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ABSTRACT

The state-of-art in software validation as well as the
continuing growth of the size and complexity of soft-
ware subsystems, makes extra costs paid for software
error tolerance more than justified. A program in
which software redundancy is incorporsated i.e, a pro-
gram in which procedures for run-time validation and
recovery are explicitly specified, is generally called a
failure-tolerant program. One problem in failure-
tolerant programming, which could be particularly se-
rious in real-time computing environments, is the pro-
gram execution time increased due to incorporation
of validation and recovery procedures. This paper
introduces an approach to the solution, called the
failure-tolerant parallel programming. The essence of
this approach is to maximally overlap main-stream
computation with redundant computation oriented for
validation and recovery. Subsequently, a model sys-
tem architecture tailored for efficient execution of
failure-tolerant parallel programs is described. It is
of highly general and modular nature and contains a
novel memory subsystem named the duplex memory.
Directions of further researches on program structur-
ing and expansion of the model architecture are also
indicated.

INTRODUCTION

Computing gystem reliability is a function of both
hardware reliability and software reliability. Hard-
ware failures occur due to physical component faults
(i.e., material characteristics) or design errors. The
former source has been dominating the latter in sig-
nificance. Recent advances in hardware component
technology have substantially reduced the occurrcuces
of hardware faults, thus greatly improving hardware
reliability. On the other hand, all software failures
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are due to design errors. As the size and complexity of
software subsystems grows steadily, software relia-
bility has become a very serious problem and an in-
creasingly important factor determining the overall
system reliability.

Complete validation, which assures the absolute cor-
rectness of a program through verification of its com-
plete behavioral characteristics, still remains to be in-
feasible with sizable programs.®!* On the other hand,
more popular and pragmatic approaches aiming at
partial validation with high cost-effectiveness via test-
ing cannot, by their nature, insure the absence of er-
rors in the program/°i%162%21 The apparent conse-
quence is the current practice in which errors remain
to exist in large programs put into operation. It is
also this practice that makes software error tolerance
an important objective besices complete removal of
software errors at the design stage.

The concept of failure-tolerant computing i.e., reliable
computing despite the presence of system component
failures, was born in the very early days of electronic
compuiing.’** Since then, kardware fault tolerance
has been a main subject of extensive investiga-
tion.\*72  Redundancy is a fundamental vehicle in
realizing failure-tolerant computing, A majority of
previous studies have been centered around the use of
hardware redundancy and in contrast, very little stud.
jes were made on the use of software redundancy. A
restricted amount of software redundancy has been
exploited in the form of rollback and recovery defined
as follows. Let state vector refer to a snapshot of the
contents of all the variables of the program in execu-
tion. Rollback and recovery is a technique of deposit-
ing state vectors at several stages in the middle of
program execution and in case of a system failure,
resetting the system state by using an old state vector
and restarting the execution from that stage, How-
ever, the way failure detection, state vector saving and

BN Vo d it

B R A L ORI A, Y YA F L R RTAR, V.7

e




EX T T TR A S S AR T

PRI

BLY itk iR e PSR okt S LR e $60, 0 0NN

414 National Computer Conference, 1976

recovery operations are designed and specified has
been mostly ad hoc and heuristic. It was anly in recent
years that studies were made on systematic and cost-
effective implementation of a rollback and recovery
scheme."-"-"-"'-"'-‘-':‘-'-"

In case of hardware faults, rollback (possibly com-
bined with system reconfiguration using redvndant
hardware components) and re-execution with the
same program will suffice to get over the situation.
However, such an approach does not help in case cf
software failures. From the very nature of software
errors, software error tolerance requires more exten-
give exploitation of redundancy, particularly software
redundancy which is essentially a design redundancy.
The method of structuring programs in which softwara
redundancy is explicitly incorporated, is generally
called fatlure-tolerant programming. It was in recent
years that software error tolerance became a subject
of serious studies and research was initiated toward
the development of structured <failure-tolerant pro-
gramming techniques,*'1.1117.83.47

In the next section, a brief overview of those recent
significant contributions is given. Then some dt sirable
directions of extending the state-of-art in failure-
tolerant programming, which, we believe, are signifi-
cant in real-time computing environments, are pointed
out. The following section introduces a new approach
to failure-tolerant programming (termed failure-
tolerant parallel programming) devised to be a desir-
able extensicn of the state-of-art, and discusses the
requirements on the system architecture oriented for
efficient execution of failure-tolerant parallel programs,
The following section describes an architecture de-
veloped to satisfy the requiremenis discussed in the
preceding section, Finally, areas of extension and fi.
ther research are discussed and then this paper is
concluded.

