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WAVE PROPAGATION, ELASTODYNAMIC STRESS SINGULARITIES, AND I RAPTURE 

J. D. Achenbach 

Department of Civil Engineering 
Northweatern University 

Evanston, Illinois 60201 

USA 

The singular part of the elastodynamic field in the vicinity of a crack tip plays an important 
ÍÒÍe in fracture mechanics considerations. In this paper analytical, numerical and experimental 

methods to determine near-tip elastodynamic fields are reviewed, and the interpretaron of stress 

intensity0factors is discussed within the context of the fracture criterion of the balance of 
rates of energies. We consider elastodynamic effects generated by rapid propagation of the crack 

as well as by the diffraction of incident stress waves. Propagation in the plane of the crack 

as Lll as skew crack propagation and crack bifurcation are investigated Necessary condi ons 

for these kinds of crack propagation are discussed, and expressions are deriven for crack tip 

speeds. 

1. INTRODUCTION 

The singular behavior at edges and corners of 

solutions to the system of partial differential 

equations governing linearized elasticity has 
fascinated many mathematically inclined investi¬ 

gators. From the analytical point of view this 

pathological behavior of the field quantities 

must be unraveled, if for no other reason than 

one which impels mountain climbers to climb: 
the singularities are there! From the physical 

point of view there is the additional challenge 

of trying to come to grips with singular stress¬ 

es and strains within the framework of a physi¬ 

cal theory. Attempts to respond to that chal¬ 
lenge are, however, bound to generate controver¬ 

sy. Indeed, singularities are disturbing not 

only because no real material can actually sus¬ 

tain singular stresses and strains, but also be¬ 

cause the basic premises of the linearized theo¬ 

ry are violated by the appearance of singular¬ 

ities. To one 30110-1 of thought the analysis of 

singularities is, therefore, a futile exercise. 

What should be done, the protagonists of that 

view say, is to take into account nonlinear plas¬ 

tic deformation near a sharp edge. Unfortunate¬ 

ly this is easier said than done, especially for 
dynamic problems. It would require much detail¬ 

ed information on the geometry and the material 

behavior near the edge, and a considerable a- 

mount of computer analysis. It is, therefore, a 

legitimate question whether the easily obtained 

results of linearized theory can serve a useful 
purpose, on the basis of an appropriate interpre¬ 

tation of singularities. The conspicuous suc¬ 

cess of linearized elastic fracture mechanics in 

placing square root singularities, which occur 

at crack tips, in the framework of a useful frac¬ 
ture criterion, is heartening to those who have 

spent some of their efforts on analyzing fields 

near crack tips on the basis of linear elastody¬ 

namic theory. 

The title of this survey paper may suggest a 
more ambitious enterprise than is intended. 
Each of the topics wave propagation, elastody¬ 

namic stress singularities, and fracture, 

represents a broad spectrum of research activ¬ 

ity, each worthy of on attempt to survey recent 
contributions and identify significant unsolved 

problems. The objective of this paper is, how¬ 

ever, rather more limited in scope, in that it 
is directed towards an account of recent devel¬ 

opments in a relatively small area, comprising 

the region of overlap of the sprawling domains 

of the topics stated in the title. 

The topic of wave propagation needs only a few 

words of introduction. Local excitation of a 
body is not instantaneously detected at posi¬ 

tions that are at a distance from the region of 

excitation. It takes time, albeit a very short 

time, for a disturbance to propagate from its 

source to other positions. As elements of the 

medium are deformed the disturbance is trans¬ 

mitted from one point to the next and the dis¬ 

turbance, or wave, progresses through the solid. 

In this process the resistance offered to defor¬ 
mation by the consistency of the solid, as well 

as the resistance to motion offered by inertia 

must be overcome. 

During the last three or four years a number of 

books have been published dealing with the prop¬ 
agation of waves in elastic solids. Among these, 

the books by Achenbach [1], Pao and Mow [2], and 

Eringen and Suhubi [3], are most directly rele¬ 

vant to the material of this paper. 

In the analysis of dynamic problems it is often 

found that at inhomogencities in a body the dy¬ 

namic stresses are higher than the stresses com¬ 

puted from the corresponding problem of static 

equilibrium. This occurs when a propagating 

mechanical disturbance strikes a cavity, see e.g. 

Ref. [2] for specific examples. The dynamic 
stress "overshoot" is especially pronounced if 

the cavity contains a sharp edge. lor 0 crack 
the intensity of the stress field in the vicin¬ 

ity of the crack tip can be very significantly 

affected by dynamic effects, as will be discuss¬ 

ed in more detail later in this paper. In view 
of the dynamic amplification, it is conceivable 

that there are cases for which fracture at a 
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crack tip floes not occur under a gradually np- 
Ued system of loads, but where a crack does in¬ 
deed propagate when the same system of loads Is 
rapidly applied, and gives rise to waves (ns for 
impact loads and explosive charges). Dynamic 
effects on the fields near a crack tip become 
also significant if the propagation of the crack 
Is very fast, so that rapid motions are gener¬ 
ated in the solid. Earthquakes are an example 
of significant dynamic effects generated by a 
fracture phenomenon. Essentially brittle frac¬ 
ture in engineering materials, and in glass, 
which is often of an explosive nature, provides 
other examples, in Reference [4] a number of 
observations on the influence of elastodynamic 
effects are presented on the basis of solutions 
of exemple problems. An extensive list of ref¬ 
erences is included in Ref. [4]. A recent arti¬ 
cle by Freund [5] also discusses in detail the 
analysis of elastodynamic crack tip stress 
fields. 

express the displacement vector in terms of a 
scalar potential tp and a vector potential with 
components by 

(1.3) 

with 

*k,kE° 
Here e 

ijk 

(1.4) 

is the alternating symbol of cartesian 

tensor analysis. It is easy to show by direct 
substitution that the representation (1.3) sat¬ 
isfies the displacement equation of mot.on (1.2) 
if tp and ^ are solutions of the wave equations 

(l.Sa.b) 

''MJ 

2 _ \+2p 

2 vk 

L 

2 U 
C m 

T p 
(1.6a ,b) 

In this paper we review some old results, and we 
present some new ones on the dynamic stress 
field in the vicinity of a crack tip. We consi¬ 
der elastodynamic effects generated by rapid 
crack propagation, as well as by the diffraction 
of incident stress waves. In both cases the 
crack tip is in an •environment disturbed by e- 
lastic wave motions. Propagation in the plane 
of the crack as well as skew crack propagation 
and crack bifurcation are investigated. The em¬ 
phasis is on the computation of elastodynamic 
singularities, ar.d the interpretation of the 
strengths of these singularities within the con¬ 
text of the fracture criterion of the balance 
of rates of energies. 

The results discussed in this paper are obtain¬ 
ed on the basis'of the equations governing lin¬ 
earized elastodynamics for a homogeneous, iso¬ 
tropic solid. Let u1(xm,t) be the components of 

the displacement vector in a rectangular Carte¬ 
sian coordinate system with coordinates i 

1, 2, 3. The components of the stress tensor, 
T^, arc related to the gradients of the dis¬ 

placement vector by Hooke's law: 

'ij Uk,k6ij + 
p(u 

i.j 
(1.1) 

Here u, , s Su.(x )/ox., and repeated indices 
* * *' 1 01 J /, 

indicate a summation. Also, \ and p. ai*e Lamo s 
elastic constants, and is the. Kronecker del¬ 

ta. Substitution of F!q. (1.1) into the stress 
equations of motion yields 

Vi UljJJ + (X+P) “j(ji = p 0-2) 

In Eq. (1.2) a dot over a quantity denotes a 
partial derivative with respect to time, and p 
is the mass density. 

Equations (1.2) form a somewhat awkward system 
of coupled partial differential equations. For 
many elastodynamic problems it is convenient to 

Thus, cp and ^ satisfy uncoupled wave equations, 

with wave speeds and c^,, respectively. 

When the field variables are independent of one 
of the Cartesian coordinates, say Xj, elastic 

wave motions uncouple into anti-plane and in¬ 
plane motions. The displacement u^x^.x^t) 

which describes motions in anti-plane strain, is 

governed by = (l/Cy)^^, where w = 1,2. 

Motions in plane strain are described by dis¬ 
placement components u^fx^.x^.t) and u^ix^.x^.t). 

