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itiiSTRACT are due to design errors. As the size and complexity of

software subsystems grows steadily, software relia-
The state-of-art in software validation as well as the bility has become a very serious problem and an in-

* continuing growth of the size and complexity of soft- creasingly important factor determining the overall
ware subsystems, makes extra costs paid for software system reliability.
error tolerance more than justified. A program in Complete validation, which assures the absolute cor-
which software redundancy is incorporated i.e. a pro- rectness of a program through verification of its corn-
gram in which procedures for run-time validation and plete behavioral characteristics, still remains to be in-
recovery are explicitly specified, is generally called a feasible with sizable programs.2'2 On the other hand,
failure-tolerant program. One problem in failure- more popular and pragmatic approaches aiming at Ž1
tolerant programming, which could be particularly se- partial validation with high co.t-effectiveness via test-
rious in real-time computing environments, is the pro- ing cannot, by their nature, insure the absence of er- Igram execution time increased due to incorporation rors in the program.".'13 .1

6 2 0
,2 The apparent conse- 4 '

of validation and recovery procedures. This paper quence is the current practice in which errors remain
introduces an approach to the solution, called the to exist in large programs put into operation. It is
failure-tolerant parallel programming. The essence of also this practice that makes software error tolerance

S this approach is to maximally overlap main-stream an important objective besides complete removal of
computation with redundant computation oriented for software errors at the design stage. -J

validation and recovery. Subsequently, a model sys- The .oncept of failure-tolerant computing i.e., reliable
tem architecture tailored for efficient execution of computing despite the presence of system component
failure-tolerant parallel programs is described. It is failures, was born in the very early days of electronic
of highly general and modular nature and contains a computing.-'",' Since then, kardware fault tolerance
novel memory subsystem named the duplex memory. has been a main subject of extensive investiga-
Directions of further researches on program structur- tion. 1.1.1." Redundancy is a fundamental vehicle in
ing and expansion of the model architecture are also realizing failure-tolerant computing. A majority of
indicated, previous studies have been centered around the use of

hardware redundancy and in contrast, very little stud-

INTRODUCTION ies were made on the use of software redundancy. A
restricted amount of software redundancy has been

Computing system reliability is a function of both exploited in the form of rollback and recovery defined
hardware reliability and software reliability. Hard- as follows. Let state vertor refer to a snapshot of the
ware failures occur due to physical component faults contents of all the variables of the program in execu-
(i.e., material characteristics) or design eriors. The tion. Rollback and recovery is a technique of deposit-

former source has been dominating the latter in sig- ing state vectors at several stages in the middle of
nificance. Recent advances in hardware component program execution and in case of a system failure,
technology have substantially reduced the occurrences resetting the system state by using an old state vector
of hardware faults, thus greatly improving hardware and restarting the execution from that stage. How-
reliability. On the other hand, all software failures ever, the way failure detection, state vector saving and
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recovery operations are designed antd specified has for validation and recovery can be incorporated in a
been mostly ad hoc and heuristic. It was only in recent systematic manner to any desirable extent. Here "re-
years that studies were made on systematic and cost- covery" implies not just the repetition of the execution
effective implementation of a rollback and recovery with the same object segment (which may have failed
scheme. '.'-' the validation-test due to the hardware faults or the

In case of hardware faults, rollback (possibly com- errors contained in it) but rather the provision of a
bined with system reconfiguration using red,,ndant set of "alternate" object segments and trials with one
hardware components) and re-execution with the after another until a certain alternate object segment
same program will suffice to get over the situation. passes the validation test. If all the alternatives fail,
However, such an approach does not help in case ef then either the program cannot be successfully com-
software failures. From the very nature of software pleted or a more global recovery action is incurred,
errors, software error tolerance requires more exten- provided the failed object segments are nested in an-
sive exploitation of redundancy, particularly software other object segment and the latter is associated with
redundancy which is essentially a design redundancy. a VR-segment.
The method of structuring programs in which software Importance of good structure in failure-tolerant
redundancy is explicitly incorporated, is generally programs is evident, since structuring a failure-toler-
called failure-tolerant programming. It was in recent ant program by introducing VR-segments into a con-
years that software error tolerance became a subject ventional program containing only object segments is
of serious studies and research was initiated toward accompanied by an increase in program size and com-
the development of structured failure-tolerant pro- plexity. Recognizing this importance, Randell's group
grammingtechniques.-.,1.1.7.l2 2_17 at the University of Newcastle upon Tyne, England

