TRRERSTTT T T T T LT T T e O T A WSS

| /
g RADC-TR-76-197
: Final Technical Report |
June 1976 ?
DEVELOPMENTAL SUPPORT OF THE SCIENTIFIC
m ‘ AND TECHNICAL INTELLIGENCE SYSTEM
' (J:D : Auerbach Associates, Inc.
¢
(@)
<
T,
[
&=
i

Approved for public release;
distribution unlimited.

ROME AIR DEVELOFRAENT CENTER
AIR FORCE SYSTEMS COMMAND
GRIFFiSS AIR FORCE BASE, NEW YORK 13441

BPERY L IS IF IR O S

e ek s Y cocoarmil s S b s pumtiain e L

ST PR

A R i L

e ‘\‘,‘x"é‘:i;‘vv.i E

This report has been reviewed by the RADC Information Cffice (OI)
and 1is releasable to the National Technical Information Service (NTIS).

At NTIS it will be releasable to the general public, including foreign
nations.

This report has been reviewed and is approved for publication,

1
[
i
Y ~ 4
APPROVED: {cht.-‘i\{- H*\P&Lt\({
i ROBERT N. RUBERTI
4 Project Engineer
k‘

APPROVED: C’.}i/,“.@.v/? Q’ﬁ; e

HOWARD DAVIS
Technicul Director

Intelligence & Reconnaissance Division

. 2 Lol o
N s 30// FOR THE COMIM‘\NDER:‘;7;;7(:'c L W LW
Ve ' JOHN P. HUSS
\Lq Acting Chief, Plans Office ;
i

Do not return this copy. Rz2tain or destroy.

UNCLASSIFIED
SECURITY CLASMFICATION OF THIS PAGE (Whan Daia Enfered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

T H'TI HUMBER 2 GOVY ACCESSION NO] 3 RECIPIENT'S CATALOG NUMBER

I RADCATR-76-197

4 TITLE (end Subfitie) . S 1rrmrmmmm eo

jFinal Technical Report .
DEVELOPMENTAL SUPPORT OF THE SCIENTIFIC » ﬂJuno 1975 - Apr11-1976

AND TECHNICAL INTELLIGENCE SYSTEM -
N/A |

8 CONTRACT OC® GRANYT NUMBER(e)

7 AUTMOR(e)
}

Dt.)Jerome Sable ’
]] 1£30602-75- .-0273!
lb 9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
) Auerbach Associates, Inc., , AREA & WORK UNIT NUMBERS .
' 121 N. Broad Street v 64750F /]~
Philadelphia PA 19107 /5 (120530203 T

11. CONTROLLING OFFICE NAME AND AODDRESS ¥ ™) ﬂﬂg!‘tﬂ‘rt
sy June 1976 1

Rome Air Development Center (IRDT)
Griffiss AFB NY 12441 13 "NUMBE: QF PAGES ~ — - - -

g :
& MONITORING AGENCY NAME & ADDRESS(/f dlitersnt from Controlling OHice) 18. SECURIYY CLASS. (of INIs iéport)
i

Same
: UNCLASSIFIED
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

18. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (o/ the adstract entered in Block 20, if different from Report)
Same

¢ s S G e s e il in s e et s o 2

8. SUPPLEMENTARY NOTES
RADC Project Engineer: Robert N. Ruberti (IRDT)

19. KEY WORDS (Continue on teverae aide il necessary and identify by block number)
Intelligence Data Handling

Information Management

Relational Data Technology

N

20\ ABSTRACY (Continue on reverss side Il necesaary and identify by block number)
This project has providad technical assistance to the development team of the , :

e it kel a .
SVRNE NP SR

Scientific and Technical Intelligence System (STIS) at Air Force Foreign - .
Technology Division (FTD). The effort was directed at the design and doc- P
umentation of several data structures and programmed capabilities of STIS, 'f y
These included the following:]
F

(a) An Indexed-Sequential Access Method and Directory fo f P A l 3
s “]

4

DD /0%, 1473 eoition oF 1 Nov 68 1s cmsoLETE UNCLASSIFIED !

SECURITY CLASSIFICATION OF THIY PAGE (When Data Entersy)

i)\ij'/

UNCLASSTFIED
SECURITY CLAZSIFICATION OF THIS PAGE(When Deta Eniervd)

encoding and decoding STIS user and system terms,

(b) the data structure of a generalized STIS node which can
serve for the elements of the STIS Concept Net, including l
entities, semantic elements (attributes and values), and
derivation rules, and

. (c) a set of interpretations of the node structure and the
;’ definition of an approach which can be used by the
Vi analyst in representing intelligence information in the
Concept Net, including source information, credibility,
events, states, transitions, and general deductive

rules. ‘
¢ q

s ———— e

P a—

-
A htn L3 ML s sk e Wy

[

}%
i
i
3

UNCLASSIFIED ‘

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) /‘

e . L. . o N N . . i Tl o .
[P S ST i il 23 ey . .
At duatbacciacabianta il G bty s o i e A i RN e

PREFACE

The work rveported here was accomplished under contract F30602-
75-C-0273 under sponsorship of the Rome Air Development Center. The
objective of this project was to provide technical assistance to the 3TIiS
(Scientific and Technical Intelligence System) development team at the
Air Furce Foreign Technology Division. The report was prepared by
Jerome Sable, Edward Schernecke, and John 4cCrea of the staff of AUERBACH
Associates, Inc. Grateful acknowledgment tor special consultation and
assistance is given to Edward Stull, Jerry Hamilton, and Janet Merelli
of FTD and to the Technical Monitor, Robert Ruberti of RADC. Dr. Sable

was the Program Manager of this project.

1ig

|
{
]
|

. eEAT

EVALUATION

Program design specifications have been delivered for an information
structuring method that will be applied to the FID sclentific intelligence
data base. It includes specifications for an entity and semantic network
structure, as well as directory services and a peripheral file access
system. These specifications will be implemented as part of the Sclentific
and Technical Intelligence System (STIS) at FID. This effort is included
as part of TPO #4, Intelligence Data Handlirg.

Fodeot K YRLAA

ROBERT N. RUBERTI
Project Engineer

iv

pr—— e— - -

D am ot T i

R LA AT aal. i

d
i
1
!

TABLE OF CONTENTS

Paracmary Titex Pacs
_ARAGRAPH LATLE

SECTION I. INTRODUCTION

1.1 OBJECTIVE ¢¢vvevovsnosanncrorsoasssonnsonnsanansses 1-1 R
1.2 BACKGROUND OF STIS «ovuvveeennensnnonssensenenones 1-2 1
1.2.1 The Information Structure as a Key ;
Element Of STIS ttvtvinvstensssnssnssnssnsssasosssns 1-3 3

1-2.2 STIS USel‘S R EEEREEERE R I A S S S R RS R W) 1-4
SECTION II. THE TECHNOLOGICAL FOUNDATIONS OF STIS E

2.1 THE INTELLIGENCE ANALYSIS FRAMEWORK ¢vvecevsnnsaes 2-1 é
2.2 INFORMATION STRUCTURES +vvvvisvvvsvnnnnnvannnses 2-4 .
2.3 SEMANTIC NETWORKS AND CURRENT RESEARCH ;
IN KNOWLEDGE-BASED SYSTEM .. cvvevenessnestacinnans 2-8 ;

SECTION III. OVERALL SYSTEM STRUCTURE

3.1 GENERAL PROCESSING FLOW +1tvrvveverannnarosassnsnss 3-1 q
301'1 USE!‘ Interfaces R R R A S N A A I S RN B BN Y B 3"3 .
301.1;1 Batch R EEEEE R R T e S S N S S S N S S N S SR S S S WY 3_3

3.1.1.2 ON=Line tivvouiiennnnonesentsnesrserotsnsosanannsnns 3-4 b
3.1.2 Request DecomposSition .iviiiiiiernnsennereanssanns 3-4 i
3.1.3 Retrieval ProcesSsing «..uivveiriiensvecinnsseacsnss 3-5 ©
3.1.4 Node Processing N 3-5 i
3.1.5 Direct Access Storage Managementeeeeecssesos 3-6 i
3.1.6 Example of User Request Processing ...iscevnesesns 3-7 3
3.2 MULTI-USER CONSIDERATIONS ..iieevosenonsncnsons os 3-11

3.2.1 Physical Equipment and Operating Systemccecuen 3-11

3.2.2 Programming Languagecoveesvensssenssnonsses 3-12

3.2.3 Parellelism of STIS Functions ..iiieiresevessanans 3-12

3.3 RECURSIVE PROCESSING vt vvuvvrennsnnsaaseoransnnnss 3-13

3-4 SECURITY PROCESSING LRI S NN S S SR B S BN B N RS B BN BN I Y 3-15

TABLE OF CONTENTS (CONT'D.)
Panacrarn Tireg Pagk

3.5 ~ SYSTEMS MANAGEMENT FUNCTIONS «.vvvvivivivaennanann 3-15 { :
i
3.5..1 ”SOI‘ ACCeSS D I I I I I I R R S R R N N N R R R 3—15 T:

3.5.2 Data Bagse DIstribution ..viieviiiiiioriioririonsnns 3-16 i

: SECTION IV. THE CONCEPT NET -- A NEW 3
: INFORMATION STRUCTURE FOR STIS Cg
4.1 A MODEL rOR INTELLIGENCE INFORMATIONevevens. 4-1 2

4‘2 THE CONCEPT NODE LI O O O N L I LR B I I S S S S N R S T SN S R ‘0‘2

4.3 SUB-NODES -~ COMPOSITE ATTRIBUTES AND N-TUPLES ... 4=t) !

4.4 FORMAL DESCRIPTION OF THE CONCEPT NODE .. .vieevven 4=5 _ ;

4.5 THE SEMANTIC NET +ruvevarneeeosnnneensnnonnnessnns 4-5

: 4.5.1 ALETIDUEE NOGES wrvverervnnseeunnesenenneensnnnnns 4-8
4-5-2 ValUENOdeS L R I L I I I I I I I O N T I I R Y B S B R) 4‘8 ~

4.6 THE ENTITY NET . eteeurnnnenennnnnnnnnenennnnneennns 4-9 >

4.6.1 Entity Relations ..oiviuiiiiiiiiniiiienrnnnnnnanns 4-11 v

4.6.2 Generic Entities ..civieiiieiiiniiivaniinninnans i 4~12 E

4.6.3 Entity States (ieiirriiviannioiittetesiosencannsnn 4-12 3

4.6.4 Fact Qualification ...civiiiiinivennnnns et erasaes 4~13 ;

4.6.5 Computed Values ..veivnieierrisinrnniroasnacnnnnsos 4=15 E

4.6.6 Quasi-transitive Relationshipsivvviviiennann 4-15 ,g

4.6.7 FOOLMOLES v vt inr i tiienivtii e ronenninninnnnnnsns 4~18 3

4.7 CONCEPT NET PARTITIONS «iiitinvenoennnneessnnnanns 419

4,7.1 Physical (Top-Level) Partitioning .v.veeivenernans 4~19
4,7.2 Consistency and Context Set Partitions 4=22 :
4,7.3 Use of Partitions in Representing Ruless 4-22 E

A|8 REPORTS L I R I I I O O N R R I A S R A A A A) 4-27

Report Net SETUCLUTE viiivrertirasenascrsrsnssnsns 4-27
Report Procedures tiviveiieivonsisennsnrvssocannes 4-28
1 Simple Updating of Entity Net Facts ...vcvviensees 4-29
.3 Alertness tc the Absence of Reports ..i.veveveiuions 4-30
4
5

Composite REPOTLS 4evveevircinorsnenssancrsasnasans 4-31
Multiple Versions and Appearances
of the Same Face ...iviiiiiiitinnnotontaanssenssas 4-31

vi

R gt A R oA R e AR ST e b e e SR

B e VLN L S Y

B T T R Py T I R Rl

TABLE OF CONTENTS (CON,'D)

sl
. o
kbl i i e

; Paracnany Ty Pags
4.8.2.6 Multiple Results From One Report ooooveiiiiinenn, h-32
£.8.3 System Report Procedures and
Report Net Structufe ciuveeccsionsenas Chers e 4~12
SECTION V. _PERIPHEKAL FILE ACCESS SUBSYSTEM
5.1 BACKGROUND LI R I O I I L T I T O I S I I N N A T R R N S S S S S S Y -:_!
5,2 REQUIREMENTS «.\uvvvvvnevnnnenenns. 5-2 ;
5.3 ACCESS SUBSYSTEM DESCRIPTION . ovivinininenconsnnns 5.3 2
5.3.1 Approach and Design Considerations c,ivvevevinsnn, 5-3 :
5.3.1.1 Reentrancy and User Core Size Reduction .o.o.o..... 5~ E
5.3.1.2 Common File and Record ACcess tivveririnnvnnnnanes 5=4 b
5.3.1.3 Minimize Response TImMe (viviiiiiieiinnnnenssenecns 5-5
5.3.1.4 Manage STIS Tetm Data «.veiveeirevesnorsnscsanness 5-5 E
5.3.1.5 Large Record Volume With High
Create/Delete ACtIVIEY tiviviviieninnnannnaseannns 5-6
5.3.1.6 Key and Data Consideratlons .(.....iiiiiinivionnenns 5-7
5.3.1.7 File Considerationsvvieviinensnennnnnnnsones 5-8
5.3.2 Functional Outline iiviviviinntennnninsnnnnns 5-12 ;
5.3.3 Error ProcesSsing (iiviiiieionneranesansansssnsnssns 5-13 i
E
1
SECTION VI. DIRECTORY SERVICES SUBSYSTEM :
6.1 INTRODUCTION 4 4vsuutsvnnnnneenseeseeensnnnnnnns 5-1 '
6.2 ENCODING MECHANISM . \.'uvineeennnnnereennnnnnnnons 6-3 .
6.3 DECODING MECHANISMtivvuueeernnnseennnnessnnnss 6-13 !
REFERENCES 7-1 '
APPENDIX A. CURRENT STIS STRUCTURE

APPENDIX B. PERIPHERAL FILE ACCESS SUBSYSTEM
FUNCTIONAL DESCRIPTION

APPENDIX C. STIS DIRECTORY FUNCTIONAL SPECIFICATION

APPENDIX D. BASIC NODE FUNCTIONS

vii

LIST OF ILLUSTRATIONS 4
Eiopms. Tovee :-
i ¥~ i STIS overall Flow am: Processiog Levels o, 00vienns ;
‘ -t User Request Processting Example oo .. et es e .'..
: i
: 1= 3{a) External Recursion oottt iaserinesenttinnnrsras 3-14 é
1= 1) Mutti=level Recursfon and Stacking oo ieie v inesne 3-14 E
: i
? -1 Subnude Relationships v iiiiiiiiiirienattiateisenarnns 4-14 :
] o= Connection Trap soevii it ittt itrrorsntrsstanrssanae 4=17
a=1 Fact Partions Example (iovieiiiiniiiiiiiisetinnnonss 4=21
4-4 Representation of Rule: WOXy A DAyz = WAXz2 =24

4=3 Representation of Rule: (f WOXYDAYaWAXz) ...vvveovns 4=25

4=6 Partitioned Concept Net EXample .vuvueerneveenrnansn 4-26

5=1 Range Key INdiCes tuunineieninnsnnoronrennserneeenss 5-7

5= 2(a) Index and Data Block Structure Before Insertion 5-9

5=2(b) Index and Data Block Structure After Insertion -9 ;
f-1 Directory SUbSYSLEmM +vttiviiireiitrnsneonenesnnesanns 6=~2 ' &
6-2 Typical Term Encoding Process .viuviiviveneseeeniennnes 6-4 .E
A-1 Current STIS Architeclure . .iiivivieieneeninnserneenrnen A-2 é
A-2 Physical Node StTUCTUTE . viiiiiiiiiieenunnnnnnnnnnns A-3 i
A-3 Logical Node SEtruCtuUre .uyiuuiveuvierioneneesnsnnsnenns A-4 §
c-1 DIrectory Tables L iyuuvetnennenseeeennonnosneeeenenns c-2 f

viii

LIST OF TABLES

4=1

‘ "l""iﬂlﬁﬂ’&mf""["’,‘f.‘,!‘?ﬁ?{”w?lwmm pat kit s AR i

4-2

s B-1

h B-3

) B~4

w5
3-h
Be7

Fiouns
e,

Tiree

Node Structure Specification

Partition Tables vivviinienoe i iveneens

The PFAPFCT ottt it iinnsrecnitnsnosssnnans

Layout of an entry in the PFAPFCT ..

Lock Area within an entry of the PFAPFCT

The RUNID Table ..o Cera e

The Common Buffer Table «v.vovvvenes

The Available Buffer Table ..., cees

The Overf{low Buffer Table .c.vvuvuen

The OBT Overflow Area ...iievvinncenns
The USER FCT .iiinveninnnrnnnninnsnscnnns
The FILE INFORMATION BLOCK
Storage Area within PFAP non-reentrant module
Directory Tables ..c. viviietnnncnnnnans

Role Map Indicators ..vcceievvnsernorsans

ix

[N SN S S I S]

B-11
B-133

B-15

R-39

B-19

C-13

c-3

ot 08 it el AR LR b - et bt L it il i, ol

NPT IV

ret et llcd il

1.1

directed at the design and documentation of several data structures and
programmed capabilities of STIS. These included the following:

OBJECTIVE

The objective of this project was to provide technical assistance C3
to the development team of the Scientific and Technical Iatelligence System L
(STIS) [1]* at Air Force Foreign Technology Division (FTD). The effort was A

(a) An Indexed-Scquential Access Method and Directory

()]

(c)

SECTION I. INTRODUCTION

for encoding and de¢coding STIS user and system
terus,

e <8 i S i

the data scructure of a gencralized STIS node which
can serve for the elcments of the STIS Concept Net,
including entities, semantic elements (attributes
and values), and derivation rules, and

a set of interpretations of the node structure and
the definition of an approach which can be used by
the analyst in representing intelligence informa-
tion in the Concept Net, including source informa-
tion, credibility, everts, states, transitions,
and general deductive rules.

