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The theory underlying ERGO is founded in ordering theory (Airasian & 
Bart; 1972), with its interpretation of dominance relations following logical 
implicatives similar to Boolean algebra.  The redefinition of dimensionality 
using both the notion of dominance relations and that of logical prerequisites 
can more aptly be identified with the definition of a Guttman order, thereby 
placing emphasis on the developmental aspects of recovered sets of dimensions. 
It is this interpretation that allows for the duality of relationships between 
persons and items.  The resulting placement of both persons and items on the 
same unidimensional construct presents the researcher with the opportunity to 
observe direct relations between the two. 

A preliminary attempt to utilize the apparent advantages associated with 
the extraction procedure based on domi.iance relations, order analysis (Krus, 
Bart, & Airasian, 1975) is used.  This is done both to further explicate the 
implications of ordering theory as well as to point out the issues with which 
a dimensionalizing procedure of this type must concern itself.  In this discus- 
sion, the procedural shortcomings of order analysis are presented to acquaint 
the reader with the obstacles that an alternative approach must overcome. 
Premier among these is the failure of order analysis to consider the true natun: 
of multidlmensionality in a dominance matrix context. This appears in the 
order analytic assumption that counter dominance relations are merely a pro- 
duct of error, rather than being manifestations of the multidimensional nature 
of the data. The alternative procedure (ERGO) is developed by dealing with 
this essential point. 

The key to the dimension extraction problem of ERGO rests in the formulation 
or an index of dimension consistency that is comparable to classical measures 
such as the Kuder-Richardson formulae (1937) and the Loevinger homogeneity 
indices (1947).  Cliff (1975b), by demonstrating the relation between these 
classical indices and their redefinition in a dominance matrix context, lays 
the foundation for the development of an alternative procedure. Thus, by 
adopting a consistency measure developed there, ERGO iteratively adds items 
together, resulting in the construction of various sets of implicative chains 
representing dimensions.  Having constructed these chains, the ERGO procedure 
orders the chains in terms of maximal number of item? contributed.  The chain 
evaluation procedure can best be explained as an attempt to maximize the 
number of items accounted for in a given dimensional solution. 

To give additional understanding of both the ERGO process and the poten- 
tial advantages a procedure of this type offers, an empirical example which 
utilizes social distance items (Bogardus, 1925) pairec individually with 
three ethnic groups was analyzed for respondents representing four ethnic 
groups.  Emphasized in the solution was the duality of relationships inherent 
in a procedure such as this, that is based upon the principles underlying 
Guttman orders.  The results demonstrated the ability of ERGO to (1) group 
items referring to the s£ne ethnic group; (2) uncover hierarchically graded 
orders within each chair  (3) select the three chains that corresponded to the 
three ethnic groups; and (4) cluster individuals by ethnic group according to 
their scores. 
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The extraction of factors or dimensions from a data matrix has 

preoccupied many a psychometrician, and methods developed to accom- 

plish this task have taken many forms. From their fundamental begin- 

nings in factor analytic theory (Spearman, 1904) to the more recent 

multidimensional scaling procedures (MDS) (Shepard, 1962), to the most 

recent, ordering theory (Airasian & Bart, 1972), all methods have the 

common concern of the identification of unidlmensional structures 

within a postulated multidimensional context. To date, more tradi- 

tional methods of factor analysis and multidimensional scaling have 

fallen short in attacking the dimensionality problem specific to the 

binary matrix (Horst, 1965)« Isolating unidlmensional hierarchies 

within a binary structure has recently undergone revision based upon a 

unique theoretical conceptualization known as order analysis (Krus, 

Bart, & Airasian, 1975)• 

Instead of creating "artificial" measures of association, e.g., 

a common correlation coefficient or distance measures, order analysis 

utilizes a logic model. It attempts to isolate the logical orders 

among variables, and thus produces unidimensional components commonly 

known as Guttman scales (Guttman, 19^). Using the terminology of 

Horst (19O) and Lazarsfeld (1958), order analysis can be described 
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broadly as the process of isolating the underlying structures of latent 

entities and attributes within a given response set. 

Logical procedures for uncovering hierarchical graded orders 

via the construction of unidimensional scales have both practical as 

veil as theoretical significance. The controversial issue of examining 

the biuary relations in a test item by person response matrix serves to 

illustrate this problem. Though notably hampered by distributional 

assumptions and also by the choice of an inter-item measure of associ- 

ation, the use of classical factor analysis persists as the principal 

type of dimensionalizing procedure. Far more serious than the above 

mentioned drawbacks, however, :.s the failure of the factor analytic 

procedures to take into account the difficulty order of the items. 

Because of the fundamental role of item difficulty la test theory, 

this failure excludes factor analysis as a desired alternative, and 

suggests the use of a dimensionalizing system that takes into account 

the item difficulties. The present article suggests such a procedure, 

based upon sound measurement principles underlying the Guttman simplex. 

The value of relying on such a fundamental notion as Guttman- 

type scales offers another, and potentially even more significant, 

advantage. Instead of regarding items, particularly attltudinal 

items, in a non-theoretical ranner as would be the case with factor 

analysis, the possibility of inferring a qualitative structure among 

variables is appealing. This possibility, stemming from the develop- 

mental notion upon which Guttman scales rely, differs from the com- 

pensatory theory of behavior upon which factor analysis necessarily 
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rests.    Thus, Guttman-type scales allow for the consideration of 

various logic models of behavior,  i.e., those of a conjunctive or dis- 

junctive nature (Levy.,  1973)«    Logic models such as these allow for 

the identification of the developmental prerequisites to attitudes, 

and, at the same time, allow for different developmental orders. 

Recently, the development of a dimensionalizing system that 

works with the logical relationship of a Guttman simplex—ordering 

theory—has been proposed (Krus, Bart, & Airasian, 1975).    Its 

acceptance, however, has been forestalled by a number of procedural 

shortcomings.    Foremost among these is the failure to develop consist- 

ency indices which relate to other more common consistency descrip- 

tlves,  such as the familiar Kuder-Richardson formulae (1937) aad the 

Loevinger homogeneity indices (19^7)«    A solution to this problem has 

been formalized by Cliff (1975b) in the development of a scries of 

measures constructed from the item-by-item dominance matrices.    Impor- 

tantly, these measures of consistency constructed from dominance 

matrices parallel their counterpart in classical test theory.    The 

application of these consistency measures offers an alternative 

methodology, based on sound measurement principles, for the identifi- 

cation of unidimensional structure within an item-person context.    In 

the present study, a new factor extraction method founded in the lo?ic 

of ordering theory while also incorporating Cliff's (1975b) consist- 

ency indices will be presented.    An empirical example using Guttman- 

like social distance attitude itoms will be examined in an attempt to 

evaluate how well the model performs. 



Elements of Ordering Theory 

Simple Orders 

The construction of isomorphic number systems is the central 

issue of any structured psychologica1 research. An isomorphism refers 

to a similarity in pattern, viz., a situation where a one-to-one 

relationship exists between an object and its numerical representa- 

tion. To illustrate, consider ^he relationciiips among real numbers 

which are actually meant to be representative of the interrelations 

among a set of items or objects. One foundation of this real number 

system is that it can be linearly ordered. Thus, the following three 

properties may be said to be the axioms upon which this order/.ng i3 

dependent (Coombs, Dawes, 8c Tvcrsky, 1970, pp. 366-568). 

asymmetric property - aRb implies bBa where R means not i" 

transitive property - aRb and bRc implies aRc 

connected property - either aRb or bRa 

These axioms hold wh re R indicates the logical relationship typified 

by "greater than," and a, b, and c are entities in the system. 

An example of these three fundamental properties may be 

illustrated for the one-set dominance case (Coombs, 196*0 more com- 

monly equated with a simple preference ordering. A simple order can 

be defined in terms of the connecting relations that exist between all 

pairs of the member stimuli. A connecting relation is representer1. by 

a 1 in the row/column designate of an otherwise null matrix. The 

matrix of connections, commonly known as an adjacency matrix, repre- 
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sents a digraph (directed graph) where the arcs or connections between 

the vertices or stimuli are represented in the form of a binary score 

matrix (Harary, Norman, & Cartwright. 1965). The adjacency matrix in 

Figure 1 represents a simple ordering between three items. In the 

preference context, the connective 1 implies that the row stimulus is 

preferred to the column stimulus. The property of asymmetry is shown 

by the absence of symmetric l's. And, the lack of any logical contra- 

dictions, such as aRb, bRc, or cBa, necessarily suggests transivity. 

Thus a dimple order, aRbRc, can be said to exist. 

