

Æ. AD

F 1978

Report 2177

## SPECTRAL REFLECTANCE EVALUATION OF CAMOUFLAGE DETECTION PHOTOGRAPHY

May 1976

Approved for public release; distribution unlimited.

U.S. ARMY MOBILITY EQUIPMENT RESEARCH AND DEVELOPMENT COMMAND FORT BELVOIR, VIRGINIA Destroy this report when it is no longer needed. Do not return it to the originator.

A DESCRIPTION OF THE OWNER OF THE

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | READ INSTRUCTIONS<br>BEFORE COMPLETING FORM                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. REPORT NUMBER 2. GOVT ACCESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO. 3. RECIPIENT'S CATALOG NUMBER                                                                                                                                                                                                                                    |
| 217711, USAME, ND - 22171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |
| SPECTRAL REFLECTANCE EVALUATION OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5. TYPE OF REPORT & PERIOD COVERED<br>Final: 1074 and 1075                                                                                                                                                                                                           |
| CAMOUELACE DETECTION PHOTOCRAPHY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Final; 1974 and 1975                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6. PERFORMING ORG. REPORT NUMBER                                                                                                                                                                                                                                     |
| 7. AUTHOR(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8. CONTRACT OR GRANT NUMBER(=)                                                                                                                                                                                                                                       |
| Fred L. [Lafferman] [DA-1-T-16 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-AH-84                                                                                                                                                                                                                                                              |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT NUMBERS                                                                                                                                                                                                       |
| Development Command ATTN: DRXFB-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project 1T162105AH84                                                                                                                                                                                                                                                 |
| Fort Belvoir, Virginia 22060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                      |
| 1. CONTROLLING OFFICE NAME AND ADDRESS<br>Commander U.S. Army Mobility Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12. REPORT DATE                                                                                                                                                                                                                                                      |
| Research and Development Command                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13. NUMBER OF PAGES                                                                                                                                                                                                                                                  |
| Fort Belvoir, Virginia 22060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 24                                                                                                                                                                                                                                                                   |
| IS. MUNITORING AGENCY HAME & ADDRESS(II different from Controlling Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15. SECURITY CLASS. (of this report)                                                                                                                                                                                                                                 |
| (12)20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                      |
| - Aup.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15. DECLASSIFICATION DOWNGRADING<br>SCHEDULE                                                                                                                                                                                                                         |
| S. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ]                                                                                                                                                                                                                                                                    |
| . KEY WORDS (Continue on reverse side if necessary and identify by block number<br>Camouflage Coating Reflectance                                                                                                                                                                                                                                                                                                                                                                                                                                                              | er)                                                                                                                                                                                                                                                                  |
| Camouflage Detection<br>Camouflage Detection Photography<br>Infrared Photography                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                      |
| Camouflage Detection<br>Camouflage Detection Photography<br>Infrared Photography<br>BSTRACT (Continue on reverse side II necessary and identify by block sumber<br>For artificial camouflage materials to react the same as fo<br>tion photography, it is necessary for the colors to possess t<br>curve as foliage. Camouflage detection photographic film c<br>reflectance region and very low red region reflectance of dec<br>contrast between foliage and other materials. A specific com<br>(Continued)                                                                  | n)<br>liage toward camouflage detec-<br>he same characteristic spectral<br>apitalizes on the high infrared<br>ciduous foljage to create a high<br>abination of these high infrared                                                                                   |
| Camouflage Detection<br>Camouflage Detection Photography<br>Infrared Photography<br>MESTRACT (Continue on reverse side if necessary and identify by block immber<br>For artificial camouflage materials to react the same as fo<br>tion photography, it is necessary for the colors to possess t<br>curve as foliage. Camouflage detection photographic film c<br>reflectance region and very low red region reflectance of ded<br>contrast between foliage and other materials. A specific com<br>(Continued)<br>FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE                    | biage toward camouflage detec-<br>he same characteristic spectral<br>sapitalizes on the high infrared<br>ciduous foliage to create a high<br>abination of these high infrared<br>$M_{e}$                                                                             |
| Camouflage Detection<br>Camouflage Detection Photography<br>Infrared Photography<br>MBSTRACT (Continue on reverse side if necessary and identify by block sumber<br>For artificial camouflage materials to react the same as fo<br>tion photography, it is necessary for the colors to possess t<br>curve as foliage. Camouflage detection photographic film c<br>reflectance region and very low red region reflectance of dec<br>contrast between foliage and other materials. A specific com<br>(Continued)<br>T JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE<br>SECURITY CL | n)<br>liage toward camouflage detec-<br>he same characteristic spectral<br>capitalizes on the high infrared<br>ciduous foliage to create a high<br>ubination of these high infrared<br>UNCLASSIFIED<br>SINCLASSIFIED<br>ASSIFICATION OF THIS PAGE (When Data Entered |

Search States and

a second a second

#### SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(Block 20 Cont'd)

2

and low red region reflectances excites the specific layers of the film to cause the artificial camouflage to react the same as foliage. The program establishes the allowable latitude in camouflage detection parameters, particularly red reflectance, infrared reflectance, infrared/red ratio, and the shape of the curve from the red to the infrared regions, plus optimum characteristics for matching various types of foliage.



