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Disclaimer 

The findings in this report are not to be construed as an official Department of the Army 
position unless do designated by other authorized documents. 
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PREFACE 

The work described in this report was authorized under PA, A 5751264, Preliminary 
Design of a Suppressive Structure for a Melt-Loading Operation. It was performed from 
January 1974 to March 1974. 

Reproduction of this document in whole or in part is prohibited except with permission 
of the Commander, Edgewood Arsenal, Attn:  SAREA-TS-R, Aberdeen Proving Ground, Mary- 
land, 21010; however, DDC and the National Technical Information Service is authorized to 
reproduce the document for United States Government purposes. 

This report was printed originally as Technical Report No. 1, Contract DAAD05-74-C-0751, 
in March 1974.  It had a limited distribution of 15 copies.  Because the work formed the basis 
for a number of later studies in loading and response of suppressive structures, it is reprinted 
here with only minor corrections, and given a much wider distribution. 

The design concepts for the Category 1 structures presented here have evolved into rather 
drastically different structures, so one should not accept them as optimum designs. The report 
also contains no discussion of design for arresting fragments. The value of the report lies largely 
in the methods for prediction of internal and external blast loads, and methods for prediction 
of structural response using energy methods and allowing large plastic deformations. These 
methods, given in Appendices A, B and C, have been refined and modified in later reports, but 
the basic principles given in this report are largely unchanged in the later work. 
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ANALYSIS AND PRELIMINARY DESIGN OF A SUPPRESSIVE 
STRUCTURE FOR A MELT-LOADING OPERATION 

I.  EXECUTIVE SUMMARY 

Guidelines 

This report presents the results of a preliminary design study for a suppressive structure 
to suppress the blast effects from accidental detonation of a relatively large quantity of ex- 
plosive. Guidelines are: 

• Suppression of blast from 2500 lb of Comp B detonated in a melt kettle. 

• Suppression desired to 50% or better of the peak side-on overpressure at the intra- 
line distance (from DOD standards), and at all closer distances. 

• Fragment containment will not be specifically considered in our design, although 
members are included which are primarily fragment stops. 

• The desired floor working area is approximately 40 ft X 40 ft, and internal struc- 
ture volume about 64,000 ft3. This volume is assumed to be a simple shape, rather 
than a two- or three-tiered structure more typical of a melt loading plant. 

• Past suppressive structures designs and test results will be used as much as possible 
in this study. 

• We are to recommend structural configurations, size and overall design based on 
principles of limit design (plastic deformation). Curved structures as well as rec- 
tangular ones are to be considered. 

Design Concepts 

Two basic design concepts were considered. Concept A was a 40 ft X 40 ft X 40 ft rec- 
tangular box structure, with a false grid work floor 10 ft above its base. Concept B was a 
22.3 ft radius by 40 ft long horizontal cylinder, again with a false gridwork floor. As a limit 
to the concept of a curved structure, an unvented spherical shell was also considered. (In 
any blast containment structure, material is used most efficiently in the form of a pressure 
vessel, and the most efficient form of a pressure vessel is a sphere.) 

Loading 

An empirical method was developed, based on scaling of measurements of suppressed 
blast waves from past suppressive structure tests, to correlate vent panel designs with degree 
of blast suppression. A model analysis was also conducted for internal pressure rises in struc- 
tures with various degrees of venting, but no applicable data were found for well-vented struc- 
tures. Initial blast loads were predicted from sources of reflected blast data, accounting for 



venting areas of innermost panels. The governing loads are quasi-static pressure rises of 145 
psi for Concept A and 150 psi for Concept B, but these values may be reduced based on an 
ongoing test program. 

Response 

A number of design formulas were developed for prediction of plastic deformations of a 
variety of structural elements under impulsive and quasi-static pressure loading. Both bending 
and membrane deformations were considered. Structural elements included one-degree-of-freedom 
systems, simply-supported beams, clamped-clamped beams, rectangular plates, clamped-ended 
cylindrical shells, and spherical shells. 

Results 

Both Concepts A and B proved feasible. Structural weights for these structures were  : 

Structure Weight, tons 

Concept A(box) 799 
Concept B (cylinder) 566 

A comparison with a reinforced concrete rectangular structure, designed according to meth- 
ods in TM5-1300, would perhaps be instructive. But, the structure closest to these containers in 
that TM is a four-wall cubicle with a frangible roof, with the walls designed for impulsive loading 
only. We have noted that the quasi-static pressure rise governs the current design, so it is entirely 
inappropriate to compare a concrete cubicle designed by the methods in TM5-1300 to the designs 
reported here. 

Conclusions 

The design, though feasible, is not yet optimized. Significant reductions in weight and cost 
would probably result from a further design effort. Further test and/or analyses were recom- 
mended to determine quasi-static pressure rises. A carefully-instrumented series of tests of a 
scale model structure to 1/4 or smaller scale was also recommended, prior to construction and 
test of the full-scale structure. 

Fragment retention by the structure may or may not prove to be a problem-we did not 
address it in this study to date. Specific geometry of the melt kettle and nearby equipment 
will define the fragment hazard, with the most severe hazards probably being massive pieces 
of nearby equipment which are accelerated by the blast wave. Because of the fixed locations 
of melt kettles, such pieces can perhaps be best stopped by localized missile shields. 
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II.  DESCRIPTION OF THE PROBLEM 

The basic problem is one of design of a suppressive structure to suppress the air blast 
wave and contain the fragments from detonation of 2500 lb of Composition B explosive of 
hemispherical shape being processed in a melt kettle. Although present kettle designs involve 
the 2500 lb in three locations within the facility, for simplicity, we have considered the total 
amount in one structure of approximately the correct facility cubic footage. This work ad- 
dresses only blast loading and design to withstand blast effects, however, with containment 
of kettle fragments being separately considered by others. 

A floor working area of 40 ft X 40 ft is desired within the suppressive structure, with a 
structure height above the floor of 30 ft. A gridwork false floor can be allowed about 10 ft 
above the base of the structure, giving a total volume within the suppressive structure of about 
40 ft X 40 ft X 40 ft = 64.000 ft3. 

Blast suppression desired is a reduction of at least 50% in peak sideon overpressure at all 
distances up to the intraline distance specified by DOD ammunition and explosive safety stan- 
dards.  From Table 5-6.4 of Reference 1, the intraline distance for an unbarricaded structure 
is given by the equation 

R = \8WU3 (1) 

where R is distance in feet and W is explosive charge weight in pounds. This distance is, for 
this study, 

R = 18 X 25001/3 =244 ft 

The peak side-on overpressure in the absence of a suppressive structure is, at this distance, 
(see Figure 6.1 in reference 2) 

Ps = 3.5 psi 

Our goal for blast suppression is therefore 

Ps= 1.75 psi at/? = 244 ft, 

and 50% or better percentage reduction from free-air blast pressures at all distances closer 
to the structure. 

Past suppressive structure designs and experimental data on attenuation of blast waves 
by these structures are largely the result of work sponsored by the Hazardous Materials Engi- 
neering Office, Edgewood Arsenal, and conducted at the NASA Mississippi Test Facility. 
References 3-6 are typical of recent designs and studies of this nature. As much as possible, 
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the technology developed during these and current studies is to be used as a basis for the cur- 
rent study, supplemented by other data and references available to us. 

Another guideline which has governed our study is that principles of limit design should 
be used, i.e., the structure can be designed for large plastic deformation, rather than requiring 
that it be elastic and suffer no or negligible permanent deformation. 

In conducting the design study, we are to do the following: 

(1) Consider several different suppressive structural configurations, such as thin-walled 
cylindrical or curved structure, and box-shaped frame structure with internal pan- 
els. For each configuration, calculate transient blast loading on walls and quasi- 
static pressure rise for each of several sizes of structure. Blast loading estimates 
will be based on past suppressive structure studies and related work. 

(2) Determine, using dynamic plastic structural response methods, strength and/or 
weights and stiffnesses of structures to contain the blast effects for each struc- 
tural configuration. Energy methods and assumed deformed shapes will be used 
for these analyses as much as practicable. 

(3) Recommend a structural configuration, size, and overall design based on results 
of the above analyses. 

This report presents the results of the study. 

III.  DESIGN CONCEPTS AND LIMITATIONS TO DESIGN CONCEPTS 

Suppressive structures are basically well-vented, multi-layered structures. Although they 
can conceptually be made in almost any conceivable geometry, requirements for ease and low 
cost of construction using readily available structural steel members have usually dictated rec- 
tangular box structures, with an alternative geometry being a cylindrical structure with flat 
ends.  Doubly-curved structures such as spherical shells or domed ends for cylindrical shells 
require expensive fabrication methods, particularly when using the concept of a suppressive 
structure which requires multiple, spaced layers. Therefore the investigation was confined to 
two basic geometries, a rectangular box (Concept A) and a horizontal cylinder with flat ends 
(Concept B). The basic geometry and internal sizes assumed in this study are shown in Figure 
1. A gridwork floor 40 ft X 40 ft in area is assumed for both configurations. Concept A has 
an internal volume VA = 40 X 40 X 40 = 64,000 ft3 while Concept B has a volume VB = 
7T X 22.32 X 40 = 62,800 ft3. The melt kettle is assumed to be located in the center of 
either structure, about 5 ft above the gridwork floor. For estimation of blast loads, it will 
be assumed to be located in the exact center of each structure. 

12 



Location of Melt 
Kettle 

Gridwork Floor 

Concept A. Rectangular Box Structure 

Location of Melt 
Kettle 

Gridwork Floor 

Concept B.  Horizontal Cylinder Structure 

FIGURE 1.  BASIC CONFIGURATIONS 
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In applying the principles of limit design to each of these overall configurations, we will 
consider the ability of structural elements to absorb energy in plastic deformation by bending 
and membrane action, and will in general ignore the much smaller capability of these same 
elements to absorb energy by elastic deformation. Energies imparted to the structure by both 
the initial reflected blast loading (kinetic energy) and by the much longer duration quasi-static 
pressure resulting from addition of heat energy of the explosive to the air within the structure 
(plastic work) will both be considered. 

A crucial question in the design of this particular structure is the degree to which the vent- 
ing attenuates the quasi-static pressure rise after detonation of the explosive. We will address 
this question in some detail, based on available experimental data and analyses. We will also 
correlate existing designs with the degree of blast suppression measured outside the structure, 
and use this correlation as a basic design tool. 

To use the results of the previous work on suppressive structures to the maximum extent 
possible, we will generally limit our panel elements to ones similar to those used already, i.e., 
angles, zees, perforated plates, and louvres. Support elements will be designed from readily 
available steel structural members such as I-beams, H-beams, angles, channels, circular tubing, 
or rectangular tubing. Because we wish also to plan a subscale test, we will be partially gov- 
erned in our choice of structural members by the availability of smaller members of the same 
geometry which are nearly or exactly one-quarter scale sections of the prototype members. 
(In applying methods for subscale modeling of blast loading and structural response well into 
the plastic regime, we will assume that these methods are proven and well-known.  References 
7-10 provide ample evidence that this indeed is the case). 

Although we have specifically excluded doubly-curved structures in this study, and also 
limit ourselves to well-vented structures, it seems wise to make a quick calculation to deter- 
mine whether any structure of the assumed volume is feasible for containment of the blast 
and static pressure effects resulting from detonation of 2500 lb of Composition B. We con- 
sider an elastic-plastic steel sphere, completely unvented, with the charge detonated at the 
center. The internal volume is assumed to be V = 64,000 ft3 . 

The analysis is based on References 11 and 12, and is presented in Appendix A. The 
results are: 

(1) Design is controlled by quasi-static pressure, rather than initial reflected blast 
loading. 

(2) Shell thickness // = 0.432 inch, at a radius a = 298 inches for mild steel with a 
yield stress ov = 40,000 psi. 

(3) Weight of steel in the shell is Ws = 136,000 lb. 
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So, complete containment is feasible ignoring primary and secondary fragmentation with a 
shell weighing 68 tons. These results can be used as a rough basis to judge efficiency of sup- 
pressive structure design. 

IV.  METHODS OF ESTIMATING DYNAMIC AND STATIC LOADING 

The loading from an explosive charge detonated within a vented or unvented structure 
consists of two almost distinct phases. The first phase is that of reflected blast loading. It 
consists of the initial high pressure, short duration reflected wave, plus perhaps several later 
reflected pulses arriving at times closely approximated by twice the average time of arrival at 
the chamber walls. These later pulses are attenuated in amplitude because of irreversible 
thermodynamic process, and they may be very complex in waveform because of the com- 
plexity of the reflection process within the structure, whether vented or unvented.  We will 
assume in this study that the first blast pulse striking the walls is the important dynamic 
loading pulse, and neglect later ones.  If the structure has solid walls, the blast loading can be 
accurately estimated by using sources of compiled blast data for normally reflected blast 
pressures and impulses such as Reference 2, and the well-known Hopkinson's blast scaling 
law (see Chapter 3 of reference 2). The effect of vented panels in the suppressive structures 
on reduction of the reflected blast loading will be addressed later. 

