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ABSTRACT

Th•is report presents the results of a research program that had two

major objectives. The first objective was the development of a prototype

rotating stall control system which was tested both on a low speed rig and a

J-85-5 engine. The second objective was to perform fundamental studies of the

flow mechanisms that produce rotating stall, surge and noise in axial flow

compressors and thereby obtain an understanding of these phenomena that would

aid attaining the first objective. The work is reported in three separate

volumes. Volume I covers the fundamental theoretical and experimental studies

of rotating stall; Volume II covers the theoretical and experimental studies of

discrete-tone aerodynamic noise generation mechanisms in axial flow compressors;

and, Volume III covers the development and testing of a prototype rotating stall

control system on both the low speed test rig and&the J-85-5 engine.

Volume I describes the theoretical and experimental investigation of

the influence of distortion on the inception and properties of rotating stall

for an isolated rotor row, and the effects of close coupling of a rotor and

stator row on rotacing stall inception. The experiments were conducted in the

Calspan/Air Force Annular Cascade Facility, which is a low speed compressor

research rig. In addition, the previously developed two dimensional stability

theory for prediction of inception conditions was extended to include the

effect of compressibility and the development of a three dimensional theory

was initiated. These studies led to the following key results. The experi-

mental studies of distortion show that for a single blade row the response of

the blade row to the distortion and rotating stall are uncoupled phenomena and

may be explained on the basis of a linearized analysis. The experimental

studies of a closely coupled rotor-stator pair show that the addition of a

closely spaced stator row downstream of a rotor row delays the onset of rotating

stall. Moreover, the corresponding theoretical analysis predicts this trend

although quantitative agreement is hampered by the lack of appropriate steady-

state loss and turning performance for each blade row at the required operating

conditions. The theoretical investigation of the effects of compressibility

for wholly subsonic flows outside the blade rows indicates that the effects of
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compressibility do not alter the mechanisms of rotating stall as deduced from

the incompressible theory in that the rate of change of the steady state loss

curve with inlet swirl is the dominant blade row characteristic affecting its

stability. Therefore, if the steady state losses are known for the compressible

flow condition, the lineaiized stability analysis is expected to apply.

Volume II describes a theoretical and experimental study of discrete-

tone noise generation by the interaction of a rotor and a stator, and the de-

velopment of a direct lifting surface theory for an isolated rotor. An approxi-

mate model has been developed to predict the sound pressure level and total

power radiated at harmonics of the blade passage frequency for a rotor-stator

stage. The analysis matches the duct acoustic modes for an annular duct with

an approximate representation of the unsteady blade forces which includes com-

pressibility effects. Measurements were made of thle sound pressure levels

produced on the duct wall of the annular cascade facility by a rotor-stator

pair. Predictions which indicated that only the fourth and higher harmonics

could be excited at conditions achievable in the facility, were borne out by

the experiments. The calculations of the sound pressure levels for the propa-

gating modes were significantly below the measured values. This discrepancy

is believed to result from inaccuracies in existing models of rotor wake

velocity profiles, which are shown to have a strong influence on predictions

of the sound pressure levels of the higher harmonics. Volume II also contains

the formulation of a direct lifting surface theory for the compressible,

three-dimensional flow through a rotor row in an infinitely long annular duct.

A detailed derivation is given for the linearized equations and Uhe corres-

ponding solutions for the blade thickness and loading contributions to the

rotor flow field. The governing integral equation for the blade loading in a

lifting surface theory is obtained for subsonic flow and progress on its

solution is reported.

Volume III describes the development and testing of a prototype ro-

tacing stall control system. The control system was tested on the low speed

compressor research rig and on a J-8S-S turbojet engine. On the low speed

research compressor, the control was tested in the presence of circumferential

inlet distortion. These tests were performed to demonstrate the ability of
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the control to operate satisfactorily in the presence of inlet distortion and

to aid in the selection of stall sensor configurations for the subsequent

engine tests. The control system was then installed on a J-85-5 jet engine and

its performance was tested under sea level static conditions, both with and

without inlet distortion. On the engine, the stall control was installed to

override the normal operating schedule of the compressor bleed doors and inlet

guide vanes. The J-85-5 was stalled in two ways, first by closing the bleed

doors at constant engine speed, and second by decelerating the engine with the

bleed doors partially closed at the beginning of the deceleration. A total of

41 compressor stalls were recorded at corrected engine speeds between 48 and

72 percent of the rated speed. In all cases, the control took successful

remedial action which limited the duration of the stall to 325 milliseconds

or less.
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SYMBOLS

Separate li:•ts of symbols are given for Sections IlI and IV.

SYMBOLS FOP SECTION III, APPROXINtATE MODEL OF ROTOR-STATOR INTERACTION NOISE

0-o undisturbed sound speed

A?, Glauert coefficients, Appendix B

/,• admittance of nrin mode, Equation (27)

B number of rotor blades

h axial separation of blade row centerlines

C dcCf semi-chord pengath)

C l drag coefficient per unit span, Equation (37)

CL lift coefficient per unit span, Equation (43)

• r total pressure loss coefficient

ds blade spacing

FR,F, force per unit volume exerted by blades on the air

4 hub/tip ratio, r, ,/ri

4 acoustic wave number, iN 8di/aI.o

A Equation (18)
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SYMBOLS, SECTION III (Cont'd.)

LRL total unsteady lift per unit span

unsteady load harmonic index

"in radial mode index

M*' axial flow Mach number

N; harmonic of blade passage frequency

n azimuthal mode index

pressure perturbation.

Fourier decomposition of pressure field, Equation (6)

n • pressure modal amplitude, Equation (18)

P° LL total sound power radiated along the duct, Equation (28)

",' sound power in (n,m) mode

dynamic pressure

Rn(vradi.,- eigenfunctions, Appendix A

r cylindrical radius

rr hub, tip radii
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SYMBOLS, SECTION III (Cont'd.)

S acoustic source distribution, Equation (4)

S',, Fou'rier decomposition of source distribution, Equation (7)

SPL sound pressure level, Equation (23)

t time

U• uniform axial velocity

U tangential velocity, -ar

U axial velocity perturbation, or viscous wake velocity defect

uL L., axial velocity mode amplitude, EquatiQn (27)

V, mean velocity relative to blade row

-v, radial eigenvalue for (n,rn ) mode, Appendix A

X axial coordinate

Sx5 axial location of rows in line dipole model
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from the three interaction mechanisms, Equation (11)

y viscous wake half-width

0,S blade row stagger angles
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(l-M1)l/2

(5(x) Dirac delta function

2 Fourier transform variable in axial coordinate

0 azimuthal coordinate

n I, 1 / r.

•)g fundamental blade loading frequency• Equation (12)

p. undisturbed density

6" dimensionless radius, r/•r

L&, t
0" propagation angle of (nrvn ) mode, relative to dipole axis, Figure 14

f. rotor angular velocity, radians/sec.

w acoustic frequency, Nf 8.a.

< ) denotes time average over one blade-passing period
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X complex conjugate
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SYMBOLS, SECTION III (Cont'd.)

Subscripts
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Superzcripts

L,d refer to upstream or downstream propagating waves, respectively

SYMBOLS FOR SECTION IV, DIRECT LIFTING SURFACE THEORY FOR A COMPRESSOR ROTOR

a, undisturbed sound speed

R vector defined in Equation (63)

Ph coefficient in polynomial expansioin, for axial variation of blade loading

P,6. real part of coefficient defined in Equation (173), see Table 3
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SYMBOLS, SECTION IV (Cont'd.)

5 number of blades

6,6. imaginary part of coefficient defined in Equation (173), see Table 3

C blade chord

C axial projection of blade chord

CL)
CB• coefficient defined in Equation (173), see Table 3

df~,d, integrals defined in Equation (C-50), Appendix C.

D dipole strength

D,8* quantity defined in Equation (167)

r) e, 6 unit vectors in cylindrical coordinate system

f function of radius appearing in blade thickness distribution,
Equation (110)

F force per unit volume

Snet force on control volume

axial dependence of blade thickness distribution, Equation (110)

G Green's function

U)
,6 quantity defined in Equation (178)
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ratio hub radius to tip radius

H( ) Heaviside step function

I,12 surface integrals in Equation (66)

1(z) integral of pressure perturbation along streamlines

• integrals defined in Appendix C

A radial mode number

K, 4  radial eigenvalues

L operator defined by Equation (58)

Lmsk quantity defined in Equation (173)

multiple of blade nuxnber for azimuthal mode, / = 8

mass flux to first order in perturbation quantities

M Mach number of undisturbed axial stream, U/Ca.

MR Mach number based on undisturbed relative velocity in blade fixed
coordinates, U 6/L.

MT Mach number based on rotor speed at blade tip radius, wrT/ a,

n- azimuthal mode number or coordinate mutually normal to undisturbed
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unit vector normal to undisturbed streamline and radial directions

17c blade camber line

1)7,L. distance to upper and lower blade surfaces

- pressure perturbation
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terms in expression for pressure perturbation, Equation (148)

A-P local blade loading
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Pi terms in polynomial representation of blade loading, Equation (190)

0. source strength

,z integrals defined by Equation (C-39), Appendix C

r radial coordinate
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(17,) terms in normal component of perturbation velocity, Equations (160)
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V volume
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SECTION I

I NTRODUCT ION

The useful operating range of a turbine engine compressor is greatly

influenced by its stalling characteristics. The optimum performance of a

turbo-propulsion system is usually achieved when the compressor is operating

near its maximum pressure ratio, However, this optimum is generally not

attainable because it occurs close to compressor stall a.id unstable flow con-

ditions. Because of the serious mechanical damage that may result during com-

pressor stall cycles, a factor of safety (stall margin) must be provided

between the compressor operating line and the stall boundary. This is usually

done by prescheduling the primary engine controls. However, the prescheduling

approach can lead to the requirement for a large stall margin in order to keep

the engine from stalling under all possible transient and steady state flight

conditions. It is clear, then, that an engine control system that can sense

incipient destructive unsteady flow in a compressor and take corrective action

would allow for reduced stall margins in the design and thus lead to large

engine performance and/or efficiency gains. Recognition of this fact has been

the motivation for a continuing program of research that the AFAPL has sponsored

at Calspan dating back to 1962.

The work at Caispan has been both theoretical and experimental in

nature and has been aimed at obtaining a sufficient understanding of the rotat-

ing stall phenomena such that its onset and its properties can be predicted

and controlled. The capability of predirting the onset of rotating stall on

isolated blade rows of high hub to tip ratios in low speed flows was demon-

strated in Reference 1. In addition, the basic feasibility of developing a

rotating stall control system was demonstrated in the Calspan/Air Force Annular

Cascade Facility. This present report sunmnarizes the latest three year

research program at Calspan. The specific goals of the present program were

to extend the fundamental studies of rotating stall to consider the effects of
compressibility, blade row interaction and inlet distortion; and to extend the

m l l m l m l m mI



fundamental aerodymamic and acoustic analysis of flow through a compressor.

In addition, the rotating stall control system was validated by successful

ground tests on a J-85-5 turbojet engine.

The work is reported in three separate volumes. Volume I entitled,

"Basic Studies of Rotating Stall", covers the theoretical and experimental

work on the effects of distortion and close coupling of blade rows on rotating

stall inception and properties. In addition, the theoretical analysis of com-

pressibility is treated in the two-dimensional approximation and the initial

development of a three-dimensional theory is given. Volume II entitled, "In-

vestigation of Rotor-Stator Interaction Noise and Lifting Surface Theory for

a Rotor", describes the development of a linearized lifting surface theory for

the subsonic compressible flow through an isolated rotor row. In addition, a

theoretical and experimental study of the noise generated by the interaction

of a rotor and stator is described. Volume III entitled, "Development of a

Rotating Stall Control System", describes the development and testing of the

control system installed on a low speed research compressor and on a J-85-5

turbojet engine.

In the current three-year segment of the ongoing research program on

rotating stall, the scope of the investigation was expanded to include studies

of the aerodynamics and acoustics of axial flow compressors. Volume II con-

tains the results of this aspect of the program, which consisted of two basic

parts: the theoretical and experimental investigation of discrete-tone noise

generation by the interaction of a rotor and stator, and the development of

the three-dimensional direct lifting surface theory for a compressor rotor.

An approximate model has been developed to predict the sound pressure level

and total power radiated at harmonics of the blade passage frequency for a

rotor-stator stage. Also, measurements were made of the sound pressure levels

produced on the outer duct wall of the annular cascade facility by a rotor-

stator pair. In the development of a direct lifting surface theory, the

governing integral equation relating the rotor blade loading to prescribed

incidence and camber lines has been formulated and progress made toward its

numerical solution. The experimental and theoretical studies of rotor-stator

interaction noise are reported in Sections II and III, respectively. The

direct lifting surface analysis is presented in Section IV.
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SECTION II

EXPERIMENTAL ACOUSTICS RESEARCH

As a part of the work under a previous program, Contract AF 33(615)-3357,

an annular cascade facility was designed and fabricated. Its principal purpose

is to provide fundamental experimental data during and prior to the occurrence

of rotating stall in order to improve our understanding of the phenomena and

for use as a guide in improving the theoretical analysis. In addition to the

study of rotating stall, the facility has also been used to provide acoustic

data for comparison with theory and to evaluate the operation of a prototype

rotating stall control system. The fundamental experiments on rotating stall

are described in Volume I of this report and the control system tests are

described in Volume III. This section of Volume II presents the results of

the acoustic experiments.

Two sets of experiments were performed in support of the theoretical

developments described in Section III and IV of this volume. The first set of

experiments were designed to provide data for correlation with the approximate

theory of Section III for the prediction of rotor-stator interaction noise.

In these experiments, the far-field sound pressure levels generated by roto-

stator interaction were measured in the constant area annulus upstream of a

rotor-stator stage. These measurements were performed over a range of rotor

speeds for two different stagger angle settings of the stator blades. The

second set of experiments were intended to provide a measure of the tip pressure

loading on an isolated rotor for comparison with the direct lifting surface

theory of Section IV. In these experiments, time-varying records of the outer

wall static pressure fluctuations caused by blade tip passage were obtained

for a number of different chordwise locations on the rotor blades. The scope

.of these tip loading experiments was very limited.

The order of presentation of the experimental studies in the remainder

of this section is as follows. A brief description of the annular cascade

facility is presented in Section II-A. Section II-B presents the results of
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the measurements of noise caused by rotor-stator interaction. This is followed

by the presentation, in Section II-C, of a typical set of results obtained for

the blade passage fluctuations on an isolated rotor. Finally, some concluding

remarks on the experimental studies are presented in Section II-D.

A. DESCRIPTION OF ANNULAR CASCADE FACILITY

A detailed description of the annular cascade facility has been pre-

sented in Reference 1, and further details are given in Volume I of this

report. Only a brief description of the facility is given here.

The annular cascade facility consists of a test section built around

the outer front casing of a J-79 jet-engine compressor with a Calspan fabri-

cated hub. The facility includes a bell-mouth inlet on the outer casing and a

bullet nose on the hub to provide a smooth flow of air to the test section.

Outlet ducting is connected to an independently variable source of suction to

provide the required flow through the annulus. An electrically powered two-

speed axial flow fan is used as the source of suction. Continuous control of

the mass flow is achieved through the use of variable inlet guide vanes to the

fan and a variable damper in the fan exit flow.

The test section of the annular cascade forms a circular annulus with

an outer diameter of 29.35 inches and an inner diameter of 23.35 inches which

provides a hub-to-tip ratio of 0.80. The outer casing will accept up to six

variable stagger angle stator rows. The hub has provision for two rotor rows

at the third- and fifth-stage rotor locations of the J-79 compressor. At the

time the acoustic studies were performed, either rotor row could be rotated

while the other was held fixed or both rows could be rotated together. The

rotor assembly was powered by a 24 horsepower hydraulic motor. Rotational

speed was continuously variable in either direction between zero and approxi-

mately 1500 rpm. An external hydraulic pump system powered by a 30 horsepower

electric motor was used to provide power for the hydraulic motor.

4



Although the speed range of the rotor was restricted at the time of

these tests, it was possible to perform acoustic tests for comparison with the

theory of Section III, The flexibility of control and the relative absence of

background noise in the facility are features which were highly useful in the

performance of the tests.

B. NOISE GENERATED BY ROTOR-STATOR INTERACTION

The configuration of the annular cascade used for the rotor-stator

interaction studies is shown in Figure 1 along with some details of the micro-

phone-probe assembly used in the acoustic work. The rotor-stator stage

studied is designated Rotor Set No. 1 (46 blades) and Stator Set No. 1 (54

vanes) in Reference 1. These are modified blade rows from the fifth stage of

a J-79 compressor. Their characteristics and performance when used as iso-

lated blade rows in the annular cascade have been presented in Reference 1.

The mean stagger angles (at mid-annulus) were R = 400, Ms = 37.20 or 28.20,

and the semi-chords C, = .0604 ft. and C. = .054 ft. The axial separation

of the iid-chord planes was b = .125 ft.

The sound pressure levels produced by rotor-stator interaction were

measured on the outer casing upstream of the rotor. In taking these data, the

fan system downstream of the annular cascade was turned off and the fan was

allowed to rotate freely under the influence of the flow generated by the

rotor in the annular cascade. In addition, all dampers in the downstream

drive system were opened wide. It was convenient to use this wide open con-

figuration because it was found to provide nearly constant inlet swirl angles

relative to the rotor. That is, the.mean axial velocity in the annular

cascade increased in direct proportion to the rotor angular velocity. This

feature made application of the rotor-stator interaction theory much simpler

because the dimensionless steady state loss and turning performance data for

the rotor also remained approximately constant with changing rotor speeds.



A Bruel and Kjaer (B & K) acoustic-probe with its tip flush with the

inner surface of the compressor casing was used in combination with a B & K

condenser microphone and sound level meter to measure the interaction noise.

The sound level meter output was recorded on an instrumentation quality FM

tape recorder. The recorded data were processed later on a modified General

Radio Type 1921 real time analyzer to obtain one-third octave spectra of the

signals.

The tape recording of the noise was necessary because the rotor-stator

interaction harmonic frequencies were above the frequency range available on

the real time analyzer. The maximum frequency accommodated by the spectrum

analyzer is the third octave centered on 2500 Hz while the noise harmonics

extended up to approximately 5000 Hz. The effective frequency range of the

noise spectrum was reduced by a factor of four bqv recording at 30 ips and playing

back for spectrum analysis at 7-1/2 ips. Absolute calibration of the complete

system including the tape recorder was obtained by recording a 114 db signal

from a General Radio microphone calibrator at the beginning and end of each

tape. These calibration signals were used to set the gain of the overall

system when played back through the spectrum analyzer.

Within the frequency range of interest, the response of the microphone-

sound level meter system was essentially flat. However, the acoustic probe

assembly introduced frequency dependent distortion to this flat response.

Thus, it was necessary to obtain a calibration for the complete system in-

cluding the acoustic probe. A sketch of the acoustic probe calibration

apparatus is shown in Figure 2. All of the apparatus shown in the sketch is

manufactured by B & K. The calibrator consists of a small cavity into which

sound is introduced by an earphone speaker. For a given excitation of the

speaker, the sound pressure level in the cavity is measured by the microphone

in its reference level location (position #1). The acoustic probe is in

place during these measurements with a dummy microphone inserted in its end.

Following the reference level measurements, the microphone is inserted in the

acoustic probe (position #2) and the dummy microphone inserted in the reference
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level lucation (position #1) . The sound pressure levels detected by the micro-

phone in the probe are then determined for the same speaker excitation as used

in the reference level measurements. The difference between the two sets of

measurements provides a frequency dependent calibration for the probe.

In the current work, the probe was calibrfted first without any steel

wool damping material in the tube. This calibration showed a rather large

(12 db) probe resonant peak at approximately 1900 Hz. The probe was then

calibrated with three different degrees of steel wool damping and a final

damping configuration was selected for use in the noise measurements. The

sound pressurc levels measured with pure tone excitation of the earphone

speaker are shown in Figure 3 for the frequency range of interest and for both

microphone positions in the calibrator. Both curves drop off at high frequency

because of frequency response limitations on the earphone speaker. The dif-

ference between the two curves provides the calibration of the acoustic probe.

]he probe calibration is shown in Figure 4. The circular points were

obtained %ith pure tone excitation of the speaker at the indicated frequencies.

These values must be subtracted from the measured noise levels. A second

calibration result is also shown on this figure as solid straight line segments.

This wa., obtained by exciting the speaker with pink noise and analyzing the

result on the 1/3 octave real t.in.e analyzer. The effective 1/3 octave band-

widths of the results arc represented by the length of the horizontal portions

of the segmented curve. If allowance is made for the larger bandwidth of the

1/3 octave analyzer, the agreemnent bQtween the two calibration curves is very

good. Since the rotor-stator interference noise was very close to a pure tone,

the pure tone calibration curve was used in correcting the measured results.

The pure tone nature of the interference noise is illustrated in

Figure S. This figure shows photographic oscilloscope records of the unfiltered

output from the sound level meter. In the upper photograph, the top trace is

generated by the noise signal and the lower trace is the output from an audio

oscillator tuned to the same frequency' as the predominant noise harmonic.
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The jitter in the upper trace signals is caused by the presence of frequencies

other than the predominant harmonic. Tuning of the audio oscillator was

accomplished by setting the oscillos,ope trigger mechanism to fire on the

audio oscillator signal and then adjusting the oscillator frequency until a

stationary noise signal was attained, This procedure led to a number of

possible oscillator frequencies for the noise harmonic. The correct frequency

was difficult to determine because of the jitter in the noise signal. The

oscillator frequency was then deternined by forming a Lissajous figure from

the noise and oscillator signals. The lower photograph in Figure 5 shows the

Lissajous figure corresponding to the upper photograph. The multiple ellipses

in the lower photograph show that the noise and oscillator signals are cor-

rectly matched in fundamental frequency. The multiplicity of ellipses arises

from the same reason as the jitter in the upper photograph.

The procedure described in the previous paragraph was used to determine

the frequency of the predominant pure tone noise for all tests where a strong

blade row interaction signal was obtained. Thus, it was possible to identify

accurately Ahich harmonic of rotor blade passage frequency was being excited

by the interaction mechanism.

Samples of the one-third octave spectra of the interaction noise are

shown in Figures (,a through 6d. TIesc figures are direct reproductions of the

output from the spectrum analyzer. Absolute sound pressure level for any

one-third octave band is obtained by correcting the relative db levels for

system gain and for acoustic probe response. The frequency dependent probe

response correction has been discussed previously. The system gain corr"ection

is indupendent of frequency and is noted on the lower right hand side of each

figure. For the particular examples of Figure 6, system gain is corrected for

by adding 80 db to all relative levels.

Figures 6a through 6d have been chosen to illustrate the extremely

sharp rise in interaction noise as rotor speed is increased over a very small

range of rpm from below cutoff to above cutoff of the fourth rotor blade

passage harmonic. ligures 6a and 6b correspond to conditions slightly below



,utoff. Here the noise spectra are generated primarily by turbulent pressure

fluctuations within the boundary layer en the outer wall and by the free.

wheeling fan downstream of the annular cascade test section. Figures 6c and

6d show the sharp rise in fourth harmonic interaction noise as the rotor rpm

increased to above cutoff conditions. This rise can be seen in the third

oLtave bands cen.tered at 11z x 1/4 = 800 and 1000. both of these third octave

bands respond because the pure tone frequency is nearly mid-way between these

two bands. The measured pure tone frequency is shown on the lower right hand

side of Figures 6c and 6d. It can be seen that the pure tone frequency is

approximately 3600 Htz for both figures corresponding to Hz X 1/4 = 900.

'The correct sound pressure level for the pure tone signal was obtained

from spectra such as shown in Figure 6 by combining the two third octave band

responses closest to the pure tone frequency and then correcting the indicated

SPL for acoustic probe response at the measured pure tone frequency. An

example of the procedure for the data of Figure 6d is as follows.