As these essential axioms are the foundation for defining a 

simple order for members of the same set, so also do they hold for 

relations between two different sets. The two-set dominance classi- 

fication (Coombs, 196V), in this case, refers to a set of items and a 

set of persons. The persons by items matrix seen in Figure 2 can be 

seen to yield a slcple difficulty ordering for items as well as an 

ability ordering for persons. This dual relationship is the basic 

concept underlying Outtman scales, which is represented by Figure 2, a 

perfect Outtman scale or simplex. Not only does there exist an item 

difficulty and person ability ordering, but a Joint person-item order, 

as discussed by Cliff (1975a), can also be constructed as seen in 

Figure 3. This Joint ordering can also be considered a simple order, 

thus operating under the same axioms. 

As noted, these fundamental properties of relations between 

real numbers and the objects they represent (be they items, persons, 

or a combination of both) give rise to defined orders. These proper- 
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b 

c 
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a 

0 

0 

0 

b 

1 

0 

0 

c 

1 

1 

0 

Figure 1. Adjacency matrix representa- 
tive of a simple order aRbRc. 



Items 

a b c d 

l 1 1 1 1 

s 
0 

2 0 1 1 1 

a n 3 0 0 1 1 

A It 0 0 0 1 

5 0 0 0 0 

Figure 2.    Persons by items response matrix repre- 
senting a perfect Guttman simplex. 
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1 a 2 b 3 c k d 5 

1 0 1 0 1 0 1 0 1 0 

a 0 1 0 l 0 1 0 l 

2 0 1 0 1 0 1 0 

b 0 1 0 1 0 1 

3 0 1 0 1 0 

c 0 1 0 1 

k 0 1 0 

d 0 1 

5 0 

Figure J. Rearranged joint ordering of persons 
and itims yielding a simple order. 
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ties, known as order relations, provide the basic Justification for the 

matrix man pulative procedures developed below that attempt to utilize 

logic structures as a solution to the dimensionality problem. 

Logic Structures 

Syllogistic reasoning, as originally formulated by Aristotle, 

demonstrates the use of simple logic and its cognitive counterpart, 

the reflection of thought processes. The most basic of the traditional 

syllogisms is the conjunction of lmplicative relations, i.e., as 

A-»BariB-»C then ••• . This lmplicative chaining present in 

syllogistic reasoning can also be considered as the development of a 

straight-line dimensional relationship congruent with the notion of 

simple order. An order, created by lmplicative relations, can be 

defined as a condition of logical arrangement among cerain specifi- 

cally related elements in a given set of items. 

For small sets of elements, say, a, b, c, it is possible to 

analyze the relationships between all possible response patterns (a 

plenum), which can be separated into individual response patterns 

(see Table 1). 

Table 1 was arranged upon considering all possible response 

patterns of values for each of the three elements, a, b, and c, as 

seen in step 1. Steps 2 and 3 are essentially using a syllogistic 

notation noting if the implication exists, "1," or doesn't exist, "0." 

In step k,  the conjunctive logic function, representing the logical 

truth of the Joining of steps 2 and 3, is again indicated by a 
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Table 1 

Three-dimensional Plenum 

Possible 
Response 
Patterns 

Logical Structure 
Compatible 
Response 
Patterns 

ABC (A - B)        &          (B - C) ABC 

111 
110 
10     1 
10     0 
Oil 
0     10 
0     0      1 
0     0     0 

111 
10               0 
0             0               1 
0             0               1 
111 
10                0 
111 
111 

111 

Oil 

0     0     1 
0     0     0 

Step 1 Step 2   Step k     Step 3 Step 5 

gate. A three-dimensional plenum of three variables was 
constructed in Step 1. Its one dimension, recorded 
in Step 5; ves extracted in Steps, 2, },  and k. 
(Taken from Krus, 197*+, p. U6.) 
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1-truth, O-false schema. This plenum of response patterns can be seen 

to be reduced to a Guttman 3cale (Guttman, 19*^) in step 5« This 

scale has the property of separating the individual response patterns 

into a unidimensional ordering. 

There are many different methods to logically search for rela- 

tionships within a given data set. Each logical relation, in turn, 

offers a rationale of inferences or non-inferences that may have theo- 

retical merit. Within this system of logical constants, various 

interrelations resulting from logical connectives such as "and," "if 

and only if," "either/or" may be scrutinized. Appropriate utilization 
« 

of these types of logical implications results in ordered hierarchies 

or unidimensional components. The implicative functions which lead to 

these ordered hierarchies, then, may be seen as the crux of the 

dimensionality issue. 

The implicative functions (Table 2) are: (l) (*-) "is a pre- 

requisite to," (2) (-) "implies," (j) (V) "is not a prerequisite to," 

aad CO (/) "does not imply." Employing these functions, one can move 

from one function to another by reflecting variabJ.es within the 

system. In the binary case, this is simply a matter of creating a 

function's converse. Investigation of what happens when these func- 

tions are interchanged reveals that the (1,0) or (0,1) changes (which 

indicate a reverse in the direction of implication) are variance- 

generative (Krus, 197*t; P- 10). This change can also be seen as an 

indicator that information becomes available. Such tuples differ from 

the (1,1) and (0,0) pairs, which are important for defining the 
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Table 2 

Aliorelative Order-dependent Class of Fropositional Functions 
Used by Order Analysis to Logically Search for 

Relationships within a Given Data Set 

A     B A -• 3 A - B A ^B A *B 

1      1 1 1 0 0 

1      0 0 1 1 0 

0      1 1 0 0 1 

0      0 1 1 0 0 

a 0 c d e 

Note. Column a—Plenum of response for the two arguments, 
A and B. 

b—Implication 

c—Converse of Implication 

d—Negative Implication 

e—Converse of Negative Implication 
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vithin-order structure. While the (l,l) and (0,0) tuples determine 

the order within the already determined structure, the variance- 

generative tuples outline the structure of a dimension. 

In the construction of such an iiaplicative logico-mathematical 

system, variables are not differentially weighted. That is, no 

attempt ic made to optimize or focus upon any one set of relationships. 

In such cases, the most appropriate logic functions are those of nega- 

tive implication and its converse. The reason for this is that they 

differ only in their (1,0) and (0,1) tuples (as seen in Table 2). The 

(1,0) tuple refers to a confirmatory response pattern, and the (0,1) 

tuple to a disconfirmatory response pattern. These patterns of con- 

firmatory and disconfirmatory response tuples have the essential 

property of structuring a particular domain of response patterns in a 

logical manner. 

As shown by Krus (197*0 and Cliff (1975b), the frequencies of 

negative implication and its converse, computed from the elements of 

a binary data matrix, may be used to derive a dominance matrix. 

Involved in the creation of the dominance matrix is the comparison of 

all possible row/column tuples. The result of all these comparisons 

is a dominance matrix with integer values in its row/column desig- 

nates. These designates represent the frequency of domination of a 

particular row over a particular column. This comparison of all 

possible tuples—yielding a dominance matrix of frequencies—is 

identical to the process of matrix m iltiplication. However, to 

properly compare the appropriate (1,0) and (0,1) types, the matrix 
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multiplication is performed on the transposed original data matrix and 

its logical negation or converse. Ike dominance matrix produced from 

tbis procedure is similar to a correla ion or proximity matrix, in the 

same manner expressed by Coombs (1964). rhese two types of matrices, 

however, differ in one important respect—the preservation of direc- 

tionality. 

The value of obtaining a matrix of dominance type, rather than 

one proximal in nature, centers around the fact that a dominance 

matrix allows for the preservation of directionality between its ele- 

ments while the proximity matrix does not. The importance of this 

distinction relies upon the fact that causal relations cannot be 

appropriately inferred from a correlative or proximity type solution. 

Because of the preservation of the directionality in dominance rela- 

tions, however, the possibility of causal inferences associated with 

the developmental aspects of Guttman scales becomes a reality. 

Difference Relations 

übe matrix of magnitudes generated from the multiplication of 

the transposed data matrix times its complement may be considered a 

dominance summary across all elements in the original data matrix. 

The magnitude in a given cell of the dominance matrix corresponds to 

the number of times an element dominates some other element. Concep- 

tually, this magnitude can be thought of as the total number of (1,0) 

relations existing between the two vectors. Those (1,0) changes may 

also be thought of as the variance between any row vectors. This 
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definition of variance is unique, and thus warrants further explana- 

tion. 