ü

#### UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

#### PREFACE

The investigation was performed by Fred Lafferman under the supervision of Emil J. York, Chief, Laboratory 9000. Appreciation is expressed to Mr. Albert Perri, Countersurveillance Division, Laboratory 4000, for his assistance.

1.1877 Have

## CONTENTS

| Section | 'Title                                           | Page |
|---------|--------------------------------------------------|------|
|         | PREFACE                                          | iii  |
| I       | INTRODUCTION                                     |      |
|         | 1. Subject                                       | 1    |
|         | 2. Background                                    | 1    |
| 11      | INVESTIGATION                                    |      |
|         | 3. Procedure                                     | 2    |
| 111     | DISCUSSION                                       |      |
|         | 4. Color Difference of Samples and Foliage       | 2    |
|         | 5. Color Rendition on Camouflage Detection Film  | 3    |
|         | 6. Color Difference by CIE 1976 L* A* B* Color   |      |
|         | Difference Space                                 | 3    |
|         | 7. Generation of Data                            | 4    |
|         | 8. Establishment of a Three-Dimensional Plot     | 4    |
|         | 9. Establishing the Optimum Spectral Curve Range | 5    |
| IV      | RESULTS                                          |      |
|         | 10. Test Results                                 | 8    |
|         | 11. Red-Infrared Ratio                           | 15   |
| V       | CONCLUSIONS                                      |      |
|         | 12. Conclusions                                  | 15   |

## ILLUSTRATIONS

| Figure | Title                                       | Page |
|--------|---------------------------------------------|------|
| l      | Munsell Plots                               | 6    |
| 2      | Minimum-Maximum Spectral Reflectance Limits | 7    |
| 3      | Curves 3 Red and 3 Blue                     | 9    |
| 4      | Curves 4 Reg and 4 Blue                     | 10   |
| 5      | Curves 5 Red and 5 Blue                     | 11   |
| 6      | Curves 6 Red and 6 Blue                     | 12   |
| 7      | Curves 7 Red and 7 Blue                     | 13   |

## TABLES

Contraction of the second

والمستخومة ومنادعت والمتوادية المتكافئ

| Table | Title                                                  | Page |
|-------|--------------------------------------------------------|------|
| I     | NBS Error Vs. L* A* B* Error                           | 4    |
| 2     | Minimum-Maximum Wavelength Definition                  | 8    |
| 3     | Chromaticity and Trichromatic Coefficients of Spectral |      |
|       | Reflectance Curves from the CD Film                    | 14   |

#### SPECTRAL REFLECTANCE EVALUATION OF

#### CAMOUFLAGE DETECTION PHOTOGRAPHY

#### I. INTRODUCTION

1. Subject. The object of this investigation was to conduct an analysis of pigment formulations for green camouflage colorants from the standpoint of color rendition on camouflage detection (CD) film as a function of spectral properties. The work establishes the allowable latitude in CD parameters, particularly red reflectance, infrared reflectance, infrared/red ratio, and the shape of the curve from the red to the infrared regions, plus optimum characteristics for matching various types of foliage.

2. Background. In the past, it never has been established what type of spectral curve was actually required to produce the type of visual color on CD film that actual foliage provides. Color and spectral reflectance requirements always have been written to include a maximum-minimum reflectance in the red and infrared region plus a minimum ratio between the two. For the camouflage nets, it has been the policy to require a minimum reflectance at 700 nanometers. Based upon the interpretations of CD photography, these values were established for each camouflage green color to assure optimized color responses for CD film. Several problem areas have arisen because of these requirements. In many instances, the requirements have caused CD photographs to produce colors that were too pure and too red. In addition, such requirements have caused the development and production of these paints and coatings to be extremely difficult. The use of extremely expensive organic pigments, costing approximately \$20/lb., was required to meet the camouflage net requirements of spectral reflectance.

These requirements always have been based on theory that has originated back many years of visual and infrared photo interpretation of foliage. There existed no means of determining spectral reflectance without a field test. CD photographic film capitalizes on the high infrared-reflectance region and very low red-region reflectance of deciduous foliage to create high contrast between foliage and other materials. For artificial camouflage materials to react the same as foliage toward CD film, it is necessary for the colors to possess the same characteristic spectral curve as foliage. A specific combination of these infrared and low red-region reflectances excites the specific layers of the film to react the same as they would react to foliage. From the theories established, it has been determined that to avoid high color contrast between artificial camouflage and foliage where photographed with CD film, a maximum redregion reflectance must be established so that only the correct amount of the magenta layer will be exposed. Similarly, a minimum infrared reflectance has to be required so that the cyan layer will be fully exposed.