*
References are listed after the main body of this report.

1-1

1.2 BACKGROUND OF STIS

? | STIS is being developed as a tool to help fulfill the Scien-

f tific and Intelligence analysis mission of FTID. It serves the intelligence
production programs in application areas such as IPS (Intelligence Production
System), 1EAS (Integrated Event Analysis System), ¢3 (Command, Control, and

- : Communications), and EW (Electronic Warfare), and the processing of metric

i sensor data performed by the engineering analyst who may wish to operate in
an interactive mode on~line with STIS as well as invoking production type

programs.

é STIS 1s being implemented on the UNIVAC 1110 and has evolved

from a svstem called BIAS which was originally based on the TBM §/360 CIS.

STIS provides an advanced capability for the analysis of intelii-

gence information. It is based on a network type data structure which per-

mits relationships among entities and new attributes to be freely defined

with minimal impact on previously stored data and programs. Because of

this, it is particularly suited for capturing fragmentary information which

is undergoing collation processing, analysis, evaluation, and synthesis .

into finished intelligence.

JEAT IR PV LI g

In another research effort, called the BIAS Augmentation Study,

AUERBACH has developed the design of advanced relational data and inference

providing tools for use in an operational intelligence euvironment. The

RN PR A

BIAS Augmentation Study has been working with BIAS, and now STIS, as a
vehicle with which to develop and test operations on relations, inference,

and consistency determining functions. The ultimate goal is to incorporate

thers . advanced capabilities into STIS so that their effectiveness can be

accurately evaluated, and these new tools can be provided to the STIS

analyst.

In 1973, AUERBACH Associates, Inc. developed a design for an in-

ference capability for an intelligence system such as STIS [2]. The design
concept of this capability, called ARIAS (Augmented Relational Intelligence

1-2

RS VA Sy o et s s s L R

Analysis System), embraced both inductive and deductive inferences that an
analyst may desire to pursue in testing an hypothesis (or answering an in-
terrogation) concefning the current state-of-affairs as reflected in an
intelligence data base. As a result of a subsequent project, the algorithms
concerned with the deductive aspects of this capability, and its interface
with STIS, have been recently detailed (3].

e

1.2.1 The Information Structure as a Key Element of STIS

STIS is an intelligence system and not a data base management
system in the conventional sense. That is.Ait is a specialized tool thch
serves the unique needs of the intelligence analyst, and is not intended for
generalized use in maintaining and extracting information from predefined files.

It is intended to adapt to the variable information structures created by

analysts who view the world as a dyramically changing state-of-affairs and

must react quickly to new information requirements and employ changing strategies

of infermation correlation. The intelligence analyst, as distinct from his

e Loy et e

sounterpart in the commercial data processing world, must routinely accept and 3
maintain conflicting data and partial information, assess the sredibility of

the information, and then use it to construct a coherent estimate of a state-

L el

of-affairs.

S

During the early stages of the evolution of the STIS concept,
attempts were made to utilize commercially available Data Base Management
Systems as a basis for building STIS. These early STIS versions used, or
experimented with, GIS and FORIMS (on the $/360 and the U1110, respectively),

and evaluated other Data Base Management Systems as well. They each proved

> 2t .. S

e S

inadequate to the task of serving the broad spectrum of requirements inherent

in STI (Scientific and Technical Intelligence) data analysis without redundant

storage of large segments of the data base, continual definition of new data
structures, and redefinition of old structures.

ZAE e e e AR T S

e R T O T T R A RO P W DY o i s R AT I 4,7

-

IR ©

The approach taken by the designers of STIS was to face squarely
the vari;bility of intelligence data, the need to accept and qualify information

I i

T TSR O s 4T

on the basis of time, source, and credibility, and the need to adapt to multiple i
views of the same information with a minimum of redundancy so that the data

maintenance and updating problem cculd be kept within bounds of processing ;%

E:
g |
:,,

1
o
]

ST

and storage cajpability.

R . 3

They consequently developed a powerful, yet tractable network-
F : oriented information structure that enables the analyst to describe a real-word
é object, situation, event, or relationship without being constrained to some

preconceptions of what attributes that description siwuld contain. This leads ' e

to more concise data elements and to greater adaptabllity to new states of affairs.

A major innovation to be implemented fcr STIS (both for the

T

near-termn improvement of STIS 1 and for STIS 2), is the ability to represent

a specified set of data values in a conventional file arrangement, without

i 3 a2 s

the user being explicitly aware that this is being done. This technique makes
it possible to handle large files of metric data in fixed-format records, thus E
providing the high degree of processing efficiency which is required for this
function. A ‘ ,%

1.2.2 STIS Users

The users of STIS fall into two broad categories, on-line and g
batch. The on-line user is the STI analyst who wants to answer an ad hoc request,
one that has not been formalized to such an extent that a pre-piogrammed

solution for it exists. He wants to extract specified data from the data base

A i B RN o e

to respond to a Quick-Reaction Request or perhaps to test the validity

of a new analysis strategy which he is attempting to formalize. The key element
is that the on-line user must interact effectively with STIS in ways that g
cannot be completely pre-specified. He therefore needs a language for man/ ;

machine communication which can invoke responsive scarch and retrieval

routines and which he can use first to build, and then to conveniently invoke,
special sequences of operations which suit his analysis tasks. An inter-
active communication mode for STIS has been specified and wiil be integrated

with STIS as part of a Design Optimazation and Development effort.

1-4

e N

g R
B

The batch user can be viewed as being one stage removed from
direct interaction with the machine. He 1is buffered from direct contact with
STIS and the computer by a program which carries out a formalized set of
analyses and reporting tasks, and therefore the batch program which he is
using can be thought of as providing him with a specialized interface with
STIS. From the point of view of STIS, however, the "direct" user of STIS in
this case is the programmer who makes use of the generalized STIS commands
through program calis. He is the user who creates the specialized interface
for the analyst who can formalize his requirements, or who chooses not to
interact directly with STIS. The STIS programmer-user generally writes in a
high level prccedural language such as COBOL or FORTRAW, and STIS provides a
idigh~Level Language (HLL) interface for these users.

5
1
i
4
Fi
b

5 i it

TN R S
e LT

SECTION II. THE TECHNOLOGICAL FOUNDATIONS OF STIS B 3

The technological foundations of scientific and technical

intelligence analysis embrace three major elements: the framework within

which the problem is viewed, the information structures which are used, and

new concepts in semantic networks and knowledge-based systems. ;

1 e it SR o Rt 5L

2.1 THE INTELLICENCE ANALYSIS FRAMEWORK

FEPRT VI IO

The problem of intelligence analysis has a number of distinct

Soed

features which set {t apart from other problems in data analysis, yet, in some

of 1ts aspects it shares many features with other areas of scientific

PRETIO S VL STT Y

investigation:

- The analyst is concerned with sets of entities in the
real world: individuals, facllities, organizations,
Jystems, events, messages, experiments, and observations.

- Each entity can be identified and described by a set of
facts (or properties) and relationships to other entities,

2-1

P

SRS S,

- General rules of behavior, association of properties, or
interrelationship among entities of given types can be

3
oy)
3
i
3
2
3
2
2

3

H
'fi

SE
ot 15

defined.
- The facts are, in general, not constant in time but
represent a "snapshot" of a dynamic situation, and the .

influence of temporal events are an important ingredient
of the situation.

- The known state-of-affairs is a result of observations made
on the real world by imperfect sensors and is subject to
equivocating influences, which produce "noisy" and possibly
inconsistent '"facts" as well as fragmentary or incomplete
descripticus of objects and events.

- Both the facts and the rules can be associated with a
subjective probability of truth (credibility, validity or
acceptability), which reflects the analyst's, the observer's
or the system's estimate of their uncertainty.

- The analyst is concerned with the degree of consistency
of specific and general statements (facts and rules), the
degree of support (derivability or predictive power) of
hypotheses which he may invent, the uncertainty of source
infcrmation and credibility of conclusions.

The scientist and the intelligence analyst are each often
concerned with developing a theory which explains some aspect of the behavior -
of the real-world domain on which he is focusing. A major difference, of
course, 1s that the intelligence analyst 1is typically concerned with the de-
scription, behavior and plans of a non-cooperating adversary, while the
scientist 1is typically concerned with a system which is indifferent (but not

necessarily non~rcactive) to his observations.

Notwithstanding the above similarities between intelligence
and other types of scientific analysis, there are distinct differences between
the two. Relative to hypothesis concept formation and testing in most other
areas of scientific investigation, intelligence analysis often involves a higher
degree of uncertainty, a lack of repeatability and control of experiments, and a
lack of accessibility of the subject. There are also distinct differences in : j
the cost, feasibility, and potential ramifications of observation and experi- d
mentation, and the nature of credibility criteria and rules of evaluation.

Bacause of these conaideratiéns. the psychology, philosophy and
personality of the analyst often enters the situation in a more direct way
in intelligence “han in other scientific investigation. The intelligence
analyst's syvten is very often a personal system, and is not easily amenable
to sharing and interpretation by other analysts. Furthermore, there is apt
to be 2 high degree of complexity in the composite factors which the intelligence
analyst is seeking to define and evaluate, such as capability of the enemy to
carry out a given plan, the level of threat represented by the current situation,

the net balance of forces or capability, ete.

‘The above differerices along with other considerations give
rise to a number of unique problems associated with handling intelligence
information. Some of these problems and characteristics of intelligence

information are listed below:

- The volume of intellijzence information to be handled is
high. It is very often in non-standardized, or partially
standardized, format. (Screening and processing unformatted
text is typically a bottleneck in intelligence systems, and
represents a problem aspect which is only partially solvable
bv automatic methods.)

- The input date is often fragmentary. That is, only a small
subset of the possible identifying properties of the real-
world entities being examined or modeled by the system are
specified in a typical input message. Indeed, the complete
set of descriptive properties of entities, and the relations
among entities which will be of interest cannot be specified
at the outset, and remains a growing set during the life of

the aystem. Hence collation of new information with previously

stored data is often difficult, and can be accomplished only
in a conjectural, plausible, or probabilistic sense.

- Input messages must be treated as independent observations
of a dynamic situation, and therefore it is important to
preserve and utilize dateline, source, and temporal aspects
in the data.

- There is an essential problem in establishing the validity
of each message and stored data item. Thus, it is important
to associate ancillary information concerning the source and
credibility of all input data, and some measure of validity
to resulting conclusions.

i |
. o i
A-.L‘-ﬂlﬂdw"“ﬂmumﬂﬂ.n-mm.:‘.:‘mp.wdh:il'amu..u sl B B o R S

TR NSO WV T SRR,

it e 4, ik S kb

PN T YOS T S N

- Processing and inference rules are usually not completely
rigorous in a formal sensc, hence it is important to consider
then, and the information derived by their application, as
"belonging" to mpecific analysts, with specified areas of
applicability, and levels of validity. Furthermore these
processing and inference rules are not static, hence they
should be embodied in the data base, modifiable, and processed
by generalized routines, rather than being implicit in pro-
grammed routines where they are relatively difficult to modify,

2. INFORMATION STRUCTURES

These requirements lead to a rejuction of conventional or "pre-~
packaged" approaches to structuring information. In particular, the fixed record
customary in conventional data processing systems must be abandoned because
it is virtually impossible to pre-define a fixed set of attributes which
are appropriate for an entity of a given type. Even where this is concei:able,
the highly fragmentary nature of facts known about a particular entity would

imply a sparse occupancy ratio of data in the record, hence a poor utilizatjion
of storage. :

The major conventional data structuring strategies which have
been evolving in computer-based information processing are called:

a) hierarchie,
b) network, and
¢) relational

data base systems*. There have been commercial Data Base Management Systems
based on each of these strategies (e.g., IBM's IMS is basically hierarchic;
CODASYL's DBMS, or Honeywell's IDS, is a network system; and General Motors
RDMS 1s a relational system). Each has advantages and disadvantuges as tools
for implementing information systems, and each is most appropriate for a given
type of problem and development environment. For example, the chained (1link-
sequence) structure within the record used in some data management systems
(such as CODASYL's DBMS) was rejected because it implies a highly sequential
processing of information (i.e., along the chain), and a dedication of space
for storage of the linkages.

% CJ Date: An Introduction to Data Base Systems. Addison-Wesley, 1975

2-4

A g

it b L et B L

b el i

3
%
3
!

s Rt v A

l r'lr_ it

hailit s b Lieiibiloid

NRPLE I P 3

o oo Lo kit

BTIS solves the information structure problem by representing

an intelligencc entity as a node in a network-oriented data base. Basically,

a node is a list of attribute-name/attribute-value pairs, vhere the value may,

in general, be either a single or multiple occurrence (array), or a structured

sub-node. Thus an n-tuple (n-ary relation) is available as a special case of

an atfribute (relation) value. Furthermore, a value may be an array of

identification codes of other nodes, permirting, in effect, any node to identify

a set of nodes as members of a given velation. This permits any node to serve

as an index (inverted list) of information subject to such powerful retrieval
techniques as set intersection, union, and difference, and permits the nodes

thus inter-connected to serve as an associative network of semantic and in-
telligence information.

In effect, the STIS information structure can be viewad as

an amalgamation of the three data structuring strategies cited above. Within

the node it is hierarchic, utilizing the lack of redundance characteristic of
that strategy; it is network-oriented when viewed as multi-node system, providing
the richly inter-connected access paths needed in intelligence processing; and

it also utilizes the forma'ism of relations for internode relationships and

to provide for ease of communication with the user. (None of the commercially

available DEMS's based on the relational strategy sllows for variable (n-ary)
relations, a feature unique to STIS,)

In order to come to grips with the inherent (and unique) character-
istics of intelligence information, the designers of the STIS at FTID and AAl

have chosen a data concept and data structure distinctly different from that
employed in conventional data processing system.

The STIS structure which is used to store information for on~

line and batch users is called the Entity Node. Although the current Entity

Node handles variable and fragmentary information, it lacks a gene-sl capability
to gather, in a local physical context, sets of n-ary relationships (n-tuples)
and subentities. To accomplish chis in STIS, Iinformatfon which may be logi-
cally conceived as a single entity must be structured as separate nodes and

therefore be subject to several access operations when retrieved from second-
ary storage.

PCI TP L R LT WP Y SOV L R

:
i
i
F
3
;

The ability to retrieve information by condition is quite re-
stricted in the current ST1S, being limited to retrieval under system, user,
and AOR sets., Different information structures are used for sets and for

entitites,

The improved information structure to be introduced will re~
move these shortcomings 1n.the near-term and will be adaptable to future en=-
hancements of STIS. The current STIS {nformation structure is described in
detail In Appendix A, and the new information structure {s described in Section

[/

4. A brief description of the new information structure is plven below.

The STIS information structure is based on a network of nodes.
The node is a hierarchic data structure which brings together all properties
and relations which are asscciated with a particular concept (semantic element, or
entity). A variable forinat is employed which nermits storage to be dedicated
to only those properties of the entity which are actually known, with no
space dodicoted to "unknown" attributes. Provision is wade for multiple
source information, with multiple (and perhaps conflicting) values for a
given attiibure. Provision 1s alse made for describing a generic, or "standard",
vcrsion of ar entity as well as an arbitrary number of particular embodyments,
and "'states”, of particular entities.

Each node carries the description of a logical entiry or
event. The desc-intion consists of a variable number of properties and is
art’erarily nrsted with structure elements representing subentities and
qualifications. The data rodes are logically interlinked by attributes whici:
represent relationships between entities.

Each descriptive property consists of an attribute-name/attri-
bute-value pair. One of the major innovations to be developed for improve-
ment of STIS, is the ability of a value to be represented by a conventional
file and accessed by a conventional access method, without the user heing ex-~
plicitly aware that this is being done. This technique makes it possible to
handle large files of metric data in fixed-format records without explicitly
invoking the STIS relational mechanism at a level where a large overhead would

be {ncurred.

2-6

sk

aitt F et aadud

il R e T

£ it e i % bt

Because tha STIS entity is basically an attributes-under-entity
structure and because access to the entity netwotk is typically conditional by
subject, Area of Responsibility (AOR), and/or attribute value, index lists of
the entity network play a very important role in STIS. Indexes are basically
entities-under-attribute structures or "inverted" files, and allow conditional
access to the entity network to be accomplished directly and efficiently, with-
out the necessity of sequential search through the entity network. Whereas
STIS now uses a different information structure for the entity and for the "set"

or index, the enhanced STIS uses a common node structure.

In choosing the STIS node as the particular structure to
represent information ("f s") in the system, the designers have created an

information structure which can provide the following features and capabilities:

- efficient utilization of random access (secondary)
storage for a very large data base of upwards of
500,000 records

- accommodation of a variable set of attributes for the
entities to be described in the system

- quick retrieval of the facts known about an entity
identified by an arbitrary subset of these facts

- retrieval of all entities having an arbitrary
relationship to a given entity, or which are members
of a given set.

