
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations Thesis and Dissertation Collection

1976-06

Analysis of program structure and error

characteristics as applied to NTDS programs.

Kirchgaessner, Michael

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/17667

Downloaded from NPS Archive: Calhoun

(

ANALYSIS OF PROGRAM STRUCTURE AND
ERROR CHARACTERISTICS AS APPLIED

TO NTDS PROGRAMS

Michael Ki rchgaessner

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
ANALYSIS OF PROGRAM STRUCTURE AND
ERROR CHARACTERISTICS AS APPLIED

TO NTDS PROGRAMS

by

Michael Kirchgaessner

June 19 7 6

Thesis Advisor N. F. Schneidewind

Approved for public release; distribution unlimited.

T174971

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUMBER

4. TITLE (and Subtitle)

Analysis of Program Structure and Error
Characteristics as Applied to NTDS
Programs

S. TYPE OF REPORT 4 PERIOD COVERED
Master's Thesis;
June 1976

• . PERFORMING ORG. REPORT NUMBER

7. AUTHOR*-

*,) a. CONTRACT OR GRANT NUMBERf.j

Michael Kirchgaessner

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 93940

10. PROGRAM ELEMENT. PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

June 19 76
13. NUMBER OF PAGES

105
14. MONITORING AGENCY NAME 4 AODRESSfl/ dltterent from Controlling Ollice)

Naval Postgraduate School
Monterey, California 93940

IS. SECURITY CLASS, (ol thle report)

Unclassified

ISa. OECLASSIFI CATION/ DOWN GRADING
SCHEDULE

l«. DISTRIBUTION STATEMENT (ol thl i Report)

Approved for public release; distribution unlimited,

17. DISTRIBUTION STATEMENT (ol the abatract entered In Block 30, II dltterent from Report)

18. SUPPLEMENTARY NOTE5

19. KEY WORDS (Continue on rererae aide II necoeeery and Identity by block number)

Program structure
Program complexity
NTDS programs
Program testing

20. ABSTRACT (Continue on reverie tide II neceeeery and Identity by block *mer)

A simulation model for the evaluation of program structure
and error detection has been applied to the analysis of
selected parts of NTDS programs. The simulation results were
used to establish the relationship between program structure
and measures of program complexity. This information would
be used for the design and testing of software.

FORM
1 JAN 73

Page 1)

DD 1473 EDITION OF I NOV «• IS OBSOLETE
S/N 0102-014- 6601

|

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

JttU»lTY CLASSIFICATION OF THIS P»C£f*>iw Dna Enfr»d

DD Form 1473
1 Jan 73

S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS P»CEfW>«n Dmlm gnfrmd)

ANALYSIS CI PRCGfLAM STRUCTURE AND ERROR CHARACTERISTICS AS
APPLIED TC NTDS PROGRAMS

by

Michael Kirchga essner
Lieutenant- Commander
Federal German Navy

Submitted in partial fulfillment of the
requirements for the degree cf

MASTER CF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOCI

June 1976

WDLEYKNOXUBRARY
WVAL POSTGRADUATE SCHUO.
MOMEREY, CALIF 93940

ABSTRACT

A sinulaticn model for the evaluation of program

structure and error detection has been applied tc the

analysis of selected parts of NTDS programs. The

simulation results were used tc establish the

relationship between program structure and measures of

program complexity. This information wculd be used

for the design and testing cf software.

TABLE CE CONTENTS

I. INIBCEOCTION 7

II. EEE1NI1IONS 10

III. MCEEEN PBOGBAMMING TECHNIQUES 12

A. MCDULAB PBOGBAMMING 12

E. S1EUCTUEED PBOGBAMMING 14

IV. TEE EECELEM CE PBOGEAM COMPLEXITY 16

V. ESECE EETECILON SIMULATION MODEL 18

A. GENEEAL 18

B. EECGEAM BEPEESENT AIION 18

C. CUEEENT STATUS OF THE SIMULATION PBOGBAM 19

1. Input Variables 19

2. Input Formats 20

3. Limitations 21

4. Program Listing 21

VI. ANAIYSIS OF NTDS PBOGEAMS 22

A. GENEEAL 22
«

B. DESIGN CF NTDS PBOGBAMS 22

1. Modular Design 22

2. CS- 1 Language 23

C. EIEECTED GBAPH CCNSTEUCTION 24

D. EEECB DETECTION SIMULATION 27

E. EESULTS OF THE ANALYSIS 28

1. Module One 29

2. Module Two , 31

VII. USE CE TEE EESULTS..., 34

A. AIDS FOE SOFTWABE DEVELOPMENT 34

E. ECTUEE WOBK «, 34

VIII. SUMMAEY AND CONCLUSIONS 36

IX. ACKNCfcIEDGE2EtfTS „ 37

Appendix A: EEBOB DETECTION SIMULATION PEOGEAM 38

Appendix £; 1IST CF EVALUATED PROGRAM STRUCTURES 47

Appendix C: DIRECTED GRAPHS, 53

LIST OE 5EEZEINCES 102

INITIAL DIS1BIEUTICN LIST 104

INTRODUCTION

When is a program considered to be trivial? One answer

to this guesticn heard very often is "When it contains no

bugs". although this statement might be questionable , the

converse is true, as there are few nontrivial programs that

do net certain bugs. As the author of a critical and

fundamental study of program design states: "...These tugs

can never be completely exorcised in any program over some

critical decree cf complexity. Six months or even seven

years after 'final debugging 1 errors crop up inevitably in

the best cf programs. "[4]. This is a fact one has tc live

with, and there are .only two things one can do about it:

First tc reduce the possibilities for bugs by careful design

and use cf medem programming techniques, second tc devise

careful testing techniques to detect and locate the bugs

still remaining in tie program.

Fig. 1 shews the relationship between hardware and

software ccst in the U.S. during the pericd from 1955 to

19£5. Cue to the fact that the software ccst continues to

rise and that about 50S of this cost is fcr testing and

integration cf a system [7], it is important to obtain a

realistic assessment of how much effort has tc be spent to

test the newly designed program based on its size, structure

and characteristics. If one is able to determine in the

design stage the test possible structure with respect to the

error detection capabilities, then bugs can be avoided and

testing will te reduced. Also early in the development cf a

project a realistic allocation of coding and testing

resources could be made.

100

+»
CO

o
o

a
-p
o
-p

-p

a

a

1955 1970

Year

Ficure 1 - SOFTWAHE COST TREND IN THE U.S.

[Datamation, Sept. 1974, pg. 75]

1985

In order to address these problems, a Software Error

Detection Simulation Model has been developed [7,10]. This

model was was used to identify program complexity measures

which were correlated with error detection. Naval Tactical

Data System jiicgrams were used for this purpose.

The structures of these NTDS -programs have been analyzed

(see Chapter "VI) and put into the form of directed graphs.

The date gained from the directed graph representation

were used as inputs for the Error Detection Simulation

Model. The results gained and the conclusions and

recemmendatiens drain from these results are shown in

Chapter vll . For reasons of security, the programs or the

parts of then are not identified by names. Instead, a

sequential rumber scheme for identifying the prograirs has

been employee.

This work is part of a research effort sponsored by tne

NA£C to get software evaluation aids which provide an

economical assessment of the design and testing effort

needed for the development of avionics and ether complex

software prefects.

Eecause it is felt that efforts in testing acd in

debugging can be mere successful if cne employs ncdeirn

technigues in the production of programs, an introductory

chapter shows the relevance of modern programming technigues

to the problem of program testing and maintecance.

II. DEFINITIONS

Iher€ was originally a lack of commonly used definitions

fcr program testing. Only recently has a "definitional

framework" eierged and very good program testing definitions

are found in Ref. 8, pg. 7 - 14. In order to be consistent

and to specify the meaning of keywords within this thesis,

the fcllc*inc definitions have been adopted:

1 • Iiccjiam Structure

The structure of a program is a description of the

underlying logic and data flow as represented in the

fcrm cf a directed graph with its set of nodes and

edges (arcs) ,

2 • Reachability Index

Beachatility index is a measurement of the

possibilities to get to a specified node, computed

ever all nodes of the directed graph. It is

cemputed with the formula:

=) path to node (i) .

3- Debugging

Debugging is the action one takes to locate and

correct a known or detected error in a program.

10

4 . Tes t in3

Testing is the action to check whether a program

meets its specifications and tc establish the

presence of errors in it.

5- liJi SJcJL£ 2l & Prog ram

Ihe life cycle of a program consists of the

following phases:

- design

- Coding

- Cebucging

- Testing

- Production and maintenance.

11

III. MODERN PROGRAMMING TECHNIQUES

Two recent developments in the theory and practice of

software development are addressed here as important because

they are relevant not only for the actual writing cf the

code of the program, but also to debugging, testing, and

integrating software systems as well, namely the advent of

modular and structured programming. The advantages cf these

technigues are chv4ous for the programmer when he develops

his program. Programs written using these technigues are

easier tc lead and to understand as far as the flew cf the

logic is concerned. Also, the tester can better understand

the logic cf a program when these technigues are employed.

Furthermore, it has been proposed for structured programs tc

elininate flowcharts as media cf communication [13], so it

is necessary tc understand how much testing, integration and

maintenance cf software are influenced by this development.

A. MCDOIiE PROGRAMMING

Modular programming is a system to develop programs as a

set cf interrelated individual units (called modules) which

later can be linked together tc form a complete progratr [9].

Thus modular programming is not simply splitting up a

program into several parts (subroutines), but rather

dividing the software according to the functions tc be

performed. Ihe designer faces the one crucial problem which

will deternine success or failure, namely to specify

ccapletel}' and carefully the interface between the

individual modules.

12

Modules as individual program units should have the

following properties:

(1) Cre ncdule should perfcrn only one basic function

(2) The size of a module should be such that it is

easily understood and contains ccly a moderate

ancutt of code

(3) fl module should be designed in such a way that it

has cnly a few control or data paths

(4) Cne ncdule should process only a small amount of

data

.

The design of programs in this way leads not cnly to

cleaner a r.d more productive coding cut also to easier and

ioi€ flexible testing. The advantages with respect to

debugging and testing show up in several ways. Single

modules can he debugged and tested independently froi the

ether mcdules or the main (driver) program. Furthermore, if

the modules are snail enough, extensive testing generally

assumed as impossible with the exception of very trivial

programs, can become manageable. This in turn leads tc more

reliable programs. If all modules of a software project can

be tested extensively, a highly reliable program can be

produced. Even if one falls short of this goal - and this

happens ir mest cases due to the very large number of

possible inputs and program paths - the final prograi will

te more reliable and more thoroughly tested than a

ncn-mcdular program. The possibility of testing mcdules

individually provides for better (more eccncnical)

allocation of testing resources, because cne does net have

tc wait until the whele program has been completed. However,

to test individual modules, special test-rcutines are needed

as drivers and if ether modules must interact, dummy mcdules

must be created if tie real mcdules are not yet available or

net yet tested.