「「「「「「「」」」」

ł

This work was performed to determine not only that which is described above but also a maximum-minimum range from 600 to 900 nanometers within which the curve must fall. There is no need to specify precise red and infrared reflectances for each individual camouflage green color. The red region is basically dependent upon the visual reflectance limits established for that specific color. Although CD photography is also dependent upon the green region of the spectrum (visual reflectance), the range of color space that is established for the camouflage colors is much narrower than that of foliage and, thus, does not significantly affect the actual visual color rendition on CD film. Therefore, the work described within this report will encompass only the spectral range of 600 to 900 nanometers.

#### **II. INVESTIGATION**

3. Procedure. Numerous coatings were formulated in the dark, light, olive, and forest green colors exhibiting varying degrees of spectral reflectance characteristics. These coatings were applied on various types of substrates, spectral reflectance curves were run by the Diano Hardy Spectrophotometer, and CD photographs were taken.

The visual and infrared spectral curves were obtained both from existing camouflage net samples and paints and from newly formulated coatings. This was performed to assure that there was an extremely wide range of spectral curve shapes and reflectances. It was essential to have curves that possessed a large range of both high and low red-region reflectances, slow and fast rises into the infrared, and high and low infrared reflectances. It was also essential to have various types of interactions between these characteristics. CD photos were taken on each one of the samples. These photographs were used for standardization of foliage color and for correlation of the samples to foliage both spectrally and visually.

#### III. DISCUSSION

4. Color Difference of Samples and Foliage. Approximately six types of foliage were used as standard for color reproduction on CD film. Since the actual visual color of these foliage samples appeared to be the same on CD film, it was felt that the best way to determine optimum spectral wavelength distribution was by visual color difference measurements. By this, maximum color differences could be established which would allow an exact determination of spectral curves to establish a maximumminimum wavelength reflectance range. The initial work was coordinated with the Countersurveillance and Topographic Division. Laboratory 4000, U.S. Army Mobility Equipment Research and Development Command, which has written a computer program establishing visual color responses (trichromatic and chromaticity coordinates) of spectral curves to ward CD photography. Spectral curves of all the samples being evaluated were subjected to this computer program. The printout gave trichromatic coefficients for each sample plus the foliage samples for CD photography. These samples were then compared to the standard foliage samples by the National Bureau of Standards (NBS) color difference equations. Several problems immediately arose. It is a known fact that NBS color difference is not equatable throughout color space, especially in the red-blue regions which are the basis for CD photography. Another problem area was the correlation of color difference between a designated sample and the various foliage samples. The third significant problem was the degree of allowable color difference error.

5. Color Rendition on Camouflage Detection Film. The computer program, developed by the Countersurveillance and Topographic Division, is capable of predicting the color photographic response of a given spectral reflectance curve under a variety of conditions of environment, camera parameters, and development procedures and allows for variations of these factors in any combination of ways desired. With the program, one is able to predict the color photographic response of a given spectral reflectance curve. When the above factors are varied, the spectral reflectance of a proposed camouflage material can be determined as to whether it possesses a satisfactory photographic color match to a given background or set of backgrounds. The program can also determine the conditions under which a color match is not successful. Therefore, the computer program can pretest proposed spectral curves and evaluate the spectral limitation of pigment formulations.

6. Color Difference by CIE 1976 L\* A\* B\* Color Difference Space. Because of the difficulties with the NBS color difference equation, it was determined that the International Commission on Illumination (CIE) 1976 (L\*A\*B\*) color difference equation would be used because its formula is intended to yield perceptually uniform spacing of object colors. Although the use of L\*A\*B\* color space solved the problem of uniform color space, there still existed nonuniformity between foliage samples. Although the visual interception of different foliages on CD film appeared the same, their trichromatic coefficients, based on the computer program, were significantly different. This caused color difference readings of each specific sample of the various foliages to vary considerably. Because of this, it was impossible to determine the exact degree of error that distinguished acceptable and nonacceptable spectral curves. This can be observed from Table 1. When the samples were calculated against different types of foliage, the errors changed considerably. Both NBS and L\*A\*B\* errors are shown to emphasize the difference in errors between foliage samples.

