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SECTION I

INTRODUCTION

The increasing acceptability of statistical considerations in airframe

design criteria has led to some well-known, beneficial results through the

application of life-length distributions to the calculation of reliability,

see [1], [2]. On the other hand statistical methods are often blamed,since

the grouping together of failures under the category "statistical" is detri-

mental to the improvement of service life ,when the causes of failure are

not identified and corrective action not taken (presumably "random" failures

have no "assignable" cause). Because of the dichotomy of failure modes

inherent in this interpretation, it is sometimes believed that the use of

statistical methods precludes the idea, long associated with deterministic

models, that each failure should be fixed and all other similar components

in use should be repaired and altered so that the reoccurrence of that

failure mode is avoided.

This false conclusion may have been fostered by the adoption of statis-

tical models from other fields so that the parameters governing the distri-

butional law are without physical interpretation. This state of affairs is

deemed desirable by some statistical protagonists under the supposition that

lack of such specific physical meaning entails a universal statistical appli-

cability.

Some of the recent results in the study of life distributions which have

been specialized so that they take into account the known physical and material

nature of the fatigue process ,will be presented and the implication of these



distributional assumptions to cost effective analysis of inspection and main-

tenance schedules in fleet reliability will be made. The utility of these

distributions will be argued both for metals and for composite materials.
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SECTION II

THE COLLECTED DATA

As a result of the extreme variabliity of the observed fatigue life

of nominally identical specimens under nominally identical loads, it has

been the practice in engineering studies to record the logarithm of life

in either units of time or number of cycles. Because of this historical

fact, denote the random variable which shall be recorded from the observed

life as X = In T where for mathematical convenience the natural, rather

than the common, logarithm is taken.

To be specific, the confrontation with a large collection of data

gathered over a score of years by a single air frame manufacturer, and

reported in [3], which contains a large number of similarly qualified

groups of data, will be made. These data were qualified in the sense

that they satisfy the following restrictions:

1. All data were from components fashioned from the same aluminum

alloy. Only geometries typical of aircraft structural components

were permitted.

2. The imposed stress was always low enough that every fatigue failure

exceeds 100 cycles, but high enough that no failure exceeds 3 x 106

cycles.

3. There were no rotating - bending tests, no unnotched specimens, no

bonded lap-joints or hand forgings included.

4. Only actual service conditions were imposed upon the components.

However, even with these qualifications the data consisted of a large number of

small groups, each one of which was too small to exhibit statistical regularity
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and moreover the groups themselves were so inhomogeneous that statistical

analysis among the groups was quite difficult without some unifying assum-

tions.

In order to reduce the data to reckoning the same plausible assumptions

as in [5] were made.

10 Each group contains a number of nominally identical specimens

exposed to the same service load.

20 The mean (characteristic) log-life is determined by the maximum

stress imposed.

30 The variance of the log-life is the same for every group.

It is known that the variance of the life itself increases as the mean

life increases. What is assumed in 30 is that the variance is proportional

to the square of the mean, i.e. the coefficient of variation is the same, so

that 30 is not in disagreement with fact.

Assume there are m groups of data and each group has a different number

of observations. In the jth group the ith observation is

xj for i = 1, ... , n. and j = 1, ... , m.

The above assumptions imply that xij are observations of a random variable

Xij for which

EX.ij= vj var(Xij= a

L t x
Let = (Xl, ... , xm) denote a group of n such qualified observations,

written as the transform of a column vector6

Let A = (aij) be an mxn symmetric matrix such that

n n 2
a..= 0,j 1  a.. = 1 for each i = 1, ... , n

1 j ij
j=1 j=l
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Now consider the set of observations transformed by A , namely y = Ax or

Yi a 3 ixj for i ,..., n.

j=1

If X denotes a random, column vector of independent identically distri-

buted variates with mean p and variance a 2 then the vector Y = A X has

E Y = O and var(Y) = a 2AA'

Since the matrix AA' has diagonal elements of unity then each variate in Y

has a marginal distribution with mean zero and variance a 2, however they may

be dependent even if they were originally assumed to be normal.