- easy modification of the set of facts concerning a
given entity

- ability to create and maintain a vocabulary of
terms and semantic relationships for effective repre-
sentatior. and communication of facts about entities and
their membership in conceptual categories and relations

- ability to qualify facts in a very general way,
including their temporal validity and relationship to
events, access control information, source, credibility,
and relational cperators such as "approximately," "not
equal to," etc

- ability to store general rules and potential inference
chains as well as specific facts

2=7

g syt i T B U I P B T . oo
ciF et e e e e e il S e S S AP r

IR R T e P e
2

a variety of data types, including alphnumeric, text, 3
and data (both fixed and floating-noint formats) .

an effective interface to batch mode application prcgrams

f an effective on-line communication both through a
3 generalized user interface and through special modes
provide by application programs

.- an environment for dynamic data base growth and
maintenance

controls for data access authorization and data base
protection

- capability to handle multiple values for any attribute,
and

- enhanced modes of analyst communication through textual
annotations such as warnings and comments,

2.3 SEMANTIC NETWORKS AND CURRENT RESEARCH IN KNOWLEDGE~BASED SYSTEM

Although STIS is based on proven "state-of-the-art" technology,
the enhanced STIS data structure closely resembles the data structures used in

advanced research programs in "semantic networks' and "knowledge-based" systems.
Experimental Systems which model or represent the state-of-affairs of some
real-world situation or, more precisely, a human's view of that situation,

have been reported in the artificial intelligence research literature for a
number of years*. The common thread running through these systems is that

they allow the user to freely describe and define relationship among the

entitles and objects which inhabit his "world."

One of the largest and most advanced research program in
knowledge-based systems is the Computer Based Consultant (CBC) system being :
developed at Stanford Research Institute under ARPA sponsorship. The CBC is

* A study of such systems was conducted by AAI and reported in Relational Data L éf

Study, RADC-TR-70-180, September 1970, (720263). It includes, for example, a dis- .

iussgon of Quillian's "Semantic Net" in the Teachable Language Comprehender
BBN '

designed to communicate with the user in natural language and help him perform

tasks entailling maintenance and trouble~shooting of electromechanical

equipment. The current test data base describes the structure, parts, and
maintenance of an air compressor, and can generate and execute plans for assembly
and disassembly at several levels of detail, and answer questions about the
) equipment posed by un apprentice. The system is programmed in QLISP, an extension
3 of the LISP language which runs on the PDP-10 under the TENEX operating system,

L B I I F TP P

The data base of the CBC is a semantic net whose nodes and
attributes have been divided into "partitions'" forming a partially ordered
set. The main objective of partitioning is to dcfine the scope of quantifi-
cation statements,

The enhanced STIS data structure, called the Concept Net, bears g
a close kinship to the type of semantic net used in the CBC. The Concept | ;
Net will also be partitioned. However, partitions in the ST1S data base will 3
serve additional functions. They will define sets of information which "belong")
to a particular analyst or Area of Responsibility (AOR) and which may be allocated

o S e ol s L2

to separate storage modules (i.e., disk packs). Subpartitions will also
identify sets of mutually consistent information (and, in later phases of
STIS 2, rules and coherent patterns of fact credibility).

SECTION IIT. OVERALL SYSTEM STRUCTURE

The control structure embodied in STIS can be considered under
the following headings:

(a) General Processing Flow

(k) Multi-user Considerations

(c) Recursive Processing

(d) Security Processing

(e) Systems Management Functions
3.1 GENERAL PROCESSING FLOW

The STI system can be conceived of as being coumposed of a numper
of processing levels, providing progressive interpretation, decomposition, ex-
ecution, and monitoring of user requests. BEach level provides a locus for
specialized kiads of data screening and request analysis and support. The pro-
cessing at each level can be modified, augmented, or replaced with minimum effect
on other levels. The levels and their relationships are indicated in Figure 3-1.

it i it S i s A

B A R IRNINOR b2 ¥ SRR

i
o
B
E
A
E:
R
#
A
o

i

PR e

K e i S e e S

BATCH USER
ON-LINE USER APPLICATION
_ PROGRAM
I DIRECTORY T
USER COMMANDS PROCRAM CALLS
Y v —
BATCH
INTERACTIVE | _ ol DIRECTOR Lo __ USER L1NKAGE
INTERFACE : PRICES0R INTERFACE MODULE
H A T
)
FULLY-PARAMETERIZED ' FULLY-PARAMETERIZED
REQUESTS : REQUESTS
V L N4
REQUEST DECOMPOSITLON PROCESSOR
T] ! |] " "
SYSTEM | | | ! “5{,‘}{5"
MANAGEMENT “CREATE" | ""UPDATE" L
CALLS | CALLS | CALLS
b ! | RETRIEVAL |€> DzDUCTION
| ' wyapuet ANALYZER | _,| PROCESSOR
' | cAaLLs | i
i) t '
| | | i
U i | I SEARCH
| PROCESSOR
| | I i
| T
;! b | INTERSECT SIMPLE
CALLS RETRIEVAL CALLS
| ¥ v v 4 v)
CONCEPT
gﬁgg‘é’;@gn ez ~ ol NODE PROCESSOR NET
[) []
| ALLOCATE/ ERE?% ;, TERMINATE SEQUEN-
DEALLOCATE CALLS TIAL I/0
| REPLACE/
CALLS CHLLS) CALLS
v \l/ ¥ v }
]
DIRECT ACCESS STORAGE MANAGER |
] } |
DIRECT ACCESS SEQUENTIAL !
1/0 CALLS 1/0 CALLS]
v \ ¥

ON-LTHE

STORAGE

OPERATING SYSTEM

Figure 3-1 STIS Overall Flow and Processing Levels

‘
. 3-2
! .

i

g,

4

s

AR e KT 1 b ST bt wperas o e

TS YT . S . e e
LRSS LHARR I G A F L s e e e S N SRR

b e e et 4 e e

SRR R RSO) e

L A ahial WA

L O

o

ki SRS,

SR R o e

T XS OTE R R g s F N, i At 8 £ VR 27 1 T ARG & ek e menn g e mates o e s or A et e et e Teae et LS et R YT A OO S s g e

Although for convenience a processor is shown at each level, the levels should E
be thought of as functions, which bear no necessary relationship with modules :

of rhe system. _ §

3.1.1 User Interfaces

. The processing of user calls first takes place at the user inter-
face. Included among the functions of user interface processing are the follow-

. i verod BE EeS L
i e oh SE Bl
EPRTS AT LG (L Fae S B =

- ' (1) to insure information base security and integrity

by requiring and checking password and access rights
information

] (2) to execute system~ or user-specified special pro-
E RS _ cessing or contingency routines under appropriate
- conditions

(3) to convert data elements from one form to another
(this includes term encoding and decoding)

(4) to retain, for each user, inter-call parameters
and status information

(5) to amplify (or more fully specify) user calls
through the incorporation of previously developed
or specified informaiton

o P S B i S e e i - o i S gt M e et A Y E

(6) to convert calls to a common language or form for
processing at the next level

o g it

{(7) to assign, on initial access by a user, a work area
to be used by STIS for data base manipuletion.

Sl 3

In general, error conditions occurring at lower levels in the STIS
system are passed back up to the user interface processors. Subsequent pro-
cessing depends on the nature of the contingency and on whether a batch or on-

line user is involved.

oo il A Tl 2 22l B ko

There are two main types of user interface processing: batch

and on-line.
3.1.1.1 Batch

Batch user interface processing is responsible for.interfacing

user programs with the STI system. In the current version of STIS, and prob-
ably in future versions, this interface processing has two aspects:

3-3

AR ARG P S 1 e

e

DR R R R 2 AT L AR S e
P . ..:Z..-—m o . -

(1) a preprocessing phase (currently called Phase I)

(2) 1interaction with the data base access calls made :

by the user program (currently called Phase II) o

Phase I generates the necessary linkage modules for Phase II

operation by processing user subroutine calls that identify data base items
of interest, buffer sizes, and speciél processing and contingency routines. ‘
Once generated by Phase I operation, the linkage modules are incorporated é
into the user program and used repetitively, until changed conditions re- E
quire a new Phase I generation. :

User Phase II programs interact with the STI system via the
linkage modules. In addition to providing storage for data elements and para-
meters, these modules establish the communication path with the interfﬁcg
modules that process the uses calls under guidance of those specifications

made during Phase I operation.

Batch user interface processing is currently oriented toward
programs written in FORTRAN. However, prograws written in other languages
are accommodated through interface programs that simulate the FORTRAN call
interface.

3.1.1.2 On-Line

The on-line user interface translates commands expressed in an
on-line interactive language into requests suitable for processing at the'next
level. As users sign on and are accepted by the system, they are ailocated
suitable linkage modules to allow for communication with the STIS information
base facilities. As with batch processing, these modules include space for
data items and parameters. When a user signs off, or is otherwise terminated,

the space containing his linkage modules is released

3.1.2 Request Decomposition

Aot ——o

Fully parameterized requests developed as a result of user inter-
face processing are not necessarily executable as single requests in their
current form, but may require the execution of a number of simpler requests; or

a request may imply the execution of other requests necessary ior successful

3-4

completion. For example, an update request may imply one or more "retrieval"
requests in order to locate and access the data element(s) to be updated. Or,
an update operation may also imply a series of lower-level retrieve and update
requests in order to maintain any optional indexes associated with the updated
data element(s). In general, the request decomposition level of processing
breaks down complex requests into individual calls process:able by lower levels
and insures that any implied requests are executed. All data access requests
are executed in terms of lower level "create", "update", "retrieve" and "wrap-
up" type requests. Service requests for STI system management functioné are
also handled.

The request decomposition level is responsible for handling any
complexities inherent in create or update requests. Retrieval requests, be-
cause of the wide range of potential modes of analysis, are handled by a

separate level.

3.1.3 Retrieval Processing

Retrieve~type calls transmitted by the request decomposition

level are analyzed to determine processing requirements. Simple retrieve
("gé:"-type) calls are passed on without further processing to the next level.

In advanced versions of STIS, retrieval operations will be en-
hanced by two additional processors: the search processor and the deduction

processor.

If exy” criteria are to be applied directly in the selection
of data, the search processor is called. If rules are available for applica-

tion to the current request, the deduction processor is executed.

The search processor itself can make use of intersection pro-
cesses and ultimately generates simple retrieval calls. The search processor
can algso act as an agent for the deduction processor in performing searches

local to deduction processing.

3.1.4 Node Processing

At the node processing level, nodes in the Concept net and
associated information in the form of list elements, are created, maintained

3-5

ESESE -3

i Sl BL B]l T

&
.
L.
&
&
i

U TR e

*7

TS T,

e aa

T

-_;:..-_i.._u_h..m;::x.:.....: SSRGS TN o

S A SRR s

and retrieved. Some node structures contain factual information; others con-
tain semantic information. All nodes, regardless of role, have a uniform
structure and are serviced by the same functions. The aystem nod functions

are described in Appendix D.

Node processing is concerned with the packing of information
into blocks, the unpacking of information from blocks, and the -)cating, moving
or copying of information Although it detertines the need for direct access
1/0 activity and for the allocation and deallocation of mass storage segments,
it does not actually perform these functions itself but gets them accomplished

through calls on the direct access storage manager.

Sometimes the information assoclated with a node is a collection

of records on an external file. The accessing of such information requires the

node processor to make sequential-type I/0 calls to the host operating system.

The value associated with a given occurrence of an attribute can

be specified as being determined by the execution of a pre-defined process which

is called by the node processor,

3.1.5 Direct Access Storage Management

The direct access storage manager responds to direct access 1/0
requests and to requests for the allocation or deallocation of strings of mass

storage segments. All requests are assoclated with a partition-determining

reference go that information can be physically segregated, (?hysical parti-

tioning is discussed in Section 4.7.)

The storage manager requires terminate calls from higher level
processors in order to know when a particular physical partition is to be
"closed". A closed resident partition is opened on the first reference to 1it.

1/0 functions associated with external storage management are
delegated to the Direct Access Storage Manager modules. "Put Node" and "Get
Node" functions within the Node Procesgor perform compression/decompression
operations, and request I/0 functions by generalized calls on the Direct Access

£ gt

SRR -

o

= U ST AN 4 W < ot e, s e g

(N i -4 U AUHS LT

w3 TRIEAT

stotﬁge managur. External storage to hold node structures will be assigned in
bloéﬁs consisting of a standard number of consecutive segments (choice of the
standard number depends on analysis of typical node sizes and the nature of

the physical mass storage equipment chosen). If a particular node structure
cannot be contained within a standard block, inother standard block is reserved
and a pointer to the additonal block is placed at the end of the preceding block.

Buffer space in core to hold the complete standard block within
the node processor need not be reserved. The nature of the I/0 commands, permits
the working buffer within the node processor to be as small as one segment size.

With respect to 1/0 operations, the storage manager, taking ad-
vantage of information supplied in the I/0 requests, makes use of a separate
buffering system in an attempt to minimize the number of mass storage I/0 calls

(and therefore reduce latency time) by reading or writing, with ome call, strings

of consecutive mass storage segments, rather than single segments. The size

of the buffer pool can be independently varied, without affecting node process-
ing.
Allocation of multi-segment strings takes advantage, where

possible, of the track orientation of mass storage devices so as to reduce
head movement time when the future corresponding 1/0 operations take place.

3.1.6 Example of User Request Processing

Let us examine the way in which a typical user reqiest would be
processed in STIS. We will assume that the request occurs in the form of a
command from an on-line interactive user who has already completed the sign-
on procedure, and has been executing a number of retrieval and update commands

on various network entities. The flow of processing is indicated in Figure 3-2.

The user command "WHAT IS RANGE OF AARDVARK" is responded to by
the user interface processing modules. The request is examined for syntactic
correctness and completeness. The process of validation of the request (e.8.,
the determination that "RANGE" is, in fact, the name of an attribute and that
WAARDVARK" is an entity name) is aided by the availability of suitable directory
services. Directory services would also be available for the encoding of var-
iable length external terms, such as AARDVARK, into fixed length internal term

codes.
3-7

=
3
G
%
;

e e A

XOTE RN N KT~ NN TR

BTN T V7PN PIRTN I SR

T SRR P e T

%
4
%
'a'.
b

| |
| VALIDATE AND| GET RANGE | EDIT AND |

REFORMULATE or oUTPUT |
| REQUEST | “AARDVARK" | REPLY |

EST DECOHPOSITION PROCESSOR |

'— mp—— =y A ——— A——— - —l
| ‘a'::?ngr LOCATE AND |SEARCH FOR | SEARCH FOR
| WODE LOAD ENTITY |ATTRIBUTE | VALUE OF |
1} 1]
. PROCESSING | TMRDVARK" |URANGE RANGE
/| wEmIEVAL lé.ﬂ.ﬂ‘\!-_!"" \\y A
! | ! ! |
| | !
I = ' -
/ '_ngcu& PROCE, v —_ e | — ___l
/ | | |
I . ' | ; |
' 4 L f '
, —— — = e — N e e e came o
~ A Y
!/ N ~
WODE PROCESSOR N N
UEST TORE |UPDATE FREE STEP THRO! TEP THROUGH
| [sTORAGE bATE [NoDE/ MAIN NODE UNTIL INFO UNTIL ||
LOCATIONSEGMENTSLOCATION | MEMORY RANGE INFO. ALIFIED
' !DE} FOUND | VALUE FOUND | |
DIRECT ACCESS STORAGE MANAGER __ e —
' TE by d
SEGMENT SEGMENT

Figure 3-2 User Request Processing Example

bl s o, ot Bl ok il R s S e o gt 2 e it

W

After validation, the user command is reformulated into an in-
ternal form (e.g., term codes replace names) and a call is made to the next
lsvel.

Before processing the current call, the request decomposition

processor must first ensure the completion of any processing on a previously-

% ,
E accessed node which may have been suspending pending subsequent user action, ;
E In the present case, let's assume that, before the current call, the user had
f created some other node to which he then appended a series of attribute/value ?
% pairs. After each update, the processing state was left in a posture to re-

é ceive more updates for that node. User reference i{n the current call to a

1 different node now requires that any processing asscciated with the created

% node (the currently resident node) be completed. As its first step, then,

: in responding to the current call, the request decomposition level directs

. the node processor to wind up processing on the currently resident node.

§ The node processor must perform at least four operations to

% complete processing on the current node. Since it must output the created

§ node to permanent storage, it asks the direct access storage manager to allo-~

é cate for this purpose the required number of mass storage segments. It then

% directs the storage manager to write the node data to the designated segments.

The index, or location table, relating node identification to storage location
is now updated. The windup operation is completed by making available for use
all main memory areas that had been assigned to the processing of the created
node.

When control returns, the request decomposition processor issues
a call to locate and load (i.e., retrieve and make resident) the node repre-
senting the entity AARDVARK. All retrieve calls are issued to the retrieval

analyzer. In this case, the retrieval analyzer determines that the request
can be pamsed through without further processing to the search processor, which
in turn decides that it is a simple retrieval request and relays it to the node

processor.

T AR SRS A Al E T e (SR i v v e e TH 7 ST e S0 ey < e [e e ciewete ceecaeanaea

A
T

Ko COL g T s e

B
n.
B
Py
I
Z

R A

The node processor determines the storage location of the de-

sired node by searching the node/storage block index. If the search has been

successful, it then requests the storage manager to read into main memory the

initial node data segment and gives up control with an indication of success-

ful completion. Control eventually returns to the request decomposition level,

Now assured that the node representing AARDVARK is resident, the

request decomposition processor issues a call to the retrieval andly:er to lo-

cate the KANGE attribute for the resident node. Without further processing,

the retrieval analyzer relays the call to the search processor, which deter-
mines that it is a simple retrieval request and passes it immediately to the

node processor,

The node processor steps through the node data segments (issuing

read requests to the storage manager for more cdata segments, as required) un-

til it reaches the information packet for the RANGE attribute. Control returns

to the request decomposition level, with an indication that the RANGE attribute

haus been located. (If node data had been exhausted before locating the RANGE

attribute information, a “no find" indication would have been returned.)

The request decomposition processor now issues a call to re-

trieve the value for the located attribute. This simple retrieve call is passed

through to the node processor, which steps through the attribute data until the

properly qualified value is found and returned. (The method for determining

the qualified value depends on whether the qualification is global for the node

or specific to the value.)