In the next section, a brief overview of those recent developed an experimental scheme called recovery
significant contributions is given. Then some d sirable block structuring by which validation and recovery
directions of extending the state-of-art in failure. functions can be embedded, in a well-structured form,
tolerant programming, which, w'e believe, are signifi- inside each block in programs written in block-struc-
cant in real-time computing environments, are pointed tured languages like ALGOL.-". To give some flavor
out. The following section introduces a new approach to this structuring scheme, the structure of the recov-
to failure-tolerant programming (termed failure- Pry block (i.e., the failure-tolerant block) is depicted
tolerant parallel programming) devised to be a desir. in Figure 1.
able extension of the state-of-art, and discusses the In the diagram, double vertical lines define the bod-
requirements on the system architecture oriented for ies (i.e. scopes) of recovery blocks, while single verti-

efficient execution of failure-tolerant parallel programs. cal lines define the bodies of primary or alternate ob-
The following section describes an architecture de. ject Llocks. The primary object block corresponds
veloped to satisfy the requirements discussed in the exactly to the block of the equivalent conventional
preceding section. Finally, areas of extension and flr'
ther research are discussed and then this paper is recovery block F
concluded. r acceptance test VR
BACKGROUND o

Recent research on failure-tolerant programming primary block
and software error tolerance made significant con-
tributions in the following aspects: body

First, the notion of a failure-tolerant pi'ogram was
solidified, A failure-tolerant program is essentially a alternate object block 0
self-checking and recovering program, More specifi- t
cqlly, a failure-tolerant program contains specifications
of the procedures of validatirg intermediate results at block-body
various stages during execution and recovering when
an abnormal condition is detected as a result of the
check. Thus it consists of two types of program-seg-
ments: (1) object segments specifying application- alternate object block 0
oriented computations, and (2) validation and recov- n
ery (VR-) segments, each associated with a certain [
object segment and specifying the procedures of vail- lock-body
dating the results produced by the associated object
segment and recoverirg in case of incorrect results. Figure 1-A structural model of the recovery block developed in
Within a failure-tolerant program, powerful facilities References 14 and 22
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f ALGOL-like) pro wram and is a kind of an object seg-
nment, The aceeptaw..-c test is executed on exit from an
object block to confirm that the object block has per- rwe~ory block A
formed acceptably. If confirmed, the control exits from - t LOGICAL lPRES.•O I
the recovery block. Thus the acceptance test is a kind .b,
of a VR-segment. If the result produced by an object pYtm*.f7 -toek OA1
block is determined to be unacceptable, the next Zter- : Y ,
note object block is entered and is required to perform reao, y block B
the objective operation in a different way or to perform "eepaa• LOOWWAL FMPRO4 SI
some alternate action acceptable tc the program as a priary o4et block 0.1!
whole. The acceptance test is then repeated.

The following aspects of recovery block structuring
are rather fundamental and may be found, possibly in reals object block 052
different formats, in any structured approach to the
failure-tolerant programming.

(1) The primary or alternate object blocks can con- altereat. object block
tain, nested within themwlves, further recovery blocks. -
(2) When an alternate object block needs to be en-
tered after the result of the preceding object block (a)
falls the acceptance test, the system state must be re-
stored to the one current just before entry to the tr.,iera tea'0.
primary object block. ialse address

(3) Execution of the accep.tance test upon exit from o
an obj ct block gen,:rally requires the reference to Z 4 Mtack marks 2 1

both the original values and the modified values of the T 3 sto anltry X1
variables non-local to the object block. tI * block B 6 Y2
(4) It is .not necessary that ever-: block in a block. 9 I g.
structured failure-tolerant program be a recovery ' 5k
block. 1X 4•1 o'mtrktOI o entry to •

Xrecovery *Second, a technical basit was established for reduc- block A
ing the overhead involved in saving a state vector on main•s ck cacbe stacek
entry to each object segment and resetting the system ()
state by using a saved state vector during recovery. I
The overhead exists in two forms. One is the processor Figure 2-(a) A program structured by the recovery block
time spent for those activities and the other is the structuring (1)) A snapshot of the recursive cache during
store space occupied by saved state vectors. A useful execution of (a)
property which can be adlvantageously exploited for
overhead r.duction is that the variables local to the ob-
ject segment are irrelevant to the recovery and in many Figure 2 (a) shows a failure-tolerant program saruc-
cases, only a few of tile non-local variables are modified tured by the recovery block structuring scheme. Fig-
by the object segment. ure 2 (b) shows a snaps')ot of the recuri'ive cache taken

Based on this, Randell's group developed it scheme when primary object block 0,,, is in the middle of its
for state vector saving and system state resetting, execution. There are two stacks, the main stack and
called a rccur.sive cache mechanism, to support execu- the cache stack. The cache stack is also divided into
tion of programs structured by the scheme of recovery regions, one for each nested recovery block in "active"

block structuring.1' The essence of this scheme is to state. The top region of the cache stack in Figule 2(b)
save the original value of each non-local variable to- contains previous values of non-local variables together
gether with its name (i.e., its logical address) right with their names i.e., Y2, X1, X2, which have been
before the variable is modified for the first time in a modified by execution of the current obiect block O0,.
new object block. Thus state vectors are saved in cam- The flags attached to those non-local variables in the
pact forms. It is apparently necessary to detect, at moin stack are set accordingly. Similarly, the bottom
run-time, whether an assignment to a non-local varl- region of the cache stack contains the previous "alue
a6 le is the first to have been made to that variable of non-local variable X1 which had been modified by
within the current block. This capability is provided execution of object block OA, before 0,,, was entered.
by the flag attached to each non-local variable. Again, If the result produced by execution of 0,,. fails the ac-
to give some flavor to this mechanism, an example of ceptance test (LOGICAL EXPRESSION 2), then the
the recursive cache is shown in Figure 2. top region of the cache stack can be used to reset the