Since the value of n changes from group to group there must be a speci-

fication of A for each different value of n . The choice made for A was

where 6.. is the Kronecker delta.
1J

This means that the transformed data are

/n =1, ... ,n.
Yi= -x x .j for

with

i=l

It follows that

2E Yi. 0 , var(Yij) 2an.

In this case S2 1 y2j 1n. Z ijJil

is an unbiased estimate of 2 .Moreover the estimate
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^2 1 m 2

j=1
2

is a consistent, unbiased estimate for a 2 However, in case fatigue life

is actually log-normally distributed then

•"2 [m 2 m

2
is the minimum variance unbiased estimate of

See the discussion of the treatment of fatigue data in [6]

If all the data from the m groups of transformed data namely,

Yij for i = 1, ... , nj and j = 1, ... , m ,

are pooled together to form an empiric cumulative what will it look like?

Denote the random empiric cumulative by '; defined by
m njm

m (X) = c(Yijx)/In

j=l i=l j=l

where c(y,x) = 1 if y -< x and 0 otherwise. Clearly
m n jM

E'ým _ (X p[Y ij : i x / nJi

j=l i=l j=l

Since from the assumptions made ,for given j the variate Y.j has the
1J

same marginal distribution for each i = 1, ... , nj , say H(. ; nj) , we

have m
5; = () )H(x;nj) (1)

j=l 1

Thus in all cases the distribution will be close to a mixture of distributions

which are determined by the sample sizes. The actual distribution is very

difficult to determine analytically unless the assumption of log-normality of
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fatigue life is true. In that case H(. ; nj) would be a normal distri-
2.

bution of mean zero and variance a independently of nj . Hence, the

pooled data would tend toward a straight line with slope determined by a

when plotted on log-normal probability paper.

An illustration of this data is taken from Ref[5] and presented here

as Figure 1.
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Figure 1. All Qualified Aluminum Alloy Data
(Compared to Various Distribution Models)
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SECTION III

THE MECHANISM OF FATIGUE CRACK GROWTH

It has been postulated by some investigators, see [4] and the citations

there, that a three-phase growth model is necessary to describe in sufficient

detail the behavior of a fatigue crack with enough exactitude to determine a

statistical distribution which can be used to predict fatigue life.

In order to be self-contained and to provide a basis for comparison, a

summary of the argument given in [4] will be presented here. The three stages

of fatigue crack growth will be described in terms of the time necessary for

certain successive transition events to occur. The interoccurence times of

these events will be called To, TI, T2 where

T is the time from the beginning of service until crack

initiation takes place.

T1 is the time following initiation, during which the

fatigue crack grows in a stable fashion as a linear

function of the number of load applications, until a

critical size is reached.

T2 is the time following critical size until fracture, or

containment, during which the crack grows at an increasing

rate governed by the stress intensity factor.

The total time from beginning of service until fracture is then given by

the sum T = T0 + T1 + T2 '

In order to describe this with more mathematical detail let s(t) denote

the size of the crack at any time t > 0 ; then in accord with the various
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stages, the behavior can be described as follows:

1' s(t) = 0 for 0 -- t < tO

2' s' = a for to < t < tO + t1

.*. s(t) = sO + al(t-t 0 )

We now adopt two laws from fracture mechanics which were assumed, p.4

in [7]:

(i)' The stress intensity factor is proportional to the square

root of crack length.

(ii)' The logarithm of growth rate is an increasing linear function

of the logarithm of stress intensity.

From these assumptions it has been shown in [7] there follows the

differential equation

3' s' = a2 (s/sl)b+l for t > t0 + t1

where a2 > 0 and b > -1 are disposable constants.