Even if a correlation between foliage samples could be established, the degree of error desired could not. For example, depending upon the directional movement in color space, a 7.0 L\*A\*B\* color difference error may or may not be within the tolerable limits of CD color rendition. A 7.0 error could produce an orange or gray visual color appearance if it moved in one direction from a foliage standard but would

| Sample    | Ŷ     | X     | у     |         | NBS     |         |         | L*A*B*                                 |         |
|-----------|-------|-------|-------|---------|---------|---------|---------|----------------------------------------|---------|
|           | (%)   |       |       | Error 1 | Error 2 | Error 3 | Error 1 | Error 2                                | Error 3 |
| Foliage 1 | 16.50 | 0.399 | 0.281 |         |         |         |         | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |         |
| Foliage 2 | 10.70 | 0.431 | 0.304 |         |         |         |         |                                        |         |
| Foliage 3 | 10.30 | 0.420 | 0.297 |         |         |         |         |                                        |         |
| Sample 1  | 13.20 | 6.384 | 0.278 | 6.176   | 14.162  | 11.449  | 3.772   | 10.906                                 | 8.851   |
| Sample 2  | 11.30 | 0.409 | 0.283 | 2.842   | 6.146   | 3,798   | 1.651   | 6.146                                  | 5.159   |
| Sample 3  | 13.10 | 0.372 | 0.253 | 9.570   | 17.755  | 15.002  | 10.835  | 18.475                                 | 16.444  |
| Sample 4  | 17.30 | 0.368 | 0.259 | 13.191  | 21.630  | 19.008  | 12.962  | 20.137                                 | 18.558  |
| Sample 5  | 11.30 | 0.452 | 0.320 | 13.972  | 5.633   | 5.500   | 13,549  | 6.066                                  | 8.838   |
| Sample 6  | 14.50 | 0.437 | 0.300 | 11.546  | 6.288   | 8.208   | 10.481  | 8.497                                  | 9.956   |
| Sample 7  | 15.00 | 0.453 | 0,305 | 16.555  | 8.833   | 12.459  | 14.525  | 10.752                                 | 13.371  |
| Sample 8  | 16,50 | 0.416 | 0.287 | 8.532   | 9.447   | 9.190   | 9.915   | 12.292                                 | 12.500  |

Table 1. NBS Error Vs. L\*A\*B\* Error

remain within a satisfactory red-purple color range if it moved in another direction. If foliages possessed identical trichromatic coefficients, then a standard error could be established; but they don't. Therefore, a 7.0 L\*A\*B\* error could be satisfactory with one type of foliage but poor with another. Because of the problems described in this and the previous paragraphs, it was determined that spectral curve evaluation could not be performed by color difference equations.

7. Generation of Data. Since the curves that were being evaluated basically do not take into account all types of interactions between various spectral regions, it was determined that such data (spectral curves) should be generated as would encompass the several types of variations in the red region, the rise into the infrared, and the infrared region. Five standard camouflage curves, which differ in all respects, were analyzed by computer. Since the computer program predicts trichromatic coefficients for CD photography, it was determined to take these five curves and to vary the red region, the start of the rise into the infrared, the end of the rise into the infrared, and the average infrared reflectance. All of these areas were varied plus and minus a specified percentage plus the relationships between the various regions. The trichromatic coefficients were then calculated for each curve generated. With the quantity of variations from the original five curves, it could be assured that all possible spectral curves from 600 to 900 nanometers would be evaluated.

8. Establishment of a Three-Dimensional Plot. As described previously, color difference equations will not produce direct relationships according to various types of foliage for visual color rendition on CD film; therefore, it was determined that an optimized, three-dimensional plot within color space is required to determine exact color comparisons to those produced by foliage. Dominant wavelength and excitation

purity, which are in direct relationship to Munsell's hue and chroma, along with visual reflectances and trichromatic coefficients were analyzed for each spectral curve that was being evaluated. By subjecting approximately 15 different types of foliage to the above evaluations, it was possible to determine the following criteria necessary for artificial camouflage to possess if it is to approximate the same color reproduction on CD film as does foliage: (1) exact trichromatic values and color-space range, (2) wavelength definition and visual color appearance, (3) visual reflectance range, and (4) purity of color. Since it is most desirable to possess color standards, the above criteria were transformed to Munsell notations, and a plot in color space for Munsell color was established. This plot can be seen in Figure 1. Since Munsell charts are separated according to value or visual reflectance, it was necessary to draw two connecting plots. These plots, which represent the basic color of foliage on CD film, encompass the hue range of 6RP to 1.25R and the chroma range of 7 to 12. A value range of 3.70 to 4.75, 10.13 to 17.60 percent reflectance, respectively, was determined based upon the previously mentioned dominant wavelength study. The red plot encompasses the value range of 3.70 to 4.00, and the blue plot encompasses 4.01 to 4.75. The intersection of the two plots is the common area for the entire value range. This Munsell plot within trichromatic color space will determine whether a corresponding spectral curve, after being subjected to the previously described computer program, will possess optimum color rendition on CD photography. A spectral curve with a specific value must fall within the correct Munsell plot for the value on the common area for it to be acceptable.