Relative Level for third octave centered at Hz x 1/4 = 800 is 34.75 db

Relative Level for third octave centered at Hz x 1/4 = 1000 is 39.25 db

1 347S 39, 25.1Combined Relative Level ý 20 log [log 2_0 +log- 20 = 4.3 db

Combined Level Corrected for system gain ý 43.3 + 80 = 123.3 db

Probe response at pure tone frequency (3610 Hz) = -4.7 db (from Figure 4)

Corrected pure tone Sound Pressure Level = 123.3 - (-4.7) := 128.0 db.

The pure tone frequency in all cases where it was measurable corres-

ponded very closely to either the calculated fourth or fifth harmonic of rotor

blade passage frequency. For the example given above, the calculated fourth

harmonic of rotor blade passzngc frequency is 3588 Hz and the measured pure tone

frequency is 3610 l1z. The difference between the two is within the accuracy

of the audio oscillator used in the measurements. For conditions below cutoff

such as shown in Figures 5a and 6b, the sound pressure levels for the fourth

blade passage harmonic were estimated from the data uý,ing the calculated fourth

harmonic frequency and the measured levels in the two third octave bands closest

to this calculated frequency.
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The results of the interaction noise measurements are summarized in

Figures 7 and 8 for rotor speeds ranging from below cutoff to the maximum

speed available. Figure 7 shows the results obtained for a stator stagger

angle of 37.2 degrees and Figure 8 show, the results obtaind for 28.2 degrees.

In both figures, an estimate of the background level in the third octave band

closest to the measured pure tone frequency is also shown. This was obtained

by inspection of the third octave bands on each siae of the band:; used to

calculate the pure tone levels and must be considered highly approximate in

nature. Any data point for harmonic level of the SPL within about 10 db of

the approximate background level probably contains a certain degree of back-

ground noise from the mechanical systems or the turbulent wall pressure

fluctuations. The closer the data point is to the approximate background

level, the larger the contribution will be,

Most of the data shown in Figures 7 and 8 correspond to the fourth

harmonic of rotor blade passage frequency. The fifth harmonic was generally

masked by the backgruund lve .uu Could not ukUtCLt ., [IUWCVtX, for

a stator stagger angle of 28.2 degrees, the fifth harmonic was detectable at

moderately low rotor speeds, where the background noise level was low but the

rotor speed was high enough to allow propagation of this mode in the annular

duct system. The results are shown on the left side of Figure 8,

It was not possible to obtain interaction noise signals at harmionics

of blade passage frequencies below the fourth harmonic. The generation of

lower harmonics would require either a greater rotor speed capability or else

blade configurations that are not available to the annular cascade in its

present configuration. It is unfortunate that the generation of lower har-

monics was not possible because the prediction of harmonics as high as the

fourth presents a test for the interaction theory which may be more severe

than is warranted in the present state of the theoretical development. Never-

theless, these data have been used for comparison with the theoretical pre-

dictions in Section 11, and are discussed more fully there.
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C. ISOLATED ROTOR MEASURFMENTS

In addition to the rotor-stator interaction noise experiments described

above, measurements were made of the fluctuati.ng wall pressures produced by an

isolated rotor. These measurements, which were intended to provide information

on the blade tip loading, were taken at six chordwise locations along the

outer casing wall.

The configuration of the annular cascade was simi lar to that shown in

Figure 1 but with the stator row removed. Rotor Set No. I was used with the

blade stagger angle set at 40 degrees at mid-annulus (48 degrees at the tip).

As noted earlier, this rotor set had been studied previously to determine its

steady state turning and loss performance (Reference 1).

Pressure fluctuations produced by the passage of the blades wele

obtained at rotor speeds of 600, 700, 800, 900 and 1000 rpm, while the mean

axial velocity through the test section was held at 60 ft/sec. At the lowest

rotor speed, the rotor blades were very lightly loaded, while at the highest

speed the loading was large enough to induce rotating stall.

The pressure signals were measured by' a Setra Systems Model 242 TC

pressure transducer closely coupled to a hole in the outer casing of the annular

cascade. The time-varying pressure signals were recorded photographically f'orom

a dual trace oscilloscope. A second signal was used to indicate rotor blade

position. This signal was generated by a magnetic pickup which sensed blade

tip passage past a point or. the outer casing of the annular cascade. Instanl-

taneous blade post.tions with respect to the pressure signals were calculated

from the magnetic pickup signals and the geometric relationship between the

magnetic pickup and the pressure tap.

The six ayia1 stations used for the wall pressure measurements were

situated at 13, 18, 32, 49, 64 and 79 percent of the rotor chord. A set of

results is shown in Figure 9 for the station at 18 percent of the chord.
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These results are typical of the measurements at all six cliordwise measuring

stations. Parts (a) through (d) of Figure 9 show the records obtained at

rotor speeds between 600 and 900 rpm. The relative inlet swirl angle at the

rotor tip is indicaýed for each rotor speed. The instantaneous locations of

the blade pressure and suction surfaces with respect to the pressure signals

are shown also.

As expected, the maximum amplitude of the pressure fluctuations in-

creases with increasing rotor speed. (Note that the scale for pressure

signals varies for different rotor speeds. The scale in each case is indi-

cated to the left of the pressure signals.) Hlowever, the shapes of the

fluctuating pressure signals are unexpected. The data records show that the

maximum wall pressure is reached well ahead of the blade pressure surface at

all rotor speeds. Moreover, a double pressure peak occurs at the lower rotor

speeds, one ahead of the rotor pressure surface and one approximately at the

location of the pressure surface, The peak in pressure at the rotor pressure

u,,rr hraii to disa.-ppe ba r-r O is T increased. The reason for the

unexpected shape of the pressure signals is not definitely known. However,

it is speculated that the results may be caused by three-dimensional effects

associated with the relatively large clearances between the rotor blades and

the outer casing. As explained in Volume I, a blade tip clearance of approxi-

mately 0.05 inches was required to compensate for thr slightly oval shape of

the production J-79 casing which forms the outer wall of the annular cascade.

The fluctuating wall pressures recorded during rotating stall are

shown in Figure 10 for all six chordwise locations. Although the rotating

stall phenomenon is beyond the scope of the direct lifting surface theory,

these data are presented as being of general interest to the overall program;

pressure signals such as the ones shown in Figure 10 are used as stall do-

tectors in the rotating stall control system which is described in Volume III

of this report.
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The rotor speed for the records in P igure 10 was 1000 rpm and tile mean

axial velocity was 60 ft/sec. The oscilloscope sweep speed in Figure 10 is

mLuch slower than in Figure 9 so that the blade passage pressure peaks are

highly compressed. The interest here is centered on the pressure fluctuations

during passage of a rotating stall cell. Each photograph in Figure 10 shows

the passage of two stall cells, The phase relationships between the separate

photographs have no meaning since the records vere not obtained simultaneously.

Figure 10 illustrates that the character of the stall cell passage

signals change considerably with chordwise location on the rotor. Near the

leading edge, the stall passage signals coincide with an amplitude reduction

in the blade passage signals. In this region the combined maximum amplitude

of the pressure signals during stall passage is almost the same as the blade

passage pressure amplitude between stall cells, In contrast, near the trailing

edge the passage of a stall cell coincides with an increase in amplitude of'

the blade passage signals and the ccmbined maximaum amplitude is larger thanm

the blade passage ampli.tude between stall cells.

The rotating stall control system detects unusually large peak

amplitudes in pressure signals such as shown in Figure 10. Control action is

taken when these peak amplitudes reach a prVahtermir.eC ro'rc-cs value. It

is required that only those fluctuating pressure levels associated with rota-

ting stall should initial control action. Tests of the control have shown

that the best performance is obtained when pressure signals, due to blade

passage, are removed by low-pass filters. It is clear from Figure 10 that

elimination of the blade passage signals will greatly improve the signal to

noise ratio for stall detection purposes. This is true even for the pressure

tap locations near the blade trailing edge since the blade passage pressure

fluctuations still have an appreciable amplitude between the stall cells.

D. CONCLUIDING REMARKS

The rosults of two separate experimental investigations have been

presented in Section II. In the first investigation, Section Il-B, the
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far-field noise generated by rotor-stator interaction was measured to provide

data for correlation with the approximate theory prescted in Section 1J I.

In the second study, Section II-C, the fluctuating outer-wall static pressures

generated by passage of the blade tips of an isolated rotor were measured to

provide data for comparison .th the direct lifting surface theory of Section IV.

The rotor-stator interference noise studies presented in Section 1I-B

consisted of measuring the sound pressure levels in the conrstant area annulus

far upstream of a rotor-stator stage, The measurements were made at a series

of rotor speeds for two stagger arngle settings of the stators. The results

contained detectable pure tone components only at the fourth and fifth har-

monics of blade passage frequency. The generation of lower harmonics was not

possible because the rotor speed capability was limited at the time of the

tests. Since the performance of these tests, the rotor speed capability of

the test rig has been increases. It is olanned to use this capability to

perform additional measurements for conditions in which lower harmonics of

blade passage frequency are propagating, The results of the current tests

are compared with theoretical predictions in Section Ill.

The isojated rotor studies of Section Il-C were intended to provide

a measure of the blade tip pressure loading for comparison with the predictions

of the direct lifting surface theory of Section IV. However, the theoretical

development had not reached the stage where quantitative predictions could

be made. Thus, samples of some of the data are presented as of interest in

themselves. Inspection of the results suggest the measured pressures may

have been influenced by rotor tip clearance effects, As such, the results

may not be predictable by the direct lifting surface theory, Nevertheless, a

comparison between theory and experiment would still be of interest.
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SECTION III

APPROXIMATE MODEL OF ROTOR-STATOR INTERACTION NOISE

The interactions betw;een rotor and stator blade rows have lonig been

recognized as a major source of noise in subsonic axial flow fans and com-

pressors. The interactions consist of fluctuating forces which arise because

of the motion of the blade rows relative to one another, and in turn, act as

acoustic sources. Out of practical necessity, little detailed attention can be

paid to the interaction noise at the design stage, where each row is usualJy

modeled as an isolated two-dimensicnal cascade in a steady tLtrlisturbed flow.

Interactions can be kept to a minimum by spacing the rows several chord

lengths apart, but the designer is generally working under size and weight

constraints as well. This portion of the report presents the results to date

of a combined theoretical and experimental program aimcd at a better under-

5tanding of rotor-stator noise generation, and methods for its "allevia'tion

May investigations have appeared in the literature which treat, both

the aerodynamic and/or acoustic aspects of the problem, e.g. , References 2-26,

which is by no means an all-inclusive list. Because of the complexity of the

problem, the various theoretical models represent several combination5 of

simplifying assumpttons needed to make them amenable to analysis. These include

the use of free-field vs. ducted boundary conditions, tw-o-dimensional vs. axi-

symmetric blade rows, and variou0 degrees of approximation to the unsteady aero-

dynamic processes. Probably the most uni-versal approximation, and the most

restrictive, has been the use of incompressible flow theory to estim•ate the

fluctuating blade loads. Strictly speaking, this restricts the range of

validity of these models to very low flow speeds.

As the speeds of modern turbomachitiery are definitely subsonic, and

often transonic, the need to include compressibility effects is obv.oua. The

goal of the present theoretical work is to ii corporate a compressible flow

aerodynamic model into the prediction of rotor/szator interactioni noise.

Published investigations, which allow for compressibility effects in the pre-

diction of unsteady aerodynamic loads, include those by Kaji and Okazaki, 2
2324 26

Mani, Osborne, Whitehead25 and Flceter.
6
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Kaji and Okazaki treat the ncar-field aerodyvnamic and far-fiAld

&-ousti.: regions of the flow in a en tfied lineari :ed tcictmenlit. Thei r ail I ys is

is the most complete because it includes the upwash velocities on each blade

generated not ornly by the forces on that same blade, but also by the forces

(both steady and unsteady) on all the other blades in that same row, as well

as those from blades in the neighboring row. Unfortunately, this requires one

to solve simultaneously for the loading distribution on both rows using a pair

of coupled singular integral equations. Manil23 simplified the problem some-

what by neglecting the influence of the unsteady loading on the neighboring

row. It is still necessary to solve a Pair of integral equations to obtain the

unsteady loading on both rows, but the two are no longer coupled. Similarly,

the aerodynaimlic analyses in References 2S and 26 require the numerical solution

of an integral equation for the loading on each row. These analyses are all

based on two-dimensional cascade models.

It is ultimately hoped that our work on the three-dimensional lifting

surface theory for annular blade rows can be applied to the rotor-stator

interaction problem. This would amount to the extension of the Kaji and

Okazaki analysis to include three-dimensional effects, and is expected to lead

again to a pair of coupled integrAl equations, probably even more complex than

theirs. Hence, it is likely that more experience with the problems of stealy

and unsteady flow through an isolated rotor (reported on in Section IV, below)

would be needed before applying such an analysis to rotor-stator interaction,1.

In the interim, however, it was felt that our understanding of the basic

mechanisms could benefit greatly from the application of a simpler mcdel, and

the corapari son of its theoretical predictions against the acoustic data taken

in the annular cascade (see Section II)

The theory developed under the current prugran avoids the necessity

of solving integral equations, and thus considerably reduces the complexity of

the analysis, as well a>, computing times. In this simplified model, the aero-

dynamic and acoustic problems are treat.ed individually and then matched together.

The aerodynamic analysis is that published by Osborne,24,27 which essentially,

reprcsents the compressible extension of the now classic analysis by Kemp and
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Sears.'3 Osborne's results are closed form expressions for the unsteady

blade loads on both rotor and stator which are easily accommodated in the

acoustics calculation, since no numerical techniques are required. The

principal features of this model are described in Section 111-B below.

The Osborne aerodynamic analysis models each row as a two-dimensional

cascade, which is strictly justifiable only at large hub/tip ratios; even then,

McCune28 has shown that in certain types of transonic flow, no logical two-

dimensional cascade limit exists. The acoustic analysis described in Section III-A

below employs axisymmetric annular blide rows housed in an infinite hard-walled

cylindrical duct with a uniform axial flow. Accordingly, Osborne's expressions

for the fluctuating loads are applied on a strip theory basis at each radial

station. This procedure was followed so that in the event a truly three-

dimensional aerodynamic analysis becomes available, it can more easily be in-

corporated in the model.

The combined aero-acoustic analysis in Section III-C results in easily

evaluated expressions for the sound field in terms of the same duct modes

studied previously by Tyler and Sofrin and Morfey.5,6 A computer program has

been written to evaluate the modal amplitudes in terms of blade row steady

loadings, stagger angles and drag coefficients. From these amplitudes, the

total radiated sound power (either upstream or downstream), as well as the

mean square pressure at any given point in the duct may be obtained.

Se'tion III-D contains comparisons made between the theoretical pre-

dictions and acoustic data taken in the annular cascade facility. Additional

n'unerical results are presented in Section III-E to better illustrate the

effects of compressibility. Section I11-F summarizes the findings and makes

suggestions as to how the theoretical model can be improved.
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A. ACOUSTriC ANALYSIS

In the acoustic model studied, the blade rows are assumed to be

housed in an infinitely long hard-walled cylindrical duct, as shown in

Figure 11. The hub and tip radii are denoted by rH and r-- respectively, and

a uniform axial flow at Mach number M. is assumed. In describing the flow

field, we will use Lighthill's29 acoustic analogy procedure as later extended
30

by Curle to allow for the presence of solid boundaries. That is, rather than

having the blades impose boundary conditions on the equations of motion, we

represent them as distributed sources of mass and momentum which arise from

the blades' thickness and loading, and imagine the fluid to be otherwise un-

bounded in the annulus formed by the duct walls. The linearized, inviscid

conservation equations of mass, momentum and energy in duct-fixed coordinates

are then:

Dp _ (1)

t + F (2)

O _ __ D-p

St Dit (3)

Here - is the linearized substantial derivative

V _ + U a
Dt at a

and 0 , 7o and 7f are the perturbation density, pressure and velocity fields,

rspectively. The quantities ao and U, represent the undisturbed sound speed

and the axial flow velocity, respectively. Q is the rate of introduction of

:2:-s per unit volume per unit time, and F is a force per unit volume; both

Are .unctoLons of x and t Equations (l)-(3) ar.- easily manipulated into

"-Le fnilowing form

___--~- V _t F = S( i, t) J
oD Dt



The only boundary condition imposed on this equation is that the radial

velocity vanish at the duct walls. Using Equation (2), this is expressed in

terms of as

- = 0 at r = r , r()
8r N

In order for Equations (4) and (S) to be of any use, one must have a

priori knowledge of the acoustic source distribution, S( 5z , t) . This is dis-

cussed in the next section; for now we simply observe that solutions of (4)

and (5) can be obtained using a number of methods. The present analysis uses

a Fourier-Bessel transform decomposition. That is, we define transform vari.bles

-p,,,( ,w) and S.-,, (,,w) , corresponding to (X, t) and S ( , , which

are expressed in the cylindrical polar coordinates of Figure 11 as:

27 ý (ir (-u U_ - C1 CL Xe
I A (6)
S- ,' 0

C1 9 e _p r, T-,, 9 Y t)

L eOe S (r r a-), & , x(,L

Nlere r-" r/r'r is a convenient dimensionless radial variable and A - :/

is the hub/tip ratio. The functions R0,.•.. C o.¢- are the set of orthonormal

radial eigenfunctions imposed on the system by Equation (5); they are a linear

cro-1ination of the Bessel and Neumann functions, and are described more fu.11v

£fn Appendix A. The corresponding eigenvalues, rr ,are determined h\' the

condi t ioo

1 9



By substituting for -p and 5 in Equation (4) in tenrs of the in-

verse transforms app ropriate to (6) and (7), one can show that Equation (4) is

then automatically satisfied when the tran form variables have the foljo%ýing

relationship to each other,

S, (132 - Q M, -4 +k/A

whe re

-#0 T 0) 1 ~-

Thus, once .5 is known, 5_, and -p,,g follow from Equations (7) and (9),

respectively. The solution for the pressure field is then obtained as the

inverse transform of Equation (6). Combining these steps we obtain,

IV

x4 rJ j ' fi•7C rfl- (10)

trO

/S 42+ 1•J- + -i

whcre everything on the right is presumed known. For the present study of

rotor-Stator inzteraction io1ise, we are concerned with the fluctuating forces,

and so drop the source term Q appe;ari 'g i, Equation (4).

B. AL RODYNMIlC NOK.EL

It remains then to specify the form of the unsteady forces F exerted

by the blades on the air. For the reasoas discussed above, the linearized

aerodynamic analysis of Osborne 24 was chosen for this purpose. Briefly stated,

the principal assumptions in this analysis are:

(1) Each blade is represented by a two-,im usional cascade in

evaluating its induced velocity field.
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(2) The steady part o7 the circulation about each blade, and hence

its influence on a neighboring blade row, is much greater than

the Lusteady circulation. The latter is neglected, along with

any, associated shed vorticity.

(3) Unsteady velocity gusts parallel to the blade chord are

neglected. This is safe p~ovided the steady state angle of
3]

attack is small, which is implicit in the linuarization.

(4) Isolated two-dimensional airfoil theory is used to estimate
27

blade response to gusts perpendicular to the chord.

As in the original analysis hy Kemp and Sears, Osborne considers a

single stage consisting of a stator followed by a rotor (see Figure 12a).

Since we have aqsumned a uniform axial velocity in the duct as the undisturbed

state In the acoustic model, the linearized aiialvsis is strictly appli.cable

only to stages with small stator stagger angles. Three interaction mechanisms

are considered:

(a) Rotor unsteady lift fluctuations due to its passage by the

steady upstream stator loads.

(b) Rotor unsteady lift due to its passage through the viscous

wakes shed by the upstream stator.

(c) Stator unsteady lift due to the passage of the steady rotor

loads.

For brevity, items (a) and (c) are usually referred to as potential inter-

actions since they would be present even if the fluid were ideal. Item (,

referred to as the viscous interaction, requires the presence of fluid friction.

The potential interaction analysis involves the blade aerodynamic response to

a generalized Kemp-type gust upwash, whereas the viscous interaction is modeled

as the superposition of responses to a frozen sinusoidal gust.
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The sectional lift per unit span on the zeroth blade given by

Osborne f0r each of the above mechanisms may be symbolically expressed in

blade-referenced coordinates as

.r) jZ X e (ila)

I - i--:(lc

LK It) 'u I 1½

where X-1 = XL and similarly for Y, and ?)

The subscripts R and s refer to a blade member of the rotor and stator
r. ...,ow , r s e t v y .11-r .. . ... .. .n. 1 ... .. h* , r.. o• -1 , .- 1 474. .. ..

equation numbers refers to their corresponding interactions (a, b, c) above.

The Xf , Y, , and Z, are the amplitudes of the fluctuation at each harmonic

of the fundamental frequency, whether z), or 5 . (Mo9te: since we are not

explicitly concerned here with the noise field generated by the steady rotor

.oad, the I = 0 term in [Ila, b] is ignored.) These coefficients are given

explicity by Osborne as functions of blade row stagger, spacing and operating

conditions. The full functional relationships would needlessly confuse the

analysis that follows, and so they are given in Appendix B. Since Osborne's

model is a two-dimensional ono, x1 , Y1 and 2. are independent of spanwise

location in his analysis; in the strip-wise apnlication of his results to our

annular duct model, they are assumed to be implicit functions of the radial

coordinate r shown in Figure 11.

The fundamental frequencies zA and V, correspond to the radian

frequency with which a rotor blade (stator vane) encoLuters a stator vane

(rotor blade). In the cascade model, this is related to i:he rotor tangential

velocity divided by the stator vane (rotor blade) spacing. In the present

circular duct mudel, this translates into thie product of the stator vane (rotor

blade) numtber times the angular velocity of rotation, i.e.,
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rrfl - r r (12)

where V and B are the numbers of vanes and blades, respectively, d5  and

2 their spacing, and -a is the shaft frequency in radians/sec.

C. COMBINED AERO-ACOUSTIC ANALYSIS

Equation (4) shows that the contribution to the source distribution

S C r ,) from these fluctuating forces per unit span is in the form of

minus the divergence of the fluctuating forces per unit volume, expressed in

duct-fixed coordinates. That is, the blade rows are imagined replaced by a

fictitious distribution of acoustic dipole singularities, stationary in du.ct

coordinates, whose magnitude and phase are in accordance with Equations (Ila-c).

To determine this distribution, some asumotion must be made regardini7 the

spatial distribution of blade forces in the axial (x) and azimuthal (G) co-

ordinates. For simplicity, we have initially assumed each blade (vane) to be

represented by a line dipole located at its mid-chord. (More sophisticated

models employing a chordwise distribution of loading can be treated, as this

assumption is not crucial to the acoustic analysis.) Noting that Osbor-ne takes

the rotor as having velocity U (-Sir) in what we define as the negative (9

direction (Figure 12a), the fluctuating force field correspond'tng to Equations

(lha-c) may then be expressed in duct-fixed coordinates as

.- Xe C V s (13a)

I i- LVO9 8-1 .1 r~t) I a -1 L dr + fl------

'Y,,j d rA(lt~ SrGat- 'uu "6&c*X - X') (13b

2:-Z. eV ( ( (l3c)

where x1 , xa are the axial locations of the stator and rotor dipoles, vTe

dipole axes are perpendicular to the rotor blade (stator vane) chord lines,

23
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hhich, in turn, are inclined at an angle o-.c L, from the axial dircceLion,

as in Figure 12a. Hence, the divergence of the forces occurring at toe rotor

can be shown to be (neglecting any contribution from the radial direction):

1 CAS ~~6~±>PI(14)

and for the stator,

V - ( t C , &ra$ >?, - (15)

Substitution of Equations (13a-c) into the above expressions gives the

following contributions to S from each mechanism:

,JV0 lvcsn ,- t 4-fl(- x

SV F X, e r6 (0o nI b

z ... • .- (X - -lcýcdt (IX -•

11 dx(16a3

Club

+ ---- n - n ) Xh XR) -the axrs e
r 2

-V-1 '(.mat. 2Tt Lt J6)

4 4vV' Ct, 6x - -S (16e)

SubstitutiulQ 1:quation, (16a-e) in ()then gives the expansion coefficients
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.2 ( • , -- 4 r 7 - V
N8l ri

c S ( c . • o - N B ! ) N I3- V ( 1 7 a )

v (e7b)

6 'Q (17c)

where the sum over the integer N has replaced that over . The notation 2;

indicates that Equation (17) should be viewed as ni being a fixed integer and

ailQwiFig only those tcims in thc sum ovcr N 'which give integral values of 2

This restriction arises because of the following identity which is used in the

derivation of Equations (17a) and (17b).