----------------..-. ...... . .. ..... -
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content of the main stack to the one current before than always letting the sys.tem select the next alternate
entry to recovery block B. If it passes the test, the top object segment randomly or in the order alternates •
region is merged intc, the bottom region of the cache are located ii. the program text. It may also be desir- .4
htack so that the result will contain previous values of able to immediately revert to a globai recovery if a
tho.ie variables which are non-local to obiect block 0 A, certain erroneous condition is detected by execution of
and have been modified since 0,, was entered. Thus a VR-segment, instead of retrying with :,,- alternate.
th,. result will be a single region containing (9, XI) That is. allowance of more flexible s.ructu in failure-
and (2. X2). Flag•s in the main stack are also adjusted tolerant programs may be desirable. Furttiermore, our
such that only flags of XI and X2 be set. Therefore, the approach toward the first desirable extension men-
combination of the main and cache stacks contain in- tioned above i.e., execution of VR-segments with mini-
formation on the basis of which several old state vec- mal increase in the overall program execution time,
tors can be reconstructed. favors more flexibility in structuring faziure-tolerant

This is perhaps an oversimplified account of recent programs. This will become evident in the next section.
developments. Yet it is intended to provide all the es-
sential backgrounds for clarifying main departures of CONCEPT OF FAILURE-TOLERANT PARALLEL
our works presented in the rest of this paper. For PROGRAMMING AND REQUIREMENTS ONPR L

more informaition on the schemes (lescribed in this see- PROGRA ORING SYSTEM ENT URE

ion, readers are of course referred to their original
reports. .Our main concern in this paper is with the first de-

sirable extennion mentioaed in the preceding section,
DESIRABI.E EXTENSIONS OF THE STATE-OF- that is, incorporation of VR-segynents with miniinal

ART IN FAILURE-TOLERANT PROGRAMMING increase of program execution time.
The fundamental approach we have adopted is to

On the basis of recent works in failure-tolerant pro- maximally overlap execution of object segments with
gramming, particularly those introduced in the pre- execution of VR-segments. Since the VR-segment spe-
ceding section, various extensions can be clearly envi- cifies manipulation on the results produced by its asso-
sioned. Among many desirable extensions, the following ciated object segment, dependency of the former for
ones are considered to be of great significance, its initiation en the completion of the latter is inherent.

First, one problum in failure-tolerant programming, However, it is possible to execute the VR-segment as-
which could be particularly serious in real-time com- sociated with an object segment concurrently With the
puting environment.;, is the progRam execution time successor object segment(s). Figure 3 illustrates this 4
increase due to incorporation of VR-segments. In most concept. There VR-segment VRY can be initiated only
of the previous approaches including the recovery after completion of the correspondent object segment
block structuring and recursive cache schemes intro- 0.. and VR-segment VR, but it may be executed con-
duced in the preceding section, validation and saving currently with object segments 0:,, 0,, etc. In an ideal
of state vectors fully contribute to the increase of the situation where execution of VR-segments is fully
program execution time. Consequently, when any non- overlapped with execution of object segments, the
trivial validation is employed or large numbers of amount of increase in program execution time will be
non-local variables are modified during execution of the time required for execution of the last VR-segment
object segments, the program execution time, even in (e.g., VR,, in Figure 3) since it is the only VR-segment
the case of normal failure-free operation, could very which cannot be executed in overlap with object
well exceed the tolerable limit in real-time applica- segments.
tions. It is indeed expected that the VR-segment will A failure-tolerant program in which computational
be frequently a quite complex program-segment. Even parallelism, especially parallelism between application-
in the recovery block structuring scheme in which only oriented computations and redundant computat'ons for
a restricted form of a VR-segment i.e. a logical ex- validation and recovery, is explicitly indicated, is called
pression is allowed for the sake of reducing error- a failure-tolerant parallel program, That is, the main
proneness of the VR-segment, a provision has been type of parallelism which characterizes a failure-toler-
made to a!low pr)ocedure calls within acceptance tests ant parallel program is the one existent between object
(i.e., logical exuressions) ." segments and VR-segments.

Second, the rationale underlying the restriction of This approach requires a new method of structuring
the acceptance test to a logical expression is considered a failure-tolerant program. The major departure of a
a perfectly legitimate one. Yet the logical expression newly required structuring method from the previously
is considered an excessively restrictive form of a VR- developed ones is in specification of the control struc.
segment in many environments, For instance, it may ture among program-segments. In addition to inherent
be desirable to explicitly specify in the VR-segment dependency of VR-segments on their correspondent ob-
which alternate object segment, among multiple alter- ject segments, dependency of object segments on VR-
nates, is to be tried next in each case of recovery, rather segments may also be specified in a failure-tolerant
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Is".r Milnapshilt of all the variables appearing in object seg-
ments, not inclu'ling local variables defined in VR1-
segments, taken at one moment. F'urthermore, the