Establishing the Optimum Spectral Curve Range. From the above plot, it 9. was then possible to determine an optimum spectral curve range that would produce optimum color rendition on CD photography. The chromaticity and trichromatic coefficients were generated by the computer program for over 200 spectral curves. These curves encompass those coatings and paint samples first described within this report plus those curves which were generated by the study of varying the spectral responses from 600 to 900 nanometers. This data was plotted within Figure 1, and an initial spectral range was developed. To assure that this minimum-maximum spectral range was correct, further theoretical curves were generated that varied selected areas of this spectral curve plot. When subjected to the computer program, any curve that possessed a value larger than 4.75 or a visual reflectance larger than 17.60 percent was determined to be outside of the limits. Those that did not fall within the correct Munsell plot for value were also determined a failure. Figure 2 represents the final plot of the limits of a usable curve. Table 2 lists the wavelengths with their corresponding minimum-maximum reflectances. The blank spaces from 600 to 660 nanometers indicate that there is no minimum reflectance for this range, and those from 780 to 900 nanometers indicate that there is no maximum. For curves that possess a red region greater than or equal to 9.0 percent, the allowable rise into the infrared is earlier than for those curves with a red region lower than 9.0 percent. The area between 660 and 680 nanometers which is bordered by the red and blue lines is only for those curves having higher than 9.0 percent red region. All other curves must fall on the inside of the blue line.





| (70)     |     | (%)                                                        | (%)                                                   |
|----------|-----|------------------------------------------------------------|-------------------------------------------------------|
|          | 760 | 59,5                                                       | 40.0                                                  |
| <b>-</b> | 770 | 61.5                                                       | 42.0                                                  |
| -        | 780 | -                                                          | 42.0                                                  |
| *        | 790 |                                                            | 42.0                                                  |
|          | 800 |                                                            | 42.0                                                  |
|          | 810 | -                                                          | 42.0                                                  |
|          | 820 |                                                            | 42.0                                                  |
| 4.0      | 830 |                                                            | 42.0                                                  |
| 5.8      | 840 | _                                                          | 42.0                                                  |
| 8.5      | 850 |                                                            | 42.0                                                  |
| 11.0     | 860 |                                                            | 42.0                                                  |
| 15.0     | 870 | _                                                          | 42.0                                                  |
| 19.0     | 880 |                                                            | 42.0                                                  |
| 27.0     | 890 |                                                            | 42.0                                                  |
| 36.0     | 900 |                                                            | 42.0                                                  |
| 36.3     |     |                                                            |                                                       |
|          |     | $\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Table 2. Minimum-Maximum Wavelength Definition

 NOTE: For spectral reflectance curves that possess a red-region reflectance > 9.0 percent, the maximum allowable reflectances for these three wavelengths are as follows:

| Wavelength | Maximum<br>(%) | Minimum<br>(%) |
|------------|----------------|----------------|
| 660        | 9.8            |                |
| 670        | 12.0           | 4.0            |
| 680        | 14.0           | 5.8            |

#### **IV. RESULTS**

10. Test Results. Figures 3 through 7 are illustrations of various curve shapes and reflectances from 600 to 900 nanometers. Figure 3 shows basically two identical curves except that the red one is within limits of CD response, while the blue one is not. What characterizes one from another is that the red region for the blue curve is too high compared to the master plot. This can be verified either by Figure 2, which has the blue curve outside of the limits, or by Figure 1, which has its trichromatics based upon the computer program plot outside of the limits. Table 3 represents the trichromatic coefficient based on CD film for the curves in Figures 3 through 7. Although the trichromatic values of x = 0.418 and y = 0.287 fall within the correct











and the second state of the

plot, the visual reflectance Y is 18.20, which is higher than the maximum allowable. The visual reflectance on the red curve is 17.00 percent. This was verified by CD photos which showed the blue curve to be faded and washed out. Figure 4 shows a blue curve outside of the limits of Figure 2 because its extremely quick rise produces a visual reflectance of 22.99 percent, which is greater than the maximum allowable of 17.90 percent. The red curve is within the limits as indicated by Figure 2 and results in Table 3 corresponding to the plots in Figure 1. In Figure 5, two curves with the same red region are shown, but the blue curve rises faster into the infrared region. They both fall within the same Munsell plot, but the value of the blue curve is too high. Again, this was due to the early rise. In Figure 6, the red curve's slope is too steep based upon where it starts to rise. In this case, both curves are within the value range, but the red curve's trichromatic coefficients of x = 0.498 and y = 0.320 plot to the red side of the ellipse. The red curve happens to represent an old, dark-green camouflage net sample which originally was thought to be satisfactory until this study was performed. Since the slope was too fast and steep, the sample appears too red on CD film. Figure 7 shows a red curve that produces a pure red color on CD film because of the early rise and a blue curve that is much too blue on CD film because of its extremely slow rise. Again, these results can be confirmed by plotting the trichromatic coefficients and visual reflectances from Table 3 onto the Munsell plots. All of the experimental work has been confirmed by three methods: (1) Figure 1, Munsell plots, (2) Figure 2, curve plot, and (3) actual CD photographs.