After successful retrieval of the value, the request decomposition

processor returns the value, with a successful termination code, to the on-

line user iuterface., Here, the user interface, aware of the user's output re-

quirements, formulates a reply message and triasmits it to the user terminal.

3-10

Goin s . .) . . o i
e it o st i ool i s it

o e AN bk o s

7. s a3t i R

W i,

WL S R N

YRl

sorrgeat b

3.2 MULTI-USER CONSIDERATIONS

Multi-user access to a single resident copy of STIS will be pro-
vided,

The exact organization of STIS so that it can serve "concurrently”
more than one user depenrds on a large number of factors,'many of which are as

yet undetermined. These factors include:

(a) Physical Equipment and Operating System
(b) Programming Language
(c) Parellelism of STIS functions

3. 2.1 Physical Equipment and Operating System

Basic to the organization of STIS for multi-user access is the
nature of the physical equipment configuration and of the operating system
services which support its use. These factors determine the way in which
required system operations and data can be distributed among the hardware
facilities, and define opportunities for parallel operation and for queued multi-

user access,

For example, a small network of hardware processors and data
storage devices may be desirable, in which one hardware subsystem plays the
role of terminal input processor (including interactive communicetion with
the user), another subsystem actually executes data update/retrieval functions,
and a third subsystem serves a buffering/queuing function between the other

subsystems.

Operating system services with respect to the registration, in-
terlocking, queueing, and conditional activation of activities and subactivities
will obviously play a crucial role in the design of STIS multi-user control.

3-11

oA S A S R PR T

s iRy |

PEICIE BETIE (4 FPORES IR i,

B

hdiiiiaisti

el

g
b
I3
F
&
g
3
&
¥
]
%
B

i

3.2.2 Progremming Langusge

The programming language used for implementation also affects
the multi-user control aspects of system organization. The language, chosen
for ease of implementation and/or to enhance transportability, may not, for
exaxple, provide for reuntrant code. In the absence of reentrant code, con-
current users must be queued up to use the services of singla copy portions
of the system.

Whether or not reentrant code is used, a considerable amount of
main memory storage space must be associated with each active user. Most of
this space is used to hold data segments, data pointers and other paraneters
required for continuity between calls and to reduce or eliminate reaccess of
already-accessed information. The chosen implomentation language system may
allow STIS to directly access this individual user space (treat it .s its
own space) or it may require that the contents of user space be moved into and
out of STIS's own space for each vser call.

3.2.3 Parallelism of STIS Functions

System organization for multi-user processing is affected by

natural or induced parallism (or lack thereof) in the execution of STIS functions.

Parallism here refers to:

(a) the degree to which subactivities required to
- carry out a particular user request can be
executed independently and asynchronously with
respect to each other, or

(b) the degree to which the subactivities carrying out
a request for a particular user can be overlapped
with those subactivities serving a request for a
different user. For example, the updating of iu-
dexes as a result of an update operation by
usar A can be overlapped with the initiation of
an update operation of a different data item by
user B.

LD LS S e e e e 4 e A Ve Vi TSI S ST 0 TU IS 1+ ke T e et ke e e Tt T s

3.3 RECURSIVE PROCESSING

While many of the control requirements of STIS are similar to
those of other systems, STIS differs most from these systems in its require-
ment for extensive recursive processing. That is, recursive processing in the
execution of data access operations ls a natural and primary component of STIS.
Therefore, a considerable portion of the STIS design effort is concerned with
the push&oun/popup stacking of control iuformation and data associated with

such internal recursion.

A requirement may sxist to cope with externsl recursion, i.s.,
recursion with respect to the entire STIS systum, where iAcall to STIS re-
sulte in a call to a non-STIS process that in turn results in a call to STIS,
etc. (see Pigure 3-3a). This requirement can be met in ovne of at least two
ways:

(a) On a call from STIS to an external processor or utility
that may result in a subsequent call to STIS, a new
user identification is generated (e.g., by a suffix on
the original identification) to be used by the external
processor in its STIS calls. STIS treatas the first
call from the external processor as the initial call
for a new user, and assigns a separate work area to
be used by STIS. (Of course, this "new" user nmust
satisfy the same security and access checks as the
original user.)

(b) Before executing a call to an external processor or
utility that may, in turn, call STIS, STIS records
the fact that the system is in a potential reentry
state ¥or that particular user. If such a reentry
to STIS occurs, it is recognized, and appropriate
measures are taken to allow the user's current work
area to be uged in satisfying the request. In either
casc, a stacking mechanism is required to retain
certain information, e.g., exit address from STIS
(See Figure 3-3b).

Non-STIS utilities or external processors that themselves are

subject to recursion during this process must contain their own stacking : :ch-

anisms.

" A7 o b TR o

ke e v e e

Yy b

P I AR A A R S e

USER

ca, —3

8TIS

EXTERNAL
FUNCTION "

<
[I

UTILITY

Pigure 3-3(a) External Recursion

USER
CALL

STIS

(USER = SMITH)

BXTERNAL
FUNCTION

"SER" CALL
(USER = SMITH-1)
¥

sTIS

EXTERNAL
UTILITY

{
"USER" CALL
(USER = $ll‘1'll-2)

STIS

Figure 3-3(b) Multi-Level Recuruion and Stacking

3-14

A e R S

PUSH-DOWN
STACK

N V]

SMITH-1
SAVED INFORMATION
LOCATIONS

-SMITH
SAVED INFORMATION
LOCATIONS

Lot o B

e 5 ¢k R T AR

S i i -;i"m;" i g 5L St ‘;.:zr,- .\ -._

e S R T T RS T SR R Y

3.4 SECURITY PROCESSING

Socurt;y processing within STIS is concerned with the protection
of the data base from illegitimate scrutiny and from uncontrolled modification
£ or destruction. As in all such systems, such security processing functions at :
; s.veral levels. E I

At the outermost level, only certain terminals, or terminal groups,
are permitted access to STIS, and the functions allowable to any particular ter-
g ; minal are strictly defined by the systems manager. At the next level, user pass-
g % worda are associated with a particular Area of Responsibility (AOR), so that the
A AOR code, which is the key to further access, can only be invoked by legitimate -7
users. At the next ievel, the AOR code, through restriction to a particular é é
partition and/or fact qualification, limits access to certain data, and also :

PRS2 SO T IORCE IR VR RS

Ty

protects that data from unpermitted access by other AOR's. ; E

All such security procedures are governed by system tables
accessible only to the system manager, and by the mathods of fact qualifica-
tion built into the system.

3.3 SYSTEMS MANAGEMENT FUNCTIONS ;
3

Systems management capabilities in STIS are intended to serve : g

-

two main functions: r

(a) Supervisory control of user access criteria

(b) Overall control of data base distribution and
availability

3.5.1 User Access

Functions are provided to the systems manager £o allow for the
entry, modification and deletion of entries in user/terminal/password/access 43
righté tables in STIS. The systems manager can add or delete terminzls or i
terminal groups, or change the access privileges of existing terminals. He
can add or delete specific users or change their access rights. The systems
. manuger can display or print any information appearing in such systems tables,
including user statistics, if they are maintained.

3-15

o e R e P e eomn et o om s .

ASRESE R - AR

St

b P ARETL VERe e

it R At 2 R DR

sap s mArA Sl LAl DN LT AN T TR Y

iR R RIER TR

AX s R

B 3,5.2 Data Base Distribution

% ' " The systems manager has facilities to allow for the definition
é of data base partitions, the movemert of ﬁaftitibns on and off line, aﬁd the

%' temporary disabling of partition access (see Section 4.7). He maintains -

i the configuration of available partitions based on normal usage requirements,
g and has the means to create spegigl.configurations to meet temporary emergency
B needs. '

: 3-16

o P e

B2

IR DSTATAS ¢ ARk datla T TEORATR NG M AL S s s Sy AT

st ot m

AN SRR S s L !;:?{;;:\?,x

SECTION IV. THE CONCEPT NET -- A
NEW INFORMATION STRUCTURE FOR STIS

4.1 A MODEL FOR INTELLIGENCE INFOPMATION ; §

The Concept Net represents the intelligence analysts' collective %
view of the current state-of-affairs in the real world. It is populated with. :
"facts" distilled by the analyst from observations, reports of observations, and _
agssertions concerning his sphere of interest in that world. Since it is a dy- f ¥
namic world and viewed, as it were, "through a glass, darkly", each fact has | _
associated with it an open-ended set of qualifying statements which include, ; 3
typically. the source (or message) from which it was derived, its interval of M ;
validity (in time and/or space), the date of observation or entry into the :

system, the credibility (probabilistic truth velue) assigned by the analyst,
and the time-constant (or "half-life") which characterizes the volatility of
the information. Because virtually all intelligence information is both of

4-1

questionable veracity and subject to change, we view the original credibility
level as being modulated by an exponentially decaying weighting function
whose time constant is characteristic of the volatility of the type of infor-

TR S RN TR T T R R

mation in question, For example, the place of employment of an individual
may have a half-life of four years. That ias, if it was reported in 1970 that
George Murphy worked for RCA, and this "fact" was accepted with a credibility

S E

of 0.8, then in 1974, in the absence of any new data concerning Mr. Murphy,

the credibility of that fact would be 0.4,

Another characteristic of intelligence information is that there
may be conflicting reports concerning the facts about a given entity and/or
legitimately differing views among one or more analysts as to what the facts
may be, or, for that matter, more than one value for a given attribute may
be valid in a given time interval. (The case may be that Mr. Murphy, while
working for RCA, moonlights as an instructor for Rutgers University so that
apparently conflicting reports on Mr. Murphy's occupation may be reconcilable,
and coexist with a high credibility. On the other hand, the veport of Mr.Murphy's
employment at Rutgers may be a deliberate plant or '"cover" to obscure the fact
that he works for RCA.) For this reason, and to provide for simultaneous use

of a common body of information among many analysts, the analyst or organization

B

pit
7
4
k]
3
1
3

3

which is responsible for a given "fact' is recorded as part of the information

qualifying that fact.

4.2 THE CONCEPT NODE

The Concept Net is organized as a network of nodes, each of which
represents a concept (such as an individual or other entity) which is of interest

to the analyst. The node in turn contains a seot of facts (properties) made up

of attribute names and qualified values, which describe the entity and its re- 3
lationsh!ps to other entities. These facts are derived from (and tied to) ; é

SR

messages concerning observations of the real-world. Other nodes may represent :
concepts which exist independently of messages (or observations of the world) i :é
such as semantic concepts representing the attributes and values themselves,
as well as their inter-relationships. (Value nodes will also be related to
the entities which are described by (or use) those values, providing a cross-
index to the Entity Net.)

BRS¢ G e s el

T TN AR Y AT e’

4-2

S Sl T s e O etk A
R

D T o 0 0 S U A SO 2 e Bt e A b e B 100 et i i o T AW LT SR DL R R T

S LNttt ol R

. Each node in the Concept Net comprises an open-ended set of
properties of the concept or real-world entity which is represented by the
node. A property is an attribute-name/attribute-value pair which may, in

§ o b i i

turn, be qualified by an arbitrary list of properties. Attributes and values
(also terms and words) are themselves represented by nodes in .the Concept Net.

An entity node may stand for a real-world individual, unit, facility, weapon,
event, etc. A node may also represent a state .r sub-entity attached to a

parent node. For example, a parent node may represent a generic class of
weapons, such as the Minuteman missile, while a sub-node may represent a specific
example of that missile installed at a particular site, with a particular target,

etc.

When a given entity or other concept node (the aourqe) bears
some relationship to another concept node (the target), that relationship is
represented in what is called an entity-relational attribute in the source node.
Its value is the identifier (Node #) of the target node. 1In order to provide

s PSR AL o oo - Rt i i i i S RIS

complete cross-referencing, there will be defined for each relational attribute .
R (using its Attribute Node in the Semantic Net) an inverse relation R-l 80 ? g
that if entity a bears relation R to entity b "R(a b)" then entity b bears re-
lationship B-l to entity a "R'l(b a)". For example, if the Pershing Missile

has a test site at White Sands "Has Test-site (Pershing Missile, White Sands)",
then White Sands 1s the test site of the Pershing Missile "Is test-site (White

Sands, Pershing Missile)" where "Inverse (has test site, is test site)"

and "Inverse (is test site, has test site)". 1In the above example, the first
two statements would be in the Entity Net (Pershing Missile and White Sands

nodes, respectively) while the latter two statements would be in the Semantic ‘ E
Net (Has _test site and Is test site nodes, respectively). '

In addition to entity-relational attributes, an entity may

pnssess attributes whose values are names, rumbers, or descriptive terms

which are not other entities. These values may be represented by nodes in

the Semantic Net (rather than the Entity Net) which in turn cross reference,

A

as entity (or iwicx) lists, those entities which use them. Hence, the disg~
tinction betweun cntity-relational and non-entity-relational attributes has
little operational significande for search strategies in the system. In
either case, the entities possessing a given property are accessible through
the cross-referencing (indexing) feéture, whether it be the node representing
the target of an entity-relational attribute or the node (in the Semantic Net)
representing the value of a non-éntity-relational attribute. The entity list
under the value node can be considered the inverse of the non-entity relational
attribute in the entity node in which it occurs. The Concept Net provides for
both an attributes-under-entity (normal file) and an entities-under-attribute
(inverted file) point of view. This redundancy of access path ~-- sacrificing
space for time -- is built by the system, under control of the Data Base
Administrator (who may limit this redundancy selectively) and need not concern

the analyst who chooses to limit his role to that of an information consumer.

4.3 SUB-NODES -- COMPOSITE ATTRIBUTES AND N-TUPLES

There will be instances in the Concept Net when it will be use-
ful to consider one node as subordinate to another in a hierarchic sense (rather
than the non~hierarchic, or coordinate, relationship between two nodes which
are joined by an entity-relational attribute). When this subordinate relation-
ship is defined, it implies the desirability to store the subordinate node so
that it is physically accessible with the parent node, reflecting logical de-
pendency and/or predictable access patterns. When this occurs, the subordinate

node is called a sub-node of the parent, or master, node.

The sub-node relationship can arise in several contexts. In
addition to the close master/slave relationship that may axist between two
entities, mentioned above, a subnode may represent what is called a composite
attribute, or n-tuple. A composite attribute is an attribute comprising a
set (n-tuple) of simpler attributes. For example, position may be defined as
a composite attribute comprising the simple attributes latitude and longitude,

or address comprising number, street, city, and state. Composite attributes

provide for generic terms which cdnveniently reference and retrieve a set of
specific information. The analyst or programmer who is concerned about the
structure of the Concept Net or is developing appropriate terminology for
semantic concepts may work with the Data Base Administrator to define composite

attributes or other sub-ncde relationships.

4=4

[ERURTURT SIS Cr ER kS

it B

v

Z
¥
¥
H
1
¢

4.4 FORMAL DESCRIPTION OF THE CONCEPT NODE

Each Concept Node in the STIS Concept Net is represented by
the same formal structure, called a description list. Entity Nodes, Attribute
Nodes, and Value Nodes are all instances of Concept Nodes in STIS. Each Con-
cept Code (or Node #) is the name of a description list. (The Node # will be
used as a key to obtain the description list from permanent storage.) Sub-
nodes are also represented by description lists but they do not have separate
Concept Codes associat - with them since they are stored with the parent node.
A composite value (the valuc of a compcsite attribute) is a special case of a
sub-node in which the attributes have been predefined.

A Concept Node in STIS is a description list. The formal syn-
tax of a description list is specified in Table 4-1. Lower case letters repre-

sent syntactic variables and upper case letters represent concept codes or
other terminal atomic symblols.

There is no syntactic distinction between brackets and paren-
theses. Note that a description list is defined recursively so that there

is no constraint on the nesting of subnodes representing qualifiers or com-
posite values.

4.5 THE SEMANTIC NET

The Semantic Net is that subset of the Concept Net comprising
Attribute and Value Nodes. All attributes and values are represented by nodes
in the Semantic Net. (In the case of numeric values, the Value Node represents
an interval on a lograrithmic or linear scale.) When they occur in the descrip-
tion list of a node in the Entity Net, attributes and non-numeric values are

represented by their Concept Codes (Node Numbers).

s

it b il

R

T PN) N QEMTI B 15 e -

St ST

it

T B LT

TABLE 4-1

- NODE STRUCTURE SPECIFICATION

The convention used here for syntax specification uses the following

Note:
metalinguistic symbols:
+ is defined as, or can be replaced by
\) one or more occurrences of the expression enclosed
by the lower half-bracket
| choice symbol
{) optional (at most one occurrence) of the expression
enclosed by the upper half-brackets
Syntax
deslist « [@ (prop))
prop « (A val)
val « Vv | [\val;] | (val qual) | deslist
qual « [* \prop,)
Semantics

description list

deslist
prop = property
val = wvalue
A = Attribute Code (i.e., Node #)

V = Value Code (i.e., Node #), numeral, or string
representing a terminal value.

qual = qualification list

[V ...)] = array (list) value

(val qual) = a qualified value; qual is the subnode which
qualifies val

(A deslist) = a composite property; A is the composite attribute
and deslist is the sub-node representing the composite

value.

4-6

o AN e s T e

et e 1 e 1

3
é
Ei
5]
i
a
#

R R Tk M

TABLE 4-1 (Continued)

Examples

G

The following description list examples represent Entity Nodes.
In the interest of clarity, attribute and value names are used rather than
Node Numbers.