01 VtR-segment requiies tihe ilnpt state vector undeOstroyed
until it no longer needs to examin,- it, while tbe suc-
cessor object segment, by nature, continuously changes
it into the tup-to-(haie one. It is thus necessary to cre-

Sspectifyingl ate it "Cnl)y-" of the state vector current at the end of

oriientedn the executiol' of an object segment for exclusive use
0 J computatiuons by the VR-processor executing the associated VR-

T,.secti•n segment. Here the process of creating a copy must
spl&tifng cause no or little delay in executing object segments. I
ad recorery The store space containing copies of state vectors must
Operations VS4  also he minimized. if either execution time or store

Vit, space exceeds the tolerable limit, the objective of fail-
eire-tolerant parallel programming is defeated. This re-

00.-0 object segment quires a new store management scheme substantially
Vi "chO stally different from the previously deveioped ones. This

-WVct segment and bev.ral point will become clearer when we propose one suitable
M alternates. schenme in the next section.:ýV Vit-segment I :

_ :Third, if execution of VR-segments lags much be-

([RTntNd hind execution of ,bjeet segments, there will be accumu-
e.g. VR, can be Initiated only after completion iO2and VaV hut lated a large number of unprocessed copies of state

it may be executed concurrently with O, O .4 -vectors. Thlis when all the available store space runs
out, the object proce'ssor must be suspended until the
VIt-processor catches up. In order to avoid t, is unde-

Figur, 3-A itnphl example of a failure-toh,:'ant ialhla sirable situation, execution of VR-segments .. i-f 'inI) l'O I';'HI sl ýe dy, .

liara!lel pogram, An example of such a situation is

when a certain object segment specifies t critical op- A MODEL ARCHITECTURE SUPPORTING
eration such as ordering an emergency action, erasing FAILURE-TOLERANT PARALLEL
a secret file, etc. In such a case it is d'&sirablh to sus- PROGRAMMING .. 1
pend the execution of the object segment until all the
VR-segments corresponding to its predecessor object In this section we describe a system architecture
segments have been verified. Thus critical operations oriented for efficient execution of failure-tolerant par-
can be controlled to occur reliably. This clear!v favors, allel programs. We call it a model architecture since it
if not requires, the second desirable extension discussed is of highly general nature and thus is specified at an
in the preceding section i.e., more flexibility in struc- abstract level. Yet it is expected that elaboration of
turing VR-segments and overall failure-tolerant pro- the architecture into a specific working system will S
grams. Yet such flexibility can be obtained vithout encounter no new logical problems of fundamental
sacrificing most desirable structuring principles (or nature.
strategies) unde'lying the developed structuring
schemes, including the recovery block structuring
scheme. This aspect will be discussed later. The store moag'ment scheme

On the other hand, the failure-tolerant parallel pro..
gramming imposes the following requirements on the Potential power of failure-tolerant parallel pro-
supporting system architecture i.e., the architecture of grams cannot be realized without accompanying the
a system capable of efficient execution of failure-toler- additional cost of the supporting system architecture.

ant parallel programs. The additional cost is paid in the forms of both proc-
First and the most obvious of all, the system must essor redundancy and store redundancy. Since the ob-

contain at least two processors, one for execution of ject processor runs concurrently with the VR-proces-
)bject segments, called the objt~ct p-ocessor and the sor, memory conflicts must be carefully avoided. This

other for execution of VR-segnents, called the VR- rules out the feasibility of having a single state vector
p,'ocessor, or its portion shared by both processors. Thus each

Second, the state vector at the comlAetion of an ob- processor owns a region of the store during execution
ject segment is an input data not or,ly to the successor of a failure-tolerant parallel program.
object segment but also to the asso'ciated VR-segment. The region of the store used by the object processor
T,: the rest of thin paper, a state vector refers to a is called the main, working store, while the region of

•,•,-• i;,:a ,• "•rh•.Lt.ad ,;2, • .••:i•,¢• •'•,•,h•3••;. .:',: .: x•. .•, ,..i::z ..,. .•. ". .: ........- .. .... ,.'..:...
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the store used by the YR-processor is called the VR- Ul BIN auocst etore space for O & VI
store. The VR-store contains copies of state vectors 01 RGIN 0 A 2

including the up-to-date one plus possibly more than ,, :(!!3015 O At-

one old one. This, of course, does not mean that the -.. 1'7
VR-store contains complete duplicates of several state .. 0. " 04o:R 4

vectors. Let S,, Sl.,, - - - --- , 81. denote a (chronologi- R3  01
cal) sequence of state vectors that can be reconstructed CU"D- ".D G ND

from the content of the VR-store. Then the VR-store E- ""°:, s, tN " Ot ND 4

actually contains one complete copy of St (i.e., the old- 'END . " "
est reconstructable one) and only the differences be- wR :R BEGIN . ..... ""..
tween pairs of adjacent state vectors in the sequence D -
i.e. Si,-Ss-, S-S,------ S.j- S.. vR5 :/sBEN *Each"O. :BrGIN --- END,