For in-plane motions the use of Eq. (1.3) is 
convenient where there is only one component 

•)k. namely, y 

For a detailed presentation of the equations 
governing linearized elastodynamic theory, we 
refer to Achenbach[l]. 

2. ELASTODYNAMIC STRESS INTENSITY FACTORS 

The equations governing linearized elasticity 
were fully developed by the middle of the 19th 
century. It took another fifty years before the 
first mathematical analysis of a stress concen¬ 
tration effect based on elastostatic theory was 
published. In 1898, Kirsch investigated the two- 
dimensional stress distribution around a small 
circular hole in a large body subjected to lon¬ 
gitudinal tension. He shoved that the peak cir¬ 
cumferential stress at the hole is three times 
larger than the unperturbed stress. A lew years 
later stresses near an elliptic hole of semiaxes 
ab (a > b) were analyzed by Kolossof and by 
Iiiglis. In the limit b - 0 the latter studies 
provide results for a crack of width 2a. The 
limit process produces a stress field with 
square root singularities at the crack tips. 
Numerous results have been published subsequent¬ 
ly, for many crack geometries. For a recent re¬ 
view we refer to Ref. [6]. 
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The 8t«rt of work pertinent to elastodynainic 

»tregB singularities can be traced to a classi¬ 

cal paper by Sommerfeld, on the diffraction of 
light by a seml-lnflnlte screen. An account of 

the approach used can also be found ln Sommer¬ 

feld' a book [7]. For the field variable u sat¬ 

isfying the two-dimensional scalar wave equa¬ 

tion, Sommerfeld required that r grad u " 0 as 

r -• 0. He pointed out that this condition Is 
satisfied when the stationary edge of the screen 

neither radiates nor absorbs e nergy. From the 

mathematical point of view this requirement is 

an additional energy condition which secures 
uniqueness of the solution. J. Meixner estab¬ 

lished the more general condition that the en¬ 

ergy density at the edge of the screen should be 

Integrable with respect to space. The edge con¬ 

dition for time hamonic elastodynamic diffrac¬ 

tion problems was discussed by Maue [8]. Modi¬ 

fications of the linear elastodynamic uniqueness 

theorem to ex nnd its range of applicability to 

include square root singularities near the tip 

of a running crack were presented by Freund and 

Clifton [9]. 

2.1 Stress-Intensity Factors 

A crack in a solid body gives rise to a surface 

of discontinuity of the displacement vector. 
In general all three components of the displace¬ 

ment vector suffer discontinuities. In a plane 
two-dimensional geometry in-plane and anti-plane 

displacements uncouple, and it becomes relative¬ 

ly simple to analyze the fields. It is found 

that in the neighborhood of the crack tip, the 

stress components in a local coordinate sys¬ 

tem are of the general forms 

Tij(r’6’t) “ (2.1) 

Here r and 0 are polar coordinates centered at 

the crack tip. Separate expressions for F^CS.t) 

are obtained for in-plane displacements that are 

symmetric and antisymmetric, respectively, with 

respect to the plane of the crack, and for anti¬ 
plane displacements. In the parlance of frac¬ 
ture mechanics the in-plane symmetric and anti¬ 

symmetric displacements correspond to Mode I and 

Mode II fracture, respectively. Antiplane dis¬ 

placements correspond to Mode III (tearing) frac¬ 

ture. The function F1j(0.t) can be wtUt611 as 

(o) (b) 

FIGURF, 1: Stationary and Propaga ing crack tips 

in two-dimensional geometry. 

X2 

X(t) 

the product of a "stress Intensity factor" and 

a function defining the variation with angle 0. 

The latter function is universal in that it is 

independent of the overall geometry and the 

loading. Overall geometry and loading enter in 

the stress intensity factor. 

In this section we investigate in some detail 

the near-tip beh-vior of the stress components 
Tg(Mode I) and i^iMode III), in the polar co¬ 

ordinate systems shown in Fig. 1, for both the 
elastostatic and the elastodynamic case, and for 

a stationary as well as a running crack tip. 

For the elastostatic case we have 

t - (2rt)r'h KT(t) T*(0) (2.2) 
0 i ö 

t03 ■ (2TT)^ KIII(C) T05I(6) (2-3) 

In these expressions ^^(0) = T^ (0) = 1. For 

the elastostatic case the time t is a parameter, 

which may enter via the loading, or via the 
length of the crack if the crack is propagating. 

The expressions corresponding to Eqs. (2.2) and 
(2.3) for the elastodynamic case of a stationary 

crack tip, are completely equivalent in form. 

The same angular distributions Tg(8) and Tgg (0) 

hold, but the stress intensity factors are of. 

different forms. We use the notation 

kjit) and k^^t) (2.4a,b) 

for the elastodynamic near-tip fields. 

The nature of the angular distr* -tions changes 

for the elastodynamic case of a propagating 

crack tip. Now the speed of propagation of the 

crack tip, v(t), enters the expressions tor the 

angular distributions. We use the notations 

T*(e,v) and 1^(0,v) (2.5a,b) 

where Tg(0,v) - 1^(0,v) = 1. For the stress 

intensity factors we use the notations 

kjCt.v) and kj^t.v) (2.6a,b) 

The expressions of this section also apply to 

three dimensional problems for a plane crack 

with a smoothly curved edge. Let a point 0 on 

the edge serve as origin for a local Cartesian 

coordinate system. The x^-axis is directed 

along the tangent to the edge of the crack, the 

x^-axis is normal to the plane of the closed 

crack, and the x^axis is directed into the 

solid. In the plane x3 = 0, and in the neighbor¬ 

hood of 0, the stress components then are of the 

forms given by Eqs. (2.1)-(2.6). The geometri¬ 

cal details of the crack edge enter of course in 

the magnitudes of the stress intensity factors. 
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2.2 Functions Tg(e) and 

Figure 2 shows a two-dimensional geometry of a 
wedge-shaped body, which is unbounded In the x^- 

dlrectlon. For the two-dimensional case it is 
simple to analyze the asymptotic behavior of the 
fields near the vertex of the wedge, by a tech¬ 
nique which was employed by Kneln, by Williams, 
and by Karel and Karp [10], One considers solu¬ 
tions, say for the displacements, of the general 
separation of variables forms 

ur(r,0,t) = r f(t) Ur(6) 

Ugfr.e.t) = r f(t) ue<e) 

(2.7) 

(2.8; 

FIGURE 2: Elastic wedge 

Substitution into the displacement equations of 
motion, Eq. (1.2), yields in the limit r - 0 a 
coupled system of ordinary differential equa¬ 
tions, which contain^ p as a parameter. Solu¬ 
tions to these equations are 

U (e) = A cos(l+p)0 + B sin(l+p)e 
r + C cos(l-p)0 + D sin(l-p)0 (2.9) 

ue(e) b cos(i+p)e A sin(l+p)9 
n C sin(l-p)0 + n D cos(l-p)0 - n C sin(l-p)9 (2.10) 

where n=[p.(l-p)+ (X+¿u) (!+?)]/[ (X+2p) (l-p)+p(l+P) ] 
The corresponding expressions for the stress com¬ 
ponents T and 

0 
t „ can be computed from Hooke's 
r0 

Law. The dominant terms in the stresses are of 
the forms 

-P'1 
V Tr0 

(2.11) 

By invoking the boundary conditions, four equa¬ 
tions for the unknown constants, A, B, C and D 
are obtained. These equations split into two 
pairs: for displacements which are symmetric 
and antisymmetric, respectively, relative to 
0=0. The sets of equations possess non-trivial 
solutions only if the determinants of the coef¬ 
ficients are zero. For symmetric displacements 
relative to 0 = 0 we find 

B = 0, D - 0 

-2psin|-(l+p)KTr 

(1-p) (l-n)sin|(l-p)Hn 

sin(Hn) + sin (puh) ^ 0 
XT! pKTT 

(2.12) 

(2.13) 

(2.14) 

The roots of Eq. (2.14) have been studied by 
Karel and Karp [10]. Naturally one is inter¬ 
ested only in those roots for which the strain 
energy density is integrable in a finite region 
near the vertex, i.e., roots for which the real 
parts of p are positive. Only the smallest non¬ 
trivial root for each value xn need be consider¬ 
ed, since the corresponding term dominates the 
behavior of the stress field in the vicinity of 
the vertex. When hit < n, the stresses are fi¬ 
nite. The smallest value of p occurs at x = 2, 
when p = 0.5. This case corresponds to a crack 
of zero thickness. 