BACKGROUND

Recent research on failure-tolerant programming
and software error tolerance made significant con-
tributions in the following aspects:

Firat, the notion of a failure-tolerant program was
solidified, A failure-tolerant program is essentially a
self-checking and recovering program, More specifi-
cully, a failure-tolerant program contains specifications
of the procedures of validating intermediate results at
various stages during execution and recovering when
an abnormal condition is detected as a result of the
check, Thus it consists of two types of program-seg-
ments: (1) object segments specifying application-
oriented computations, and (2) validation and recov-
ery (VR-) segments, each associated with a certain
object segment and specifying the procedures of vali-
dating the results produced by the associated object
segment and recoverirg in case of incorrect results.
Within a failure-tolerant program, powerful facilities
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for validation and recovery can be incorporated in a
systematic manner to any desirable extent. Here “re-
covery” implies not just the repetition of the execution
with the same object segment (which may have failed
the validation-test due to the nardware faults or the
errors coniained in it) but rather the provision of a
set of “alternate” object segments and trials with one
after another until a certain ulternate object segment
passes the validation test. If all the alternatives fail,
then either the program cannot be successfully com-
pleted or a more global recovery action is incurred,
provided the failed object segments are nested in an-
other object segment and the latter is associated with
a4 VR-segment,

Importance of good structure in failure-tolerant
programs is evident, since structuring a failure-toler-
ant program by introducing VR-segments into a con-
ventional program containing only object segments is
accompanied by an increase in program size and com-
plexity. Recognizing this importance, Randell’'s group
at the University of Newcastle upon Tyne, England
developed an experimental scheme called recovery
block structuring by which validation and recovery
functions can be embedded, in a well-structured form,
inside each block in programs written in block-struc-
tured languages like ALGOL.'*** To give some flavor
to this structuring scheme, the structure of the recov-
ery block (i.e,, the failure-tolerant block) is depicted
in Figure 1.

In the diagram, double vertica' lines define the bod-
ies (i.e. scopes) of recovery blocks, while single verti-
cal lines define the bodies of primary or alternate ob-
jeet Llocks. The primary object block corresponds
exactly to the block of the equivalent conventional

recovery block F
™ acceptance test VR
primary object block O
block-body
alternate object block O
block-body

-

alternate object block On
block-body

1

2

Figure 1—A structural model of the recovery block developed in
References 14 and 22
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cases, only a few of the non-local variables are modified
by the object segment.

Based on this, Randell's group developed a scheme
for state vector saving and system state resetting,
called a reeursive caciie mechanisn, to support execu-
tion of programs structured by the scheme of recovery
block structuring.'* The essence of thia scheme is to
save the original value of each non-local variable to-
gether with its name (i.e., its logical address) right
before the variable is modified for the first time in a
new object block. Thus state vectors are saved in com-
pact forms. It is apparently necesaary to detect, at
run-time, whether an assignment to a non-local vari-
able i8 the first to have been made to that variable
within the current block. This capability is provided
by the flag attached to each non-local variable, Again,
to give some flavor to this mechanism, an example of
the recursive cache is shown in Figure 2.
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{ ALGOL-like) proxram and is a kind of an object seg- ' xa § |
£ ment, The acceptance teat is executed on exit from an m x1, £ g
o object block to confirm that the object block has per- recovery block A B 3
formed acceptably. If confirmed, the control exits from acceplance test LOGICAL EXPRESSION 1 'f 3
the recovery block. Taus the acceptance test s a kind primary object block O, , S %
of a VR-segment. 1f the result produced by an object Cdectare Y1, Y2, Y3 ' 3
block is determined to be unacceptable, the next uiter. : ' 3
¢ nate object block is entered and is required to perform recovecy block B I 3
] the objective operation in a different way or to perform acceptance LOUGICAL FXPRESSION 2 ;,j
some alternate action accep.table tc the program as a primary object block Op, j§
i whole. The acceptance test is then repeated. deciare Z ;
The following aspects of recovery block structuring : 4
are rather fundamental and may be found, posaibly in alternate object bloch Op, g
. different formats, in any structured approach to the : %* k-
L failure-tolerant progrumming. L : 1: éji
- (1) The primary or alternate ohject blocks can con- altervate object block O, , ;5 %
: tain, nested within thems~lves, further recoverv blocks, ~ =
: (2) When an alternate object block needs to be en- L i v i
;s tered after the result of the preceding object block : ) ‘ .,
E fails the acceptance tesai, the system state must be re- _é H
i stored to the one current just before entry to the value tag previous logica! = :g
i primary object block. value address 5 5
(3) Execution of the acceplance test upon exit from = 3
b an ohj'ct block gencrally requires the reference to z |4 stack marks 2 X2 B H
3 both the original values and the modified values of the vl set on entry s x1 3 2
1 . to recovery - E]
3 variables non-local to the object block. val s o block B Iy n 3 1
4 (4) 1t is not necessary that ever: block in a block- yil1 9 x1 “j ¥
: structured failure-tolerant program be a recovery z
1 block. X s * stack mark set 2 a
) xtl 7 . on entry to %:, _é
Second, a technical basis was establizshed for reduc- ;::::';’ :t T
g ing the overhead involved in saving a state vector on main stack cache stack = g
entry to each object segment and resetting the system ®) 2 5|
state by using a saved state vector during recovery. f i
: The overhead exista in two forms. One is the processor Figure 2—(n) A program structared by the recovery block : 3
. time spent for those activities and the other is the structuring (b) A anapshot of the recursive cache during ¥ A
store space occupied by saved state vectors., A useful execution of (a) t E
property which can be advantageously exploited for % *
overhead reduction is that the variables local to the ob- B
ject segment are irrelevant to the recovery and in many Figure 2(a) shows a failure-tolerant program siruc- i :
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tured by the recovery block structuring scheme, Fig-
ure 2(b) shows a snapsiiot of the recursive cache taken
when primary object block Oy, 18 in the middle of its
execution. There are two stacks, the main stack and
the cache stack, The cache stack is also divided into
regions, one for each nested recovery block in “active”
state. The top region of tlie cache stack in Figure 2(b)
containa previous values of non-local variables together
with their names ie, Y2, X1, X2, which have been
modified by execution of the current obiect block Oy,.
The flags uttached to those non-local variables in the
mein stack are set accordingly, Similarly, the bottom
region of the cache stack cuntains the previous “alue
of non-local variable X1 which had been modified by
execution of object block O,, before O, was entered.
If the result produced by execution of Oy, fails the ac-
ceptance test (LOGICAL EXPRESSION 2), then the
top region of the cache atack can be used to reset the
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content of the main stack to the one current before
entry to recovery block B. 1f it passes the test, the top
region is merged inte the bottom region of the cache
stack a0 that the result will contain previous values of
those variables which are non-local to object block O,
and have been modified since O,, was entered. Thus
the result will be a single region containing (9, X1)
and (2, X2). Flags in the main stack are also adjusted
such that only flags of X1 and X2 be set. Therefore, the
combination of the main and cache stacks contain in-
formation on the basis of which several old state vec-
tors can be reconstructed.