#1 = [@(Name [@(First Jerry) (Last Sable)]) (Age (45 [*(Source Est)

(Accuracy * 3) (Validity-interval 1975)]))

(Works-at #2)]

#2/% [@(Name AAI) (Fac-type Consultant-org) (Employs [#1 #3 #4])
(Location ([Phila Wash] [*(Cred 0.90}))]

#3 = ([@(Name Schernecke) (Works-at #2)] [*(AOR Consultants)])

" = ([@(Name McCrea) (Works-at(#2[*(Validity-interval [1963 1975})]))]

[*(AOR Consultants)])

4.5.1 Attribute Nodes

The description of any concept consists of a list of properties,
i.e., attribute name/value pairs. Since attributes are concepts themselves,
they are represented by nodes in the Semantic Net subset of the Concept Net.
Some of the attributes which can be expected to be used in the description list
of an Attribute Node are listed below. (It should be noted that as in all nodes,
these attributes, except when they are self-referencing, are represented by the
Node Codes of Attribute Nodes. Their values are represented either by Node

Codes or by Term Codes.)

Attribute name

Synonyms

narrower attributes (for composite attributes)

Broader attributes (for components of composite attributes)
Inverse attribute (for Entity Relational attributes)

Values (the list of values for this attribute, limited to the
first domain element in the case of Entity Relational
attributes)

Attribute Data Information -- the value of this attribute is
a pointer to the Attribute Data Record in a Direct
Access file outside of the Concept Net. The ADR de-
fines the format, precision, units, and "owner" of
the attribute. This is an example of a special attri-
bute, or Process Hook, which invokes an outside routine
to compute a complex value, using the nominal attribute
value as a parameter.

Other Attribute properties, such as transitivity, reflexivity,
and symmetry which may exist will also be represented in the property list of
the Attribute Node.

4.5.2 Value Nodes

Each non-numeric value, or range of numeric values, which can

serve as a retrieval condition will be represented as a Value Node in the

4-8

ot i S Y S E b it S R

SRR

=
.3

2ol eda? e, 0 MM 2 i

IR 3

ka1

i 22 g AR w2l L

Concept Net. When indicated by the analyst, or Data Administrator, the Value
Node will serve as the head of an index to information in the Entity Net.
This provides support for the three basic strategies for retrieving informa-
tion about intelligence entities: |

(1) through the context of an explicitly identified
entity, including its association with other
entities via relational attributes,

E
+

(2) through a retrieval criterion made up of a set
of specified properties which the entity should
possess, and

A (3) through properties which are plausible for the
-k entity because they can be inferred from general-
: irzed rules stored in the Concept Net.

Some of the attributes which can be expected to be used in the
description list of a Value Node are listed below:

Value name

Synonyms

Narrower values (or subsets)

Broader values (or supersets)

Attribute (the attribute that has this node as a value, the in-
verse of the Values attribute in the Attribute Node)

Eantities (the entities which have this node as a value. This

serves as the index list for those entities.)

4.6. THE ENTITY NET

Information about any incelligence entity of concern to the
analyst can be stored in STIS by creating an Entity Node to represent it in
the Concept Net. Once the node is created, the description of the entity is
storad as a list of properties. Internally, the entity is known by ita Node
Number, which serves as its retrieval key from permanent storage, as is the

4-9

e RATETR AR

§
3
1
¥
§

JEA e S R s o

P .
" oo s a kb e
Gl cidirioscioodeet 00 v e I SRR+ -4

M g e

SN e Ak

ettt G, Sttees et

nbda

SRR

(This page intentionally left blank)

B STV 0 e

case for any node in the Concept Net. In its simplest form, the entity
nuaber n is represented by a description list such as:

ne [@(Aa) (Bb) (Cc) ...]

dhctsoot v 5 it Aidenion o

The interpretation is that the entity represented by node n has all of the" o
proparties listed. That is, in conventional relational or logical format, é

the attributas A, B, C, ... are binary relations connecting the entity and
e value and the [ollowing conjunction holds:

é A(n,a) A B(n,b) A C(n,c) A ...

T SR

Thus, in the Entity Net, information is collected in an "attri-
butes~under-entity" format, while in the Semantic Net, one may say that the
same information appears in an "entities-under-attribute" format. As will be

discussed below, the simple description list form can be generalized in a : 5
number of important ways.

LU Tddmtlegieln L

4.6.1 Entity Relations

B e A i

The simplest relations are attributes which take scalar values,
either literal or numeric, such as Name(n,Atlas) and Weight(n,150). However,
values are generalized to permit arrays, such as Name(n,[Atlas,M12]) and
Location(n, [ND,FL)). Assuming Node n is #10, this would appear in description

i s did T i

list fpormat as: é
#10 = [@(Name [Atlas M12]) (Weight 150) (Location [ND FL]))] %
Entity-relational attributes name other Entity Nodes as values. ;% ?

If entities #11 and #12 were test sites for #10, then the update command "Add 3 é

Test-Site (#10, [#11, #12])" would add the property (Test-Site [#11 #12]) to a _‘ﬁ

the description list for #10.

By permitting a value to be represented by a description list,
or subnode, the descriptive power of tha system is augmented in a number of
ways., The simplest instance of this, the composite attribute, was described
in Section 3. Othcr cases will be discussed in the following paragraphs.

P
e
2

4.6,2 Ceneric Entities

vl iz

s It is often useful to describe an object as a generic type for
f f which, in the real world, there exisztas a number of specific occurrences. This
can be done by creating a node, called a generic entity, which represents the

‘o common characteristics for these objects. This can then be supplemented by a
P ncde for each individual object for which specific information is required but
A which 1is not characteristic of the class as & whole. For example, suppose we

have the missile type Atlas represented by: i

#20 = [@(System ICBM) (Name Atlas) (Weight 150)

(Accuracy 3) (Instances [#21 #22 #23)))

E Nodes #21, #22, and #23 then are specific entitles whose general characteristics
are given in node #20 and therefore may be inferred by reference and need not
be explicitly repeated. Each instance will reference the generic entity and

give only unique characteristics, such as:

#21 = [@(Location ND) (Target #31) (Serial 1234) (Generic-entity #20))

R

Note that the attributes "Instances" and "Generic-entity" are a converse pair.

R R P T T Y W I

4,6.3 Entity States

It is often necessary to track changes in a given set of proper-
ties of a specific object. To do this, subnodes called "states" are created.

The relationship between a specific entity and a state of that entity is paral-
lel to that between a generic entity and a specific entity. That is, only pro-
perties whose ralues change from one state to the next need be recorded. In-
varient properties are given in the parent node. For example, suppose a Polaris

4-12

IS T

- e

o dTFER

type submarine is being tracked. Intermittent reports of its location may be
given in state nodes which reference the specific entity node. The specific
entity node may, in turn, reference a generic entity. Thias interrelationship
of subnodes is diagrammed in Figure 4-1.

The recurring motive for introducing subnode relationships such
as "instance" and "state" is to avoid redundant storage of information. The
payoff for eliminating unnecessary redundancy is reduction of maintenance and
retrieval time as well as space. Storage compression at the state level can
be carried to a further stage when changes in state are predictable or can be
represented analytically as a function of time. Opportunities for this may
exist in situations such as when a periodic itinerary for a submarine or other
ship is known, or when a satellite position may be found from orbital parameters
rather ;han extrapolation or interpolation of tracking data. In such cases,

state nodes may be replaced by compact state~transition information.

4.6.4 Fact Qualification

It is possible to modify or qualify information by appending
a qualification list to either a description list (node or subnode) or a value.
The qualification list has the format of a description list so that the two
forms are respectively (deslist qual) and (val qual) where the second element
is the qualification list. Typically, qualification information in an Entity
Node will coutaln fact control (access contvrol) information if it 1is at
the node level and fact control and/or source, credibility, and temporai Jata
at the value level. Because information may be obtained from several sources
and may be varying with time, multiple values will be common in the Entity
Net. The particular values which are valid for a given analyst at a given
time will be determined on the basia of the qualification list.

The default interpretation of the property (A v) for an entity
(say e) is that the entity has the value v for the attribute A. In symbols A(e)
= v, The value v may either be a scalar V or an array [V...]. However, there

4-13

bl HERER
E N ST N T L oK R e AE A PN SL ey L i 3 e R e e
e Rk L P il A3 S A i L B A T i 0 D e i s il

R L R R R L R B U LLL BRI

TR e RS Sm et e e s RS

: : . _ Weapon é
Generic Entities Polaris Type Subjl :énaris Missi@

Instance Instance é

Specific Entities (Efbmarine "Henry" Serial #123 ,

Weapon

Location

State Position/Time ;

~ Figure 4-1
Subnode Relationships

e

R

R Bl A L Ba st

it Rk

el

are occasiong when one wants to apecify a relational operator other than equality
‘between the attribute and the value. Possible relations are greater-than, less-
then, not-equal, approximately-equal, not-greater-than, etc{ The qualification

1ist is also the mechanism for accomplishing this, with the exception operator
attribute "Rel-op". For example, Age(e)>40 would be given as (Age (40[*(Rel-op »)])).

4.6,5 Computed Values

SRR NGBS R T

There will be instances when it is more convenient to compute
a;value for a given attribute from specified parameters rather than explicitly
store its value. This will be especially true for large arrays of composite
attributes. For example, it will often be more efficient to compute the posi- ;
tion, velocity, acceleration, etc. of a missile from trajectory, atmospheric) %
and vehicle parameters rather than store explicit values with the required f g

precision. Even where analytic computation is not practical, it is often

R A

more efficient to store values in large dense arrays or conventional files
(on serial or random access storage) and provide the appropriate file name ‘ i
or key in the description list. Another example of the latter situation is . :
the Fact Control Information required for most entities and properties. Be- :
cause this data can be readily formatted into fixed filee, it may be more
efficient to provide a key to a Fact Control Data File in the qualification
list pertinent to the basic information, rather than provide that data in
description list format.

e ko e

DERTIEIN

This capability will be accommodated by using a special
"Process-Hook" symbol and parameter list in place of the actual value in

the description list. The retrieval mechanism, when encountering the Process

| e gl e

Hook, will invoke the specified program and supply the given parameiers. The
called program will return the required value.

4.6.6 Quasi-transitive Relationships

The use of entity relational attributes in the description of
the various objects of interest to the analyst results in a netwvork of nodes
in which information is highly assnciated. This richness of association

IR ETELIN =G SR LR, e

4~15

ST et e s S Tt A

permits information to be retrieved from many points of viéw or search paths.
Although this feature is, in ggnergl,.desirablg, unlea; special precautions
are observed, there are aituationsvin «hich it can lead to the retriéval-of
information which does not validly meet the conditions specified by the in-

T T T R
e AN o R s D p i, D

terrogator.

Consider; for example, a situation in which a weapon platform
(say a fighCer-bombér) can be equipped to bear either of two types of arma-
ment (say torpedo or incendiaries) depeﬁding upon under which service unit
(aircraft carrier or tactical air base) it is employed. A given entity re- j
lational attribute (such as "uses') may be used to enter this information: |

Uses (Carrier Lexington, F-11)
Uses (F-11, torpédos)

{ Uses (TAC Rase Charlie, F-11)
Uses (¥-11, incendiaries)

The five entities would then be interconnected with the '"Uses" relation as

shown in'Figure 4-2., 1It:is apparent that a request for armament used by the

Carrier Lexington (or TAC Base Charlie) 'may come up with the erroneous answer §
"incendiaries and torpedos'". The fallacy is caused by what can be called a

"connection trap" in the F-11 "hub" c¢f the network. It is avoided by using

one or botb of the following devices:

(1) The set of values of a multivalued attribute are
qualified to inform the system that only one of
the values can occur in each instance.

(2) A configuration node (or subnode) is created to
describe each valid configuration of propertles.

These approaches are detailed below.

Since an attribute may have an array as a value, we can have 64

a property such as: :

(Armament [torpedo incendiary])

in the description list for an entity (say F-11). This raises the question as

4-16

T T

S S F IR SN X0 37 Re. A e

e el AR D T et B A vt e 1 el

L 7 i g e e S i e e
e

HE i rbes ity Ay Sy s, . , ORI TR T

Carrier
Lexington

Torpedo

RET FIN

i

DR el d

PP W

TAC-Base
Charlie Incendiary

Figure 4-2

Connection Trap

4-17

Piaon St CR A e e

to the interpretation of the array:
ve | V) Vg eee Vo]

when it occurs as a value. The members v, may be an ordered n~tuple, an
(unordered) set, a bag (unordered set in which repetitions are permitted), a
disjunctive set (any subset is valid), a conjunctive set (all values co-occur),
or a choice set (only one value is valid in each instance). The type of set
which is intended can be identified by using the attribute "Set-type" in a
qualification list for the value, For example:

(Armament ([torpedo incendiary] [* (set-type choice)]))

The use of the "Set-type choice" qualifier alerts the system
(and the user) that only one value is valid but in itself is not sufficient
to specify which 1s the valid value in a specific case. This problem can be
solved by using a subnode (or a state) of the entity to establish a description

of each configuration of the parent entity. For example, we can have the states

[@(Used-by Carrier-Lexington) (Armament torpedo)]

and

[@(Used-by TAC Base Charlie) (Armament incendiary))

under the generic entity for the F-11. Note that this second approach avoids
the multiple values attribute and is sufficient in itself to unambiguously
describe the situation.

4.6.7 Footnotes

The analyst entering facts into the Entity Net will be permitted
to qualify any value (or entity) with unformatted comments, warnings, or other
text. He simply labels this text (generically called footnocqs) with the appro-
priate attribute (Comment, Warning, etc.) and enters it with other qualification
information., Rather than store unstructured text as part of the node, a special
use will be made of the Process Hook capability. The value of the specified
attribute will be a pointer to the appropriate record in an external Foot note
File. The footnote will be retrieved automatically with other qualification in-

formation whenever required.

4-18

B b e 2 L B M i e 3t P e B e ot A o e, A 48 b e £

7
i
Py
o
43

i

St

MM L BN - e L

g e s
ESFRY R FEC TN 2T N

.l' G .
G a5

s

CONCEPT NET PARTITIONS

Each fact or node in the Concept Net will belong to some sub-
space of the Concept Net called a partition. Partitions will form a lattice

or partial ordering so that a given partition may in turn contain other par-

RIS

titions. The objectives of partioning the Concept Net are as follows:

R

£ 24

ZRAPARST AT]

(1) to establish sets of information (at the highest
level) which should coexist on the same level of
physical storage because of access patterns or
ownership (Areas of Responsibility),

(2) to establish sets of mutually self-consistent (or
"coherent") facts, rules, and credibility measures,

(3) to establish a space in which facts form a set
of homogeneous type, such as and, or, nand(not-and),
choice, etec., i.e., to establish the scope and semantic
of a set,

(4) to establish the scope of quantification in general
statements or rules.

The partition to which a fact belongs will be identified as a
property in its Qualification List. When all the facts in a given node (or
subnode) belong to the same partition it may be "factored out" to become a
property at the node (or subnode) level. The partition may be a property
of the node and also of one or more facts in the node. In that case the

it i AT R i N S e it o e s R s Shf i

partition established for the node applies to only those facts which are
not qualified by membership in another partition. 1In these regards, the -
partition behaves in the same way as other properties of a fact or node. The f E
use of partitioning in semantic networks has been described by Hendrix [5) and |
its use here in the STIS Concept Net is quite similar.

4.7.1 Physical (Top-level) Partitioning

Partitioning of the Concept Net into physically independent

sections at the highest level is provided to allow efficiency of local refer-
encing within an application area, and to allow the systems manager to make

timely allocation of potentially scarce resources to such applicatjion areas.

4-19

The partitioning criterion (such as Area of Responsibility) is

applied during node processing. In simple cases, the partition reference

number can be determ
4-1(a). The partiti
The Storage Manager

is determined.

Physical partitioning of data, and associlated loading and unload-

ing of complete partitions, is supported at the storage managment level through

a number of devices:

(a)

(b)

(e)

(d)

(e)

(£)

Intra-partition references are made via a relative block number

(or its equivalent).

lished through a reference pair consisting of a partition number and a relative

block number within

ined by reference to a table, such as that shown in Table
on number is used in all calls to the Storage Manager.,

is unaware of the criteria by which the partition number

A partition may consist of a complet.: file, or a single
file may be divided into a number of partitions.

Separate direct access storage allocation maps are
associatéd with (and physically reside in) each par-
tition.

Allocation requests, and 1/0 operations, are associated
with appropriate physical file space through the use of
a partition status table. (see Table 4-1(b))

The partition status table, in addition to information
about currently '"resident" physical partitions, contains
information about the characteristics, locations, and
status of "off-line" partitions.

Facilities are provided to the STI system manager for
the rollin or rollout of partitions between on-line
mass storage files and off-line lower levels of storage.
Suitable interlocks are provided during such operations.

The STI system manager can make inquiries with respect
to partition status information (including, potentially,
usage statistics) and can update certaiu partition status
table elements.

References within a node to another partition are accomp-

that partition.

4-20

-~

I

i
i
H
i
1
4
t
--,‘,

T AT I T R R TR I R T

A AR G S0 A A T ey P TR e e

seTqel uoyIfIied T-% AT4EL

aTqe]l snijel§ uorliTiied (q)

i/a o 6698-9d9y - aga X 6698-#99% add 9

s -— 28 s

i/a aN | u 6666-99 xda X 6666-99 x9a y

¢ ¢ s -—_ Tdl X X -g9L8 ada £

't '666€-99 va 4

1/a NN | 66SY—-99 ada X 66SY-99 adqa T

§SE00V 15v1| \Tid| 2dAL] dONVE "N AHVN 114 101 mqu FONVE 419 AWVN T1I4d | S3GHON K4INA

SOLISILVLS ADVSA NOILIVO0T INANVWYAd NOIIVOO1 ANIT-NO m
~3

3Tqel °°uU21333Y uoTITIIRd (®)

- MmN M AW
AN M TN e N e

,

VATRNN qov
NOILILIVd

A PERATY VO LN

Foka S

a
)
2

ETETETT T

A e oo, w343 DRl e sd st 1 LS Ve e T TR
W e R e e, a4 Lt e .