rerstI ILpiwr object seelimMore specifically, as the object processor executes E plus several altermto object segmunta.m

each object segment, it produces the execution image . .) T.
which consists of the values of variables assigned dur-
ing execution of that object segment. If a variable is
assigned several times during execution of the object .. X. t-.. •('•
segment, only the latest assigned value is contained in L iL L0 IoJ
the execution image. The execution image produced At 01 oBEGIN O. s ot O4-BEGIN 0 -BEGIN Alter O$-ENO 5

on completion of an object segment represents the dif-
ference between the state vector current right before local var. - _ _oa .r--. -- c. . i
entry to the object segment and the up-to-date state -a........
vector (i.e. the one current on completion of the object VItstoresePentl* I

segment). Each execution image is stored in a segment "OI.y.r. . ".ca,•r
of the VR-store called a VR-store-segment, Each exe- j o oc r

cution image is examined by the VR-processor to de- (c)
termine the acceptability of the result produced by
execution of the object segment. !-

The execution image of an object segment consists of Figure 4-(a) A failure-tolerant parallel program (b) Snap- "

values of both local variables and non-local variables, shots of the mail working store during execution (c) A
Thus each VR-store-segment consists of two sections, snapshot of the VR-store during execution

one for local variables and the other for non-local varia-
bles. On entry to each object segment, memory space
is allocated for the segment of the main working store consists of two sections, one for local variables and the
containing the set of local variables3 defined within the other for a table holding newly assigned values of non- -
object segment. At that time, the same size of memory local variables and their logical addresses. Each VR-
space is also allocated for the section of the VR-store- store-segment is created on entry of the object proces-
segment containing (a copy of) the set of local vari- sor to the correspondent object segment.
ables. However, store space for non-local variables is At the beginning of VR-segment VR, VR-store-
not entirely duplicatea. Instead, the section of the segment 3 contains the execution image of object seg-
execution image containing non-local variables is writ- ment 0, and the object processor has probably entered
ten in the form of a table in which each entry consists into 0,. The execution image in VR-store-segment 3 is
of the logical address and the new value of a non-local examined by execution of VR,. When it has been veri-
variable, The idea is to take advantage of the useful fled or judged to be acceptable, the local variable sec-
property that in many cases, only a few of the non- tion is discarded and the non-local variable section is
local variables are modified by an object segment, while merged into VR-store-segment 2. If two different val-
the total number of non-local variables defined may be ues of the same variable were contained in both VR-
very large. Thus the table representation leads to a store-segments 3 and 2, the value in VR-store-segment
highly compact form of the non-local variable section 2 is the older one and replaced by the value in VR-
of the execution image. store-segment 3, At the beginning of VR,, VR-stoi a-

As a simple example, consider a block-structured segment 3 does not exist. Then it is no longer possibl
program augmented with VR-segments in Figure 4 (a). to reconstruct the state vector which was current right
Figure 4(b) shows snapshots of the main working before entry to 0:,. There will be no need to recon-
store i.e. the stack used during execution of object seg- struct that state vector since VR, has been successfully
metits in the program. In Figure 4(c) VR-store- completed.
segment 1 (or 2, 3, 4, 5) is used to contain the execu. Similarly, upon successful completion of VRg, the
tion image of object segment 0, (or 0,, 0,, 0,, 0&. values of non-local variables in VR-stoie-segment 2 are
Each VR-store-segment except VR-store-segment 1 absorbed into VR-store-segment 1. At the beginning

S*1ii



Failure-Tolerant Parallel Programming 419

of VR,, VR-store-segments 2, 3 and 4 do not exist. age into VR-store.segrment 1 which already contains

Then the state vector which was current at the initia- the execution image of the upper section. Some values
tion of 02 can no longer be rec.)nstructed. in VR-store-segment 1 are now the ones assigned by

Here one subtle problem Is noteworthy. Consider a execution of the upper section, while others are the

simple program in Figure 5(a). Since there are two ones assigned by execution of the lower section. When
object segments (thus two VR-segments), there are the VR-processor has sulccessfully completed VR,, and
two VR-store-segments (1 and 3). The body of object needs to merge the verified execution image into VR-
segment 1 consists of the upper section, 0, and the store-segment 1, it is not possible to tell for each vari-
lower section. During execution of the upper section, able whether the value in VR-store-segment 1 is the
the execution image will be stored in VR-store-segment older one than the one ir VR-store-segment 3.
1. At the completion of 0,,, VR-store-segr ,nt 3 con- This problem can be resolved by imposing an addi-
tains the execution image and the VR-proc ssor may tional constraint on program structuring. That is, the
start examining it. Then the object processor executes upper section and the lower section of 0, in Figure
the lower section of 0, and it stores the execution im- 5(a) must be changed into 0. and 0., respectively,

nested within 0,. This results in Figure 5(c). Then
there will be additional VR-store-segments (2 and 4)01 :-.BEGIN created during execution, and the above problem disap-
pears. ThereZore, the constraint is that either each ob-

03 ject segment contains no other object segments nested
END in it or its entire body must be composed of other object

- - -segments nested in it. This constraint is incorporated
VR$ only for secure allocation of the VR-store. Thus the

3  programmer is not required to prepare new VR-seg- I
*END ments VR2 and VR4.