For X = 2 the near-tip displacements for the 
symmetric case (Mode I) follow from Eqs. (2.9)- 

(2.14). The corresponding expression for T^(9) 

is 

X1(@) = ^ (1+ coso) cosck) (2.15) 
0 ^ 

The anti-plane case is still easier to analyze. 
The result is 

(2.16) 
T03I(e) ” cos(26) 

2.3 Functions Tg(9,v) and ^^(6,v) 

The elastodynamic near-tip field for the case 
that the tip propagates rapidly along a rather 
arbitrary but smooth trajectory was discussed by 
Achenbach and Bazant [11]. Here we consider a 
crack propagating in its own plane. The two- 
dimensional geometry is shown in Fig. lb. The 
speed of the crack tip is v(t), where v(t) is 
an arbitrary function of time, subject to the 
conditions that v(t) and dv/dt are continuous. 
A system of moving Cartesian coordinates (x,y) 
is centered at the crack tip, such that the x- 
axis is in t^he plane of the crack. 

To analyze the in-plane motions it is convenient 
to express the displacements u^(x^,X2it) and 

u2(x1,x2,t) in tenus of the displacement poten¬ 

tials cp and ¢, see Eq. (1.3). Let the displace¬ 
ment potentials be instantaneously defined in 
terms of the moving coordinate system (x,y), 
i.e., cp = cp(x,y,t). The second material deriv¬ 
ative with respect to time, which is indicated 
by a superscript double dot, is then of the 

form 
if. _ hJ£. .¿KM 

. ,.2 dt ax 
oc 

2v(t)r^ + [v(t)]2 ^ ! 
atax gx 

(2.17) 
Relative to the moving system of Cartesian co- 

2 • 2 
ordinates the equation for cp is V cp = cp/c 

where c^ is defined by Eq. (1.5b) 
L’ 

A completely 

analogous equation, with c^, instead of c^ is 

satisfied by the one component, \ji, of the vector 
potential. 

We seek solutions for cp and (i in the general 
forms 
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' r 
Vd 

q 2 
f(C) l\(aL’e) d <p(r,e,t) 

*(r,e,t) « f(t) Oj.ía.j.e) d 

(2.18) 

(2.19) 

where 

a, - (2.20a,b) 

Substituting Eq. 

vM 

v "L ‘ ct 
and d Is a length parameter 

(2.18) Into y2« * ip/c2 , multiplying the result 

by r2 and considering the limit r 0, the 
following equation for fi^ is obtained 

(1-a2 sin2e) - C»2(l-q)sin(2e) 

+ q|q+ a2[(2-q)cos2e-l]| fî^ “ 0 (2.21) 

Here n. dn (a ,0)/d@. An analogous equation 
L L 

is obtained for Q^o^.e). Following Ref. [11], 

a solution of Eq. (2.21) is sought, of the form 

(2.22) nL(aL,e) = (i-< sin2e)q/2 nL(aL,e) 

Substitution of Eq. (2.22) into Eq. (2.21) yields 
•fç 

a much simpler equation for which can, how¬ 

ever, be further simplified by introducing the 
variable u> by 

tan tu. (1-a?)^ tan 0 
Li 

(2.23) 

The solution of the resulting equation for C1L is 

(2.24) - Al sin(qu>L) + cos(qu)L) 

A completely equivalent expression is obtained 

for fl* in terms of uy where the definition of 

ie„ is equivalent to Eq. (2.23), and is relat¬ 

ed to 0* by the equivalent of Eq. (2.24). 

The displacement potentials (2.18) and (2.19) 
may be used to obtain the corresponding expres¬ 
sions for the displacements and the stresses. 
These results show that the near-tip fields sep¬ 
arate into symmetric and antisymmetric parts. 
For the symmetric parts the boundary conditions 
at 0 =* n, r > 0 yield two homogeneous equations 
for the constants Bj and AT- The requirement 

that the determinant of the coefficients must 
vanish results in the equation 

D(aL,0T) sin(qn) cos(qn) = 0 (2.25) 

where D(a ,aT) is the well-known Rayleigh func¬ 
tion: L 

d("l,“t) 
(o2 -2)2-4(l-a2Al-a2)* (2.26) 

Equation (2.25) is an equation for q. In order 
that the strain energy is integrable, we must 
have q > 1. For a velocity of crack propagation 
smaller than the Rayleigh wave velocity, the 

smallest root q of Eq. (2.25) for which Re(q) is 
greater than unity is q = 3/2. Details can be 
found in Ref. [11]. After some manipulation 

TI(0,v) is obtained as 
0 

2 2 
(1-0^(2-02) /2 I (2-q2)cos28 + 

T0(0’V) * i 2(l-o2)* 

.2.½ 

XnL2- 

where 

^Tl 

^T2 

2(l-aTr cos2e . „ \ . 

-S-^12 + Kr^ri)51"29 
2-ol, 

(l-a2sin2e)!s - cose 

2 2 
1-O^.sin 0 

(l-a2sin2@)^ + cose 

2 . 2 
1-O^sin 0 

(2.29) 

FIGURE 3: Function Tg(0,v) versus @ for various 
values of v/c^,. 

The expressions for and £1^2 flre obtained 

from Eqs. (2.28) and (2.29) by replacing sub¬ 

scripts T by L. For various values of v/c^> 

the function T^(0,v) is plotted versus 0 in Fig. 
6 

3. The expression given by Ea. (2.27) agrees 
with the one obtained by Yoffe [12] and Baker 
[13] for special problems. It is of note that 

the maximum value of Tg(0,v) moves out of the 

plane 0=0 (the plane of crack propagation) as 
V increases beyond a critical value. 
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For a crack propagating with velocity v(t> in a 

field of anti-plane strain we find 

T03(e,v) - j2 Í(1'"t)^ nnBlne + aT2cos9}(2-30) 
where nT1 and 0T2 are defined by Eqs. (2.28) and 

(2.29) . It can be checked that Eqs. (2.27) and 

(2.30) reduce to (2.15) and (2.16), respectively, 

in the limit v — 0. 

Near-tip expressions for the displacements can 

be obtained similarly. 

2.4 Functions k^it) and k.^Ct) 

Elastodynamic fields near a stationary crack tip 

can bt generated by incident waves, or by load¬ 

ing of the fracture surface. A number of solu¬ 

tions for a semi-infinite crack were obtained by 

de Hoop [14]. The simplest of these is the near- 

tip stress field tgj generated by a step-stress 

anti-plane shear wave of magnitude to, and angle 

of incidence a. The details of the analysis, 
which employs integral transform techniques and 

the Wiener-Hopf method, can also be found in Ref. 

[1], p. 372. The result is that near the crack 

tip Tg3 Is of the general form Tg3 - 

(2tt)'* r** kIII(t) Tgj^e) where 1^(0) is de¬ 

fined by Eq. (2.16), and kUI(t) is given by 

(t) ^ ¿,To(-n ) (sin^0,> ^ (2.31) 

Thus, the stress intensity factor increases with 

time. If the crack is of finite length 2a, the 

stress intensity factor increases until a wave 
diffracted from the opposite crack tip arrives. 

It is of interest that for the case of a step- 

stress wave the dynamic stress intensity factor 

shows an overshoot of 4/n-l as compared to the 

stress intensity factor of the corresponding 

quasi-static problem. Details of this computa¬ 

tion arc given in Ref. [4]. It should of course 

be noted that the dynamic overshoot is smaller 

for a less rapid increase of the stress at the 

wavefront. 

Stress intensity factors for diffraction of a 

longitudinal wave by a crack of finite length 

were computed by Thau and Lu [15]. The results 
presented in Ref. [15] are valid from the in¬ 

stant the incident wave arrives at the crack tip 
until a diffracted longitudinal wave reaches the 

opposite crack tip, is rediffracted, and then 

returns to the original tip, i.e. , during two 

crack width transmit times of a longitudinal 

wave. The peak value of k^t) was found to be 

30 per cent greater than the analogous static 

factor Kj. 

If solutions are desired for longer times, or if 

additional boundaries are present, analytical 

approaches become too cumbersome, and it is nec¬ 

essary to resort to numerical methods, either 

finite element or finite difference methods. 