4,7.2 Consistency and Context Set Partitions

Partitions can be used to establish the set of facts which be-

long to a particular analyst, or which are valid or consistent with respect

to a given criterion. For example, suppose we have two sets of facts, Bl and

B2 (not necessarily disjoint), which are consistent with stated criteria Cl

and C2, respectively. In Figure 4-3, Bl and B2 point to partitions $3 and

S4, respectively, and indicate their membership in'consistency sets Cl and C2.
Bl and B2 identify the partitions as conjunctive sets, that is, the following
are considered independent sets of consistency statements:

Bl = { WOba, WOde, WAbc, DAec }
B2 = { WObf, WOde, DAec, DAfg }

4.7.3 Use of Partitions in Representing Rules

The Concept Net must have the capability to represent not only

explicit sets of facts, but also general rules which are unambiguously quanti-

fied variables in specific domains, For example, we wish to be able to state

that if a person works on a system which is developed at a particular plant,

then that person works at that plant. Symbolically, for any x,y, and z,

WOxy A DAyz => WAxz
This can be represented in the Concept Net several ways.

cation statement (as above).

form

One way is an impli-
An equivalent representation is the Nand (Not-and)
(4 Woxy DAyz WAxz),

This latter representation is closely related to the (disjunctive) clause form
proposed for the inference mechanism:

(\vWoxy DAyz WAxz)

The implication statement form of the rules is shown as both a
Net Graph and a Node Diagram in Figure 4-4.

The Nand form of the Jule is shown
in Figure 4-5.

to establish the scope of sets of various types.

Consistency sets made up of rules and facts are further illustra-
ted in Figure 4-6.

4-22

IR T B

Both figures illustrate the essential use being made of partitions

T

AT

R e R S i £

A
’ti
]

e

3

ARANY T A D AT

TR g e s n L -
TR AT L S AL B L D8 T e s e s e L B S T

<

\lWA

Relation: Apg ,‘j

A
Negated _
Relation: Apg
:éj_“ "7, Scope of
! assertion B

is partition

Tt 81, a set of
type f.

A TR A S P e i

Figure 4-3 Fact Partitions Example

4~23

SRS S0 1 SAVSAANTATEN MRS SUNAR, SRSHEAT P NN
: e e T s b T g s
ALV

52

(a) Net Graph

Sl

Antecedent

Consequent

1

Ptn

S3

Type

Person

L WA

wo

Ptn 2

Ptn

DA

Q

Ptn

Ptn

[/
(2%

Sl

Fisure 4-4 Representation of Rule:

Ptn

ol
s1 Type

System

Ptn

a

4~24

WOxy A DAyz =>> WAxz

il 21t Sritc e bbb Gl R

Type|— Place

Ptn

 s1

(b) Node Diagram

52

oot g b s g

e e i

~
Yoy

=~

A R et st i £

ARG Y e 20 T

i
i

1
[4
L
1

(&) _Net Graph :‘

H pen? y Ptn
Ptn S5 e

i DA

Ptn

S4

 Ptn

r'-sl;

(b) _Node Diagram

Figure 4-5 Representation of Rule: (4 WOxyDAy zWAx2)

4-25

PR

2
%
%
t
B
G

3
5
3
§
7
4
3

i

L ez el e ST ST T KT S

EQUIPMENT

CONSISTENCY

CONSISTENCY

SET

Figure 4~6 Partitioned Concept Net Example

26

b4

et 3 f iR

A
R,
b
i
.

4.8 REPORTS

The teﬁbrta made to the information system may be regarded as the
foundation for all the intelligence information of the system. Because of
the need to protect this initial fundamental information, which comes to the
éystem in many ways, it 18 stored in a Report Net whose structure may have
significant differences from the Entity Net in which the analyzed and reduced
information of the system is stored.

In addition, the particular procedures that the analyst or Data
Base Administrator employs to maintain and modify the Entity Net information
in the light of new reports are very varied. It appears important to maintain
a well protected record of system reports so that far-reaching reorganization
of the Entity Net can be effectively accomplished. Frequent changes are ex-
pected about what information is important, and what system techniques are
practical.

4.8.1 Report Net Structure

It is expected that reports will be stored in the text in which re-
ceived, as protection for the accuracy and completeness of the report informa-
tion and maintained in time sequence, as a historical log. In order to provide
reasonable search and association capabilities, the analyst will provide a de-

scription list in Concept Node format, characterizing the report and its salient
information, thus forming a report header. For example, a nilssile site firing
report may contain a bulky set of trajectory information, and also identification
and summary information, such as a range capability estimate completed from the
trajectory data. At the discretion of the Data Base Administrator, the above
discussed Process-Hook capability may be employed, treating the original bulky
report as a fixed file.

On the other hand, the report identification and qualification in-
formation, together with certain computer values, may be stored in time sequence,

but with a structure like that of a Concept Node, in order that search and asso-

ciation capabilities be available. Depending upon search and operating conditions,

4-27

ek R L S

st e L

é : it may be practical to maintain separate logs of reports dealing with different

3- classes of information, with appropriate cross reference features. Also, at : 4
: the discretion of the Data Base Admin}strator, references to oﬁfside sources
such as documents, recordings, witnesses, or'photographs may be included with
: the identification and qualification information. Occasionally, such infor-
' mation may be more illuminating than the original report details. :

4,8.2 Report Procedures

The ihtélliéence maintenance, search, and interpretation problems) §
are reflected in both the structure used .or the reports, and also the pro-
cedures employed in incorporating the report intelligence throughout the
Concept Net. Great variability is anticipated in these procedures, and it
appears that valuable insights into the practicality of data organization

questions can be obtained from considering such procedures. This appears to

apply to both the Report Net structure and also the Entity Net structure.

First, there is the considerab’~2 variety of anticipated reports.
There may be a report whose impact onsti.c ‘ntelligenqe system may be slight,
consisting of a routine updating of some estiﬁated value appearing once or :
twice in the.En;ity Net. Alternatively, a report may appear which leads to
the establishment of new Entity Net facts, or the reorganizing of old ones.
It is possible that the simple absence of certain reports may carry more in- : N

telligence than those that actually arrive during a certain period of time.

Second, there is che relative importance of maintenance vs. re-

S e i e Tt e s

trieval in the operation of the system. One viewpoint emphasizes the mainte-

nance a.d construction aspects of the information system (updating the Entity

Net from new reports), since it follows the natural flow of information pro-

cessing and distillation. The other viewpoint emphasizes the information

search and interpretation aspect of the system (retrieval of Entity Net facts)

which may comprise the bulk of the system activity. However, a balance must a
be sought since this activity is dependent upon an effective information main- g:;
tenance and constructiun procedure in utilizing the fundamental information which H

flow from the reports.

R ERCT S A

4.8 REPORTS

The reports made to the information system may be regafded as the
foundation for all the intelligence information of the system. Because of
the need to protect this initial fundamental information, which comes to the
system in many ways, it is stored in a Report Net whose structure may have
significant differences from the Entity Net in which the analyzed and reduced

information of the system is stored.

In addition, the particular nrocedures that the analyst or Data
Base Acdministrator employ: to maintain and modify the Entity Net information
in the light of new reports are very varied. It appears important tc maintain
a well protected record of system reports so that far-reaching reorganization
of the Entity Net can be effectively accomplished. Frequent changes are ex-
pected about what information is important, and what system techniques are

practical.

4.8.1 Report Net Structure

It is expected that reports will be stored in the text in which re-
celved, as protection for the accuracy and completeness of the report informa-
tion and maintained in time sequence, as a historical log. In order to provide

reasonable search and association capabilities, the analyst will provide a de-

scription list in Concept Node format, characterizing the report and its salient
information, thus forming a report header. For example, a missile site firing
report may contain a bulky set of trajectory information, and also identification
and summary information, such as a range capability estimate completed from the
trajectory data. At the discretion of the Data Base Administrator, the above
discussed Process-Hook capability may be employed, treating the original bulky

report as a fixed file,

On the other hand, the report identification and qualification in-
formation, tog:cher with certain computer values, may be stored in time sequence,

but with a structure like that of a Concept Node, in order that search and asso-

ciation capabilities be available. Depending upon search and operating conditions,

4-27

v

it

SR g e sy Ky e

it s S

4.8.2,1 Simple Updating of Entity Net Facts

Suppose that a report is received that a particuiar radar sfscem*is
developed at a particular plant. This may support a fact already in the Entity
Net, in which the radar system might appear as system #31, and the plant as
facility #47. Thus, there is no change anticipated anywhere in the Entity Net,
except for a revision upward of the truth probability for a fact already listed
in the Entity Net. If the appropriate system authority places a high estimate
on the reliability (or likelihood) of the report, then the fact credibility
(truth probability) takes a correspondingly large upward revision.

A further iilustration would be a tracking radar report of a routine
missile firing from a particular site. It is likely that this may affect sev-
eral facts in the Entity Net, but each as a simple update. It may be that facts

are being maintained as follows:

(1) Best current range capability estimate

(2) Best current staging time estimate i R

(3) Count of weekly firings or misfirings

The two estimates are likely to be improved by the computed vaiues from the
incoming report, possibly using statisticdl tools rather than the truth prob-
ability method of the earlier example. The firing count may be set up without

any credibility implementation.

The above has been ciced as a routine firing report. If, however,

there is a problem about whether the supposed site has been incorrectly identi-
fied, or the precise identity of the missile type, then the reports are no
longer routine. The problems in identification and interpretation may lead to
initiating new (or retiring old) facts from the Entity Net.

4.8.2,2 Initiating New Facts in the Entity Net

If we suppose, then, that missile trajectory reports are being re-

ceived from a tracking radar under conditions where an attempt is being made

to identify the missile type (or types)g a large number of facts may be initiated
and_maintained in the Entity Net. For example, summary calculated vélues may be
maintained for each reported trajectory. This contrasts.étrikingly with the
routine situation in which we supposed only the maintenance of current esﬁimat-
ed averages or firing counts for the missile site. When the missile type identi-
fication is complete, then the facts of the Concept Net may be reorganized in

the simpler and more compact manner fitting the routine situation. If we suppose
that unexpected information arrives, indicating the need to restudy the identi-
fication problem under modified assumptions, recourse may be had to the original'

reports to appropriately reassess the picture.

Parallel situations appear likely in otuer information areas. It
may be that a large number of carefully organized facts may be maintaihed on
a permanent basis in the Entity Net, related to a scientist of a critical im-
portance. On the other hand, a large number of facts may be maintained on a
temporary basis related to another scientist for whom there is an identification

issusz.

4.8.2.3 Alertness to the Absence of Reports

It seems reasonable to anticipate that absence of reports may
frequently be of crucial significance, and yet the initiation of the appro-
priate alert status or action may not be in the area of report procedures or

organization. Two illustrations are considered.

First, we suppose that firing reports for a missile site cease (or
drop off sharply) during a time interval. This is likeiy to become apparent
when a Entity Net fact, such as the count of weekly firings, is inspected or
reviewed. Intcrpretation and action may likely result from a search and
study of related facts. Perhaps the nearby missile sites, or supply activities

may furnish illuminating information.

Second, we suppose that the quantity of firing reports does not alter,
but rather the quality. If the reports indicate a steadily increasing site
range capability, this is likely to become apparent from observation of Entity
Net facts concerning present and old range capability estimates. Neither the

4-30

iRt e

AT AR R

T

?,';’.
b
&
LY
£
i
¥

i
i
EA
?I .
!

TP TR

PN

R

S RN TR NTTI N ey

AT S R Sl g i e

TN

L S

. .
TR R

N TR R T

absence of reports, nor a trend in the information content, is apt to be appar~

ent at the report level.

It appears, then, that the quality and quantity of incoming reports
will often be recognized and coped with as part of the information search, re-
view and interpretation procedures associated mainly with the use of the Entity
Net. It is important that report information is adequately distilled into the
Entity Net, of course. Even lack of report information should be so distilled.
The decay of fact credibility discussed in Section 4.1 is one example. The

firing count may serve to indicate lack of reports, as mentioned above.

4,8,2.4 Composite Reports

Especia’ly when the source is non-instrumental, a report can appear
that may well be treated as several reports, even 1f the facts are interwoven
in lengthy sentences. Entity Net facts may then be initiated, modified, or
updated in much the same way as 1f the report were a series of simple reports.
It may well be that the report will be logged in and recorded as a single com-
posite report in order to maintain the original text for purposes of informa-
tion security. The Report Node, mentioned in Section 4.6.1 above, is apt to
be bulky because of the heavy requirements to provide search and association

capabilities where the information is composite.

4.8.2.5 Multiple Versions and Appearances of the Same Fact

It is likely that differing agencies and differing instrumentation
will lead to separate estimates for the same technical quantity, whether it
is the percentage of a metal in a compound, an estimated range capability, or
something very diverse. For easons of information responsibility, clarity,

and security, such separate estimates will be maintained almost as if they

were separate facts.

It is a some what different matter when differing recorda are kept

of an identical fact for search efficiency reasons. One illustration is the

fact that person #32 works at facility #12, routinely stored in "attributes-
under-entity' format in the Entity Net part of the Concept Net relating to

4~31

PR T TR I TR L TN

)
3
K1
3
B
4
3
]
A

person #32. The same fact may be stored also as part of an employment list

in a "works at" Attribute Node in the Semantic Net (also in the Concept Net).
This permits the retrieval of general employment information at one facility
without laborious general searching through the Entity Net entries for vari-

ous persons.

4,8,2,6 Multiple Results From One Report

Sometimes we expect one report to contribute to one Concept Net fact
already initiated with other reports, with possible complications in the ver-
sions and storage of that fact. It is also possibie that distinct Concept Net

facts may be involved.

For example, a missile firing may call for firing count, range capa-
bility, staging time and other updating of estimates, as already indicated in
discussing simple updating. It may be that both specific estimates for the
particular missile site, and general estimates for the missile type design are
involved and must be separately updated. Such practice may stem from interest

in the geographic, supply, and operational effects in various site locations.

4,8.3 System Report Procedures and Report Net Structure

It appears that there is considerable interplay between the proce-
dures and the data structure employed as the report information is entered
into the STIS. In particular the Report Net occupies a special fundamental
positiion from which restructuring of the Entity Net is occasionally likely,
making information security specially important in the Report Net.

If the set of Entity Net facts in some information ar=a is to be
abbreviated, it is possible that the restructuring may be accomplished with-
out recourse to the Report Net. A simple illustration would be to change
the firing time interval for a missile count record from a monthly to a quarterly
span. If the reorganization of Entity Net facts is more far-reaching, or more

detailed, then the Report Net is needed.

We note that the Data Base Administrator's task in entering reports

is subtle and substantial, even when the operation is on a routine basis.

4=32

This is in-part because the search and investigation needs of a whole commu-
nity of analysts are to be met. It would be especially onerous if many analysts
felt a frequent need to go to the reports because of dissatisfaction with the

distilling process done in Entity Net facts. Occasional temporary alternations

in Entity Net information, without recourse to the reports themselves, 1s apt

to be more tolerable, partly because of the difference in data bulk. These

considerations take on added weight when the information situation necessitates

serious Entity Net reorganization.

4-33

NS e S WD+ ATere AT b BT K

SECTION V. PERIPHERAL FILE ACCESS SUBSYSTEM

5.1 BACKGROUND

The current production and test versions of STIS utilize a number
of physical files, which taken together comprise the data base, to store and
manipulate information entered by the intelligence analyst or application pro-
gram. The primary file consists of the network structure of nodes represent-
ing sets, generic and specific entities, states, etc. The access method to
read, store, and traverse this network is a direct one based on a computable
relative mass storage address from a node identification number. This ID
number is sequentlal and each node is assigned the next number by STIS upon
itr -he node'"s) ereation., Each node is assigned a predetermined contiguous
8 of mass storage space for which the first sector is directly address-
ab.i. V.4 its ID number. Overflow of this initially allocated segment is
handled by linking to subsequent chained segments in an overflow file.

The remaining files are used in conjunction with the node network

to respond to inputs from the analyst. When sets are defined in their English

language terms, STIS assigns an ID number, ' eferenced above, to them, But

fo bt i P e S e AR e (vadst e s e B

the correlation between term and ID number is stored in the Set Term file
where the term becomes a key for the ID number. The same procedure holds
true for staces of entities and for attribute definitions. Additional files

contain fact control information, log-on/log-off entries, and an extcrnal

invoked process log. The access method used to manage these secondary files

is the Univac supplied ISFMS package.

ISFMS 1s a hierarchial index sequential access method using chained
overflow data block pointers. It is a single thread (user) package. Hence,
it provides no protective physical or logical record lock mechanism in the
event two or more concurrent users are attempting to update the same data
files. ISFMS, being non-reentrant, necessitates each concurrent user suffer-
ing the overhead of having his own core copy of it along with the buffers needed
to support each file. Physical blocks may only be selected at the 1/4, 1/2,

or full track level (448, 896, or 1792 words respectively). The index blocks
for any given file may not be permanently saved and accessed in a separate

physical file, although run temporary index files may be created, used, then
discarded. File reorganization can take place more often than desired due

to the chained overflow mechanism if there is heavy create/delete activity in
the file. The chaining mechanism can also require additional I/0 accesses

and block search time when locating a unique key.