Variance in ordering theory differs from the common psycho- 

metric interpretation (Krus, ±97h,  p. 7). The distinction between the 

psychometric notion and that of the order analytic approach lies 

within the philosophical distinction between magnitude and quantity 

(cf. Gullford, 1951*, P- 7i Torgerson, 1958, p- 26). This distinction 

results from the fact that magnitude can only be defined by logical 

arguments, e.g., true-false relations, thus excluding any of the 

conmonly used quantitative numerical indices. The building of a 

magnitude model for variance entails a frequency count of the dif- 

ferent true-false logical relations. This reinterpretation of vari- 

ance into magnitudes allows for the reflection of the existing 

difference relations. In addition, it potentially offers several 

advantages over the more classical notions. The amount of information 

contained in a given matrix, defined as the number of one-zero changes, 

can be directly calculated by simple summing. Compared to the rela- 

tively complex formulation of covariance, such an additive model is 

very appealing. In addition to the previously mentioned order 

analytic asset of preservation of the directionality of variation 

then, there is also the advantage of simplicity. 

Implication f-erequislte Process 

Most psychological data can be arranged in a matrix format, 

e.g., subjects by items or responses. Ordering theory attempts to 

identify the latent structures within a data matrix by observing the 
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joint hierarchical relationships that exist among the items and persons. 

The underlying process is an attempt to organize and evaluate the 

common structure of the data in some systematic manner. Moreover, it 

should be noted that the joint nature of Guttman scales necessarily 

implies that given the structure of either persons or items, the 

remaining one is also determined. For order analysis, the search for 

underlying structure utilizes the observable hierarchical structure 

and bases its operations on those structures upon logical principles. 

Within the logic system, various types of logical connectives, 

such as "and," "if and only if," "either," and "either/or," can be seen 

to have desirable properties when the goal is to organize data in 

logical substratums. This family of implicative functions has the 

ability to separate data into its component parts. As suggested 

earlier, it can be said to be dimension-generative, meaning that these 

functions possess the ability to systematically organize the data into 

independent dimensions. 

The logical connectives that are the axiomatic components of 

the implications (as seen in Table 2) are "is a prerequisite to," "is 

not a prerequisite," "implies," and "does not imply." Again, it is 

possible to move from one of these implicative functions to an )ther, 

simply by reflecting the variable values within the system. Based on 

this conceptualization of reflection, an understanding of how the 

(1,0) and (0,1) tuples can be generated, should take on new meaning. 

By performing a series of reflections, e.g., from "implies" to "does 
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not imply," a systematic set of relations are generated separately 

across the different rows. 

What is of initial importance., of course, is the process of 

identification and separation of the existing subsystems before any 

internal structuring is undertaken. To be utilized in this prior case 

are functions that deal solely with the variance-generative tuples of 

(1,0) and (0,1). The simplest logic function that is suitable for 

delineating this type of change in relation is that of negative impli- 

cation and its logical converse. Upon examination, it may be seen 

that the only difference existing between these tuples is the direction 

of change: 1 to 0 or 0 to 1. The name assigned to the (1,0) confirma- 

tory response patterns is "prerequisite to." The (0,1) change, or 

disconfirmatory response patterns, is "is not a prerequisite to." 

To summarize, the conditions of asymmetry, trans*vity, and 

connectiveness are the foundation of ordering and produce the com- 

posite definition of an order relation. The conceptual product of 

asymmetry and transitivity conditions is the necessary higher-order 

notion of connectivity. When relations are transitive in nature, 

connectivity between the first and last elements in a hierarchy is 

implied. This property, upon which the notion of prerequisites is 

based, is the essence of a simple order which ultimately results in a 

unidimensional construct. Within a given data matrix, a set of these 

simple orders is said to exist. Therefore, uncovering these latent 

unidimensional structures involves the identification of the simple 

orders which in turn define dimensionality. Given a data matrix, the 

\ 
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dimensions as commonly defined are the development of a set of orders 

(Russell, 1919, p. 29). 

Order Analysis: An Overview 

Order analysis, the prototype measurement model of ordering 

theory due primarily to Krus and Bart (l973)> begins by generating an 

item dominance matrix which indicates the frequency of both the (1,0) 

and (0,1) item response patterns. The construction of the dominance 

matrix, N, from the person by item response matrix S and its trans- 

posed complement, S*, may be represented as: 

M = S'  S (1) 
* 

where an element n,. is equal to the number of persons who get k wrong 

and ± right, which is to say, the number of times item k dominates item 

±.    Thus, element n. . represents the number of (0,1) disconfirmatory 

response patterns while its symmetric counterpart, n.. , represents the 

number of confirmatory or (1,0) response patterns. Ibis matrix 

multiplication yields a square matrix of integer values indicating, as 

stated before, the number of times a row element dominates a corres- 

ponding column element. As in a correlation matrix, measurement error 

may also infiltrate the dominance matrix, in the form of intransitivi- 

ties. To take this uncertainty into account, order analysis utilizes 

a probabilistic algorithm designed to measure the relative pureness of 

each particular pair of dominance relations. This is done by the con- 

struction of a z-ratio (McNemar, 19^7) between the symmetric entries 

*U_ 
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of the dominance mat-rix. In effect, this z-ratio measures the decree 

of dominance that exists between two items by the formula: 

*Jk 

•1  "" "i a 

& *A ; J i k 
^njk + nKj 

(2) 

The probabilistic interpretation of dominance matrices is 

based upon the assumption of equiprobability between the symmetric 

counterparts in a dominance matrix. A z      is calculated for each 

symmetric pair as well as z, ., with each value being placed on its 
KJ 

appropriate side of the diagonal, where the a., and n  components of —jK    kj 

the formula are the magnitudes contained in the original dominance 

matrix. For example, where n.. = 7 and n. . = 2, the existence of this 

apparent intrausitivity can be evaluated by the z-test. 

"Jk '7 + 2 
= 1.67 

kj 

As is apparent from the constant sum in the denominator, the symmetric 

entries in the Z-matrix are ide: deal except for their signs, thus z 

-I.67. Though no direct evaluation is undertaken at this point, an 

obvious interpretation of the transitive strength between two items, 

in probabilistic terms, is possible. 

By the construction of the Z-matrix comprising all possible 

relationships, the selection of a cutoff criterion z-value (here 

termed z-level) can then be implemented to consider only those rela- 

tionships greater than or equal to a given strength. The z's below 
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the designated minimum criterion z-level, net being stronc enough to 

warrant consideration, are set to "0," while for the relations greater 

than or equal to the z-level criterion, a "l" is placed in the binary 

matrix, M. Thus, the creation of the manifest or latent structure 

matrix, M, can be represented as: 

M = Z i z-level (3) 

Of importance is that a 1 can never be placed in symmetric elements of 

the M-matrix because of the sign reversal in the symmetric entries of 

the Z-matrix, thus M contains no  intransitivLties. 

The extraction of the implicative chains from the binary mani- 

fest structure matrix, M, also involves what can be considered a 

probabilistic approach. The procedure begins with both a row and 

column reordering of matrix M, on the basis of the number of "l's" or 

transitive dominances. Once reordered, an implication chain of "•»•e- 

requisites is extracted starting with the first item and searching for 

the closest item that it dominates (is prerequisite to). Thus, the 

extraction process beginning with the first "l" in the first row is 

undertaken. 

For clarity of description, this procedural overview concerns 

itself with the extraction of item chains, though the use of person 

dominance matrix yielding person chains is an equally viable alterna- 

tive. Given, say, that item one dominates item three, they are com- 

bined into the first chain. The same procedure of looking for the 

closest item (in terms of tota^ dominances) that item three dominates, 
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and BO on, is continued until the last item added has no dominances. 

With the inclusion of each item in the chain, the entire row and column 

of remaining dominances for that item are set to zero, thus not allow- 

ing it to be used in other chains. The yet unused items are reordered, 

and the search for prerequisite dominations continues until all items 

have been placed into a chain. The probabilistic nature of this 

procedure is founded in the assumption that an optimum solution con- 

sists of both the minimum number of chains to account for all the items 

and, more importantly, that the most appropriate grouping of items will 

emerge. Obviously, this need not and, because of the lack of any 

internal restrictions aimed at optimizing these relationships, probably 

will not occur. However, before these shortcomings of the probabilis- 

tic order analysis model are elaborated more fully, the description of 

the model in its entirety will first be presented. 

Having extracted the implicative non-overlapping item chains 

representative of underlying Guttman scales, the total number of person 

dominances accounted fur by each chain are calculated. The person 

dominance matrix, X , for chain v can be calculated by: 

X * S S« 
V    V V («0 

where S is the submatrix of persons by the items in chain v. An ele- 
-v ~ 

sent, x ., is the person dominance matrix, X , contains the number of 

titles person _i dominates person h, i.e., the number «.f Items in this 

reduced set that person i^ dominates that h does not. 