In Ref. [16] elastodynamic stress intensity fac¬ 

tors were computed by the finite element tech¬ 

nique. It was found that crack tip elements 
with a singular strain field (singular elements) 

are less effective in elastodynamics than in 
elastostatics. A non-singular (ordinary) crack 

tip element whose crack-opening displacement is 

calibrated was found to be most effective. De¬ 
tailed studies were also carried out in Ref. [16] 

of implicit and explicit time-step algorithms, 

proper sizes of elements, methods for solving 

equations systems, questions of non-reflecting 

boundaries, lumping of mass matrices and elimina¬ 

tion of spurious oscillations superimposed on the 

correct solution. For a crack in a plate of fi¬ 

nite width, subjected to an incident step-stress 
wave, computations of k^(t) by the finite element 

method were presented by Anderson et al [17]. 

Finite difference methods were used for the same 

problem by Chen [18]. The results of Refs. [17] 
and [18] are summarized in Fig. 4, and they are 

compared with results obtained by Glazik [19j, 

who used the calibrated element of Ref. [16]. It 

is noted that the ratio kI(t)/KI(t) can run as 

high as three. 

FIGURE 4: Elastodynamic stress intensity factor 

for a crack in a sheet of finite width. ^ de¬ 

notes arrival time of incident wave; R^I. de¬ 

notes time for Rayleigh wave to travel between 

crack tips; P -I. and S -I denote times for 
diffracted P- and S- waves to travel to the near¬ 

est free surface of the sheet and back; I_ de¬ 

notes time for wave to travel length of sheet 

and back to the crack. 

A solution of utility for superposition purposes, 

namely, the elastodynamic stres intensity factor 

due to suddenly applied concentrated forces on 

the crack surfaces was derived by Freund [20]. 

If the elastodynamic displacement field and 

stress intensity factor ar^ known, as functions 

of crack length, for any symmetrical distribu¬ 

tion of time-varying forces, then the stress 



7 

Intensity factor due to »ny other symmetrical 

load system whatsoever acting on the same body, 

may be directly determined by a formula derived 

by Freund and Rice [21]. 

2.5 Functions k^ft.v) and k^Ct.v) 

The computation of elastodynamic stress intensity 

factors for a rapidly propagating semi-infinite 

crack was reviewed by Achenbach [4], Two cases 

should be considered separately, namely, the 

cases that the crack propagates under the in¬ 
fluence of incident waves, or under the influence 

of a pre-existing quasi-static stress field. 

Suppose that a cracked body is in equilibrium 

under applied loads. The loads are increased 

gradually, until a critical state is reached, 

and fracture is initiated. At the instant of 

fracture, the stresses in the plane of the crack 

are known from a quasi-static analysis. Let us 

consider the case that the only stress in the 

plane of the crack just prior to fracture is 

'22 P(x1). The time of fracture Initiation is 

taken as t =* 0. It Is assumed that the crack 

propagates in its own plane, and that the frac¬ 

ture process Is so fast that in-plane wave mo¬ 

tions are generated in the solid. For t > 0 the 
crack tip is located at x * X(t), where dX/dt 

k (t . (1)\ (*F) [ X(t) Pla^a (2.36) 
kI(t’dt WAk2WJJ [x(t)_8]* 

Here k2(dX/dt) Is a complicated function of 

dX/dt. It Is of Interest to compare Eq. (2.36) 

with the corresponding expression for quasi¬ 

static fracture. 

/2\* rX(t> P<s>d8 

- © J 
[X(t)-s] ,½ 

(2.37) 

Note that the elastodynamic and elastostatic 

stress intensity factors differ only by a 

multiplying function, which depends on dX/dt 

only. Crack propagation with variable velocity 

was also studied by Kostrov [23] by a direct 
method, which verified the result obtained by 

Freund. 

Analogous results for the anti-plane case are 
discussed in Ref. [4]. It is found that 

kiii(t,g) - k 
23© 

where 

dX\ 

23Vdt; b-hS 

(2.38) 

(2.39) 

is smaller than the velocity of Rayleigh waves. 

The propagation of the crack generates cylindri¬ 

cal waves. The elastodynamic fields are obtain¬ 

ed by superimposing on the elastostatic field a 
solution to Eqs. (1.1)-(1.6) for a solid contain¬ 

ing a slit x^ < X(t), with the following boundary 

conditions. 

0 < Xj < X(t) t22 = - P^) (2.32) 

The functions k2(dX/dt) and k^^idX/dt) have 

been plotted in Fig. 5, for a material with 

Poisson's ratio v = 0.25. The stress-intensity 

factors vanish for cracks propagating with ve¬ 
locities c_ and c„, respectively, where cD is 

K L K 

the velocity of Rayleigh waves. 

<» < < 0 

00 < <03 

T22 “ 0 

t21 " ° 

(2.33) 

(2.34) 

Xj 5 X(t) (2.35) 

The initial conditions which complete the state¬ 
ment of the problem are that all field variables 

are zero prior to time t = 0. By superimposing 

this elastodynamic solution on the initial elas¬ 

tostatic solution, the fracture surface defined 

by x2 = 0, 0 < x^ < X(t) is rendered free of 

tractions. 

The stress intensity factor for the problem 

stated above was obtained by Freund [22], In two 

steps. First the problem was solved for con¬ 

stant crack propagation velocity dX/dt = v. The 

complete elastic field for this problem can be 

solved by integral transform methods as discuss¬ 

ed in Ref. [4], By an ingeneous argument Freund 

subsequently showed that kj.(t,dX/dt) for the non- 

uniformly propagating crack can be obtained 

from the corresponding value for crack propaga¬ 

tion at a constant velocity v, simply by replac¬ 

ing v by dX/dt, and vt by X(t). This results in 
an expression of the form 

Elastodynami’c fields for a crack expanding with 

a constant velocity from a single point in a 

uniform stress field can be treated rigorously. 

The plane strain 

c, di 

FIGURE 5: Ratios of elastodynamic to elasto¬ 

static stress intensity factors. 

MM 
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c«se was «aalyzed by Broberg [24]. Stress dis¬ 

tributions In the plane of the crack for Broberg'a 

problem were presented by Kamel and Yokoborl [25]. 

For expanding central cracks certain field vari¬ 

ables are self-similar, which Introduces a con¬ 

siderable simplification In the analysts. Self- 

similar solutions are discussed In more detail 
later In this paper. Expanding penny-shaped and 

elliptical cracks were discussed by Willis [26], 

who also listed additional references for self- 

similar solutions. 

It Is somewhat more complicated to analyze near¬ 

tip fields at a crack tip running under the in¬ 

fluence of Incident waves. Some available solu¬ 

tions have been reviewed in Ref. [4]. 

2.6 Cracks Propagating In and near Interlaces 

For elastostatlc problems the nature of the sin¬ 

gularity near :he tip of a crack in the inter¬ 

face of two bonded dissimilar half planes was 

analyzed by Williams [27]. Williams was appar¬ 

ently the first to discover that for in-plane 
problems the singular parts of the near-tip 

stresses show intense oscillations, while the 

displacements on the crack surfaces interpene¬ 

trate. Mathematically the oscillating singular¬ 
ities appear, because the factor p in the asymp¬ 

totic expressions given by Eq. (2.11) turns out 

to be a complex number. The same situation pre¬ 

vails for elastodynamic problems of rapidly 

propagating interface flaws, as shown in Ref. 

[28]. Available solutions for elastodynamic 

stress intensity factors for crack tips propaga¬ 

ting in interfaces or normal to interfaces have 

recently been reviewed by Atkinson [29]. 

2.7 Experimental Results 

What appears to be the first recorded experimen¬ 

tal work on fracture under dynamic loading con¬ 

ditions was carried out by J. Hopkinson. Hop- 

kinson measured the strength of steel wires when 
they were suddenly stretched by a falling weight. 

He explained the results in terms of elastic 

waves propagating up and down the wire. The 
next significant investigation was carried out 

by B. Hopkinson, who detonated an explosive 

charge in contact with a metal plate. In his 

work, B. Hopkinson demonstrated the effect of 

"spalling" or "scabbing," which occurs when the 
compressive pulse generated by the explosive is 

reflected at the opposite side of the plate as 

a tensile pulse. Die reflected pulse produces 

tensile fractures, and a disk of metal roughly 

in the shape of a spherical cap breaks away 

from the surface directly opposite the explosive 
charge. After the work of B. Hopkinson very 

little research was apparently carried out in 

this area until the Second World War. Kolsky 

[30] devoted a chapter of his book to fractures 
produced by stress waves, in which the work of 

J. and B. Hopkinson is described and further 

work dating from the late forties and the early 

fifties is discussed. 