8-, -(lW•.V *,)3- :- V, N 2 V + ,i = N8 N o ,± ' 1, t -Z .

7 e -~0 O'r'P��~ r 5; -

Similarly, in the case of Equation (17c), use was made of

v- C V(-B V) v Aj EN J.B - .i NV N 0, t Y, t 2,...

e

Physically, these identities reflect the phase cancellations in the duct which

allow only a restricted set of loading harmonics to generate a given azirnuthal

mode.
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1. Pressure_ Mode Amplitudes

Substituition of Equation (17) into (10) gives the desired solution

for Lh2- acooutic pressure field. The integral over 4 is rretdered trivial by

the I rescnce of the delta functions in Equation (17). The integral over

can bc handled in a straightfon,;ard manner using contour integration in the-

complex 4 plane. Thu integrand exhibits two simple poles on the real axis.

The physical requirement that all waves generated by a row should iropagate

away from it determines which, half-plane the poles should be considered to

lie in, and the value of the integral can then be found from residue theory.

For the sake of generality, pressure waves generated in the upstream

direction 'U either row are referred to with a superscript "u", and those in

the dowýtstrcam direction w1IL a "d". A bubscript of either 1 or 2 will be

used to denote whether they originated at the upstream or downstream blade row

(see Figure 13). (in tnis simplified model, no allowance is made for the re-

- ALtiUL Ut Li,.,LIs5aUI ut wave. by a neuighboring row once they are generated.)

This formalism allows us to present results for either the stator-rotor case

discussed thus far, or the rotor-stator case to be discussed shortly, within

the same context. Then, each harmonic of the pressure field is found to con-

sist of four sets of waves as given below:

- R Z 2: P ,,, ( ) e Via)

/1m,0a+ • tP n zi,,% ,.,(1+81-"fl 2  rl~q 2

LA L

where

•o N•Sns>o .lm• = /3- A-_ pA.*,• 2
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•! is the particular harmonic of blade passage frequency being considered.

Thic values, included in the sum over the azimuthal and radial mode numbors,

n and rn , will be discussed shortly. Equations (lSa-d) lhold regardlcss of

the relative positions of the rotor and stator. This need not be specified

until the mode amplitudes •f ' , which are in general complex, are calculated.

For the stator-rotor case discussed above, these are:

-k t

ci>~ 2 2 ( (1092Ca3

€where

P, -- ±, N, ±- * 2 , •

qni

(A. d 1

q~n4 -rr rr ,63 7-&,• " (1 t)

+ t Q 4" Pk M 2 ,X) (X,•,o) + Y- - -

where
S= P41 -iav. N.N¢ .2 = + ,+ .

The upper signs apply upstream, and the lower signs downstream.

In many applications, particularly high bypass ratio fans, the per-

tinent geometry is that of a rotor upstream of a stator (outlet guide vanes),

The same three interactions (a, b, c) listed at the beginning of Section Iii-B
are still involved, provided one interchanges the words rotor and stator.
Rather than having to redo Osborne's entire analysis, the appropriate forces-,
can be obtained from his present expressions using a simple transformation Wi
discussed in Appendix B, and the results written down directly:
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-•,• 4rtr,. / A' ... ! L (lgcii X

2A 1

where

and

•: "(.•,• • -• ) 'xs A,

where

LLV J=N N O, z i z. •

Equations (18a-d) express the pressure field as the superpositio, of

the same spiral duct modes studied by Tyler and Sofrin, 4 and Morfev.' 6  Note

that the rotor-generated field is made up of modes with azimuthal order

NýS - )V , where N; Sfl is the acoustic frequency and ,IVtl the blade loading

frequency. The stator-generated field on the other hand is composed of modes

with azimuthal order j 5- AV , where both the acoustic and vane loading fre-

quencies • -1fl - N.BD.. .Tese rules for determining the azimuthal modes

over which one must sum in Equations (18a-d) are a result of the delta functions

involving w in Equation (17) in conjunction with the special relationships

between ri , N and A" given there. Interestingly, one can see that the rotor

and stator always will each excite the same set of {nv} modes. These obser-

vations hold irrespective of which is the upstream row.
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[Here we are concerned only with the radiated field, and so only those

modes above cut-off, i.e., for which -k, in real, need be considered. This

allows one to pu;t an upper limit on the value of the radial index M , for a

given frequency w and azimuthal mode number r . (The form of the result for

modes which are cut off is the samc as (18), except that -A,_, is then

imaginary; its bgni is determined from the physical requircment that th(* mode

decay, rather than grow, exponentially.)

The mode amplitudes given by Equations (19a-d) are singular right at

the cutoff condition for any one mode, 4 = ,e,, , as first reported by28

McCune in his study of the disturbances generated by the steady loading or,

an isolated rotor. In References 22, 23 and 25, which treat the aerodynamic

and acoustic fields simultaneously in a two-dimensional cascade model, no such

resonance is predicted since the unsteady loads (which we have assumed as given

a l)rioriJ apparentily \anisn at this condition, due to a strong interaction

between the two fields. The experimental results discussed below and in

SecLion 11, however, indicate that the sound levels are significantly higher

near such a condition.

2. Sotnd Pressure Level and Total Radiated Power

On:ce the pressure mode amplitudes, #p . . have been determi;ned from

Lquation (19), expressionis for both the mean square pressure at any point in

the duct and the total radiated power are easily derived for any given frequency.

We denote time averages over one blade passage interval by < > Then since

everything is harmonic in time,

a j •j"i'La •2 20)
(2L.

where
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arid -c i I s the Inagni tride of the sutir of the signals from both rows, i.e., the

Coe t'iCierlt of C.t in Equation (21), after substituting from (18) and (19)

as appropriate. The result is eastly shown to be:

",Olt (.4,.

Ik, z (22L
•.d ±d

, Z Z.v r, ,.fl ,, 1 I%

The last equality flollows froni the fact that the two blade rows aIlway's •NCIL

the same set of [n m) modes, (but with different amplitudes, of course).

Note that (-P") is a function of z,, z ,ore, and 0 , but is independent of

tinc; tho depcndencc on x and & will also dfsappear in situations where only

one mode is excited. The sound pressure level, 51L, then follows from

$PL ;oLo2 1  
( 23)

jheC- -P, 1  2 x 10-I dyrre/cm
2

To obtain the total sound power radiated along the duct, P •d , we

mtst evaluate (Reference 6)

2,n

P + M [L 100 a M"I. <Lt +- <. J> rd "dO

(24)

where L, is the axial tomponent of the acoustic pertarbat ion velocity. The

last term is proportional to the Integral of Lquation (22) over the. duct cross-

section; it simplifics considerably due to the orthogonality properties of the

trigonometric and Bessel functions arid the fact that, for two coaplex

quantities,

30
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The integral of d.p ½ ' then reduces to

(25)

The other terms in Equcition (24) irvolve the axial velocity in some

form. For every pressure wave with amplitude -pý-6 there is a corresponding

velocity wave with the same spatial and time dependence and an amplitude of,

say, The two amplitudes can be relared through the axial component of

the momenLun equation:

.+ - - (26)

wiud., rquircs that

CLd d CL 13 A4 rl
- ,. . ,.,a ... , , , - -(27)

The quantity RA"• may be thought of as the dimensionless acoustic admittance

of an [,,,• ) mode. For the plane wave mode with no axial flow, n I tm i o

it reduces to ;i, as expected. Since . is a real, constant multiplicative

factor independent of x, r and 6 , the contributions to P"' from the first

two terms in Equation (24) can be written down directly from (25).

The complete result can then be reduced to:

1(,M2 \,q-

n aj c• (a 1,,,,,, -Ao,,_, (28)

which is written in such a way that P' and Pd are both positive, i.e., power is

always radiated away from the stage.

-- .. . .IV. 4A- U a & W & ai n e n ... .,



The terms involving the squares of the mode amplitudes represcnt the power put

out independently by each blade row, assuming only its radiation was pIeCsent.

The last term represents an interference between waves emanating from the

separate rows; this would be zero if the two blade rows radiated independently

of one another, i. e, if (arg -P1A arg -, ) were random.

If the acoustic interference effect is sufficiently strong, it may

be possible to "tune" the rotor-stator stage to minimize radiation at a given

frequency by adju--sting the inter-row separation Ix,, -xzl (see Equation (19)).

To achieve maximum benefit, Equation (28) indicates that should ap-

proximately equal ).co',j . However, most modern turbofans are designed with

maximum rotor-stator separation, subject to size and weight constraints. This

usually results in negligible potential interactions between rows (they decay

cxponentially); practically all the noise then results from the viscous w.,,ake

impingement on the downstream row, i.e., in our notation, dp,'

These arguments suggest that moving the rows closer together until they play

roughly equal roles may lead to nolse reduction at a given frequency, if their

signals can be made to destructively interfere. This would probably be useful

only in situations where the acoustic field was dominated by a single

mode. Whether the benefits of such a scheme could be realized in practice

would depend on several factors not included in the present model. One would

also have to consider if such an optimum separation would have an adverse af-

fect on the other harmonics in the spectrum.

Useful qualitative conclusions regarding the variations in upstream

and down.stream radiated power which result from changes in axial Mach number

and frequency can also be drawn from Equation (28). The arguments below apply

to radiation from a single rotor as well as from a rotor-stator pair, due to

the absence of transmission and reflection effects of the other row. Hence

for the sake of simplicity imagine the mode amptitudes of one row, say the

rotor, to be dominant over those of the other row. First we consider the

situation with no mean flow. In this case, Equation (27) shows

32
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14 = - (29)

and the power contained in any one a,• mode, call it P: is proportional

to (from Equation (28)):

Now, from Equation (19) we see that the only thing differentiating o

from J-pý,,j is the sign of that term in the integrand beginning with sin a,

If the integrand is not very sensitive to variations in radius, Equation (30)

can then be written approximately as

~n W

which, after soeme ie-arranfgemcnt gives

Pd ti "I rT
J4~n L2 .____ _ ~L(31)

4'~~~ r-c.o' /

This result is in agreemnent with that of Morfey in Equati-on (09) of Reference 6,

if there one sets t-, o , interchanges n and ni , and notes that in hi:; nota-

tion, 6/ka.~ equals c-4 R/, }o in ours, Equation (31) indicates that cven

when n~~ , equal. amounts of power do not radiate to either side of the!

blade row. This results from the fact that the relative angle between thQ

dipole axis and the propagation vectors of the acoustic mode, sa)' 01r is

different on the two sides of the blade row. The situarioin is -;hown

schematically in Figure 14.

The geomctry of Figure 14 suggests that. this asyrimentr, i~n radiated

power should disappear for modLS propagating very near thIe duý..t axis, whichi

happens well above cut-or(. In this cas.e
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- -0 A"--k(2

and the ratio in Equation (31) approaches unity.

In fact, this can be shown to be true in the more general case with

axial flow; Equation (27) then yields,

,•"' ,(33)

The first factor in Equation (28) then becomes

and it can be shown, again using Equations (19' and (32), that

, < (yI - l) /(34)

Hence, while n7", and P_ will still depend individually on ,147 , their ratio

I eý (35)/3 1 - -k•,

will always approach unity for modes well above cut-off, again in agreement

with Reference 0. Care should be taken not to apply this result very near

the condition of transonic axial flow, M,, - I . Here the upstream radiated

power will vanish, whereas that in the downstream diroction remains finite,

in violation of Equation (35). This is because the linearized analysis on

which these results are based is invalid right at the transonic condition.

D. COMPARISONS OF THEORY WITH EXPEPIMENT AND DISCUSSION

This section presents comparisons between numerical prediction.s from

a computer program based on the preceding analysis and the acoustic data de-

scribed in Section II. Unfortunately, as pointed out in the discussion of

Sec.tion II, acoustic data could be obtairted only for the tourth and fifth

S~3.



harmonics of blade passing frequency. As seen below, this seriously hampers

one's ability to draw meaningful conclusions concerning the model's validity.

The basic inputs required by the computer program are the geometries

of the two blade rows, the steady lift on each of the blades, and the drag co-

efficient of the upstream row, which in the case of the present experiments,

is the rotor. Since at the speeds encountered in the experiment compressibility

effects should be negligible, and the hub/tip ratio is large, a two-dimensional

incompressible r.leory can be used to relate the lift and drag on each blade to

the turning performance and viscous losses across each row. For example,

Horlock32 has shown that the drag coefficient, G. , of each blade is related

to the total pressure loss coefficient, 4Cr , by the following

L -C P 4 ,C3. (36)

where ORn&/SPRN

I, (37)
10 VM,

TOTAL PRESS URE LOSS ACROS5 ROW
A2 a (38)

,, is the mean flow angle, cL the blade spacing, c the semi-chord, and p the

fluid density. It is important to note that/ 3rn and the total pressure loss

must be measured in coordinates fixed to the blade row. Since ce/3- =
V_

V_ being the vector mean of the velocities upstream and downstream of the

blade row, and dt Equation (36) becomes:

m A, r (39)

where B is the number of blades and everything on the right hand side is

either knowvn or measured.

Also, the lift coefficient on each blade, 0 L can be obtained from

the turning performance through:
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c -8,- -,- r4-/32 cr V1,-c Cra (40)

where ,3 and /6 are the upstream and downstream flow angles, respectively.

Letting

o2 4 1 (41)

where z, and it are the tangential flow velocities, again measured relative

to the row, and substituting for d ,13_ and C. from above, we obtain

7r [ -'a - ., (42)sc "T-• •v zc

Now the lift force is actually put into th: rotor-stator interaction noise

program in the form of the Glauert coefficients A. , required by Osborne's

theory (see Appendix B). The first two of these, R. and A, , are respectively

the blade angle of attack and the ratio of maximum camber to blade semi-chord,

assuming a circular-arc profile. They are related to :L by

C -a ",7 (A , + 4 ) (433

Since the angle of attack R; is simply the mean flow angle minus the known

geometric blade stagger angle, Equations (42) and (43) are sufficient to de-

termine A, ; for n greater than one, the P,, are assumed to be zero. In this

way the AF. are computed in such a manner as to use the actually measured

steady loads in the Osborne theory.

For the present acoustic experiments all quantities on the right

hand side of Equations (39)-(43) are either knowni or measured in the case of

the rotor, for which data were taken were over a wide range of conditions in

the previous program. I Unfortunately, since stator performance data were

obtained near rotating stall inception, they do not include the range of inlet

conditions covered by the present experiments. Consequently, stinatr turning

performance uas inferred from design data made available by the mantuacturer

for the corresponding stator in the comp'ete J-79 engine. The outlet flo¢w
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angle at design was assumed to apply for all incidence angles away from the

design value (corresponding to a high solidity approximation). The outlet

angles at the off-design stator stagger angles used here were assumed to

differ from tha designi value by the same amount as the stagger angle differed

from the design stagger angle. Viscous losses were assumed negligible for

the stator; this is a safe assumption since tIC-, has a relatively weak influ-

ence in Equation (42) and the C0 of Equation (39) is not needed for the down-

stream row. The rotor mid-chord location was chosen as X = 0 . Hence, the

coordinates of the piobe in Figure 1 were X -. 979 ft., r = s 1.?21 ft.,

and eo 00.

Due to the large hub/lip ratio of about 0.8, the dimensionless

steady lift and drag co,;•ficients used by the program were input as cornstants

independent of radius. These were computed from the radially averaged turn-

ing and loss data ot Heterence 1. The lift and drag forces do, of CO,(.,-

vary with radius, because all the velocities scale with the rotational speed,

fir To check the validity of using the radially averaged coefficients, one

case was also run with a four-point radial distribution of these coefficients

(also measured in Reference 1). This produced only minor differences in

the results.

Figure 15compares the expernimental measurements of r.m.s. wall pres-

sure described in aection 1I foi the fourth harmonic of blade passage frequency

with the computer predictions for the mean stator stagger angle of 37.20.

The axial flow velocity and rotor rpm were varied in such a way that the .

relative rotor inlet angle, and hence also turning performance, of both rows .4

was held constant for all conditions shown. Figure 16 shows the same compari-

son for a mean stator stagger angle of 28.20. 1

The comparison of absomte levels is seen to be rather poor, although

the shapes of both curves are in general agreement. For example, in Figure 15 S.

both experimental and theoretical curves are characterized by two rathir well
-eA

defined peaks, at approximately 1170 and 1445 rpm in the experiment, and 1.150

and 1415 rpm in the theory. Similar behavior is exhibited in Figure 16. As
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explained under the discussion of Section 11, discrete-tone noise signals

could be obtained only at the fourth and higher harmonics of blade passage

frequency in the accessible rpm range of the annular cascade experiments.

The left hand peak in the theoretical curve corresponds to the operating

point where the r = 22 azimuthal and rn = I radial order mode for the fourth

harmonic of blade passage frequency exceeds the theoretical cut-off condition

and begins to propagate. The peak at the higher rpm corresponds to where the

,l = 22, rn = 2 mode begins to propagate. These peaks are a result of the

acoustic resonance that :.ocurs at the cut-off frequency of'any mode, due to

the vanishing of -kin the denominator of the modal amplitudes ' (see

Equation (19)). The height of the theoretical curve is limited only by the

precision of the computer. The level and shape of the experimental peaks

in these regions are heavily influenced by factors not included in the. ideal-

ized model, e.g., non-linearities, viscous effects, and radial variations in

axial velocity. In view of this a small discrepancy between the locations

of the experiment:,i nnd theoretical peaks, here about 20 rpm, is to be expected.

Note that the pressure levels rose slightly from Figure 15 to

Figure 16, probably a result of tilting the stator load vector closer to the

angle of propagation of the acoustic mode, as well as a modest increase in

flow velocity. Again, it is encouraging to note in this regard that theory

and experiment rose by roughly the same amount

Figuro 17 contains limited data for the fifth harmonic n1oise of Lhe

same rotor-stator pair as Figure lu. The fifth harmonic excites propagating

modes at a much lower rpm. In this case only the n = 14, I - mode is

present, the rpm at which it theoretically exceeds cut-off being just to the

left of that shown. in the figure. Here, the shapes of the twc curves are

only mairginally similar, and the discrepancy in absolute levels is even wider

than in Figures 13 and 16.

This discrepancy in absolute level between theory and experiment

bears further discussion. For the experimental rocor-stator stage having

46 blades in the rotor and 5A blades in the stator, the nI = 22, ,n = 1,
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2 modes in Figures 15 and 16 are generated by the third loading harmonic on

the rotor in concert with the fourth loading harmonic on the stator (see Equa -

tions (19c, di). Moreover, computer resuits indicate that at these conditions

the potential interactions between rows are negligibly snall in comparison

with the viscous interaction. Hience, the question is reduced to how well the

model can predict the noise resulting from the fourth loading harmonic on the

stacor induced by its passage through the rotor viscous wakes. (Figure 17

involves the fifth harmonic of stator loading, and hence is an even more

severe test of the model.) Since the velocities involved are all low enough

to be considered incompressible, we are essentially dealing with the original
2,3

Kemp-Sears model to Thich Osborne's analysis reduces in this limit. It is

felt that the following are the most likely sources of the discrepancy:

a Poor modeling of the viscous wake defect at the higher harmonics

* Inaccuracies in turning performance and loss data used as inputs

0 Inadequacy of strip-wise application of isolated airfoil theory -•

in predicting unsteady loads

Each of these is discussed individually below, beginning with the last.

The ad hoc application of a strip theory aerodynamic analysis for

predicting unsteady loads in a three-dimensional annular flow is open to

question, although the large hub/tip ratio and large number of blades in this

case weuld seem to justify it. Also, since the solidity zatio, 2C/Q& is

near unity, the use of isolated airfoil theory in estimating these loads

introduces some error. These questions are particularly crucial with respect

to phase variations in loading along the span, as these critically affect

the radial integration involved in the modal pressure amplitudes, - inn

Equation (19). It is difficult to assess the importance of these approxima-

tions in the absence of any experimental data on the load fluctuations, or0

a truly three-dimensional annular cascade theory for unsteady flow through a

blade row.

39



The inaccuracy involved in estimating the steady loading and viscous

losses on the rows is also difficult to assess. The principle reason is that

such data as were obtained were measured with the row operating in isolation,

since at the time their use in the present investigation was not envisioned.

Hence, the performance of both rows may have been somewhat different from

that assumed. This could significantly affect the potential interactions.

Since these were found to be negligible as noise sources at these conditions,

a strong variation in loading would probably be needed to appreciably change

the acoustic predictions. The prediction of viscous wake interaction, how-

ever, might have been considerably improved if more detailed knowledge of the

blade wake structure had been available. This is discussed at more length

below.

With regard to the wake modeling, both Osborne's analysis and the

previous work of Kemp and Sears made use of empirical laws for the wake width

and velocity defect suggested by Silverstein et al,53 based on isolated air-

foil data. in particular the decay of the wake centerline dynamic pressure,

q, . is assumed to follow

_ - -0.4

where 3 is the free-stream dynamic pressure, x the distance downstream of the

blade mid-chord position, and c the seri-chord. From this, the centerline ve-

locity defect, u", , was inferred, assuming it to be a small perturbation of

the free-stream flow. In the present experimental configuration, there is

roughly a one semi-chord separation betwee. - . rotor trailing edge and the

leading edge of the stator. Equation (39), in conjunction with the loss data,

indicates a rotor C0 of 0.16. For such a high drag coefficient, Equation (44)

predicts a negative value of dynamic pressure, and is clearly inapplicable.
4

Partially for this reason, and also because it was feit that the

radially averaged loss data were perhapýs unduly influenced by viscous losses

at the inner and outer duct walls, the value of C0 used in the calculations

presented here was lowered to 0.10. To indicate the uncertainty involved in
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estimating u, , an alternate correlation proposed by Dittmar (Reference 17
Equation (J,), and based in part . , the cascade data of Lieblcin and Roudebush, 4

was evaluated for the same conditions. It indicated an increase in o., by a

factor of about 1.5. Since the unsteady loading is proportional to u-~ , and

only one mode is piopagating over most of Figures 15 and 16, one would expect

this to raise the theoretical SPL by about 4 dB.

In addition to this uncertainty, a surprising variation was noted in

the :alculations. That is, when C. was lowered from .16 to .10, there was a

rise in the predicted viscous interaction force, and hence dult wall pressure,

in sharp contrast to the conclusion of Kemp and Sears'3 that such loading ap-

pears to be linearly proportional to c, . The observed behavior can be traced

to an exponential factor in the load prediction (see Appendix B (c)) whose

argument is propoitional to minus the product of C. times the square of the

load harmonic index. Clearly, for the high drag coefficient and load harmonic

inde•xt of .1 ,r t here this ux.uI+elLLJ..± uav domtina(tes aim' linear vya iar ion.+

The above anomalous behavior strongly suggests that the viscous wakes

are not modeled accurately enough to predict the higher loading harmornics on

the downstream row when the rotor and stator are in close proximity to one

another, and the wake structure is accordingly changing rapidly. Table I
further supports this contention. The first t'o entries in the frsr column

3,24
give the velocity defect profile assumed by Kemp-Sears-Osborne, 4 and that

originally suggested by Silverstein et al, as a fit to their isolated airfoil

data. Here L is the velocity defect at any distance y from the wake centerline,

and Y is the wake half-width, The last entry is suggested by the present

authors as fitting the Silverstein data nearly as well, at least witllin the

experimental scatter of about ±.10 in cL/,u0 sho,,wn in Figure 42 of Reference 33. X

All three are normalized in such a way as to produce the same total momentum .1

defect in the wake flow. The second colunn gives the relative magnitude of

the Ith rharmonic in the Fourier expansion of an infinite train of such pulses

spaced a distance d3 apart. Since this is the only change that would be in-

volved if a different profi e were assume.J, the influence on the theoretical

predict ions can be easily assessed. The first entry is the exponential discussed

4.
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above, Lut written in terns of Y r•ther than Co for the sake of simplicity.