The intransitivities that exist when the items in the chain do 
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not form a simplex makes it misleading to simply calculate the rowise 

marginals of X . To adjust for these intransitivities, the z-test is 

performed on the person dominance matrix, creating again a totally 

transitive binary dominance matrix, kjr. The scalar notation of (5) 

denotes that the ih element of the 

ihv 
ihv " "hi? 

Vxihv + \U 
; Xih. ^ *hi- (5) 

person dominance natrix X , is converted to z values in matrix Z . 
r -V — —V 

And (6) represents the logical comparison of all z     s to z-level, 

thereby yielding the transitive dominance matrix, M . 

M   - Z   2 z-level (6) v       v * ' 

The total niihber of dominances are calculated (7) for each 

person and are placed in an order loading matrix, L . . 

J'.v - 1% (7) 

Thus, an Integer value for each person equalling the number of persons 

dominated for a given chain of items representing a dimen^'a is 

calculated. In factor analytic teratology, the matrix of order load- 

ing« is analogous to factor scores, while the row marginals are com- 

munalities. It is this similarity that prompts the rotation to simple 

structure of the order loading matrix (Krus, 1973, pp. 60-61). 
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Order Analysis; A Logical Paradox 

A hypothetical example utilizing the six person by nine item 

response matrix seen in Figure k will be solved for its implicative 

chains using the probabilistic order analysis method. This exercise 

should both clarify the procedural steps as well as demonstrate the 

inherent shortcomings of this approach. Having pointed out the draw- 

backs relative to order analysis, suggestions upon which alternative 

methodology may be based will be presented. 

In the first step, the construction of the item dominance 

matrix (N) in order analysis, is denoted 

N = S'S (1) 

where S is the hypothetical six person by nine item response matrix. 

The indicated uatrix multiplicative results in the square matrix of 

order six, with integer values in its n elements. As suggested, order 

analysis assumes that the counter dominances appearing in the domi- 

nance matrix, presented in Table 3; are merely a function of error. 

The procedure for probabilistically evaluating these intransitive 

errorful relations, McNemar's (19^7) z-test, is performed: 

n,, - n 
z Jh   "J  , .1 / k (2) 

All z's (Table '+) are then compared to the tolerance criterion, in 

this case, z-level = 1.0. For the z values exceeding the criteria 

z_-level, a "1" is placed in the manifest structure matrix, M, theo- 
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Items 

2k 

B E 

1 1 0 Ü 0 0 0 

2 1 1 0 0 0 0 

3 1 1 1 1 0 0 

2   5 

l 1 0 0 1 1 

1 0 0 0 1 0 

&   6 0 0 0 0 0 0 

7 0 1 1 1 1 0 

8 0 1 1 1 0 0 

9 0 1 1 0 0 0 

Figure k.    Binary data matrix representing nine 
person response patterns on six items. 
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Table 3 

Item Dominance Matrix I [ 

A B C D E P 

A 0 2 If It 3 If 

b 3 0 2 3 it 5 

C 3 0 0 l 3 If 

D 2 0 0 0 2 3 

E 1 1 2 2 0 2 

F 0 0 1 1 0 0 

Rote. Calculated by premultlplying the trans- 
posed complement of the original data 
matrix by the original data matrix. 

\ 
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Table 1* 

2~matrix 

A B C D E F 

A 0 -.1*7 •378 .816 1 2 

B .1*1*7 0 l.Ul 1.73 1.34 2.21* 

C -.378 -1.1*1 0 1 .1*1*7 1.34 

D -.816 -1.73 -1 0 0 1 

E -1 -I.34 -.1*1*7 0 0 1.1*1 

F -2 -2.21* -1.31* -1 -1.1*1 0 

Mote. Matrix of z values calculated from item dominance 
jatrix. 
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retically representing the true dominance. The binary M matrix 

appears in Table 5. 

M = Z 2 fz-level /z-level = (1.0)) (3) 

The assumptions and procedures presented to this point, de- 

signed to isolate the latent dimensions, appear reasonable, yet on 

closer inspection are paradoxical. The assumption that counter domi- 

nance or intransivities are simply brought about by error is clearly 

antithetical to the issue of multidimensionality. For counter domi- 

nance could actually represent the existence of multiple factors 

within the data unless, of course, the data are simply Dreidimensional. 

The paradox, obviously, is that by cancelling out the effect of the 

counter dominance in the multidimensional case secondary factors are 

obscured, leaving only a primary first factor. Order analysis by 

restricting its definition of dominance limits itself to the considera- 

tion of the most prominent unidimensional scale. This apparent break- 

down at the basis of the order analytic method warrants a rethinking 

of the entire conceptualization of multidimensionality specific to a 

dominance matrix context. However, the further elaboration of other 

related procedural flaws will also be of considerable value, particu- 

larly in the consideration of an alternative procedure. 

Oiven the manifest structure matrix, the next step of the 

order analysis procedure is the extraction of the dimensional chains. 

This process begins with the reordering of rows and columns of the M 

matrix, from most dominances to least, as has already been seen in 
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Table 5 

Manifest Structure Matrix M 

B C A 0 E F 

B 0 1 0 1 1 1 

C 0 0 0 1 0 1 

A 0 0 0 0 1 1 

D 0 0 0 0 0 1 

E 0 0 0 0 0 1 

¥ 0 0 0 0 0 0 

Note. Reordered manifest structure matrix, 
M, using a z-level = 1.0. 
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Table 5« Commencing with the first row, the extraction procedure 

searches for the first 1, representative of the connection between the 

respective elements. In this example, item B dominates or is prereq- 

uisite to item C. Then item C dominates item D, and item D dominates 

item F, completing the hierarchy of the first chain. Thus, the chain 

of connections B — C ■* D ■* F created by ^he pairvise relations between 

the adjacent items in the chain defines the first unidimensional struc- 

ture. Having completed the chain, the remaining relations of its 

member items are deleted. The construction of the next chain then is 

approached in an identical manner. In the present example, this 

yields the A -» E chain. As all items are accounted for, a tvo- 

dimensional solution emerges. 

Examination of this type of extraction procedure reveals two 

separate but related theoretical flaws. First, it can easily be seen 

that such a procedure does not guarantee that all chains present in 

the M matrix are extracted. While the present example is not large 

enough to give a clearer illustration of this, the existence of the 

B -• E -» F an<* A •* E -» F chains does suggest this possibility. Once 

the existence of other chains is acknowledged, however, a more 

important question arises: Have the optimal chains been selected? 

Optimal, in this context, may refer to a number of criteria, such as 

the longest, the most Guttman-like, or the most orthogonal set of 

chains. In any case, the failure of the procedure to systematically 

consider any of these criterion standards seriously reflects on its 

credibility. 
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The second shortcoming of the extraction procedure is related 

to the broader issue of intradimension consistency and may be gleaned 

from Figure 5. In this figure, a simple reordering of the items in 

the submatrix of chains I and II reveals that one inconsistent relation 

exists in each chain. For chain I, item F for person 5 is not con- 

sistent, and similarly for chain II, person 7's correct response to 

item E is inconsistent. Because of the lack of any goodness-of-fit 

statistics measuring the chains' consistency relative to the perfect 

simplex, a potential user of this procedure cannot compare solutions 

at different levels of internal consistency. Obviously, such goodness- 

of-fit indices are crucial to any soundly based measurement procedure. 

Further, any descriptive statistic developed with this purpose in mind 

must be comparable to other measures of dimension construction, the 

most common being measures of variance. 

Having already selected the chains, the next step in order 

analysis is to obtain order loadings for persons on each item chain. 

On a given chain of items, the person-order loadings represent the 

number of persons that a particular individual has consistently out- 

scored. 

The method for obtaining the order loading matrix begins with 

the calculation of a person dominance matrix, X , from the submatrix 

of items, S , from chain v. 

v   v v [k) 
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B *• C -*D ■*¥ A-E 

Person 

3 1 1 1 0 

7 1 1 1 0 

8 1 1 1 0 

9 1 1 0 0 

k 1 0 0 1 

2 1 0 0 0 

1 0 0 0 0 

5 0 0 0 0 

6 0 0 0 ' 0 

Person 

If 

5 

1 

2 

3 

7 

6 

8 

9 

1 

l 

1 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

0 

Figure 5.    Reordered hypothetical data matrix. 
Persons reordered vithin chains to 
illustrate the inconsistent responses, 
vhich are underlined. 
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As before, a z-test is performed on the symmetric elements, x  , of 

the dominance matrix. This time, however, it is person dominances 

rather than item dominances which are sought. 

ihv 

Xihv " ^iv 

^xihv + *hiv 
ih\ *\±y (5) 

This Z-matrix is then compared to the z-level criterion value, which 

remains the same as the first test's z-le'rel = 1.0. 