Thiz is perhaps an oversimplitied account of recent
developments. Yet it is intended to provide ali the es-
sential backgrounds for clarifying main departures of
our works presented in the rest of this paper. For
more information on the schemes described in this sec-
“ion, readers are of course referred to their original
reports.''--

DESIRABLE EXTENSIONS OF THE STATE-Of-
ART IN FAILURE-TOLERANT PROGRAMMING

On the basis of recent works in failure-tolerant pro-
gramming, particularly those introduced in the pre-
ceding section, various extensions can be clearly envi-
sioned. Among many desirable extensions, the following
ones are considered to be of great significance.

First, one problem in failure-tolerant programming,
which could be particularly serious in real-time com-
puting environments, is the program execution tine
increase due to incorporation of VR-segments, In most
of the previous approaches including the recovery
block structuring and recursive cache schemes intro-
duced in the preceding section, validation and saving
of state vectors fully contribute to the increase of the
program execution time. Consequently, when any non-
trivial validation is employed or large numbers of
non-local variables are modified during execution of
object segments, the program execution time, even in
the case of normal failure-free operation, could very
well exceed the tolerable limit in real-time applica-
tions. It is indeed expected that the VR-segment will
be frequently a quite complex program-segment. Even
in the recovery block structuring scheme in which only
a restricted form of a VR-segment i.e. a logical ex-
pression iy allowed for the sake of reducing error-
proneness of the VR-segment, a provicion has been
muade to allow procedure calls within acceptance tests

(i.e., logical exvressions) .

Second, the rationale underlying the restriction of
the acceptlance test to a logical expression is considered
a perfectly legitimate one. Yet the logical expression
is considered an excessively restrictive form of a VR-
segment in many environments, For instance, it may
Le desirable to explicitly specify in the VR-segment
which alternate object segment, among multiple alter-
nates, is to be tried next in each case of recovery, rather

than always letting the system select the next alternate
object segment randomly or in the order alternates
are located i1. the program text. It may also be desir-
able to immediately revert to a globa! recovery if a
certain erroneoua condition is detected by execution of
a VR-segment, instead of retryving with «n alternate.
That is, allowance of more flexible siructu in failure-
tolerant programs may be desirable, Furthermore, our
approach toward the first desirable extension men-
tioned above i.e,, execution of VR-segments with mini-
mal increase in the overall program execution time,
favors more flexibility in structuring faiwure-tolerant
programs. This will become evident in the next section.

CONCEPT OF FAILURE-TOLERANT PARALLEL
PROGRAMMING AND REQUIREMENTS ON
THE SUPPORTING SYSTEM ARCHITECTURE

Our main concern in this paper is with the first de-
sirable extension mentioned in the preceding section,
that is, incorporation of VR-segients with miniioal
increase of program execution time.

The fundamental approach we have adopted is to
maximally overlap execution of nbject segments with
execution of VR-segments. Since the VR-segment spe-
cifies manipulation on the results produced by its asso-
ciated object segment, dependency of the former for
its initiation on the completion of the latter is inherent.
However, it is possible to execute the VR-segment as-
gociated with an object segment concurrently with the
successur object segment(s), Figure 3 illustrates this
cencept. There VR-segment VR, can be initiated only
after completion of the correspondent object segment
0. and VR-segment VR,, but it may be executed con-
currently with object segments O,, O,, etc. In an ideal
situation where execution of VR-segments is fully
overlapped with execution of object segments, the
amount of increase in program execution time will be
the time required for execution of the last VR-segment
(e.g., VR, in Figure 3) since it is the only VR-segment
which cannot be executed in overlap with object
segments.