In racent years much additional experimental 

work has been carried out with a large number of 

materials and with specimens of various geometri¬ 

cal conllgurattons. The stress pulses were pro¬ 

duced by the ballistic Impact of projectiles or 

by explosive charges. In a review article 

stress waves and fracture, Kolsky and Rader [31] 

describe many of these investigations. Extensive 

investigations on the fracture of glass under dy¬ 

namic loading conditions are discussed in the 

book by Kerkhof [32]. Experimental work of re¬ 

cent vintage was reported at a 1972 conference 

on dynamic crack propagation, and was published 

in the proceedings [33]. Interest in fracture 
under dynamic loading conditions is now increas¬ 

ing rapidly. The proceedings of the 12th annual 

meeting of the Society of Engineering Science 
contain a relatively large number of experimental 

studies on dynamic fracture [34]. 

In Ref. [35] a new method was reported of experi¬ 

mentally investigating the behavior of a crack 

in a stress wave environment. The method was 

used to study the initial stages of dynamic crack 

propagation in Homalite 100, a polyester. The 

experimental method employs an electromagnetic 
loading device, and it permitted the application 

of pressure pulses to the surfaces of an 18 inch 

crack. The amplitude (51 psi to 1020 psl) and 

duration (~ 200 p,sec) of the pulses were highly 

repeatable. A high speed framing camera, syn¬ 
chronized with the loading device, was used to 

record the time required for the crack to begin 

to propagate and its subsequent extension and 

velocity. 

3. FRACTURE MECHANICS CONSIDERATIONS 

Fracture mechanics is concerned with the compu¬ 

tation of the fields of stress and deformation 

around a crack, and with conditions for growth 

of the crack. It provides the necessary frame¬ 

work for analysis on the macroscopic level. A 

fracture mechanics problem consists of two 
parts: a certain amount of stress analysis is 

followed by an application of a fracture crit¬ 

erion. In the stress analysis part mathematical 

idealizations are introduced. An infinitesi¬ 

mally thin crack and linearized theory together 
give rise to the square-root-singularities dis¬ 

cussed in the previous section. The fracture 

criterion generally is an inequality which pro¬ 

vides a necessary condition for the onset of 

crack propagation. 

Fracture mechanics started with the work of A. 

A. Griffith in the early twenties. Thirteen 

congresses ago, at this same University, during 

the First Congress of Theoretical and Applied 
Mechanics, Griffith presented a paper in which 

he stated, "If owing to the action of a stress 

a pre-existing crack is caused to extend, a 

quantity of energy proportional to the area of 
the new surface nuisit be added, and the condition 

that this shall be possible is that such addi¬ 

tion of energy shall take place without any in¬ 

crease of the total potential energy of the 

system." This means that the increase of 



9 

potential energy due to the surface tension of 

the crack must be balanced by the decrease in 
the potential of the strain energy and the ap¬ 

plied forces. In mathematical terms we have for 

Mode I, plane strain, and symmetric extension: 

dU 
da 

41’ (3.1) 

Here U Is the total potential of strain energy 

and applied forces per unit thickness, 2a is the 

length of the crack, and is the specific 

surface energy per unit surface area. Thus, me¬ 
chanical energy of the body is "dissipated dur¬ 

ing the fracture process, even though the mater¬ 

ial is perfectly elastic. The loss of mechani¬ 
cal energy as new fracture surface is formed be¬ 

comes plausible if we consider the work of the 

internal (cohesive) forces that are removed as 

new fracture surface, which is free of tractions 

is formed. Since the cohesive tractions that 

are removed are opposite in direction to the re¬ 

lative displacements of the newly formed fracture 

surfaces, their work is negative. Thus, in the 
course of crack propagation mechanical energy is 

extracted from the body. Within the idealized 

framework of linearized continuum mechanics the 

region over which cohesive tractions are releas¬ 

ed as the crack propagates is infinitesimal, 

namely, the tip of the propagating crack. Never¬ 
theless the energy release rate has a finite val¬ 

ue because of the presence of square-root terms 

in the field variables which enter in the energy 

release rate. It was shown by Irwin that the 

energy release rate may be expressed in the 

form (Mode I, plane strain) 

ä - <= - î? M2 <3'2> 
Strictly Eq. (3.1) may be applied only to mater¬ 

ials which do not suffer non-linear effects 

prior to fracture However, about twenty-five 

years after Griffith's original contribution, 

Irwin and Orowan suggested a modification to ac¬ 

commodate limited plastic deformation near the 

crack tip. They replaced the surface energy 
term by a term which includes the energy 

of plastic distortion absorbed by the fracture 

process. Irwin noted that a precise interpre¬ 

tation of the term fg is unnecessarily restric¬ 

tive. Provided the plastic zone is small, a 
theory for correlating fracture behavior can be 

substantiated. In his view the modified theory 

consists in evaluating the rate of strain energy 

release at the point of fracture. If the frac¬ 

ture process is essentially similar for differ¬ 

ent loadings and geometries, the fracture event 

occurs when the strain energy release rate 
reaches a critical value. This critical value 

can be regarded as a material property, i.e., 

T to be determined by a fracture test. 
E’ 

The energy release rate, G, and the flux of 

energy into the crack tip, F, are related by 
F -» G dX/dt. For elastodynamic problems where 

time enters as an independent variable, it is 

quite simple to compute the flux of energy into 
the moving crack tip. A detailed discussion can 

be found in Ref. [4], as well as in the pap«s 
by Atkinson and Eshelby [36], Kostrov and Nikitin 

[37] and by Freund [38], In the vicinity of the 

crack tip we write 

[x^xa-tpi 

J.(x1,0 ,t) 
[X(t-tf)-x1] % 

(3.4) 

where the fracture process is assumed to start 

at time t = tf, i.e., X(t) = 0 for t * tf, and 

the ± signs relate to x2 - 0+ and x2 - 0 , res¬ 

pectively. The flux of energy into the crack 

tip then is 

; Us; - «ti (3.5) 

The obvious advantage of Eq. (3.5) is that only 

the field variables in the plane of fracture 

and near the crack tip need be computed to ob¬ 

tain a fracture criterion. By comparison with 

Eqs. (2.3)-(2.6) the relations between T^ and 

k (t dX/dt) can immediately be establish- 
*1,11,in'- ’ 

ed. Similarly U* can be expressed in terms of 

k (t dX/dt). Thus, the only quantities 
I II III 

which'need to be computed are the stress intens¬ 

ity factors, and Eq. (3.5) can be expressed as 

F . . -J?-- {(1-°¾ [kl(t>v)] 

2pcT D(aL,aT) 
2 

+ (i-oÿ [>„(*,v)j} + [kin(t’v)] 

(3.6) 

where 0((^,0^) is defined by Eq. (2.26). In 

terms of the flux of energy into the crack tip 

the necessary condition for fracture is 

F ” zr at a 

where F may be either or 1^. It should be 

noted that F may depend on dX/dt. 

It is relatively simple to apply Eq. (3.7) for 

the case of anti-plane shear, to investigate 

the generation of crack propagation by an in¬ 

cident step stress wave of the form 

u 
3 

j,cTt+x1sina-x2cosO( 

o 

g (v ) dv (3.8) 

where u3 = 0 for cTt + x^inor-x^oso á 0. The 

wave strikes the crack tip at time t = 0, and 



a is the angle of incidence. Suppose the crack 
tip starts to propagate at time t - tf. The 

stress Intensity factor follovra from results 
stated in Ref. [4] as 

(3.9) 

where 

Kt) 
»cTt+X(t-t j)slno( ..sCDlL 

[cTt+X(t-tf)sina-Ç] ½ 

(3.10) 

By employing Eq. (3.8) and Eq. (3.6), F is com¬ 
puted, and Eq. (3.7) subsequently yields 

^ (l-sina) 
cT-dX/dtI 

I cT+dX/dt I 
[l(t)] = 2F (3.11) 

This relation can be used to compute both t. and 
dX/dt. 