13

One final point in favour of modular programming has to

be aade: Normally, no production program is completed until

the day when it is no longer used, i.e. every running

production program has to be maintained and adapted tc new

considerations and situations. Because of the simplicity of

the overall organization of modular programs this software

maintenance is alleviated since interactions between modules

are more easily understood; hence, the effect of program

changes is easier to identify. Also only the modules

affected ty the chanjge have to be tested (together fcith the

main program and interacting modules)

.

B. SSR0C1UEII PROGRAMMING

Having ceded a program in the atove described

modularized fashion, there is still room for improvement.

Since Eijkstra's famous letter to the editor of the

Communications of tie ACM in which he proposed to eliminate

GO-TO statements [5]* the concept of Structured Programming

has evolved and led tc further simplification of the coding

process.

Simplification means here not that the actual cede is

easier tc write - although this might be the case tec for a

programmer who is familiar with the concept and can think in

these terms - but the code produced and the control secuence

of the finished program is simpler than in a nonstructured

program. This simplification has been theoretically

demonstrated ty BoehjJi and Jaccpini as early as 1966 [3 1.

14

Although there are as many interpretations of what

Structured Erogramming is as there are authors on this

topic, the following features are essential and common to

this concept:

(1) 1CP-ICWN Design, i.e. the design starts at a very

general level and proceeds stepwise to the specific

and detailed tasks

(2) Modular Design

(3) Limited possibilities to control the logic flew of

the prograa, namely only

* seguential

* conditional: IF - THEN - ELSE

* iterative: DO - WHILE

statements are allowed.

Whereas the so called block-structured languages like

ALGOL or EL/I lend themselves to this form of coding

(although GOTO statements are provided' by the language),

even in ECETEAN the implementation of some of the basic

principles cf Structured Programming is possible if the

programmer concerned with a structural flew cf his program

cheeses the tranching caused by unavoidable GOTO
statements carefully.

Eaker [1] shows that the application of Structured

Programming combined with the "Chief Programmer Team Method"

of organizing a software project [2] can bring measurable

improvements in software development, in the coding as well

as in the debugging and in the testing stage. Due to the

fact.that Structured Programming implies Modular Programming

the same advantages hold here too, i.e. the software is

easier tc test and tp maintain after release.

15

IV. THE PROBLEM CF PROGRAM COMPLEXITY

The inpact of the programming techniques described above

en the eccrcaic development of reliable and maintainable

software is directly related to the problem of program

complexity. Ihere is so far no generally adopted definition

of what program complexity really means. The definition is

dependent cr the context in which one wants tc examine

program complexity. Here complexity is defined as structural

properties cf a program that affect the ability tc detect

errors.

Onder the condition that the structure cf a program is

described by a directed graph, the following criteria can be

used to measure its complexity:

1. Nuaber cf ncdes

2. Number cf arcs

3. Number cf possible paths through the program

4. Number cf source statements

5. Averace path length (source statements per path, arcs

per paths)

6. Reachability index

7. Fullness index (ratio cf actual to maximum number of

arcs) .

Although Mills in his contribution tc Ref . 8 generates the

idea cf equating program complexity with the difficulty of

understanding a prpgram and justifies this approach with

".."..the frustration of concocting and demolishing more

simple minded direct ideas, such as counts cf branches, data

references, etc.", his approach does not help to get a real

measurement cf complexity such that one is able tc lake a

16

quantitative stateliest how complex a program is. It seems

that the important point is tc relate program complexity to

the problem area one pursues. The analysis of NTDS-Ecgrams

has given insight in methods to measure complexity «ith

respect tc £ictlems of program design and testing.

17

V. ERROR DETECTION SIMULATION MODEL

A. GEHEE4I

A Software Error Detection Simulation Model was

criginallj developed by T.F. Green in his M.S. Thesis [7]

and subsequently mpdified by professor G.T. Howard cf the

Naval Postgraduate School. Written in FORTRAN it was

designed tc rue en the IBM 360/67 computer of the Naval

Postgraduate School. Originally it had been tested acainst

hypothetical and actual programs. It was shewn that

siirulaticn cf error detection was feasible and that

information cculd be obtained on the relationship between

error detection and program complexity. Ecwever, it was

necessary tc perform additional model feasibility tests by

using the model en a large number of actual programs. In

the process cf testing some cf the original features had to

be removed and provisions had to be made for cases of

program behaviour which were unexpected at the time cf the

simulation program design. A detailed description of the

model with its specific assumptions and capabilities is

found in Bef. 10, pg.. IV-5 - IV-39.

E. PRCGSAM ^PRESENTATION

The prerequisite for the use of the simulation mccel is

to get the structure of a program that has tc be tested in

the form cf a directed graph. A directed graph is a

18

convenient meats tc show the structure of programs. It is

suitable fcr showing the control flow in a program, measures

of complexity can be derived from this kind of

representation. In addition, the "control flow graph" as

this composition of structures is sometimes called, is also

very useful for determining the execution time of a

structure en a machine. This representation of program

structures also simplifies the representation of large and

ccnplex programs because these programs can te broken up in

logical segments (modules, procedures, subroutines etc.),

and the segments can be tested separately from the ether

parts of tie program.

C. CUBEEKI S1AT0S OF THE SIMULATION PEOGBAM

1 . In£U t iari ables

Ice following input variables have to be used for

the simulation:

a. MINEGI designates the number of inputs within each

replication.

b. NDMOOI is the number of replications (number of

paths}^ within every repetition.

c. NEEPEI is the number of reseedings with errors

(repetitions)

.

d. MEANLN designates the mean arc length if the arc

lengtiis are selected at random by the program

and are not read in.

. e. MEANEE designates the mean number of instructions

between errors.

f. N is the number of nodes within the structure.

g. Input fcr the Adjacency Matrix is dene in a shorthand

19

nctaticn:

Fcr every node with the exception of the last nodes

there is one data card which contains infcrnation

ahcut this node in the following sequence:

Ident if icatioo of the node, number cf arcs emanating

frcm this node, identification numbers of the ncdas

tc which the arcs go.

h. Input for the matrix of arc lengths (optional)

siailar to that for the adjacency matrix: Instead,

only as the identifiers for receiving nodes the pair

(identifier, number of statements on this arc) has to

be provided.

i. Input tc plant errors in arcs instead cf letting the

program seed them at random: Input as for matrix of

arc length, but the number cf errors en this arc has

tc be specified instead of the number cf statements.

j. aCGT specifies the desired output:

= Suttiary output

1 = Extensive output (NDMOUT * NfiEPEI < 25)

2- IILE^t formats

Ihe input formats are as follows:

First data card: (615) aiNPGT, NOaOOT, NREPET, KEAflLN,

MI5NE5, K.

Seccnd and fcllcwing cards: adjacency matrix, (1615);

followed ty delimiter-card: 99 in columns 4 and 5.

Input cards for matrix of arc length (cptional) : 215,

7(15, F5.C); followed by delimiter-card: 99 in columns 4 and

5.. ..

Input to seed errors manually (cptional) : 1615;

delimiter-care: 99 in columns 4 and 5.

20

Last data caid (output specification): 15.

Note that all delimiter cards are not opticnal.

3- IAlii anions

This simulation program is currently restricted to

accomodate a naximum number of 30 nodes. The execution time

for simpler structures (about 10 - 15 ncdes) is within a

five minute time limit. Larger and more complex structures

with more redes and possible paths through the structure

reguire a 30 minute time frame for the execution of one

simulated input in 1-00 replications and 100 repetitions.

An extension of the limits of the program to

accomodate larger structures seems to be impractical because

of the fast rise of memory space and execution time

reguired

.

**• iI9£I$.® Listing

A listing of the current error detection simulation

program as it Mas used for the analysis of the NTDS-crcgrams

is found in Apcendix A.

21

VI. ANALYSIS OF NTDS PBCGEAflS

GENEEAL

In order tc demonstrate the practicality of program

analysis using the Error Detection Simulation Model, Naval

Tactical Eata Systems Programs have been analyzed by

1. describing the structure by converting the programs

iotc the fcrm of directed graphs

2. running these structures on the error detection

simulation model and

3. evaluating the simulation results with respect to

measures of program complexity.

B. DESIGN CE KTDS P-ECGEAMS

1 « ^S^i?2ai Design

Ibe design of NTDS programs is characterized by

Modular frccram ling, both in general and in detail, aEd the

modular design is a characteristic of the hardware as well.

Also the actual inplementation of every NIDS installation

consists of hardware and software building blocks that are

composed tc fit exactly the need of each installation.

Although NIDS programs are really programmed in a

22

modular fashion, the term "module" does net have the same

meaning as usual. Module usually refers to basic building

blocks that are parts of the program, whereas NTDS programs

are composed cf subsystems. The NTDS-"Modules" in turn are

divided up in parts which correspond to the

"mcdule"-def initicn of Modular Programming. In NTDS

terminology these parts are called procedures. NTDS modules

perform complex tasks such as tracking, display etc. They

certain a iredium to large number of dependent procedures.

These procedures perform the basic functions intended in

Modular f rcgramming such as checking track properties.

Throughout this discussion, "module" is used as in the NTDS

system, namely as a complete subsystem fcr performing

complex tasks.

Ihe nodular approach is imbedded in a stringent

hierarchical systen -which is controlled by the priorities of

the tasks to be performed. The levels cf hierarchy are

applied tc the modules in such a way that only major

subprograms which are designed to execute distinctive tasks

can communicate with each ether, whereas the procedures

within the modules can only communicate according to the

level of hierarchy they belong to, with the exception of

calls tc certain system routines.

2. CS-J[l.§ngua.ge

Ihe N1ES programs are written using the CS- 1 high

level language compiler [6]. This language has the advantage

that it is well suited to the application area/ namely

tactical programs which run under severe constraints

regarding time and memory space availability. Tables are

searched in a very effective way, and another interesting

feature is that assembly code can be interspersed within the

high level cede of the program. This fact gives the

23

programmer a powerful means for controlling the hardware

which in turn facilitates the production of effective code.

C. CIEEC1EE GEAEH CONSTRUCTION

In crder to ottain the desired statistics and to analyze

the data- and control flow of a single NTES-program , the

following method has been developed and used:

1. One complete module from an existing and currently

operating NTDS program has been put into the form of

a directed graph. The module has teen deccnpcsed

intc the procedures it contains, and every procedure

is treated separately. Due to the modular design

thcughcut the program, no logical difficulties arise

here, because every procedure has only one entrance

and cne exit point, i.e. the interface for

interacting procedures within the module is uniguely

defined. Fcr each procedure the directed graph and

the adjacency matrix have been constructed. As

quantitative measurements the number of nodes, arcs,

paths, loops, source statements, machine

instructions, source statements per arc, and machine

instructions per arc have been compiled.

2. Ihe same work was done fcr randomly selected

procedures from one other important module of the

same program in order to obtain comparative results

and to relate the reported number of errors tc the

different modules.

24

3. Ecr the construction of the directed graphs and the

gathering of the several statistics the following

assumptions have been made:

a. Nodes are associated with

(.1) Procedure entrance and exits

(2) IF-statements (decision points)

(3) Points where paths merge

(4) Procedure calls within the module

(5) Beginning and ending of loops

t. All nodes within the module are distinct.