If there are no explicit VR-segments associated with
VR some object segments, the system will insert dummy

VR-segments, Or a variation of the above solution is
to make the system responsible for restructuring un-

(a) constrained programs (e.g., Figure 5(a)) into the
ones satisfying the constraint (e.g., Figure 5(c)),
rather than imposiig the constraint on the program-
mer. In any case, the solution does not appear to be a

local var. costly one.

loca var----------- - local..
oa rnnocal vr The 'model system structure

VR-store-segment I VR-store-segment 3
The store management scheme described above will

(b) work (almost) perfectly if execution images can be
created in the VR-store without causing any delay in
execution of object segn"ents. As far as the local vari-

0O1 BEGIN able section of the VR-store is concerned, this condi-
0: rBEGIN tion can be met without employing unconventionalhardware components. Since the same size of the store..

-!-END segment for local variables is allocated in both the main
VR "I working store and the VR-store, the only requirement

is to set proper base addresses for both store-segments
END and, for each assignment, write the same value in two

- :i:"IND locations of the same relative address, one in the main
3 4 working store and the other in the VE-store.

However, the situation is different in creating the
- [ EN non-local variable section of the execution image. As

VR4 -" ND described before, the non-local variable section is writ-
VR ten in the form of a table. Thus whenever a non-local

YR1  variable is assigned a new value during execution of an
(c) object segment, the value is written into the corre-

Figure 56-(a) An unconstrained program (b) A snapshot of spondent location in the main working store and at the
the VR-store (c) An equivalent program satisfying the same time, the value together with the logical address,

constraint is written into ai, entry of a table in the VR-store.

S~.*~*~i** LIZ
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If the assignment to a non-local variable is the first 1.. 0 - /o e S
to have been made to that variable within the current
object segment, then the new value and the logical ad-
dress of that variable are written into the next avail.
able (empty) entry of the table in the VR-store, If It ojc ~ -e" sevs
13 not the first, there are two choices. One is to write spare,
in the same manner as above i.e. write into a new entry S3@Ctejl m etc
of the table. The other is to locate the entry of the
table containing the previous value and the logical ad-
dress of the non-local variable and then replace the rsad/writ.

previous value with the newly assigned one. After all, wite

only the latest assigned values of variables need to be AcerAm

contained in the execution image. The ft -mer approach (map)
leads to the larger table-size than the one res~lting
from the latter approach. In addition, when or .efore
the VR-processor executes the VR-segment to validate
the table, it must discard the entry (of the table) con-
taining the older value of each variable for which there Eili .......
is another entry containing the later assigned value, L

The latter approach leads to the compact table but it Location-addressed Lomeluon-address'd Content-addrissablem e m o r y m o d u l e sm e o y m e s m o r m d u s
requires a special hardware support in order not to mmory modes memory modul.
degrade the performance of the object processor. The

working Sture forspecial hardware requirement can be met by incorpk OezeuUon of object

ration of the content-addressable (i.e., associative) mofet5 . _ __.__

memory module whose access time closely matches the ]

one of the location-addressed memory module used in

the system. In addition, incorporation of such a mem- 1/o processors
ory module significantly enhances the performance of
* the YR-pr icessor in executing YR-segments. In view Figure 6--A system architecture based on multiple CP's and

of the decreasing trend of the hardware cost and the the duplex memory
performance advantage, the latter approach is con-

sidered favorable.
It is also necessary to attach a tag to the logical ad- contained in content-addressable memory modules.

dress of each variable which indicates whether the That is, whenever the object processor Issues a "write"
Svariable is a local one or a non-local one. command, the value is written into two locations si-

The structure of the model system in which all the multaneously, one in the main working store and the
above decisions are reflected, is depicted in Figure 6. other in the VR-store. The latter location is in a loca-
The model system contains multiple central processors tion-addressed memory module if the tag attached to
(CP's) and the memory subsystem named tVe duplex its logical address indicates "local" or in a content-
memory, addressable memory module if the tag indicates "non-

Each CP may furction as an object processor, a VR- local."
processor, a supervisory processor or a spare at one The VR-processor never accesses the main workir.g
time. Employment of general purpose CP's is moti- store except during recovery. The object processor
vated mainly by the consideration of thi flexibility in never reads from the VR-store. It is a natural property
system reconfiguration. Yet this is not an absolute ne- of this duplex memory that the partition of location-
cessity and can be compromised for employment of addressed memory modules consisting of two disjoint
processors fixed for a specific function if other factors sets, (one providing the main working store and the
such as cost and performance dictate so. other providing thE local variable section of the VR-