| Spectral Curve | Х            | Y     | Z     | x     | У     |
|----------------|--------------|-------|-------|-------|-------|
| 3 Red          | 25.18        | 17.00 | 16.65 | 0.428 | 0.289 |
| 3 Blue         | 26.51        | 18.20 | 18.71 | 0.418 | 0.287 |
| 4 Red          | 24.12        | 16.60 | 17.20 | 0.416 | 0.287 |
| 4 Blue         | 32.30        | 22.99 | 23.30 | 0.414 | 0.287 |
| 5 Red          | <b>24.48</b> | 16.70 | 18.68 | 0.409 | 0.279 |
| 5 Blue         | 26.91        | 18.00 | 17.53 | 0.431 | 0.288 |
| 6 Red          | 23.51        | 15.50 | 11.98 | 0.461 | 0.304 |
| 6 Blue         | 16.16        | 11.20 | 12.93 | 0.401 | 0.278 |
| 7 Red          | 22.28        | 15.00 | 11.90 | 0.453 | 0.305 |
| 7 Blue         | 6.92         | 6.00  | 8.06  | 0.330 | 0.286 |

 
 Table 3. Chromaticity and Trichromatic Coefficients of Spectral Reflectance Curves from the CD Film

11. Red-Infrared Ratio. This newly developed curve plot now indicates that spectral curves that were believed to be ideal for CD photographs, as were those in the early camouflage screen and paint systems, were actually producing poor photo comparisons with foliage. It is not necessary now to specify particular red- and infrared-region reflectances or a minimum reflectance at 700 nanometers as our recent camouflage specifications did. However, a curve cannot be produced that will exhibit the maximum red-region reflectance and be expected to possess camouflage properties. Although the curve may fall within the minimum-maximum limits, from 600 to 900 nanometers, it still may possess poor camouflage characteristics. As in the previous camouflage specifications, there still must remain a relationship between the integrated averages of the infrared and red regions. Based upon the spectral study, a minimum of 5.20 average of red to infrared reflectance must be maintained.

#### V. CONCLUSIONS

12. Conclusions. Based upon the previous theories of camouflage, many of the spectral reflectance curves that met these requirements now have been determined, based upon present theory, to actually be too red and bright on film. Many of these curves fell outside of this newly developed spectral curve plot. There is now no need to specify precise minimum-maximum reflectances for the red region, the infrared region, and the reflectance at 700 nanometers. From this study, it is now possible to determine the following criteria necessary for artificial camouflage to possess if it is to approximate the same color reproduction on CD photography as does foliage: (1) exact trichromatic coefficient and color-space range, (2) wavelength definition and visual color appearance, (3) visual reflectance range, and (4) purity of color. Acceptable color of CD film based upon these criteria produces a Munsell plot which encompasses the hue range of 6RP to 1.25R, a chroma range of 7 to 12, and a value range of 3.70 to 4.75. Figure 2 shows the final plot within which a curve has to remain in order to possess the correct Munsell color as described above. A minimum reflectance ratio of 5.20 must be maintained.

One other requirement must be maintained if these results are to be valid: The coating surface must be completely matt because if it is not the specular reflectance (glass) will cause the color representation on CD film to completely fade and wash out.

# DISTRIBUTION FOR MERADCOM REPORT 2177

| No. Copies | Addressee                                                                                                                                                | No. Copies | Addressee                                                                                          |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------|
|            | Department of Defense                                                                                                                                    | 1          | Chief, Engineer Division<br>DCSLOG                                                                 |
| I          | Director, Technical Information<br>Defense Advanced Research<br>Projects Agency<br>1 400 Wilson Blvd<br>Aclington, VA, 22209                             |            | ATTN: AFKC-LG-E<br>HQ Sixth US Army<br>Presidio of San Francisco, CA<br>94129                      |
| ł          | Director                                                                                                                                                 | 1          | Director<br>Army Materials and Mechanics<br>Research Center                                        |
|            | ATTN: STTL<br>Washington, DC 20305                                                                                                                       |            | ATTN: DRXMR-STL<br>Technical Library<br>Watertown, MA 02172                                        |
| 12         | Defense Documentation Center<br>Cameron Station                                                                                                          | 1          | US Army Ballistic Research<br>Laboratories                                                         |
|            | Department of the Army                                                                                                                                   |            | Technical Library<br>DRXBR-LB (Bldg 305)<br>Aberdeen Proving Ground, MD                            |
| 6          | Commander<br>US Army Materiel Development &<br>Readiness Command<br>ATTN: DRCRD-WB DRCRD-T<br>DRCRD-J DRCRD-O<br>DRCRD-G DRCRD-FP<br>5001 Eisenhower Ave | l          | 21005<br>Commander<br>Edgewood Arsenal<br>ATTN: SAREA-TS-L<br>Aberdeen Proving Ground, MD<br>21010 |
| 1          | Alexandria, VA 22333<br>Commander, HQ TRADOC<br>ATTN: ATEN-ME                                                                                            | l          | Commander<br>US Army Aberdeen Proving<br>Ground<br>ATTN: STEAP-MT-U                                |
| 1          | Fort Monroe, VA 23031<br>HQDA (DAMA-AOA-M)<br>Washington, DC 20310                                                                                       |            | (GE Branch)<br>Aberdeen Proving Ground, MD<br>21005                                                |
| 1          | HQDA (DALO-TS M-P)<br>Washington, DC 20310                                                                                                               | 1          | Director<br>US Army Materiel Systems<br>Analysis Agency                                            |
| l          | HQDA (DAEN-RDL)<br>Washington, DC 20314                                                                                                                  |            | ATTN: DRXSY-CM<br>Aberdeen Proving Ground, MD<br>21005                                             |
| l          | HQDA (DAEN-MCE-D)<br>Washington, DC 20314                                                                                                                | 1          | Director<br>US Army Engineer Waterways                                                             |
| I          | Commander<br>US Army Missile Research &<br>Development Command<br>ATTN: DRSMI-RR<br>Redstone Arsenal, AL 35809                                           |            | ATTN: Chief, Library Branch<br>Technical Information<br>Center<br>Vicksburg, MS 39180              |