They have individually assigned numbers (some

nodes are indicated as "dumiy" nodes) , and

they are counted only once, namely in the

procedure they belong to.

c. Entrance and exit nodes of a called procedure

are regarded as "transient" nodes within the

calling procedure, and one "transient arc"

connects both transient nodes. This

transient arc represents all the arcs inside

the called procedure. The transient arcs are

indicated in the drawings by a dashed line.

Transient nodes have either the number of the

entrance node of the called procedure or they

are denoted by letters to distinguish them

from the original nodes of the corresponding

procedure.

d. The Length of every arc is indicated as the

number of source statements or the numter of

machine instructions respectively. In the

analysis the number of source statements has

been used because programs are normally

written in a high level language and this is

25

the point where errors are introduced into

the program.

4. Normally, the numbers of both source statements and

machine instructions have been counted in the arc

where the statements appear. However, because

IJ-statements and procedure calls result in

tranching, they have teen counted in the arc leading

to the corresponding node. Whereas for the counting

of machine instructions, it would be possible in the

case of an IF-statement to split the instruction

seguence according to the arcs emanating froa the

decision point, this is not feasible for the source

statement which contains the elements of both arcs

eaanating from it; it cannot be split.

The structures obtained from both modules anc the

compiled statistics are found in Appendix E. The following

figure shews hew to read the structure diagrams:

Procedure Entrance

IK 2 Source Stmts.) .,.

4 Machine Instr.)

on tnis arc

Transient nodes

and arc

Dummy node

/cf'

Procedure Exit

figure 2 - EXAMPLE OF PROGBAM SIEUCTaSr

26

D. EEROB DETECTION SIMULATION ON THESE STB0CTU3ES

The structures which were converted intc directed graphs

for Module One were screened tc determine their suitability

for errcr detection simulation. It would have teen

desirable to select a random sample of the structures.

However, it was necessary to choose structures which wculd

net require excessive amounts of memory space and CPU time

during the simulation. In addition, the structures were to

have at least two or more paths. In the case of Module Two

it was ieasitle tp use a random sample because a high

percentage of the structures fell within the memory space

and the CEU time limitations of the model.

Ihe input data for the simulation were taken from the

actual programs, including the number of source statements

for every arc. The recorded number of errors per module was

used tc calculate the mean number of instructions between

errors, which is used for seeding errors in the simulation

model. Seeding the errors was done randomly by the

simulation program. However, it was provided that no errors

were seeded at arcs containing zero instructions (ccntrol

arcs) .

The simulation was run with one input, 100 replications

and 100 repetitions (reseedings) , and the average number of

errors fcund by o.ne input was obtained. Although scire of

the structures were small, and a higher number of

repetitions and replications could have been run, the same

simulation parameters were used for each structure in order

to obtain ccatarable results.

27

E. RESUIIS CI THE ANALYSIS

Prom th€ average of errors found by one input in each

procedure the average percentage of errors fcund against the

errors expected within the procedure was obtained. These

results were plotted against various complexity measures,

e.g. the number of paths. Although the results varied

somewhat between the modules, it was possible to establish

relationships between structural properties and error

detection capabilities.

The differences in results between modules can be traced

to several factors:

1. Different sample sizes:

Ercm Module One 32 procedures were used, 16

procedures were randomly selected frcm Module Two.

2. The different size of the modules:

Module Cne had 97, and Module Two had 155 procedures.

3. Differences in program design and programming style:

Module Two was modularized to a much larger extent

than Module One. It was hard to find a sufficient

nuiber of paths within randomly selected procedures

of Mcdule Two.

4. Different number of reported errors:

Although Mcdule Two was 1.6 times larger than Module

One, it had only about two-thirds the number of

errors.

The following diagrams show the percentage of average

errors fcund against the expected number of errors fcr the

structures cf both modules.

28

1. Kcdule Cne

100 i

o
U
u
cd

t3
d>

-P
o
CD

ft

03

<H
O

+3

CD

O
U
CD

ft

50

5 ~JQ~ ~T5~ ~2^T "TT"

figure 3 - PERCENTAGE ERROES FGUNE VS. N0CES

15
nodes

100 1

CO

Fh

o

u
CD

CD

-P
o
CD

ft
X
CD

ft
O

-P

CD

O

CD

ft

50

5 10 15 20 25 30 35 40
arcs

Figure 4 - PERCENTAGE ER0RS F0GNE VS. ARCS

29

100 1

00

u
o

<u

03

-P
O
Q)

ft

£50

O

-P

(1)

o
U
<D

Ph

IT "To~ 1*5 2b "?5 3^

figure 5 - PERCENTAGE ERRORS FOONE VS. PATHS

1

—

35
paths

100 _

m
U
o
u
u
CD

T3
0)

-P
o

ft

CD

<H
O

•P

0)

o
u
CD

50

_
1 ([(

([(

10 15 20 25 30 35 4C
source statements

figure 6 - PERCENTAGE ERRORS FCGND VS. SCUBCS STATEMENTS

30

2. Kcdul€ Tvo

100

CO

U
o
U
u
CD

T3
CD

-P
C3

03

ft

03

«H
O

-P

O

CD

ft

50

1 1 1 1 1 1 1

5 10 15 20 25 30 35
nodes

ligure 7 - PERCENTAGE ERRORS EO0NE VS. NODES

100
w

o

03

CD

-P
O
03

ft
X
CD

<H
O

P
S
cu

o
U
CD

ft

50 -

10 15 20 25 30
i

35
arcs

ligcre 8 - PERCENTAGE ERRORS FO0ND VS. ARCS

31

100

CQ

u
o

u
CO

t3
<D

-P
O
<D

*50
<D

o

-p

fi

03

O
U
<x>

Ph

—
i
—

15
~T

35
paths

5 10 15 20 25 30

figure 9 - PERCENTAGE ERRORS FODNC VS. PATHS

100,

CO

U
o
U
U
03

03

-P
o
03

& 50
03

o

-p

o
h
03

10
—I 1 1 1

20 25 30 35

source statements

Figure 1C - PEECENTAGE ERRORS FCUND VS. SOURCE STAIEB^TS

32

Ihe curves shewn represent exponential

approximations tc the datapcints according to the formula

y=a*e** (-b*x) which was found to represent the relationship

best. A least Sguare fit was used.

All diagrams show seme relationship between error

detection and complexity. Module One with its larger sample

size shews this relationship more than Module Two for the

number of paths. This seems logical because a large number

of paths reduces the ability to detect errors in a program.

It appears that the number of paths could be used as a

measure of program complexity for design and testing

purposes

.

In order tc rank the approximations, a sguared error

factor has been computed for every complexity measure as

fellows:

Error Factor

Mod. 1 Mod. 2

Nodes

Arcs

Eaths

S. stmts.

7337 4430

6841 3933

4995 4666

6575 1808

This computation sho-ws that for Module One the number of

paths is the best approximated complexity measure ty the

method used. Another interesting aspect found was the well

approximated relationship between percentage of errors found

and the nuater of source statements in module Two.

33

VII. OSE OF THE RESULTS

A. AILS ICE SCFTW2RE DEVELOPMENT

This methcd cf program analysis provides the software

manager with information for selecting structures easily in

the design process. He can choose the least complex

structure which Mill satisfy project requirements.

Furthermore, after a project has been coded and is due for

testing, he can make realistic ' assessments concerning the

effort which will be needed for program testing by

considering factors such as

1. expected complexity of the project

2. chcice cf the programming techniques used

3. organizatior and experience of the programming team

4. available manpower and computer time for testing

purposes.

B. FDTDEF tfCEK

The analysis dene on the N1DS programs and the results

obtained fcr the measurement of program complexity

represents a modest contribution to the field of software

engineering. But being far from complete or exhaustive the

following steps should be taken in order to obtain

additional validation of the analysis process.

3U

1 • Iu.£*J?€r £VJ luat i°Jl 2j£ NTDS-Modules

Additional NIDS modules should be evaluated in order

to obtain larger sample sizes. It is realized that the

evaluation process for the important modules is verj time

consuming. However, the more important modules are used

mere freguentlj and will, in most cases, have a longer error

history, which will provide valuable data for comparison

with siaulaticn results.

2 • I va lua ticn of structured .procjr a ms

It would be of interest in this respect to compare

the evaluaticr of the NTDS-prccedures with procedures that

perform the same functions but are rewritten and converted

into a structured programmed form. It is expected that the

structured programs would perform better with respect to

error detecticn.

35

VIII. SUMMARY AND CONCLUSIONS

A method to define and analyze program structures has

teen presented. All measurements obtained were based en the

description cf the program structure in the fens cf a

directed crajh and the use of the error detection simulation

model. Ihis method has been used to analyze the procedures

from two KITS modules. It was beyond the scope cf this

effort to obtain comparative results between this experiment

and the actual error history cf the programs. However, it

was possible tc obtain an initial quantitative assessment of

measures cf complexity.

By using this method to check program structures in the

design phases it should be possible to produce programs with

structures that are less complex and therefore easier and

more economical to test and maintain. Also the method could

be used during the test phase as a means cf assigning test

resources

.

36

IX ACKNOWLEDGEMENTS

The critical help and support by my thesis advisor,

Prcf. N.I. Schneidewind, the contribution of steady

improvemeEts en the simulation program by Ercf. G.T. Howard,

and the patience of my wife Elisabeth during this research

period are gratefully acknowledged.

37

APPENDIX A

ERROB DETECTION SIMULATION ESCGEAM

The program listed on the following pages shews the

Software Errcr Detection Simulation Prograir as used in the

analysis cf the NTDS procedures in the version currert in

May 1976. although carefully tested the program should not

he regarded as a final release.