A failure-tolerant prograin in which computational
parallelism, ¢specially parallelism between application-
oriented computations and redundant computalious for
validation and recovery, is explicitly indicated, is called
a failure-tolerant parallel program, That is, the main
type of parallelism which characterizes a failure-toler-
ant parallel program is the one existent between object
segments and VR-segments,

This approach requires a new methoc of structuring
a failure-tolerant program, The major departure of a
newly required structuring method from the previously
developed ones is in specification of the control struc-
ture among program-segments, In addition to inherent
dependency of VR-segments on their correspondent ob-
ject segments, dependency of object segments on VR-
segment: may alsc be specified in a failure-tolerant
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Figure 3—A simple example of a failure-tolerant  parallel

program

parallel program, An example of such a situation is
when a certain object segment gpecifies a critical op-
eration such as ordering an emergency action, erasing
a secret file, ete, In such a case it is desirable to sus-
pend the executwn of the object segment until all the
VR-segments corresponding to its predecessor object
segments have been verified. Thus critical operations
can be controlled to oceur relinbly, This clear!v fovors,
if not requires, the second desirable extension discussed
in the preceding section i.e., more flexibility in struc-
turing VR-segments and overall failure-tolerant pro-
grams. Yet such flexibility can be obtained -vithout
sacrificing most desirable structuring principles (or
strategies) unde-lying the developed structuring
schemes, including the recovery block structuring
scheme, This aspect will be discussed later,

On the other hand, the failure-tolerant parallel pro-
gramming imposes the following requirements on the
supporting system architecture i.e., the architecture of
a system capable of efficient execution of failure-toler-
ant parallel programs.

First and the most obvious of ali, the system must
contain at least two processors, one for execution of
nbject segments, called the object processor and the
other for execution of VR-segnents. called the VR-
Processor,

Second, the state vector at the corapletion of an ob-
ject segment i an input data not orly to the successor
ubject segment but also to the asscciated VR-segment.
7. the rest of this paper, a state vector refers to a
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snapshot of all the variables appearing in object seg-
ments, not including local variables defined in VR-
segments, taken at one moment, Furthermore, the
VR-segment requives the input state vector undestroyved
until it no longer needs to examine it, while the suc-
cessor object segment, by nature, continuously changes
it into the up-to-dute one, It is thus necessary to cre-
ate u “eopy” of the state vector current at the end of
the executior of an object segment for exclusive use
by the VR-processor executing the associated VR-
segment. Here the process of creating a copy must
cause no or little delay in executing object segments.
The store space containing copies of state vectors must
also be 1ainimized, 1If either execution time or store
space exceeds the tolerable limit, the objective of fail-
ure-tolerant paraliel programming is defeated. This re-
quires a new store management scheme substantially
different from the previously developed ones. This
point will become clearer when we propose one suitable
scheme in the next section,

Third, if execution of VR-segments lags much be-
hind execution of ubject segments, there will be accumu-
lated a large number of unprocessed copies of state
vectors. Thus when all the available store space runs
out, the object processor must be suspended until the
VR-processor catches up, In order to avoid this unde-
sirable situation, execution of VR-segments muet nha
speedy.

A MODEL ARCHITECTURE SUPPORTING
FAILURE-TOLERANT PARALLEL
PROGRAMMING

In this section we describe a system architecture
oriented for efficient execution of failure-tolerant par-
allel programs, We call it a model architecture since it
is of highly general nature and thus is specified at an
abstract level. Yet it is expected that elaboration of
the architecture into a specific working system will
encounter no new logical problems of fundamental
nature.

The store munagement scheme

Potential power of failure-tolerant parallel pro-
grams cannot be realized without accompanying the
additional cost of the supporting system architecture,
The additional cost is paid in the forms of bnth proc-
essor redundancy and store redundancy. Since the ob-
ject processor runs concurrently with the VR-proces-
sor, memory conflicts must be carefully avoided. This
rules out the feasibility of having a single state vector
or its portion shared by both processors. Thus each
processor owns a region of the store during execution
of a failure-tolerant parallel program.

The region of the store used by the object processor
is called the ain working store, while the region of
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the store used by the VR-processor is called the VR-
store, The VR-store contains copies of atate vectors
including the up-to-date one plus possibly more than
one old one. This, of course, does not mean that the
VR-store contains complete duplicates of several state
vectors, Let 8, 5, ~=---~- , 3,,; denote a (chronologi-
cal) sequence of state vectors that can be reconstructed
from the content of the VR-store, Then the VR-store
actually contains one complete copy of S, (i.e., the old-
est reconstructable one) and only the differences be-
tween pairs of adjacent state vectors in the sequence
i.e. S..l—S,. Sl,g—Sm, ------- ) SM‘SM-I-

More specifically, as the object processor executes
each object segment, it produces the execution image
which consists of the values of variables assigned dur-
ing execution of that object segment. If a variable is
assigned several times during execution of the object
segment, only the latest assigned value is contained in
the execution image. The execution image produced
on conipletion of an object segment represents the dif-
ference between the state vector current right before
entry to the object segment and the up-to-date state
vector (i.e, the one current on completion of the object
segment). Each execution image is stored in a segment
of the VR-store called a VR-store-segment, Each exe-
cution image is examined by the VR-processor to de-
termine the acceptability of the result produced by
execution of the object segment.

The execution image of an object segment consists of
values of both local variables and non-local variables.
Thus each VR-store-segment consists of two sections,
one for local variables and the other for non-local varia-
bles. On entry to each object segment, memory space
is allocated for the segment of the main working store
containing the set of local variables defined within the
object segment, At that time, the same size of memory
space is also allocated for the section of the VR-store-
segment containing (a copy of) the set of local vari-
ables. However, store space for non-local variables is
not entirely duplicated. Instead, the section of the
execution imnge containing non-local variables is writ-
ten in the form of a table in which each entry consists
of the logical address and the new value of a non-local
variable, The idea is to take advantage of the useful
property that in many cases, only a few of the non-
local variables are modified by an object segment, while
the total number of non-local variables defined may be
very large. Thus the table representation leads to a
highly compact form of the non-local variable section
of the execution image.

