iy . *
-.Qa 5 D s (-——-—2 )+ 0 D awn 3y, (7,%) (C-37)

Collecting the results for o, , o and o, from Eqs. (C-34), (C-36), and

(C-37) according to Eq. (C-28) leads to the result J; =-Dr,cos %, , and so

72

the solution for the flow field of a pressure dipole also conserves angular

momentum.

3. Rotor Blade Thickness

The fiow field prcduced by the thickness of a rotor has been ob-
tained by the superposition of source solutions. For closed blade surfaces,
the net source strength must vanish. Hence, conservation of mass requires
that there be no net introduction of mass inte the control volume. It should
be mentioned that blade shapes having flat-faced trailing edges are excluded
from consideration. Bliades having nonzero thickness at the trailing -dge would
require infinite source strength because of the discontinuity in surrace

slope.

In order to separate the rotor flow field into thickness and leading
contributions, it has been assumce that the rotor is unloaded in the thick-
ness problem. In Section IV-C-3, it was shown that the flow tield solution
displays the correct bchavior of zere pressure difference across the blade
surfaces. Consequently, there should be nc net force or torque exerted cn
the fluid by the rotor, provided theze is no blunt traziling edge which re-
sults in a base drag. However, as discussed in the previous paragraph such
a blade shape is exciuded from consideration because of the singularity in

the source strength which results.

When the quantities @ 7. » and J; are conmputed from the mass and

momentum balances expressed in Eqs. (C-1) through (C-~3), ajl ¢f these
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quantities must vanish if the flow field produced by rotov thickness is to
satisfy the global conservation laws., The evaluation of the expressions for
m, ',11 and ‘72 parallels that for the field of a mass source. The flow field
Tesults given in Section IV-C-2 are used to find the limiting values of v,
v, and 4 » which are then substituted in Eqs. (C-5), (C-8), and (C-10).
The results obtained, in this case, are

m = fq, (C-38a)
?; = /O‘” U 7, ((:—381))
'ja= Our "‘)7, (C-38¢)
where
PRCY
g = 5-/ j fr) g(ﬂ,) dzE dr, (C-39a)
™™ [
I Ca
2
q, = 8_/ f r, fen) ;uz,) dz dr, (C-39b)
.f,( =

These integrals are rewritten by substituting the definition of f(4) ?(E,)
in terms of the blade thickness distribution from Eq. £110).

S ArTIY
q, = B /I f ‘l’ 7 +(LI—') Ux 7T dZ dr, (C-40a)
vr, Yo v
" /”- TTSAE s
?2 = B/ J ,;a 1/:*\—-01) UR ‘ig—, d.E. df; (C-40b)
I‘H (4]

But along the blade surfaces, U, —g—,— t{(r,,S) can be written as U '93'2' tir, 2)
v, )

and so the 2, integration which occurs in both 9, and ¢  becomes
2

Co
a... ! = -
/ iz, t(r,,2) dg, tin, 6 -t o) (C-41)
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Now, for closed blade surfaces, T (r,,0) = t(r,, & )0 and s0 g =q = 0
! P

Hence, from Eq. (C-38),M, 7, , and J, all vanish as required.

4. Rotor Blade Loading

The results obtained for the flow field of a lifting rotor can be I
shown to satisfy the global conservation laws by following much the same steps
as for the dipcle field. Again there should be no net introduction of mass
into the control volume, i.e., M «0 . The force which each rotor blade exerts
on the fluid is given by Eq. (138). The axial component of the force of the

whole rotor on the fluid is

c

ol ¥ l‘rf
- w8 . .
7; = / Ap(r,zyrordz (C-42)
IR
where Eq. (50b) has been used for the unit vector n and Eq. (108) has been
used to project an element of the blade surface area on the r , 2 plane.
Similarly, if the 8 -component of the blade force at each radius is determined,

the axial component of the torque exerted by the rotor is found to be

C Iy

T

‘7‘} - -BJI fap(r.z)r~dra'z (C-43)
e

° M

In order to evaluate the expressions for ‘M, %, , and J, derived
from conservation of mass and momentum, Eqs. (C-1) to C-3), the rotor flow
field variables appearing in these integrals are written in the same way as they
were for the dipole field. First of all, the axial component of the mass flux

is written in the form

a-1 ) C¢

w 31w s 24T a2
T FL_ocf(é‘ 5 /J/Af:(r,z)H(z 2)d 2

a

/0w1}é+/oU ’_/31_7}3'*'

(C-44)




where the expressions for o and I are given by Eqs. (134) and (144) respective.y.
The integrand in the relation for “mgiven in Eq. (C-1) contains the limit of
this quantity for Z -« , and s¢ the limiting values of p» and JI/7% arc
necded.
[
e
w Po—
8 [

2 —g— -p(z?,) al zo (C—dSa)
Z—~on 2770 |

t I

I 8 TR e, @ 87
bt 5 m e L L Rapal0)Rppd) e (C-45b)
2am V¥ L0 N mr-E0 ey
[ -]
. eV
[ e (555) ] ,
AP (R, 2 ) de dr

@ &y ]

where A?D(E,) is defined by Eq. (135).