Let us consider the special case of a step inci¬ 
dent wave defined by g(s) - From thc con" 

dition that both dX/dt = 0 and X(t-tf) = 0 just 

prior to time t « tf we obtain 
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solution of the two-dimensional wave equation 

VZcr - (l/c)2rt. If a(r,0,t) is self-similar, it 
will depend on e i'16 tatio r/t, rather than 
on 6 and r and t separately. 

To determine cj(r/t,9) it is convenient to intro¬ 
duce the new variable s » r/t. The equation 
governing o(s,0) follows as 

(4.1) 2/, s2\a2o ^ J, 2ä2\5cr . 2jz „ n 

8 (l- + 9^' c2^s %62 

For s £ c, Eq. (4.1) is elliptic. By means of 
Chaplygin's transformation 

8 « arc cosh(c/s) , (4.2) 

where 6 * °> E9- ¢^-1^ CBn be simplified to La¬ 

place's equation 3 a/38 + 3 a/36 = 0- 313- 
main in the 0-0 plane generally is a semi-infi¬ 
nite strip. In this domain we have <j » Re[ll(Y)], 
where y “ 8 + I9- I(: ls often convenient to map 
the strip in a half-plane, C = Ç + Hl» by a con_ 
formal mapping y ■ u)(0, and to determine an 
analytic function in the C-plane which satisfies 
appropriately transformed boundary conditions 
along the real axis. Details can be found in 
Ref. rn. o. 154. 

For s > c, Eq. (4.1) is hyperbolic. It can be 
checked that tnrough the transformation 

a ■ arc cos(c/s) , (4.3) 

TIpF 

2(1-sIm)c„t r o 

(3.12) 

Thus, there is an incubation time before frac¬ 
ture starts. The incubation time is just the 
time required by k^^jCt) to reach a critical 

value which is the same as for the quasi-static 
case. 

For t > tj, Eq. (3.11) provides an equation for 

dX/dt, which can easily be solved if it is as¬ 
sumed that F is constant. For the case a = 0, 
i.e., when the wavefront is parallel to the 
crack, we obtain for t 2 t^ 

K) 
2 t2-i Sr/CT) 

i2 t2+i ̂ Ipl/c.j)2 

(3.13) 

Eq. (4.1) reduces to the one-dimensional wave 
equation with solutions 

a ~ n. (cw-e) + n (a-e) , (4-4) 
T " 

where Q± are arbitrary functions of the charac¬ 

teristic variables a ± 6. In the s-8 plane the 
characteristics are tangents to the circle de¬ 
fined by s = c. 

For elastodynamic problems the method of self¬ 
similar solutions was used by Miles [39]. The 
method was also discussed by Willis [26]. An 
equivalent method was developed in the early 
1930's by U.I. Smirnov and S. L. Sobolev. A 
general discussion of that method as well as a 
few examples can be found in the book by Smir¬ 
nov [40]. Recently a review with several appli¬ 
cations was given by Cherepanov and Afanasev 
[41]. 

It is noted that dX/dt -• c^, as t - m. 4.1 An Elastodynamic Solution for a Wedge 

Similar computations can be carried out for the 
in-plane case, as discussed by Freund [5] except 
that it is not possible to obtain simple closed 
form expressions. 

4. SELF-SIMILAR ELASTODYNAMIC SOLUTIONS 

For two-dimensional elastodynamic problems with¬ 
out a characteristic length, and for appropriate 
conditions on the boundaries, some of the field 
variables are self-similar. Let a(r,0,t) be a 

One of the still essentially unsolved problems 
in elastodynamic theory concerns a wedge of 
angle xn, whose surfaces are subjected to ar¬ 
bitrary disturbances. A review of attempts to 
obtain rigorous solutions was given by Knopoff 
[42]. Only boundary conditions of smooth con¬ 
tact with rigid planes have allowed an exact 
solution, which was derived by Kostrov [43]. 
In this section we briefly indicate the con¬ 
struction of a self-similar elastodynamic 
solution for a wedge-shaped region with certain 
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conditions on the surface tractions. The suit¬ 
ability of the method of self-similar solutions 
for wedge shaped regions was already shown in 
Ref. [44] for the case of anti-plane strain. Ap¬ 
plications to cases of skew crack propagation and 
crack bifurcation are discussed in later sections. 

Suppose a wedge is subjected to a line load nor¬ 
mal to one of the surfaces. The load is applied 
at time t « 0 at the vertex, and then moves with 
a constant velocity V away from the vertex. The 
problem can be separated into a symmetrical and 
an antisymmetrical problem. Here we will con¬ 
sider the antisymmetrical problem shown in Fig. 
6. The boundary conditions are 

r > 0, 0 “ i %htt: T0r - 0 (4.5) 

t » T P6(r-Vt) (4.6) 
0 

The wedge is at rest prior to time t = 0. The 
pattern of waves for t > 0 is shown in Fig. 6. 
For these boundary conditions the time deriva¬ 
tives of the displacement potentials are self¬ 

similar. 

Following the steps outline earlier, we obtain 
4>(eL.e) and $(0T,e) in domains @L 2 0, - 

s e <: and BT ^ 0. - * 0 * V’. respec¬ 

tively. These domains are the mappings of OBFC 
and 0AÏÏÜD, respectively. Here and ßT follow 

from Eq. (4.2) by inserting c = cL and c = cT> 

respectively. In the domains corresponding to 
ABE and DCÏÏ we obtain wave equations, with solu¬ 
tions which are analogous to Eq. (4.4), but with 

and 0 as independent variables. Here aT is 

defined by Eq. (4.3), with cT for c. The bound¬ 

ary conditions (4.5) and (4.6) provide the appro¬ 
priate relations between the derivatives of Of 
and $ along the boundaries of the two semi-in¬ 
finite strips. Next we proceed to map the two 
strips on half-planes by means of mappings 

coshf + 1 I) h. cosh 

The analytic functions in the (^- and Cp'Pl811®3 

must satisfy coupling conditions along the real 
axes which follow from the conditions along OB, 
AB, CD and OC in the physical plane. The details 
of'the analysis are much too lengthy to be 

presented here, but they will be available else¬ 
where. Let us just note that the formulation 
leads to a system of coupled singular integral 
equations with Cauchy kernels. A numerical 
scheme based on series expansions in terms of 
Chebyshev polynomials was developed to obtain 
numerical solutions. Some results for the part- 

..-.3 *... i., -no rnrilal direction 

5. SKEW CRACK PROPAGATION AND CRACK BIFURCATION 

If a homogeneous, isotropic, linearly elastic 
solid containing a plane crack is loaded so that 
the singular parts of the near-tip stresses are 
symmetric relative to the plane of the crack, 
one might perhaps expect the crack to propagate 
in its own plane. Experiments often show, how¬ 
ever, skew crack propagation and crack bifurca¬ 
tion, especially for essentially brittle frac¬ 
ture. Although it has been suggested that elas- 
todynamic effects play an important role in 
these phenomena, some first analytical investi¬ 
gations for the case of anti-plane strain, have 
only been published recently, see Refs. [45] and 
[46]. The computation of the elastodynamic 
fields presented the principal obstacle. It is 
shown here that the method of self-similar solu¬ 
tions provides a powerful tool for the analysis 
of elastodynamic skew crack propagation and crack 

bifurcation. - , 

5.1. Skew Crack Propagation in Anti-Plane Strain 

A way to employ self-similarity of field vari¬ 
ables for the computation of elastodynamic near¬ 
tip stress fields in anti-plane strain, for the 
case that a semi-infinite crack propagates out 
of its own plane was devised by Achenbach and 
Varatharajulu [45]. Here we will employ the 
results of Ref. [45] to explore an elastodynamic 
explanation of skew crack propagation under 
stress-wave loading. A tw. dimensional geometry 
is considered. An unbounded body containing a 
semi-infinite crack (x2=0, x^ S 0, - ® < ®) is 

subjected to a suddenly applied anti-plane line 
load at Xl « 0, x2 - - a. The load generates a 

stress wave, which strikes the crack tip. By 
employing analytical results of Ref. [45] in con' 
junction with the fracture criterion of the bal¬ 
ance of rates of energies, the necessary 



12 

condition for skew crack propagation at the in¬ 

stant that the crack is struck is investigated. 