As a simple example, consider a block-structured
program augmented with VR-segments in Figure 4(a),
Figure 4(b) shows snapshots of the main working
store i.e. the stack used during execution of object seg-
ments in the program. In Figure 4(c¢c) VR-store-
segment 1 (or 2, 8, 4, 5) is used to contain the execu-
tion image of object segment O, (or O, 0, O, O).
Each VR-store-segment except VR-store-segment 1

allocate store space for ()l ] VR,

EGIN " [+] 2 & VR,
O, :( .B'S.(.;Er_i " 0, & VR’
ENC
1y BEGIN " Q, & VR
VR, yBEGIN ‘ ( ...... (R
( ...... . -END
END AgnD
VR, (“0_"‘_ * "0y : | BEGIN " Oy & VR,
END \enp
VR, :(BEGIN ___________
o -
\m5 4BEGIN *¢* Each "O, : BEGIN --~ END"
( ...... nprounu‘l primary object segment
END ) plus several alternato object segments.
cemeamceiaa. @)
— —
o] 0.
At O‘-‘BEGXN 03 -BEGIN )O‘-BEGIN OS-BEGIN After Os-END
laalvar, 1. |loajvar, | _ | L Jocpl vz, ..
S non-local var.| non-local var
~store-segment } 3 N
N A -
*[loetvar, L leeal |
on-local var, mons=local var.
F [}

(e)

Figure 4—(a) A failure-tolerant parallel program (b) Snap-
shots of the mail working store during execution (c¢) A
snapshot of the VR-store during execution

consists of two sections, one for local variables and the
other for a table holding newly assigned values of non-
local variables and their logical addresses, Bach VR-
store-segment is created on entry of the object proces-
gor to the correspondent object segment.

At the beginning of VR-segment VR, VR-store-
segment 8 contains the execution image of object seg-
ment O, and the object processor has probably entered
into O,. The execution image in VR-store-segment 8 is
examined by execution of VR,. When it has been veri-
fied or judged to be acceptable, the local variable sec-
tion is discarded and the non-local variable section is
merged into VR-store-segment 2, If two different val-
ues of the same variable were contained in both VR-
store-segments 3 and 2, the value in VR-store-segment
2 is the older one and replaced by the value in VR-
store-segment 3, At the beginning of VR,, VR-stoia-
segment 3 does not exist, Then it is no longer possibly
to reconstruct the state vector which was current right
before entry to Q.. There will be no need to recon-
struct that state vector since VR, has been successfully
completed.

Similarly, upon successful completion of VR,, the
values of non-local variables in VR-store-segment 2 are
absorbed into VR-store.segment 1. At the beginning
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of VR,, VR-store-segments 2, 3 and 4 do not exist.
Then the state vector which was current at the initia-
tion of O. can no longer be reconstructed.

Here one subtle problem is noteworthy, Consider a
simple program in Figure 6(a). Since there are two
object segments (thus two VR-segments), there are
two VR-store-segments (1 and 3). The body of object
segment 1 consists of the upper section, O, and the
lower section. During execution of the upper section,
the execution image will be stored in VR-store-segment
1. At the completion of O, VR-store-segr--nt 3 con-
tains the execution image and the VR-proc ssor may
start examining it. Then the object processor executes
the lower section of O, and it stores the execution im-

o :"BEGIN

1
63 : [BEGIN
_ .~END
VR8
_ ~END
VR,
(a)
'—_-—_—
localvar, | = = = = = = «f+==sseseens
S— non-local var,
VR-store-segment 1 VR-store-segment 3
(b)
01 ‘r BEGIN
02 : [BEGIN
_____ END
VR, -~ O, :[BEGIN
..... END
VR, ~ o, :[BEGIN
_..-+END
VR4 -- T *END
VRI -
(c)

Figure 5—(a) An unconstrained program (h) A snapshot of
the VR-store (¢) An equivalent program satisfying the
constraint
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age into VR-store.segment 1 which already contains
the execution image of the upper section. Some values
in VR-store-segment 1 are now the ones assigned by
execution of the upper section, while others are the
ones assigned by execution of the lower section. When
the VR-processor has successfully completed VR, and
needs to merge the verified execution image into VR-
store-segment 1, it is not possible to tell for each vari-
able whether the value in VR-store-segment 1 is the
older one than the onc ir VR-store-segment 3.

This problem can be resolved by imposing an addi-
tional consiraint on program structuring. That is, the
upper section and the lower section of O, in Figure
5(a) must be changed into O, and O,, respectively,
nested within O,, This results in Figure 6(c). Then
there will be additional VR-store-segrments (2 and 4)
created during execution, and the above problem disap-
pears. Therefore, the constraint is that either each ob-
ject segment contains no other object segments nested
in it or its entire body must be composed of other object
segments nested in it. This constraint is incorporated
only for secure allocation of the VR-store., Thus the
programmer is not required to prepare new VR-.seg-
ments VR, and VR..