The r:uxt t•o <:ntrJes show how this factor weald change i£ one or the other o17

tile substitute profiles had been assumed. Th• resulti•;g chan•es in the pro-

dictions art. -.,ho•l in the last column for "Y/• ¢0• •, (:'•::tuall:," }'./c• •, o.•

f,•r the present case of a rotor-staler) = .265.3 appropriate to the present

conditions, and the first, fourtt•, and tenth loading harmonics. Note that the

firsT, h.•rmonic Js r-latively insensitive to the choice of profile, bu• at

higher values of_.• sL.ch as needed here, the choice is critical, tlad tile last

profLle Leerl used [n the cai.culat, iohs, in conjun¢tiozl with the alternate

estlma:te of • discussed above, it is seen th-lt •.h-• theoretical curve •-n

Figure IS would be almost 12 dB high,:r.

It would be presumptuous Lo st'ggest that this constitutes a b,:-•ter '.;.

model for the •akc p•operties in the present case, or any other, simply bcuause

•t_• corrcLate.s better '-'it], our acoustic ,,•.' .... But it i• •ica: "hat the' prediction

of i•igher harmonics is too sensitive to the details cf wa•.e structure to be re-.

liable, and for t|•e•e we ha':e had to rely on isolated airfoil data. Moreover,
recent ezperimental workZ0'35'36 haa she'.-n •hat l'.-.•' •,ake propertie.¢, for cascad-

ed azt'foils and rote• blades can dLffer significantly from those for at: Jsolatwd

aixtoil, tience •t i0 felt likely that the theor)' could benefit from a ••filLe.d

viscous wake model •;hich better reflects the true situ:•tion. Also, if they

should prove possible, co'npariso:•s of the theory against acoustic data for the

lower harm'•.:|•cs in the spectrum woctld be v(::-> yah:able. These are :cs5 sen-

sitive to d•'tailed ,•hanges in wake strut:urn:, and would alio•' a better assess-

me::l of the validity c£ •:ther por:ioes of the theoretical model.

E. ADDITIONAL NIJ%{LRICAL RLSUL]'S

In addition to the ebove comparisons with experiment, which all in-

volvo incompressible flow, some calculati,)ns have been performed to show tile

influence of compressibili•,:y on the radiated nois,:. One of the test cases

presented by' Clark, et al. (Referenc• 19, Vol, Ill, p. 59) involved the ,'al-

cutation of the upstream pressure amplitudes generated by the potential inter-

action on the upst•eam s• tor of al: i:ll¢l stator-rotor pair. Tile present ,:-

4•
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program was run using the same input conditions as given there (see test

case #2, subroutine package AAB!A). Briefly, the stator and rotor were housed

in an annular duct with hub/tip ratio of .35, and axial Mach number of 0.5.

The rotor (1S blades) had a tip Mach number of .875 and was located a distance

c,1/s downstream of the stator (10 vanes). In this case the potential inter-

action on the upstream stator was dominant. The amplitudcs

I' I / .

as used by Clark, et al. 19 are compared win.. the present predictions in

Table 2.

Table 2

COMPARISON OF MODAL AIMPLITUDES COMPUTED BY CLARK ET AL. 19

WITH PRESENT THEORY

C rl Clark et al. Present Theory

1 4.72 x 10 8.92 x 10-

3 7.46 x 10 2  3.83 x 102

S1 .54 x 1.0 "5.36 x 1"IF- -_______ __9______

_F -21
S+5 I S.07 x 10 1.91 x 10 ,

3 8.94 x 10-2 3.84 x 10

This particular calculation in Reference 19 also assumed a line

dipole model for the blades, and so the differences in the predicted values

are largely a result of using the Osborne rather than Kemp-Scars aerodýnamic

analysis. As one might expect, the inclusion of compressibility (the relative

Mach T,.umb,::r at the stator was about 0.5) had a noticeable effect, generally

dccreasirg the modal amplitudes.
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In the acoustic experiments performed under the current program, the

fundamerntal blade passing tone could not propagate owing to power constraints

in the annular cascade (see Section II). However, calculations indtcate that

it should begin to propagate above roughly 1160 rpm. To study its behavior,

and give some idea of how the theoretical predictions vary over a wider range

of conditions than those above, the calculations in Figure 18 are presented.

The inputs are the same as in Figure 1S, except that the rpm and N, were in-

creased, again proportionately, into the subsonic regime. Thus, when this

tone first begins to propagate at the left "f the figure, the relative Mach

numbers of the rotor and stator are approximately .15 and .11, respectively.

,hei 8700 rpm is reached, these are .77 and .56, and the first four radial

modes of the r. = -8 circumferential node are propagating. The rpm at which

each of these starts to propagate is shown at the bottom of the figure.

The upper curve gives the variation in 5PL at the same location as

before. As exijctted, thule is a large _i1't24abe in sig;'ai over the fourth

harmonic of Figure 15. The lower curve in Figure 13 is the total power radiated

in the upstream direction. Straight line segments have been used to connect

the computed points for ease of visualization only, and should not be assumed

to accurately depict the true curve. The curves exhibit a rise just above each

cut-off frequency, due to the acoustic resonance for that mode, as discussed

previously; again it should be emphasized that the levels computed very near

these frequencies arc open to question because they represent singular points

in the solution. In fact, the rise becomes harder to resolve as rpm is in-

creased. This results because as increasingly higher order radial inrues get

turned on, the integrand in the radial integration in Equation (19) osciliates

more. The value of the integral itself thus approaches :ero, anl so one must

be extremely close to the cut-off frequency before the pressure amplitude begins5

to diverge.

The behavior of the SPL curve in Figure 13 is much more unpredictable

than thai. in Figure 15. *his is because over most oi the rpnm range mure than

one mode is propagating, and so the interference between modes described by

Equation (22) cones into play. No doubt at some other point in the duct this
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curve would look quite different, due to its complicated dependence on observer

position and frequency. At the higher" rpm values the curve begins to smoot.i

out somewhat, probably because as the signal is distributed amongst more modes,

the constructive and destructive interferences tend to cancel one another.

Thie curve rupresenting total radiated power is much more well behaved,

since it represents an integral over the duct cross section, thus removing any

delpa.dence on position. With the exception of the resonance peaks, it exhibits

a smooth -rise as relative velocity is increased, as expected. The interference

effects between waves from the rotor and stator described by Equation (28) do

not arise, since the computer results again indicate that >

The leveling off and subsequent decay of the curve in the higher rpm region

is not surprising. Upstream radiated power must go to zero as a soni,: axial

flow velocity is approached; hence the presence of a maximum in the subsonic

regime is to be expected. However, as Osborne's theory becomes more approxi-

Mate as tI= LVC i:'iia number is Jncreased. whether the location of the

peak is accurately predicted is open to question. Subsequent to the completion

of the present worok, Amiet3 7 presented an approximate analysis of compressible

unsteady airfoil theory which also makes use of asymptotit techniques. His

analysis complements Osborne's in that it becomes more exact as the Mach nunber

and/or reduced frequency increases, and so should prove useful in the higher

subsonic regime.

The computing time needed to generate the numerica[ results in

Sections Il-1, E: above on an IBM 370/ld8 varied bcween approximately I and

10 seconds per point, depending primariiy on the numb.:r of propaga ing moles.

F. CONCLUDING REMAIR KS

A compressi'lc two-dimensional analysis of the aerodynamic forces

generated by roto,-stator inrteraction has been matched, on a strip-theory basis,

to the well known three-dimensional annular duct acoustic modes. Lxpres - ions

have been derived for both h2 mean square pressure at any position in the duct
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and the total power radiated at harmonics of blade passage frequency. The

mean square pressure signal is seer, to be subject to interferences between

the various propagating modes. The total rad:ated power is the sum of inde-

pendent contributions from each mode, but is still subject to interference ef-

fects between waves generated by each row within the same mode. These are

evaluated easily on a computer in terms of stage operating conditions and

geometry.

Experimental acoustLc data were taken in the annular cascade facility,

as described under Section II, to provide a means of assessing the validity

of the theoretical model. Data on blade row steady-state performance and

losses had been taken in the annular cascade facility under a previous program.

These were used as inputs to the theory to calculate SPL at the outer wall,

and the results were compared with the acoustic data for two configurations of

a rotor-stator pair. Unfortuunatcly, power constraints in the rig allowed only

the fourth and higher harmonics to be studied, which is felt to be a rather

severe test of the theory. Although it was able to predict cutoff frequencies

and follow trends in the data adequately, the theory significantly under-

estimated absolute levels.

The most likely source for the discrepancy is felt to be in the viscous

wake modeling, which at present is based on isolated airfoil data. Recent

experimental work by others has suggested that the strvcture of cascade and

rotor wakes can be significantly different, and this is expected to have a

strong influence on the higher harmonics. It is felt that the theoretical

model could benefit from a closer examinat on of such cascode or rotol wake

data as are available, as well as an improved aerodynamic load model at high

redaced frequencies and Mach numbers.'17 It is also hoped to obtain more

acoustic data in the annular cascade facility, which has been repowered and

will now allow the propagation of lower harmonics in the spectrum.
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SECTION IV

DIRECT LIFTINC SURFACE THEORY FOR A COMPRLSSOR ROTOR

Increased emphasis on reduction of the size, weight, and noise out-

put of axial flow turbomachinery demands improved understanding of the flow

through high-speed fan and compressor blade rows. As more dctailed questions

are asked about modern blade row performance, the essentially three-dimen-

sional character of the flow takes on increased importance. The task of

calculating the fully nonlinear, threc-dimvnsional,viscous flow through inter-

acting blade rows .s a formidable one indeed. Consequently, some approxima-

tions are required in order to obtain a tractable model, the most familiar

being the jaealization of inviscid flow through a two-dimensional cascade.

A linearized analysis of the steady, inviscid, three-dimensional flow through

an isolated rotor contains important features not present in the ccrresponding

two-dimensional cascade approximation. For example, though restricted to

lightly loaded, thin blades, it does include disturbances induced by the

trailing vortex wakes which result from spanwise variations in the blade

circulation. Also, modern fans and compressorc often operatce ith a tra.asu..ic

inflow that is subsonic ox.er the inner portion of the blade span and super-

sonic over the outer portion. At Mach numbers where shock losses are small,
the linearized, three-dimensional analysis remains valid, bu, it does not

have a well-defined two-dimensional limit.28

The small -perturbation approach to three-dimensional compressor

flows~ ~ ~ ~~~J wspoceebyMun2841flows was pioneered by McCun2 who, in the sp-irit of linearized wing theory,

separated the thickness and loading contributions to the rotor disturbance

field. In his original papers, McCune treated the thickness problem for the

subsonic, transonic, and supersonic flow regimes. Later, Okurounmu and
, 12,43Mcturie employed a vortex represelntation of the blade row to solve tile

indirect lifting problem, i.e., that in which the disturbance field, along

with the blade geometry needed to produce it, are determined from a prescribed

distribution of blade londing Lordi 4 4 "4 hab invest .gated the acoustic im-

plications of both of these anaiyses; the sound radiation from an isolated

rotor operating at supersonic tip speeds was evaluated for various th-ckness

and loading distributions.
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W•ile the thickness and ]oading contributions to the rotor disturbance

field can be treated separately in the linearized analysis, they are not

entirely independent. In order that there be no loading contribution to the

flow field associated with a given distribution of blade thickness, this

thickness must be distributed about an unknown camber line. The camber lines

required for the rotor to be unloaded must be determined as part of the

solution to the thickness problem , in much the same way as the camber lines

corresponding to a specified loading distribution are computed. Erickson,

Lordi, and RaeJb presented results for thickness-induced camber lines at high

subsonic tip speeds. They also have computed the camber lines required to

produce given loading distributions, as have Okurounmu and McCune.43

A major objective of the presen: program has been to develop a

linearized analysis of the direct lifting -urface problem for the compressible,

three-dimensional flow through a rotor ruw. In contrast to the indirect load-

ing problem, the direct problem refers to the situation where the blade inci-

dence and camber lincs are given, and the resuIting blade loading must be

determined. Once the blade loading is knoun, the evaluation of the rotor

flow field is accomplished in the same way as in the indirect case. The

solution of the direct problem, together with the existing solution of the

thickness problem, would permit computation of the aerodynamic and acoustic

performance for a rotor row of given geometry ac specified operating conditions.

In addition to providing a predictive capability for steady flow at off-design

conditions, thc successful anaulysis of the direct lifting surface problem pro-

vides the basis for cxamining three-dimensional flows which are unsteady in

rotor coordinates. 4

In the thickness and indirect-loading analyses, the flow field

quantities are four'J by evaluation ef integrals which express the superposi-

tio.n of the appropri.cde singularity solutions e.g., sources in the thickness

case and vortices iij The loading case. liow2ver, direct lift4ng surface

calculations entail t.he solution of an integral equation, which for a ductcd .•

rotor has a very complicated kernel function. Some progress on the direct
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lodaing problem has beon reported by other investigators. Dharwadkar and

McCune have obtained a solution using a lifting-lin: approximatijon.. Namba 4 8 ' 4 9

has reported a diroct lifting surface analysis including some numerical

examples. Nanba:s approach close]ly parallels that presented here and frequent

reference to it is made throughout the report.

Our initial approach to the direct lifting surface problem was to

generalize the formal relationships between the blade camber lines and the

blade loadings which were derived in Reference 46. In this way, an integral

equation for the blade loading was obtained in the framework of the vortex

theory of Qkurounmu and McCune. This formulation of the direct lifting

surface theory produced an integral equation which not only contained the

expected complexities in the kernel function, but moreover would require

repeated evaluations of both ordinary and modified Bessel functions of large

order. The appearance of both kinds of Bessel functions is a consc'tuence

of tne way in which the trailing vortex wakes are hfandled separazeiy from

the bound vorticity at the blade surfaces.

At this point, ar, alternative formulation of the lifting surface

problem was sought by using a pressure dipole rather than a vortex representa-

tion of thv blade surfaces. In principle, the tw% approaches should result in

tihe same governing integral equation for the blade loading. Howe.er, it was

felt that an alternative derivatiun, as is often the case in potential theory

for complicated geometries, would yield an alternative form for the result.

A simpler for'm did i.ndeed result from the pressure dipole approach, the main

difference Leing the absence of the modified Bessel functions of large order

which appear in the vortex formulation.

At about the time we began to pursue the piessure dipole representa-

tion, Namba's initial report48 appeared. There are important differenccs

between our foraulation anLd hi.s. Fuithermore, the initial solution for tile
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pressure field which we obtained wici' the dipole representation failcd to

yield correct limits. In particular, the pressure rise between points far

uPstream and downstream of the rotor did not agree with that from the vortex

theory, or with Namba's version of the dipole formulation. These discrepan-

cies prompted a complete review of our analysis. A crucial revision has been

made in the pressure dipole solution which led to a limiting pressure rise

across a lifting rotor that now agrees %ith the vortex theory result, but

still differs from Namba's.

In tne material which follows, a detailed account is given of the

linearized solution for the three-dimensional, compressible flow through a

rotor, This formalism is presented riot only because of its relevance to

establishing the correct integral equation in a direct lifting surface theory,

but also because of its general importance to other aspects of the flow

through rotating blade rows. In Section IV-A, the derivation of the line-

arized equations is reviewed and a fort-mal solution of them is obtained basec

on Green's theorem. In Section IV-B solutions are found for the disturbance

fields of a point source of mass a.ra a pressure dipole. Next these singu-

larity solutions are used as the Green's functions to deteirmine the flow

fields produced by rotor thickness and loading distributions. Discussion

of the thickness contribution is included here because cf its role in deriving

a correct solution for the entire flow field, and also to point out omissions

in earlier results. In the resptctive presentations of the thickness and

loading solutions in Sections IV-C and 1V-D, the f)ow fields are shown to

display the correct discontinuous behavior across the blade surfaces and

trailing vortex wakes. Demonstrations that the results for a mass source,

a pressure dipole, and the thickness and loading problemfs satisfy global mass

and momentum balances appropriate to the noninertial reference fr.meL are

collected in Appendix C. In the final part of the main text, Section IV-E,

the governing inte-gral equation for the dixevt lifting surface theory is

derived and the progress made on its solution is reported.
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A. DERIVATION OF MODEL EQUATIONS AND GREEN'S FUNCTION SOLUTION

In this section, the linearized equations and a formal integral

representation of their solution are developed for the flow through an isolated

rotor row in an infinitely long annular duct. The key assumptions in the

analysis are that the undisturbed axial velocity is uniform and subsonic,

and that the disturbrnce field of the rotor is a small perturbation about

the resulting helical inflow seen by an observer in blade-fixed coordinates.

Both compressibility and three-dimensional effects are included. WhAile

not a fundamental restriction in the analysis, attention is confined to

subsonic relative tip speeds. The required externsions to supersonic tip

speeds are indicated at several points in the derivations. As a consequence

of the linearization, the blade surface boundary conditions can be separated

into thickness and camber line contritutions and their associated flow field

solutions superimposed to find the overall disturbance field. This separa-

tion is effected by requiring the rotor blades to be locall> unloaded in

the thickness case and by assuming that the blades have vanishting thickness

in the loading case.

The geometry of the blade-fixed coordinates is illustrated in

Figure 19 for a rotor rotating in the negative 0 direction with angular

velocity to The full nonlinear equations for the flow through such a blade

row in a cy'lindrical coordinate system fixed to the rotor have been given by
Sc

WU. These equations can be linearized by writing the velocity in blade-

fixed coordinates as

where CUR is the undisturbed velocity,

A U- + CJr-e (46)

and i7 is the perturbation velocity with components -r, , , va . The fluid

pressure and density are expanded in a similar way; the undisturbed quantities

are deneted by - and /0, , the perturbation quantities by .t and/0 . Sub-

stituting these definitions into Wu' s equations and linearizing the result by

52



neglecting the products of perturbation quantities leads to the following

vector forms of the steady flow continuity and momentumn Cquations, to first

order.

0 VO + p V. (4 7.S(47)

Paying careful attention to the proper differentiation of the un.t vectors,

the component form of the momentum equation can be expressed as

, o., U d•49,.,a)

U. - 3-p (49b)

I.. -

ds 3,*

where U, = ,j¾.•-r'P and S is the coordinate alorig the helical undisturbed

streaml ines.

From this basic set of conservation equations, we can develop the

governing equations for either the perturbation pressure or the velocity

potential, the solutions of which can then be used to obtain the remaining

flow field quantities. First, the & and Z components of the momentum equa-

tions are cast in ter'ms of distance along the undisturbed streamlines and

the direction normal to the streamline and radial directions. Unit vectors

in these directions, which are illustrated in Figure 20, are

P= e0 C-4gt,-3.o± (Sob)

where ?P tan wr/,/ . The directional derivatives along 5 and a are

related to the partial derivatives with respc.:t to a and 4 by
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as __+___j_ ~ , (SIa)

5 +- . r, U - o ,

8,___ ' w yr (Sib)

With these results the $ and a components of the linearized momentum equations

become

(52a)
355

S. . . .- (S2b)

T-his form of the linearized momentum equations is useful in relating results

for the pressure and velocity fields. For subsonic flow •:herc disturbances

dec¢ay far upstream, Eq. (52a) can be integrated along the streanlines to

obtain

The normal momentum equation, Eq. (52b), plays a central role in the direct

lifting surface theory. It contains the upwash velocity, tr4 , which is

related to the blade camber line in order to derive the integral equation

for the blade loading. The above equations have the same appearance as their

counterparts in isolated airfoil theory because Lhe linearized substantial

derivative, 39 -- , is independent of radius. It s. ould be noted that the

noninertial acceleration terms enter only through the curvature of the un-

disturbed streamlines.

The governing equation for the perturbation pressure is derived by

introducing the assunption that the disturbance flow is isentropic so that

5 4



where L,, is the undisturbed sound speed. Using this relationship to eliminate

the density, and then combining (4 J. of the linearized centinuity equation

with the divergetce of the raomentum equation leads to

V -P - w(SS1

There are several ways to demonstrate that the velocity potAential

satisfies the samnc governing differential equation. McCune, 41starting in

flui'-fixed coordinates where the disturbance potentiat satisfies the wave

equation, obtains this result by transformation to the biade-fixed system.

IVu ' derives the nonlinear potential equation which, wnbti! linearizeu, reduces

to the same result. Here we note that the linearized momentum equations,

in the streamline-normal coordinates, indicate that the velocity components

are proportional to the gradient of the integral of the pressure along the-

undi51turbed. strcamlins,,, aa csidi fullltion. Accordingly, Ii a scalar velocitY

potential, defined such that r-V4 , is introduced into Eqs. (47) and (52a),

the results may be combined with Eq. (54) to obtain

V o (56) ,

This equation is the same as that given for p in Eq. (SS), and when expressed

in cylindrical coordinates leads to the same form of the governing equation
41

for the velocity potential that McCune obtained.

The formal solution of the governing differential tquation for ci

(orv-p) is derived from Green's theorem, which states that for two scalar

functions • and G

iv

jr

V V--- d-- V (5-)

where the surface.%5 encloses the volume V and '• is the normal tc the surf;lce "'

7 directed into V . The fol,'owing development, while carried out for the

velocity potential al plieai as well to the pressure perturbati~on. As shown

5 5 :4,



above, 4 sati-fie". the equation LLJ- o where the operator -. is defined by

L - Va ' -J NIQ e 5,a

and where wu have introduced the undisturbed relative Miach number seen in

blade-fixed coordinates, M, = U./q.l, If we eliminnatc • In teCrms of the

operator L in Green's theorem, we get

z I}(6;" L~ 4- (L-LG) oýV MR V

The second volune integral on the right-hand side can be rc.,'r'itten

as

i(, M V M V • (• tv

Ii this ferm, the volume integral car. be converted to a surfacc integral by

applying the divergence theorem to the product )f a scalar function • and

a vector

'Iv

Thv volume integrals in the divergence theorem can be identified "ith the

volume integral on the right-hand side of Eq. (60) if

- -p --- [62 )

and
S- /1 -( 3.4

where the cylindrical-coordinate form of Eq. (63) readily shows that v..I vanisnes.

Using Lqs. (61)-(63) in Eq. (60), Green's theorem takes the form

a TC d- ('(,Z - ( iL$.- yL ). V + V. (,.) (4)
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where # and P are given by Eqs. (02) and (63).

This relationship can be used to express the velocity potential in

terms of surface integrals which bound the region of solution by the usual

Green's function technique. The scalar function & in Eq. (64) is chosen

to be the Green's function having the property that it is the solution to

the governing differential equation for a point disturbance. If r and r,

denote the observation point and the source point, &(F3 q ) satisfies the

equat ion

S7o mA)F (65

where 6 denotes the Dirac delta function. If the integrations in Eq. (64)

are taken to be over the source coordinates, and within the region of inteiest

Lo ,'(A)=V, then the following integral ex.pression is obtained for the ve-

locity potential.

The term $r) is the result of integrating 4 & )L ' 7,- over the volume,

which requires that the Creen's function determined from Eq. ;,65) also has

the property

LO (U7

An alternative approach to the integration ovoer the region containing the

singular point, which may be more rigorous, is to exclude this point from

the volume integral by surrounding it with a vanish.ngly small surface.

Then the functions Q and 6 are continuous and differentiable throug.hout the

region of interest, and the volume integral in Eq. (64) vanishes. liowe-;e:-,

there %,ould then be a contribution from the integration over th- surface

enclosing the point t . It has bee-jn demonstrated, using the Green's

function determined in the subsequent section, that the integral over such

a surface yi lds the same result as the volume integral over the delta

functionr. Throughout the derivations which follow, the generalized function

approach is used to handle point si.ngularities because the presentations

are th-reby shortened considerably.