As the blast waves reflect and re-reflect within the structure and as unburned detona- 
tion products combine with the available oxygen*, a quasi-static pressure rise occurs and 
the second phase of loading takes place.  Proctor and Filler12 present some data on these 
pressures, Proctor13 has developed a computer program to calculate both blast and quasi- 
static pressure rises, and Sewell and Kinney14 also present methods for estimating this later 
phase. In addition, Keenan and Tancreto15 have made measurements of blast pressures 
emitted from rectangular box cubicles with various vent areas and pressure rises within the 
cubicles.  Finally, Lasseigne16 has measured static pressure rises in closed chambers to ob- 
tain design information for a specific suppressive structure. From these references, one ob- 
tains the answer that for the particular ratios of vent area to chamber volume tested, the 
venting has no effect on the peak quasi-static pressure. Thus, peak static pressures for un- 
vented or poorly vented structures are the same. Unfortunately, essentially no data exist 
for quasi-static pressures within well-vented structures and the crucial question of the actual 
maximum pressure rise within such chambers remains unanswered. We must at present use 
the unvented pressure rise for design purposes. We have, however, conducted a model ana- 
lysis and  fitted curves to all data available to date to obtain the best possible estimate of 
this pressure. The model analysis and curve fits are presented in Appendix B. 

A third important question regarding blast loading and suppressive structures is, "Can 
blast pressures outside these structures be predicted for specific designs?" Many of the past 
measurements of effectiveness of these structures have been based on blast attenuation which 

The amount of oxygen available within any complete structure is apparently little affected by venting, until venting area 
becomes very large. 
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they provide (see references 3, 5, 6, 16).  Using these references and more recent data from 
MTF, we have generated a method of correlating emitted blast waves with suppressive struc- 
ture design based on comparing free-field blast data to blast data for waves emanating from 
suppressive structures. This method introduces an effective vent area ratio, aeff. which can 
be computed for any combination of vented elements in a suppressive structure panel. Using 
this parameter and least-squares curve fits to free-field and suppressive structures blast data, 
we have shown that the influence of the suppressive structure is to create an effective standoff 
distance Rst, less than the free-field standoff distance /?/ at which side-on overpressure Ps is 
the same for a given blast source of energy W. Alternatively, this method will predict the 
reduction in overpressure over a considerable range of distances outside the structure. Details 
of the method are given in Appendix B. 

The specific criterion which governs the blast loading of the particular structure we are 
considering is the goal noted in Section II of 50% or better blast overpressure reduction at 
R = 244 ft, and all closer distances. Using the methods of Appendix B, a value of aeff = 0.0349 
and a characteristic suppressive structure size of X = 40 ft, we achieve 50% blast reduction at 
R - 289 feet. Figure 2 shows the free-field and suppressed overpressures as a function of dis- 
tance, with all of the suppressed pressures lying below 50% of free-field for R < 289 ft. 

Because the effective vent area ratio is small, the quasi-static pressure rise has been assumed 
to be that for an unvented structure. The rectangular box structure (Concept A) with a vol- 
ume of 64,000 ft3, suffers a static pressure rise of AP = 145 psi, while the cylindrical struc- 
ture (Concept B) with the smaller volume of 62,800 ft3 has a higher pressure rise of AP = 
150 psi. These values were read from Figure B-5 in Appendix B. 

Impulsive loads on either of the structures are calculated from scaled curves in Figures 
6-1 and 6-2 of Reference 2. Only the reflected impulses Ir are important, because wall re- 
sponse times are much longer than blast loading times*. 

Loading is summarized in Table 1. 

TABLE 1.  LOADING OF SUPPRESSIVE STRUCTURES 

Structure Oeff AP, psi (A)max,psi-ms 

Concept A 

Concept B 

0.0349 

0.0349 

145 

150 

910** 

783** 

*These times are longer for flat walls and cylindrical shells than for spherical shells. We show in Appendix A that impul- 
sive loading is appropriate for spherical shells. 
**The values for Ir in this table were later found to be incorrect.  They should be multiplied by a factor of 1.630. 
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FIGURE 2. ESTIMATED BLAST SUPPRESSION FOR A 40 FT STRUCTURE 
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V.  METHODS OF ESTIMATING RESPONSE OF STRUCTURES 
AND STRUCTURAL ELEMENTS 

A number of limit design formulas were developed during the course of this study for 
calculating the ability of suppressive structural elements to withstand impulsive and quasi- 
static blast loads. Most of these formulas are based on energy balance techniques, equating 
initial kinetic energy from impulsive loading or work from quasi-static loading to plastic 
strain energy absorbed by the structural element. For some of the structural elements the 
deformed shapes of the impulsively loaded elements and predicted energy absorbing capa- 
bilities were compared with data available in the literature such as References 17-19, and 
were shown to yield accurate predictions. In all cases, the analyses yielded explicit ex- 
pressions for nondimensional deformations in terms of nondimensional loading parameters. 
No involved solutions to complex differential equations were required-only integrations of 
works and strain energies per unit volume of material of each structural element. Table 2 
summarizes the types of structural element considered, loading realm, method of plastic 
energy absorption, etc.  Elastic response was entirely neglected, and materials were assumed 
to be either perfectly plastic, or to be plastic with strain hardening. Beams were characterized 
by overall dimensions and plastic yield moment or plastic axial load, rather than by detailed 
cross-sectional properties. Omissions in Table 2 indicate that the particular loading realm or 
other parameter was felt to be inapplicable for elements used in this specific design, rather 
than that that formula could not be developed. The letters N/A in the table indicate that 
a particular response mode did not apply for that structural element. 

TABLE 2.  SUMMARY OF AVAILABLE RESPONSE PREDICTIONS 

Structural 
Element 

Respo nse Mode 
Plasticity 

Loading Realm 
Perfect 

Strain 
Hard Impulsive Quasi-Static Bending Membrane 

One-degree-of 
freedom X X N/A N/A X --- 

Simply-supported 
beam X X X X X ... 

Clamped-clamped 
beam X X X X X X 

Simply-supported 
rectangular plate X X X X X X 

Clamped circular 
plate X — X X X — 

Cylindrical 
shell X X N/A X X — 

Complete details of development of the limit design formulas are given in Appendix C, 
together with the design formulas themselves. These formulas are too numerous to repeat 
here, but will be referred to specifically in results in following sections. Their general char- 
acter is as follows for all elements, however. 



Beam Impulsive Response Formulas 

i0
2b2\       i0

2b2L\ .    .   /w0\ 
or I I = a finite power series in ( —- 1 (2) 

\pAPy)      \pAMy) \ L 

Beam Quasi-Static Response Formulas 

'pbL2\     (pbL\ /w„ , 
or  1 = a constant or a finite power series in   —— 1 (3) 

My  )     \Py j 

Plate Impulsive Response Formulas 

I — A = (a shape factor) (a finite power series in I—-11 (4) 
KPOy 

Plate Quasi-Static Response Formulas 

(pX2\     I \ I /w„\\ 
I  I = (a shape factor) la finite power series in I — II (5) 

Shell Impulsive Response Formula 

Jy 

Shell Quasi-Static Response Formula 

poyh
2/ ~\R ' L 

= function of I —,— I (6) 

(p0R\ 
\Oyh) 

,wa   R\ 
= function of |—, — ) (7) 

In these formulas, i0 is the maximum reflected specific impulse, p is quasi-static pressure, 
Py is tensile yield force and My plastic bending moment for a beam, while ay is yield stress. 
Element dimensions are beam length L; beam width b\ beam, plate or shell thickness h\ plate 
minimum half-width X; and shell radius R. Material mass density is p. 

The complexity of the multi-layered suppressive structures and multiplicity of choices 
possible for elements renders optimization of the limit design procedure quite difficult and 
time-consuming, even given design formulas such as those just discussed. Details of our specific 
choices, which applied past suppressive structures designs as much as possible, are given in Sec- 
tion VI for both Concept A and Concept B. Results will be given in a following section. 
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VI.  RESULTS 

Rectangular Box Structure (Concept A) 

The preliminary design of the suppressive structure of rectangular box configuration was 
accomplished to withstand the impulsive and quasi-static pressure loading of Table 1, Section 
IV, using primarily the plastic response methods and formulas described in Section V and 
Appendix C. Standard sizes of structural steel members were used in the design, as much as 
possible. In most cases, smaller members are also commercially available which are exactly or 
nearly one-quarter scale models of the prototype structural elements, so that a true dynamic 
response model can be designed and built without incurring added expense for fabrication 
of special model members. If a smaller model scale is chosen, say one-tenth scale, most of 
the model members can be easily made from thin gage sheet material by shearing and bend- 
ing operations. 

The primary material chosen for the structure was ASTM A36 steel. A very wide vari- 
ety of structural shapes are available in this material, and it is quite ductile and therefore 
desirable for plastic design. Nominal stress-strain properties are: 

Yield stress      ay = 36,000 psi 

Ultimate stress ou = 58,000-80,000 psi 

Ultimate strain eu = 30% 

In general, the basic plastic design criterion was to limit plastic strain to a value of half 
of ultimate, i.e., emax < 15%. We usually also neglected strain-hardening and used yield stress 
ay = 36,000 psi in the design formulas. Both of these criteria provide a margin of safety of at 
least 38% in the design. 

Details of this preliminary design are given in Appendixes D and E.  Vented 10 ft X 10 ft 
panels are considered in Appendix D, while the framework to support the panels is considered 
in Appendix E.  In the latter appendix we depart somewhat from the plastic design criteria of 
Appendix C.  For structural geometries or loading conditions not covered in Appendix C, load 
distributions within the structure were computed based on elastic behavior. In these cases, 
fully plastic section moments were combined with the axial loads and the resulting stresses 
were allowed to exceed the yield stress. However, stresses were always held to less than the 
minimum rupture stress of the material. Load redistribution in the structure due to yielding 
should act to limit stresses to even less than those calculated. 

In this preliminary design of the box structure of Concept A, the panels consist of an 
inner layer of angles, backed by four perforated plate layers. For design purposes angles were 
assumed to absorb most of the initial blast loading in bending, and the plates were assumed 
to absorb the quasi-static pressure in membrane action. Because the quasi-static pressure 
controlled the design, the plates will withstand the dynamic loads also and in the actual design 
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190 tons 

53 tons 

156 tons 

16 tons 

229 tons 

131 tons 

24 tons 

799 tons 

the angles can be selected based on a fragment criteria so long as the proper venting area 
is maintained. 

The framework consists of I-beams and deep section built-up members, referred to in 
our design as "A", "B", and "C" members. The overall structural configuration and details 
of framework and panel members are shown in Appendixes D and E. The total weight of 
steel in the Concept A structure is 799 tons. It is proportioned as follows: 

Weight of "A" frame members 

Weight of "B" frame members 

Weight of "C" frame members 

Weight of all panel edge members 

Weight of all angle panels 

Weight of uniaxial plate panels 

Weight of biaxial plate panels 

TOTAL WEIGHT 

No foundation weight is included in this total, even though a heavily-reinforced concrete base 
or a strong steel base structure is required to react loads from the main frame members.* 

Horizontal Cylindrical Structure (Concept B) 

The cylinder which has been designed to contain a 2500 lb explosion has a radius of 
22.3 ft and is 40 ft long. In this manner, a 40 ft by 40 ft gridwork floor fits inside as shown 
in Figure 1. Instead of being a single cylinder, 4 concentric cylinders are used, each of which 
is 0.300 inches thick and has a staggered hole venting pattern that is 15% of the area.  A fifth 
wall of angles for stopping fragments would also be located within the cylinders. The frag- 
ment stops would be 3-1/2 X 3-1/2 X 1/2 inch angle iron with a 2.415 inch spacing, as in 
Concept A. These angle irons would run in 40 foot strips longitudinally along the walls of 
the inner cylinder. A total of 697 angle irons would be used so that a for this inner wall 
equals 0.5. This combination of cylinders and angle irons yields the same aeff as Concept A; 
hence, the blast field outside either structure would be essentially the same. The total weight 
of the Concept B would be 566 tons if we assume that the same ends are used to enclose 
Concept B as we used on one side of the box containment, Concept A. The weight is pro- 
portioned as follows: 

Weight of 4 concentric cylinders 117 tons 

Weight of all 40-ft angles 155 tons 

Weight of 2 end enclosures 294 tons 

TOTAL WEIGHT 566 tons 

•Foundation design could not be completed within the limits of time and funds for this study. 
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The cylinders were designed so that the maximum strain was limited to 15%.  Equation 
(C-87) gives the longitudinal strain at X = ±L/2 for a cylinder with clamped ends as 

Substituting 0.15 for ec   and 40 feet for L into Equation (8), limits the deflection to: 

w0 = 1.705 ft (9) 

The circumferential strain ec is given by Equation (C-88). For the w0 of Equation (9) the 
maximum circumferential strain (at the center of the cylinder) equals 

ec= — = 0.0764 (10) 
R 

atX = 0 

Thus the longitudinal strain governs the allowable deflection of the cylinder. Because the cyl- 
inder has a slightly smaller volume than the box in Concept A, the quasi-static pressure rise 
equals 150 psi. This value forp0 is obtained by substituting for W/V in Figure B-5. The 
radius of R = 22.3 ft and length of L = 40 ft permit the cylinder to enclose a volume which 
is almost the same as that for a cube and a floor space which is identical to that in a cube. 
Substituting for R, L, p0 and vv0 in Equation (C-103) and assuming that the steel has a yield 
point of 36,000 psi yields an overall cylinder thickness of 1.02 inches.  Because we will use 
4 concentric cylinders to vent the structure instead of one cylinder, the thickness of each 
cylinder is 0.255 inch. This thickness would be the proper thickness if the cylinders were 
unvented, but each cylinder has a venting area of 0.15 times the total area of the cylinder; 
hence, the final thickness of each cylinder was obtained by ratioing the areas or 

0.255 
h = = 0.300 inches (11) 

0.85 

Structural weight and material thicknesses could be reduced if ductile high strength steels 
were used, but the price of such a structure could be higher. 