38

<x ^
- <l UJ <

iVI — •« .> LU u_ a
kh O uj ao >- c uj

- -» <ILU V) X X •>>/?

h— i— *£>— 4 a i-i chnjuj
h-» Z3 o J- uj cx «-i o»—
-£. Q. UJ I— f— >vO
"d .<£ - CX 0<3<-£\U_V)
uj -• »<x ac o a. o

<o o :zx<
<-y •« • m j_ ^ • cjim
i£t— — »x t_> *-< x »-«^u_
J_l/J O - »— — <l O) t-"VLJ
i_>i£ in ••i-H « uj oo i-» o^
>•-« — UJ_£ • — t-H \ JJ« I—
«a *- —i i/72 — ^ rr !/)z

2 Z3-o k-:-h <ro - t— iXuu
•ex _j or- zj >-.cx o i/iuu— Uj (.' l_J CLl/) ^-«<1 ZT ZKK
m<t t—c* <. *-'0 '"mz: z: ujq.
—*lLi in i. •-> <3 t-i -

3 —<to »-co do xll z: -<.
O •• O—nn en—

<

Q.r^ f-o uj -*-z>

i_—•—

•

mii-— »-• ZcX *>% or. mowWOO —• •— ••u- »-i|— ^OiJ — »-< •

•eimm :*£ »c/> . o 2IO0 - <_> oo— -<.o-o
* •• z— u,i •• z •*-£ c^<r xuju-

••OQ moi- 0.2L UJh-i ihlu • (_ji—i <mcx—OMM -JlTUI.
. „-£(_) CO CXI— tX—' -—*-* »

O^-"—• >—w »• —»u- t— en ao -~\- x
mcxa —

. <. •» ujoo O <t*-> u."m >r\ m
-LULU O—• *Z—*~ ZCX —I 3TX »-<- ~~H
is>t— uj mo-itOO «-«uj -ja« lu a *• -vipis
t— t—too «-»mo mm j—^ muj- >-z. lux. o?— «—''X

—'O- :> o—»m •«*—— 3 :sio. »oo ar^ m^j -
OX «-00 2CX——(—O OIU 2"2I^^ UJ'v O- ~<S)

flD- ZXQ-OcOZ (XX Z301U UJ\ -ZXaC
»^:0 •> U>lUir>2Z) I— -JZQO" '/I- - HHrtio
o rnf— u_^>ce:^-»-i ,-j <x cx ;z<iuj e>-—* ^<x
r«i •• »:d oocot— u_r-u. — «_>to— lu<x

_
3h- - ~z.— - >^cx——OCLX >-i O LLm\ l/5X(XOa m<J-. ^sUJ UJ

wOcizh •>•.•.•.•.•. rti— -v. mi- <z -£.<x •-- i:
ujcn^—i—i ———»**—.—«— »-o «-» 7)(/;\ X" h-» - >3-»_(— ""rriLJ-j <tuj
cj »<-J » uooooooooui ro i— •—i

— i— (_» ^M<om>-a.'<i ^c_j
oouj «»2: <t^inininmininfn«~«- jiz - *2: •• ». — 2.ni»-< 03 Z)
zrnu.iQ_j lu—>.w—wwamiua xj»—a »x xx x »-lu *ujo »>a

'-t/iujsr ciGUJ'jjccoa>o<-jL'j w -<-— xmoomm inxcx •• xl'Jm <xo
xi-iuj<i z:^>2:ujuj2:o<ioouj3uj uj..|— -4- rnr-<»-i»H^ m x —tooLo z:x
^wwiu^MM^wujiiiwooasisaM cxuj<<i —*h »—^cor- <-* jj

hs>a:z2:t-'NLL>i-wuiiL>H3<u^' I
im—»—m •- »>a •• • ^ a. mcr

I—CO—KIO^^^U-LOC-)*— Q.^>—iCOZ^-'^2.<^CX [_)ZP <J"Oh» - ^C- - >-« U •« •• fCC l\J(^^

Z2-Z—icxixv- <£. s.^*- hHzu(, i<tM ,«Ho<oo <--• cx- • - at— 00
uw_iaaDuju. |azzzzz^zzzzz<ri— - _iMm>i^» - - - — r- cx o—«az u>ct>
i.^i<a.«iUJL_)vi»^vjJ<_;i_JOi-jtJi.J*_jLJt—h_jl_>-«- a.*' »»<i—•«-"——'——'^—•— '».—'- uj» - - cxuj »• »

•^^s."^ >v ^«. >v »v -<»—< (—it—tt—n-jf-* v_,(~ii—n_4 0i XU —

c

"N» «-« ~»<-'«-'IL!CJ intn
^:^:Z2:2ii:^iZ^oooO</)cocooOOTOOonoOuiuj>T>—m |— f— f— I— f— !— I— I—- HH-GI-t-H- OC —*-'

OGOouuoauz^z^zzzzzz^u*<NL!j«<i«<a« ij«'iJ<«- uj
i2.i2.2.i2.2.2.UJUJliJUJU."JJUJUJaiUJlUUJ_J2:NUi.2.2.i2.i«l.i.2:a.2.2.U2.2 2. Q. —» UU
2.ii.i2.2.3>.ii2.ii2.iiiiiiAi-<iCL<-^a.au.u.iiii.u^aa.'JJaa.'juiLuLij. ~v «i.<a

LvuuUUUOUUM^^M^MMMMMW^lUJ(.i*lVLJlJlJUUUaUO'NUl_| iJJ |-JUUl , '» ** ujuj
UUOUUOUUUUUUUUUUULJUUi-iCXll.i'l'-iU-U.U.u.U.U. LL.'J_ H-U_l/)U_U U_)—t CXCX

(_)'—' •—

•

>-• <—

•

•—irvjni

<^ lO*i> <J >3' u lU} CUO UUI u<>»jvu

CJ% U~> (J> ^H <—t —» 1—I HfNJ CXICSJ CMOJCM

OU

39

(X
LU
2
<l

2 2UJ
21

•» •»

ci cr.

LU UUrfi

2 -2:—i

<l «IZ
LU UJ<t
SI 2-LU

2.
•»

<£~* «£
_|t-t _lt/3
<£.»-< Z.Z.
<l •> <ICT
LU- UJh-t

213: 2If—
Q •—

1

2 •*—
» [— LU —••

1—1/3 1x1 a. LO
LU»—

1

U-LU 'JJ

QL LU<X U
UU1>4 cr. O
lX>-" 2 2

UJZ t/i —

»

a. u -2
<3. »>UJ j-a X
Z|- LU rDt-H •—

1

30O 01- cc

•O s:< \-
LU5LX 30 <
-I3H- Zm — 2.3Z< _J r*»

a. CL !-•>
H-LU •O

iuV-LU Oct: UJ2
OX Q. MUJ

-a_i— 2 M(J
Of2- t—<</) •xf2m 2>— CO -3ZX z> -*Q— 01 —a. *-.<

—*o
OO-

—I II

II —}

— -3

OO
CLQ.

OO
22
>—<i—

1

U_U_
MIHtM
^"—'OJ
»• r»

X uuu
a. Q-Q-J—
<i 1—ti—

1

QC *. »-o
O 220

—a
Q2
2«->
h-iLU r-1

U_C3 II

<•} •» 1-1

— -J 1/3

-3^- >—*—Quz —

•

2-* —»
•— u_

<•) LL.H-. 0>
X HH->^ e

h- «-» -»uu
O •»«-Zf)
2 ••OO o(\j

LU UU. •^
—I CLf-»lr\a-i_) —

•

1—• 1!.»-<— -3

O •a ••--*• —

»

r «zin «o
< za.MQo 2

Q.*-'-2 »—

»

LU >—•»—
1 i~~"<t-»o u_ 22

X 0. — •• 0(_PQ_ —»(/; -G II

t— ^£—• r—1 U >—^ <J> >-« ~3 II ^1—1 11 —
••-H^t—(.-J, • *—*— II II

—-3
r-l>Ti—ICNJ OCJ—

1

ao t-i-3-3 ^

Q.CL II

O LU (-«•-«— —

«

x •-• cno O
.-<—»«—!•——-i^—»C\I OHO f— Q.—— U^O.—

O

00 -u% o»-'Ln »-uj .<£ >-<z 11 11 200 o»-«-3t-«

0^O« U"<r-l MOX * II -O— "*
'
"*• ••vr-TO •«—• »•

•»^<3 »> •— <>e~<|—M-— 1—I s -3~3~3 1—<• < ILUt—ICJ2
MJ ».— nU>0"""•'-•"-' IIM n O » » * II •> •« • II ^.CLUJUJUL) II 1—I •»«-»<_0UJ II ^uOilU »»-h
—'LO"—'—^— 2»-«'— ~3

II »-<f-i>—

1

I——l»-*av.O.£;T-""-< I3_J3 I— >-< ~sO OJ 9-3<~*r-<^)^) 00»—

i

-*"
—-)— f— »— «—• l/> —.^-——

-

_3+ ^.—'U. U-w^^^ ^o in— h- »2 i^- «-22 OO-O
UJ <3.LUUJ<:<l<X OJ— 0~3X-liyj C1.20 UJ !«»-< 1!«/)»-«1— »-l Q. II Nf>-'UJ<f-|Q.N^•-<2 ,—,,~, OOULL
l-uii-hiiiui'iaii) »-<iixjuj 2 11 i\Ji_Jt— >— ivj 11 ujh-t— »— 5;—i«\i(_Jt— a.— »—u\j n a>-i- -tf-iuim
1—»«4.li.i—<»—m.a lt.«j, a. >—'utujLJ 1 11 ! <a»-« i_> <_: «c ^. ^1 >—»-s. <imul >"— u1-' ^.^- ait/i
U. uj <_j U-U. '»J »_' LJ >" C-i >i_i— l~vii_) u.uujU.u.iji^iui_;uLJ w)U«JlUU-u.U'-''- l_lU UUWI>»
jcctu- jt^ u- u- u_ cr. i_!^ i_i >; ^. •--•^ <a <CLJcr.^c»-, i_!>—•^ri-'LJiw' <*.»-• c-jccsu-i—•

•—«t 1
•—>*;i_>^_> uui-xyi

1— t—
uv ' U^C^"—

I

uj 'VL r-Hj»\J «y. f-H <TIM
O 'J^O'J ''• I—

I

INJI.MIM L_J vT IVJIM

HI r-li-H —

<

O WO OO l~>

40

OlQ.

II II

I-- r-

—-

-

2:
-5-5 <r O^—— ct t—oo o
2Z--i r_) f->

Z?l3ii a: e>

U_U- _£ —

»

•—It-H*/) ^ —
» »••—« CD '—I

—»~«
-J-T>— h- III

DQ^ CT> </) e

(X •—<-•• — O </) UJ
l_l U.U_LU — ~i I— X Ca-

rt »-t>-«2:vO -J— i-l H~ UJ
a: «—— »c\j ~-o 1-4 o <J or

ai z az o^r o_z:
•* ••a.o *£_> o cj uj w

'JJ t_>0»-<t— JU II h- — _l O o

x clq.^ lju. i— o 1— _j a
I— K-M »o U_>-H — J— ZP O • O 3 2

» t-QO •-« II Z5UVO OCT C£ Q. O <
K- ~z~z.~z. 11— oas uu < rr -z: -^ 9

2 a_Q-<t—- —o sou — • _»-«+ —

.