5.2 REQUIREMENTS

Based on the current and projecrad requirements of the STI system,
the peripheral file access subsystem was designed to meet the following cri-

teria:

1) be reentrant thus supporting a multi-user environment
and reducing user core requirements

2) provide proper protective access to common files and
records

3) perform functions with minimum response time

4) efficiently manage STIS term type data

5) handle a large number of data records (approximately
200,000 to 500,070 terms) with high 'create/delete'
activity

e e S B 7 B i

O

e s

R e, e A W4 4 i (i B i,

5.3 ACCESS SUBSYSTEM DESCRIPTION

5.3.1 Approach and Design Considerations

The access method developed retains the indexed sequential gpproach
of ISFMS. An analysis of term lengths shows that any term may extend to 180
characters with 30 characters the average length. This variation in term
size as well as the expected size of the term list (200,000 to 500,000) pre~
cludes any effective type of computed address or direct address approach.
The design of the subsystem, considered in view of the STIS requirements as

enumerated above, follows.

5.3.1.1 Reentrancy and User Core Size Reduction

Under the earlier versions of the Univac EXEC 8 operating system
and prior to the introduction of the 1110 hardware, a reentrant program was
a self-contained 'I Bank only' program. Each user program wishing to exe-
cute the reentrant program would 'link to' it by executing an Executive Re-
quest from his own program. The reentrant program consists solely of instruc-
tion code, and data and sufficient working storage for its own housekeeping.
User dependent working stroage must be allocated in the user program and would
include any I/0 buffers needed for mass storage files. Thus, creating a re-
entrant version of the access subsystem (much on the same design lines as
FMS-8) would not be sufficient to save STIS the memory overhead normally
allocated for I/0 buffers. This could amount to 5500 words per user based

on six peripheral files, double buffering, and minimum 1/4 track blocks.

The upgrading at FID from the Univac 1108 to 1110 provided a new
joint hardware/software technique that would allow concurrent users to exe-
cute common instructions and share common data areas. The access subsystem
was designed to be written as a set of reentrant modules and collected to-
gether as a common instruction bank sharable by as many concurrent users who
'link to' it via a hardware 'load instruction bank and jump' (LIJ) instruction.
A single set of I/0 buffers will reside in a common data bank and these will

be used to service all the concurrent users. Each user's core requirements

~ then have been reduced to providing only a small area for control tables

and working storage. The EXEC 8 operating system will always maintain the
latest coples of the common I and L banks both in core and on the system mass

storage swap area. This assures that uny changes made to tables, buffers, etc,

by the access subsystem will be preserved.

5.3.1.2 Common File and Record Access

Once a user has linked to the access subsystem, his command and
argument list will be checked for validity. Access to a file after validity
checks are passed will be controlled by a hardware 'test and set' instruction
on a specially marked cell, This will effectively lock out all other concurrent
users from using that file. If the file is currently being accessed by another
user, then the EXEC 8 operating system will place the new user on a queue main-
tained by it. When the previous user's file request has been completed, the
file 1s unlocked by the access subsystem and the operaring system will activate
the next user on the queue for this file (if any). Each file opened and being
manipulated by the access subsystem will have its own specially marked lock
word and queue maintained by EXEC 8. Each file has its own dedicated buffer
area within a common data area pool. Thus, the access package may perform a
single request concurrently on each file opened within it with multiple re-
quests on any given file(s) automatically queued by EXEC 8.

Certain users may be declared by STIS to be inelligible for writing
information into the data base. This inelligibility might be determined from
the user's password. STIS then might specify to the access subsystem that
certain files may be addressed in the 'read only' mode for those users. The
access subsystem has been designed to protect against write operations on

'read only' files.

In addition to its own internal common file access mechanism, the
subsystem allows individual users to place a logical lock on any selected
record in a file. This logical lock inhibits all requests (except for 'inquiry
only' requests) for this record by other users until the lock is cleared by

i o S AR Ay e

P D R

RLEAEC

the orginating user. An analysis of typical operations on the peripheral
files shows that only one record lock per user per file should occur. Based
on this, the access subsystem will permit each user to set one lock on each
file he has open. A provision to expand the number of locks per file is

available by redefining a parameter and reassembly.

5.3.1.3 Minimize Response Time

The access subsystem'ﬁermits the index blocks for any file to be
4 optionally maintained in a separate catalogued index file (as opposed to being
T embedded within the same file containing the actual data blocks). Separate
% e index block files permit overlap of some I/0 activity through channel separa-
' { tion on differing mass storage devices or on dual access devices (e.g., FID's : E
8440 disc subsystem). :

Separate buffers are allocated and dedicated to the highest level
index block for each file opened within the subgystem., An additional buffer

is utilized for lower level index olocks., All unnecessary 'reads' are avoided % 'é
if the appropriate index and data blocks for a given file are already buffer ﬁ §

resident.

5.3.1.4 Manage STIS Term Data

The access subsystem will support a file which has records in which E
the key and data portion may be variable or fixed in length. The file organi- '

RIRTry)

zation is specified by the STIS programmer. Once specified, all records with-
in that file must conform to the type given. Generally, there will be a one~

to~one correspondence between key and data entry of a record. However, an

analysis of the present STIS term files (set, plane, and attribute term files)
showed that one English term could represent more than a single role (e.g., be
both a set and attribute). Thus, there are duplicate term entries in the
current files. Combining these files into a single term file would not only
reduce duplicate storage but also reduce search time for language processing

functions requiring all uses of a given term. The access subsystem was de-

gigned to allow for a one-to-many correspondence between key and data emtries

S R AR O o)
Rl : AR BB N

i
L.
b

TR

of a record. Each data entry is tagged by a role code indicator (which may

be interpreted as a lecondary key suffixed to the primary key). Thus, a

¢ : file of terms might be created where a key is the English term and the data
entries are the specific nodes in the network file which represent the differ-

W e Y e an o o

ook ing uses of the term.

5.3.1.5 Large Record Volume with High Create/Delete Activity

File reorganization was one of the prime considerations in the de-

s e CET s

sign of the access subsystem. It was felt that as much maintenance should
;. be performed as was possible during the execution of requests which physically
§; alter the data content of a given file, This was especially true of a dy-
: ramically expanding and contracting file such as a common STIS term file. The

T B)

maintenance function must be considered when performing a DELETE, MODIFY, or
INSERT operation. A DELETE request causes the key and data entries to be re-

moved from the data block in which they reside. The data block is compacted;
the block control words updated; and the data block is rewritten to mass stor-

age. The deleted space is then immediately available for reuse. An INSERT

request causes a key and data entry to be added to a data block. If the phy-
sical data block will overflow due to the size of the new entry, a data block
split is performed. An attempt is made to split the old block equally with

a new data block and the insertion made in the appropriate place. However, in
asome cases, a second additional block may be necessary to properly split and
sequentially maintain the data records. After the insertion is made at the
data block level, the index blocks need to be updated since an additional 1

or 2 data blocks were created. The same procedure outlined above is used to 'E
update the index blocks. As a lower level index block overflows, its next

higher level block is updated until the current highest level is reached. %
If the current highest level block overflows, a new index level is generated. é
The access subsystem is designed to handle an unlimited number of index levels. :
(Figure 5-2 depicts in a simplified style the results of an INSERT operation.)
A MODIFY request on a variable length data entry file may cause contraction

or expansion of a data block depending on the new data entry size. If con-

traction is indicated, the DELETE procedure is basically used; if expansion,
the INSERT procedure is basically used.

5.3.1.6 Key and Data Considerations

Since the access package does not employ a chained overflow block

technique, no record then may extend across block boundaries (i.e, no record :
consisting of key entry and data entry or multiple data entries when qualified é
by role code may exceed the size of a physical data block). :

In a hierarchial index sequential file, there must exist some
single high level index pointer block. The length of the key entries with-
in this block must be less than or equal to cne half the effective block size.
If this were not so, there would exist the possibility that only 1 key entry
could reside in an index block. Each index block must be able to hold at

least two keys (known as 'range' keys) in order to generate a hierarchial
structure. An index 'range' key is used to point to a lower level index or

data block in which the 'range' key itself is the lowest order sequential key.

In Figure 5-1, Range Key Indices

IR o B e SIS S el e e R R PR R S B 5 e e e

LEVEL 2 Kya Ky | «oe-

! L >

L..) LW KAB KAM Kan KAO vooe | Kpz)

LEVEL 1 o)

the 'range' key KAA in level 2 points to a block at level 1 in which KAA is the

lowest ordered key. The same holds for 'range' key KAN on level 2. Thus, all

the records that have a key between 'range' key KAA and up to but not incluing

'vrenge' key KAN are contained in the level 1 block pointed to by KAA'

e e e a0 T e R
<+ late e e n e A R R R SN B R e mrocn

.The very first record that must be loaded into a file should have
a key consisting of binary zeroces. This key will function as an initialization
sentinel. It will abpear‘aa the first range key in each successively higher
index level block. Its appearance guarantees that no sequeﬁtially lower (in
the alpha numeric collating sequence)lkey can ﬁe constructed and possibly

cause problems on retrieval operations.

The access subsystém has been designed such that an index block
overflow caused by an insertion of é new 'range' key must be restructured with
the addition of only one new index block. The old and new 'range' keys will
be divided as equally as possible within the old and new index blocks. This
design constrains the.maximum key entry size to 30% of the physical index block
size. For the smallest size index block assignable by the programmer of 112
words (Univac 8440 standard disc prep size), the largest size key cannot ex-
ceed apﬁroximately 33 words or 198 characters. This appeéred very urnlikely
to occur within STIS. Figure 5-2 shows the reformatted index and data blocks

after an overflow caused by an INSERT operation.

5.3.1.7 File Considerations

The tables that have been identified “or definition and manipulation
by the access subsystem are the 'term encoding table', 'word encoding table'
(both used by the Directory Services subsystem), 'fact control table', 'log-
on/off table', and 'invoked processor table'. An analysis of the information
content and currént and future usage statistics of these tables was performed,
The results show that the 'term encoding table' (or TET) and 'word encoding
table' (or WET) will be the most heavily accessed tables and the 'fact control
table' (or FCT) also frequently accessed. Thus, these Lhree tables should
have separate index block files. The 'log-on/off table' and 'invoked pro-
cessor table' are very low access tables and need not have separate index

block files.

5-8

kiR ""i’éK"vi‘s‘:‘;f. AR -F"f‘.‘ﬁ; ﬁjh'ﬂiﬁ' A’“’i i St e b

e el el
2t St DR U L SR i

e

wotliesul 193y 21INIONII§ MI01d BIEQ PUB X3pUl

SN S ALt

T TR AT IR VM

(9)7-G 2an813

nmoumﬂ MIN
TAATT
vIvd 6T 8T { LT | 9T ST | yT| €1 71| 11§ ot 6| s vol 9
. I —
o 6Ty 9T | €Ty | 0Ty tyl 9% le—
XEANT
7 TAAIT X3ANI 6T, | U1yt %1 Ty
€ T4A3T XIANI 0Ty | Ty
uoT31asu] 210J3ag 2InIINAIS F201d EIBQ pue xapul (®)7-§ 2an31g
TAATT
viva 61 8T | LT | 91 ST | v1 | €1 zt | 1] ot 6 | 8| ¢ 9 y
] [
1 TAAFT XdANI 61y 9T, {€Ty | 0Ty Ly Ty
[
7 1331 x3aN1 |6y | 0Tyl Ty

G ST e

5-9

1 A2 eers v v el LS

Sregeaiess

by

LTS SrEn.

e S R NN £ AT A R ST
P TR E SIS O NPe e LS T

v ." &

PRSI RNE RFEL 2]

We have assigned each table a set of table definition parameters

based on its record structure and computed sample loading conditions. The

3 Summ L S A 0 o LA 2 £

access subsystem attempts to initially load data blocks to 50% of capacity
and to completely fill the associated index blocks. The initial load factor

percentage may be changed by reassembly.

The following formulas are used in computing the loadirg conditions.

of Block Control Words (NBCW) = 3 «

Load Factor (LF) ' - 50% . E

Data Record Size (DRS) = Key Length + Record Control i
Word + Data Length

Key Size (KS) - Key Length + 1

Max Keys (MK) = (Index Block Size - NBCW)/KS

((Data Block Size - NBCW)/DRS) *LF
Number of Index Levels

Initial Data Records (IDR)
Total Initial Data Records = IDR * (MK)

(Fractional sizes are rounded up to next whole word)

1) Term Encoding Table (TET)

Organization is contiguous fixed key/fixed data,
Record Control Word = 0
Key Length = 2 words

conee L g T S et L el L. . ta .
e <3 Bk N N B I O A oY
- el Xran SRR,

Data Length = 1 word

Index Block Size = 336 words

Data Block Size = 224 words

Number of Index Levels = 2
DRS§ = 2 4+ 0+ 1 =3
KS=2+1=3

MK = (336~3)/3 = 111
IDR = ((224-3)/3) * .50 = 36

2
Total Initial Data Records = 36 * (111)° = 443,556

S i L
e AR [sty S it s

5-10

£ are s SO YR T BRSO e =

2)

3)

4
| ’
|

Word Encoding Table (WET)

Organization is contiguous fixed key/fixed data
Record Control Word = 0

Key Length = 2 words

Data Length = 1 word

Index Block Size = 224 words

Data Block Size = 336 words

Number of Index Levels = 2

DRS§ = 24+ 0+1=23
KS=2+4+1m=3

MS = (224-3)/3 = 73

IDR = ((336-3)/3) * .50 = 55

Total Initial Data Records = 55 * (73)2

[T S D A S

= 292,545

Fact Control Table (FCT)

Organization is contiguous fixed key/fixed data
Record Control Word = 0
Key Length = 5 words

TR

Data Length = 2 words
Index Block Size = 336 words h
Data Block Size = 336 words i

DRS 54+40+2=7 : ' 3

5+1=6 3
(336-3)/6 =
((336-3)/7) * .50

unn

IDR = 23

o ML

Number of Index Levels = 2

Total of Initial Data Records = 23 * (55) = 69,575

Number of Index Levels = 3

Total Initial Data Records = 23 % (55) = 3,826,625

-
d
E
4
i
A

i

Log-0On/0ff Table

Organization is contiguous fixed key/fixed data
Record Control Word = 0

5~11

WV s e e e e L e e e e

5)

Key Length = 5 words

Data Length = 10 words
Index Block Size = 112 words
Data Block Size = 112 words

DRS = 5+ 0 + 10 = 15
KS=5+1=6

MK = (112-3)/6 = 18

IDR = ((112-3)/15) * .50 = 4

Number of Index Levels = 1
Total Initial Data Records = 4 * 18 = 72

Number of Index Levels = 2 2
Total Initial Data Records = 4 % (18) = 1,296

Invoked Processor Table

Organization is contiguous fixed key/fixed data
Record Control Word = 0

Key Length = 5 words

Data Length = 5 words

Index Block Size = 112 words

Data Block Size = 112 words

DRS = 5 4+ 0+ 5 =10
KS=5+1=6

MK = (112-3)/6 = 18

IDR = ((112-3)/10) * ,50 = 5

Number of Index Levels = 1

Total Initial Data Records 5 % 18 = 90

Number of Index Levels = 2 9
Total Initial Data Records = 5 % (18)" = 1620

5.3.2 Functional Qutline

subsystem.

AR A

The following basic user (i.e., STIS systems programmer or poten-
tially other applications programmers) functions are supported by the access
The detailed description and parameter list expansion of each is

given in Appendix B.

5~12

b g s s T S

1
-4
&
4
3
4
P
B
i

3

R R

OPENAP

DEFNFILE parm list
OPEN parm list

READ RANDOM parm list
READ SEQUENTIAL parm list

READ RANDOM w/lock
READ SEQUENTIAL w/lovk

INSERT parm list
MODIFY parm list
DELETE parm list
INFORM parm list
CLOSE parm list

CLOSEAP

5.3.3 Error Processing

Initializes the access subsystem
for the user

Defines a new file

Opens a file and its assoclated
index file

Reads a data entry associated with
the given key

Reads a data entry associated with
next sequential key

As above but also inhibits further
access to the data record by other
users

Adds the data entry associated with
the given key

Updates the data entry associated
with the given key

Deletes the data entry for the given
key

Gives the user statistics about
file usage

Performs an orderly closing action
on a file

Closes the access subsystem to the
user

The access subsystem performs a number of validity checks on the

commands issued to it by STIS service modules.

If an error is detected, an

error code is returned to the calling module and the command is effectively

not performed.

It is the calling module's responsibility to take the appro-

priate action (e.g., inform the user of the error, reformat the command, etc.)

after an error code 1s returned.

A complete list of error codes and their

interpretations is given in Appendix B.

5-13

R igt L b A
o deo kL i AR - H

st

o
o
3
-3
E;
o

o

Al Lt

2 o b B St . LS A

TR ST TR e ¢ L e e s g e ey e,

SECTION VI. DIRECTORY SERVICES SUBSYSTEM

6.1 INTRODUCTION

The STI Directcry Subsystem consists of the tables and program modules
shown in Figure 6-1. The Directory is designed to uniquely encode and decodé
all system words and terms (of one or more words) used in STIS as attributes,
values, commands., and noise. These system words, and terms are maintained
in integrated ordered lists (the Word and Term Encoding Tables) so that an
input language scanner, using the directory services, can recognize and deter-
mine the role vlayed by every word apt to be entered (including the attribute(s)
associated with a value term), the uniqueness of a term, and the equivalence
of a term to other terms. The Directory functions and tables are defined in

Appendix C along with accompanying system level flow charts.