My 2 z-level = (1.0) (6) 

The resulting matrix, M, of transitive person dominance is summed and 

the marginal totals represent the 

L „ = I'M •v v (7) 

number of persons an individual dominates. The earlier mention of 

consistent wins refers to a consistency inferred through use of the 

z-test. The order loading matrix, L, constructed for the two chains 

is presented in Table 6. Again, the integer values are interpreted as 

the number of persons that a particular individual outscored, given the 

consistent items he got correct. To complete the description of order 

analysis, the matrix of order loadings is standardized by converting 

the integer loadings into proportions, and then rotated to simple 

structure by varimax (Kaiser, 1958). 

Though no extensive criterion of the person dominance inter- 

pretation of order loadings will be presented here, the methodology 
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Table 6 

Order Loading Matrix 0 

CHAIN I CHAIN II 

B-»C-*D-*F A -» E 

10 3 

2 3 3 
3 5 3 a a o a 

M 
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if l* 7 

5 0 7 
6 0 0 

7 5 3 

8 5 0 
9 U 0 

Note.    Implicative chains extracted from reordered 
" manifest structure matrix with order load- 

ings constructed using second z-level = 1.0. 
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upon örtlich it is based is nonetheless subject to question (e.g., the 

z-test criterion). And if the extracted chains represent unidia-.n- 

sional scales underlying the data matrix, the need for rotation is 

unclear. Given the serious procedural shortcomings that have been 

discussed already, rotation may be nothing more than an attempt to 

sift through the structure in search of meaning. Any procedure that 

identifies the true unidimensional components, as order analysis pur- 

ports to do, should have no need lor rotation. 

In summary, an example of the probabilistic version of order 

analysis has been traced through, noting its procedural shortcomings. 

Two problems emerge that, if resolved, could lead to a theoretically 

sound procedure for the extraction of multiple Guttman scales. First, 

the internal consistency of all elements in a chain, rather than Just 

its adjacent members, is crucial. A solution to this problem would, 

in effect, also resolve the logical paradox of multidimensional 

counter dominances or intransivities. Internal consistency redefines 

the multidimensionality of the dominance matrix, allowing for an 

appropriate appraisal of the existing counter dominance. The  second 

problem involves the development of standard procedures for selecting 

the optimal chains. Necessary to the selection of the optimal chains, 

however, is the consideration of all chains. Thus, the factor extrac- 

tion methodology must first extract all chains before the selection 

procedure can be implemented. 



MODEL ADD THEORETICAL CONSTRUCTS 

ERGO: A Procedure for Extracting 

Reliable Guttman Orders 

An alternative approach that avoids the pitfalls of order 

analysis must redefine internal consistency in terms of its counter- 

part in classical test theory reliability. Cliff (1975b) suggests a 

series of indices, intended for a testing context, that establish a 

relation between dominance matrices and classical measurement. Among 

the indices described by Cliff (1975b) is a measure of internal con- 

sistency calculated from a dominance matrix that functions like the 

standard Kuder-Richardson formulae (KR) (1937)• In conjunction with 

a methodology for defining an optimal, representative set of factors, 

the application of internal consistency presented by Cliff will be 

utilized in a new model termed ERGO. This alternative model attempts 

to resolve the paradoxes common to order analysis, while still associ- 

ating itself with certain elements of ordering theory. 

Internal Consistency 

The index proposed by Cliff (1975b) is based upon two param- 

eters and yields a numerical value which represents the Internal 

consistency of a set of dominance relations. The first parameter is 

35 
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the relation of an obtained dominance matrix to a perfect Guttman 

simplex, and the second parameter is the relation of an obtained 

dominance matrix to a theoretically random set of dominances. Before 

the assumptions underlying the development of the index ar; presented, 

it should be noted that ' ae identical operations hold for both person 

or item dominance matrices. However, to be illustratively consistent 

vith the preceding example, the item dominance matrix will be used. 

Given the item dominance matrix N, the total number of rela- 

tions, u, is denoted in equation 8. 

u = 221a Jk (8) 

The matrix notation for this summation, when S is the binary response 

matrix and (SS') its dominance matrix, is seen in equation 9. 

u = l'CS'S)! (9) 

If the rows and columns of the item dominance matrix are reordered in 

a descending fashion and the data are perfectly consistent, all the 

dominance relations will be contained in the upper triangle. Thus for 

perfectly consistent data the number of dominances in the upper tri- 

angle, u , would equal the toval, u. —m 

u * Z Z n,. 
m  J k>J Jk 

(10) 

By equating perfectly consistent oata with a Guttman simplex, incon- 

sistency can thus be evaluated in terms of dominances that fall below 



37 

the upper triangular portion of the reordered dominance matrix. To 

put these relationships into a proper perspective, however, the con- 

sideration of a second parameter, a probabilistic distribution of 

dominances, must also be considered. 

The assumption of no order, in the context of a dominance 

raatrix, necessarily suggests an equal number of dominances for each 

n...    In the case of equally distributed dominances, n„ and n. . can 

be viewed as both estimates of the same quantity, v... Thus, it fol- 

lows that by averaging the symmetric entries an expected minimum, u , 
m 

is produced. 

v ■ JÄ["#-*u**Vj)] (u) 

Distributing the sums, a maximum of £u is realized. 

V = u - ±u (12) 
m   m 

!Tius, a consistency index, c, relating the actual number of dominances 

in the upper triangular portion to that expected by chance, can be 

constructed. A one is subtracted from the upper triangular "good" 

dominance-to-chance proportion in order o distribute the consistency 

value from -1 to +1, thereby yielding 

c - jS - 1 (13) 

By simply ridding the denominator of the fraction 

2u 
C--Ä-1 

u 
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ve have Cliff's index of item consistency, c. By essentially the same 

rationale, Cliff (1975b) redefines the Kuder-Richardson formulae 

(1937) and the Loevinger index (19^7) °y considering the obtained 

upper triangular dominance, the maximum possible number of dominances, 

and those expected by chance. The foundation of the consistency 

index, considering its utilization of the same parameter that under- 

lies such classical reliability coefficients as KR20 and KR21, makes 

it a most appropriate alternative for evaluating order consistency 

over the entire dominance matrix. What remains, having established the 

suitability of c, is the methodology through vhich it may be imple- 

mented. 

Selecting Optimal Chains: 
Internal Procedure 

Optimal chains employ both internal (within chains) and 

external (among chains) procedures that are directed toward selecting 

the most appropriate set of item combinations to represent the data. 

With the restriction that consistency across all member items remains 

as high as possible, the interrul procedure concerns itself with the 

chaining of certain items. This contrasts with the order analysis 

procedure that Operationalizes the chaining by considering only the 

adjacent connections. Once the unidimensional chains are constructed, 

the external optimization procedures attempt to order the chains in 

terms of their relative contribution in explaining the dimensionality 

of the data structure. Necessarily, the evaluation of relative con- 

tributions across chains has as a prerequisite the extraction of all 

chains. 
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The Initial consideration, viz., the combining of items into 

chains, involves an iterative approach. For a given item chain, the 

most consistent item as determined by the highest consistency, c , 

where £ represents the Joint subset of items, is Joined to the initial 

chain. If a tie in consistencies exists, the item closest, in terms 

of difficulty level, is given priority. Thus, for each item, k, a 

consistency is calculated, c . ., combining the new item with the 
-p + K 

items already in the chain. 

V " BaX °P + k (ll° 

The iterative procedure of sequentially adding items to chain? on the 

basis of the overall consistency of the chain is cperationalized for 

all items by allowing each item to initialize its own chain. In 

matrix terms, the rows become representative of chains while the 

columns remain representative of items ■ The ij. entries of the final 

consistency matrix, F, correspond to the consistency level at which the 

item, J, was added to the chain, 1. An illustration of this procedure 

for the hypothetical example presented previously is seen in Table 7. 

To identify member items, an element-by-element comparison of 

matrix F is made to a subjectively determined consistency cutoff value, 

cv. For example, by setting cv at any value greater than .&*,  the 

resulting binary membership matrix, B, is produced (see Table 8). 

B « F 2 cv 
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Table 7 

Final Consistency Matrix £ 

Items 

B A C D E F 

I 1.000 .516 1.000 1.000 .611 .800 

II .680 1.000 .k6h .571 .800 1.000 

CO 
q III 1.000 .516 1.000 1.000 .611 .800 

S  IV 1.000 .516 1.000 1.000 .611 .800 

V .833 .680 .516 .571 1.000 1.000 

VI •833 .680 .516 .571 1.000 1.000 

Note. Rows represent chains and entries in reordered 
columns represent consistency at which item ± 
was added to chain i. 
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Table 8 

Binary Item Membership Matrix B 

Items 

B A c D E P 

I 1 0 1 1 0 0 

II 0 1 0 0 0 1 

III 1 0 1 1 0 0 

IV 1 0 1 1 0 0 

V 0 0 0 0 1 1 

VI 0 0 0 0 1 1 

Note. Binary item membership matrix, B, resulting 
from any consistency cut off value > ,8k. 
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Removing the duplication, three chains are revealed, namely, 

B ■* C -♦ D (I), A - F (II), and E -* F (ill). Because each chain has a 

consistency value of one, as may be seen in Table 7, there are no 

inconsistent relations. Figure 6 breaks down the chains into their 

reppective submatrices, confirming the existing simplex for each chain. 