If we define the propagation function p for t > 0 by

) (t - bt)-I/b if b • 0
p(t) = t(2)

e if b=0

then during all stages we have

10 0 t <<t0

s(t) = al(t-t 0 ) + SO tI _ t < t 1

sI 1P[a 2(t-tl)/Sl] t >_ tI 1•

Thus for a2 > a1 we can write the total time t until fracture as

Sl-S0 S1 - s/l )

0 a1  a2 P (3)

9



where so, Sl, s 2 are the critical crack sizes at the times of transition of

phase. The behavior of this differential system of expected crack growth has

been plotted in [4] . It is the behavior of the total fatigue life as defined

in equation (3) as a stochastic variable which is to be examined here.

In order to account for the observed statistical variability in the life

length measurements certain of the disposable constants appearing in equation

(3) must be assumed to be random variables across the population of components

which will be subjected to life determination. The questions to be answered

by comparison of the mathematical model with the data are: Which variables

should be designated as random? Which variables should be thought of as con-

stants exactly determinable from engineering measurements? It is to these

questions that we turn in the next section.
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SECTION IV

THE CONVOLUTION OF INDEPENDENT STAGES

Suppose that the critical crack sizes so, Sl, s2 can be determined

by analysis from the geometry of the specimen and the constants determining

the exact propagation function p , given in equation Eq(2) , are known.

This leaves to, al, a2 as candidates for stochastic variables.

Under this presumption the time until fracture is

T =T 0 + 1 2

where
T Sl1- S0 T, Sl p-i/s2

1 A1  2 A12

Here A1 and A2 denote crack propagation rates which vary stochastically

over the population of material specimens i.e. the rates of crack propagation

through the metal in stages 1 and 2 , say al, a 2 respectively, will be

different for each metallic specimen. Much experimental evidence supports

this contention, see [7] and the references given there. It is presumed

here, as a mathematical convenience, that A1 , A2 have S-normal distributions

as defined in [8]. Since these variates possess the reciprocal property this

is equivalent to assuming the times of transition are random. This point was

discussed in [4].

Thus the total time until fracture has been represented as the sum of three

separate distinct periods which are respectively the time to initiation, the

time of linear crack growth per cycle and the time of crack propagation from

critical size by fracture mechanical principles, until complete fracture or

arrest.

11



The question presents itself: Is it possible to convolve three inde-

pendent random variables representing time spent in each stage so as to

obtain from them a distribution which will, if mixed in the right proportion,

match that empiric distribution from the data which has been exhibited in

Figure (1)? This question, also asked in [4], was answered through extensive

mathematical comparison of the observed distribution of fatigue life in

Figure (1) with the sum

3 ý TB i• (Zi)

i=l

where Z. for i = 1, 2, 3 are independent standard normal variates and1

(x) = ln(x + x+ 1).

The answer appears to be no. The evidence, in summary, is that if the

variates are independent almost any convolution of three such smooth unimodal

distributions is very close to normality.

Because of the analytical difficulties with a three-fold convolution the

actual method used to study the distribution of the sum was mathematical

simulation. This method was as follows:

At the jth replication, generate by machine the standard normal

variates z.j i = 1, 2, 3 from which with preassigned values

a ij. for i = 1, 2, 3 compute the jth value

3
t= ý.iiY(aizij) for j = 1, ... ,

The empiric cumulative distribution was formed from the set of observations

12



tl, ... , tM for M = 1,000 and plotted on the appropriate probability

scale by plotter on the machine. Some results of this simulation are

in Figure 2.

0.999 -
0.990

S0.900D

M 0.500

0
a: 0.100

0.010
0.001 0 0I I .. log-life

0.999-
0.990-

I- 0.900
-J_
G2 0.500

0
Ir 0.100
a-

0.010

0.001 -
I i _...log- life

Figure 2. Empiric Distribution of 3-fold Convolution
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It is seen that the convolution of these three variates, when transformed

by scale and location to standard form, yields nearly a straight line. This

indicates that only a log-normal variate can be obtained by this method. The

initial and terminal behavior of the curve obtained is far from that actually

observed. Is it possible that three separate stages are too many? Perhaps

there is no initial random period of latency of the crack and the first stage

should be eliminated.

If the crack is always initiated at time zero then T = 0 and only two

stages of crack growth remain, namely, the low cycle fatigue and fracture

mechanical propagation. These would correspond to the linear crack growth and

accelerating crack growth phases of the time to failure.