37])5 ",I[
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In the present application, the surfaces over which the integrations

must be done in Eq. (66) include the blade surfaces, t.,. duct walls, and the

surfaces normal to the duct axis at large distances upstream and downstream

of the blade row. The evaluation of the surface integrals is simplified

considerably through the use of a Green's function which satisfies the same

boundary conditions at the duct walls as the velocity potential. Then the

surface integrals over the duct walls vanish identically and, in a direct

parallel with isolated win; theory, the velocity potential for a rotor can

be found by superimposing the solutions for singularities which are distributed

on> over the blade surfaces. The Green's function C>, r) can be identified

with a mass source, and then corresponds to a fluid doublet. In theaa0 orrsod
linearized analysis, where thickness and loading effects are scnarable, the

source solutions can be used to repiesent the flow about a nonlirting rotor

and the doublet solutions employed for a lifting rotor. However, it is more

convenient to troat the loading case in terms of the perturbation pressure

because the blade bondarr conditions arc expressed in a simpler for= and

further, integration oev.',: the blade wakes is- avoided. Since thu perturbation

pressure satisfies the same equac.ion as the velocity potential, the for al

solution given in Lq. (Cc) als-) annt l.s to the pressure field. Here the

Green's function is interpreted aP a prssure monopole and i', in tuni, is

differentiated to find the distur"arie field of a pressure dipole. The pres-

sure field of a lifting rotor can ti%.-s be found by so.perpsition cf the

prossuve dipole solution.

In the nf-xt section, the solutions for a point source of' mass and

pzessure dipole are found for the ducted g.-ometry.

B. MAS'.-•SOURCE Ak\D PRESSUR.L DIPOLE SOLUTIONS

The governing differential equation foi the velocity potenrtial! givejj

in t[q. (56) c'.an be expressed in cylindrical coordinates by using Eq. ($1a'.

ThIn, the Y veloc:ty potential due :o a source located at r. , , 2 in a
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rotating reference fracme and having a mass addition rate of satisfies

the equation

A, - Z. (( , -+ o )

(0 - 6__(,Z - Z,)

r

where M is the Mach number based on the undisturbed axial velocity, U/a-,•

and /5a -M I . In this fora the homogeneous equation is separable and,

as originally sho.wn by McCune, 41 it possesses the followilng eigenfunction

solutions when the boundary condition of no flo:w through the walls is enforced.

Lf.. a ,-,1 w'Z • A

q?,,~e K, #3oU ,k-

The quantity , is a normalined comhinaitinn of the P[ 1 ... e .. N..m.nn "

of order n as described in Appepjix A and G- - r/rT. K'A is the • eigen-

valuc of the equations which rf sult from the b.undary cond:tzi that '/

vanish at the duct walls,

wl:ere iz = i,, The qua11t.4y 2,,, is def.ncd by-

with i - r, . Transformed to duct-fixed coordinates, these

homogeneous solutions reprLsent the duct acoustic modes; Eq. ,71) contains

the so-called cutoff condition for the propagat:on of these nmcdes. Wh-en

17 (,., i becomcs imaginary- and the solutions in Lq. (e9) cor-

respond to propagating waves. The cutoff coi'dition can be stated approxim;ately

as requiring that the relative Mach number at tht tip radius must be super-

sonic for the. source to excite propagating modes. Here we restrict attention

to the subsonic case where the modes decay with distance from the source.

S9



In order to solve Eq. (68) the form of Eq. (69) suggests we assume

an expinsion for S of the form

where 6, will denote the solution for a mass source. Here f, - I ior z > o

but *, -o for n -o in order to include the nontrivial zero eige:ivalue re-

quired to make the zeroth-order Bessel functions a complete set. In addition

we introduce the expansions of the delta functions in terrs of the azimuthal

and radial eigenfunctions.

-= ;2 7, e (73a-)

6" (T1 r'. .

r"7- , (Kr, c;) , . -)n t o
r °(73b)

.4 r... -.-. ,s
r$

r" (C - t) ,r 4, (73c)

Substituting these expansions into Eq. (68), using the differential equation

satisfied by, the radial elgenfunctions,

I -

¶~K' a -A\ , (74)

r ar r 4 r/

and making use ot the orthogonality properties of the azimuthal a3rl raJial

eigenfunctions leads to

-- _ _ 2. . oC-

where R&(6;) is introduced as a shortened notation for Pk (K,, d )

The solution of this equation for 4 (A;!) can be found using FourieL transform

techniques. With the following definition of a transform pair
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A-n

4. { c __f (I) i_
(Tbb

taking the transform of Eq. (75) yields

S 2 '1i!) .1 ; -R; 6.
{ -- ( + j

Solving for t and taking the inverse transform,

c~R~(/3 Cj_ + ' A(S

Tne integral in Eq. (7a) can be evaluated by residue theory, the roots of tne

deno.-ina-or being

-nw~ M

- a •(j9)

For Z Z. the contour is closed in the upper half-plane and encloses the

pole at &'4%& for Z-Z. the contour is closed in the lower half-plan-e and

encloses the pole at 4 - ý This pioc-dure ensures that the solutior.

decays rather tsan diverging for z- -o- (or for sup,.rsonic tip speeds, cor-

respo, 's to outward moving waves).

The case n'o, A- t deserves special attention. For those values of

n anid A the integrand in Eq. (78) has a second-ordet lole at o ' o . The

contribution from this pole is included in the contour which encloses tie

upper half-plane (corresponding to 2?Z• ) and excluded from the contour en-

closing the lower half-plane (cnrresponding to P .Zý )1. This choice is made

on the grounds that there can be no steady per~urbation at up-stream infinity.

The integrated results for CP,;, are

i0 1



L o-- <• '•* -/' - g -"

-- - ,_P (o;) e ' iz) 7 f

4 -
1

• 1kz)

•o~ (2) - (z -2 .) H (z -zo) (Sej

where R (i-o) is the Heaviside step function and R0 ,o c

,itth this result for 1,4 and the definition of A•& in Eq. (71), Eq. (72) be-

ceusles

U-F~~~ , 0 r. C.t&A,#

/z a r, u 13 4((831'A

"The first term in the so, rce solution has been omitted in previous

treatments.41, - Except for the presence of this term, the above result can

be integrated in the radial directio:! to recover the line source solution

which McCune used to solve the rotor thickness problem. The omission of this

-i the mass source (or pressure monopole) solution also affects the. fluid

doublet (or pressure dipole) solution. The implications thai omitting this

term from the source anc dipole solutions would have to the results for the

rotor thickness and loading problcms are elaborated upon below where those

solutions are presented.

As a result ot 2J.scolering the omission of this term in previous

analyses, several checks were made on the revised source solution. the filst

test made on the solution for 4', was to substitute it back into Eq. (68),

and to verify that it was indeed tie correct solution. In addition, the pres-

sure and velocity fields associated with the mass source soluLion were obtained

from the velQcizy potential, and it has been verified that the solution dislpIays

the properties of a mass source. The flow field quantities required for this

o2



demonstration are the perturbation pressure, q , and the axial and tangential

velocity components (u0), and (ur0 )6 . The velocity components are just the

appropriate derivatives of the velocity potential. The pressure perturbation

can be expressed in terns of V, and tr2 by using Eqs. (51a) and (53) together

with the definition of a .

The resulting expressions for the flow field variables are

.(83a)
.f, ,,(0-0,)+ -.N2 -<z -z.)-A•,,4 T .~ l

(0.) - .

'/SV

it,

-z- 77 .r 'k .-. /L'j
T~J it S-t I7/ - n

•her o• Z-Z; is*1 or'z >Z. and I -1 for z <• [£

:r•:

rr (,9~ 1 6F Al

=s 41 f a r I2 > Z.ad-frZ<z

Now consider a control surfa-ce 0iich enclosesý the point source and W•

is bounded by planes normal to the duct axis at Z • and by the duc:t;+

I iiH. Next, the iincarized pe--tprLat,a ii th7. flow rate t.rough tile 4

surfaces bounded by this control volumne jsi computc~i. Siniev tile Sousrcv solution '

satisfies tt~v boundary conditions of no flow threu~gh the duct wall, the only 7
mass flux is througha t rl surfaces noral to thce duct axls. t etping S c a

f' 3



represent the first order terms in the axial component of the ma.ss flux,

;' - '0. V /U (84)

The density perturbation can be expressed in terms of •Vo and v, using Eqs. (54)

and (82). As a result ,A becomes

41 = /0 jr (85)

If ?K :Q Q is the rate of introduction of mass by the source then we must have

for this control volume
r, - 7

51S j [Cc. -rf C) r drr ct (86)

Taking the limit of this expression as f-. o and ! , arid noting that v.,

is continuous at Z , then

- [P/SZ/3 Air,] rd-rd96 (87)

where
av -*" [0,Z. % °+• - ve (Z.-•)]

From Eq. (83b),

'a zz

Using the series expansions for the delta functions given in Eq. (73), this

last equation can be written

tar.~~~ --; jr'dX -,
Sr (89)

and hence the mass balance in Eq. (87) is satisfied.

In addition to the demonstration of mass conservation for the above

control volume, a similar check ha5 been made for the control volume obtained

by withdrawing the surfaces norrmal to the duct axis to the location Z =

It also has been showni that the results for the flow field of a point source
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satisfy the axial component of the linear and angular momentum balances for

this latter contrl volume. These tests on the source solution are given in

Appendix C together with comparable tests for the pressure dipole and rotor

flow field solutions.

The velocity potential of a fluid doublet can be obtained from that

for a source in the conventional way, and the flow field oroduced by rotor

loading could be found by superimposing these doublet solutions. However, as

discussed in the previous section, it is more convenient to work with the per.-

turbation pressure in the loading problem. Such an approach is analogous to

the acceleration potential method in isolated airfoil theory where the dis-

turbance field of an infinitesimally thin, lifting surface is constructed by

the superposition of pressure dipoles.

Since the rotor pressure field satisfies the same equation as the

velocity potential, the solution for a pressure monopole is mathematically

the same as the solution for a mass source. The corresponding dipole solution

is found by differentiating the monopole solution. If the pressure monopole

is to be used as the Green's function in the formal solution for the pressure,

then the required orientation of the dipoles is normal to the blade surfaces,

or in the linearized analysis, to the undisturbed stream direction. For a

dipole of strength D located at the point r. and oriented in the positive a6ý

direction shown in Figure 20, the pressure field, 7o, is given by

a a,
d(, • (90)

where &(;,,.) is the source (or monopole) solution given in Eq. (81) with

unit strength. Performing the indicated operations in Eq. (90),

4~~0 k-1l-? "r L j ,, ac]
waa r 'L1II\ JU.S * --• A,• • v-( L-4 )J ()1) :.

(U
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As with the result for (Ps , this solution for -P has been substituted into the

governing differential equation to verify that it is the correct solution.

Forming the quantity L-p. , where L is the operator defined by Eq. (58), yields

the result

L 0(r-,)S(9-O)d(z--z)

" do4 L, J(92)

when the series expansions in Eq. (73) are used for the delta functicns.

The velocity components associated with the dipole field are obtained

by integrating the momentum equations, Eq. (49), along the undisturbed stream-

lines. Consistent with our generalized function approach in treating singular

points, a delta-function body force is included in the momentLLm equations.

Then, the resulting expressions for the velocities are valid everywhere in the

duct, including points which lie on the streamline that passes through the

dipole location. Otherwise, the expressions would not be valid in a small

region enclosing this streamline.

It is convenient to work with the streamwise and normal velocity

components, both because fewer integrals have to be evaluated and because the

body force term appears only in the nornal momentum equation. The dipole

exerts a force per unit. volume on the fluid, F0 , which is in the negative A

direction and exp-essed by

f~o 7• D •( r - ,"r ,-Z,
F - (93)

The streamwise velocity component is simply proportional to the pressure by

Eq. (53., which was derived by integrating the streanmwise momentum equation.

Integrating the radial and normal momentum equations along the undisturbed

streamlines yields

Jo IZ' &. Safu ,

, -65'
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The integrations along the undisturbed streamlines can bc done by expressing

ao5 in terms of cL .Z Along these streamlines, r and the helical variable, 4

whih is defined by

3- - (96)
U

remain constant, and zthe arc length along the streamlines is

d.5 = A /I+ I%)" o' (01 97)

Making this change in the integrals, Eqs. (94) and (95) become

r j U + 4,z')dz' (9 8 )

-~ -- "~ p 0 (rQ" Ua + •,?')d.Z * • -- "

(99)

iw need to evaluate two integralb, time s7rcauawi-,c intugtioi v .1 aiidUO r._-

The results are

UU
. F -71'----

n<)' E.. -,
-U A Oct�-A& '~~4

IF..(,9, . •-. )d ' & - -r-~6~ d;66(' z ')
U 1--"

- (r- - -. - (r.db)

- z - .' :-C
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These expressions can be substituted into those for (•r) 0 and (zr,,o to complete

the derivation of the velocity' components. Also, the velocity components

(Lrot) and (tr 2,) 0 are related to ("-s), and (VI) 0 by

tr Ir+~oS (Iola)

=a Or~(ulb)

These results for the flow field of a pressure dipole have been

shown to satisfy the mass and momentum balances given in Appendix C. The

dipole solution possesses the appropriate properties that it does not intro-

duce any mass into the flow, and exerts a force D on the fluid. In the next

two sections, the source and dipole solutions in Eqs. (81) and (91) are used

as the Green's functions to construct the flow field produced by a rotor with

distributed thickness and loading.

C. FLOW FIELD. OF A NONLIFTING ROTOR (THICKNESS PROBLEM)

1. Solution for the Velocity Potential

In the previous two sections, the foundation has been laid tc develop

the solution for the thickness contribution to the flow field of a rotor in

an annular duct. The source solution given in Eq. (81) can be used as the

Green's function, G (i, P) in the integral representation of the velocity

potential in Eq. (66). The solution for a source of unit strength (Q - i)

satisfies Eq. (65) and also has the property required by Eq. (671). The

integrationz in Eq. (66) .--ist be done over the following surfaces: (i) the

duct walls, (ii) the su.'faces normal to the duct axis at large distance from

the rotor, and (iii) the blade surfaces. In describing the integrations

over each of these subsurfaces, I, and , will refer to the first and second

surface integrals ir Eq. (66), respectively.
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(i) Along the inner and outer duct walls the boundary condition on

(ý(.) is that the normal derivative vanish corresponding to no

flow through the walls. Since the Green's function we have found

satisfies the same boundary condition, ., vanishes for this surface.

For the outer wail l.- r while for the inner wall 7o= Cr-

From Eq. (63) we see that oo R = o along both the inner and outer

walls, and so 1, also vanishes at the duct walls.

(ii) For the surfaces normal to the duct axis at -- a' and o- ,

is-C and + 5 respectively. Over these two surfaces the sLun of

the integrals I, and k. become

- , ----- -- .r
"L +C CL0  c..0 mj+

(102)

'-IV

Sara

7' -- 0

Consider the integrand at Zj---+ first. In this case Z < Z. and so

the first term (n-o, 4 - ) in C cr, 4) is zero. The remaining

terms in F (r),re decay exponentially. The samef behavior holds for

_ and • Since 4K,•) and its derivatives must be bounded, the

integrand vanishes as Z- . Next, consider the integrand evalu-

ated at o--• Here A > Z, and the ,1-0, ,)f0 term contributes

to both G and ; the remaining terms in ad decay

exponentiaily. For subsonic flow, 4 and the velocity components

obtained from its derivatives are required to vanish far upstream of
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the blade row. Note that 6 diverges I I-narly as Z. - ., and so the

velocity field must fal1 off faster than this in order for toe, inte-

grand to vanish. We shall sec flat the velozit; field decays et,-

nentially upstream of the rotor. llence, the integrand:; vanis. iror

4-*-w also, and the integrals 1, anLd ¾ make nLo contribution alopn

the surfaces no.nai to the duct, axis. For supersonic tip speeds,

acoustic waves propagate av.'ay trom the blade row and these surfrrce

integrals should be re-examined.

(iii) In the linearized analysis, the blade row is as;sumed to make only a

slight perturbation of the, free-stream flow. Consiste r'ith this

assumption, the blade surface boundary conditions are applier: .1ong

the undisturbed stream direction. In this approximation, the nor-

rials to the upper and lower blade surfaces are, re:p-ectiveiy,

where • = tan (wLr. / u) From Eqs. (03) and (I 3) it can be

seen that r4 -/ vanishes and thus, in toe lineari ed approximation,

contains no contribution from the blade surfaces.

The separotion of the rotor flow field into the thickness and load-

ing contributions is made by prescribing that there be no pressure difference

across the blade surfaces in the thickness case, oi that the blades are lo-

cally unloaded. If the pressure is continuous across the blade surface, then

a, and 4 are also. Hence, because of tile opposite signs of 2 on, the

upper and lower surfaces, only the part of the integrand in I, containing C

contributes to the integration over the blade surfaces.

Except for this contribution from integrating 1, over the blade

surfaces, all the suriace ilntegrals in Eq. (66) vanish. Thus, the expression

for q7 has been reduced to

-P( CU,QA (~)s 1
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where • denotes the surface area of the rotor blades projected or; tne un-

disturbed stream surface, and t represe-nts the difference in t,ormal

velocity across each blade surfate. This expression is the same as the

familiar result in isolated airtoil theory that the effects of wing thickness

can be represented by the supec'position of sources whose strength is equal

to the discontinuity in vr, at each poi1nt1.

The linearized form of the blade bojndary conditions is

U"• 1 U KL,, 2 ", (iCS)
911- z gC 7P-a A ý5n U.4 f5

where t,, and Tht are the distances to the upper and !ewtr surfaces. ,ea-aured

nomaia to the undisturbed stxe-ai direction, $ . The qurrities .vi, and "Ii

can be expressed in terms of a blade rnihkness and a blade incidence plus

camber line in the conveational way as illustrated in Figure 21. Hotever,

for a rotor the blade thickness and camber are nov independent becaus.:, as

rottd earlier in order for the hladf. . tn b -,,adeA t.ey ... t.b. c.rbr•.c

to account fot loadings which w:)uld otherwise be injuced by, bla•d interference

effeccs. if t(•,r) represents •U'',,) - 71(5,ry ti.en,

C -Yi (I, r) t -1 t (s, r)

S 2r ,r)

where p, (5, r) is the camber line, which consists of two parts, a thickn.ss
part, "rt?, and a loading pot:, I . From Eqs. (105) and (10t), che dis-

continuity in the normal velccity across thc blade surface is then related

to the thickness distribution by

For a rotor with 6 equally spaced blades, the blades lie on the

surfaces 4' - 1 /B, .,.., . where g is thie helica3, variable defincd
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by La (9c). It i-; ,-onvenient to do tn. integration o',er these surfaces by

projecting them on the o , e .o plane so that

d d (108)

1ýith the blade leading cdgcs located at z = o , the velocity potential is

rr C (2)

~ J 8

(109j

While not crucial to the ensuing analysi_7. it is convenient to assume that

the -xia. projection of the blade chord is a constant. CL, and that the

radial and axial variations of au,, (and t ) are factorable so that

"(Z ,'- 01,U_ a
-f'(r) q -Z ) ,... &7j 1 + --- , LI StV ' ' U ' "" d5 2 "..

With these assumptions, the expression for the velocity potential becomes

!$(~ -, r r pCi z_ - (7L 0

The~~T 4uato ovn the nuhro lae a odoeb sn teiett
=r€• -B' (1 L2z),~- )--. --)

U "

The Summ,,ation over the nuImbe.r of blades can be done bv LIsing the identity

where rn is an integer. The result for tile Velocity pote-nt,.al becomles

-'.
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21/rr2  
(.f]1i3J

iT Z. 2• L

ft°C-) •(X,) cLZ• o~r;

where we have introduced the notation

,2. Fpressions for the Vclocity Components and Pressure Perturbation

Having this suiutiun for the velocity potential, the other flow

field variables can be found by taking the appropriate derivatives. The re-

sults for the velocity components are given in terms of ' , v, and u,

which are related to d by'

= --- ___ lb
Y1 r 67%, Ib

U,),

' r

ThQ pressure is simply proportional to . by Eq. C53). The resulting expres-

sions for the velocity components are

r C

/~I t~ A-- 5
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CZ -Z-

Vmdk (r, Z, ).UpB4*:Ve(z, {Z-) • () zdi (116b)

r, CT " ' " - "-(~ /~
• . ___7 r fo i.__.._.___ ___ t __

(lGC

Z, r
Cpa U

where the prime on msA uLenotes differentiation with respect to the argument
and

V,. 8O~ (r, Z, ) - [u2rn -" -o/ (-,, (I7r u

also has been introduced.

These results for the flow field of a nonlifting rotoc are shown

to satisfy the mass and momentum balances in Appendix C. For subsonic flow,

there should be no net foice or work don, by the rotor. The derivations
presented in the appendix have verified that this is so. Another check %hich

has been made on these expressions is that the)y display the correct behavior

at the blaur surfaces

3. Behavior of the \Velocit, Components at the Blade Surfaces

The expressions givern for the disturbance velocity field contain

doubly infinite series expansions in the duct elgenfunctions. in order to

demonstrate that the velocity components display tl'e correct behavior at the

blade surfaces, the convergence properties of these series need to ,e cor.-

sidered. Terms in the at summations which are of order (rYB)-' are expected

to lead to divergent series, or series which do not converge uniformly.

The manipulations performed below are aimed at identifying those terms wh :.h

are O(m•) and hence are potentially divergent. Furthermore, within th-

group of terms, we wish to isolate a series for which the 4 sunination can be
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done analytically and for which the rn surunation does not converge uniforml"

fox all values of the 4 coordinate. It can be anticipated that such a series

produces the discontinuities in the surface quantities which occur as changes

in C are made which correspond to crossing a blade surface. For the remaivtder

of this section our attention is confined to points within the blade row,

i.e., for Of C - C,,.

First we wish to show that v, is continuous across the blade sur-

face.. This demon!.t-;ation also provides a check on the assumption that the

blades are locally unloaded by virtue of the relationship between -p and r.

The first step in examining the value of zr, at the blade surfaces

is to carry out an integration by parts in the integral ever o . After the

first integration by parts the expression for v.5 is

ZU0  HRzt' 1. -- 8Z~ ' B

2-T/rt t) r

e (eo ( 0)C 1

+ c. ]t}t2(t

Were it not for the A -dependence of the factors other than P,

the A-summations in this expression would be just the Fourier-Bessel series

expansion of the form (see Appendix A)
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Since T'(r) must be independent of the order of the Bessel functions in thi5

exparsion, the product ,.•(s), , need not be considered in dctermiring

the er -dependence of each term in the double series. Thli zoefficients in

the series containing ? o) and ýIc,) are inversely proportional tc XBk

which is Oct1) , but the exponential factors in these terms prevent the

series from diverging, except as the leading or trailing edge is approached.

There, unless the slope of the thickness profile vanishes, the series diverge,

The divergence of these series produces the singularities in the pressure

which typically occur at the leading and trailing edges of subsonic airfoils.

The divergence of the nurface pressure at these points is evident i a the

original results of McCune, as well as in the surface pressure results ac-

companying the thickness-induced camber lines presented in Reference 46.

Each integration by parts over _Z introduces another factor of

(r in) . ... . t m.. of the d•u ui ieis. A second integration b1y parts in

the Y,5 expression produces the following results.

= q

F...4 -' ,L •j(• e • (C4 ,, ,, ar,)(• (/3 2r (111)

•-_,, - .((, o) AA0) z A C--

elkC O, 0)
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The second integration by parts yields integrated terms which are

proportional to •"(z,) . evaluated at F - oz, and C . These terms

are 0 (rrit) and so the corresponding series are uniformly convergent. Hence,

away from the leading and trailing edges, all the series in zg, are uniformly

convergent for all values of 4 , including those at the blade surfaces. It

can therefo-.e be concluded that ur, and p are continuous across these surfaces.

The same is not true of zr,, , however, which must be discontinuous at 4 p

by an amount dictated by the boundary condition, Eq. (107).