Let us first investigate the elastodynamic fields 

which are generated when a branch emanates asym¬ 

metrically from the tip of a semi-infinite crack, 

when the crack is struck by a horizontally polar¬ 
ized shear wave, whose wavefront is parallel to 

the surfaces of the semi-infinite crack. The re¬ 

flection and diffraction of the incident wave 

gives rise to a plane wave and a diffracted cy¬ 

lindrical wave centered at the original crack 

tip It is assumed that the semi-infinite crack 

propagates at the instant that the crack is 

struck, at an angle htt, and with velocity v, 
where v/c < 1. At time t > 0, the crack tip is 

located at point D. The pattern of wavefronts 

and the position of the crack tip are shown in 
Fig 8. The particle velocity of the incident 

wave is of the form H(t-x2/cT), where H( ) is 

is the Heaviside step function. For this prob- 
lern the particle velocity is seif-similar, an 

the analysis proceeds as outlined at the begin¬ 

ning of section A. Details can be found in Ref. 

FIGURE 8: Pattern of wavefronts and position of 

* crack tip for skew crack propagation under the 

influence of a step-stress wave. 

Relative to a system of moving coordinates shown 

in Fig. 8, we find for small values of r: 

t03 ~ (2n)-% knjit.v.HlT^Ce.v) (5.1) 

where TIí1(0,v) is defined by Eq. (2.30), and 

km(t,v,K) = Zrt^l- (^) K(h) i5-2) 

CT 

K(h) - \i F,(5d)/[u) (^d)T <5'3^ 

In Eq. (5.3), is the mapping of the point D 

in the C = £ + if) plane, and u)(0 defines the 
Schwarz-Christoffel transformation, y = u)(0, 

from the y = 6 + ^ pfane to the C-pl»ne- The 
real part of F(Q defines the particle velocity 

of the cylindrical diffracted wave. 

Let us now return to the problem of the concen¬ 

trated line load. Relative to a system of cy- 

llndrical coordinates centered at = 0, 

X - a, the stress wave due to an anti-plane 

line load of P force units per unit length can 

be found in Ref. [1], P- 157. Assuming that the 
distance a is large, the wave arriving at the 

plane of the crack can be considered a plane 
wave. For small values of t = t - a/c^ we then 

have relative to coordinate system centered at 

the crack tip: 

(‘Vine * 2np CT 
£- c '3/2(2a)‘%(I-x /c )*%H(t-x2/cT) 

(5.4) 

When the wave given by Eq. (5.4) strikes the 
crack a reflected and a diffracted wave are gen¬ 

erated. Apart from the time dependence, the 
above elastodynamic problem is precisely the one 

discussed earlier in this section. Taking into 

account that superposition can be employed in 

the limit t - 0, t03 for small time is given by 

Eq. (5.1) where 
lí 

kiiI(t,v,H) (¾ (- ÿ V) K(k) (5.5) 

The flux of energy into the propagating crack 

tip follows from the last term of Eq. (3-6)- 
For the problem at hand the function F is plotted 

in Fig. 4 of Ref. [47]. The noteworthy result 
Is that the rate of energy flux into a propaga¬ 
ting crack tip shows a maximum at x = 0 only tor 

values of v/cT which are smaller than e value of 

v/c of approximately v/cT = 0.27. Apparently 

the rate of energy flux into a crack tip can be 

higher for skew crack propagation than for a 
. . »_ J _ Ja-« AT.Tn 1 n n P 

FIGURE 9: Maximums oí F with respect to k plott 

ed vs. v/cT; F » (16nap,/P2cT)F. 
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The tendency towards skew crack propagation can 
be examined on the basis of the balance of rates 
of energies. This fracture criterion is stated 
by Eq. (3.7). In the present problem we have 
F « 2Tv. For essentially brittle fracture P la 
the specific surface energy, which is independ¬ 
ent of h. In a plot of F vs. x and 21 v vs. h 
for specific v/c^, the term 2Fv is then represent¬ 

ed by a horizontal line. In accordance with the 
balance of rates of energies, the values of v 
and h are determined by a point of intersection 
of the curves for F and 2Fv. Since both v and h 

are as yet unknown an additional condition is 
required. Such an additional condition is that 
only an intersection where 2Pv is tangent to F 
(i.e., F is a maximum with respect to h) defines 
a case of stable crack propagation relative to 
variations of h. Thus, in Fig. 9, the maxima of 
F with respect to h have been replotted versus 
v/c^,, and values of h at which the maximums of 

F are reached have been indicated. In this fig¬ 
ure 2Pv is a straight line through the origin. 
The intersection of 2Pv and F defines a case of 
crack propagation and the pertinent values of v 
and h follow from the point of intersection in 
Fig. 9. The foregoing discussion defines P and 
P as the principal’quantities controlling skew 
crack propagation. For small enough I and/or P, 
2Pv is tangential to F at k = 0, and thus v/c^ 

will be relatively small and the crack will pro¬ 
pagate in its own plane. For larger values of 
F or P the relevant intersection is at k > 0, 
i.e. skew crack propagation can be expected. 

5.2 Bifurcation of a Running Crack in Anti-plane 
Strain 

Once the propagation of a crack has started, the 
primary crack often bifurcates into two or more 
branches, each of which may propagate over a 
short distance, ari then again split into two or 
more new brandies. Crack bifurcation occurs in 
a variety of materials, and under different ex¬ 
ternal conditions. The phenomenon is, however, 
particularly frequent for essentially brittle 
fracture, when the speed of crack propagation 
becomes relatively large. Experimental observa¬ 
tions of the magnitude of the speed of crack 
propagation at branching suggest that elastody- 
namic effects play a significant role. 

We take the view that bifurcation of a running 
crack is an instability phenomenon, and that a 
necessary condition for bifurcation can be de¬ 
termined by comparing states prior to branching 
and after brandling has taken place. The com¬ 
parison requires expressions for the elastody- 
namic fields near the tips of the branches. For 
symmetric bifurcation in anti-plane strain the 
near-tip fields were analyzed in Ref. [46], 
where a necessary condition for bifurcation of 
a running crack was also established on the 
basis of the balance of rates of energies. 

The model problem considered here and in Ref. 
[46] concerns the two-dimensional geometry of 

FIGURE 10: Tearing of an edge crack. 

an edge crack of depth a in a semi-infInite 
elastic solid, as shown in Fig. 10. The body is 
subjected to a distribution of equal and opposite 
concentrated forces in the x^-direction, applied 

at x1 = 0 and x2 ± e, where e is very small. 

These anti-plane shear forces, of magnitude S(t) 
force units per unit length, give rise to defor¬ 
mations in anti-plane strain. It Is assumed 
that the fields of stress and deformation gener¬ 
ated by S(t) are elastostatic in nature. 

Prior to crack propagation, the stress component 
T23 in the plane x^ = 0, and near x^ - a, is 

given by 

’23 • - »I<*>->']} S"> <5'6> 

Let us now suppose that at time t = 0 a rapid 
Mode III tearing process starts, and that the 
crack begins' to propagate, initially In its own 
plane, so that the position of the crack tip Is 
defined by x^ ■= a + X(t), where dx/dt < It 

is assumed that the fields generated by the pro¬ 
pagation of the crack are elastodynamic in na¬ 
ture. The propagation of a crack in its own 
plane has been analyzed In detail, see e.g. Ref. 
[4], at least for small times. Here we wish to 
consider the case that subsequent to propagation 
in its own plane in the time interval 0 < t < tbf, 

the crack bifurcates symmetrically under angles 
± htt from the points defined by x^ ’ a + X(tbf), 

as shown in Fig. 11. The elastodynamic fields 
generated by the removal of tractions from the. 
crack branches and the subsequent application 
of the balance of rates of energies are the prin¬ 
cipal topics of analysis of Ref. [46], 

In the initial stages, when the crack propagates 
in its own plane the stress intensity factor is 

iî)" s<*> ^ 

The flux of energy into the crack tip follows 
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FIGURE 11: Rapid propagation and bifurcation in 

anti-plane strain of an edge crack. 

from the last term of Eq. (3.6). The balance of 

rates of energies, Eq. (3.7), yields 

(“ 10 '(' * t S) 
-½ dX 

dt 
[S(t)] 

dX 

2 dt 
(5.8) 

Equation (5.8) yields not only the critical mag¬ 

nitude of S(t), but also dX/dt. Both sides of 

Eq. (5.8) are plotted in Fig. 12. The right 

hand side is a straight line through the origin, 

whose slope decreases as S(t) increases. The 
necessary condition for fracture is satisfied 

when the straight line intersects the curve re¬ 

presenting the left-hand side of Eq. (5.8), i.e., 

when 

S(t) = Scr - (rr|j,ra)^ (5.9) 

The subsequent speed of crack propagation can 

easily be computed from Eq. (5.8). There will 

be an instantaneous speed of crack propagation 
if S(t) exceeds S at the instant that fracture 

starts. 