The next question is whether the behavior exhibited in the empiric

distribution can be obtained by simulation of a two-stage model, namely

2
S•j T (D.i Z)

1

Again the answer appears to he no; see Figure 3.

0.999-
0.990-

- 0.900-

( 0.500-
o //
0

0.010-

0.001
I ,1 I I I I I . log-life

-5 -4 -3 -2 -I 0 I 2 3 4 5

Figure 3. Empiric ]istribution of Convolution
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SECTION V

THE MODEL:

A REVISED DERIVATION

Let us consider a coordinate axis with a logarithmic abscissa and an

ordinate which is the inverse of a standard normal distribution in order to

facilitate comparison with the empiric cumulative obtained from the data.

On such a scale the log-normal distribution would plot as a straight line.

On this coordiante axis let us construct a rectangle formed from the

sides of parallel horizontal and vertical asymptotes of distributions which

will now be considered.

p1 I /•

I I .-

I I

o ti

Figue 4 Fleureof Dstrbuton wth init Supor
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Suppose that a distribution has support only between t0 and t 1

then for a component with this distribution the interpretation can be

made:

t = the time before which no failures can occur •

t = the time before which all failures must occur.

Such a distribution would have the appearance of 1 in figure 4 . Suppose

that a distribution is contained between horizontal asymptotes p0 and p1 "

Then for a component with a life distribution like 2 in figure 4 an inter-

pretation can also be made.

P0 = the probability of being failed at time zero

1-pl = the probability of never failing.

The actual data, although compounded from being the mixture of obser-

vations transformed by scale and location, appears to exhibit an S-shaped

symmetry somewhat like distribution 2 in Figure 4 . That is to say, the

data indicates a tendency toward having a probability of being failed at

time zero, as well as a probability of never failing. Let us now try to

explain the observed behavior of the data in terms of simple mathematical

models.

It has been argued in [8] that if a crack must progress a fixed distance

W , with incremental steps of varying (random) length and with each step
2

having the same distribution with mean i and variance a then the dis-

tribution of time (number of steps) for the crack to progress the given distance

w , call it TO , is given, at least for small enough step sizes, by

16



for t > 0

Here 4 is the standard normal distribution and

W/11 a =a/Vjii7

with 0 defined by

0 (x) = "'-_ 0 <
= • 1O<x<oo

If we suppose that the initial size s0 of the crack at time zero is

a random variable, then the distance, W = sl-so , the crack must progress

to attain the critical size sI is a random variable, which is assumed to

be normal with mean w and variance p2 , in order to make the integration

ieasy. From these assumptions it can be shown, as in [4], that the distribution

of time for the crack to exceed sl , say T1 , is given by

'P (t/1 )o t > 0

where

1+±t) = 1(t)/(1+)½ and E = p12/6ao2

Clearly as t (t), -t) -E-½, and is the probability

the structure is broken at time zero.

Thus it plainly appears that the introduction of a random initial crack

size will push the toe of the distribtuion toward the left and upwards in a

direction more in consonance with the data. The fact that within this parti-

cular family of distributions a positive probability of having the structure

failed at time zero is always obtained is a consequence of the assumption that

the initial flaw was normally distributed and, hence, there is some positive

probability of exceeding the terminal crack size s2

17



On the other hand, if the crack progresses from a critical size s

to terminal size at a rate which is decreasing as a function of crack

length the resulting distribution would still have its tail pushed down

from the log-normal line toward the right. Again the form would be more

nearly that obtained empirically from the data. To effect this, a dif-

ferential equation model, alternative to the one given previously in

section IV and discussed earlier in [7], is now postulated. The sub-

stitution of assumption (i)' for (i) accomplishes this, where

(i)' the stress intensity factor is proportional to a

power of the crack length.

If the power of the proportionality were negative one-half, this

assumption would be appropriate for cracks radiating from both sides of

a hole in a panel which is under tension, as well as in other structures

in which the initial stages of crack growth cause relaxation of the

stress intensity. This is, in fact, the law which has been ostensibly

verified in such investigations.