Having completed the outline of procedures involved with 

internal consistency, the procedures utilized in evaluating the con- 

tributions of the extracted chains will be presented. However, before 

the details of the considerations used in evaluation are brought forth, 

the scoring procedure implemented in ERGO needs to be discussed. In- 

stead of defining scores as person dominance as is done in order 

analysis, a straightforward summary of consistent relations (see 

Figure 6) for an individual for a given chain defines score. The 

redefinition of score using marginal sums offers a convenience of 

interpretation which will be demonstrated in the empirical example to 

be presented later. 

Selecting Optimal Chains: 
External Procedure 

The decision concerning the optimal solution and ordering of 

chains, like the ordering of factors in factor analysis (FA) or dimen- 

sions in multidimensional scaling (MDS), must be related to the overall 

epistemic contribution of the dimensions. However, the distinction 

between the structure of the dimensions recovered with the ERGO 

procedure and those from either FA or MDS requires a redefining of 

contribution. With FA and MDS, the variables or stimuli are assigned 
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a u 

I II IV 

B - C - D  (£)        A - F  (Z)        E - P  (£) 

(3)1 1 1 3 (V) l 1 2 (i0 i 1 2 

(7) 1 1 1 3 (1) 1 0 1 (5) 1 0 1 

(8) 1 1 1 3 (2) 1 0 1 (7) l 0 1 

(9) 1 1 0 2 (3) 1 0 1 (Do 0 0 

(2) 1 0 0 1 (5) 1 0 1 (2)0 0 0 

(10 1 0 0 1 (6)0 0 0 (3)0 0 0 

(1)0 0 0 0 (7)0 0 0 (6)0 0 0 

(5)0 0 0 0 (8)0 0 0 (8)0 0 0 

(6)0 0 0 0 (9)0 0 0 (9)0 0 0 

Figure 6. Reordered data for ERGO solution. Extraction of 
three chains from hypothetical data as determined 
by ERGO procedure. Person numbers in parentheses. 

*3 



weights on all factors or dimensions, but in ERGO weights are assigned 

to dimensions which are actually composed of subsets of items. Thus, 

a procedure for optimally combining the dimensional chains to account 

for the maximum number of items appears reasonable. When additional 

chains are being considered for selection, the maximum number of items 

refers to unique, or yet unaccounted for, items. 

A procedure for ordering the extracted chains in terms of their 

maximum number of unique items added appears straightforward. Compli- 

cations from ties arise, however, making additional considerations 

necessary. For a given set of chains, the selection procedure first 

calculates for each pair of chains the total number of unique items. 

Given that one such pair of chains has more than any other, the selec- 

tion is greatly simplified. The chain containing the most items is 

put first, the remaining chain second, with additional chains being 

added corresponding to their number of unique (yet unaccounted for) 

items. In the case of a tie of unique items, the chain having the 

least overlap (items in common) with the already accounted for items 

is chosen. When pairs of pairs are tied in both number of unique and 

number of overlapping items, a still different procedure is called for. 

This is to take the pair of chains that, within the pair, demonstrates 

the largest difference in terms of their resulting orders (person 

orders). The largest difference is defined as the largest number of 

inversions in their corresponding person orders. To amplify, a single 

inversion in order exists between any pair when, say, aRb in one rank- 

ing is compared to bRa in the other. Thus, by totalling the number of 
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inversions and the number of agreements and then adjusting for the 

number of possible agreements, an index reflecting the degree oi dis- 

similarity of the two orders is developed. The index suggested paral- 

lels the procedure utilized in the calculating of Kendall's tau a 

(Kendall, 1962). It differs, however, in that the most appropriate 

selection (having the most inversions) is the .owest tau value, as tau 

is a measure of agreement rather than disagreement. 

To best illustrate the process by which chains are ordered, the 

hypothetical example will again be referred to, beginning with the item 

membership matrix, B. Chains III, IV, and VI in matrix B will be 

removed because of their obvious redundancy, leaving for consideration 

chains I, II, and V. The heuristics upon which the subsequent chain 

selection procedures rely are founded in Boolean arithmetic, briefly 

summarized here: 

0+0=0; 0+1=1; 1+1=1; 1x1=1; 1x0=0; OxOK) 

A summary of unique items between chains i and j. is computed 

from the B matrix and placed in the appropriate upper triangular ij 

element of matrix 0 (see Table 9)- Thus, 

°u ■ £ jli (bi + V (16) 

where "+" indicates Boolean arithmetic, and b. and b represent rows 

corresponding to chains in the nonredundant item membership matrix B. 

The lower triangular £L elements of matrix 0 are the number of over- 

lapping items between chain i_ and chain ± denoted as 
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Table 9 

Matrix 0 

Chains 

I     II 

5 

V 

5 

Note. Upper triangular portion summarizing all pair- 
wise uniquenesses while lower triangular 
portion summarizes tbe pairwise overlap. 
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where "x" again Indicates Boolean arithmetic. 

Inspection of Table 9 reveals that chain I is tied with chain 

II and chain V with five unique items. The overlap criterion cannot 

break the tie, as neither chain has any elements in common with chain 

I. In this case, the next step is the correlating of the person scores 

derived from their respective chains (I with II and I with V) so as to 

determine the most dissimilar pair. The resulting taus as seen in the 

upper half of Table 10 are -.159 and .0278, respectively. On this 

basis, the I-II pair is selected. Having not accounted for all the 

items (viz., item E), chain V is added, resulting in the final order of 

I, II, and V. 

Other situations not represented in this example need to be 

mentioned. First, given that all items are accounted for, any remain- 

ing chains are dropped. Second, the converse situation, where addi- 

tional chains add only a relatively small number of items, thereby 

having little substantive value, suggests the implementing of a scree- 

type procedure to discount the smaller chains. And third, where an 

attempt for orthogonality of recovered dimensions is desired, the 

removal of items contained in more than one chain is suggested. To 

allow for the evaluation of the above mentioned considerations, a 

summary matrix for each solution as is seen in Table 6 is constructed. 

The values in the upper triangular portion, as already mentioned, refer 

to the taus between chains. The values in the lower triangular portion 
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Table 10 

ERGO Summary Matrix 

c 
« 
6 
« " 

3 

-.139 

-.0278 

Chains 

II 

-.139 

.611 

V 

.0278 

.389 

Note. Summary matrix with tau a values in upper triangular 
portion, tau a discounting all overlapping elements 
in lower triangular portion, and number unique items 
added by that chain in diagonal. 
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refer to the tau a correlations discounting common items, and the 

integer values in the diagonal denote the number of unique elements 

added to the solution by the inclusion of that chain. 

In s>roary, having an index that corresponds directly to such 

classical indices as the Kuder-Richardson formulae (1937) like the 

internal consistency index proposed by Cliff (1975b) provides an unam- 

biguous procedure for combining items into chains. One possible Im- 

provement, however, is a weighting system that adjusts more fully for 

item difficulty, rather than a total reliance on item consistency. 

Unfortunately, the external selection process, not being grounded in 

such fundamentally sound principles, cannot be considered as favorably. 