<* mmih too—00 ex— i-< — —_1 "i x a y—r-t —
j a——»—»cr>a_ —)o>h — zlt> • —5 -r—> cm » • uj uj • m
a. ^oo*-* »i-i—»fi » t^-r- cm— _scjz:z: •» <*<. cm ^O uj u_cj -j-

•~r>r «c_? «-o »2^ OH- •it\<_ji.u • -—* 1 a •-< ^ 11 11 to ujuj i—1

—<•—•i-HOUj'-H2 2r (J- m3i-Hj • «—it-H'-'O • ~» oo •—i— lli a: »-J" »
uu II •• »UJ • II "T1 U. •—'UJUJ »v_JO—'U_ 1— II II Wli-^OWUJ-WUHN O >—• 2C uj>—HN4r*-UJ<—Ivu
^^„ i-.-Lnvt) •^-3Li_^-)«-.j3Jjix^i. e ;> j^^-^uj 11 ,-1 11 z)—' 3»-<>c h oo ,-'w 3 m :sr^-_Mi ^--

zdo <-.%-.»-* o_ »»i-.o^z-3xhuio a— — z. 1— zp-h (—11 11 t—iai tu zh co z.r—Ma II U^i Lu^-o-«LO (_JUJ*~«»~« Z»-i<t t-<O00-5O-5>-, 'U<t»-' UiH-h-r-Htj7 X >-<UJ»-«0*-<lUUJ
I— ^rvjiNCJh-

—

""•im II uju-Jh-t— <_) 11 ^X-i^Hrt^ ••— •-— h- Z.f— 11 11 «-»u-t/)v/)«—<t/> 1— r— u.— 1— f— u. f—

£t-«JS. <^.i— V->ULH/;^.«£.»-J.X,— L£._J —* l ' I •—• *1 >—> li .«£. II UJUJ -JJ .2. «iUJ>* ^.UJ"—

<

'—) v/)Utu>J- |J- u-UWVi^(juuj»-'u.u*iu.uu"-'-'U'-'UCi-!JUAj;ixu.r-r-u-i *£. <_J a. u- '._H_i u. ix

C3«u. • '
' u><y <j u»C3 ^T*-1 —I uj r- ^*j

KZJt-J INJIM <j I—1 »r«-< —« uj 1— i~-

O LO 1—

I

•—I I

--
'-* >H

41

o
i—

i

«3
O

(X 3Q CQ
'JJ <l •-!

2 2 H-
<l l-i to—IX »-i

U. »- (_i

»—

I

UJ _£ X
(X. CC
<t V) QOh- U_
</} Z O »-l

ot *-• u- ^c
a o a: -* 3
UC LU •—

IX UJ +• <1
LU V. U_

o ox
2 2 3 h-
U.I LU CC </)-!
X > UJ S3
.£ — <2J ID —1

U> 21 V) Z >•
—

•

3 a. __i +
<* Z O II 2l

a u> a *

'

i— 2 lu oo o a ^
i/i h-t i — lu 3 2

b- CC X H- LO O t/> <a II

LU O !— w O 21 CC
Q. CC i-« CO — 133 l«£

uj cc ;s _i -in to z oinj z :*:

CCLU O O • •""• [WD lil -H
Z'-H X CC O DC »• U_— CO — O

l^-X *-J h- COLU- CD »-t OO O —4 00
oor-j— 3 2 ca ii o i— ;_ x— •<)
i— •— —i o a 2; z -* ccf_» o—4 u»a> u
'.uqj: O H-t— 3 O LO UJ JU oo UJ \—
COJ— Z LU*C »-t I-IUJ OJ • (^)(S> LU •» »0

x o x ao. cLi—z ..as:— r^3 — i— o
31C-< »-* O OUJOLU<3- O 3 -) —-~ < 3 ~5 O
<oec <-_ -! oczorocc it 2— 2 •> o^ ••« •»o _j
Ot O <t X —•*-»-«»-1 •—it-i |— rO LU • • i/)Ng LUO —

•

o-~o o 2 o o _j 3—»»-« lu a c?lu a •-•3 2 a o-~
o<-«oc *-* a^.aj -. Q.-»Q.r^ •» x o ujz o—co •> o—» «o
CC «U- _l ~ CL (JJtNUJOUJt-i^tM- H- 22 « • C02»-2L —• Z X C_?m
CLC? q. + O UIOCOC3CCO»-it\l O •"—* OO LOUJ3 «"» • LUCvJ

UiUJCj IU Q. o •<" •* ^3" »- to ^O 33 LUO^ H LOO ••

» txujuj ac luajj _j uj »-H— •*« •— •- \u— uji—(ii ii ujujt/it-n o>u_>.<£ ajaiai >—vuuj
—

• CMJ— LU_) 3CC OO -JO—O— ~U——» 3 "31-J35.S. COO<J + ~5 L_) «3 3—

O

K-2 COZ ujozw lu.-iz ii || Q^-t—wt—— I— h-ZOO 0Z03 Z3CC <3 O^Z O
<ato<_j t-« j_ ii i—i it

X <—"jj _j r— ^-u.^— cl
Ut-^-UJ-J^C UJ^WU —)<£.>—'l-J •—I UL t—• LZ. hH U. »—l tX. «(C 2. i. ^ II UJ -J II .2. ili. !-*^
LJu_v;«4.i_J *£uci_iii ^i li. i_j u_ i_j u_ ul i_j at uj u. i_' ol ujUJ—> -J i_JULJ u- u- UJ-u-a. it ujj^u- u_'_j it u-tt-ij
u-t-i v_)uj i—ii—iujt-4 i-<i-iu)^,

l£>-«j;u.j;u.j;u.j;u.u2:^ui-tu'-"-'iLLVi-uxi:L)2.Mt-"u-JMj:u
O O

fT)>3" Ul LU JJ LU Ul 1\J O •—» f^O U* \3 l\J fl \S**J O'^H
<Ti"~ i"~ tu r— uj -jj o O <3 imiu r- uu aj uu lulu uj^j

UJ-HZ II II Q~»_— H-— I— h-200 0Z03 Z3CC O 0^2 O Z
J_ II hQ 2Ilu<Ilu<3:uj«Iuj<i-i3302'-i-^2—'Olo «-l LO ~3z tx: i-1 2. i. UJ >-<

t— «it— ^:'jj—i—xt— ^-i— 2-h-i.i— tnu'iuj^-'^— ^-«— i— _j n lu ii ^»^-r-i_>—t——

o ujo ujo

42

in

UJ

o

cu

It o
O }-
DC.

X •—
CO »— .>
r> <t —*

a a. o
•-• -v.

> j_ -^ —
UJ 3 222 2 —
CC »J- <1-<<1 <t UJ
Q. 2 cccxcx tx ;>

—I »-* >jH I—I t—* <l^ www w *
U_ OQO Q UJ

a 222 2 :>

c£oo u_u_u_ u. co «
LLif*— i—M.OO0 00 i—

I

—
CQ + + + + -H 9

20 ———• — ft
ZDI— -£2.2 <£ a — +

o 2 m<.<i< 22<i i— ~5 vr >
2 a inaixa <a«a.ix •» cnj «-*

•"• SO im-ii-n—i QCoi>-' o »—i -HO
U. _J f— ww— HHI—» O w w
2 2!--)L:Oaa wwqc a f_ O I

* •-*»— u-i— ar-ic? oa<j —. lu _> t— —
OO X3Z r>Z>CO 22CO h- UJ Q. 2Z2 <o.i-ioao2: hmj :d oo 2 02
>-<t-i rZSOLLLLD 'J-LL-ZJ 022> •-"- CD 2
U_U_ •-• »• moOU »-iCOO 2: »• *</} Z2 —

'

22 'MSLr-i—> II II || 11 11 II Z3-^-* »Z — Q
11 II X e 11 •-•— — ^ II —12 »H 2
——»-»»— OJ^C »<£22 222 9 H 11 II- > • J
22+ _)<3.e?<i<r<t <i<a.<x uj — zo >o-^a
:d:d2oo ix ujoc a: at: o a: oca: ujv-i -? -} zz >uj 1 u_m

ujctcr_)t—1^:>—1 ••—••—••—• in 1—11—1>—1 uuuj • ~>x> iu<i_iaN 9<j_i/>rvj

I
s- _ii-ii-iac z> o.ww-in-'-v.jaQ. i-ir- _j U'Uxa'jj-H

1—2 wLULU a Zh- II *-» » ^wwi-i>— CX^OUJC_3CJCC UU^ZZlUmfn- ^vOU.CtXUJQt'—
<i'^»— >xwo:zuj»-i<iQu a *-«t_jLj 11 DMincLZZ^OZZUwwuH^oc m^hmxh^-o
i.»— 2*3.f— <—•<-Jwf— 1_3l_ -:;uJU.ir— I—^^^Q-wum—l_J^JV3f— _3_5</)|— I— i-h—<•—IQJ»— i—O II II II »-* II II >—
Lt^i_;(x ^-ul t-i^mci-iuuLj ^wwjz w'tJLJ2- uui-c^— uj ^c ^^-ujw^>ac.
l_J(_J<-J»— i')U_£X.U_U.LJl_JU-V/>l_Jl_) l_l U_ U. LL. >—I U_ {_) u_ LL. Li IUU.U 1 l_)l_) U- l_i LJ OOLJ LJ l_J -*• -*- -><J_ i~i ~< _J

u_<w"—'2*^'"^u-ii—1^<—>u_^i—i^icj uwvji-1 i. 1—• uj •—' »—1 ooc_> <ji—100 <_»«_.' ^j i—1 cj (_! •—1o '_>c_)x>-<a.'^(_j^><^j

u * ivju\ c?m >o ui mji\j pi uj
HI
IM

i_> o o

in 1—

t

xcn
H|- a
+ <ai_i *£
—a.;- — 3
_i -j O
<^o > u_-»
uji-io CNJUJ —I

ax OCJ CO •*

01 CDU qlUj
2 2 00
w«£ 9 u— cr.a
i>l-HCJ t—

a

Ct2
<. UJ UI LU'—
QCQC Oui a

oot—0— e>oo QCUJO—

1

_J2ci—

1

1—

1

LUUJ II

m < II CC » — CQ00
1—

1

OO— UJUJ 0— SIl-H—

'

• a:_i cj ein Z3 + -J
- UJ "ZQUU-T ZU ••

^uj<t^:^ijuoj ^LU
- CLJ w^ e » - MQ
** UJtt.l_)UlLJ(_Jt— vOUJwU_a_JU

Z3»— ^:a:uju.z)w_? ^21 r*

IMU\ O^^ MJ
o»r U'U' V*
0O CM

u\ MJl\J
a > U li—

1

in U\l—

1

43

• c— —

I

UJ
cn l a.
e m -y

O # —
-« > V
u_ -" -»
•- >^ (Jul

- — ->
II UJ <l— cj •> t-
z < •*

o 3 r» t— uj
uj o m r- •« ;>
»— u_ ^ UJ <i
z> — < o > o s-

2; K-ict— oujctuj I— r->o

—

m i_j >j- •k_jc\j«-h;><i j> o in « r-i^-t_
o o o - a. •—<<i;><5 uj o m i^oj
ao co 11 ccm + + + co * C a.