VII.   DISCUSSION AND CONCLUSIONS 

In this report, we have developed preliminary designs of suppressive structures of two 
different overall geometries with identical 40 ft X 40 ft floor areas, to suppress the blast 
from 2500 lb of explosive detonated in a melt kettle. As much as possible, results of past 
suppressive structure designs and blast measurements have been utilized in prediction of 
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blast suppression, panel design, internal pressures, etc. Methods have been developed for 
estimating reflected and quasi-static blast loads within the structures, and a number of limit 
design formulas for plastic deformation of elements of suppressive structures have been de- 
veloped and used as the basis for our design. 

The structural designs resulting from this study indicate that construction of a suppresive 
structure for this weight of explosive and size of structure is indeed feasible, for either a rec- 
tangular box configuration (Concept A) or a horizontal cylinder configuration (Concept B). 
Ths structural material is used more efficiently in the latter configuration, resulting in a sig- 
nificantly lower total weight of material. We must, however, emphasize that neither structure 
represents an optimum design, but is instead the result of our best effort for the designs which 
could be made with limited time and funds. It is almost certain that the designs could be im- 
proved with additional effort, and that structural weights would decrease in the process of 
design refinement. 

We have adhered throughout to sound principles of engineering design. Some concepts 
novel to designers accustomed to elastic design with generous safety factors have undoubtedly 
been introduced, but these concepts are inherent in limit design and are often verified by ex- 
perimental data from the literature. When we were uncertain of applied loads or structural 
responses, we invariably made conservative assumptions. One such assumption has a very 
strong influence on the design weights-that is the assumption that the venting process has 
no significant effect on the quasi-static pressure rise within the structures.  Any significant 
reduction in this pressure which is solidly based on experimental data or well-founded a- 
nalysis will in turn significantly lower structural weight and cost. 

In addition to tests or analyses to better define the quasi-static pressure within well- 
vented structures, other efforts are recommended prior to final design and construction of 
a full-scale structure.  At least a second iteration in the design procedure should be made to 
more nearly optimize the design.  Design, construction and test of a scale model of the se- 
lected configuration would prove highly desirable. This model should be carefully instru- 
mented to measure internal pressure rises, response of critical structural elements, and ex- 
ternal suppressed blast pressures. Testing a single panel in the open is not recommended, 
because the initial blast loading is also drastically altered by diffraction which would not 
be present in the final structure. 

There seems to be some question regarding the validity of blast loading and structural 
response scale modeling laws and procedures. Such laws exist and have been well-proven by 
a variety of model prototype tests, for structures undergoing large plastic deformation (see 
references 7-10). Exact geometric models employing the same materials as the prototype 
will respond in a manner allowing accurate prediction of prototype response to blasts from 
scaled explosive charges detonated within. Assuming that the structure in Concept A is to 
be modeled, Table 3 shows the proper charge weights and structural weights for prototype 
scale model proof tests for two model scale factors. 
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TABLE 3. COMPARISON OF PROTOTYPE AND MODEL TEST CONDITIONS 

Structure Charge Wt, 
Lb. 

'arameter 
Str. Wt, 

tons 
Time 
Scale 

Pressures, 
Stresses 

Strains Displace- 
ments 

Prototype 

1 /4-Scale Model 

1/10-Scale Model 

2500 

39.1 

2.5 

799 

12.5 

0.799 

1 

1/4 

1/10 

1 

1 

1 

1 

1 

1 

1 

1/4 

1/10 

Not only are final deformations properly scaled, but also entire time histories of pressures, 
stresses, strains and displacements can be used to accurately predict prototype response. 
We strongly recommend that either 1/4-scale or 1/10-scale well instrumented tests, using 
increasing charge weights up to the limit in Table 3, precede construction and test of the 
full-scale structure. 
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APPENDIX A 
ANALYSIS OF A PLASTIC SPHERICAL SHELL CONTAINMENT STRUCTURE 

We have assumed an internal volume V = 64,000 ft3, which gives an internal radius of 
the sphere of 

a = 
3V 

47T, 

\l /3 
(A-l) 

'3 X 64,000\,/3 

I )       = 24.8 ft 
47T 

Methods for response of this shell are reported in Reference 11, but we will use instead an 
energy method (which is equivalent). Energy imparted to the shell by the blast impulse and 
by the static pressure is equated to the strain energy in elastic plus plastic deformation under 
the pure membrane action which applies for a spherical shell. The assumed stress-strain curve 
for the material is (see reference 11) shown in Figure A-l. 

FIGURE A-l. ASSUMED ELASTIC-PLASTIC STRESS-STRAIN CURVE 

In this figure, subscript y represents yield and subscript;/, ultimate. The area under the 
stress-strain curve up to any final strain e represents the energy absorbed by the material 
per unit volume. From Figure A-l, we see that the yield strain ev is 

ey = 
(1 -v) 

(A-2) 

and that the slope S of the strain-hardening part of the curve is 

S = 
(Ou    - Oy ) 

(eu  ~€y) 
(A-3) 
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Assume a mild steel with the following properties: 

Young's modulus E = 30 X 106 psi 

Poisson's ratio = v= 1/3 

Yield stress ay = 4 X 104 psi 

Ultimate stress au = 6 X 104 psi 

Ultimate strain eu = 30% = 0.300 

Density p = 7.36 X 10-4 lb sec2 /in4 

From Equation (A-2) 

0.333) w A Ky     4 3 
ev = -r X 4 X 104 = 0.899 X 10 y       30 X 106 

from Equation (A-3) 

(6X 104 -4X 104) 
S = — ;  = 6.67 X 104 psi 

(3 X 10_1 -0.899 X 10-3 

A characteristic response time for the shell undergoing plastic deformation is11 

Tp=2nK2S/pa2y/2 (A-4) 

or 

TP =2TT/(2X 6.67 X 104/7.36X 10-4 X 2982)I/2 =0.139 sec 

Blast loading can be calculated from charts in Chapter 6 of Reference 2. Peak pressure 
is peak normally reflected pressure Pr, and impulse is Ir. From Table 6-1, Reference 2, blast 
energy is 

E = wl— ) = 2500 X 20.5 X 106 = 5.125 X 101 ° in-lb 

Scaled distance 

R = (Rp0
l/3)/E1/3 (AS) 

298 X 14.71/3 

R = r-—= 0.195 
(51.25 X 109)1/3 
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From charts in Chapter 6-1, Reference 2, 

Pr= 157,7, = 0.473 

Pr = 157 X 14.7 = 2310 psi 

Ir = IrXPo
2'3 XEl/3/a0 

= 0.473 X 14.72/3 X (51.25 X 109)1/3/1.34 X 104 = 0.792 psi-sec 

Duration of an equivalent triangular pulse is 

Tr = 2Ir/Pr = 6.86 X 10-4 sec 

This duration is much less than the response time rp, so the loading is impulsive. 

Using an energy balance, we can now calculate the kinetic energy imparted to the shell 
by the impulse Ir, and equate this to elastic and plastic strain energy. Kinetic energy is 

/ 2 A2 

K.E.=^-£- (A-6) 

where A is shell surface area and M is shell mass. But, 

A = 4m2 (A-7) 

M=(4rra2)hp (A-8) 

where h is shell thickness. So, 

2Ir
2na2 

K.E. = —  (A-9) 
hp 

Specific strain energy, the area under Figure A-l up to ultimate stress is 

avev     (av + au) 
D = ^-JL+   y     u> i€u -£ ) (A.10) 

4X 104 X 0.889 X 10"3     (6 X 104 + 4 X 104) 
D = +  (300 X 10-3) 

17.78 + 15,000= 15,020 psi 
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The elastic strain energy, represented by the first term in Equation (A-10), can be seen to be 
entirely negligible compared to the plastic strain energy. 

The volume of shell material is 

Vs = 4na2h (A-ll) 

and total strain energy is 

S.E. = VsD = 4na2hD (A-12) 

Equating (A-9) and (A-12), we can solve explicitly for shell thickness 

h = (Ir
2/2pD)1/2 (A-13) 

/ 0.7922 \1/2 

h=[-  =0.168in. 
\2X7.36X 10"4 X 15,020/ 

The quasi-static pressure rise in the shell can be estimated from work of Proctor and 
Filler12, using curves for AP versus W/V. 

W/V= 2500/64,000 = 3.91 X 10"2 lb/ft3, from which 

AP   = 145 psi 

To design to this static pressure, let us limit our stress to the average of ay and ou , i.e. a = 
5 X 104 psi. The applicable equation is (Reference 11) 

{AP)a      145 X 298 
h = —-- = -— = 0.432 in. 

2a       2 X 5 X 104 

This is the controlling thickness, and is decoupled from the thickness to withstand the blast 
loading. The corresponding weight of steel in the shell is: 

Ws = Vspg = 4Tra2hpg (A-14) 

Ws = 4TT X 2982 X 0.432 X 7.36 X 10-4 X 386 = 136,000 lb 
= 68 tons 

The conclusion of this exercise is that an unvented containment structure, using shell material 
in the most efficient possible manner by allowing purely membrane action and considerable 
plastic deformation, is indeed feasible for this structural volume and explosive energy. 
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ps=f\7^T3 (free field) (B-l) 

APPENDIX B 
LOADS OUTSIDE AND WITHIN A BLAST-SUPPRESSION STRUCTURE 

Blast Pressures Outside the Structure 

The side-on overpressures Ps in the free-field around an explosive charge are given by a 
functional relationship as expressed in Equation (B-l). 

R 

Wl 

where 

R  = standoff distance 

W - charge weight 

This functional relationship is the famous Hopkinson blast scaling law for the blast field 
around geometrically similar sources at sea-level ambient atmospheric conditions2. Assume 
that a cubical blast suppressive structure whose length on any side is X and whose walls are 
fabricated of a single metal sheet with holes drilled in it is now centered over the explosive 
charge. The ratio of the vent area of a wall to the total cross-sectional area of the wall will 
be defined as equaling a. Equation (B-l) for free-field blast will now be modified by the 
additional geometric parameters defining the size of the suppressive cube X and the vent 
area ratio a. If we elect to write a modified form for Equation (B-l) in nondimensional 
terms, a functional equation for predicting blast pressures outside the suppressive structure 
becomes: 

R     X 

W1/3'R' 
Ps =/, (' fi x / 3, —, a I      (suppressive structure equation) (B-2) 

Equation (B-2) represents a 4-parameter space of nondimensional numbers or pi terms. 
Although a functional format is not expressed by Equation (B-2), sufficient quantities of 
experimental data can be used to obtain an empirical relationship. This is precisely what we 
will do to develop a relationship for predicting blast pressures outside of the suppressive struc- 
ture; however, before this is done we must realize that most suppressive structures do not 
have walls which are a single sheet with holes. The vast majority of structures have 3 to 6 
wall layers with various staggered venting patterns so fragments will not escape the confine- 
ment. This means that, for a multi-walled confinement, we must compute an effective a, 
Oeff, so Equation (B-2) can be used to predict blast pressures. To compute o^ff for a multi- 
walled structure, we have hypothesized that: 

111 1 
 = — + — + + — (B-3a) 
^eff    a,      a2 oijv 
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where 

N = number of elements in a suppressive structure panel. Or, 

i = N 

«eff     / = 1    «/ 
(B-3b) 

Although no proof of this relationship is presently possible, it does reach the appropriate 
limits for small and large numbers of plates. For example, if only one plate is present Oeff = a,, 
as it should. If an infinite number of plates is present, «eff = 0, with the flow completely 
choked. If one of the plates is solid and thus has a zero a, a^u = 0 as it should. If all plates 
have the same value for a, c^ff = a/N which is a number smaller than a for a single plate, as 
would be expected. In each member, a is defined according to Equation (B-4). 

a - 'vent 

I wall 
(B-4) 

For plates the meaning of this definition is obvious; however, in angles and louvres, the de- 
finition is less obvious. Figure B-l defines a in a series of angles. 

«"f 

FIGURE B-l. DEFINITION OF a IN A SERIES OF ANGLE MEMBERS 

In a louvre, we use a similar definition of a, except that the a, determined on the basis 
of Equation (B-4), is multiplied by a factor equal to 1/2. This factor was applied because 
the data of Reference 6 indicate that louvres are more efficient in constricting flow than are 
plates with holes. Perhaps this is explained by the fact that the entrance of a louvre is per- 
pendicular to the entrance of a hole in a wall. As will be shown later, the factor of 1/2 
appears to be justified by a curve fit to the experimental data. Figure B-2 illustrates our 
definition of a for a louvre. 