The fields near the tips of the two branches are 

obtained in two stages. First we solve a prob¬ 
lem for which the particle velocity is self-simi¬ 

lar, and then these results are employed to com¬ 

pute the near-tip fields for the problem illus¬ 

trated in Fig. 11. Relative to the system of 

polar coordinates at the crack tip, shown in Fig. 

11, the result is 

kin(v’K) = (¾ (1- h) {v) k(m) s(tbf)(5-10) 
CT 

where v is the velocity of the bifurcated crack 

tips. 

An explicit expression for K(h) is given as Eq. 

(3.41) in Ref. [46]. The flux of energy into a 

crack tip is 

r ^ K’f t5"«']2 <s-m 
The conditions are right for crack bifurcation 

at time t - t, , with velocity v, if the balance 
bi 

of rates of energies, Eq. (5.11), can be satis¬ 

fied, which Implies 

[nK(*)]2 
2naru, v 

[s(tb[)]2 ct 
(5.12) 

Since this equation contains two unknowns, namely 
v and x, an additional condition is required. 

Such an additional condition is that only a point 

where F is a maximum with respect to K defines a 

case of stable crack propagation relative to var¬ 

iations of H. Thus in Fig. 12 
2 

the maxima of [ttK(k)] with respect to k have 

been replotted versus v/cT- 

FIGURE 12: Terras appearing in the balance of 

rates of energies for propagation in the plane 

of the crack and for symmetric bifurcation. 

c 
When S(t) = Scr - (TrpTaK the necessary condition 

for fracture is met. The load S(t) may exceed 
S before fracture in the plane of the crack may 
cr 
actually start. If that is the case there is an 
instantaneous speed of crack propagation, and 

subsequent values of dX/dt as S(t) increases can 

be determined as the intersection of the line 

and the curve A, as previously discussed. From 

Fig. 12 we note, however, that as S(t) increases, 

the straight line wilt eventually touch the curve 
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2 
B for FtiKCh)! , which Is also plotted In Fig. 

L Jmax 
12. When that takes place Eq. (5.12) Is satis¬ 

fied, and the necessary condition for crack bi¬ 

furcation is satisfied. The speed at which bi¬ 

furcation takes place follows from the intersec¬ 

tion of A with the straight line through the or¬ 

igin which touches the curve B. We find at the 

point of bifurcation (1/c^,) dX/dt ~ 0. 375. This • 

is the velocity of in-plane crack propagation at 

which the necessary condition for bifurcation is 

first met. The insert in Fig. 12 shows a some¬ 
what enlarged view of the region for small v/c.^. 

The speed of bifurcation is found as v/c^ ^.0.02. 

The angle of bifurcation is hit ~ 0.22n. Note 

that the speed of bifurcation is much smaller 

than the preceding in-plane crack propagation 
velocity. Once bifurcation has started the 

curve for propagation in the plane of the crack 

becomes, however, again operative, and the speed 

of crack propagation can increase rapidly until 

the condition is met for another bifurcation. 

5.3 Bifurcation of a Running Crack for the In- 

Plane Case 

Computations for deformation in anti-plane strain 

(Mode 111) are of little significance for engi¬ 

neering problems. Anti-plane deformation is, 

however, of interest in a geophysical context. 

Solutions of anti-plane problems also frequently 

suggest the proper steps for the attack on in¬ 

plane problems. There are, however, some prin¬ 
cipal differences in the basic mechanisms of 
crack bifurcation for the anti-plane and in-plane 

cases, and these; should be kept in mind. Branch¬ 

es of a primary crack under pure Mode-I loading 

generally are subjected to both Mode-1 and Mode¬ 

ll loading conditions. Mixed loading conditions 

do not occur for crack bifurcation in anti-plane 

strain. 

The experimental information available in the 

literature is for in-plane deformation. It re¬ 

quires sophisticated high-speed photographical 

equipment to take a sequence of photographs show¬ 

ing the evolution of the pattern of bifurcating 

cracks. The techniques which were developed for 

this purpose are described by Kerkhof [32], p. 

108. In Ref. [32] a number of shadow photographs 
of bifurcating cracks are shown, and numerical 

information on speeds of crack propagation is 

presented. A paper by Kalthof in Ref. [33], 

dealing with bifurcation of a primary edge crack 

in a stretched glass plate, includes a sequence 

of shadow photographs at a framing rate of 4 ps, 
which is particularly illustrative of the first 

bifurcation of the primary crack. Experimental 
results were also reported in Kefs. [48] - [51]. 

There are several differences between the exper¬ 

imental results for the in-plane case reported 

in the literature, and the analytical results 

for the anti-plane case obtained in the previous 

section. Experimentally the following angles 

were found for the in-plane case: 

Congleton [48]: ~ 20°; Clark, Irwin [49]: ~ 17°; 

Kalthof [33]:~ 15°; Kobayashi et al [50]:~ 13°; 

Döll [51] measured the speed of the bifurcating 

branches as approximately 907. of the speed of 

the primary crack tip just prior to bifurcation. 

Kobayashi et al [50] found slightly smaller 

values. In the previous section the speed at 

which bifurcation of the primary crack tip can 

occur was obtained as 0.375 times the speed of 

transverse waves. For the in-plane case Kerkhof 
[32] measured a maximum crack velocity of approxi¬ 

mately one third of the speed of longitudinal 

waves. 

The differences between the analytical results 

for the anti-plane case presented in this paper 

and the experimental results for the in-plane 

case cited above can primarily be ascribed to 

differences in the basic fracture mechanisms. 

Another reason for the differences could be that 

in the analysis F (the crack extension energy) 
was assumed independent of the crack tip velocity. 

It has, however, been reported that experiments 

on steel under Mode-1 loading show that for a 

rapidly propagating crack tip the crack extension 

energy may be more than a factor of ten higher 
than for slowly propagating crack tips. In prin¬ 

ciple it is not difficult to extend the analysis 

of the previous section to the case that F dep¬ 

ends on the crack propagation velocity, but this 

would require an explicit expression for F in 

terms of the crack propagation velocity. There 

is no experimental information available for bi¬ 

furcation in anti-plane strain, because this case 

is very difficult to achieve on a small test 

piece in a laboratory. 

Clearly, it will be very interesting to obtain 

results analogous to the ones presented in Sec¬ 

tions 5.1 and 5.2, for in-plane deformations. 

Work on these problems was in progress at the 

time of the writing of this article. In the 
analysis one first considers a case for which 

certain field variables are self-similar, and 

then one proceeds to use this solution in con¬ 

junction with superposition considerations for 

the loading conditions that are of interest. 

The solution of the self-similar problem is 

achieved along the lines sketched in Section 4. 

There are two wave equations, which can be re¬ 
duced to Laplace's equations in semi-infinite 

strips containing slits. These strips are mapped 

on half-planes by means of Schwarz-Christoffel 

transformations. The conditions at the bound¬ 
aries and at the wavefronts in the physical plane 

lead to a system of singular integral equations 
connecting the real and imaginary parts of ana¬ 

lytic functions along the real axes of the. half- 
planes. The system of singular integral equa¬ 

tions is solved numerically by employing expan¬ 

sions in Chebyshev polynomials. 

6 CONCLUDING REMARKS 

The analysis of el nstodynamic stress intensity 
factors is an essential part of investigations 
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dealing wlththe stability of cracks, when loads 
are applied at high rates, and when cracks may 
propagate rapidly as In essentially brittle frac¬ 
ture. In this paper some recent analytical and 
numerical results were discussed, within the con¬ 
text of the fracture criterion of the balance of 
rates of energies. At this stage of develop¬ 
ment of the subject, the emphasis has been on 
purely analytical work. There is, however, a 
growing interest in numerical and semi-numtrica 1 
techniques, to deal with complicated geometries, 
and more general constitutive behavior of mater¬ 
ia Is. 
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