We have already evaluated the u% contribution to the expression

given for v, in Eq. (115b), and showm it to be continuous. Any discontinuity

in a-0 must then come from the contribution. After performing a single in-

tegration by parts on the j, integral, the expression for ..-•- becomes

•£ B) E +5 c~ P c rd
rH

+-
,,2(;) WA,.,,64  A _*((d c)

(120)

B ( ' ,. (2 -_ C-)fro t

wA9e.k -A_-_) _0. .,Ao) o Z.

where the prime on the sumiation indicates the VI 0Q ter;-, is excluded. The -,

leading and trailing-edge terms behave as discussed above, while the re-

mainii.h integral is 0(r"8)"1 as in the V.7 expression. However, the first

of the integrated terms is O0(rrB)" and does not contain the exponential

factors which appear in the leading and trailing edge terms. This term,

which may diverge, or at best not converge uniformly, will be found to produce

a discontinuity in v-L
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Next we consider the behavior of the firat tei ., defining
the double series 5(r,) to which trhs term is proportional.

ZL-T

S~~~~c~~~)c rt~ f v'(r3~

Substituting Eq. (71) fo AL3 in the bracketed factor yields

____/ __(122),__ s ___. ,o•<) • ,. •( --

If the quantity (Wrw.U)z/ [z (w / 1s)r] is added and subtracted to this

Ten te il lb C;C S ltlt-e I I -' I -L t -:7'' i s tcr , t

S(r,•) becomes

71 ~' 1a(. r

U

rr~(r ma K ).

S-r,. •,o(; r)dr

The I• summation in the first line of Eq. (123) iS just the Fourier-

Bessel expansion for the bracketed function in terms of the radial eigenfunctions.

Performing this summation and using the equation satisfied by the radial

eigenfunctions, Eq. (74), to substitute in the second integral, S(rz,) can

be written
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507 -._.__ -) L L:'•&d (in LS)

1+ rr •=• ~~~rr, ,,,7l-

/ ý -- , rc ..dic / . -•.8 fu~r (I2A
_ _-_ _ _ _ _ - i - - -. ,, , (.-_-

Now, the eigenvalues KF<8  are all greater than nn5, being O(rr8) for large

rr-. , and the remaining integral can be integrated by parts.

-;

I Tf )

drr

The integrated term vanishes because each radial eigenfunction identically

satisfies the boundary conditions at the duct walls. Another integration by

parts could be done but it does not appear wortht•hile. The important point

to make is that each rn,- term of the double series in Eq. (L24) is at most

of order (6-) .2. Here again this series is then a regular series, and the

first series in Eq. (124) is the only remaining contribution to 5(r, C)

which could contain a discontinuity. The single summation on the right-hand

side cf Eq. (124) is proportional to the Fourier series expansion of the

generalized function, , which is defined by

-j (2:1) 2T -- 1. j-Qj,-o , 8-i

8 8 51(126)

This function, illustrated in Figure 22 was first used by lzoissncrSL in his

representation of a propeller wake. It can be shown that the Fourier series

representation of ýi is
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e rn 8 (127)

W ith these results, the expression for S(r,4) becomes

S <r. ) - - c" , Cr) 6 r- A•,,,(m-)C)

2 Tr + (wr • ' 7 •,.. (n,5)

__________ dP-154  S Ffu rl (128)

LnST ) + (-J J

AS can be seen from Figure 22, the generalized function has a jump. of (- _._r

as f, crosses a blade location moving in the direction of increasing ; . The
contribution to ?-I, from the term containing Scr,4J is simply r• 5(c,•)

d 1: / I 
!Z ( "

Combining this result "•ith Eq. (115b) to find the corresponding term in Zru
and then for-ming the difference zr , , = 2 T - nrr ,he con -

tribution of that term is
.277;, * F' " (r) 9__3):

and the definition of the functions f Pqd in terms of :mnr, given in Eq. (110)

is retrieved. Since the other contributiuos to tLr are continuous for all

values of 4 , and for values of Z away from the leading and trailing edges,

we have succeeded in showing analytically that our result for the velocity

field does in fact contain the cor'±..ct jump in normal velocity across the

blade surfaces.

If the results for Y, and are collected to find the whole ex-

pression for v; according to Eq. (115b), the answer is
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(r• ýJ [ f" • 14-

L\-n -/ ' u/1

(njV. 7' L0 2T lr r, 0

Sr7  C

f"(r•) •(2 .-(.-2,) o ,; +r ;+ (% (130

T 6

(4) ( Z-) o

C,

2. 13

T0&('iz,.) =- £2k: [½2 -. 1mA',,a

u (131)

The first term in r, contains only the symmetric d.scontinuity and

hence makes no contribution to the continuous part of zir at the blade surfaces.

When evaluated at a blade surface the second term in Zr,, vanishes and the re-

maining terms represent the continuous part of v, , or the thickness-induced

camber lines. The third term irn the above expression, and the first term in Ilu.

(119), come from the , to , ."* r term omitted from previous treatments of

the thickness problem. The camber line calculations of Ref. 46 and the surface
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presstire- calcolationis of Re feren1c dj should iC cOullctekl folor thei pr'setce ci

? ( r,5-) . IOi~e ; U r' , 2Z)
these terms, Since U,- , whin c mi, be we-it Len a3 Li - , Du wiri -

porto1i1n L to C(E) , those contributions to both %r, and v are,: proporjtit uli to

the chor&,ise variation in the local thickness distribution_ Furthermore,

these t,2rms make no contribution to the disturbance field upstream or dosnstream

of the blade row, and therefore, the acuostic calculations of References 44 ana

45 are unaffected by their inclusion.

The above manipulations of the expressions for the perturbation ye

locities apply for points within the confines of the rotor row, i.e., for

o A •T -' . If the integrations by. parts are done for field points upstream

and downstream of the blade row the singularities encountered at the leading

and trailing edges remain but the velocities everywhere else in the flow are

found to be continuous.

The finai expressions presented for v5 and u4 in Eqs. (119) and

(130) have been snown to have the correct behavior at the b]ade surfaces.

MoreCover, in the course of demonstrating this, thest- results have been put in

a form which s ou~d facilitate the computation of the surface pressure and the

tnickness-indoced camber lines for nonlifting rotor blades.

D. FLOW [I.ELD OF A LIFTING ROTOR (LOADING PROBLEM)

1. Solution for the Perturbation Pressure

The determination of the pressure field produced by a lifting rotor

closely parallels the solution procedure for tht velocity putential ill the

thickness problem. The Green's function is the same, though now its interpreta-

tion is in terms of a pressure monopole. The formal solution for - is identical

to that given in Eq. (66) for q , except for the replacement of 4) with P .

In addition, both of the integrations ever the duct wails and the surfaces at

7. w vanish as before, as does tie integration of z) (f) over the blade

is



su;rfa,:e . The remaining integral over thf ý blnde surfoces dtseincu ,s cs the

1 iftng case from the thickncss case. Here the nagnitude of a- is the sanu

on both sides of the blades because r,, must be centinuous. Since the nornils

to the uppei, and lower surfaces lie if! opposite directions and C r, r ) is

continuous across the blades, the integral of 'S over the blade sur-

faces vanishes. Thus the integral representatilon of the solution for the

pressure fihld reduces to

do - _: • (%,132),

S
a

where S3 is the projectio' of the blade surface on the undisturbed stream d-i-

rect ion and

P(rZ.4c §t. 2 ( z 3<I
The sign of the integrand iii Eq. (132) has been reversed from that in Eq. (66)

so that .5, is .defined as a pus itive numbe;

If we substitute the pressure dipole solution (Eq. (91)) with Unit

strength for !i- and, exactly as was done for 4 ii' the thickness problem,

carry out the surmation over the number of blades, we get the following result

for the pressure field of the rotoe

""70 -, P (zZ.()-Z ") Z.

+4 J

o .U

* tsp [AiB (Z A.,~ .(2Z,)Z2 )J VrZtCýZZoAN,~aa dý

where we have introduced

A- i) = -- ;txP(;; Y. ) d~ (; r135)
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and the quantities _.,, 8 ,(ZA.) and V.6,B(r ,2, -) are defined in Eqs. (114)

and (11).

The first property of this solution to be examined is the limtiing

pressure rise between points far upstream and far lownstream of the blade row.

Since for subsonic flow the solution decays as Z -- o , the limiting value

of the static pressure rise is simply the limiting value of P for e + .

All terms except the first decay and so

-p(2 -r,• j13 ' U )- 2r/s!j pz.)d ro ('36)

This result agrees with that obtained from the vortex theory of Okurounmu and
42

McCunc. - In the present formulati,)n its origin is in the ti =o, ,k.o term in

the dipole solution. Mhen we initially considered the pressure dipole formula-

tion of the loading problem, this term was omitted, and the erroneous result

of no limiting pressure rise was found. After tracing the difficulty to a

missing term in the source or monopole solution, that solution was revised

as discussed in Section IV-B. When the corresponding correction was made in

the dipole solution, the result for the pressure rise given in Eq. (136) was

obtained.

Namba49 reports a limiting static pressure rise even though his mono-

pole and dipole expressions do not contain the no, , - -o terms found here.

However, his result for the pressure rise differs from Eq. (136) in two respects.

First of all, he finds a nonvanishing pressurc perturbation for Z---o , one

half of the static pressure rise occurring between upstxeam infinity and the

rotor with the other half occurring downstream. Also, his result contains

a "scale factor" which introduces an additional radial dependence into the

integrations over radius in Eqs. (134) to (136). Based on the tests we have

made on the singularity solutions, and those described below for the flow

field of a lifting rotor, we have concluded that this factor should not be

present.
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2. Expressions for the Velocity Components

In the pressure dipole representation of the blade row, the velocity

field must be found by integrating the momentum equations along the undisturbed

stream direction. This situation in the dipole approach somewhat compensates

for avoiding the distribution of singularities over the blade wakes, as would

be necessary if fluid doublets were used to find the velocity potential. As

for the thickness case the velocity field will be found in terms of the com-

ponents t , tr, , and ir.

For subsonic flow the streamwise velocity perturbation, L-5 , is

found from Eq. (53). If is expressed in terms of the derivatives --- )

and 4 then integration of the normal momentum equation, Eq. (52b),
j 4

along the undisturbed streamlines yields

Lir. - r u) Ir=• ' :

o. U. r 
00

r (137)SU, Ll

where Z is a dummy variable of integration. Note that r and • are held

constant in this integration. Irn keeping with the generalized function approach

to the singularities, a body-force term representing the blade forces, F,

has been included. Since thiý force acts normal to the undisturbed stream

direction in the linearized theory, it appears only in the $4 expression.

Before proceeding further, this contribution to v. is evaluated. Eac-h blade

contributes a force per unit volume of

- 5 A)(r S) (l-,r)

where 4 is the unit vector noi-mal to the undisturbed stream surfacc (see

Figure 20), '1 is a coordinate in this direution, and rl is the value of a at

- th th - sthe lau. Te ttalforce on thec fluid due to the -l blade, [.4 , is then
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F' ~ d I~ rs)(nri'$ d r? (138)

Returning to the term in q-;estion, the coordinate - :s expressed in terms of

2, and r by

r 2

I IZ r(139)

and so we must have-

- U-_ - o ( - "e ) (140)

Substituting these results, the term in "tg containing the body-force rel.re-

sentation of thc blade forces is

[L ' tE -i T /eý

_0 U (141)

where we have accounted for the fact that the blades are located on the sur-

faces t = t-.between the axial stations -o and . As we shall

see, this term will be cancelled by other terms in vr . For now the remaining

terms in i,7, will be designated vr,, If the blade forces were treated as

surface forces, then only 7rI would be present at this point; the delta func-

tion te-ms still present would be excluded from the value of Lr, on the blade

surfacc on the grounds that the singularities are within this surface.

The expression for Lr, which results from integrating the radial

momentum equation, Eq. (49a), is

""z r (14 2,

Eqs. (137) and (142) show that the calculation cf the velocity components re-

quires the integration of - along the stream direcztion. The required integral

is denoted by 1(2) where



Substituting fort from Eq. (134) and doing the Z integration yields

.27 ' 6---O(Z,)CA-Zo)tl(ZZ-,)dZ 0

t"

4 r r r L'O-, k-r L A ,, (144)
a0

t t,
1 L UAJ

Now the results forr and 1(r) can be combined according to Eq. (137)

in order to obtain v-0 . Since the explicit representation of the blade force

is omitted, the remaining terms are denoted Vrý

zy' W"z t -u - f ZY'(t•) i( ( -z.4  d z
V1 in ,,"3 U /U •,] .'1

, i 1 ; :

r r 2ce

(riB' 1 [ , (wv7 U.2 (. 4

I ( " t Trr ~ ~ _1 L~r.rL

-.-- 7t /3rr,;,10dgkd7
1+ j} eA5A~i)(i/

r7
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The expression for zr, obtained by combining Eqs. (142) and (144)

is,

U

_J +

.A. ,-- ( z, z, )(E ,,)(.

e- r0 a 9  i (2 4u)

Particular note should be paid to those terms in v, and vr which do

not decay downstream of the rotor, These terms, which are presetr. within the

blade row and downstream of it, represent the cunti-ibutiori Ofthe trail•ng

vortex wakes to the velocity field. The flow field produced by these wakes

has a helical pattern and,as a consequence of the linearization, the wakes

coincide with the undisturbed stream surfaces on which the blades lie. Therc

are no wake terms in p or v, , which should be continuous across these sur-

faces.

The results given in this section for the lifting-rotor flow field

satisfy the global mass and momentum balances presented in Appendix B. In the

next section it is demonstrated that the velocity perturbations found for the

lifting rotor also exhibit the proper behavior at the blade surfaces.

3. Behavior of Ve]oci__ctLComponents at the Blade Surfaces and
across the Trailinj Yortex Wakes

The properties of the above solution for the velocity field of a

lifting rotor can be examined in much the same way as was done in the previous

section for a nonlifting rotor, although the loading case is somewhat more

compllicated because of the presence of the trailing vortex wakes. Again the
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streamrwise, normal, and radial components, uI , , and Lrr , are considered.

First the behavior of v, is treated, followed by zw. The examination of zr,

will be done last because it provides a natural transition to the discussion

of the direct lifting surface theory in the next section.

a. Streamwise Velocity Comnonent

Since z-, is proportional to p , it must contain a discontinuity

across the bl.de surfaces which is in the same proportion to ths blade loading,

,ý p . Therefore, it is equivalent to demonstrate the proper behw.',ior of -,

at the blade surface by showing that the solution for the pressure field

contains the correct discontinuity. Again this is done by ordering the serics
-I

expansions in (niB) and, in particular, isolating a series fcr which the 4k

summation can be done and for which them summation yields the generalized

f nLct ion "

As before, the first operation on the expression for .p is to per-

form an integration by parts on the Z. integral. The result, v.ater some

rearrangement, is

-p - ------ I-.L Z C . ... . €
2 nf"U + -. rA< J .... 4" .4 T:S1"

! . u

a)Vms*(r>,, 0) .A.,e*(a.o)a V ,e r;.,.) A 6 .- AY-~

.. ,,z - AP ..z.

j V,.,ý raŽ ~[xr. ) (147)

4 .2, M[ tt,4' A#2,;

In order to e scusS the behavior of the various terms in this fozai, iL is

convenient to write
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" n- r U J ,1 (Zo) ct o -10  + -P4

where -p refers to each of the series in braces in Eq. (147), numbered suquen-

tially. Each of th,n rn, terms in p, and 4., are C(in B-' and are iultiplied

by the loading at the leading and trailing edges, respectively. In addition,

the terms in pr contain the exponential factor C while those in

-p, contain e- t -A. Away from the leading and trailing edges,

the presence of these factors arcelerates the coi.--ence of the series.

However, at the leading or trailing edge, one or the ocher 9 f the exponenctals

approaches unity and the series can diverge. At the trailing edge. A6,c should

vanish accocding to the Kutta condition, and the convergence p.roperties of

the series in -p. depends on the behavior of A6p as 2 -- t. At the leading

edge, the linearized analysis contains a singularity if, the loading, and Lio

the serie.s for -fa, can be expccted to diverge there. The behavior at the lead-

ing and trailing edges i.P more difficult to understand than it was in the

thickness case where the slopes of the thickness profile are V-ell dcf'ined.

Because of their impact on lifting surface calcul tions, these terim5 arc

examined further in the next section.

The series represented by -p contains the integral which remains

after the integration by parts. Integration of the exponential factors over

Z, introdaces a factor which .is 0(ai) and so each term in -p. is at most

0 (,-,1B) -. IT has bet n verified that successive integration by parts produ..es

rerms of higher order inOmB) and so this series is

Next consider the series denoted by -p . It is this contribution

to - that will be shown to corncain the discontinuity across the blade surfaces,

First the expression for .p is rewritten in the form

7? P8 (/ 0 &- . r-od--",-.
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The expression for -p, is now seen to be -S(r, "), the double series function

defined in Eq. (121),if we identify f(r,) in Eq. (121) with the quantity

U..

When the final expression obtained for S(r,,f, in Eq. (128) is used here,

then

-~ ~ ~ ~ ~~~(y 4.8~rZ Z~(~ __

.21T~I (r ) 7r (Lr

6 -P (15O)

rr
Another integration by parts may be done in the second termi in -~The

integrated term vanishes as a consequence of the boundary condition that

vanishes at the hub and the tips. The final result for -p. is

B (r 81f2  =pt) ,.. ,,,: 2: ,..,,,,4
r 

K4j 31

R,, 5 4 ~ ~ ~~~zJ~(151),

The term containing the generalized function 4jis the term which

contains the discontinuity in p ; all of the remaining terms converge uniformly

for all 4 away from the leading or trailing edge and, hence, are continuous

across the blade surfaces. If the difference in ip across the blade surfaces

is formed, -p (r, z,- -p , -- ) , then because of the nature

of the function z , it can be seen that the definition of 85 given in Eq. (133)

is recovered.
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Collecting the evaluations of the various terms, the expression for

the perturbation pressure at points within thr blade row is

2 2I '

a c- /'3 .

"9. U

- k.()',, ) (a .

When the first two terms are omitted, this expression, for -p is valid
upstream (Z < 0) and downstream (z! •c.) of the blade row. Thus, away from
the leading and trailing edges, p (and hence v5 ) is continuous in these re-
gions, and in particular, across the blade wakes.

b. Radial Velocity Component

Next, tOe properties of the expression for the radial velocity are
examined, focussing on the terms due to the trailing vortex wakes. The radial
velocity is tangential to the wake surfaces and should be discontinuous across
them. This behavior can be demonstrated simply, if we consider points far
downstream of the rotor where all other terms except the wake term have de-

cayed and Eq. (146) becomes
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_____ r•,+ '. 8 • [ '" () Pm-*CC >!(ri,,),:Zd

7omp rin (Zhi-w -q~i,, /i~ IM (19 ... *•ri r•-t a ..

resultin Eq (15(,1th)

•r •-"÷®)I z _ _ _ I
-,--t , 73 t ', roiJ L

-7*.aa R-

K ,' S --t "-'

Comparing this eouaLiUIt w inL4 E4. (143)hlda th-oat Y4is prcrtionais t

t-

Taki tngs h d iva tive iof vth odres ftrength. r., in t e

result in EqI(53, he

S( K (154)

izUrv11. -, KmA t ,•' " (r isi6):

Substituting for air, in terms of using Eq. (53) and transforming the stream-

wise integration to an integration over b l he circulation is expressed in

terms of (p(r, 2) as
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CC

Thus O (Kn)

.2 7T $ý U ;TpU ID-A

ro (158)

The ~'term produces the expected discontinuity in w'> across the wakes while

the second term is continuous. Farming the diff~erence in it,. across the

blade wake locations according to the same convention adopted forA,

AU, 1]> (r' Vjt .- J Cr= f we ge t:
rd

Notice that in this convention ris negative when 6-p is positive and work is
done on the f luid. This result for the jump in Vr, across the wakes is the

same as for an isolated wing. The difference here is that the trailing vortex

wakes are helical rather than plane surfaczes.

c, Normal Velocity Conponent

The final task of this Section is to develop further the expression

for the normal component of the perturbation velocity,. As with the expression

for ,the terms in zv,~ arc numbered to facilitate the following discussion.

From Eq. (145)

c1v / )rr
%) Ap(4 + (tr ,. (rooa

The term labeled (r) contains the wake term, and can be rewritten as

follows
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9- r*1*

where it is recalled that the prime on the ni suim.ation denotes that there is

no rM o term, The 4-summation can be rearranged u.sing the same techniques

employed to evaluate the 5eries function S(rr) in Section )V-C-3. ]he reuiting

expression for (2ry), , is

1+

j r A_ )I _ _Z-Z '

The A summation which includes the first term in braces is just the r-ourier-

Bessel expan~iion for ASb(r,•) . The corresponding ",i summation also can he

evaluated if the appropriatt rm.o term is added and subtracted so that the

following r'elat~on can be used.

.2T TI r

Then (summa) , b wcoi nbes
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(Zr.) I- S. uý - L Z-. i2"_' ' __. ,_ -. .2rrh .

/C.L-,- Cr, ')H ,,-, /•: .B \ f /c,, (164'

jo -UT p,o ,,,Ur ../0,. U. r .0

W)F C

The first term precisely cancels the blade force term in V,. repr2sented as

a volumne distribution of dipoles in Eq. (141). Thus, we can drop the prime

on v,, and the expression is valid anywhere, including on the blade surfaces.

The next operation perform,ýd on v-,, is an integration by parts over

Z t, 13 ri, n L( )

t27.

L. (' (r';) £. '

r ~ a

u L u
j"B r )A wr 2- ~ 2 15

z) •,[m 7,'LW- ,,__r



where

"'rndk (r •. , 2. = V,BA~(ro 2 ZA) { ,- Ln-,a [r(l

and (166)

6 ,k- (, 4k )y , 0  (167)

Except near the leading and trailing edges, the first three terms

in trv,) 2 are well-behaved. In the integrated terms evaluated at z, = z ,

the last three terms in Eq. (165), the r-dependence has been factored in a

special way in order to demonstrate that Lr,1 is continuous across the blade

surfaces. The first of these terms comes from the -- contribution to v,-. in

Eq. (137); the other two of these terms derive from the Ifz) contribution to

-r . The first of the last three terms is just (wir/U) times the dis-

contin...uo.u uu L a u, part op4 in Eq. (1,9;. Hence if z., is tc bo COnltlOUS

across the blade surfaces, then the last two terms must cancel this discon-

tinuity. In order to simplify the demonstration that such is the case,(LE)

is further subdivided.

( Z,ý). V= ( , + ( iT) (168)

where ( 'r), includes the terms containing tmB* and V.) 4  can be written,

using the definition of Dc•* in Eq. (1b7), as
r•

- 5 1' - - • " 84)(0 )

wr
\ U 1 1 ')-•-

L .

- ---- ) II---"IprZ+ / 5"
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Now the series containing the first two terms in braces are in the sanie form

as the doubly infinite series evaluated already. The third term in braces

can be manipulated in much the same way; the factor containing /\.5k is re-

written using Eq. (122) and the quantity (\ // L'+ (-u ) is added and

subtracted to it. When these operations are completed, the form of (•zr) is

"4 ) I Z

"r )f •t" (170)

2( J rvaj L(y

If the results for Sfr,•) in Eq. (121) and 4 in (149) are used to evaluate

the series corresponding to the fiyst two terms in braces, the respective con-

tributions to (Lr,) 4 which contain the generalized function, ,, cancel. Thc

differential equation satisfied by the radial eigenfunctions, Eq. (74). can

be used to substitute in the third term and then an integration b)' parts

carried out. The final expression for (U,)4 is

A (w) _ - ,

p'W- 6r(, ) -U

L (171)
d(/

(/ wr-.) i
( A r 1



The series in ('D,) 4 are uniformly convergent, as are tOc remaining

terms in ,r, , and so we conclude that vz, is continuous across :he blade sur-

faces. As a prelude to evaluating the full expression for v, on the blade

surfaces, in order to establish the integral equation for the blade loading,

we collect the result for Ir,,

Ljr I f

e [,0  .L{.,] /r-- &i(R K,. 2 _ 1
""j;: -2, -• 't-- )

7 ~ ~V~ ~(172)
..,

f }

9 9 
'

,Z~~~. 7T-. Ut

Q.r

2 U•

-,L

I~ ~ ~ ~ c r It Z



where (v-n) 4 , given, in Eq. (171, is not written out because it vanishes on

the blade surfaces. The quantity r, ,), defined by Eq. (166),

has been rationali7ed and written in the form

L - - ((r jo) - Z' (173)

~~ UT) "$71

where Dm# is defined in Eq. (167). The coefficients of the different radial

factors in Eq. (173), Cma&,.) , are complex quantities, i.e.,

The real and imaginary parts, 9m.1 and 8 (,,Ce(Zo), are written out in

Table 3.