If there are no explicit VR-segments associated with
some object segments, the system will insert dumray
VR-segments, Or a variation of the above solution is
to make the system responsible for restructuring un-
constrained programs (e.g.,, Figure 5(a)) into the
ones satisfying the constraint (e.g., Figure 5(c)),
rather than imposing the constraint on the program-
mer. In any case, the solution does not appear to be a
costly one.

The model system structure

The store management scheme described above will
work (almost) perfectly if execution images can be
created in the VR-store without causing any delay in
execution of object segmants. As fer as the local vari-
able section of the VR-gtore 1s concerned, this condi-
tion can be met without employing unconventional
hardware components, Since the same size of the store.
segment for Jocal variables is allocated in both the main
working store and the VR-store, the only requirement
is to set proper base addresses for both store-segments
and, for each assignment, write the same value in two
locations of the same relative address, one in the main
working store and the other in the VFE.-store.

However, the situation is different in creating the
non-local variable section of the execution image. As
described before, the non-local variable section is writ-
ten in the form of a table, Thus whenever a non-local
variable is assigned a new value during execution of an
object segment, the value is written into the corre-
spondent location in the main working store and at the
same time, the value together with the logical address.
is written into an entry of a table in the VR-atore,
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If the assignment to a non-local variable is the first
to have been made to that variable within the current
object segment, then the new value and the logical ad-
dress of that variable are written into the next avail.
able (empty) entry of the table in the VR.store, If it
is not the first, there are two choices, One is to write
in the same manner as above i.e, write into a new entry
of the table, The other is to lucate the entry of the
table containing the previous value and the logical ad-
dress of the non-local variable and then replace the
previous value with the newly assigned one, After all,
only the latest assigned values of variables need to be
contained in the execution image, The f¢ ‘mer approach
leads to the larger table-size than the one resulting
from the latter approach. In addition, when or hefore
the VR-processor executes the VR-segment to validate
the table, it must discard the entry (of the table) con-
taining the older value of each variable for which there
is another entry contaiving the later assigned value.
The latter approach leads to the compact table but it
requires a special hardware support in order not to
degrade the performance of the object processor. The
special hardware requirement can be met by incorp:.
ration of the content-addressable (i.e., associative)
memory module whose access time clusely matches the
one of the location-addressed memory module used in
the system. In addition, incorporation of such a mem-
ory module significantly enhances the performance of
the VR.pr ‘cessor in executing VR-segments, In view
of the decreasing trend of the hardware cost and the
performance advantage, the latter approach is con-
sidered favorable.

It is also necessary to attach a tag to the logical ad-
dress of each variable which indicates whether the
variable is a local one or a non-local one.

The structure of the model system in which all the
above decisions are reflected, is depicted in Figure 6.
The model system contains multiple central processors
(CP’s) and the memory subsystem named the duplex
memory.

Each CP may fur-ction as an object processor, a VR-
processor, a supervisory processor or a spare at one
time, Employment of general purpose CP’s is moti-
vated mainly by the consideration of tha flexibility in
gystem reconfiguration. Yet this is not an absolute ne-
cessity and can be compromised for employment of
processors fixed for a specific function if other factors
such as cost and performance dictate so.

The duplex memory contains two types of memory
modules, location-addressed memory modules and con-
tent-addressable memory modules. Location-addressed
memo:y modules are further divided into two sets. One
set of modules provides the main working store for the
object proces~or. The other set, together with the set
of content-addressable memory modules, provides the
VR-store, Thus the local variable section of each exe-
cution image is ccntained in location-addressed mem-
ory modules, while the non-local variable section is
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proeen 1/0 processors

Location-addressed
memory modules

memory modules memory modules

\—‘/

Main -
working sture for VR-store
exerution of object

Segments \\—_—/

1/0 processors

Figure 6—A system architecture based on multiple CP’s and
the duplex memory

contained in content-addressable memory modules.
That is, whenever the object processor issues a “write”
command, the value is written into two locations si-
multaneously, one in the main working store and the
other in the VR-store. The latter location is in a loca-
tion.addressed memory module if the tag attached to
its logical address indicates “local” or in a content-
addressable memory module if the tag indicates ‘‘non-
local.”

The VR-processor never accesses the main working
store except during recovery. The object processor
never reads from the VR-store, It is a natural property
of this duplex memory that the partition of location-
addressed memory modules consisting of two disjoint
sety, (one providing the main working store and the
other providing the local variable section of the VR-
store) may change dynamically.

There is another important reason for employing
content-addressable memory modules, Execution of a
VR-segment generally involves not only examination
of the correspondent execution image but also refer-
ences to other ancestor VR-store-segments i.e., ones
created prior to the VR-store-segment containing the
correspondent execution image, For instance, when
the VR-processor executes VR-segment VR,, in Figure
4, it examines the content of the correspondent VR-
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store.segment 4 and it may access ancestor VR.store.
segments 1 and 2. Refeiences to ancestor VR.store-
segments are for obtaining the previous values of non-
local variables (i.e., variables non-local to the object
segmeint associated with the VR.segment currently in
execution).