L 

l-i-l 
a 

" 21 

FIGURE B-2. DEFINITION OF a IN A LOUVRE 
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Now that Oeff has been defined, we are prepared to develop a functional format for 
Equation (B-2). This format was developed by assuming that Equation (B-2) can be ex- 
pressed as: 

PS=A . 
R   \N,  fX\N 

R 
Oeff 

N\ 
(B-5) 

If logarithms are taken of both sides of this equation, 

J^TTI) 
+N2 (logf ] Wl R 

(B-6) 

The equation is made linear, and a least-squares curve fit can be developed by stating that: 

[10'10^' 
X "I 

log", log Oeff log A 

^3 

= [log/'sJ (B-7) 

Substituting matrix notation yields: 

[L] [N] =[P] (B-8) 

and a least squares curve fit results for log A, Nx, N2, and N3 or the JV matrix when: 

[N] =[LTL]~l [LT] [P] (B-9) 

Experimental test data from References (5, 6 and 16) were used to develop this curve 
fit. The resulting equation is 

P, = 976.3 H"/3tteff
1/2 

R3/2 Xl/2 (B-10) 

where 

Ps = side-on pressure (psi) 

W = charge weight (lbs) 

R = standoff distance from charge (ft) 

X = width of suppressive cube (ft) 

aeff = effective vented area ratio (—) 
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Figure B-3 is a plot of Equation (B-10) versus the experimental data points used to com- 
pose this plot.  Equation (B-10) appears to experimentally curve fit the test results excellently. 
One standard deviation for the experimental data about the line in Figure (B-3) equals 18.6% 
which is only slightly worse than would be obtained for free-field data. Because this is a curve 
fit to test data, Equation (B-10) should only be used when input conditions fall within varia- 
tions in individual pi terms. The variations included in test results were: 

0.0263 <Oeff < 0.60 

0.323   <-< 1.77 (B-ll) 
R 

4.27 ft/lb'/3 <-?-< 17.5 ft/lb1/3 

It is interesting to curve fit free-field side-on blast pressure data from References (5, 6 
and 16) using the same procedure over the same range as for the suppressive structure blast 
field data. The resulting equation for free-field data is: 

W2/3\ 

A comparison between Equation (B-12) and the test data points can be seen in Figure B-4. 
The standard deviation for blast pressures in the free-field is 13.1% which is only slightly 
better than the standard deviation for the suppressive structure blast field equation. Natu- 
rally Equation (B-12) should only be applied whenever R/Wl /3 is between the limits estab- 
lished by Equation (B-l 1). 

If one compares Equation (B-10) for suppressive structures to Equation (B-12) for 
free-field blast, it is immediately apparent that the influence of the suppressive structure is 
to create an effective standoff distance less than the free-field standoff distance at which 
blast pressures are the same for a given size energy release. This standoff distance with a 
structure suppressing the blast #st is related to the free-field standoff distance Rf by: 

*t2=tfs,3/2  ^77? (B-l 3) 
Ofeff 

or 

Kst=aeff
1/3(jT7TJ (B-l 4) 
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FIGURE B-3. CURVE FIT TO BLAST PRESSURES OUTSIDE SUPPRESSIVE STRUCTURES 
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Pressure Rise Inside Structure 

In this section, we will discuss the quasi-static pressure rise within a suppressive structure. 
To create a solution, we will first perform a model analysis. The problem is envisioned as an 
instantaneous energy release of magnitude W inside a confined volume V. A vent area (Oeff/1) 
exists through which internal gases can escape. We are interested in predicting the internal 
pressure rise and decay of p as functions of time /. Ambient atmospheric pressure pa exists 
initially inside and outside the confined volume. To completely define an equation of state 
for the gases in this problem, we need two additional parameters which will be the ratio of 
specific heats 7 and speed of sound c. The following table summarizes the parameters in this 
problem and lists their fundamental dimensions in an engineering system of F, L, and T. 

PARAMETERS DETERMINING QUASI-STATIC PRESSURE INSIDE 
VENTED CONTAINMENT VESSEL 

Parameter 
Fundamental 

Symbol     Dimensions Reason for Including 

Volume 

Vented Area 

V L3 

(UeffA) L2 

Describe geometry 
of boundaries 

Energy Release It' FL Input Energy 

Atmospheric Pressure p0 

Sound Speed in Air c 

Specific Heat Ratio Air       7 

F/L2 

L/T Define the State of 
Air 

Pressure Increase 

Time 

P 

1 

Desired Response 

Several different texts tell how nondimensional numbers or pi terms can be developed 
from this list of variables. Because no new assumptions are inserted in developing pi terms, 
we will present only the results and not perform all of the algebra. The assumptions in this 
analysis are all in the definition of the problem. Phenomena cannot be considered which 
have no parameter listed in the table. Probably the major assumption is that no thermal 
effects are considered; in other words the pressures dissipate through the venting and not 
through the conduction of heat into the walls of the suppressive structure. An acceptable 
set of pi terms which can result is: 

* 1 =PlPo 

(aeff^)3/2 

7T,   = (B-15) 
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T3 = 7 

7T4 

PoV 

7T5 

ct 
i/l /3 

(B-15) 
(Cont'd) 

If we assume 7 is a constant (as it would be for air), and are only interested in predicting 
peak pressure, the result would not be dependent upon time or the pi term ct/V1 /3 and the 
pi term 7 would be invariant. Hence 

Po \PoV 

Because p0 is invariant, we can also write a dimensional functional format for Equation 
(B-16). 

(W  (aeftv4)3/2\ rR17. 
Pmax=/(-, ) (B-17) 

Figure B-5 is a plot of pmax versus W/V for various values of (ae((A)3'2/V . Provided 
(Ogffvl)3 /2/V is less than 0.0775 the experimental data indicate that the maximum pressure 
Pmax is independent of (o^ffA)3 /2/V. In other words, the maximum pressure is reached be- 
fore significant venting occurs if (aeffA)3/2/Vis less than 0.0775, and: 

/W\ (Oeff/l)
3/2 

Pmax=/(-J   provided ^'y       < 0.0775 (B-18) 

The data used in developing Figure B-5 come from Reference (15). In addition to presenting 
their own data which was obtained at the Naval Civil Engineering Laboratory, they also re- 
port test data obtained by James Proctor at Naval Ordnance Laboratory. Both groups of 
experimenters used Comp B explosive, but as can be seen in Figure B-5, their experiments 
were in different domains of W/V. 

The dashed straight lines in Figure B-5 are the asymptotes for complete energy con- 
version or forpmax proportional to (W/V). If (W/V) is too large, insufficient oxygen is 
available to convert all the energy in the explosive charge; hence the energy release is re- 
duced by the ratio of the heat of detonation divided by the heat of combustion. Figure B-5 
implies that for W/V < 0.003 complete oxidation occurs; W/V> 0.1 the only oxidizer avail- 
able is that in the explosive itself, and W/V between 0.003 and 0.1 results in partial oxidation. 
Throughout our structural calculations, we use the normalized data presented in Figure B-5. 
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If the maximum pressure is reached before significant venting occurs, the blow-down 
time will be independent of W/pa V, and we can write a functional time of blow-down 
equation. 

Ct Ip     (Oeff.4)3/2\ 

v^mf(^-y-) ,B-|9) 

Neglecting the invariant ambient gas parameters in Equation (B-19) permits us to write a 
dimensional form of Equation (B-19). 

t I     (Oeff/l)
3/2\ 

The data used to develop Figure  B-5   can also be used to empirically solve Equation (B-20). 
Figure B-6 is a plot of t/pl /6 Vx /3 versus (o^nA)3 /2 /V. The ordinate of this graph contains 
an empirical ovservation that the two pi terms tjVx /3 and p can be combined to form 
t/p1 /6 F1 /3. This empirical observation means that we now write Equation (B-20) as 
Equation (B-21): 

(B-21) 

The function format for Equation (B-21) can now be obtained from Figure B-6 . 
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APPENDIX C 
STRUCTURAL ANALYSIS PROCEDURES 

Most of the analyses in this Appendix apply to flat panels, or straight members which 
can be used in flat panels or to support such panels. The final analysis refers to a cylindrical 
structure. When possible, the analyses are validated by comparison with data for dynamic 
structural deformations from the literature. But, such comparisons are limited to impulsive 
response of some simple structural elements. 

The basis for all structural analysis of suppressive blast structures will be rigid-plastic, 
energy balance solutions. To illustrate the validity of this approach consider a single-degree- 
of-freedom, rigid-plastic system as in Figure C-la. The motion of the mass m is resisted by 
a Coulomb friction element/when the load p(t) is applied to the structure. We will approx- 
imate a blast loading by assuming that p(t) has an exponential decay as in Figure C-lb, where 
P is the maximum applied force and T is the time constant associated with the duration of 
loading. If f//< 1.0, we have the trivial case that the residual deformation Xmax equals 0 
because the mass never moves. 

p(t)   =   P e 
-t/T 

(a) (b) 

FIGURE C-l.  RIGID-PLASTIC, SINGLE-DEGREE-OF-fREEDOM DAMAGE MODEL 

If/y/> 1.0, we have the differential equation of motion 

pe-t/T-f = m 
<P_x 

dt2 (C-l) 

or 

d2x     P      t/T 

dr    m 
(C-2) 

By direct integration, we obtain for the case of zero initial velocity: 

X-e-tlT dx_PT 

dt     m -mi (C-3) 
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Integrating again, we obtain for the case of zero initial displacement: 

pp. 
x = 

m T 2   \p)   \T/        J 
(C-4) 

Motion continues until the velocity, Equation (C-3) equals zero or until: 

rt/T + 
\P / T 

(C-5) 

One cannot explicitly solve for t/T, so one must assume values of P/f, solve for t/T, and 
substitute in the displacement equation, Equation (C-4), to obtain Xm3X. The following table 
is such a calculation. 

SOLUTION TO EQUATIONS CM AND C-5 

t/T P/f Xm/PT2 (PT)2/Xmf 

-    -    - 1.00 0 oo 

0.09 1.033 0.001 1033 
0.35 1.18 0.003 394 
0.50 1.27 0.009 141 
0.75 1.42 0.024 59.2 
1.00 1.58 0.052 30.3 
1.50 1.94 0.143 13.6 
2.00 2.31 0.270 8.56 
3.00 3.16 0.630 5.02 
4.00 4.08 1.06 3.84 
6.00 6.01 2.00 3.01 
9.00 9.00 3.50 2.57 

13.0 13.0 5.50 2.36 
20.0 20.0 9.00 2.22 
35.0 35.0 16.50 2.12 
50.0 50.0 24.0 2.08 
75.0 75.0 36.5 2.05 

100.0 100.0 49.0 2.04 
  oo   2.00 

The maximum displacement XmiiX in the third column of the table has been nondimen- 
sionalized by dividing the left and right sides of Equation (C-4) by PT2/m. A solution can be 
presented for the maximum displacement by plotting Xmax m/PT2 versus P/f. We have elected 
to divide P/f by Xmax m/PT2 to form a new fourth column in the table and to plot this new 
column (PT)2 /Xmax mf versus P/f. The reason for this manipulation is that the product PT 
equals the applied total impulse /, and in this manner we create a scaled P-I diagram. The 
solid line in Figure C-2 is this scaled P-I diagram for a rigid plastic model. 
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FIGURE C-2. P-I DIAGRAM FOR RIGID-PLASTIC SYSTEM 

Observe in the table and Figure C-2 that whenever (P /Xmax mf) is greater than about 
60, the duration of loading T is larger than the response time t and P/f equals 1.0. Similarly, 
whenever P/f is greater than about 20, duration of loading T is smaller than the response 
time t of the responding structure and P /XmdiX mf equals 2.0. The energy solutions which 
we will apply compute both of these asymptotes. We will obtain asymptotes for beams, 
membranes, plates, and shell structures in various following calculations. To illustrate the 
principles behind these calculations, we will first calculate the asymptotes for this idealized 
system. 

The strain energy U stored in plastic deformation is given by: 

(C-6) U — fXmax 

The kinetic energy K.E. imparted to the mass equals: 

K.E. = {\/2)mV0
2 = (\/2)m(I/m)2 = P/2m (C-7) 

The work Wk done by the maximum force P acting through the distance Xm3X is: 

Wk = PX„ (C-8) 

Equating the strain energy U, Equation (C-6), to the kinetic energy K.E., Equation (C-7), 
yields the asymptote for the impulsive loading realm or 
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p 
= 2.0        (impulsive loading realm) (C-9) 

We term this domain the impulsive loading realm because the response of the system depends 
only upon the maximum applied impulse. The other asymptote is obtained by equating U, 
Equation (C-6), to the work Wk, Equation (C-8). 

P/f =1.0 (quasi-static loading realm) (C-10) 

Because the response depends only upon the peak load, we will term this domain the quasi- 
static loading realm. Now we are prepared to apply these principles to real structural com- 
ponents. 

Bending Simply-Supported Beam 

Figure C-3 illustrates the bending of a simply-supported beam being loaded with a 
uniform load. To calculate strain energy in this member we must first assume a deformed 
shape. 

i i i i t i i i i i i i i i i 
Tr^T       "~ ~ —• » _ 1       o ^ — •"' " .^TT 

FIGURE C-3. BENDING OF A SIMPLY-SUPPORTED BEAM 

Choosing 

Ax 
w 

I      4xz\ 

as an appropriate deformed shape we find that at X = 0, center of the beam, w = w0 and the 
slope dw/dx = 0, while at the ends of the beam, x = ± L/2, the deflections u> = 0 and the 
slopes dw/dx = — 8xw0/L

2, a maximum value. The strain energy equals the plastic yield 
moment .Afy for the beam cross-section times the change in angle of rotation integrated 
over the entire beam. Because the beam is symmetric and the change in angle of rotation 
with respect to x approximately equals —d2 w/dx2, the strain energy U equals: 

LJ2        d2w 
U = ~2 f   My — dx (C-12) 

dx2 
0 "-* 

Substituting Equation (C-11) yields 
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LJ2       8 
U=+2J     Mv^rdx (C-13) 

o 

or 

U-y** (C-14) 

The kinetic energy K.E. is obtained by summing up the impulse squared divided by two 
times the incremental mass [see Equation (C-7)] over the entire beam. If b is the width of 
the loaded member, p the density, A the cross-sectional areas, and i0 the specific impulse 
(impulse per unit area), this summation yields the following integration. 