The formulation of the loading problem with the pressure dipole

approach is now complete. Expressions given in Sections IV-D1 and IV-D2 for

the pressure and velocity fields have been shown to satisfy global mass and

momentum conservation, and to display the correct behavior at the blade and

wake locations. The result given in Eq. (172) for the normal or upwash velocity

is used next to develop a direct lifting surface analysis.

)
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TABLE 3

Coefficients in the Expression for the Normal Velocity
Component of a Lifting Rotor, Eq. (172)

(1)

p4 8

(,M3)' A 2+ ~ .

(I ,

(~~'6) f/~t3~

,b A ,,,6,4 . ( z -z, . + )-

A (2 -) Ol

1 -Z pi5 L L )[-2.t~ m
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E. DIRECT L:FTING SURFACE THEORY

The formal solution for the loading contribution to the flow field

of a rotor can now be applied to the direct lifting surface problem. An

integral equ-ticn is tci.ed which rclates the unknown blade loading to a

specified blade geometry. This derivation is accomplished by evaluating the

normal component of the perturbation velocity, Eq. (172J, at the blade surface,

and using the flow tangency condition to relate it to the blade camber line.

The resulting linear integral equation fortL is then nondimensionalized, and

what appears to be a promising solution procedure is discussed.

1. Formulation of the Integral Equation

Due to the neriodic nature of Eq. (172), and the fact that all

blades are assumed identical, it makes no difference on which of the blade a

surface s~reanline.Ž, ', - - 0, , . ... . ..

Two simplifications are immediately apparent when t is evaluated at a blade

surface: (trU), , as given by Eq. (171), vanishes, and in the other terms

of Eq. (172), the complex exponentials involving 4 become unity.
z-r

At this point some discussion of the integrated terms proportional

to 0-p(r, C) and ALp(r ,C4 ) is in order. Analogous to subsonic isnia.Ced

airfoil theory, the Kutta condition is assumed to be s:atisfied at the trailing

edge; i.e., the loading 6-p , (r ) vanishes so that this term need no longer

be carried. The leading edge term, on the other hand, poses a problem of

interpretation. The loading on a subsonic, isolated airfoil is known to ap-

proach infinity as the minus one-half power of the distance from the leading

edge. Again, we can expect analogous behavior in the present situation, in-

plying that the quantity A-(ro) is singular. This also implies that the

integrand containing dAp/8A- now contains a minus three-halves po'er

singularity, which is not integrable in the usual sense. However, note that

the original expression for u, before performing the integration by parts

with respect to Z , Eq. (145), involved only integrations over A-pC;, Ao)
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Hence it contained only an integrable singularity, and would thus give a finite

result. This strongly suggests that the infinities in EU. (172) are

self-cancelling, and that only the finite part of the expression remains.

Following Mangler,Sa the singularity in the integrar.d corn ue dis

played explicitly, with the other factors being expended in Taylor series in

the vicinity of the leading edge. Such a procedure shows that the infinities

do indeed cancel, and that the appropriate way to write the te-nr in question is

with the leading edge term proportional to -Pki;,C), and the last integral

taken with C as the lower limit of integration, where 6 is some small but

finite number. This will always yield a finite result, and amounts to neg-

lecting the contribution from a strip of width C near the leading edge. How-

ever this contribution is easily shown to be of order £ A and hence can be

made negligible by choesing 6 sufficient>ly witail.

It is also useful to elirminate any complex quantities from the

expression for v, , since on physical grounds it must be a real qiantity.

This can be verified from Eq. (172) by first recognizing that the

are real and are odd furnct-ions of the index - ; thus, the product P,,g(f)P?,Sk(c•)

is even with respect toni . From here it is easy to show that the Y-,) terms

are the conjugates of the corresnonding (+ -) terms, and ZQ the doubly in-

finite sum over r, will always yield a real result for 7Jr. This suggests the

calculation can be shortened considerably by considering only m •- o i.e.,

z Z' rf•'- ' t(173)

where 6 , the Kronecker delta,

is used to avoid counting the zeroth tern 1;'ice.
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The next sten is to relate tý on the left-hand side of Eq. (172)

to the prescribed 'iiade geometry, which ;n the loading case means the blade

camber line. (As used here, the camber line includes any mean angle of ;'ttack).

As pointed out in Sc-ction IV-C i, this is not as rstraightforý,ard as it is in

isolated airfoil theory because of the sc-called "cam'e: due to thickness".

A row of blades w.ith this camber distribution is by definition unloaded, and

so represents the zero reference in any loading calculation. Thvus, zr, in the

loading case must be continuous across the blades and satisfy the flow tangency

condition with respect to the following camber line,

("~r) r (5, r> -- 47 '. r) (174)1
1ý7CL 11C ~ CT - .

where ' is the geometric camber of Figure 21 and ayc• is the thickness-induced

camber given by

"'o = - (a c',, c t,,,dS

(175)

Here (tr,. c,0 is the portion of v, in Eq. (130) which is continuous

across the blades, and the integral is understood to be along 4'o at constant

radius.

For a blade with thickness, it is assumed now that OYI, has been

determined so that 1 ' Lis known; alternatively, one can consider the results

below as applying to a blade with zero thickness, in which case OMcr is ob-

viously zero, In either case, the left hand side of Eq. (172) is replaced by

""J 1 , r( (176)
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to insure that the flow remains parallel to the loading carter line. Here

';1 (z,r) is understood to be t(?Cý ( ++.r) when both s and - are

assumed to originate at the leading edge of the reference blade, and use has

been made of Eq. (Sla).

Whnr'. all the above steps are taken, Eq. (172) yields the following

integral equation for tp:

u-2 4i r- U-,io , r

4. r,4UrS -t) z cdx(" 0 1 z) ,o; ,, .

"^U" )} J144

R,,*-Uz.~ rA dAp'P

&r R' m) ,U,*( P, 5 (C.) A

r -1
m s( .. r wr ) /&,o rr' / r g

"Z.i t-- a Z . t r.

J t ,-, -Ao ,,, 3 4 sI?4, 9o

(177)

where for convenience we have defined

•'•o az)- P,,,,8 ceo 1i 5 -(-*)-13 0 (az) 4-r --"2c) 18

(V U, (178

for 1 1,2, 3; the PI I , s and 6_l• s are as given in Table 3.
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Before considering the nature of this equation, it is convenient

to nondimensionalize the variables. In the radial direction, we retain the

use of cr - as the dimensionless variable. For the axial direction, in

keeping with the usc: I convention in isolated airfoil theory, we nondimen-

sionalize by CJiz and shift the origin to mi.dchord. Thus, we define

C-

(179)
C.

so that now the blades lie between o- - 1 and -, Y x -s . For convenience

in specifying the blade row geometry, we also define the parameters

Or r C 4_ (180)

Pr is the inverse of the usual flow coefficient at the tip;32 q, can be re--

lated to either the aspect ratio or the solidity at the tip (based on C,.

rather than c ):

Aspect ratio (i-A) , (181)

Be. Brj

Solidity at tip - (182)
z rr - T

We next note that since quantities like A_64, 3 R , 8,- ,

and Di.j are already dimensionless, we need only rewrite them in terms of

the above. Hience, we get

Lt_ ( ] (183)

Also

J Co



and

IV) (2) rvylI . irM& xX• , )- SO - -)(x-)-88(1 (x, X ) A-,, - -X(X
B8A '0 1O r(r Pn8q, (X185)

(18s)

The expressions defining Q and 58 can be used as they stand in Table 3.

As for the dependent variables, such as velocity and pressure, it

is natural to normalize them by the axial velocity, U , and dynamic pressure,

7p oU respectively. Thus we define

tr 1o-CL oouA (186)

With these definitions, Eq. (177) becomes:
A djiL8flc P

"3X "'2 ) T 2 A-2

(C.l ,, - C, , ). c•L d X. -".4 (Tgl2 dxz/3

+ (X ('±-, )ma84m&~

IA-Ar/e*OY.1 xF

j a( 7)

A-p (o , -, t + - T,.,a"(A, r)o o; )

(187)
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The next step is to consider the behavior of the integrand. In

isolated airfoil theory, singularities generally appear as the source (r(, XQ

and field (r.,) poinr, approach one another, and we must expect such behavior

here. In our case however, they would appear as divergent series, so that

the nature of the singularity is not immediately obvious. Preliminary con-

sideration of the series in bq. (187) when the source and field points coincide
-f

suggests that for fixed A , the terms in the integrand decay only as (c 8)

and for fixed m8 as (4)-' , thus indicating potential convergence problems.

(It should be noted here that this in no way contradicts the earlier statement

that the rvi series occurring in Eq. (172) for v, is uniformly convergent.

There we were considering the integrated expression for tr,, and hence could

make the use of the fact that the integration over z. of the exponential argu-

ments would yield an extra factor of (Y"'B) Here we are considering the be-

havior of the integrand near x - x, , at which point the exponentials all

reduce to unity•,on hPnr... cannot aid in the convergence).

The nature of these singularities has not yet been determined, and

so a detailed discussion of the convergence of these series is deferred until

then. Once the form of the singularity is determined, it is anticipated that

its influence can be subtracted out and isolated, much as the discontinuous

portions of p and ½r were isolated in Section 1V-D-3. In addition to facili-

tating the evaluation of the improper integrals which occur, the isolation of

the singularity will serve another very useful purlpose. In any numerical

scheme, the infinite series over the azimuthal and radial mode numbers must be

truncated after a fiitte number of terms; since all series would be convergent

after the above separation, a much better estimate of the truncation error

should result.

2. Progress Toward the Solution

Despite the fact that this singularity has not yet been isolated,

some progress has been made toward the inversion of Eq. (187). This

equation is obviously too complex to hold any hope for an analytical solution,



and so various numerical schemes employed successfully in past lifting-surface

studies SS', S have been reviewed. The schemes all appear to fall into one of

two basic categories. The first involves the idealization of the distributed

loading as a lattice of discrete loading elements (i.e., vortices, dipoles,

etc.) whose strengths are constant, but initially unknown. The second ap-

proach is to represent the contiruous loading as a double series of suitable

functions in th,. chordwise and spanwise variables, the coefficients in which

are initial]j unknown. This is also sometimes referred to as a kernel func-

tion approach.

In either case, one then requires that thtc velocity be parallel to

the blade surface at each of a set of suitabl) chosen collocation points.

This reduces the integral equation to a set of simultaneous linear algebraic

equations which can be expressed as a matrix equation. The rank of the rnatr:x

equals the number of unknowns, which in turn equals the number of coilocation

points for the system to be detvwiiinanr. One can aiso choose the number of

collocation points to exceed the number of unknowns, in which case the boundary

condition at the surface can only be satisfied in a least-squares sense. 6 ,S'

The solution of a matrix equation, whether for the unknoin strengths

of the source lattice or for the unknown coefficients in the series expansion,

is thus comamon to both approaches. This portion of the solution is relatively

straightforward and rapid. It is in determining the elements of the coeffi-

cient matrix that the most time is usualiy consumed, and it is here that the

two techniques differ significantly, with each having advantages in certain,

prob l emos.

The greatest advantage of the lattice methods is that. no numerical

quadratures are needed to determine the coefficient matrix. Mforeover, ,>

vided the source and collocation points are never coincident, the problems

mentioned above in treating the singularity are evidently avoided. However,

since one only solves for the loading at a set of discrete locations, thexre , -

some ambiguity involved in how best to interpolate for cit, loadin:gs at otcher

positions. (A general discussion of this point is given in Chapter 3 of

Reference 57.)
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WQ feel that the series expansion 2appreach has several overriding

advantages in the i :'esent problem, the pr'icipal one being that it enables

one to express the .o,',dng, as well as its derivatives, uniquely at every

point on the surface. Through judicicus chioice of the loading functions in

the steries expansion, one can also include the appropriate behavior at the

leading and trailing edges automatically. ' The principal disadvantage is

that ::umerical quadratures usually are required for thu elements of the co-

efficient i-,atrix, which for our kernel function would likely be ratler time-

c oe-utm in •

Fortunately, there appear,-s to be a strong possibility that, once

the singularity has been treated separ-ately, the remaining spanwise integrations

can all be done analyrically. To see this, note that the ro integrals in.

E".- (187 jinvolve only products of 6A ,rnCA wit,1 A{ o: ýts

deirvhtive;. Furthei , if we expand the radial dependence of 4p, in a simple

po:.zer series, then the integrals will still involve only products of P,_o& with

int.;gra' pov;r" of (% . Then, since the Pe 4 arc linear combinations of "

arid Y- 8 (see Appendix A), use can be made of the indefini'te integral:
5 9

"fr + r..l

where !i and ,- ace e'ach inltegers, the 5
M., are ,onn;et's func-tions nd A; is a

dumi, v;i •i •abl ft r K ., • Re-ereAce 59 gives an c2asily used asymptotic ex-

nps- firn ±ftr he cvalation of the 30.e valid for large argunent. Since
•,••, -•, , whvr r, , can he shownr to bt of the sane order as the number of

bladc.s, this sliouid be applicadle in the irajo)ity." of cases encouintcred in the

p re:sent preb •en:.
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One further point needs to be made regarding the radial variation

of An, and that concerns its behavior as the hard walls at oT -. and I are

approached. In isolated airfoil theory the loading at the tips must vanish

since no pressure differential can exist off the airfoil. However, in the

present problem, since we have not allowed for thý effects of any clearance

between the blade3; and the walls, the hard-wall boundary conditions require
instead that there be no radial pressure gradient there, so

0 0- - I, 1 (189)
ac

This requirement can be satisfied easily by a power serics, and is another

advantage of using such an expansion in the radial coordinate. In fact, if

ý.-w assumes an expansion with N unknown coefficients, two of these can be

expressed as linear combinations of the remaining (N-2) using the two condi-

tions embodied in Eq. (189). This allows one to repre.ent the radial

variations with a power series two orders higher than the number of unknown

coefficients one is willing to include.

As for thŽ chordwise variation, it is very doubtful that a simple

power series expansion in x. would be adequate. This i- because of the need

to represent the behavior near the blade leading and trailing edges, where

4-p and/or S-have singularities. Accordingly, an expansion which represents

such behavior explicitly will likely prove necessary, i.e.

+4x L (AL10

where each of the A is a nower series in a- as discussed above, and the P

if- a suitarly chosen set of finite polynonmills, each of order . Such a
representation automatically exhibits the appropriate 0 ± Xo ) behxvior

near the leading and trailing edges, respectively.?3 Unfortunately. it also

requires the use of numerical integrations .4ith respect to x.. The effi-

ciency and accuracy of these integrations can be affected by the form as.umed

for the set of polynomials P, and various alternatives d.susscd in Refs. 55

and 60 are being considered. Once tne terms containing the singularity that

i | i | i i | i | i | | i ll



occurs at the coincidence of the source and field points has been isolated and

the mathematical c-iar-4ztcr of the nonsingular portion of the integrand has

been established, a choice for the fuom of the P will be made and efforts to

obtain numerical results will begin.

F. CONCLUDING REMARKS

A linearized direct lifting surface theory has been formulated for

the compressible, three-dimensional flow through a rotor of specified geometry

in an annular duct. In arriving at this formulation, the overall subject of

the linearized analysis of three-dimensional compressor flows was reviewed in

detail. This review was made necessary by difficulties encountered in early

phases of the work. Initial attempts to derive the loading contribution to

the flow field of a rotor by the superposicion of pressure dipole solutions

met with two problems. The solution for the rctor pressure field did not

yield a nct prcssuc rise betweern points far upstream and downstream of the

rotor. Furthermore, it did not agree with the result obtaind by Namba 4 9 in a

similar investigation.

The error in the pressure rise was traced to the omission of a tern

in previous versions of the fundamental solution for a point source. The

missing term in the source solution also led to an error in the dipole solution.

When these singularity solutions were corrected and the result for the pressure

field revised accordingly, then a nonvanishing pressure ribe across the rotor

was found which agreed with the vortex theory result obtained by Okurounmu
42

and McCune.

Both the thickness and loading contributions to the flow field of a

rotor were rederived using the corrected singularity solutions. The implica-

tions of te additional term in the source solution to published reports on

the thickness problem have been described. The solution for the loading problem

has been applied to formulate a direct lifting surface theory. There are two

remaining differences between our formulation and that given by Namba. 4 9

First of all, thcre is the difference which results because the additional
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term we found to be required in the dipole solution is not present in his.

Secondly, our formulation does not contain his scale factor, a futnctjoni o'f

radius which modifies the dipole strength. Wh han concluded that this factor

should not be included on the basis of severan checks made oil our analysis.

Both the thickness and loading contributionrs to the rotor Slow field have been

shown to satisfy rhaý global conservaL-on of mass and of the axial components

of linear and angular momentum-. In addition, the velocity components have

been shown to display the correct behavior at the blade surfaces and, in the

loading case, across the trailing vortex wakes.

Progress has been made toward obtaining numerical solutions of the

integral equation for the unknown blade loading. A kernel function method has

been chosen as the best approach; the loading is expanded in a double series

of suitable functions in the chordwise and spanwise variables, the coefficients

in which are unknown. The expected loading behavior near the blade leading

and trailing edges is ensured by the inclusion of appropriate factors outside

the double sum. The choice of the form of the expansion functions used to

represent the axial and radial variations is deferred until the singularities

in the integral equation have beLn isolated. These singularities occur in the

kernel function when the source and field points coincide. It is felt that tile

same techniques L,-.ed to isol- n the discontinuities in the pressure and velocity

fields can be use, to determine t(he niature of these singularities, and work

along these lines has begun. Tih isolation of these singularities should

accelerate the rate of convergence of the series in the remaining portions of

the integrand, and therefore, facilitatQ numerical evaluation of the solution.
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SLCTION V

SUt\tARY AN) CONCLUSIONS

A theoretical and experimental investigation of discrete-tore rotor-

stator Interaction noise. and the development of a three-dimensional lifting

surface theory for a rotor have been presented. In the experimental part of

the program, the sound pressure levels produced on the outer duct wall of the

annular cascade facility were measured for a rotor-stator pair. The micro-

phone probe was located in the far field upstream of the blade rows and data.

were taken for two stator stagger angle settings. In both sets of data the

rotor speed was varied continuously up to about 1450 rpm. A pure tone signal

was observed above 1100 rpm which was identified as the fourth-harmonic of

blade passage frequency. For one of the stator settings, some additional data

were obtained on the fifth harmonic at about 600 rpm. Lower harmonics could

nT1 n.' rVoi rBA t r~" t.aA I,-~~I 14-, t at the t~ire V1,

these experiments.

A limited amount of experimental data were taken on the time varying

pressure signal at several chordwise locations adjacent to the blade tips of

an isolated rotor. These data were taken in an attempt to obtain information

on the loading at the blade tips with which to compare lifting surface calcu-

lations. However, the data appear to contain tip clearance effects which are

not included in the theory and would complicate such an eventual comparison.

An approximate model has been developed to predict the discrete-tone

noise produced by tite interaction of a rotor and a stator. In this anaiysis

the aerodynamic and acoustic aspects of the problem are treated separately.

The sound pressure levels in the duct and total radiated power at the harmonics

of blade passage frequeic,/ are computed in terms of the propagating duct

acoustic modes. The amplitudes of these modes are related to the blade row

parameters through an approximate two-dimensional representation of the unsteady

blade forces. The main advance over previous approximate treatments of rotor-

stator noise is tite incorporation of an aerodynamic model that accounts for

compressinility effects.

114



Sample colculations have been presented for sound pressure levels and

totsi radiated power over a wide range of subsonic. Mach niumb'ers anrd comparisons

of the mode amplitudes were made wtth those predicted by an incompressible

model. In addition, theoretical predictions were made of the discrete-tone

noise to be expected in the acoustic experiments. The calculated sound

pressure levels were significantly lower than the measured values. Evidence

has been presented showing thaL the sound pressure levels at the higher

harmonies of blade passage frequency are sensitive to the uncertainties in the

data for wake mean velocity profiles. This should not be true for the funida-

mental and the lower harmonics and so, if the inaccuracies in predicting the

sound pressure levels of the fourth harmonic are due to an inadequate wake

model, then better agreement with experiment shoulid result for lower ha-nonics.

The anaular cascade facility has been repowered so that higher rotor speeds %4

are now available. Further acoustic experiments are planned in order to obtain

data on the lower harmonics.

Finally, a direct lifting surface theory has been formulated for the

compressible, three-dimensional flow through an isolated rotor. A pressure37

dipole representation of the blade row was used to derive the integral equation

relating the blade loading to a specified blade shape. During this deveiopment,

the omrission of a tern in previously published versions of the fuidamental

source and pressurc dipole solutions was found and corrected. As a result. a

general review of the linearized analysis of three-dimensional compressor flows_

was presented. Both the thickness and loading contributions to the flow field

of a rotor were considered.

Work was begun on solving the governing integral equation using

numerical techniques analogous to those e:mplcyel successfully for isolated

wings arhd cascades. A kernel function approach has been choseni which in-

corporates the expectead behavior of the loading at the blade leading amid trailing

edges and at the duct walls. At present, the singularity in the kernel

function is being isolated and, once this is completed, programming a•nd numicrical

evaluations of the solution will begin.
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APPENDIX A

DhI-INITION OF RAD IAL E GE-NMUNCTIONS

This appe:idix summarizes the definition and properties of the ortho-

normal radial cigenfuni-tions, R,,_. As used in Section III

Y )

-Z , N,,

where j,. and Y, are the Bessel functions of the first and secori kind, of

order n The normalization factor Nris chosen such that

where k,, is the Kronecker delta. This requires

The set of eigenvalues u,_ corresponding to each function are solutions of

Jj ( •%•) J', (•... {) .

which insures that Equation (8) will be satisfied. The zeroth eigenvalue, vz,,

is zero so that all the P are trivially zero, save for the case o o Then

The set of functions Q,, is complete for any r , so that a function

can be represented on the interval A to 1 by the series

F ( ') - • C,,, P,, 0 Cu.... ,,ra-)

where
Fa
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and i can be chosen for convenience. These functions are discussed at more
-)8 4length in the papers by MlcCuneC2 and Tyler and Sofrin. (Note that in the

lifting surface theory of Section IV, a somewhat different notation is used.

There, 4 rather than ti, is used as the radial mode index, and the eigen-

values are referred to as rnk rather than
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APPENDIX B

EXPRESSIONS FOR ROTOR-STATOR INTERACTION FORCES

This appendix, quotes the results of Osborne's analysis of the un-
steady compressible interactions within a stator-rotor pair, as shown in
Figure 12a. Some typographical errors appearing in Reference 24, and checked
with its author, are also corrected. The notation used here is that of Osborne,
except where otherwise noted. Note in particular that "2 " was used for the
load harmonic index, in place of his "m ", to keep consistent with the main

text.

a) Rotor Unsteady Lift Resulting from Passage of Steady
Stator Loads

c - (- Me 95H< " •n,,. ', ,7
X, I- L(',C,

L C

rC 1 "R VLCn"a,

z c.5 Vs s P. (, AL ., - V- r

f 7T + 4 1C , a Y

£'
T12Ce
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shape. That is, if ,Y (X,) describes the stator blade shape, then

,Y'(x5) A,,R-z Q n

where

xs c, cs o c• * x • c•
XsC 5$. 5

An analogous expression defines the A, . The quzntities K, and Zr will be

discussed further below.

b) Stator Unsteady Lift Resulting from Passage of Steady
Rotor Loads

L5 13R e4 - cvt3 Gi KL (is 1L5 , M5)

S-i.' •-i + 2. (-z;j, -!•,,+,- ,. T,,_

f-. ftP. + P, J(

rr~ L.CLRI



=[ 2

F = , ,--,,,)e e a,

C + ÷c(;-ftf) Sc

K = EG E i F J E 1/3

/33

2r7rtwe I1I.Lcis5-- ,., Ti,$

The function K.( 0_,6,M) represents the airfoil response to a gen-

eralized Kemp-type upwash gust. In Equation (6) of Reference 24, it was given

as the sum of an infinite series of products of Bessel functions. Kemp38

later showed that the series could be summed analytically, and gave the closed

form expression:

K. (a. & J (6 [n) J(T) + , Jr] + [J.][a 7,(6) - ,r) J.(5)

with either R or s subscripts, as appropriate above. Here

J(x) J(X) - (J,x)

and (x) is Theodorsen's function,

(Cx) = K, (. X)
<C (X)J+K~XXo" X) + K(L',X)

where K. and K, are modified Bessel functions of the second kind with imaginary

arguments. This is the form for K,. used in the present study,; using it,

Osborne's original numerical results were reproducc'd to within the reading

accuracy of his curves.