1t is frequently required for each non-local variabie
to obtain the latest assigned value among ajl of its
valuea contained in ancestor VR.store-segments. The
deaired value maay exist in the local vaviable section of
an ancestor VE-store-segment. in this case, the vari-
able ia defined within the nbject segment which created
the ancestor VR-store-segment. The desired location
{which is in a location-addressed memory module) is
exactly the one to which the logical address of the
variable is mapped, and thus it can be directly accessed.

On the other hand, the desired value may exist in the
non-local variable section of an ancextor VR-store-
segment. For instance, assume in Figure 4 that vari-
able Z is defined in object segment O, initialized with
“100,” assigned ‘200" by execution of O, and assigned
*300" by execution of O,. Let ua also assume that the
VR-proceasor is currently executing VR, and it needs
to obtain the value of Z assigned the latest before the
object processor entered into O,. The desired value
is “200” and it ia contained in tlie non-local variable
section of VR-store-segment 2 since VR, has zlveady
been successfully completed. The non-local variable
section of VR-atore-segment 2 needs to be searched in
order to get the desired value “200."” The problem here
is a little complex since if Z has not been assigned a
value during execution of O,, the desired value is “100"
contained in the 'ocal variable section of VR-store-
segment 1, It is not known in advance which VR-x.ore.
segment, between 1 ana 2, contains the desired value.
It is thus necessary to check VR-store-segment 2 first
and if its non-local variable section does not contain
Z, then the desired value is read from the location, in
the local variable section of VR-store-segment 1, to
which the logical addreas of Z is mapped.

In general, it is neceasary to search ancestor VR-
store-segments in the increasing order of their ages,
until either an ancestor containing the variable in its
non-local variable section is found or the ancestor ad-
dressed by a portion of the logical addresses of the
variable is reached. He.e employment of content-
addressable memory modules for non-local variable
gections of execution images i’ the key to the high
speed of search It enables simultaneous examination
of non-local variable sectiona of all the “ancestor VR-
store-gsegments” which are ‘‘descendants” of the one
containing the variable in its local variable scction.
When the VR-processor _sues a command for fetching
the latest assigned value of a non-local variable among
its values contained in ancestor VR-store-segments, one
location-addressed memory module and possibly sev-
eral content-addressable memory modules are simulta-
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neous!y acxessed. The cation-addressed memory
module is the one addressed by a portion of the logical
address of the variable. The content-addressabre mem-
ory modules are the ones containing the non.local vari-
able sections of those ancestor VR-store.segments
which are deacendants of the one whose jo<a! variable
aection is mapped to the above location-addressed mem-
ory module. Selection of the latest assigned value
among all the values nf the variable retrieved from
those memory modules is also a function of tke duplex
memory. With this duplex memory, the VR-processor
can read or update any value contained in the VR-store
with the amcunt of time cloee to one “ontent-address-
able memory cycle.

Resetting the system state when an execution image
is evaluated to be unacceptable, is also speedy with this
duplex memory. It is becavse the resetting process in-
volves basically fetching the previous value of each
non.local variable which has been assigned another
value ..nce the object processor entered into the object
segment whose execution image turned out to be un-
acceptable, and then storing it into the location of the
variable in the main working store. Each non.local
variable which needs to be restored in the main work-
ing store to its previous value is identified by examin-
ing the non-local variable sections of the execution
images produced since the object processor entered
into the object segmeni whose eXxecution image was
rejected.

Local variable sections of VR.store-seyments are
mapped to location-addreased memory modules in the
same manner as the main working store is mapped to
location-addressed memory modules. For some VR-
segments, each of their ncn-local variable sections may
be mapped to &n independent content-addressable
memory module. For others, their non-local variable
sections may co-exiat inside the common content-
addressable memory module, provided some form of an
identification code i3 assigned to each section, The
high speed requirement limits the size of each content.
addressable memory module to a small one. It may
sometimes be neceasary to use more than one content-
addressable momory module to hold the non-local
variable section of a VR-store-segment.

It is believed that this architecturc satiafactorily
meets all the requirements mentioned before. Creating
a copy of a state vector in this syatem does not incur
any delay in processing object segments. The memory
interference between the CP's executing object seg-
ments and VR-segments is absent or negligible. Em.
ployment of multiple content. addressable memory mod-
ules is believed to be an effective means of achieving
the goals of low average access time and high satore
utilization. However, successful implementation of a
system requires careful selection of design parameters
concerning memory management,
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AREAS OF EXTENSION AND FURTHER
RESEARCH

The oreceding sections deait with the concept of
{ailure-tolerant parsllel programming and effective
solutions to must fundamental problems involved in
realizing ita potential puwer. The model architecture
devised for efficient execution of failure-tolerant paral.
kel programs was apecified at a higl.ly abstract level in
order to preserve simplicity and generality. It incor-
porated a minimz! amount of facility. Naturally, the
model architectiire can be expanded in many directiona
to pcssess additional capabilities by incorporating
various proven cracepts and achemes, In addition, in
order to put failure-tolerant parallel programming in
general use, various program design anu chgineering
tools need to be developed. Among numerous desirable
extensions and research problems, only a few of the
representative onea are listed below.