£/2 i0
2b2(dx)2 

K.E. = 2/     — —L (C-15) 
i        2pA(dx) 

or 

io2b2L 
K.E. =^—— (C-16) 

2pA 

Equating U, Equation (C-14), to K.E., Equation (C-16), yields the asymptote for the im- 
pulsive loading realm. 

io2b2L 

pMyA C8 = 16 (—)     (impulsive realm s.s. beam) (C-17) 

The work Wk is obtained by integrating over the length of the beam, the forces times 
the distance through which they move. This operation is performed by integrating pb dx 
times the assumed deformed shape, Equation (C-l 1). 

LJ2 I       4x2\ 
= 2/   pbw0  \}-JT)dx <c-18) 

4/2 
Wk 

0 

or 

2 
Wk = -pbLw0 (C-l 9) 

Equating Wk, Equation (C-18), to U, Equation (C-14), yields the quasi-static asymptote. 
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pbL' 
= 12 (quasi-static realm s.s. beam) (C-20) 

Bending Clamped Beam 

So far these calculations have assumed that the beam is simply-supported and free to 
rotate at the ends. If the beam is clamped at the ends so no rotation occurs, but can move 
inwards so that no membrane action is developed, we can use many of the results which have 
already been developed. To do this, assume that a clamped beam is really two simply-supported 
beams that have been split and joined end to end as in Figure C-4. 

JJU. 

FIGURE CA.  DEFORMED SHAPE OF CLAMPED BEAMS 

This new configuration implies that: 

U=W„ = 
\6MyY0 

(C-21) 

and that 

K.E. = 2K.E., 
iD

2bH 

PA 
(C-22) 

but £ = 1/2Z, and Y0 = 1/2w0, so substituting for £ and Y0 and equating U to K.E. yields: 

io2b2L 

pAMy 

wn 
= 32 —     (impulsive realm clamped beam)     (C-23) 

Because Equation (C-23) for clamped beams is twice Equation (C-l 7) for simply-supported 
beams, we can write 

io2b2L 

NpAMy 

U' 
16 ——   (impulsive realm beam bending)       (C-24) 
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where 

N = 1.0 for simply-supported beams, 

N = 2.0 for clamped beams 

To experimentally demonstrate the validity of this solution, we have plotted experi- 
mental data taken by Florence and Firth (Reference 1) and compared these data to Equa- 
tion (C-24). Because Florence and Firth used beams with rectangular cross sections, My - 
Oybh2/4. Substituting forMy, bh for ,4, and 2i for L (they used half spans) yields: 

Npa avh
2     \t) V i ) 

(impulsive realm rectangular      (C-25) 
beam bending) 

All of the beams tested by Florence and Firth had an £//i ratio of 36, so this comparison is 
made by plotting i0/hy/Npoy versus w0/C. All beams are impulsively loaded using sheet 
explosive. Both clamped and pinned beams made of 2024-T4 aluminum, 6061-T6 aluminum, 
1018 cold rolled steel, and 1018 annealed steel are included in this comparison.  Figure C-5 
demonstrates the validity of Equation (C-25) and this analysis procedure. 

To calculate the response of a clamped bending beam in the quasi-static loading realm 
we must calculate the work Wk on a deformed beam as in Figure C-4. If we use a deformed 
shape as given by Equation (C-l 1) for each beam segment, the work Wk equals 

e/2 
Wk = 2  f pbY0 1 + 

/      4x2\ e/2 
dx + 2  f pbY0 (-£) dx (C-26) 

or 

Wk = 2pbY09. (C-27) 

L w0 
But C = — and Y0 - —; hence 

1 
Wk = — pb w0 L (C-28) 

Equating Equation (C-28) to U in Equation (C-21) yields: 

pbL2 

Mv 
= 32 (quasi-static realm clamped beam)     (C-29) 
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Applied Mech. Vol. 32, Sept. 1965, pp 481-488 
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wo 

FIGURE C-5. BEAM BENDING IN THE IMPULSIVE REALM 
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Because Equation (C-29) for clamped beam bending is 8/3 times Equation (C-20) for 
simply-supported beam bending, we can write: 

pbL2 ,.,, 
 = 12NIA13      (quasi-static realm beam bending) (C-30) 
My 

where 

TV = 1 simply-supported beam 

N= 2 clamped beam 

Although we have no data to verify this analysis, the procedure is precisely the same as 
that used in the single-degree-of-freedom oscillator analysis.  If a beam happens to have a 
rectangular cross section, Equation (C-30) becomes, after substituting for My, 

ovh
2 - 3Nl A l b    (quasi-static realm rectangular beam (C-31) 

Jyn bending) 

Membrane Action in Beams 

The deformed beam sketched in Figure C-3 and the deformed shape presented in 
Equation (C-l 1) can also be used to estimate the response of a beam undergoing axial or 
extensional straining. The strain e in such a member equals: 

dL-dx 
e = —:  (C-32) 

dx 

But dL is given.by 

hence 

dL =y/(dw)2 + (dx)2 (C-33) 

Using the binomial expansion and retaining only the first two terms as an approximation 
yields: 

1   /dw\ 2 

i=iU) (C-35) 
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Differentiating Equation (C-l 1) and substituting into Equation (C-35) then gives: 

32x2vv0
2 

e = (C-36) 

But the strain energy per unit volume equals ode or for a rigid non-strain-hardening plastic 

system 

U=2J     oyeAdx (C-37) 
o 

Substituting Equation (C-36) for e and realizing that oyA equals the yield load Py gives: 

„.«•£&/\.fc (C-38, 

The integration then yields: 

L o 

uJ-%^ (C-39) 
3L 

Because the kinetic energy imparted to the member does not depend upon the deformed 
shape, K.E. is still given by Equation (C-l 6), and because the deformed shape in this string 
analysis is the same as the deformed shape in the beam analysis, the work Wk is given by 
Equation (C-l9).  Equating U to K.E. yields the impulsive asymptote. 

i0
2b2     16   /w0>   ; 

7© (impulsive realm membrane (C-40) 
pPyA     J    \ u/ analysis) 

The quasi-static asymptote is obtained by equating U to Wk which yields: 

pbL       /w0\ 
—— = 4 ( —1       (quasi-static realm membrane (C-41) 
vv \ L /      analysis) 

If the members have rectangular cross sections, Equations (C-40) and (C-41) become: 

i0
2       16 iw0\ 

2 

 \-^r \~r)        (impulsive realm rectangular membrane (C-42) 
P°vh       3   \L/ analysis) 

pL /w0\ 
= 4[-—) (quasi-static realm rectangular membrane       (C-43) 

°yh v 'L/ analysis) 
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Strain hardening can increase the strain energy which is stored in a deforming beam. 
In bending this increase in stored energy is insignificant because membrane action usually 
starts to store energy of a much larger magnitude before bending strain energy becomes 
significant. The extra strain energy from hardening will be given by 

U=2f 
L

r
12 (Ete)(e) 

—-— Adx (C-44) 

Substituting Equation (C-36) for e yields 

(32)2Etw0
4A   L-/2 

U f    x4dx (C-45) 
(T 

or 

32EtAw0
4 

U =         (strain hardening, membrane action) (C-46) 

This hardening term may be added directly to Equation (C-39) to obtain the total strain 
energy from membrane action. Then the sum of Equations (C-39) and (C-46) can be equated 
to either Equation (C-16) or Equation (C-19) to obtain respectively the impulsive and quasi- 
static asymptotes. These asymptotes are: 

i2b2     16 /w„\ 2     64 

pPyA      3 

/w0\ 
2     64 (EtA\ /w0\ « 

I —1    H 1   I ( — J (impulsive realm (C-47) 
v Py / V L/ membrane equation) 

/w0\      48/EtA\ /w0\ 
3 

= 4 \      / +~~ \P   ) \r) (quasi-static realm (C-48) 
pLb 
p 
y x ^ '        J   " ry '   v ^7 membrane equation) 

Beams in Bending and Membrane Action 

We will superimpose bending and membrane strain energies by adding the two expres- 
sions to obtain a total strain energy in the structure whenever both mechanisms are significant. 
Although it is very difficult to show that this is a correct procedure in plastic analysis of 
irregular cross sections (I-beams, angles, etc.), it is easy to show that in elastic rectangle 
members this procedure is rigorously correct. The strain in an elastic rectangle member is 
given by: 

P     Mc 
e'TA

+m <c-49) 
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where 

c  = distance from neutral axis (can be negative) 

P = load 

M - moment 

A = cross section area 

/   = second moment of area. 

But the strain energy perdx length of beam is given by 

+ /l/2   £e2 
U/dx= f      —bdc (C-50) 

-A/2     2 

Or upon substituting Equation (C-49) 

U_ _    i*/2   ibM2c2dc     bP2dc     MPcdc\ 

dx~Jh/2     \   2EI2     + 2EA2       El A   ) (  "51) 

This integration yields 

U     M2        P2 

— = + + 0 (C-52) 
dx     2EI     2EA 

+ h/2 Mpcdc 

The term   /          equals 0 because this coupling term is an even experssion.  The other 
An    EIA 

two terms when Equation (C-52) is multiplied by dx are respectively the sum of the bending 
strain energy and the membrane strain energy.  Hence Equation (C-52) states that no coupling 
occurs and the strain energy in the structure U is: 

V ~ ^bending   '   ^membrane (C-53) 

Summing Equations (C-39), (C-46), and either Equation (C-14) or (C-21) depending 
upon boundary conditions yields the strain energy which can be equated to the kinetic energy 
as expressed by either Equation (C-14) or (C-21) (these equations are the same) to obtain the 
impulsive loading realm asymptote. Equation (C-54) is this equality. 

i0
2b2L    8NMvw0     8Pvw0

2     32EtAw0
4 

^T = f~^ + ^7^+      c,3 (C"54a) 
2pA L 31 5Z,3 
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or 

2u2 
>o2b 

pAPv >«&)©+7©'+7(£)fr)4 (C-54b) 

(impulsive realm) 

In the quasi-static loading realm, the strain energy is equated to the work Wk given by 
either Equation (C-19) or Equation (C-28) dependent upon boundary conditions. This 
equality yields: 

2                    8NMvw0     SPyw0
2     32EtAw0

4 

pbLw0 = f— + 3^0.415 31 5L< 
(C-55a) 

or 

pbL 
= 12^1.415 (5) •«•"•&) + 487V° 415 m o?) (C-55b) 

(quasi-static realm) 

Humphreys (Reference 2) presents experimental data on clamped rectangular strips 
whose boundaries cannot move together when loaded with an impulse. For a rectangular 
member, we substitute My = aybh2/4, Py - avbh, and A = bh into Equation (C-54b) to 
obtain: 

pOyh2 «(!)©;7 ft)" •?£)&) (C-56) 

(impulsive realm rectangular beam) 

Because Humphreys plots 
i0L 

(poyy
/2h2_ \_\H»y 

versus 
2w0 

we have multiplied all terms in 

Equation (C-56) by L2 /h2 and set N = 2 to obtain: 

i0L 

h2{payy
12 -e?K(Tr^)(Tr 

Figure (C-6) is a comparison of Humphreys' data with Equation (C-57). The data includes 
tests on 1020 mild steel, cold-rolled steel, and 4130 N steel. As can be seen in Figure C-6, 
the data would appear to verify this analysis. The two lines in Figure C-6 are plots of 
Equation (C-57) with and without the strain hardening term. For very large deflections, 
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the term is left out of an analysis, Figure C-6 indicates that an energy analysis would over- 
estimate deflections. 