By direct analogy with the dipole results, the expression for Miis
rewritten as the sum of three integrals corresponding to integration over
each of the three terms on the right-hand side of Eq. (C-44). These integrals

are labeled ., , d, , and , , respectively, The first of these is

£

f,fr c‘-/ e w8 Co m
v((3=j / (-8 ZJ—)‘ rdfdr = ——U—Z/ / Ao (r,,2,)rdr,dEz,
e 4 -m e y
(C-40)
where FEqs. (13%5) and (C-45a) have been usced. The second integral vanishes as

a consequence of the integration over & , i.e.,

[ e d
‘2" - J{ (T _é—IZ,:

J

Tu

)! rafdr < 0 (C-47)
‘2 +n

The third integral is




T opAT L 5 24T Ca
A, = // [FZ o (% - 7)/“’(’72/)“]"”"“ (C-48)
. A0

r, e [ °
pCa pfr

“}6 ! ’
\/ splr,2’)rdrdz
o 'y

UA

where again we have used the fact that at fixed 2, d8:d¢. If these three
integrals are added together then the result m:0 is obtained, confirming

that the rotor flow field solution conserves mass.

As with the dipole field, the expression for the axial component
of the blade force computed £rom the momentum balance, Eq. (C-2), can be ex-
aoressed in terms of these same three integrals. If Eqs. (C-46) to (C-48) are
combined according to Eq. (C-27), then the expression obiained for the axial
component of the rotor force agrees with the result of direct integration of
the blade forces given in Eq. (C-42). Hence, our results for the flow field

produced by rotor loading also obey global momentum conservation.

The expression for the axial component of the torque on the fluid
obtained from conservation of angular momentum, Eq. (C-3), can be written as
in Eq. (C-28) except that now the integrals defined by Eqs. (C-29) to (C-31;
contain the rotor rather than the dipcle flow-field perturbations. When the ex-

pression for v, given in Eq. (146) is used in Eq. (C-29), the integral o,

becomes
P o " A
w8 Tt TH w'h 4
vhere
€y rr}
d’ffj Aplr, 2, ) r,drdg, (C-50a)
¢ y
C“lf\rr
_ . 3
d1=/./ ap(r, &) r)drdz, (C-300)
Vo rH
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This result is ottained by carrying out the integrations over € , z , ana r
in that order. The first two are straightfcrward; the integration over r uses
the same technique required to ¢valuate the corresponding integral in the

source and dipole cases.

The evaluation of J, in Eq. (C-30) requires tne & component of
the perturbation velocity. This component of the rotor velocity field can

be obtained from the normal and streamline comporents using Eq. (10la).

Ca

91 TS 2470\ ,
v o= - - Z- =L (r2')H(z-2")d =
& P Ur ¢z O@Ur‘?zod‘( B / Ab(r, g')H(z-2)d

i

? (C-51)
Using the limiting form of 4I /d£€ frcm Eq. (C-45b), and noting that the

integration of this quantity over & vanishes, we obtalu
- ~
od, = -Ba, (C-52)

2 . .
Finallyv, the integrand in Jb is just wr times the mass flux given in Eq. (C-44).
The integrations over r and & are essentially the same as those done above

for 1, and the result is

e = - TE —5— d, + —5 d, (C-53)

Combining.JL, <, . and J, according to Eq. (€-28) gives the same result for
J; as Eq. (C-43). Therefore, the sclution for the flow field of a lifting
rotor satisfies the torque and angular momentum balance. This completes the
demonstration that the flow field results of Section IV otey the global

conservation laws.
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B&K 1/2 INCH MICROPHONE
(POSITION #1, REFERENCE LEVEL)

ACQUSTIC FROBE

_._.::l._l/} D S/ B&K 1/2 INCH

ACCUSTIC PROBE ——# ; o MICROPHONE
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{ DAMPING MATERIAL
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S————
p;
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Figure 2 SKETCH OF ACOUSTIC PHOBE CALIBRATION APPARATUS
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ROTOR SET NO.1, ROTOR STAGGER ANGI.E = 40.0 deg
STATOR SET NO. 1, 5TATOR STAGGER ANGLE = 28.2 deg
ROTOR RPM = 1435, AUDID OSCILLATOR FREQUENCY = 4380 Hz

NOISE SIGNAL —2=

REFERENCE
AUDIO OSCILLATOR —»
SIGNAL

LISSAJOUS
FIGURE FROM
COMBINATION UF
NO'SE AND REFERENCE
SIGNALS

Figure 5 OSC:LIL.OSCOPE RECORDS OF NOISE SIGNAL
FROM HOTOM-STATCR INTERACTION
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