Furtheruore, it has recently been notod39 that Osborne's original

asymptotic aerodynamic analysis does not appear to be consistent to first order

in hi.s small parameter NM/;n23./, as c]aimed.27 After re-doing the analysis

starting frou the integral equation for blade loading in unsteady flow, it was

found that all ot Osborne's expressions remained valid provided that V was
.29

replaced by Z , where

r 2 - [ Il)

fý(M1 /3 it3 + 13 -/) AL, M t1 2; O)= 0

again with either q or 5 subscripts. Accordingly, this revised definitioT, of

zwas used in both potential interactions above for the present study. Note

that this is no way alters the fact that tne equations still reduce to those
2of Kemp and Sears a incompressible speeds.

Viscous Wakes

A~ ]
ZP< C, ;

_____ rr4

a.5s hoe v c × e e -C. 2nd C-c. [a 0h. 1.arter- "

V, (4 - 03) C--AX 06

where

z , 0.7

and Z. is some chosen value ef X, between -C. and rC , usually the quarter- '

chord point. The other quantities arc given in a) above. As originally
derived by Osborne, T , which represents the airfoil response to a sinusoidal

gust, was given as

T (ir- , A) , J(.Ir) Sr(4 )F
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where J$x× is defined above and S"x) is Se'irs' original incompressible

response function:

5(x) [ YSX [K.C X," + K,• X]

However, Amiet 4 0 has shown that if this expression is multiplied by the phase

factor c e (Mlf• , the result more closely approximates numerical solutions

for the loading. Thus, in the present study

T (IrR I InII J(2t-z) 5 (fl-a) e247fl

where f(Cm) is defined in b) above. Note, however, that use of Osborne's

original z , and not r' , is retained in this expression; also, the magnitude

remains unaffected. Again, the above results reduce to those of Kemp and

sears in the limi't M = o . (The factor e in 6. is a phase shift reflecting

Osborne's alternate choice of the blade row positions at the instant tzo ).

Having quoted the aerodynamic expressions appropriate to a stator-

rotor pair shown in Figure 12a, we now consider how these can be applied to
24

the rotor-stator geometry of Figure 12b. As noted by Osborne, the only thing

in his two-dimensional model which distinguishes the rotor from the stator is

that by dcfinition the rotor is the blade row which moves with respect to the

duct. Since the row stagger angles, blade profiles, etc. all appear as input

parameters 'n Osborne's analysis, these are readily switched. But the fac:

that it is now the upstream blade row which is moving is not consistent with

his model. This is easily remedied by a Galilean transformation to coordinates

moving with the rotor, as in Figure 12c, so that the stator now appears in oo-

tion. Noting the sense in which aM and ox are defined positive in Figure 12a,

a comparison of Figure 12c with Figur•e 12a suggests that the interaction forces

in the reverse geometry of Figure 12b are directly related to those of Figure 12a

if one simply substitutes

a 1 s a U =U

in the ab:ve equations and reverses the subscripts Q and s wherever appropriate.

At f.trt glance, the reader might be bothered that we appear to be computing
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the forces in the wrong coordinate frame, so to speak, i.e., with the stator

moving and the rotor stationary. But we are only concerned with the force

magnitudes and thoir relative phasing between blades, which, of course, re-

main the same provided we always measure in a Galilcan frame. In using these

forces in the subsequent acoustic calculations, we revert back to duct-fixed

coordinates [see Equations (13a-c) in the main text]
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APPENDIX C

MASS AND MOMENNTUM BALANCES FGR SINGULARITY AzD
ROTOR FLOW FIELDS

Tests performed on the souece, dipole, and rotor flow field solu-

tions curived in Section IV to determine if they satisf> global mass and mo-

mentum conservation c.rc described here. The cotnLrol volume employed is bounded

by the duct walls and the annular areas perperi1dzcular to the duct axis at up-

stroam and downstream, infinity (se.: Figure 1i) Since this zontrol volume

rotates with angular velocity LI (in the negative 1 -direction) , the conserva-

tion laws for" a noninertial referenc, frame must be used. The appropriate

integral forms of the equations for conservation of mass, momentum, and

angu:lar momentum for such a control volume have been taken from Ref. 61.

Then, these equations have been linearLzed so that the;., are expressed in

terms of the undisturbed flow properties p,, , U , and cir , and the perturbation

quantities p , p , ir , , and vz . These equations were specialized

further to account for the fact that all LIe flow field solutions decay at

upstream infinity and satisty the boundary- condition of no flow through the

d,1ct walls. Attention has been confined to the expressions for mass conserva-

tion and to the axial cemponents of the momentur, and angular moment-un balanc2s.

Under the present set of assumptions, these expressions become

r. 7r

7 ' / a /, I3+
YZC + i p (C-1)

p +U +P ) rd. rd d (C-2)
0

-2 r ic1a (C-3)
.. , r -/ c.) 0- Vi-

S1 J l• L4 • + •, ril. t, .j - rd ,-12
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where 'MY denotes the rate of introduction of mass into the control volume

while 7, and J. arc the axial components of the net force anci torque on the

fluid. In the discussicn, which follows, the flow field solutions obtained

for a mass source, pressure dipole, rotor blade thicknec.s distribz.rion, and

rotor loading distribution are shown in each case to give the values of ýn,

7 , and '# required to satisfy these conservation laws.

1. Mass Source

The flow field due to a point source which is located at the point

Cr0 , , Z0 ) was given in Section IV-B. The mass add tion rate into the

control volume, 977 , due to this source is just the following volume.- integral:

JY7 r r r-, d'(0- 6)6(Z-_o
_ . dr • r,

rT F__ra r ri d cl " (uC-4

-h 0

Thiis rate of introduction of mass must be balanced by the mass £low out of

the control volume, as expressed by Eq. (C-i). Using Eq. (54) to eliminate

p in favor of -, that expression for 9n becomes

zflc - u rdd 0 r r (C-s)

From Eqs. (83b) and (83c), the limiting values of 'Vi and P for . - are

found to be

Z- 271 ( 2 -'-i (C -a)
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Substituting these res,.its into Eq. (C-S), it is easy to show that the inte-
gration yields '7M i and so the source solution satisfies global con-

servation of mass.

The presence of a 5ource in a mear flow results in a force on the

fluid. To first order, the force due to a point source of strength Q in an

undisturbed stream with velocity UR is

' - 0 URrQ " ,rdrd •d [C-7)
_0

The axial component of this force, 7 , is p0UQ . This force on the fluid

must be balanced by the momentum flux and the pressure forcus at. the suLfaces

of the control volume. For the control volume being considered here, this

balance is expressed by Eq. (C-2). Again eliminating , in terms of l , that

equation becomes

r~ 0

If the results tor (V,), and -ps given, in Eq. (C--6) are substituted in Eq. (C-8),

it is straightforward to show that this e:.pression reduces to =,

and hence the source solution also satisfies the axial component of global

momentum conservation.

In the present application, the presence of a source also results in

a torque on the fluid because the undisturbed stream has a rotational conmponent.

Since the e-component of the undisturbed velocity is , the axial component

of the torque on the fluid is

-P r ,z

(C-9)
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Conservation of angular momentum requires that this also be the result of

the integrations over the source solution indicated in Eq. (0-3). First we

write Eq. (C-3) in the form

where J, is the volume integral eind J is the surface integral. From Eq. (83a)

it can be seen that (Zu0 )5  decays for Z -- w When Eq. (C-6) is used for

the limiting values of (ý,,) and -p., the surface integral becomes similar to

those already evaluated in the and 4 expressions. The result for is

S2 2
r, + r

Ob~zaloln Cvr'1s by t.akiag the u ~ ~•- .. :.. .- ,• • ,¢ .,p o v

in Eq. (81), the following intermediate result needed in •, can be obtained.

.2r) J - ---- ________ oh(C-123

Also using thu defi.nition of from Eq. (71). the expression for , at this

stage is

J- ror10 Z6~ r PQ, rc# (C-13)

Next an integration by parts is carried out and Eqs. (70) and (74) are used

in the result so that J, becomies

IThe summiaLion in (C-14), but for the A -0 term, is the Fouricr-Bessel expansion

for r) /;z in terns of the zeroth-order eigenfunctiois, P'0 (d) . The
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final result for J, is

-' - (r0 ' 'i ) (C-is)""2 4

Using Eqs. (C-11) and (C-is) in Eq. (C-10) yields

U7 = p,,•wr '2• (C-16)

which is the result required for the source solution to satisfy conservation

of angular momentum (see Eq. (C-9)).

2. Pressure Dipole

The pressure dipole singularity should result in a net force on the

fluid, but it should not introduce any mass. Hence, in this case the rate

of mass addition to the control volume, 6Ml, must be zero. Before substituting

the results for the dipole flo' field into Eq. (C-i) to check for coulzseVdatlin

of mass, these results are rewritten in a somewhat different fornm. The in-

tegral of the dipole pressure field, -po , along the stream direction as given

in Eq. (100a) is labeled TV(A) . Then, from Eqs. (99) and (100), the

normal velocity component is

- -_ _ _ -_ i -Z.r - ) (C-17)

Now i f is written in terms of L and "

No f3n z;',r tand as in, Eq. (115), and it

is recalled that 4 is held constant in the integration along streamlines,

(t',i ~becomes

r- . die, D 6(r- r 6g-C4,)

= ~~ .eZ~r- )-i'G -- T----

PU ,oU rV 3tpj

(C-18)
Using Eq. (53) to relate (L')0 to Qp and then using Eq. (lOib) to obtain

(v,), from (?r,), and (Or),

4% _ w O Yd'(r-, f(4-( ) .r f (--
/2 U p.U 2  3 p.. o

(C-19)
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In order to evaluate the integral in Eq. (C-I) we need the limiting forms

of-Po and - for ? These quantities are found to be

(C- 20b)

?i--a Y/ 01 Z :P*oi~~~
L "14 ""

Upon substituting for (V9z) and /D in Eq. (C-I), the integral expression for

wl is written

(C-21)

where

•r 2 71

27Z

ifp' [ 1](-3

~k~ 5- ~ 4'~~yr -r dr (C-24) 2

Now, using Eq. (C-20a) in Eq. (C-22), is found to be

"U (C-2S)

As a result of the 0 -integration, , vanish$s because thc n,-o term is absent.

Also, since for fixed . we have

(C -2
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When the results for V , J, and •Q, are added together,"') vanishes as it

should.

As discussed in Section IV-B, the pressure dipole exerts a force

of magnitude D in th' negative • direction (see Figure 20). The i-component

of this force, 7. is D sin ro . The global momentum balance as stated in

Eq. (C-2) provides a check on whether the dipole flow field is consistent

with this force on the fluid. Eq. (C-2) can be expressed in terms of the

integrals 43 , J , and 4r defined above.

0• +. 2 •44+24 ('C-27)

Using the results in Eqs, (C-25) andi (C-26), and the fact that 44 vanishes,

the dipole flow field is seen to satisfy momentum conservation.

The force which the dipole exerts also results in a torque acting

on the fluid, 'The axial component of this torque, J. , is -Dr, cos Pý , In

order for the dipole flow field to conserve angular momentun, this also must

be the value of the integrals on the right-hand side of Eq. (C-3), In order

to simplify the description of these integrations, Eq. (C-3) is written

, 24, Jd + J (C-28)

whe re

/0r r (C-29)

prr

).- j rV , D r (C-31)
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The radial velocity component for the dipole field is given by Eqs. (98) and

(100a). If the & and L integrations in • are carried out, the following

result is obtained.

- U 13 -r

Using Eq. (C-32) in EQ. (C-29) and substituting for ¾* from Eq. (71), the
following intermediate expression for L results.

/ F -- i-i r
U , / d r (C-33)

This sane integral was evalu:ated in the angular momentum balance for the mass

source, see Eqs. (C-13) through (C-15). Using that result

O 4 (C-34)

The evaluation of d1 requires the result for (zr.) 0 , which can be

obtained from (vr) 0 and (vz), by Eq. (101a). U.sing Eqs. (91), (53), and

(C-18) in Eq. (101a),

(t..,e)° 8ljo•) Vc-es .d'.r- r,)J("-('o
- -H(z-Z) (C-35)

U rU

The limit of 4--i for Z- a is given by Eq. (C-20b) and, since the V-inte-

gration of this quantity vanishes, S, reduces to

4,-r~~~ Dro V (-36)
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The integral J. is similar to the integrals '3 ' 44 , and J done

in connection with the mass balance. Substituting into Eq. (C-31) using

Eqs. (54), (C-19), a.i (C-20)

U 5 * <- D Ce (C-37)

Collecting the results for !k , 47, and . from Eqs. (C-34), (C-36), and

(C-37) according to Eq. (C-28) leads to the result 3- a-Dr.cos 70o , and so

the solution for the flow field of a pressure dipole also conserves angular

momentum.

3. Rotor Blade Thicknes:.

The flow field produced by the thickness of a rotor has been ob-

tained by the superposition of source solutions. For closed blade surfaces,

the net source strength must vanish. Hence, conservation of mross requires

that there be no net introduction of mass into the control volume. It should

be mentioned that blade shapes having flat-faced trailing edges are excluded

from consideration. Blades having nonzero thickness at the tra.iling dge would

require infinite source strength because of the discontinuity in surface

slope.

In order to separate the rotor flow field into thickness and loading

contributions, it has been assumc& that the rotor is unloaded in the thick-

ness problem. In Section IV-C-3, it was shown that the flow field solution

displays the correct behavior of zero pressure difference across the blade

surfaces. Consequently, there should be no net force or torque exerted cn

the fluid by the rotor, piovided theze is no blunt trailing edge which re-

sults in a base drag. However, as discussed in the previous paragraph such

a blade shape is excluded from consideration because of the singularity in

the source strength which results.

When the quantities Nal, t, , and 7, are computed from the mass and

momentum balances expressed in Eqs. (C-1) through (C-3), all ci these



quantities must vanish if the flow field produced by rotor thickness is to

satisfy the global conservation laws. The evaluation of the expressions for

and J, parallels that for the field of a mass source. The flow field

results given in Section IV-C-2 are used to find the limiting values of zr,

rand , which are then substituted in Eqs. (C-S), (C-8), and (C-10).

The results obtained, in this case, are

FA= /0 ,(C-38ai

W (C-38b)

where

(r2

q, = J J f(r. •(•.)d *cio o(C-39a)

Z') CtZ Cat/= •= (,'. • ,•°) •. 4 • C-39b) T

,~0

These integrals are rewritten by substituting the definition of f(r6 ) j('-.)

in terms of the blade thickness distribution from Eq. (110).

-L C1 Z*(C-40a)

0/

q2 -BJ j;~ 1~ .. ~I/ ~ ~(C-40b)

But along the blade surfaces, U t , 5.) can be written as U L t(r. ,)

and so the z, integration which occurs in both 9, and becomes

t. .,, .= ,,CL - te,o) (C-41)
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Now, for closed blade surfaces, t 0(roO) - t (r , c•) and so 0

Hience, from Eq. (C-3S),7• , , and J. all vanish as required.

4. Rotor Blade Loading

The results obtained for the flow field of a lifting rotor can be

showTn to satisfy the global conservation laws by following much the same steps

as for the dipcle field. Again there should be no net introduction of mass

into the control volume, i.e., 1'z-o . The force which each rotor blade exerts

on the fluid is given by Eq. (138). The axial component of the force of the

whole rotor on the fluid is

J JruJ8 J ¢('' > r (C-42)-

where Eq. (50b) has been used for the unit vector 7 and Eq. (108) has been

used to project an element of the blade surface area on the r , z plane.

Similarly, if the 9-component of the blade force at each radius is determined,

the axial component of the torque exerted by the rotor is found to be

C i

'e- -fd Ia A(r.z),or4 (C-43)

JO '

In order to evaluate the expressions for In, ?7 , and 7, derived

from conservation of mass and momentum, Eqs. (C-I) to C-3), the rotor flow

field variables appearing in these integrals are written in the same way as they

were for the dipole field. First of all, the axial component of the mass flux

is written in the form

4.v• +poU -- /3• -p+ -J L±xcf( ± l A' H . )•
Y--" U + " a + ( f • -• bCr, Z,") j ( Z -Z.) cl Z ,

(C-44)
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where the expressions for p and 1 are given by Eqs. (134) and (144) respectiveoy.

The integrand in the relation for "given in Eq. (C-1) contains the limit of

this quantity for Z , and so the limiting values of p and 1/34 are

needed.

2n/3'U JpaZ (C-45a?
z --, 0 2 7r / • 13

E-R.,, ,, (a-) R,, la-) C (C-45b)

where A-- (I.) is defined by Eq. (135).

By direct analogy with the dipole results, the expression forfl)is

rewritten as the sum of three integrals corresponding to integration over

each of the three terms on the right-hand side of Eq. (C-44). These integrals

are labeled .2, ,$ , and • , respectively. The first of these is

J ' - JS ±)I r
6 ~ M (C-4 ()

where Eqs. (135) and (C-45a) have been used. The second integral vanishes as

a consequence of the integration over 0 , i.e.,

- r (--i ' r,9dr U 2 (C-47)

Jr J. U O -,--

The third integral is



2' Tr C..rr¾ = ri~dr (C-48)

where again we have used thu fact that at fixed z , 8-dZ'. If these three

integrals are added together then the result f': o is obtained, confirming

that the rotor flow field solution conserves mass.

As with the dipole field, the expression for the axial component

of the blade force computed from the momentum balance, Eq. (C-2), can be ex-

?ressed in terms of these same three integrals. If Eqs. (C-46) to (C-48) are

combined according to Eq. (C-27), then the expression obuained for the axial

component of the rotor force agrees with the result of direct integration of

the blade forces given in Eq. (C-42). Hence, our results for the flow field

produced by rotor loading also obey global momentum conservation.

The expression for the axial component of the torque on the fluid

obtained from conservation of angular momentum, Eq. (C-3), can be written as

in Eq. (C-28) except that now the integrals defined by Eqs. (C-29) to (C-31)

contain the rotor rather than the dipole flow-field perturbations. When the ex-

pression for zrL given in Eq. (146) is used in Eq. (C-29), the integral •

becomes
2 1

S +r1 d + (C-49)

where

C r,

J r 4 -p d r. (C-)oSOa)

j% (C- Sb)



This result is obtained by carrying out the integrations over 0 , z , ana r

in that order. The first two are straightfcrward; the integration over r uses

the same technique required to cnAiuat.e the corresponding integral in the

source and dipole cases.

The evaluation of J, in Eq. (C-30, requires tuie 9 component of

the perturbation velocity. This component of the rotor velocity field can

be obtained from the normal ,id streamline components using Eq. (101a).

8- C•

Using the limiting form of 91 /0ý from Eq. (C-45b), and noting that the

integration of this quantity over 6 vanishes, wc UbLa'Ld

) d7 - - I Co-s2)

Finally, the integrand in 4, is just ,jr times the mass flux given in Eq. (C-44).

The integrations over r and 0 are essentially the same as those done above

for "rl, and the result is

-- 2 (C-53)
4g - U--- x --

Combining J , * and J.j according to Eq. (C-28) gives the same result for

. as Eq. (C-43). Therefore, the solution for the flow field of a lifting

rotor satisfies the torque and angular momentum balance. This completes the

demonstration that the flow field results of Section IV obey the global

conservation laws.
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B&K 1/2 INCH MICROPHONE
(POSITION #1, REFERENCE LEVEL)

ACOUSI IC PROBE

B&K 1/2 INCH
ACOUSTIC PROBE MICROPHO64E
CALIBRATOR (POSITION #2.

L--T -PROBE RESPONSEi

DAMPINGNIATER.AL

S]f'zB&;' EARPHONE SPEAKER
(CALIBRATION SOUND SOURCE)

/
TO AUDIO OSCILLATOR OR
PINK NOISE GENERATOR

NOTE: WHEN MICROPHONE IS IN POSITION #1, A DUMMY MICROPHONE IS USED IN
POSITION #2 AND VICE VERSA

Figure 2 SKETCH OF ACOUSTIC PHOBE CALIBRATION APPARATUS
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ROTOR SET NO.1, ROTOR STAGGER A NGLE -40.0 deg
STATOR SET NO. 1, S;TATOR STAGGER ANGLE =28.2 dog

ROT OR RPM = 1436, AUDIO OSCI LLATORI FREQUJENCY = 4380 Hz

A j~
NOISE SIGNAL --- ft- TI/A o

Aw itJ'A

RE r FRE NC E
AUDIO OSCILLATOR~
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LI SSAJOUS
FIGURE FROM ~ i

COMEINAVION Of ,li
NOISE AND REFERENCE

Figure 5 OSOý LLOSCOPE RECORDS OF NOISE SIGNAL
FROM ROIOR-STATOR INTERACTION
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BLADE
rill POSIT!ION

1 LV eA ~ tn V V WALL
2.1 in H 2 0 PRESSURE

SN

b) ROTOR RPM 600, INLET SWIRL ANGLE, 3 1 = 52.0 dng

AXIAL VELOCITY, U. PRESSURE SUCTION
SURFACE P SURFACE. S

BLADE VTRIP TC 
I 18% CHORD

VALQCITY, W =..tc5

2.1 i HZOWALL

in. f0 A aPRESSURE

b) ROTOR RPMI 7 00. INLET SWIRL ANGLE.4l TIP 56.2 dug

Figure 9 BLADE TIP PASSAGE PRESSURE SIGNALS ON ISOLATED ROTOR
AT VAR IOLUS ROTOR SPEEDS, CHORDWISE LOCATION -l%
AXIAL VELOCITY, U0 60hf/sev
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BLADE
POSITION
SIGNAL

WALLZ1 in. H20 PRESSURE
SIGNAL.

c) ROTOR RPM - 800, INLET SWIRL ANGLE, 1TIP = 59.7 dog

\ 480 I PR-SSURE SUCTION

,- A.L VELOCITY, SUC^,O.
SURF.AC.. P SURFACES

- - -- - ~18% CHORD)
BLADE TIP 0

BLADE
POSITION
SIGNAL

WALL
PRESSURE

2.1 in H2 1J SIGNAL

d) ROTOR RPM a 9N0, INLET SWIRL AN¶LE, 3 1 TIP - 62.5 dog

Figure 9 (Cont.) BLADE TIP PASSAGE PRESSURE SIGNAL.S ON ISOLATED ROTOR AT
VARIOUS ROTOR SPEEDS, CHORDWISE LOCATION - 18%, AXIAL
VELOCITY, U0 60 ft/sec

]151

- a n - -



CHORDWISE LOCATION -13%

CHORDWISE LOCATION 18%

CHOR1DWISE LOCATION 32%

CHORDWISF LOCATION -49%

POTOR RPM =1000

AXIAL VELOCITY, U0 . 60 ttls.e

CHOROWISE LOCATION -64%

CHOR DWISE LOCATION - 7ý4 2.1 in. HZ'3

20 milise.conds

Figuie 10 BLADE TIP PASSAGE PRESSURE SIGNALS AT VARIOUS CHORDWISE
LOCATIONS ON ISOLATED ROTOR DURING ROTATING STALL
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Figurc 21 BLADE SURI-ACE GEOMETR
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