Plates in Bending and Membrane Action 

The strain energy per unit volume in a structural element under a biaxial state of stress 
is 

T7T= J       {onden +2ol2del2 + o22de22\ (C-58) 
Vo1-      sTrains    L J 

Assume a rigid-perfectly plastic stress-strain law without strain hardening.  Then Mohr's 
circle of stress for any strain is a point on the horizontal normal stress axis, and no shearing 
stress occurs. This observation means that Equation (C-58) simplifies and becomes 

U 
~ = Oy€x   + Oy€y (C-59) 

The bending strain energy and the membrane strain energy can now be calculated for 
the plastic deformation of a plate if we assume a deformed shape for the plate. For a plate 
bounded on all four sides but free to rotate along the edge, we will assume 

-•° ('-£)('"£) <c'6o) 

where 

X & Y are half spans 

x & y are a rectangular coordinate system at the center of the plate 

w0 is the mid-plate deflection 

This assumed deformed shape is symmetric, has the maximum deflection at the center 
of the plate, has no deflection along the boundaries, has no slope in the center of the plate, 
has the maximum slope at the edge of the plate, and has curvature throughout most of the 
plate. Our ability to meet all these conditions with Equation (C-60) infers that the assumed 
deformed shape is an appropriate one for a simply-supported plate. 

d2w d2 w 
The bending strain energy Uf, is estimated by substituting —z —— for ex and —z —- 

dx2 3V 2 

for ey in Equation (C-59) and integrating to obtain: 
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uh 
P       /        / /      d2w d2w\ 

= -8/     dz I    dx I   dy   [ay z — + oy z — (C-61) 

Differentiating Equation (C-60) and substituting it into Equation (C-61) yields: 

h/2     X     Y 
Uh = \6ayw„ f      f   f 

ooo X2  I1      Y2) + Y2 c/z fi?JC 6?V (C-62) 

or 

T1   4oyWoh
2 /r   r 

"»"       3 \X+Yj 
(C-63) 

/3H'\ 
2 r 

The membrane strain energy Um is estimated by substituting — I -—I    for ex and 
2 \dr 

3vv 

2 \3.v 
for ev in Equation (C-59) and integrating to obtain: 

Um =4 f      dz f  dx f  dy   °*- 
2   V3.Y 

3w\ 2      av   /dw 
9 flr 

(C-64) 

Differentiating Equation (C-60) and substituting it into Equation (C-64) yields: 

+ h/2     X    J 
£/„,    =80yW0

2      f J J 
-h/2     0     0 

[v2 
/ 2\2            2 / Y2\2]   - -±—\      + — -   

\x4 V ry      r4 
V X2) J dzdxdy (C-65) 

or 

f/m  - 
64P>,w0

2/; /A"      r 
45       \r + x 

(C-66) 

The kinetic energy K.E. imparted to a plate is obtained by integrating the impulse 
squared divided by two times the incremental mass [see Equation (C-7)] for a dx by dy 
differential element in the surface of a plate. This manipulation yields: 

K.E. = 4/  / 
x   * i„2(dx)2(dy)2 

2ph(dx)(dy) 
(C-67) 
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or 

2i0
2XY 

K.E. = —  (C-68) 
ph 

The work Wk performed on a deforming plate is obtained by 

Wk = fpwdA (C-69) 

Substituting our assumed deformed shape, Equation (C-60), for w and dx plus dy for dA 
yields: 

Wk = 4pWo f  f     (\ - £)  (l - i-j dx dy (C-70) 

or 

Wk = —pw0XY (C-71) 

Equating Equations (C-63) plus (C-66), the sum of the strain energies, to Equation 
(C-68), the kinetic energy, yields the impulsive asymptote for a deforming simply-supported 
plate. 

2i0
2XY_4ayw0h

2 (Y    X\     64oyw0
2h (Y , X 

or 

ph 3        \X     Y) 45        \X     Y 
+ -)+ \e   ••      - + -) (C-72) 

2 v2 JQ2X 

POyh^ (fflimM^)] 1+l^) "IITI ~r)   +77l~r)l (impulsive realm (C-73) 
s.s. plate) 

Equating the strain energy to the work, Equation (C-71), yields the quasi-static 
asymptote for a deforming simply-supported plate. 

_16 
9 

4ovw0h
2  (Y    X\   64oyw0

2h [Y    x\ 
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or 

PX2 

avh
2 1 + (f)1[H(T)] (quasi-static realm 

s.s. plate) 
(C-75) 

We have no data to demonstrate the validity of this solution on rectangular or square 
plates; however, Florence (Reference 3) presents deformation data on clamped circular 
plates loaded with a uniformly distributed impulse. To demonstrate the validity of this 
analysis philosophy, we developed an energy solution for clamped circular plates. The 
assumed deformed shape was: 

w 
( 3r2      2r2\ 

= w0     1.0 r+^ 
"    V R2      R3J 

(C-76) 

This deformed shape has zero radial slope at the edges and center of the plate, no deflection 
at the edges of the plate and a maximum deflection of w0 in the center of the plate.  Radial 
moments exist with opposite signs at the edge and center of the plate because the radial plate 
curvatures change signs in these locations. Because of symmetry, dw/dd and d2w/d62 equal 
zero as they should in such a plate. Using an ryd spherical coordinate system permits us to 
estimate the kinetic energy as: 

KE.=/ 
P i i(")-*r\i(,}r\i i0

2(2Trr)2(dr)2 

^     2ph(2irr)(dr) 

or 

2 E>2 

K.E. = 

The membrane strain energy is given by: 

*io2R 
2ph 

(C-77) 

(C-78) 

/ „     , 1 /3w \2      / ,    /    6/-      6r2\ 2 

Um=f   2in>drhoy-{—)   -f  „rdrhoyWo>   {-R-2+RT) (C-79) 

or 

Um = 1.885 oyhw0
2 

The bending strain energy is given by: 

(C-80) 

Ub=2f    f   (2irr)oyz~dzdr = 4iroyf    f   w0   {-— + —)zdzrdr     (C-81) 
o      o 0        0 
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or 

Ub = 1.751 oyh
2w0 (C-82) 

Equating the kinetic energy, Equation (C-78) to the sum of the strain energies, Equations 
(C-80) and (C-82) then yield: 

-'•2-2- = 1.571 ayh
2w0 + 1.885 aYhw0

2 (C-83) 
2    ph 

or 

i0
2R2      /w0\     6 /w0\ 

2 

-2-77 = (~?) + 7 ("f) (impulsive realm (C-84) 
poyh       \h/     5\h/ clamped circular plate) 

Notice that the only difference between a clamped circular plate and a simply-supported 
rectangular plate is that the characteristic half span R replaces X and the numerical coeffi- 
cients in front of the (w0/h) and (w0 /h)2 terms are slightly different. Figure C-7 is a plot 
of Florence's data from experiments on 6061-T6 aluminum and 1018-cold rolled steel 
clamped circular plates. The solid line in Figure C-7 is Equation (C-84) which appears to 
fit the data excellently. 

We have not developed the equations for clamped rectangular plates as there was no 
need to use this relationship in our analysis. The only difference between clamped and 
simply-supported plates would be in the numerical coefficient preceding the bending or 
(w0/h) term. If deflections are very large the membrane term dominates and boundary 
conditions which influence the bending term would make insignificant differences in the 
solution. 

Spherical Containment 

Energy and force balance methods are used in Appendix A to estimate plastic response 
of a spherical containment shell. 

Cylindrical Shell Elements 

In one of the design concepts, a large part of the suppressive structure consists of a 
layered cylindrical shell with flat ends. Each layer of the shell will absorb plastic energy 
largely by membrane action, so bending will be neglected. The shell will be placed in a 
state of biaxial tension by the internal loads, but the stress state is different from that in 
the spherical shell discussed in Appendix A. For a short, stubby cylinder which is clamped 
at the edges so they cannot deflect, we can assume a deformed shape of the form: 
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w = w0(l-^-2) (C-85) 

This deformed shape has a maximum displacement w0 and zero slope in the middle of the 
cylinder where x = 0 and zero displacement at the ends of the shell, x = ± L/2. The longi- 
tudinal strains eg in such a cylinder are given by: 

}_(dwK 

~ 2 \dx 
ec=-   — (C-86) 

Differentiating Equation (C-85) and substituting into Equation (C-86) yields: 

«-*&* (C-87, 

The circumferential strain ec in the cylinder is given by: 

2it{R + w) - 2ITR    W 
ec = — = - (C-88) 

2TTR R 

Substituting Equation (C-85) into Equation (C-88) then yields: 

Wo    (       4x2\ 

Because the cylinder is a symmetric shell, these strains and the stresses associated with them 
must be the principle strains and stresses. This observation means then no shear stresses exist 
on a rectangular differential element where faces are perpendicular to longitudinal and cir- 
cumferential axes. Because the strain energy per unit volume is given by: 

— - 2 ay den (C-90) 
Vol. 

and no shearing strains exist, Equation (C-90) for a rigid-plastic stress strain law without 
strain hardening becomes: 

U 
—— = oyec + oyei (C-91) 
Vol. 

The volume of a differential hoop of dx width equals: 

Vol. = litRhdx (C-92) 
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Substituting Equation (C-89) for ec, Equation (C-87) for es, and Equation (C-92) for vol. 
permits one to estimate the strain energy in the cylinder by integrating 

L/2 

U=2f 
0 

R      V       L2 I L4 V ' 
(C-93) 

or 

167rov/?/ivv0
2      47r 

(7 = ' 1 ovhLw0 
3L 3    y (C-94) 

The work 1VA: put into the cylinder equals: 

Wk = 2 
ill 

nRdx)w (C-95) 

Substituting Equation (C-85) for w yields: 

Wk 
//2    /      4x2\ 

= 4iTRw0p0J       \\-—jdx (C-96) 

i)r 

Wk = —p0Rw0L (C-97) 

The kinetic energy K.E. imparted to the cylinder is obtained by substituting into Equation 
(C-97) and integrating 

K.E. f 
L/2 /   2 i0

2(2TTR)2(dx)2 

2p(2irRMdx) 
(C-98) 

or 

K.E. = 7T 
io2RL 

ph 
(C-99) 

The asymptote for the impulsive loading realm is obtained by equating the kinetic energy. 
Equation (C-99) to the strain energy, Equation (C-94). 
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7r = z 1 0vhLwo (C-100) 
ph 3L 3    y 

or 

fe) 
^-V +4l 

pa, A2      I   \R)    \L)       3\R/      cyiinder) 

The asymptote for the quasi-static loading realm is obtained by equating the work, Equation 
(C-97) to the strain energy, Equation (C-94). 

— p0Rw0L = y
3L + — OyhLw0 (C-102) 

p0R        /R\
2
 (W0\ = 4(T/    rTrJ+ 1 (quasi-static realm cylinder)     (C-103) 

or 

oyh        \LJ    \R 

Notice that for very short cylinders (R/L very large) Equation (C-103) equals Equation 
(C-43) for membrane action in rectangular strips, and Equation (C-101) equals Equation 
(C-42). On the other hand, if the cylinder is very long (R/L very small), Equation (C-103) 
yields the familiar static relationship. 

PoR 
^^— - 1.0 (C-104) 
Oyh 

and Equation (C-101) reaches the less familiar impulsive loading realm relationship. 

io2        4 /w0\ 

poyh2    3 \ R; 

These limits are the correct asymptotes if the boundaries of the cylinders are undamped so 
membrane action cannot be developed in the longitudinal direction. In our cylindrical shell 
analysis, we will assume that the boundaries are clamped and Equations (C-101) and (C-103) 
will be applied. 

Although a number of design formulas have been developed here, several qualifying 
statements apply, as follows: 

(1)   Energy methods for the quasi-static loading realm yield force balance equations. 
Because the strain energies have been computed for uncoupled, fully-plastic mem- 
brane plus bending, some care should be exercised to ensure that the final state of 
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stress will react the applied loads without exceeding the rupture stress of the 
material. Future equations for the quasi-static loading should couple the stresses 
due to axial loads and bending moments to limit the combined plastic stress to 
some selected level. 

(2) Results for quasi-static loading have not been compared with experiment. 
Assumed deformed shapes, which are shown to be suitable for dynamic loading, 
by virtue of comparisons with experiments, may not be the best selections for 
response to quasi-static loading. 

(3) Energies due to quasi-static and dynamic loading should not be combined for 
this problem because the loadings occur at significantly different times. 
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APPENDIX D 
PANEL ANALYSIS 

Each panel to be used in this structure will be vented and will consist of 10 ft X 10 ft 
assemblies. The panels will consist of two subassemblies, the inner one containing a set of 
angles with a = 0.5 (see Appendix B), and the outer one containing four perforated plates 
with one pair having a = 0.3 and the other a = 0.1. Angle panels will be bordered with four 
channels while plate panels will be mounted in angles. The plate panel edge members will 
be welded to the frame during assembly described in Appendix E. 

Since the vent area of the angle panel is 50%, the predominant loading will be the 
dynamic impulse generated by the centrally located explosive in the structure. The large 
venting area will not allow any appreciable quasi-static pressure to act on the angles.  On 
the other hand the plates have considerably less venting so that the effective venting of 
the four plates in series is such that it will be assumed that the entire quasi-static pressure 
build-up is contained only by the plates. It is probable that this pressure will dictate the 
thickness of these plates. However, a check will be made using the dynamic impulsive load- 
ing to ensure that the plates will take it. 

The angles to be used in these panels will be sized using the equations derived in 
Appendix C. The angle panels will be attached to the frame such that membrane action 
will not be developed. Therefore, they will be sized entirely on bending with simply- 
supported ends. 

The perforated plate panels will be attached to the frame in two different ways. Those 
for use on the sides of the structure will be able to develop uniaxial membrane stresses. Those 
for the roof of the structure, where cross members are required on the frame, will be designed 
for biaxial membrane stresses. Thus, two different design equations will be used. 

All panel members to be designed will be, as much as possible, standard structural shapes 
of ASTM A36 steel. The yield stress ay for this steel is 36,000 psi and the ultimate tensile 
strength au ranges between 58,000 and 80,000 psi (reference 20 ). Thus, in all cases where 
oy is required a value of 36,000 psi will be used. Also, the strain-hardening term will be ne- 
glected in all design calculations, so the results will be slightly conservative providing a small 
safety margin. 

Angles 

The angles will be assembled as shown in Figure D-l. The response to dynamic impulse 
loads is given by Equation (C-24) 

io2b2L _ 8mMyWo 

2pA I 
where m = 1 for simply-supported ends 
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-rf/r 

TOP VIEW 

FIGURE D-l. ANGLE PANEL 

From Table 1, Section IV, i0 = 0.91 psi sec* The other parameters are: 

b      = 2.415 in. for// = 0.5 in. (b =h/0.201) 

L      =116 in. 

p      =.283/386 lb-sec2/in 2 /;„4 

w0    - 0.15 L in. 