\~ 0r''llU_O———» — >• \~ C-UJo •-> o uj t-i:zz i— o h- i >— oc
t— <£ I— ajoc- ZZZ uj *— _3 — ^o 2

Xlu ii U2Z2 uj a_ a. »-. ujuuo-
a :> a 3co 0^^—' > uj o 2 -» >-> *-*>a o 1 —

1

O UJ OZUJ Z^5» UJ(XCX O. CC C?M •—' V. <-tLOrvJ i-h<XOO—-^.— Q
Q Z>Q 3UJ—«XO -* Z <-* 3E — — •"*«» «

—
I— <— ••—

"
•—•<— vl

— -^2.<</> i-zDhow uja: 1-l-J • — »-h a: — • •!-«

o— a • o ^ • ;>>;> x> i— o-~ - *-* «j*fH —>——ou-it— —
eO t— o> •—•-*— clujocjc/} cot/7 <t:><i _j «m »-< m w)x.?~< r~ co u"> uj «£:— u^.o
CJO c/}co or»euu> ZJ>*— LU u n >i li !i M • <_?C5 n —* 2LC»-<ir>r^-r-p- 9 9.x »co
ujy> co umuooo h-kiuo »—.—,—» _~-»_ »_ ajm •-* uj Zjcc-' #r*-r-r-i—h-o* f-

«. • co e •sOOO f-ZZZO'ZZZ UJ »••*-<> 0<a.CC-«- »• »-UJ^)0O-^ •»

uui— vuujwoiu* (— > » »uj» . • uj ic^^ t—1 *£ jC ic uj uj u. 1— vuuji—• *— <ii— — >«u.* >«>uvuau> rt,ii |.u

>Z>— Z) na# D<i0^2«-w-aZZ2HZ2Z JD-U 3w^D uj;> ^ n |-;>U~w~-uj2:t»";a:^'>
20 zt— -h 2; <xo *-«-'— z:>— i— 1— uj >-•—.«-. ^>-— 2;z:ac a zoa-via^ n >vi ctD^«< zc
•—

• 2iujt-<<i r-t»-(<i 2: ajujuj'-*-q: <t.<a:u-i cc etc ujcxiX >-'•-< »-« s:ui»~'<njuj !i So^i/)h-iuljujzz 11 :>ujt-«

I—»h-t— 2. II f—^>*-t— t— I— f— i2.2L»-'-=»<lCJ>H--><1.0»— I——

'

w(-.^-HaiU_)(XUH II — t— I——"—'•—
• II I— t—

^ >—<*iuicri^: 11 •-<•—••—«^u.cz.aL.~'<i->(y? o.->vj^:^i •—«^i -£.-><£«. i_jo 1—11—<>-<>-i cr^^>-<^
LJU_a.LJUJ'^U<t-JU.Lr.C2.LX.LJLJUJ(_JU_->->^»<_J^>->-^'V_JUJU- LLCUU II «!. II -><-r>i/;w/31Ct.aC!J-U_<lLJCr.I_)
uiij;uu-^> uv5i-ij;j;jcuLLa.u.i-n/5in(/)UWKiv)(jU'-' »—•jculJ'^ii— p-^ h-i— -^-fi^'-^>-^^>v;^£t_,

»*j

-*j

>r .i-iC3 01 nj-i'-uju'
t\j U<3I IVI ^v^iv(jvt;
f-t coo> 1—4 OOvUnU^J

u•>s^JU', U\
hmju' C3
f—«sO f-H UJ

UJ

44

uuuuu

ii

U-
LU
CL

UJ

o
—«e\J_L— >r «i—

i—OU. JS.

—> -
u_- O
- ~ll 2
j— - 2»~i

r> M ca

CJ«—
CCU~>CL
CD UJLU
u- <•?(_) ;>

ex o

< ex <i vj
ZUJQQ

CO

ex
UJ

<
a:
!-

u_
lj

IX
aj

m X
.—»—

»

•4"

~5 *«

a * —
i—i—' ~i— m

a> •»

'j<i X
ex >r

0.2: -

0~5 - —

•

UJ K3
SL -Z. •-* X^
duj<o — — <r-—<

<aoooo i't •• •» »i«) • m
O »H»-t«—tl—MM ,—It—

I

- - - - Ml II «—*-(• (\l

ww«^waiuiiiJ>u>-»-5v) ..aj^-—

»

JZ3_)— UJs03

<<<<>-i ,-,MUj(Mr0Ouj ,-'<i.<
2. a. 2_ a. i— *— i— t——•>—"-sit— »— 2. a. ex
IX. eXtXX..^«C .<£»-< ^-'•-nieXCXC-) l_l

cjocjcjcjcjcjcxcjcj«jl.cxcj<_jcji— *c
U.U.lLlLUOO^UUt-ij:uU.LLW UJ

r-uji/iQOMu i

r— i""»r» >JJ» \»l M IM
r- 1*~ r^ r- 1—i ^^ -^

•—i»\ji»ii'~
IMO II' UN

o
(_>

o
CJ
CJ
o
CJ
cj
c>
cj
o
o
cj
cj
CJ
CJ
cj
o
o
cj

c_>

CJ
cj
cj
u
cj
o
cj
o
CJ
CJ
CJ
CJ
cj
CJ
l_3

CJ
CJ
cj
CJ
CJ
CJ
CJ
o
<->

cj
o
u
cjQU

LUO
UJCJ
Vl(J

cj
UJO

t—CJ

QUau
oju
—/CJ
UJCJ

CJ
CJ
CJ
CJ

ex

ex
ex
UJ

X
<i
CL
cj

CJ
UJ
UJ
</;

CJ
o
o
CJ
cj
o
cj
cj
CJ

o
cj
CJ
CJ
CJ
CJ
cj
cj
cj
CJ
I—

I

CJ
CJ
CJ
c_I

CJ
o
o
o
l_>

l_»

o

l~>

'J
t_)

^J
<_>

o
o
o

01

d
UJ

J_(/J

0<2
>!—
<I

•tx

^-UJ

a -
I
—

—

i/KOO
<tnim

X
o

O0

"J.

^>

l_)

o

I—
00

- to
*/}•—

I

I—

«

a
COUJ
2:0
CJUJ

1— V)

-J 00
fXCX
t-o
-TKX.

t-iOJ

U.U.
LJUJ

a
UJ

IJ'

UJ oo
iy> ex
-> o

-L— UJ

ex a.

-«.UJ

-~UJ— flltl

o^ '

m«a
>-»ltlUJ
C<OJ— UJ
h-i-Hi/)

— CL >
OS »*oo

——OCLXO'XUJ
ooon)ii»-Hj>ijjiyO
ujri'i>-»»-i <a>-<-
l_) »-t_J »• x
OQ'JJ "Z •»••.
2muiQ_JiJJ^»X
wt/iOiZOO^
Xi-iuJ<i.^in—

1

2:^ >v(>ouj<^-'
K\>ce:Z2.la: -

. </)_l<QNSOUJ- - - - h-
o3i:_icxex(— ic o ^oao
<-io»— _jexex3uj-r2:- - - c- 000 •

v«ja.*i:<i«iUji_)<jj-R- i—i"— —>-ui— »-i o o •

>v^« >>v^^ct.>~« — ex 11 ii 11 cj
UZ^ZZZZ^-UJWH- <-•»— I— ujf— (XO> ii

uUOOjUuOOZ<r o<t<
e_)2-2.i.2i;i.a.a.ujuj2mi 2:2:1
oa.i.2.2:2-2.2.!— 2-CXU-eXtX^.
<—1 «-J oj l_> i_J J oj v_» *i -• (_JOLJO I— CJv > is > *c __) «£ •—

•

UUUUUUUUfUU.rMU.U.- U-^i^X -)wx
o 1—

I

^<
1—

I

u» CO ul

e_; e\j e\ic\j cnj

cj

UJiu—»t-i
coce-~-—on
aCSTvTOCX
j^Hi'ia
32T— eX

O •"X
JJfl. L":

<r< -s-

j_(—. •. u_

UCJX- l_)

I— i— r^
- - ^s. ».CX

Ninai
•. ••• 1—ieu
XXX 2:
rnrn»—1 3
^-Ir-4CX "Z.

\-
^x>v< UJ
W^S. -X.

<GQUJ II XI
1 2. uj UJ i. u- UJ t/i

. a. uj uj _> i. ;— ^c.

(_J CJCJCJ UUUUU

V/J

(X
l_J

cc
(X
UJ

CJ
UJ
t_l

LU
LU
IS)

2 Q •> «/)

OO t-i UJ II — !-i

2: O CJ ~3

<_J »-« 'JJ —"l-H • X.
t-t CC UJ .> l-a t—

1

H- O (/"J Ql •" «*

o uj— a o
3 in uj vi h- 1-1 uj oj
<x no < x ex 2^^ uj uj
t— vo 1—0 (-»«•} m in
00 o •—< <x •+- "—i

z t— no u_ ac —<a_ — or
a 1— o uj 11 2: o
a. -» vo r-«o » a.30^ >--3u_o "«2 —

«

(X
-JO+ O. »-LJCO —— »-h LU— 0>~i :-4 —
——.-} CJ'-'OCCJ — » 00 UJ
ccnc " oujh- aa t— x

.-I UJUJh-* UJLUCQ l— U-IUJ a. H-
iCC 212'-' ^LUSTO^/) >-«UJ z:

O • LUOUJ QCUJ OOQ <WDOZ XOO OX*
Zh • •- ^ujx Z2uj <wO>-«z h.-i—z: 2 f—x
— ——x^ + x+ xxuj -zi m

z^iujx -j—<«->cx> 11 qc o .1/7—1 22uj » ujo >-»-"»z-~ ——

•

ac o • »"X + •> 0— ujct— uj i—h-»-h-(- •• »-x X e-~<XLn<3 ~in vO »»

uj^:^ 11 —i»-ifr— 1— t— *-*zj -«-uj^>2: _j_1 11 a #—1»—11 •*— c_*c3Luo (M ,-'og. <m-
-tC » •—

»

</)l/7>—UJ^T^f— (XO • •— UJ "J UJ.-«t— (MfNJ OJ tNIO
<t.r-if-1~} l| II UJ ^200 0U<KUJZ I— }—-3U4 II II OO •"/) «t\Z •> •. II t- •»•

uj 11 11 » 1— •—>»-«uju.u_uj>-tt— x. i/>c/j ••vjmujujuj h*,—^—n— -tvOvO ^u-'nu—uj
iM-)Mwn<xxas.Xi 11 z 11 zzihZvijjdji-i") «— Dvoiiw^wwjw 3
II »- _l II H03UJX>Mt£0tHM^,il ZZ2 Ol_j a^-> 2 1—2:
2cc\jc\jcjOi.noi—^ 2~5 11 ar»-»uj 11 xxuochmwhi-iujujasuj.xuJujLrviJ»-<uj<x>-<
<i^y*;aj(^vuu</iv)—•jHUi(xz;a<«'>« ujuj»~-h-t— h-r-r»ujujuj«— »— uj}— t— 1— t~t-~ t— 2.1—
UJ UJ -J^ZjZ. _l(Xt—U_li UJUJ *£*£.*L OOVJUJ *—-• |_4—1»—i h-i^l-HIX^
2_OLJV»sJO<l:^»^Li_U_<iLU«^«^^U_LL.OOty)<J<JlJLJvJLJ-^^V?U-
XUUMUUUX^MWuXMXX^WMi-t^OUUUQUl/J^ZMjii-iiJKJiUili.U

am'
MJ

cjm
UL com
O v(j

—

•

IX —U—l
uu 01— «"

CO— • r-i

21 ~> ooa

HI U\ N]-U«_>
vu r«i vUMJI—

(-1

O
O

u\ so MJ
r— tviw

CJ CM CO

(_> '

46

APPENDIX B

IIST CF EVALUATED PROGRAM STRUCTURES

This list gives all the statistical data gathered frcrc

the conversion of the procedures of the NIES modules into

the fori of directed graphs. The abbreviations r€ad as

fellows:

PNR Procedure number within the module

N Number cf nodes (including transient nodes)

A Nuirber of arcs (including transient arcs)

P Nunber of caths

L Nunber cf loops

Ss Number of source statements

Mi Number of machine instructions

SA Scuice stmts. /arc

MA Machine instr./arc

47

1. Kcdule One

ENE N A P L ss MI S/A a/A

1 2 1 1 2 1 2.0C 1.00

2 14 23 22 37 134 1. 61 5.83

3 4 3 2 5 15 1.67 5.00

a 3 2 1 18 18 9.0C 9.00

5 4 4 2 4 17 1 .00 4.25

6 34 45 64 60 302 1 .33 6.71

7 4 4 2 8 17 2.00 4.25

8 13 14 3 10 25 0.71 1.79

9 4 4 2 7 15 1 .75 3.75

10 5 5 2 4 23 0.80 4.60

1 1 6 8 5 8 15 1.00 1.88

12 2 1 1 4 5 4.00 5.00

13 2 1 1 5 6 5.00 6.00

14 6 7 4 9 24 1-.29 3.43

15 4 4 2 6 25 1 .50 6.25

16 14 13 1 13 22 1 .00 1.69

17 14 13 1 13 23 1 .00 1.77

18 21 23 2 21 35 0.91 1.52

19 19 26 7 22 45 1 . 16 2.37

20 45 66 11 82 134 1.24 2.03

21 35 49 88 33 1C0 0.67 2.04

22 25 30 11 30 53 1.00 1.77

23 7 7 2 6 8 0„86 1. 14

24 6 5 1 8 17 1 .60 3.40

25 12 12 2 1 8 26 0.67 2. 17

26 6 5 1 5 6 1 .00 1.20

27 8 8 2 1 10 20 1.25 2.50

2 6 17 19 4 32 99 1 .68 5.21

48

ENE SS MI S/A M/A

29 28 32 5 47 150 1.47 4.69

30 7 10 5 10 43 1 .00 4. 30

31 4 4 2 4 12 1.00 3.00

32 4 4 2 1 6 13 1.50 3.25

33 10 9 1 7 7 0.78 0.78

54 16 17 3 15 23 0.88 1.35

35 14 17 3 14 20 0.82 1. 18

36 21 26 3 31 57 1. 19 2. 19

37 54 64 13 56 111 3. 88 1.73

38 8 10 8 3 19 40 1 .90 4.00

39 17 25 10 17 59 0.68 2.36

40 63 120 3704 10 78 271 0.65 2.26

41 33 38 7 31 63 0.82 1.66

42 12 14 2 11 17 0„79 1.21

43 13 14 83 8 12 0. 57 C.36

44 27 30 7 21 38 0.70 1.27

45 12 12 2 8 13 0.67 1.08

46 9 9 2 10 25 1.11 2.78

47 19 20 4 12 22 0.6C 1. 10

48 23 26 7 13 34 0.50 1.31

49 15 18 7 19 47 1 .06 2.61

50 2 1 1 7 38 7.00 38.0

51 9 9 2 11 36 1.22 4.0C

52 125 150 1645 o' 102 260 0.68 1.73

53 11 18 9 1 1 33 0.61 1.33

54 34 45 5 63 85 1.40 1.39

5 5 6 5 1 7 11 1. 40 1.39

56 46 58 13 51 86 0.88 1.48

49

£N£ SS MI S/A M/A

57 30 36 14 26 59 0.72 1.64

58 40 60 216 49 117 0. 82 1.95

59 11 12 3 9 15 0.75 1.25

63 28 37 16 24 52 0.65 1.41

61 2 1 1 3 5 3.00 5.00

62 43 62 24 1 50 96 0.81 1.55

63 89 140 451 7 95 214 0.68 1.53

64 4 4 2 7 14 1.75 3.50

65 47 56 773 3 44 129 0.79 2.30

66 12 12 2 1 10 16 0.67 1.33

67 26 27 1 25 44 0.93 1.63

68 8 8 2 1 8 30 1.00 3.75

69 49 61 12 53 90 0.87 1.48

7C 6 7 4 8 22 1. 14 3. 14

71 6 7 4 1 9 23 1.29 3.29

72 7 7 2 7 16 1 .00 2.29

73 8 8 2 7 13 0.88 1.63

7 4 5 6 3 9 19 1 .50 3. 17

75 24 28 8 20 47 0.71 1.68

76 15 19 8 20 45 1 .05 2.37

77 17 20 9 10 37 0.50 1.85

76 10 9 1 5 7 0. 56 0.78

79 25 31 3 23 30 0.74 0.97

8C 44 57 11 55 127 3.96 2.23

81 6 9 3 7 16 0.73 1.78

62 6 5 1 8 18 1 .60 3.60

63 13 14 3 8 20 0.57 1.43

€4 91 120 25 93 191 0.78 1.59

50

ENE SS HI S/A M/A

65 33 43 219 32 93 0.74 2. 16

86 18 23 13 22 56 0.96 2.43

67 21 22 6 25 81 0.93 1.37

89 51 65 14 54 107 0.83 1.65

SO 7 10 5 8 22 0.80 2.20

91 22 30 9 14 47 0. 47 1.57

S2 5 6 3 9 28 1 .50 4.67

S3 25 34 12 34 132 1 .00 3.88

S4 7 10 5 2 12 37 1 .20 3.70

S5 18 27 10 19 58 0.70 2. 15

S6 45 52 35 1 40 93 0.77 1.79

S7 136 211 3972 99 162 0. 47 0.77

51

2. Kcdule Two

£NE N A P L ss HI S/A ii/A

3 2 1 1 7 7 7.00 7.00

5 6 5 1 3 4 0.60 0.80

7 2 1 1 3 4 3. 00 4. 00

8 2 1 1 9 23 9.00 23.0

15 11 13 5 1 12 31 0.92 2.38

23 1C 11 3 12 33 1.09 3.00

40 22 27 5 14 30 0.52 1.11

41 10 14 12 1 13 42 0„93 3.00

46 25 37 36 34 95 0.92 2.57

47 24 34 36 34 85 1.00 2.50

48 16 21 14 17 55 0.81 2.62

54 6 5 1 10 15 2.0C 3.00

5 5 8 8 2 5 13 0.63 1.63

59 6 5 1 5 10 1-00 2.00

€5 6 5 1 4 12 0.80 2.40

69 4 4 2 7 15 1.75 3.75

73 18 22 10 34 97 1.55 4.41

79 13 14 5 2 11 34 0.79 2.43

62 23 24 2 35 64 1 . 46 2.67

66 30 34 6 2 33 86 0.97 2.53

SC 13 18 8 2 23 71 1. 28 3.94

99 25 30 10 1 23 50 0.77 1.67

113 6 5 1 5 7 1 .00 1.40

114 4 4 2 3 6 0.75 1.50

121 6 5 1 7 12 1.40 2.40

122 18 21 6 20 38 0.95 1.81

125 37 46 13 2 37 94 0.80 2.04

129 9 9 2 9 21 1 .00 2.33

137 13 17 11 323 53 1 .55 3. 12

149 18 25 9 4 35 88 1 .HO 3.52

52

APPENDIX C

DIRECTED GEAPHS

Cd the following pages the structures of all the

procedures are listed that were used as input data for the

Error Detection Simulation Model. In addition tc the

complexity measures used also listed are the results

ottained frcm the simulation, the average number cf errors

found with 1 input, 100 replications and 100 repetitions,

and the percentage of expected errors detected.

Differently tc the sample structure shown in Fig.

2, the number cf statements is indicated in the following

graphs only fcr arcs with ncnzerc instructions.

The count for the number of nodes and the numher of

arcs includes the transient nodes (designated by letters)

and the transient arcs (dashed lines) because they must be

included intc the inputs for the Error Detection Simulation

Program.

53

Module: 1 Procedure No.: 2

Nunber of nodes: 14

Numfcer of arcs: 23

Hunter of paths: 26

Nuafcer ci source stmts.: 37

Average errcr found: 0.3144

Percentage ericrs found: 17.84

54

Module: 1 Procedure No

Nuifcer of nodes: 13

Numrer of arcs: 14

Nuiifcer of paths: 3

Nuirter cf source stmts.: 10

Average errcr found: 0.2523

Percentage errors found: 52.98

55

Module: 1 Procedure No. 11

Nuiifcer of nodes: 6

NuiEter cf arcs: 8

Nunfcer of paths: 5

Nuiiher cf sctrce stmts.: 8

Average errcr found: 0.1974

Percentace eircrs found: 51.82

56

Module: 1 Procedure No.; 1U

4/11

2/7

3/6

Nunter of nodes: 6

Nuifcer of arcs: 7

Nuitber of paths: 4

NuiEter cf source stmts.: 9

Average errcr found: 0.2586

Sercentace eircrs found: 60.34

57

Module: 1 Procedure No 19

Hunter of nodes: 19

Number of arcs: 26

Nuafcer of paths: 7

Number cf source stmts.: 45

Average errcr found: 0.2885

Percentage errcrs found: 27.54

58

Module: 1 Procedure No t/.

Hunter of nodes: 25

Nuniter of arcs: 30

Nunter of paths: 11

Nunter of source stmts.: 30

Average errcr found: 0.4105

Percentage errors found: 28.74

59

Mcdule Procedure No. 25

1/1

Nunfcer of nodes: 12

Number of arcs: 12

Nunfcer of paths: 2

Nunfcer cf sctice stmts.: 8

Average errci found: 0.2324

Percentage errcrs found: 61.01

60

Module: 1 Procedure No. : 26

3/H

Nunfcer of nodes: 17

Number of arcs: 19

Nunter of paths: 4

Number cf source stmts.: 32

Average error found: 0.6400

Fercentace errors found: 42.00

61

Module: 1 Procedure No 29

Nucfcer of nodes:

Hunter of arcs:

Nunter of paths:

Hunter of sctrce stmts.:

Average errci found:

Eercentace errors found:

62

Mcdule: 1 Procedure No. 30

Hunter of nodes: 7

Number of arcs: 10

Number of paths: 5

Number cf scuce stmts.: 10

Average errcr found: 0.1649

Eercentace errors found: 34.63

63

Module: 1 Procedure No. : 34

Hunter of nodes: 16

Nuirter of arcs: 17

Nuirter of paths: 3

Nuirter of source stmts.: 5

Average eircr found: 0-5465

Eercentace errors found: 76.51

64

Module: 1 Procedure No. : 35

Nuafcer of ncdes: 14

Number cf arcs: 17

Nuirter of paths: 3

Number of source stmts.: 14

Average errcr found: 0.3576

Fercentace eircrs found: 53.64

65

flcdule: 1 Procedure No 36

Nunfcer of ncces:

Number cf arcs:

Nunfcer of paths:

Nunfcer cf source stmts.:

Average errcr found:

Percentage errors found:

66

Module: 1 Procedure No 39

1/1

Nunfcer of cedes: 17

Numrer of arcs: 25

Nunrer of paths: 10

Number cf scirce stmts.: 17

Average eircr found: 0-2637

fercentace errors found: 32.57

67

Module: 1 Procedure Ho. : 44

Nunter of nodes: 27

Number cf arcs: 30

Hunter of paths: 7

Nunter cf scurce stmts.: 21

Average errcr found: 0.3554

Percentage eircrs found: 35.54

68

Module: 1 Procedure No 47

Nunber of nodes: 19

Number of arcs: 20

Number of paths: 4

Number cf source stmts.: 12

Average errcr found: 0.4231

Eercentage errors found: 74.04

69

Module: 1 Procedure No. : 48

Nuitcr of noces: 23

Nunfcer of arcs: 26

Nuat€r of paths: 7

Number cf source stmts.: 13

Average errcr found: 0.3287

Eercentace errors found: 53. 1C

70

Module: 1 Procedure No. : 49

Nuufcer of nodes: 15

N Ulster of arcs: 18

Nuiiter of paths: 7

Hunter of source stmts.: 19

Average errci found: 0.2217

Percentage errors found: 24.50

71

Module: 1 Procedure No 53

Nun ter of nodes: 1

1

Number of arcs: 18

Number of paths: 9

Number of source stmts.: 11

Average error found: 0.1876

Eercentace errors found: 35.81

72

Kcdule: 1 Procedure No.: 57

Nunber of ncces: 30

Number of arcs: 36

Nunber of paths: 14

Number cf sctrce stmts.: 26

Average errcr found: 0.2910

Eercentage errors found: 23.50

73

Module; 1 Procedure No.: 60

Nuirter of ncces: 28

Number of arcs: 37

Nunter of paths: 18

Nuiiber cf source stmts.: 24

Average errcr found: 0.3336

Eercentace eircrs found: 29.19

74

Module: 1 Procedure No, 75

Hunter of ncces:

Nuaifcer ci arcs:

Nunfcer of paths:

Number cf source stmts.

Average error found:

Percentage errors found

75

Module: 1 Procedure No. : 76

Nunfcer of nodes: 15

Number of arcs: 19

Nuater of paths: 5

Nuater of source stmts.: 20

Average error found: 0.3893

fercentace errors found: U0.88

76

Module: 1 Procedure No. : 77

Hunter of nodes: 17

Number of aics: 20

Nuuter of paths: 9

number cf source stmts.: 10

Average errci found: 0-2425

Percentage errors found: 50.93

77

Module

Nun ker of node s:

Numfcer of arcs:

Nuiirer oi paths:

Number of sccrce stmts.:

Average errci found:

Percentage errors found:

Procedure No 19

78

flcdule: 1 Procedure No. : 81

Nunter of nodes: 8

Nunber of arcs: 9

Nuirfcer of paths: 3

Nunter ct source stmts.: 7

Average errcr found: 0.1449

Eercentaae encrs found: 43.47

79

Module: 1 Procedure No. : 86

Nuafcer of ncces: 18

Nunter of arcs: 23

Nunrer of paths: 13

Number c£ source stmts.: 22

Average eircr found: 0.3370

Eercentag€ eircrs found: 32.17

80

Module: 1 Procedure No.: 87

2/11

Hunter of nodes: 21

Number of arcs: 22

Number of paths: 6

Number cf source stmts.: 25

Average error found: 0-5029

Fercentace eircrs found: 42.24

Mcdule: 1 Procedure No. : 9

1

Nunter of nodes:

Nunter of arcs:

Hunter of paths:

Nunter of source stmts.:

Average error found:

Percentage errors found:

82

Module: 1 Procedure Mo. : 92

Nuafcer of eccgs: 5

Numfcer of arcs: 6

Nuiiter of paths: 3

Hunter of sccice stmts.: 9

Average error found: 0.1837

Percentage errors found: 42.86

83

Module: 1 Procedure No. : 93

Nunrer of nodes: 25

Nuttter of arcs: 34

Numfcer of paths: 12

Nuaoter of source stmts.: 34

Average error found: 0.3972

Eercentac^ eircrs found: 24.53

84

Module: 1 Procedure No. : 95

Nunter of nodes: 18

Nunher of arcs: 27

Nunter of faths: 10

Number cf source stmts.: 19

average errcr found: 0.1822

Eercentace errors found: 20.14

85

Module: 2 Procedure No. : 15

Nuttber of ncces: 11

Nunster of arcs: 13

Nunfcer of paths: 5

Nuitcer cf sctice stmts.: 12

Average errci found: 0-0836

Eercentace eircrs found: 35. 5S

86

ilcdule Procedure No. : 23

Nuirfcer of ncces: 10

Nuufcer cf arcs: 11

Hunter of paths: 3

Number cf scurce stmts.: 12

Average errci found: 0.1592

Percentage eircrs found: 67.66

87

Mcdule: 2 Procedure No.: UO

Hunter of ncces: 22

Nunber cf arcs: 27

Nuafcer of paths: 5

Nuifcer cf scuice stmts.: 14

Average errcr fcund: 0.2018

Percentage errcrs found: 73.51

38

Module: Procedure No.

:

41

Nuaber of noces: 10

Nuuter of arcs: 14

Hunter of paths: 12

Nunrer cf source stmts.: 13

Average errci found: 0.1554

Percentage errors found: 60.96

89

Module: 2 Procedure No. : 46

Nunfcer of ncces:

Number of arcs:

Number of paths:

Number of source stmts.:

Average error found:

Percentage errors found:

90

Module Procedure No.: 47

Hunter of ncces:

Number of arcs:

Hunter of paths:

Hunter cf sctice stints.

Average errcr found:

Percentage eircrs found

91

Module: Procedure No. : 48

Hunter of cedes: 16

Number of arcs: 21

Hunter of paths: 14

Nuater cf sciice stm.ts.: 17

Average errcr found: 0.1580

Fercentace eircrs found: 47.40

92

Module: 2 Procedure No. : 73

Sumter of Dcdes: 18

Hunter of arcs: 22

Nuiiter of catbs: 10

Nuttier cf source stmts.: 34

Average errci found: 0.1885

Percentage errors found: 28.28

93

Module Procedure No. 79

Hunter of nodes: 13

Hunter of arcs: 14

Nunter of paths: 5

Nutter of scuce stmts.: 11

Average errci found: 0.1379

Eercentace eircrs found: 63.94

94

flcdule: 2 Procedure No 82

Nuiirer cf ncdes: 23

Nuafcer cf arcs: 24

Nuuher of paths: 2

Nuater cf scirce stunts.: 3 5

Average errcr found: 0.1130

Eercentace eircrs found: 16.47

95

Module Procedure No. 86

Hunter of nodes: 30

Nunter of arcs: 34

Hunter of paths: 6

Nutter of source stmts.: 33

Average errcr found: 0.2042

Percentage errors found: 31.56

96

Mcdule: 2 Procedure No. : 90

1/1

Nunfcer of ncces: 13

Numfcer cf arcs: 18

Nunter of paths: 8

Nuaher cf sccrce stmts.: 23

Average errci found: 0.0958

Eercentage errors found: 21.24

97

Med ule Procedure No 99

Nuirher of nodes: 25

Nurcter of arcs: 30

flunier of paths: 10

Hunter of sctrce stm«ts.: 23

Average errcr found: 0.1513

Eercentace errors found: 33.55

98

Mcdule: 2 Procedure No.: 122

Nunfcer of nodes: 18

Numter cf arcs: 21

Nuiter of paths: 6

Nuirer cf sctrce stmts.: 20

Average errci found: 0.1686

Percentace errors found: U2.99

99

Module: 2 Procedure No. : 137

Nunter of ncces: 13

Number of arcs: 17

Nunter of paths: 11

Number cf source stmts.: 23

Average errcr found: 0.1178

Eercentage errors found: 26.12

100

Mcdule, Procedure No.: 149

Hunter of nodes: 18

Nunrer of arcs: 25

Nuarer of paths: 9

Number of source stmts.: 35

Average errcr found: 0.2357

Eercentace errors found: 34.34

101

LIST OF REFERENCES

1. Baker, F.T., " System quality through structured

program ning" , FJCC Proceedings, v. 41 part I, p.

339-343, 1972.

2. Baker, F.T., " Chief programmer team management of

product icn programming", IBM Systems Jcurnal , v. 11

nr. 1, p. 56-73, 1972.

3. EoehE, C. and Jacopini, G., " Flew Diagrams, luring

Machines and Languages with only Two Formation Rules 11

,

Communications of the ACM, v. 9 nr. 5, p. 36 6-37 1,

May 1966.

4. Ccnstantine, I. I., Concepts in Program Design, f. 7

to 17, I.L. Constantine, 1967.

5. Dijkstra, " GC TO- Statement Considered Haraful",

Com munications of the ACM, v. 17, Nr. 3, p. 14 7/148,

March 1S66.

6. Fleet Computer Programming Center, Pacific, Naval

Tactical Data S ystems , Programmers G_u ide , Vol. I and

II, 1 December .1964.

7. Greeo, I.F., Software Error Detecti.cn Model, M.S.

Thesis, Naval Postgraduate School, Monterey, 1975.

8. Hetzel, B.C., Program lest Methods, p. 7 to 14, 225

to 238, Erentice-Hall, 1973.

9. Maynard, J., Modular Programming, p. 6 to 18,

Auertach Publishers, 1972.

10. Naval Postgraduate School, System Test Methodolcqy ,

102

by Eradley, G.H., Howard, G.T., Schceidewind , N.F.,

Motgcmery, G.K., and Green, T.F., Vol I and II, July

1975.

11. Schneider in d, N.F., Validation Tests for a Sojtware

Errcr Simulation Model, Proceedings of the 1976 Summer

Computer Simulation Conference, Washington D.C., July

12-14, 1 976.

12. Van Tassel, D., Program StvJ-e^ Desicjnx Efficiency,

Ejtu^Sic^ anc Testing, p. 44 to 47, 166 tc 192,

Prentice-Hall, Inc., 1974.

13. Yohe, J.M., " An Overview of Programming Practices",

Computing Surveys, v. 6,4, p. 221-243, December

1974.

103

INITIAL DISTRIBUTION LIST

No. Copies

1. Defease Eccumentation Center 2

Cameron Station

Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School

Monterey, California 93940

3. Department Chairman, Code 52 1

Department cf Computer Science

Naval Ecstgraduate School

Monterey, California 93940

4. Professor Norman F. Schneidewind, Code 32B 1

Department of Operations Research

and Administrative Sciences

Naval Ecstgraduate School

Monterey, Califprnia 93940

5. Marineamt -A 1- 1

294 Kilfcelmsha ven

Federal Republic of Germany

6. Dokuirentationszentrale der Bundeswehr (See) 1

53 Ecnn

f riederich-Ebert-Allee 34

Federal Republic of Germany

104

Kcmnandc Marinefuehrungssysteme

294 Kiltelmshaven

4. Finfahrt

Federal Bepublic of Germany

LCDE Michael A. Kirchgaessner

Her nann-vcn-Vicaristr . 5

775 Konstanz/E.

Federal Eepufclio of Germany

105

thesK497

Analysis of program structure and error

3 2768 002 10903 5
DUDLEY KNOX LIBRARY