"The duplex memory contains two types of memory store) may change dynamically.
modules, location-addressed memory modules and con- There is another important reason for employing
tent-addressable memory modules. Location-addressed content-addressable memory modules. Execution of a
memory modules are further divided into two sets. One VR-segment generally involves not onmy examination
set of modules provides the main working store for the of the correspondent execution image but also refer-
object procesror. The other set, together with the set ences to other ancestor VR-store-segments i.e., ones
of content-addressable memory modules, provides the created prior to the VR-store-segment containing the
VR-store. Thus the local variable section of each exe- correspondent execution image. For instance, when
cution image is ccntained in location-addressed mene- the VR-processor executes VR-segment VR4, in Figure
ory module3, while the non-local variable section is 4, it examines the content of the correspondent VR-



FailtiiwwTolmrnt Parallel Programnung 421

tore-segment 4 and it may access ancestor VR-store- neomaslv accessed. The Iation-tddriesm m wmor
segments I and 2. Refelenceb to a Oeis VR-store- module is the one addressed by a portion of the logkal
sgrments are for obtaining the previous values of non- address of the variable. The a-oetent-addresaabi em-
local variables (i.e., variables non-local to the object ory modules are the ones containing the non-local vari.
Peg.mett amseiated with the VR-segrment currently in able sections of theie ancestor VR-Storegiments
execution). which are descendants of the one whose IKal variable

It is frequently required for each non-local variable wection is mapped to the above locattkn-addreeseG meim-
to obtain the latest assigned value amoner all of it.s ory module. Selection of the latest assigned value
valuee contained in ancestor VFK-store-segmnents. The among all the values of the variable retrieved from

* desired value may exist in the local variable section of those memory modules i. also a funlion of tke duplex
an ancestor V-store-regmrent. in this case, the vari. memory. With this duplex memory, the VR-procesaor
able is defined within the object %egfmnt which created can read or update any value contained in the V'R-stom
the ancestor VR-store-segment. The desired location with the ameant of time close to one ,ontent-address-
(which is in a location-addressed memory module) is a
exactly the one to which the logical address of the Rbe m or sycle.
variable is mapped, and thus it can be directly accessed. Resettin the system state when an execution imat e

On the other hand, the desired value may exist in the is evaluated to be unacceptable, is also speedy with this
non-local variable section of an ancestor VR-s.ore- duplex mes ory. It is becauh e the revotting process in-
segment. For instance, assume in Figure 4 that vari- volves basically fetching the previous value of each
able Z is defined in object segment 0, initialized with non.local variable which has been assigned another

"100," assigned "200" by execution of 0, and assigned value •..nce the object proceusor entered into the object
"300" by execution of 0,. Let us also -ssume that the segment whose execution image turned out to be un-
VR-proceasor is currently executing VR. and it needs acceptable, and then storing it into the location of the
to obtain the value of Z assigned the latest before the variable in the main working store. Each non-local
object processor entered into 0,. The desired value variable which needs to be restored in the main work-

* is "200" and it is contained in the non-local variable ing store to its previous value is identified by examin-
section of VR-store-segment 2 since VR, has riready ing the non-local variable sections of the execution
been suc-ne.asftillv completed. The non-local variable images produced since the object processor entered
section of V1R-store-segment 2 needs to be searched in into the object segment whose execution image was
order to get the desired value "200." The problem here rejected.
is a little complex since if Z has not been assigned a Local variable sections of VR.stor.eepmenta are
value during exe&tition of O, the desired value is "100" mapped to location-addressed memory modules in the
contained in the loca; variable section of VR-store- same manner as the main w,)rking store is mapped to
segment 1. It i, not known in advance which VR- ore. location.addressed memory modules. For some VR-
segment, between I ano 2, contains the desired value. segments, each of their ncn-local variable sections may
-It is thus ncessary to check VR-store-segment 2 first be mapped to an independent content-addressable
and if its non-local variable section does not contain memory module. For others, their non-local variable
Z, then the desired value is read from the location, in sections may co-exist inside the common content-
the local variable section of VR-store-serment 1, to addressable memory module, provided sme form of an
which the logical address of Z is mapped. identification code is assigned to each section. The

In general, it is necessary to search ancestor VR- high speed requirement limits the size of each content-
store-segments in the increasing order of their ages, addressable memory module to a small one. It may
until either an ancestor containing the variable in its sometimes be necessary to use more than one content-

non-local variable section is found or the ancestor ad- addressable memory module to hold the non-local
dressed by a portion of the logical addresses of the variable section of a VR-store-segment.
variable is reached. Heie employment of content- It is believed that this architecturm satisfactorily
aadressable memory modules for non-local variable meets all the requirements mentioned before. Creating
sections of execution images 1.' the key to the high a copy of a state vector in this system does not Incur
speed of search It enables simultaneous examination any delay in processing object segments. The memory
of non-local variable sections of all the "ancestor VR- interference between the CP's executing object seg-
store-segments" which are "descendants" of the one ments and VR-segments is absent or negligible, Em-
containing the variable in its local variable scction. ployment of multiple content- addressable memory mod-
When the VR-processor ,Aues a command for fetching ules is believed to be an effective means of achieving
the latest assigned value of a non-local variable among the goals of low average access time and high store
its values contained in ancestor VR-store-segments, one utilization. However, successful implementation of a
location-addressed memory -nodule and possibly sev- system requires careful selection of design parameters
eral content-addressable memory modules are simulta- concerning memory management.
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The ttreceing sections dealt with the coucept of e.cin•st•om• t ofSuesoers, eteo "t
failure-tolerant parallel programming and effective 03
&ulions to must fundamental problems involved in rate object .gment
realizing its potential pt.wer. The model architecture 2 o
dtlsoed for efficient execution of failure-tolerant paral. tolerantsegrment"