A      = cross-section area of beam member 

Mv    = plastic modulus 

(.91 psi-sec)2(2.415 in)2(l 16 in)    8(])MP(A5 L) 

2(.283/386 lb-sec2 /in4)A in2 L 

382073 = 1.2MV,4 

(^v^)Req'd > 318,394 

Forl 3-1/2 X 3-1/2 X 1/2 A36 steel angle, My = 
(My A) = (11,200)(12)(3.25) 

17,200 lb-ft/1 = 3.25 in2. Therefore, 

= 436,800 > 318,394 

Other angles can be selected with the required cross-sectional area and plastic moment. 
However, since h was picked to be 0.5 initially, the 3-1/2 in. leg is the smallest that will 
meet the requirements. If other angle thicknesses are desired, a new b must first be com- 
puted and a check must be made to ensure that the necessary leg length will provide suffi- 
cient overlap.  In this case the overlap is OL = (3.5 + 0.5)(.707) — 2.41 5 

OL = 0.413 in. 
*As noted earlier, this value should be multiplied by 1.630 to be correct.  All succeeding calculations should be 
modified accordingly. 
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The weight of these angles in one panel is: 

116 
No. Angles 

WA   = 

= 48 
2.415 

(48X11.1 lb/ft)(l 16 in.) 

(12 in/ft) 
5,150 1b 

For this size angle and to provide sufficient bearing surface in assembling the panels to the 
frame, MC6 X 15.3 channels are selected to fabricate the angle panels. The weight of these 
channels is 

Wc = 
(4)(15.3 lb/ft)(l 16 in) 

12 (in/ft) 
= 592 lb 

Thus the total weight of one angle panel is 

WTA = 5,742 lb 

Plates—Uniaxial Membrane Action 

To analyze a strip from the plate to quasi-static loading equation (C-7.5) is used 

M1IJ\-' 

Oyh2 r 2 + ±(V 
4      5   V h 

Strain hardening has been neglected and the ends are simply supported. For this problem of 
membrane action in one direction only: 

Y     = Long half-span of plate and -*• °° 

^max= 145psi 

oy    = 36,000 lb/in2 for A36 steel 

L      =116 in 

w0    = . 15 L in. 

X     = Short half span = L/2 

(145X58)2 = 3      4 (0.15X116) 

36,000 h2~ 4      5 h 
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13.55                 13.92 
—— = 0.75 +  

h2 + 18.56/;- 18.07 = 0 

-18.56 ±20.41 
/(= 2  

/z = 0.927 

Since the load will be distributed among four plates and the membrane action is predominant 
(18.56/; » h2), each plate thickness becomes simply 

h 

hp = 0.232 in. 

The actual thicknesses are then 

0.232 
For a = 0.3, hA  = —— = 0.331 in. .". Use 5/16 plate 

0.232 
For a = 0.1, hA  = —— = 0.258 in. .'. Use 1/4 plate 

To obtain the specified venting areas 

For q = 0.3, AToVdl  =(116)2   = 1 3456 in2 

^Vent   ~ATOi      =4036.8 in2 

Using 1/4" holes      ^Hoie   = TT(1/8)
2
 = 0.0491 in2 

No. of Holes = 4036.8/0.0491 = 82,237 or for square panel 

No. of Holes per side for square array = 287 

<L Spacing = 116/287 = 0.405 in. Therefore, use 7/16 in. on the 5/16" plate, with 
the holes staggered. 
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For a = 0.1 /Ivent   = 1345.6 in2 

No. of Holes    =1345.6/o.0491=27,405 

No. of Holes per side for square array =  166 

£ Spacing = 116/166 = 0.699. Therefore, use 11/16 in. on the 1/4" plate, with the 
holes staggered. 

The weights for these plates are 

(2)(12.75)(116)2(0.7) 
Wa = 0.3 = —     '  = 1,688 lb 

(2)(10.20)(116)2 (0.9) 
Wa -0.1 = -—~2  1,716 1b 

The plates will be made up into panels using L4X4X 3/4 angles as shown in Figure D-2. 

1 /4 plate 

Spacers 

± 
T 0. 6 spacing (typ. ) 

7^~ 
5/16 plate 

FIGURE D-2. PLATE PANEL 

The weight of the angles around the perimeter of the plate panel is 

(4X18.5 Ib/ftXl 16 in.) 
WA =^-^ ~ - = 715 lb 

(12 in/ft) 

Therefore, the total panel weight is WTp = 4,099 lb. 

To check for dynamic loading as if the angle panels were not present, the plates will also 
be sized using Equation (C-73) for simply-supported ends. 

JQ2X2 

POyfj4 
1     + 

2 /vv, 

+ f^ 
(0.91)2(58)2(386)     2 (.15X116)      32 

(.283)(36,000)(h4)     3        h 
+ — 

45 

(-15X116)" 

/; 
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(Bending)    (Membrane) 

105.54        11.6 215.3 
—:—=           +      —:— 

h} + 18.56/?2 =9098 

For /; = 0.69, 0.3285 + 8.8364 = 9.165 ~ 9.098 /. hT = 0.69 inches 

Since four plates have been selected for use and the membrane portion of the equation is 
predominant (18.56 h2 » h3) the required plate thickness for one of the set of four is 
// = 0.69/4 = 0.1725. 

h 
For a = 0.3, HA = — = 0.246 < For Quasi-Static Case 

0.7 

For a = 0.1, hA = — = 0.192 < For Quasi-Static Case 
0.9 

Thus, the plate panel will handle the dynamic as well as the quasi-static loading. 

Plates—Biaxial Membrane Action 

From Equation (C-75), for simply-supported ends 

P        Y2 

ovh
2 1 + 

V 2     4 Wo 

4      5   h 

which includes the effects of bending and membrane contributions to the load reaction. 

oy = 36,000 lb/in2 

X = Y   = 116/2 in. 

/. = 116 in. 

w, 

145 psi 

0.15 1 = 0.3 A' 

(145K58)2 

(36,000)/*: 

3_     (4)(0.15)(116) 

4 + "       (5)h 
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13.55   = l.5h2 +27.846 

62 + 18.556-9.03 = 0 

-18.55 ± 19.5 

*" 2  

h = 0.475 in. 

Since membrane action is predominant (18.556 » h2) the thickness of each plate is 
h = 0.475/4 = 0.119 in. The actual thicknesses and weights are then 

For a = 0.3 hA    = 6/0.7, use 3/16" plate 

WT   =(7.65 lb/ft2) (—)    ft2(0.7) = 492 lb/plate 

For a = 0.1 hA    = 6/0.9 = 0.132, use 3/16" plate 

WT   =632 lb/plate 

The panels from these plates will be essentially the same as in Figure D-2 except that the 
spacing between plates will now be 0.69 in. The same angles will be used around the 
perimeter. Therefore the total panel weight for these is 

WTP = 2,963 lb 
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APPENDIX E 
FRAME ANALYSIS 

The general frame arrangement is shown schematically in Figure E-l. Internal dimen- 
sions of 40 ft X 40 ft X 40 ft have been maintained. As indicated in Appendix D, the vented 
panels were designed for two different loading conditions, for biaxial membrane stresses and 
for uniaxial membrane stresses. Panels designed for biaxial membrane stresses are for the roof 
of the structure where cross members are required anyway to react the loads at the roof in- 
duced by the A-member. Panels designed for uniaxial membrane action are used in the side 
of the structure so that no cross members are required (Figure E-lb). Although the frame 
elements were checked for dynamic loads, the quasi-static pressure loading predominated in 
sizing the members as it did for the plate panels and for the spherical and cylindrical suppres- 
sive structures. 

A mild steel ASTM A36 was assumed for the framing members. From the Steel and 
Aluminum Stock List (Reference 20) properties of A36 are 

oy = 36,000 psi (minimum) 

ou = 58,000 psi-80,000 psi 

Unless otherwise specified, the design is based on fully plastic cross-sections at the yield 
stress, ay. 

Detailed analyses of joints were not performed, but we attempted to choose members 
which could be assembled in the field without hidden welds, etc. Also local stiffeners may 
be required for some I-beam flanges to prevent excessive bending deformations and also for 
some plates and I-beam webs to prevent local buckling. These details were not checked. 
Rather, overall dimensions were determined to give an indication of the overall structural 
size and weight. In some cases trusses rather than beams might represent a more efficient 
design, but, again, these details are left for later analyses. 

MEMBER LOADS 

A-Member 

Pressure loads from the internal explosion are transferred primarily through membrane 
action in the panels to the large A and C members in the frame. This is demonstrated for the 
walls of the structure in Figure E-2. The maximum quasi-static pressure is from Appendix B. 
Figure E-3 shows the load transfer through the A-members (other than those at the corners). 
The quasi-static pressure acting over a 10 ft span produces the uniform distributed load of 
17,400 lb/in.  Reactions at the base and at the roof are computed for member A using re- 
lationships for an elastic beam simply supported at one end and fixed at the other.  The 
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GENERAL ARRANGEMENT 
VERTICAL B- 
MEMBERS IN 

ROOF 

SIDE 

HORIZONTAL B- 
MEMBFR AT ROOF 
PLANE 

FRONT 
A-MEMBER 

B-MEMBFI! 

C-MEMBER 

FIGURE E-la.  TOP VIEW OF FRAMING 
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GENERAL ARRANGEMENT (CONT'D) 

C-MEMBER 
(TYP) 

VERTICAL  B-MEMBERS 
(TYP) 

HORIZONTAL B-MEMBERS 
(TYP) 

A-MEMBERS 
(TYP) 

FIGURE E-lb. FRONT VIEW OF FRAMING 
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MAX 
(quasi-static pressure; 

MEMBRANE FORCES 
(TYPICAL) 

FIGURE E-2.  LOAD TRANSFER FROM PANELS IN WALLS TO "A" AND "C" MEMBERS 

T   B-member 

MAX 
=    17,400^ 

in 

7-T7T 

V. 1^ 

1       t. 

R 

ASSUMED SIMPLY 
SUPPORTED 

for design of vertical 
"A " member 

L  = 40' 

TTT-r 

FIGURE E-3.  LOAD TRANSFER THROUGH INTERIOR A-MEMBER 
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simply supported end condition was assumed at the top because the B-member will be much 
more flexible than the A-member.  Roark (reference 21) gives the reactions as 

3 3 
/?, =-WL=- (17,400 lb/in)(480 in) = 3.132 X 106 lb (E-l) 

8 8 

5 5 
R2 =- WL= -(17,400X486) = 5.22 X 106 lb (E-2) 

The force R2 is transferred to the foundation and the force i?, is reacted in the roof by mem- 
ber B. An axial force, F,, also acts on member A but it is relatively small as will be discovered 
when deriving the loads for member B. These loads act on the vertical A-members other than 
those at the corners of the structure. For the corner members the loads are those required to 
develop the membrane stresses in the panels. If the corner members were not included, the 
intersecting panels at the corners would attempt to deform into a constant radius cylindrical 
section producing large rotations at the junction of the panels. The junction could not with- 
stand the resulting large strains without failure, and thus the corner members are required. 

Loads on the corner members are derived from Figure E-4. Panel dimensions were 
determined for a center deflection of 15% of the panel width (see Appendix D).  For this 
condition, and the assumed deflection curve of the membrane, the angle 9 at the boundary 
of the membrane can be determined. For uniaxial membrane action, the deflection shape 
(see Appendix C) was taken as 

w = Wo \i-jr) (E"3) 

Differentiating, 

dW 8X 

dX ° L' 
tan0= — = -w0— (E-4) 

where X = 0 at the plate center and L/2 at the boundary.  Substituting X = L/2 and w0 = 
-.151 

L 

,2> 
tan 6 =-(-.15 L) ~ = .60 

0 = 31° 

77 



'A"-Member (typ) 

(<T)(t) (40, 000 psi) (. 8 in. ) 
32, 000 lb/in. 

FIGURE E-4. LOADS ON CORNER A-MEMBKRS 

Summing forces along either side yields 

N = (32,000 lb/inXcos 31 -sin 31  )= 10,948 lb/in 

If the deflections are somewhat less than anticipated, or the rotations at the corners some- 
what less than predicted by the assumed deflection equation for the same membrane stress, 
the loads would increase.  For example 6 = 20° 

N = 32,000 lb/in (cos 20 - sin 20) = 19,200 lb/in 

Therefore, it is reasonable to expect a load for the corner members equivalent to that for 
which the interior members are to be designed. Thus the corner members will be taken to 
be the same as the interior members and designed for the loads shown in Figure E-3. 

B-Member 

In addition to the axial load induced into member B by the reaction R, at the top of 
member A, member B must react the pressure loads transferred to it by membrane stresses 
in the roof panels.  Except for the members at the edge of the roof, these loads are deter- 
mined by consideration of Figure E-5. The distributed load is approximated by assuming 
that the pressure acting over the shaded area is distributed linearly over the length of the 
member. Because the B-member is continuous across the C-member and because the ver- 
tical A-member is stiff relative to the B-member, the B-member can be considered as having 
its ends fixed against rotation over the 10 ft span between members. 