16

ومدموم والمراجع ومراجع الموالين المسيقان ماريان وال

| No. Copies | Addressee                                                                                                    | No. Copies | Addressee                                                  |
|------------|--------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------|
| 1          | Commander<br>Picatinny Arsenal<br>ATTN: SARPA-TS-S No. 59<br>Dovar NL 07801                                  | 1          | Commander<br>Rock Island<br>ATTN: SAI<br>Rock Island       |
| 1          | Commander                                                                                                    | 1          | Plastics Tech                                              |
|            | US Army Troop Support &<br>Aviation Materiel Readiness<br>Command<br>ATTN: DRSTS-KTE<br>4300 Goodfellow Blvd |            | Center<br>Picatinny Ar<br>ATTN: A. M<br>SAF<br>Dover, NJ 0 |
|            | St Louis, MO 63120                                                                                           | 1          | Commander                                                  |
| 2          | Director<br>Petrol & Fld Svc Dept<br>US Army Quartermaster School<br>For Lee VA 23801                        |            | Frankford A<br>ATTN: Libu<br>Philadelphia                  |
|            |                                                                                                              | 1          | Learning Re                                                |
| 1          | Commander<br>US Army Electronics Research &<br>Development Command<br>ATTN: DRSEL CC.TD                      |            | US Army Er<br>Bldg 270<br>Fort Belvoir                     |
|            | Fort Monmouth, NJ 07703                                                                                      | 1          | President<br>US Army Ai                                    |
| 1          | President<br>US Army Aviation Test Board<br>ATTN: STEBG-PO<br>Fort Rucker AL 36360                           |            | Communic<br>Electronic<br>ATTN: STE<br>Fort Bragg          |
| ,          | US Army Aviation School Library                                                                              | 1          | Commander                                                  |
| I          | P.O. Drawer 0<br>Fort Rucker, AL 36360                                                                       | 1          | Headquarter<br>Battalion (<br>Fort Devenc                  |
| l          | HQ, 193D Infantry Brigade (CZ)<br>Directorate of Facilities                                                  | 1          | President                                                  |
|            | Fort Amador, Canal Zone                                                                                      |            | Eoard                                                      |
| 1          | Commander                                                                                                    |            | Fort Knox, 1                                               |
|            | APO New York 09050                                                                                           | J          | Commandan<br>US Army Co                                    |
| I          | HQ, USAREUR & Seventh Army<br>DCSENGR, ATTN: AEAEN-MO<br>ATTN: MI One Div                                    |            | ATTN: ATS<br>Fort Leaven                                   |
|            | APO New York 09403                                                                                           | 1          | Commander<br>2nd Enginee                                   |
| 2          | Engineer Representative<br>US Army Standardization                                                           |            | ATTN: S4<br>APO San Fra                                    |
|            | Box 65, FPO New York 09510                                                                                   | 1          | Commander<br>USAFESA<br>ATTN: FES                          |

Arsenal RRI-LPL

- , IL 61201 hnical Evaluation
- rsenal, Bldg 176 M. Anzalone RPA-FR-M-D 07801
- Arsenal brary, K2400, B1 51-2 a, PA 19137
- esources Center ngineer School r, VA 22060
  - irborne, ations & EBF-ABTD NC 28307
- rs, 39th Engineer (Cbt) c, MA 01433
- rmor and Engineer ZK-AE-TD-E KY 40121
- nt ommand and aff College SW-RI-L worth, KS 66027
- er Group ancisco 96301