1#1 programs was specified at a higl.ly abstract level in
order to preserve simplicity and generality. It incor- ternte object segnent
porated a minimal amount of facility. Naturally, the on
model archAteture can be !expanded in many directions
to lpcaess additimal catpmbilities by incorporating VRe'gment VR tvaudtion. @ysteni reconfiguration
various proven ocraepts and schemes. In addttior,, in " 2_ Va and recovery, state vector book-
order to put failhre-tolerant parallel programming in to alternates, estc
general use, various program design an6 engineering
tools need to be developed. Among numerous desirable

Figure 7-A structural model of a failure-tolerant segmnent
extensions and research problems, only a few of the
representative onvs are listed below.

First, development of a language supporting failure- dency on the completion of VR-segnients belonging to
tolerant parallel programming is an immediate require- other failure-tolerant segments. It specifies the suc-
ment. Such a language should contain more facilities cessor failure-tolerant segments i.e. the ones whose
for control structuring and data specification than the initiation is dependent upon successful completion of
ones In conventional programming languages, No use- the VR-segment. 7t also contains the declaration of the
fil pri:iciples employed in other failure-tolerant pro- initial "execution priorities" of alternate object seg-
gram structuring schemes such as recovery block ments. It may also specify the types of abnormal con-
structuring," need to be rejected in structuring failure. ditions which may be recognized by the system during
tolerant parallel programs. In view of the strong rela- execution of object segments and the actions to be
tionship between each object segment and the asso- taken on occurrence of each condition e.g., "enter into
ciated VR-segment, it is alraiost an indispensable the VR-segmerit," "record the occurrence and con-
requirement to put each piir of segments in a corn- tinue," etc. The VR-iegment specifes the procedures
partment in the program text. Such a compartment is of validation, VR-store management, and recovery in-
called a failure-tolerart segment. More specifically, eluding system reconfiguration and assignment of exe-
each VR-segment is tirectly dependent upon only one cution priorAies to alternate object segments. The
object segment in a fadlure-tolerant parallel program. primary or alternate object segments can contain,
Furthermore, the dependency structure among VR- nested within themselves, further failure-tolerant seg-
segments is elways the same as the dependency struc- ments. However, the structuring rule illustrated in
ture &mong object segments. The latter dictates the Figure 5 should become a part of the detknition of the
former. Thus the dependency among VR-segments as failure-tolerant segment.
well as the dependency of a VR-segment on the asso- Therefore, pragramming of the segment-head re-
ciated object segment, need not be explicitly specified quires some special language primitives including
and should become a part of the definition of the JOIN-like primitive" used for 4pecifying the pre-
failure-tolerant segment. requisite cond:tion for entry, I ORK-like primitive9

On the other hand, each object segment may be for specifying the successurs, ones for specifying types
dependent on zero or more VR-segments vwhich belong of abnormal conditions and appropriate trer.tments,
to other failure-tolerant segments. This type of depen- etc. Programming of the VR-segment also requires
dency needs to be explicitly specified. This and other some special language p-'imitives such as ones for
considerations mentioned in the previous section on referring to the old valih. .f variables, ones for sys-
desirable extensions of the state-of-art in failure- tern reconfiguration, etc. Development of a language
tolerant programming, led to the formulation of the containing all the facilidies mentioned above is urgent.
model of the failure-tolerant segment depicted in Fig- Second, if parallelism among object segments is to be
ure 7. exploited, the model architecture and the program

The model is a generalization of the model of the structuring scheme described so far needs to be general-
recovery block depicted In Figure 1. It consists of the ized accordingly. Such a generalization is expected to
Rcgment-head, the primary object segment, seve' al be a gigantic task requiring a great deal of research.
alternate object segments and the VR-segment. I1 he Third, it is often necessary to periodically save veri-
segment-head specifies the prerequisite condition for fled state vectors into the file store either as the spon-
entry into the (failure-tolerant) segment e.g., depen- taneous action of the system or as controlled by the

'•~~~~~~~~~ ~~~ ~ ~~~~~~~ ... ... ..' .•, ..a ;- ..... .. •• •••' ''t•"-",•-• ••u"" •";'
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...~he prog-am execution time increased due to incorporation of'validation

.and recovery procedures. This paper introduces an approach to the

solution, .called the failure -tolerant parallel programming. The essence

-of this approach is to maximally overlap main-stream computation with .4

redundant computation oriented for validation and recovery. Subsequently

a model system architecture tailored for efficient execution of failure-

tolerant parallel programs is described. It is of highly general and

mod ular nature and conta ins a novel memory subsystem named the

duplex memory. Directions of further researche.s on program

structuring an xason of the model architecture are also indicated.
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