Consider now the B-members at the edge of the roof. As for the vertical A-members 
at the corners, these members act to develop the membrane stresses in the intersecting 
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C-Member, 

10* 
(I) 

Vertical 
B-Member 

(typ) 
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A 
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X 
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/       \ 
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(a) Area for Computing Distributed Load 

Member C 

R 

A-Member 
(typ) 

10' (typ) 

Member B 

NMAX = (145 pSi) (12° in) 

= 17,400 Lb/in 

Member A 

(b)  Equivalent Distributed Load 

FIGURE E-5.  LOADS ON VERTICAL B-MEMBERS IN ROOF (EXCEPT FOR EDGE MEMBERS) 
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panels while preventing excessive edge rotations at the junction of the panels. The peak dis- 
tributed load is determined exactly as it was for the corner A-members (see Figure E-4) and 
will have the same magnitude (see above). However, because biaxial membrane stresses are 
developed in the panels intersecting at the edges of the roof, the membrane stress will not be 
constant but will have a distribution similar to the linear assumed for the interior B-members 
(see Figure E-5). Thus the corner B-members will be sized for the same loads as the interior 
B-members just as was the case for the A-members. 

It should also be noted that the net load on the edge members is directed inward, parallel 
to the wall or roof for each member, rather than outward as for the interior members in the 
roof. One result of this condition is that the net vertical reaction where the B-members inter- 
sect at the edge of the roof is approximately zero. This is the vertical reaction f, shown be- 
tween the A- and B-members in Figures E-3 and E-5b. 

C-Members 

As shown in Figure E-6 the three C-members are assumed to be continuous across the 
structure and will behave as a frame with a uniformly distributed load. The fact that the 
B-members intersect the C-members and will cause the load to peak at the intersections and 
be smaller between the B-members will be neglected. The total load will not be affected. 

MEMBER SIZES 

B-Member 

Because the B-member will be incorporated into the design of the larger built-up A- and 
C-members, it will be sized first. The loads are shown in Figure E-5 and the axial load /?, is 
given by Equation (E-l). The loading and restraint are depicted schematically below. 

3. 132 x  10    lb 

17, 400 lb/in. 

FIGURE E-7.  B-MEMBER LOADING AND SUPPORT CONDITIONS 

To resist the axial load alone requires a total cross-section area of 

3.132 X 106 lb 
A =  = 87 in2 

36,000 psi 

SO 



40' 

i 1 1 1 1 r 

P l -    17,400 lb/in 
max 

A .   —        a 

40' 

FIGURE E-6. DISTRIBUTED LOADS ON THE C-MEMBERS 
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Because the angle members in the panel edge are welded directly to the B-member as shown 
in Figure E-8, the members will contribute to the required area. 

'B"-Member 

Channel Edge Members 
which are  not welded to 
"B"-Member and will 
not contribute to its 
strength 

MC  6 x  15. 3 

Panel Edge Members which are 
welded to the  "B"-Memher 
(L4 x 4 x 3/4 with 3/4" plate) 

FIGURE E-8.  B-MEMBER CONFIGURATION 

This contribution is 

A = 2(5.44 in2) + (8 in)(.75 in) = 16.88 in2 

Therefore the required area for the I-beam is 

^net =87- 16.9 = 70.1 in2 

From the Steel and Aluminum Stock List (reference 20) no stock I-beams were found which 
give the required area. Hence, a non-stock I-beam was selected from the Manual of Steel Con- 
struction (reference 22).   The properties are 

W= 14 X 237 

A =69.7 in2 

Elastic Section Modulus, S = 382 in3 

Plastic Section Modulus, Zp = 445 in3 

Bending moments can be determined for an elastic beam, neglecting the effect of the axial 
load on these moments, using formulas in Roark (reference 21). For the load distribution 
shown in Figure E-7 the end moments are 

1 . 748 

M, END 
3    .       51   C3       1 C2/? , > 

+ — C2 + 3d2 + dt 
e     18       405 e     3   e / 

(E-6) 
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where d = 5/6 £ and W = 1/2 NMAX • F°r the parameters given 

MENDS =9.383 X 106 in-lb 

This moment produces a fully plastic stress in the I-beam (neglecting the contribution of the 
edge member) of 

M    9.383 X 106 in-lb    „t nM     . 
o = — = : = 21,000 psi 

Zp 445 in3 

Combined with the axial stress of 36,000 psi (area chosen based on yield stress of 36,000) 

a = 36,000 + 21,000 = 57,000 psi 

which is just under the minimum rupture stress of the material (au = 58,000 psi — 80,000 psi). 
Because the load distributions were based upon an elastic analysis and because the contribution 
of the panel edge members was neglected in computing the bending stress, the I-beam chosen is 
judged adequate to resist the applied loading for the B-members. 

A-Member 

The loads on the A-member are shown in Figure E-3. For the support condition of one 
end fixed and one end simply supported the relationship between the applied quasi-static 
loading and the beam plastic bending moment is given by Equation (E-7). 

pbL2 

 = 15.825 (E-7) 
My 

For this problem 

pb    = 17,400 lb/in 

L      = 40 f t 

My   = plastic beam moment, Mp 

Zp    = plastic modulus 

The required plastic moment is found to be 

(17,400 lb/in)(480 in)2 

15.825 

= 2.53 X 108 in-lb 

MD = ' ;—  (E-8) p 15.825 
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A composite beam (or truss) is required to resist a moment of this magnitude. Using the I-beam 
selected for the B-member a composite beam is formed as shown schematically in Figure E-9. 
Location of the neutral axis of the member, V, and the plastic section modulus, Zp, are ex- 
pressed in terms of the I-beam separation distance, a. For a 1.0 in. web the equations are 
solved to find the overall dimensions of the A-member required to resist the applied moment. 

The neutral axis of the B-member plus the plate panel edge members is given by 

_,    (8.06X69.7) + (17.39X10.88) + (20.495)(6) 
v 

69.7 + 10.88 + 6 

,    873.96 
Y' = = 10.1 in. 

86.58 

Now, the overall neutral axis location can be expressed as 

(86.58X26.2 + a) + (a)(16.12 + a/2) + (69.7)(8.06) 
y = 

(86.58) + (a) + (69.7) 

2830.2+ 102.7a + 0.5a2 

v" =  (E-9) 
156.3 +(a)(1) 

In terms of y the plastic section modulus for the composite beam is 

Zp = 2[(v-16.12 +8.06X69.7)+ (>-16.12)2/2] = ^ (E-10) 
Oy 

Substituting ay = 36,000 psi andMp = 2.53 X 108 lb-in into Equation (E-10) 

J2 + 107.4 7-7,896 = 0 

_    -107.4 ±207.7 
}= 2  

T7 = 50.1 in. 

From Equation (E-9) the value of "a" can now be determined. 

.'. 7830.6 + 50.1a = 2830.2 + 102.7a + 0.5a2 

a2 + 105.2a- 10,000 = 0 
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FIGURE E-9.  A-MEMBER 
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-105.2 ±226 
a :  

a = 60.4 in. 

Areas of the beam are 

^Totai =216.7 in2 

and the area of A-member = 199.8 in2. 

Axial loads in the beam are neglible as explained when deriving the loads on the 
B-members. Shear at the base should be checked, however, for the base reaction R2 (see 
Figure E-3 and Equation E-2). For the area of the A-member 

5.22 X 106 lb 
°s=      1gn-2 = 29,000 psi 

180 in 

The shearing strength of the member can be estimated as 

asy * .6a = .6(36,000) - 21,600 psi 

asu *.6(58,000 -80,000) 

34,000 psi-48,000 psi 

Therefore, the member should be adequate to carry the maximum shearing force at the base 
and the bending moments for the quasi-static bending moments. 

Response to dynamic loading will also be checked for the A-member. The dynamic im- 
pulse, found in Appendix B, is 0.91 psi-sec* From Equation (C-24), the plastic moment for 
dynamic loading in bending is computed for the A-member assuming it to be simply supported. 

i0
2b2L       SMvw0 

(0.707) -2- = —iL-2- 
2(m + pA)       L 

(5742 + 4099) lb-sec2 ,     , 
m =     „„ d = 0.2198 lb-sec2/in2 

(116) in (386) in 

A      =199.8 in2 

i0      =0.91 lb-sec/in2 

*As noted earlier, this number should be multiplied by 1.630 to be correct.  All succeeding calculations should be 
modified accordingly. 
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20 in. 

480 in. 

0.283 

386 
.0007332 lb-sec2/in 2 /;„4 

0.151 

(0.707)(0.91)2(120)2(480) 

(2)0.2198 + (0.0007332X199.8) 
= (8)(0.15)My 

My    =4.603 X 10" lb-in 

which is very much lower than the plastic moment required for quasi-static loading (2.53 X 
108 lb-in).  No further check on other members will be made for the dynamic loading. 

C-Member 

If the structure is assumed to behave elastically, the distributions of forces within the 
frame can be found from equations in Reference 21. 

Case 45, p. 116 yields the following equations: 

M M 

ff(l  I  I  \\ 
L 

H 

W 

77TT 
H 

7T77 

k L 

M = -HL 
3 

3M- HL = — MIL 
12 

(E-ll) 

(E-12) 

Equations (E-l 1) and (E-12) give 

# = —M/ = -0833 W 
12 

(E-l 3) 

M = — WL = -0556 WL 
18 

(E-l 4) 
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Case 46, p. 1 1 6 yields the following equations 

M. M. 

ih > 

W 

rfrr 

\^-\^ 

nrr      H. 

112 l 
-M2 A/, H2 L = WL 
2 2 3 8 

4           111 
-M, M2 +-H2L = ~WL 
3 6 2 6 

1 4 1 
-A/, A/2 +-H2L = 0 

From Equations (E-l 5) through (E-l 7) M, , A/2 and//2 are found to be 

43 
Af2 = WL = -.0853^1 

504 

(E-l 5) 

(E-16) 

(E-17) 

(E-l 8) 

Af, = WL ~M2 =-.0516WL (E-l 9) 

1/8 1      \ 
08 W 

Now Hi =-W-H2=-J92W. 

Combining these forces we obtain for the fully loaded frame: 

M' M' 

H' 

C,   r-j-A 

M jrn 
B M 

^rf7?* 
\Y 

B 

(E-20) 

V V 

//' = //-//, -//2 

= -.0833^ - (-792H0 + (-.208 W) 

= .501H' (E-21) 
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= -(-.0556WL) + (-0516WL)- (-0853WZ,) 

= .0833WL (E-22) 

From consideration of equilibrium we also find: 

V   =-W = .5W (E-23) 
2 

MB =M + W-~(W-H)L 

= .0833WL + .5WL - A99WL 

= m*3WL (E-24) 

Note that the axial load in the top member is approximately .5IV so that all members elements 
of the frame experience equal loads.  For this problem (see Figure E-6) 

L  =40 ft 

W = (17,400 lb/in)(480 in) = 5.352 X 106 lb 

The end moments and axial loads are therefore 

M = .084WZ = 3.368 X 108 in-lb 

V»H = .5(5.352 X 106) = 2.676 X 106 lb 

We will first check to see if the A-member combined with the plate panel edge members 
(see Figure E-9) is adequate for these loads. The plastic section modulus for the A-member is 

M„    2.53 X 108 in-lb 
Zp = —£ = — = 7028 in3 

p     oy      36,000 lb-in"2 

and the total area is 

A = 216.7 in2 
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Computing the stress for the combined bending and axial loads 

2.676 X 106 lb     3.368 X 108 in-lb 

°~     216.7 in2 7028 in3 

= 12,349+ 47,923-60,272 psi 

This stress exceeds the minimum ultimate stress for the A36 material. Therefore, the 
A-member will be slightly enlarged, by increasing a, to form the C-member. For bending 
only let the allowable stress be 

oy = 36,000 psi 

Using Equation (E-10), 

3.368 X 108 in-lb        P ,    -, 
Z

P 
= •>* mn     •  = 2[^ - 16-12 + 8.06X69.7) + (J - 16.12)2/2] 

36,000 psi 

J2 + 107.1617- 10,219.3 = 0 

_    —107.16 ±y/(107.16)2 —4(—10,219.3) 

2 

-107.16 ±228.82 

/. 7 = 60.83 in. 

and from Equation (E-9): 

(60.83)( 1 56.3 + a) = 2830.2 + 102.7a + .5a2 

1 
-i 

a2 +41.870-6677.85 = 0 

_ -41.87 ± y/(41.87)2 - 4( 1 /2)(~6677.85) 

2(1/2) 

= -41.87 ± 122.92 

/.a = 81.05 in. 

Total Area = 156.3 + 81.05( 1) = 237.35 in2 
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Now the combined stress is 

2.676 X 106 

a = 36,000 + = 47,274 psi 
237.35 

This stress is significantly less than the ultimate and will be adequate for this design. Shearing 
stresses were not specifically calculated but will be equal in magnitude to the tension stresses 
due to the axial load. 

SUMMARY OF MEMBER DIMENSIONS 
(Without Contribution of Panel Edge Members) 

A-Member 

Unit wt = 2 X 237 + (60.4)(1)(12)(.283) 

= 679 lb/ft 

B-Member 

Unit wt = 237 lb/ft 

c 

3 

1 . 0 in— 

I4w x 237 

60.4 in 

1 I 
14w x 2 37 

1.748 

r4 
16. 12 in 

i  
1. 09 in 

I4w x 23' 

-J   15. 91in I— 
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C-Member 

Unit wt = 2 X 237 + (81.05)(1)(12)(.283) 

= 749 lb/ft 

1. 0 in 

I4w x 237 

-T 

1 

I ' 

3' 

1 
II. 05 in 

_1 
14w x 237 

=3 
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