The shortcomings become manifest as the dimensionality increases, thus 

allowing more chance for an erroneous selection. It may be seen that 

until indices are developed that maximize specific relationships, 

preferably in both the item and person dominance contexts, the entire 

extraction procedure may remain suspect. At any rate, a more sophis- 

ticated definition of chains relating directly to the duality that 

exists between item and person dominances is definitely called for. At 

this time, having not resolved this issue, the selection procedures as 

described will be implemented in the dimensionalizing of an empirically 

derived data matrix. 
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AN EMPIRICAL EXAMPLE 

Method 

To demonstrate the order extracting procedure in a practical 

context, an investigation was designed to allow for may»™™ empirical 

validation. Selected as a representative, well-known Guttman scale was 

a Bogardus-type social distance scale (Bogardus, 1925). A question- 

naire was constructed that incorporated seven social distance items in 

a binary choice format (see Appendix). AU of these were then paired 

with three ethnic groups: Black, Mexican-American, and Oriental. By 

having members of the three ethnic minority groups, in addition to 

Anglos, responding to the questionnaire, it was felt that the ordering 

of the items would not only group together items referring to the same 

ethnic group, hut would also serve to cluster the individuals «ith 

regard to ethnic group membership. 

fte 21-item social distance questionnaire was administered to 

cUf undergraduates at the University of Southern California, wbo par- 

ticipated in the fulfillment of cjrse requirements. Prior to the 

administration, subjects were asked to consider the general image of 

ethnic groups other than their own. To assure compliance with this 

request, subjects were asked to construct a written outline listing 

several key descriptors of each group. Once this preliminary task was 

50 
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completed, the subjects were Instructed to keep in mind the Images 

rather than a specific individual vhen responding to the social dis- 

tance items, This was done to maximize the number of resulting 

response patterns. Of the 9k respondents, 60 gave non-duplicate 

response patterns for the 21 items. Ethnic composition of the 60 

respondents was as follows: six Mexican-Americans, eight Blacks, four- 

teen Orientals, and thirty-two Anglos. 

Results 

The dominance matrix, final consistency matrix, and reduced 

chain by item membership matrix calculated at a minimum consistency of 

• 95 are presented in the Appendix. The thirteen nonredundant chains 

were subjected to the chain selection proced^e, which reduced to seven 

the number of chains necessary to account for all the items. The 

reordering of the seven chains followed the previously described pro- 

cedural steps of first maximizing the number of unique items and in 

the case of a tie selecting the chain with the fewest number of over- 

lapping items. The summary matrix for the reordered set of seven 

chains containing the number of unique items added in the diagonal as 

well as to their rank order intercorrelations (see Table 11). 

As suggested, the issue of limiting the number of chains or 

dimensions to those considered "significant" is resolved by the appli- 

cation of a scree-type procedure to the respective number cf unique 

items added. In doing so, the apparent cutoff is the third chain, as 

the fourth chain adds only 2 items to the 16 already accounted for by 



52 

Table 11 

Sumaary Matrix for 60 Person by 21 Item Social Distance Data 

Chains 

X XI I VIII XIV XVIII IX 

X 7 .18 .Ik .16 .76 •70 •17 

XI .20 5 .15 .72 .18 .19 .12 

3   l 

§ m 

.12 .16 k .12 .14 .22 .89 

.17 M .2k 2 .10 .15 .12 

XIV .kQ .07 .21 .16 1 • Ik .16 

XVII A9 .11 .25 .26 •53 1 .2k 

IX .18 .10 ■ 53 •3* .1.2 •39 1 

Note. Tau a values between comply»? item-chains are in upper 
triangular portion. In lover triangular portion are 
tau a values for scores computed from number of unique 
items added by that chain, which appears in the diagonal. 
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the first three chains. The items of which the three chains are com- 

posed are listed in hierarchical order in Table 12. 

As seen in Table 12, the consistency of the ethnic group refer- 

enced within the vhree chains, with a few exceptions, namely items K 

and ii  in chain X and item U in chain XI, is apparent. Chain X is 

composed of items illustrating a social distance scale for Mexican- 

Americans, as are chain XI for Blacks and chain I for Orientals. Thus, 

the correspondence of the three item chains to each of the three ethnic 

groups reflects favorably on the chain selection procedures. However, 

the existence of the exceptions within chains X anc XI does not allow 

for a clear definition of an individual's social dj stance specific to 

an ethnic group. In an attempt to resolve this situation, the over- 

lapping items, that is, items contained in more than one chain, are 

eliminated. The remaining fourteen unique items (as denoted by an 

asterisk [*] in Table 12) still contain one inconsistent item, item U 

in chain XI 

The appropriateness of the resulting solution can be illus- 

trated by comparing the recovered hierarchical groupings of items 

(Table 12) to the proposed hypothetical ordering of social distance 

items. Except, of course, for the one inconsistent item, U, in chain 

XI, ehe ordering of the unique items within each chain corresponds 

closely with the hypothetical ordering. In fact, the only exception 

is the reversal of items 06 and 07 in chain I. Therefore, aside from 

a few minor flaws, both the homogeneity of scales and the ordering of 

items within scales resulting from the ERGO procedure would appear 

quite reasonable. 
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Table 12 

Items in Chains X, XI, and I 

Hypothet- 
ical Order 

Alphabet- 
ical No. Question 

Ethnic 
Group 

x 

Would work in sane office Oriental 

Would have as speaking acquaintances Black 

Would have as speaking acquaintances Mex-Amer 

Would work in sane office Mex-Amer 

Would invite for dinner Mex-Amer 

Would have as close friends Mex-Amer 

Would marry into group Mex-Amer 

(06) N. 

(B7) B. 

(M7) *H. 

(M6) *C. 

<*) *P. 

(M2) »R. 

(Ml) *J. 

(B7) B. 

(03) *U. 

(B5) *F. 

(I*) *A. 

(B2) *Q. 
(Bl) *M. 

(06) N. 

(07) *L. 

(05) «0. 
(ok) *D. 

(01) *K. 

Would have as speaking acquaintances Black 

Would have as next door neighbors Oriental 

Would consider as friends Black 

Would invite for dinner Black 

Would have as close friends Black 

Would marry into group Black 

Would work in same office Oriental 

Would have as speaking acquaintances Oriental 

Would consider as friends Oriental 

Would invite for dinner Oriental 

Mould marry into group Oriental 

Note. Hierarchically ordered items comprising first three dimen- 
sions. Hypothetical ethnic distance coding is in paren- 
theses. Asterisk (*) refers to items contained in only 
one chain. 
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The further evaluation of the ERGO procedure, the clustering of 

individuals into their appropriate ethnic groups, is realized in terms 

of their scores (see Appendix). As would be expected, every ethnic 

group member endorsed all the items referring to his group. More 

Important, however, is the direct correspondence of an individual's 

score to his relative position on the unidimensional constructs, there- 

by permitting ease of interpretation. This fact, combined with the 

developmental interpretation stemming from the notion of logical pre- 

requisites underlying Guttman orders, adds further clarity to the sub- 

stantive interpretability of person scores. 

To illustrate, the scores for the first Anglo (l 3 2) can be 

directly interpreted as the subject's social distance relative to the 

three ethnic groups. Thus, the score of 1 for the first chain (X) 

composed of the Mexican-American items corresponds to item M7 (would 

have as speaking acquaintances). Similarly, the score of 3 on the 

chain referring to Blacks (XI) indicates item B4 (would invite for 

dinner), while the score of 2 on the Oriental item chain (i) corres- 

ponds to item 05 (would consider as friends). The endorsement of the 

items below the score level designated is assumed, thereby giving a 

more precise meaning to the scores. The developmental notion of pre- 

requisites corresponds to the previously suggested positioning of 

people and items on the same unidimensional scale. This dual position- 

ing allows for both persons and items to be considered in relation to 

each other, yielding an increase in the number of relationships that 

are directly observable. 
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However, in the case of inconsistency, which appears as the 

endorsement of an item without the endorsement of its prerequisite, 

the question of what score level is most appropriate may be raised. 

In this example, it was assumed that the failure to positively endorse 

an item precluded consideration of other endorsements further along in 

the hierarchy. This highly simplistic approach to scoring (for these 

particular data) did not suffer from multiple errors, which are de- 

fined as the occurrence of endorsements of more than one item without 

the necessary endorsement of some prerequisite. For data involving 

instances where multiple errors do exist, more sophisticated types of 

scoring procedures involving probabilistic evaluation of the individu- 

al's response pattern need to be developed. 

The overall evaluation of the results appears favorable. The 

identification of hierarchically graded orders within the three ethnic 

groups would verify this. In addition to the resulting ethnic-item 

hierarchies, the case of interpretation of person scores along the 

recovered ethnic dimensions suggests ERGO to be a viable method for 

recovering dimensions in dichotomous items. The implications of com- 

bining persons and items on the same scale, thereby permitting the 

direct evaluation of person-item relationships, present the researcher 

with many interesting possibilities, especially those involving 

developmental relationships. Moreover, it is this knowledge of both 

the person and item relations that has practical as well as theoretical 

importance. 
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SUtMABY 

A method of factor extraction specific to a binary matrix, 

Illustrated here as a person-by-item response matrix, has been pre- 

sented. The extraction procedure, termed ERGO, differs from the more 

commonly implemented dimensionallzing techniques, factor analysis and 

multidimensional scaling, by taking into consideration item difficulty. 

Utilized in the ERGO procedure is the calculation of a dominance matrix 

vhich, for either persons or items, has the important attribute of 

allowing directionality to be inferred between relations. 