If we replace (i) by (i)' the only difference is that the resulting

differential equation of 30 need not satisfy the restriction b > -1

for the second disposable constant. With this restriction dropped the

propagation function in equation (1) is exactly the same but b may be

any real number. And, in case b -< -1 , the rate of propagation decreases

for t > t1 .

From (i)' is obtained, if we let K(s) be the stress intensity at

crack length s , the relation for some real E, positive v

K(s) = Vs E S- 0

From (ii) is obtained, for some real 5 and positive n , the relation

18



ln s' 6 + n ln K(s) for s >_ 0.

From these two equations is obtained a differential equation the solution

of which is given in 3' , but n can now be any real number and conse-

quently b can be any real number. The difference in the behavior of the

crack length as a function of time is illustrated in Figure (5).

Crack
size
s(t)

Ultimate
size s2 b >-1

b<-l

Critical
size -S

Initial sO ,size -- // > Timeto to + tI to + tI -+It 2

Figure 5. Crack Growth as a Function of Time
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SECTION VI

SIMILARITY BETWEEN THE FATIGUE LIFE OF

METALLIC AND COMPOSITE MATERIALS

A mathematical model which is sufficiently general to encompass

virtually all the observed variational behavior of the fatigue process

and which follows mathematically from two laws of fracture mechanics

has been described. The summarization of this complex mathematical des-

cription into a probability law which is sufficiently general that it

cannot be disqualified by the data,but is sufficiently simple that it

can be easily utilized, is the goal of this discussion.

The law of distribution which is proposed here as a candidate is

the same one which was studied in [4] as regards the estimation of para-

meters. If T denotes the fatigue life of a component, let X = In T

be the life recorded in logarithmic units. Assume there exists a known

transformation w E 0 where

w E _ iff w' > 0 > w" and w is odd

Here it is presumed that w is determined by the type of material and the

manufacturing process as well as the geometry of the component.

With w given assume there exist a, v > 0 , - V < < - such that

X - G(. ,••

where

G(x:a, v, -p) = D 1 (k) - < x< . (4)

In this formulation p is the location Z, v is the scale

parameter and a is the flexure parameter. The flexure and scale together

control the shape of the distribution.

20



It is thought that the correspondence between the physics of materials

and the parameter space is as follows:

the location parameter p is controlled by the maximum imposed stress.

the scale parameter y is determined by the variation in the material

quality and the distribution of stress.

the flexure parameter a is governed by the distribution of initial

flaws and the probability with which the flaws exceed the initial

crack size.

The Weibull distribution has received some attention recently as an

appropriate model for the distribution of life of composite structures, see

[10], [11], [12]. This has been based on an extrapolation of the success of

the Weibull distribution as a prediction of fatigue life from all types of

metallic structures including both high and low strength steels, various

aluminum alloys and titanium as well, see [5]. The values of the estimates

of the shape parameter for the composite materials studied were near unity, that

is to say the fitted Weibull distribution was close to an exponential dis-

tribution.

This low estimate of the Weibull shape parameter indicates that the

corresponding value of the scale parameter for the log-life should be high

since one is almost the reciprocal of the other. However, because there are,

as yet, only sufficient data to determine the central portion of the distri-

bution any extrapolation to the tails must be hazardous. Note that the con-

clusion drawn from this estimated life distribution being near exponential is

that composite structures "don't wear out". This does not mean they don't

fail, only that if a component has not failed, it is probably not worthwhile

to replace it with a new one no matter how old.
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As data accumulated for metallic components, the fit of the Weibull

distribution became less certain since the hypotheses could be rejected

in many instances. This rejection was principally due to the existence

of long lived components which were incompatible with the assumption of

increasing failure rate. This could be explained, as was done by Weibull

himself, by postulating that the data was a mixture of two different

Weibull distributions with different characteristic lives. This assump-

tion, as we know, will explain the flattening of the tail of the distri-

bution as demonstrated in Figure (6).