ななたちの

and Director ATTN: FESA-RTD Fort Belvoir, VA 22060

| No. Copies | Addressee                                                                                                      | No. Copies | Addressee                         |
|------------|----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------|
|            | MERADCOM                                                                                                       | 1          | Officer-in-Charge (Code L31)      |
|            |                                                                                                                |            | Civil Engineering Laboratory      |
| I          | Commander                                                                                                      |            | Naval Construction Battalion      |
|            | Technical Director                                                                                             |            | Center                            |
|            | Assoc Tech Dir/R&D                                                                                             |            | Port Hueneme, CA 93043            |
|            | Assoc Tech Dir/Engrg & Acq                                                                                     |            | D: .                              |
|            | Assoc Tech Dir/Mati Asmt                                                                                       | L          | Purector                          |
|            | Assoc Tech Dar/Tech Asimt                                                                                      |            | Cashe 462                         |
|            | CIRCULATE                                                                                                      |            | Office of Nevel Research          |
| 1          | Charles 1                                                                                                      |            | Arlington VA 99917                |
| 1          | Chief, Lab 1000<br>Chief, Lab 2000                                                                             |            | Attington, VA 22211               |
|            | Chief Lab 2000                                                                                                 |            | Department of the Air Force       |
|            | Chief Lab 4000                                                                                                 |            | pop a directe of the table of the |
|            | Chief, Lab 5000                                                                                                | 1          | HO USAF/RDPS                      |
|            | Chief. Lab 6000                                                                                                | -          | (Mr. Allan Eaffy)                 |
|            | Chief, Lab 7000                                                                                                |            | Washington, DC 20330              |
|            | Chief, Lab 8000                                                                                                |            | C ·                               |
|            | Chief, TARSO                                                                                                   | 1          | Mr. William J. Engle              |
|            | CIRCULATE                                                                                                      |            | Chief, Utilities Branch           |
|            |                                                                                                                |            | HQ USAF/PREEU 🛛 🔸                 |
| 30         | Lab 9000                                                                                                       |            | Washington, DC 20332              |
| 3          | Tech Reports Ofe                                                                                               | 1          | AFSC/IN]                          |
| .,         | . com responses of the                                                                                         |            | Andrews AFB, MD 20334             |
| 3          | Security Ofc                                                                                                   |            | ,                                 |
|            | ·                                                                                                              | 1          | OL-AA AFCEC/DEZ                   |
| 2          | Tech Lib <b>rary</b>                                                                                           |            | Kirtland AFB, NM 87117            |
|            |                                                                                                                |            |                                   |
| 1          | Requirements & Programs Ofc                                                                                    | 1          | AFUEU/AR/21                       |
|            |                                                                                                                |            | Tyndall AFB, FL 52401             |
| 1          | Information Ofc                                                                                                | 1          | UA USAE/DDEES                     |
|            | Land ()fa                                                                                                      | 1          | ATTN: Mr. Edwin R. Mixon          |
| 1          | Legarone                                                                                                       |            | Rolling AFR-RIdg 626              |
|            | Department of the Navy                                                                                         |            | Washington DC 20332               |
|            | Department of the stary                                                                                        |            | Withington, Mar 2000              |
| I          | Director, Physics Program (421)                                                                                | 1          | AFAPL/SFL                         |
| •          | Office of Naval Research                                                                                       | -          | Wright-Patterson AFB, OH 45433    |
|            | Arlington, VA 22217                                                                                            |            |                                   |
|            | <b>H</b>                                                                                                       | 1          | ASD/ENCSP                         |
| l l        | Director                                                                                                       |            | Wright-Patterson AFB, OH 45433    |
|            | Naval Research Laboratory                                                                                      |            |                                   |
|            | ATTN: Code 2627                                                                                                | 1          | Department of Transportation      |
|            | Washington, DC 20375                                                                                           |            | Library, FOB 10A, TAD-494.6       |
|            |                                                                                                                |            | 800 Independence Ave., SW         |
| 1          | Commander, Naval Facilities                                                                                    |            | Washington, DC 20591              |
|            | Engineering Command                                                                                            |            | 0.1                               |
|            | Department of the Navy                                                                                         |            | Uthers                            |
|            | ATTN: Coge 052-A<br>000 St                                                                                     | ,          | Professor Raymond R. Fox          |
|            | 200 Stovall St<br>Alexandric A13, 09999                                                                        | 1          | School of Engineering and         |
|            | AICAMULIA, VA 22002                                                                                            |            | Annlied Science                   |
| 1          | US Naval Oceanographic Office                                                                                  |            | The George Washington             |
| 1          | Library (Code 1600)                                                                                            |            | University                        |
|            | Washington DC 20373                                                                                            |            | Washington, DC 20052              |
|            | The second s |            |                                   |
|            |                                                                                                                |            |                                   |
|            | 10                                                                                                             |            | 2 3 4 68,919 - AG - Ft Bel        |

#### 68.919-AG-Ft Belvoir

الأشاقية