First, development of a language supporting failure-
tolerant parallel programming is an immediate require-
ment. Such a language should contain more facilities
for control atructuring and data specification than the
ones in conventional programming languages, No use-
ful principles employed in other failure-tolerant pro-
gram structuring aschemes such as recovery block
structuring,'’ need to be rejected in structuring failure.
tolerant parallel programs, In view of the strong rela-
tionship between each object segment and the asso-
ciated VR-segment, it is alinost an indispensable
requirement to put each pair of segments in a com-
partment in the program text. Such a compartment is
called a fathure-tvlerant segment. More specifically,
each VR-segment is irectly dependent upon only one
object segment in a fuilure-tolerant parallel program.
Furthermore, the dependency structure among VR-
segments is vrlways the same as the dependency strue-
ture smong object segments, The latter dictates the
former. Thus the dependency among VR-segments as
well as the dependency of a VR-segment on the asso-
ciated object segment, need not be explicitly specified
and shouid become a part of the definition of the
failure-tolerant segment.

On the other hand, each object segment may be
dependent on zero or more VR-segments vthich belong
to other failure-tolerant segments. This type of depen-
dency needs to be explicitly specified. This and other
considerations mentioned in the previous section on
desirable extensions of the state-of-art in failure-
tolerant programming, led to the formulation of the
model of the failure-tolerant segment depicted in Fig-
ureT.

The mode! i8 a generalization of the model of the
recovery block depicted in Figure 1. It conaists of the
scgment-head, the primary object segment, seve al
alternate object segments and the VR-segment. 7The
segment-head specifies the prerequisite condition for
entry into the (failure-tolerant) segment e.g., depen-

: prerequinites (ur entry,

taitial priority of alternates,
selection of built-in diagnoscs,
specification of suceesgors, ete

(-mmt-w n

primary chject segment
9
alternate object segment
tallure- O,
tolerant
ssgment
F

Tu.mu object segnent
n

wvalidation, system: recontiguration
and recovery, state vector book-

n/ keeping, mssignment of priorities
to alternates, etc

VR-segment VR
- VR‘, VRa.-". 'R

Figure 7—A structural model of a failure.tolerant segment

dency on the completion of VR-segments belonging to
other failure-tolerant segments, It specifies the suc-
cesgor failure-tolerant segments i.e. the ones whose
initiation is dependent upon successful completion of
the VR-segment. !t also contains the declaration of the
initial “execution priorities” of alternate object seg-
ments. It may also specify the types of abnormal con-
ditions which may be recognized by the system during
execution of object sepments and the actions to be
taken on occurrence of each condition e.g., “enter into
the VR-segment,” “record the occurrence and con-
tinue,” etc. The VR-segment specifies the procedures
of validation, VR-store managenient, and recovery in-
cluding system reconfiguratioa and assignment of exe-
cution priorities to alternate object segments, The
primary or alternate object segments can contain,
nested within themselves, further failure-tolerant seg-
ments. However, the structuring rule illustrated in
Figure & should become a part of the def.nition of the
failure-tolerant segment,

Therefore, programming of the segment-head re-
quires some special language primitives including
JOIN-like primitive* used for specifying the pre-
requisite condition for entry, FORK-like primitive®
for apecifying the successu:s, ones for specifying types
of abnormal conditions and appropriate treriments,
ete, Programming of thc VR-segment also requires
some special language primitives such as ones for
referring to the old vali- - .f variables, ones for sys-
tem reconfiguration, etc. Development of a language
containing all the facilities mentioned above is urgent.

Second, if parallelism among object segments is to be
exploited, the model architecture and the program
structuring scheme described so far needs to be general-
ized accordingly. Such a generalization is expected to
be a gigantic task requiring a great deal of research.

Third, it is often necessary to periodically save veri-
fied state vectors into the file store either as the spon-
taneous action of the system or as controlled by the

b Luinslid sl T SATE A 2N




TN YA et

o

R G

AL

PG

iR

-
B
L Y O PP ST e " o s b i S E  PTIR
- .
Failure-Tolerant Parallel Programming X b

failure-‘olerant program, Incorporation of an efficient
filing capability into the model architecture is an
essential requirement.

Fourth, in view of the high cost of a sizable content-
addressable memory, it seems both necessary and
desirable to use location-addressed modules as back-up
memory when a certain program requires more space
than that provided by available content-nddressable
modules, That is, additional content-addressable store
space can be simulated on the basis of location.
addressed modules and store structuring techniques
such as hash-coding. Incorporation of the virtual
memory into the model architecture will also be an
interesting research subject.

CONCLUSION

The concept of railure-tolerant parallel programming
was originated with the objective of utilizing extensive
validation and recovery facilities at run-time without
disturbing main-stream computation. The model archi-
tecture presented is believed to be a satisfactory sol»-
tion to the efficient execution of failure-tolerant
parallel programs. As further researches on the sub.
jects mentioned in the preceding section progress,
motre insights will hopefully be gained into the po-
tential power of failure-tolerant parallel programming
and the cost-effective implementation of syvstems based
on the model architecture,
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._..,.,-ppfthe progvam execution time increased due to incorporation of validation

-and recovery procedures, This paper introduces an approach to the
golution, called the failure-tolerant parallel programming.

-of this approach is to maximally overlap main-stream computation with
redundant computation oriented for validation and recovery, Subsequent
a model system architecture tailored for efficient execution of failure-
tolerant parallel programs is described. It is of highly general and
modular nature and contains a novel memory subsystem named the
duplex memory. Directions of further researches on program
structuring and expansion of the model archite;ture are also indicated.
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