0.977 - 2.00 -

0.933 - 1.50-

0.841 - 1.00-

0.691 - 0.50 -

0.500- >- 0.00-

0.309- -0.50-

0.159 -1.00

0.067 -1.50

0.023 -2.00

-15.0 -10.0 -5.0 0.0 5.0 10.0 15.0

Figure 6. Graph of Distribution with Various Flexures
and Fixed Location and Scale
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But whether or not the estimation of the four or five parameters

necessary to determine the correct mixture of Weibull distributions will

be easier than the estimation of the three parameters for the distribution

as defined in equation (4) has yet to be demonstrated.

It is our supposition that the extensive flexibility of the family

of distributiorigiven in (4), with its presently existing computerized

estimation techniques from truncated data, will be very useful in the

estimation of inspection periods necessary to maintain the reliability

of composite structures against failure from fatigue.
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SECTION VII

CONCLUSIONS

In preceding studies, Ref [4], the fatigue process has been analysed

during separate stages of its development. The question that was addressed

was how these separate phases of crack growth, with the stochastic variation

across the population of components and service environments, should be

combined to generate a mathematical model of the total time to failure

distribution which would agree with the data on fatigue life of metallic

components that had been collected from actual airframe structure in service.

The first supposition was that the convolution of independent variates

representing the times of transition from stage to stage could be accomplished

so that the final distribution agreed with the standardized data which had been

assembled. Dozens of trials indicated that this was probably not so.

The next suggestion was that two such stages, without the first-stage

time-to-crack initiation variate, could be convolved to obtain a distribution

agreeing with the data. Unfortunately the same negative results were obtained.

In an attempt to provide an explanation for what has been observed,

certain functions, which could be easily integrated in closed form, were

selected and the integrated results investigated. The effect of a random

initial flaw size on the toe of the distribution of total life was found

to be in agreement with the observed data.

Further investigation revealed that if the final stages of crack growth

exhibit crack deceleration,or a probability of crack arrest, this alters the

tail of the distribution of total life in a way which agrees with the

observed data. This necessitated a reinterpretation of the original
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fracture mechanical law under which the propagation factor was derived

with a consequent extension of its applicability.

These studies resulted in the adoption of a three-parameter distribtuion

of fatigue life which reflect, to a degree, the main features in each dis-

tinct phase of behavior. These three parameters can be expressed as the

scale, location and flexure of the distribution of the logarithm of life.

There are distinct advantages to the generality which is afforded by

the introduction of a third, or flexure, parameter. The principal one is

that it affords a degree of control over the tails of the distribution and

it avoids the "safe life" concept during the initial period of use of a

new component when in fact the evidence is that the phenomenon of incipient

early failures, called infant mortality, is often observed.

These were shortcomings noted in earlier studies of this family of

distributions, namely, that when all three parameters were unknown the

usual method of maximizing the likelihood could not be used to estimate

all three parameters simultaneously.

The practical consequence was that a complete determination of the

parameters governing the fatigue life must be accomplished by calculations

relying in part upon knowledge from other disciplines. Some of the dis-

posable constants which appear in the model must be related by theory to

physical measurements determined from the material or physical geometry

of the specimen. This effort has been undertaken previously for the Weibull

distribution of fatigue life for metallic components. It is now being

attempted for different types of woods in the construction of glue-laminated

beams for use in the building industry.

It is the hope that this three-parameter model coupled with the selection

of the appropriate w-transformation of the log-life will provide as much
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flexibility in the selection of a distribution of life as can be found by

mixing two Weibull distributions each having two or three parameters. Moreover

the problem of parameter estimation from limited or truncated samples for

the prediction of life in service will be easier for this w-transformed

*distribution of log-life than from the mixture of Weibull distributions.

Because of its construction in accord with fracture mechanical prin-

ciples, which should be virtually the same in any material, it is expected

that this derived distribution should have significant applicability and

success in the calculations of inspection periods to prevent fatigue failure

in structures of either metallic alloy or composite materials. Such results

must await a study of the type performed in Reference [13].
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