The theory underlying ERGO is founded in ordering theory 

(Airasiun & Bart, 1972), with its interpretation of dominance relations 

following logical implicatives similar to Boolean algebra. The re- 

definition of dimensionality using both the notion of dominance rela- 

tions and that of logical prerequisites can more aptly be identified 

with the definition of a Guttman order, thereby placing emphasis on the 

developmental aspects of recovered sets of dimensions. It is this 

interpretation that allows for the duality of relationships between 

persons and items. The resulting placement of both persons and items 

on the same unidimensional construct presents the researcher with the 

opportunity to observe direct relations between the two. 

57 
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A preliminary attempt to utilize the apparent advantages asso- 

ciated with the extraction procedure based on dominance relations, 

order analysis (Krus, Bart, & Airasian, 1975) is used. This is done 

both to further explicate the implications of ordering theory as well 

as to point out the issues with which a dimensionalizing procedure of 

this type must concern itself. In this discussion, the procedural 

shortcomings of order analysis are presented to acquaint the reader 

with the obstacles that an alternative approach must overcome. Pre- 

mier among these is the failure of order analysis to consider the true 

nature of multidimensionality in a dominance matrix context. This 

appears in the order analytic assumption that counter dominance rela- 

tions are merely a product of error, rather than being manifestations 

of the multidimensional nature of the data. The alternative procedure 

(ERGO) is developed by dealing with this essential point. 

The key to the dimension extraction problem of ERGO rests in 

the formulation of an index of dimension consistency that is comparable 

to classical measures such as the Kuder-Richardson formulae (1937) anrl 

the Loevinger homogeneity indices (1947). Cliff (1975b), by demon- 

strating the relation between these classical indices and their 

redefinition in a dominance matrix context, lays the foundation for the 

development of an alternative procedure. Thus, by adopting a consist- 

ency measure developed there, ERGO itcrativcly adds itcma together, 

resulting in the construction of various sets of impiicative chains 

representing dimensions. Having constructed these chains, the ERGO 

procedure orders the chains in terms of maximal number of items 
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contributed. The chain evaluation procedure can best be explained as 

an attempt to maximize the number of items accounted for in a given 

dimensional solution. 

To give additional understanding of both the ERGO process and 

the potential advantages a procedure of this type offers, an empirical 

example which utilizes social distance items (Bogardus, 1925) paired 

individually with three ethnic groups was analyzed for respondents 

representing four ethnic groups. Emphasized in the solution was the 

duality of relationships inherent in a procedure such as this, that is 

based upon the principles underlying Guttman orders. The results 

demonstrated the ability of ERGO to (l) group items referring to the 

same ethnic group; (2) uncover hierarchically graded orders within 

each chain; (}) select the three chains that corresponded to the three 

ethnic groups; and (k)  cluster individuals by ethnic group according 

to their scores. 

In summary, the ERGO procedure, based on the uncovering of 

logical relationships within the context of a dominance relation and 

postulated in ordering theory (Airasian & Bart, 1972), has been pro- 

posed. The rationale, upon which a dimension extraction procedure 

specific to a binary matrix is based, is accomplished by demonstrating 

the shortcomings of currently implemented procedures. Given the 

shortcomings and a definition of the problems confronting a procedure 

whose goal is to analyze the dimensionality of a dominance matrix, an 
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alternative procedure, ERGO, is presented. In applying the ERGO pro- 

cedure to well-known social distance type items (Bogardus, 1925)* 

empirical validation of the procedure was attained. 
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SOCIAL DISTANZ QUESTIOIBAIHB 

Am: Sex: 

Xthnlc Background 

Instructions 

1. Fill la Identification box at upper left, lote that your 
referenced. 

2. Circle the appropriate response for «aeb ltea. 
3. Please remember to give year FIRST REACTION for ev.ry group 

Is In no way 

Beneaiber to gi/s your reaction to your IMAGE of «ach CROUP as a vhole- 
MOT aa INDIVIDUAL. 

Question 

(B"0 A. Would invite for dinner 

(B7) B. Would have as speaking acquaintances 

(M6J C. Would work In sane office 

(OV) D. Would Invite for dinner 

(M3) *• Would have as next door neighbors 

(B5) P. Would consider as friends 

(16) 0. Would consider as friends 

(MT) H. Would have as speaking acquaintatzen 

(B3) I* Would have as next door neighbors 

(ML) J. Would marry Into group 

(01) K. Would marry Into group 

(07) L. Would have as speaking acquaintances 

(Bl) M. Would marry Into group 

(06) I. Would work In same office 

(OJ) 0. Would consider t>s friends 

(HU) P. Would Invite for dinner 

(B2) Q. Would have as close friends 

(M2) R. Would have as close friends 

(B6) S. Would vork In ease office 

(02) T. Would have as close friends 

(03) U. Would have as next door neighbors 

lote: 

Ethnic Croup 

Black 

Mex-Aaer 

Oriental 

Mex-Aaer 

Black 

Mex-Aaer 

Mex-Aaer 

Black 

Max-Aner 

Oriental 

Oriental 

Black 

Oriental 

Oriental 

Mex-Aaer 

Black 

Mex-Aaer 

Black 

Oriental 

Oriental 

Response« 

Tea lo 

Tea Bo 

Tes lo 

les ■0 

Tea lo 

Tee lo 

Tea lo 

Tea lo 

Tes ■0 

Tes lo 

Tes lo 

Tes Bo 

Tes lo 

Tes lb 

Tes lo 

Tes do 

Tes lo 

Tes lo 

Tes Bo 

Tes ■0 

Tes   lo 

Coding within parentheses lni::ste hypothetical orter cf .-.octal distances for 
each ethnic group.    Their 4»« .-,j-.cd codings cid not a^;ear on the questionnaire. 
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DOKHAHCB MATRIX 

1 L B 0 0 D S J T c F A P c I K E Q R J M 

1 0 2 3 * 5 8 9 10 10 15 15 25 26 2? 27 25 11 
**■*■ 

«5 k» 1*8 1*8 

L 1 0 3 2 <t 7 9 10 9 i < 15 21. 25 26 ?t 27 29 31 ;3 >*6 1*7 

B 1 2 0 '4 *> 9 7 t 10 11 i:- 22 2"> 2- -!7 2? 2? 37 fc5 <*5 

0 0 0 3 0 i* 5 9 i: 1 12 15 2i» 21. 25 2'J •i3 23 31 37 «.5 1*7 

U 1 1 1 3 0 7 3 6 9 10 12 21 Ct» 2», 25 ?<. 27 a: "»3 *J 

D 0 0 3 0 3 0 8 9 5 10 15 22 21 *?» 24 JO 26 27 * 1*2 1*2 

S 1 2 1 1» 4 8 0 7 3 3 11 17 20 13 23 26 23 33 UO 39 

H 1 2 0 u 1 8 6 0 9 6 1C 15 16 13 20 2h 22 2k 30 3* 38 

T 0 0 2 0 3 3 6 6 0 e 12 21 19 20 21 19 2K 26 i2 39 1*2 

C 1 2 1 3 2 6 i» 3 6 0 11 19 It 15 20 21 20 21* 27 35 3e 
T 1 2 0 !* 2 9 5 5 8 o 0 U 17 IS 11. 20 23 17 23 3«* 33 

A 1 1 0 3 1 6 1 3 7 7 1 0 12 16 0 lfc 18 9 20 26 23 

P 1 1 0 2 1 1* 3 0 it 1 6 11 0 7 13 9 16 11* 22 26 

0 1 1 0 2 1 5 5 1 L 1 6 1«. c 0 16 15 10 20 11* 22 29 

I 1 1 0 3 1 5 0 3 5 6 2 7 12 16 0 13 15 6 22 26 21 

K 0 0 1 0 1 0 3 5 1 5 6 10 10 1? 11 10 1U 15 19 25 25 

E 1 0 1 1 0 I» i» I l» 2 7 12 V t. 11 12 0 16 10 17 23 

Q 1 1 0 * 
J 0 l» 0 2 3 5 0 2 10 15 12 15 0 17 21 16 

R 1 0 0 1 0 3 2 0 3 0 3 5 V 1 9 8 1 3 0 8 15 

J 1 0 0 1 0 3 1 0 2 0 1 j 0 1 s 6 0 5 0 0 9 

M 1 1 0 3 o 
> 

0 0 5 3 0 0 1» 3 0 6 6 0 7 9 0 

lot«:   Dominance Matiix constructed fro« Social Distance Questionnaire for 60 subjects. 
Iteas have been reordered In descending fashion on the basis of their dominances. 
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SCORE MATRIX 
Ethnic 
Group 

II 

M 

If 

N 

If 

It 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Chain 
X 

5 
k 

2 
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log ethnic backgrounds of 60 respondents 