An analysis of the terms used by analysts to define entity names,
attributes, and sets in STIS showed that terms often were not unique in their
usage and were often multi-word. Words often appeared as components of several

terms. The number of characters in a word could be as large as twehty or as

6~-1

Lt fen THIIRT 3 OIE) eRE i SINTTALAN T % i Lt e cuaasd w2 B L IR

R L T T RN I O NS B

B BRSSP

g L N TN

auon 3a003a

Radl 3a0oaq

4000 WYAL

1}
i
bt
1
[}
iR
K
vl
(R

A4

- - - o ——

, ¥10d ® 3a0D
WAL
AAITHIAY
7
\ | \

4400 W91
aNIa

- — — ~5] sV s 4108 3 240D
F00ON~1 WAL QNId

\ N N
N\ |
\) | 3900 quon

{ 4000 K43l

3000 Widl (2104 “WHdL)
AAITHLAN

Qi0M AQOONd

W43l d1vnba
\ RE3l 410 ‘We3l MaN

quon

'L adoM LHASNI aeom 3Lvnda
—A-n € @EOM Q10 “‘qHOM MAN

Figure 6~1 Directory Subsystem

6-2

e > o T R i Sy ol 3 o

small as one while the total number of characters in a multi-word term could
approximate 180. Based on these facts, we attempted to define encoding/decoding

algorithms and data tables to handle terms as a variable number of variable
length words and their assoclated roles. We also investigated the possible

et m et e

partitioning of words into meaningful linguistic units or morphemes and the

¢ %- treating of definable groups of words as term fragments.

AT

6.2 ENCODING MECHANISM

All words and terms are stored with numeric codes in ordered lists %

(via the Word and Term Encoding Tables) along with an associated role map which

defines how the word or term is being used. Words may be of arbitrary character
length and terms may consist of any number of words. In the event a word is
too large to be stored in a single WET (Word Encoding Table) entry, it is

partitioned, starting at the leftmost character, into segments each of which

will comprise a single WET entry (a segment being the longest string storable

in a WET entry). The last segment will consist of the remaining character
string from the last break to an end of word delimiter. Continued segments

ke AR 0, el e i b

S e

are marked by inserting a special character (e.g., a hyphen) as the last

e TR

character of the WET entry. The numeric codes assigned to each word segment

s

are then recursively encoded from TET (Term Encoding Table) entries until a
single numeric code representation is obtained. Similarly if a term is too

large to store in a single TET entry, it is recursively encoded via a single

SR i e A)

left to right scan until a single numeric term code is obtained. Figure 6-2

represents the typical term encoding process.

6.3 DECODING MECHANISM

An integrated decoding table is maintained by the Directory Services

Subsystem. As each word and term (and word ang term fragments) are entered

into the Word and Term Encoding Tables, an additional entry is made in the in-

tegrated Term Decoding Table (TDT). When term or wcrd decoding 1s required
(e.g., in response to an analyst query of the value of some attribute), basically

an inverse encoding algorithm is followed. The given term code is entered in

Encode Term (New York City Philosophical Soclety) = T? Assume WET

and TET entries are as shown below

N{E|W P L wl
0 C 2 W3
Wl Wa F8
Y]JOJR|K AlL A2
5
— WET
W2 W5 F6
CII|T]Y S${O I|E F8
Y 6 w7
W3 L w7 T9
The encoding request proceeds as follows:
New York City Philcsophical Society
Wl W2 w3 W& W5 w7
~p i i
Js W
//

T9

— TET

The term code returned by 'Encode Term' function is T9.

Figure 6-2 Typilcal Term Encoding Process

6~4

R R T

S A

LU %7 TSNP VIICIE SIS 7 L ¥ ST -

the initial entry in a push down table. A recursive loop is begun in which

the firat entry in the push down table is examined. 1If the entry has the Word
Code Indicator bit set, then the entry is further decoded into its English

text. The text is the concatenated with any previously decoded text. A 'blank'
chivacter is added to the text if the word is not marked as continued. This
entry is then popped off the stack since it is completely processed. If the
entry did not have the WCI bit set, then the decoding entries are retrieved and
entered in the push down table in place of the first entry. Another iteration
in the loop is then begun. When the push down table is empty, the generated

text is returned to the caller.

g R el ek ey
SRS S R

A e

Sebofa oL
S i R

. AL ke i e pagiise i n o e

TR, TR TR P A T SRINER N

REFERENCES

1. STIS Users Guide. Foreign Technology Division, May 1975.

2. J. Sable and S. Forst: Design Concept for an Augmented Relatjional In-
telligence System (ARIAS). AUER-2022-TR-2, August 1973 (RADC-TR-73-
342/AD 773 189)

3. I. Goldhirsh and R. Carson: A Deductive System for Intelligence
Analysis. AUER-2255-TR-1, March 1976.

4. J. Sable and S. Forst: Needs Analysis For Inference Systems at FTID.
RADC-TR-73-4, January 1973 (AD 757 218)

5. G. Hendrix: Expanding the utility of semantic networks through par-
titioning. Artificial Intelligence Group Technical Note 105, SRI
(June 1975).

I R

Gl)

RIS

S, %%ﬁ;

P
i

¥

APPENDIX A. CURRENT STIS STRUCTURE

CURRENT STIS STRUCTURE

The capabilities, operating characteristics and performance
of STIS follow largely from the general architecture of 1ts system componenta
and its data structures. The general architecture of STIS and its relation-
ship to the on-line and batch user is shown in Figure A-l, STIS is a modular
system in which user requests for information services may pass through severa'
levels of translation during processing. It provides a "general" (non-applica-
tion specific) language called IPL (Interactive Processing Language) for the
user who wants to "browse" through the data base and perform his own analyses.
Other users, whqse analysis requirements have been iormalized can be provided
with "special purpose" languages through application programs written in COBOL
(e.g., IPS) and FORTRAN (e.g., IEAS). The HOL (High Order Language) prugrammer
user writes a special Program Interface Module (PIM) which is compiled and linked
(collected) with the application program. HOL requests for STIS services are
made through the PIM, which is typically a 5K word module of the users code.
In the current operation, each user (on-line or batch) must have his own "copy"
of STIS, some 40K words, in memory. Large user programs, such as IEAS may run
from 85K to 90K words (perhaps reducible to 50K with segmentation), putting a
severe limit on the number of active users which can be accommodated in the four
65K word memory banks available to users in the 1110. A fundamental goal of a

near-term optimazation effort would be to handle multiple users with a single copy
of STIS.

The architecture of the STIS data structure can be described
as an amalgamation of different classical data structures. It can be called
a Relational Data Network in that it is composed of nodes which are interre-
lated through binary relationships (and their converse) using a unique Node
Tdentifier (NID) as a logical link. The nodes themselves have a variable
hierarchic format in which common elements are "factored" to avoid redundancy
within the node. In addition to control data embedded at various levels in
the node structure, the basic user informmtion 1e¢ carried in attribute name
(A#) /attribute value format. Multiple va 1ies are permitted for each attribute,
along with warnings, comments, and other text. The current STIS 1 node is seen
in its physical and logical form in Figures A-2 and A-3 respectively.

A-1

3
N

o

et A e s b s AR

i
L3 A P

A

i s ::-:,_'

B it oot ST e T T T
Es INTS T ey > b e Lo T B

1
é? On-Line User ;
i]
1'1 1
3 "General" ,.:§
3 Language (IPL) "Special' Language
.
b
4 Interactive
F Language (IPL)
§ Interface :
H FORTRAN User :
! (Engineering Analysjs) 3
,; i Program :
§ (77 M i
: FORTRAN \\\\ ;
¥ INTERTACE STIS Service Requests in FORTRAN j
L COBOL :
] Interface ;
Intermediate Languape Requests ?
1 1 STIS Service §
Requests 1in COBOL k
Information 7
(Rela;:gzzisLinguage) Program lnterface i
° Module (PIM) 1
COBCL User b,,—f”d 4
1
Node (Inf;rzfgcessing) L ;
(Entity/Ser/Semantene) g-am y
Processor ‘] 3
2]
i
General (Non-STIS) Programming g
Physical I/0 Proc. i] and Computational Support ,

j

UNIVAC-1110/ EXEC-8
HW/SW HOST ENVIRONMENT o

Figure A-1 Current STIS Architecture

A-2

S et e LM e L ia e T e asotiua S R TP R Y ST T N 4
A i Ak iy

B bR e S it (R S M R Bl £ dCE A ATk e RSO Che A A T TTEERITTROTIY R TR SRR, o e ST ThEw oy e e

)
1
!]
é _LEGEND _ ,
% N = Node i
;} P = Flane ;
j C = Data Control E
: 2 . A = Attribute]
. words | N I § - gelation Relati g
L1 - B
3 N¢ N TYPE = 1 onverge Relation ;
; VFFSET AOR = Area of Rezponsibiliry j
'j . DOB = Date of Observatior R
£ SEC = Security Classificutlon ;
indicates one-to-many i
I ! relationship :
2 l
words P
P# P TYPE | (pcpn o
SEG TYPE=R
g
|
d
Al 1
word
4 1 | A-TYFL=R) R-1 3
wordf ag | A TYPE| AOR ONLY OFFSET 1
il N i
: i
I %e
1 f 3 1
. words -1
1 N# P# ct R™" POINTERS
R~ bit is "OFF" !
"LAST FACT' P
FFLAG ('i
3-5s [] v
words ! SEc. | DATA | WARN.ICMT. JIENT [, &
ot ¢t |poy |2 |OFF~ |OFF~ |OFF- |OFF- [~ o 2
i SET SET SET SET %
- / ﬂ
i
* k
VALUE i WARNI“G‘ COMMENT TEXT ﬁ
a)

*
Value is arbitrary size array char string, or N#/P#
pointers depending on Attribute,.

P S

Figure A-2 rhysical Node Structure E

B T T S e NIRRT Pt S W BT 7 7 X A peoupp pee

R PRPIE- IR JPRPTRE WTTE L VI AP P L e A VR

|
|
|
|
i
Y
1
!

PNV T Y S T OGNy ST sy RT YT FESTYA Ty T e

NODE

)

PLANE

{-;TTRIBUTE

VALUE

N#/P# ct#

'
|~

VALUE

N#
N TYPE

P
P TYPE

A¥
AOK

h‘_

DOB
CMT

Fizure A-3 Logical Node Structure

on-R

VALUE

N#/p# c# ct
A-4

-

VALUE

DOB

B P T, V- N

) o R AT PR

i Y e kN

e ARt e R TR

R A S A i

‘,. v e e ha o e s G e e g A - T T g g iR oy S .
- o i T TR R VD T e T VIR e Ay T -
Bk b i

PERIPHERAL FILE ACCESS SUBSYSTEM

FUNCTIONAL DESCRIPTION

APPENDIX B.

Beiutitcioni Bttt

GENERAL DATA BLOCK STRUCTURE FORMS

The 3 general forms employed to store key/data entries are outlined below:

~IN| ™
KEY, /DATA, | KEY,/DATA ceevero | KEY_/DATA
218|8 1 1 2 2 o/ PATA
~IiN ™M
§ é § § KEY, /DATA, a KEY ,/DATA, | 1 KEYn/
~ % | DATA
n
- || |r - o« e Ir"‘ N =
I < , & < <
— [[[[N] R
b
BlB|E|E| My g8 " F |B] vniE2E E

The Block Control Words (BCW's) are defined as follows

Tl S3 S4 T3
BCW 1 | BNEXT [BT |SPARE] BENTRY |
BNEXT = next available word in this block
BT = block type = 1 indicating this is a data block
BENTRY = number of key/data entries in this block
H1l H2
BCW 2 | SPARE | BFRWRD |
BFRWRD = block nunber of next sequentially forward data block.
(In last data block, BFRWRD = 0).
H1 H2
BCW 3 | SPARE | BN |

BN =

this block's number

fcr all forms:

FORM A

FORM B

FORM C

e ———ry cm i r e en cEmrmwe mmwr s T wem AR Wy e S S SRS Seesies 7 cames

The Record Control Words (RCW'a) are detined as follows:

FORM A

FORM B

RCW

No RCW appears within the data block for fixed key and
fixed data records. An implicit RCW is defined in
various fields of the File Control Table for this file.
Note that for this structure, only one data cntry may

axist for a given key eatry (a 1 to 1 correspondence
exists).

Tl T2 T3

KLEN | SPARE| NKEY |

KLEN = length of following key in characters. Can be used
as an offset to data entry by converting to words,
rounding up, and adding 1.

NKEY = 'offset to next key in block' inwords. This is a
total count in words of the key and data entries

and increased by 1 to compensate for the RCW.

Note that the size of a variable length data entry
is computed as the difference in words between
'offset to next key 'and' offset to data entry',
This implies that on a retrieve operation for a
variable length data entry, the record returned

to the user could be up to 5 characters longer
than the original insertion size in characters

since we always return an integral number of words.

As in FORM A above, this structure only permits a

1 to 1 correspondence between key and data entries,

ks bt e

dim - -

rm’— ———— T I T e To i T f L e ¢ mo ST I ST g st 1 T T e S S £ TR gy ST s
1
1
,’ §
: FORM C
T1 3 S4 T3
RCW [KLEN _ |SPARE] DENTRY] __ NKEY |

KIEN = length of following key in characters (as in FOKM BE)

NKEY =~ ‘'offset to next key in block' in words (as in FCRM B)

PO SR

DENTRY = wnumber of data entries that exist for the following

key. 4

This structure permits a 1 to many correspondence

between key and data entries, Note that use of

b sttt

T e T Y S T T TR R T B e
"

this structur= carries the restriction that the

data entries muat be of the gsame fixed length.

= G

:, ;
| ;
i 3
: i
i 3
i |
k:]
a2 F
|]
. 9y
’ ;
’i

e AW

e s aktna inidis SCHMN % Bk ke ¢ a\E WL h s SR 27 cn G Bk ek MY sa bt e e midi it M

A, T Tl T i R S ——

(S ot IO i

AT T T

L

Lt v
PRRASASE L Piony

TET VT

e 4 -

e el

VT AR IR 0L S TR 3 e T YRY 3 e 1

okl -,

INDEX BLOCK STRUCTURE

.l | | |

< KEY KEY KEY

é § agn g 1 é 2 § n :

l o
Tl $3 S4 T3
BCW 1 BMEXT BT SPARE BENTRY

BNEAT = next avallabie word in this block
BT = block type = 2, indicating this is an index block
BENTRY = numbeér of 'kev' entries in this block

S L A T 1 2 A ARG S & e 5 1o

d2

H1
BCW 2 SPARE | FFRWRD |

BFRWRD = the number of the next physical block at the same

[F

depth level as this block. (A forward pointer).
(in last block of any level, BFRWRD = 0)

Ty

H1 H2
BCW 3 | SPARE | BN 1

BN = this block's number ﬂ

T1 33 H2
CW { KLEN |SPARE| 3BDOWN |

KLEN = length of followirs key in chavacters. Can be uvsed as an
offset to rext key by converting to words, rounding up,

and adding 1.

BDOWN = block number of next lower level btlock in which this key
range 1is further expanded., (At lowest index level, this

field points to the actual data blocke),

B-4

b A AT T T X T T T B P

«<—— Se umoys ST Io3ujod [paemioj, V 3
< se umoys ST rejulnd ,umop, V M
3

-s1ajuyod WSO[q ,piemi0oj, Due umop, 3yl Ti® Y3ITA ¥9puy 19497 ¢ ® gurjordep 2an3dnils 1e13uanbas xapur TaAST-TITNE ¥
1 17— [| rp—]
T: g1 vl | €1 pa— TH 11 *S 6 Mw)i) 9 | ¢ ﬁq_m z 11
a3
]
L g |
) Al ’ |
: ! | T
S1ylety mw_ by Ly | Syl x| B “

€1 6 muw .HM £

i
{]
1

rakinialﬁrlﬂu\,‘l. emtpenn e et T T LT BRI T

T e e SO e e s
T« A it i AR O e el el i iy

TSN YT cavs, o .

MY 1 UL e S5 b

e

A it e

. F L WP RN oy

SPECIFIC REY/DATA OKCANIZAT1ON TYPHS

There are 7 methods for ovganizing and manipulat ing key/data entries within the

access package, A description of each along with the general data block struc-

ture emnloyed follows:

1YPE 1

T 1 h
— o~ [aa} ' . i
& 6 a KEYl :DATAl KEY2 ! DATA2 Ceeea KEY_ + DATA
& | | & N 1 i

This type supports a fixed key and fixed data entry each of arbitrary character
length, Within the physical data block, both the key and data entries will each

be pousitioned to begin on a word boundary.

characters (1 word) will be padded with binary zeroves.

Entrinzs which are not multiples of 6

When inserting records Into this type file, the user will specify a 'key entry
The key and data entries can be thought

arca' and a separate ‘'data entry area',

of as being logically but not physically cornected:

TYPE 2

KEY

o~y
5 1
m

BCH 2
RCW

:

' DATA

b,

1

g

KEY2

' DATA

]
1

2

RCW

KEY
n

DATA

S

This type supports a variable length key entry with a fixed length data entry
Within the physical data block, both key and

each of arbitrary character length,

data entries will each be positioned to begin on a word “Houndary.

Entries which

are not multiples of 6 characters will be padded with binary zeroes.

The user must specify the maximum character length the key entry may aspume at

file definition time.

Each manipulative command also requires the charactei

length of the particular key entry being accessed as a formai argument.

Uses
FORM A

Uses
FORM B

e L T g 2 L e

TYPE 3
i s ¥
N KEY, ' DATA KEY I'DATA KEY ' DATA | U%e®
1 1 2] 2 | e . FORM B
EIEIE " e A gl ! n

This type supports a fixed length key entry with a variabtle length data entry
Within the physical data block, both key
Entries

each of arbitrary character length,
and data ontries will each be positioned to begin on a word boundary.
which are not multiples of 6 characters will be padded with binary zeroes.

The user must specify the maximum character length the data entry may assume
at file definition time, FEach manipulative command either requires the char-

acter length as a formal input argument or returns the character length rounded

to the next multiple of # into 4 formal return argument,

TYPE &
- N [+a} M I
: , Uses
! ' DAT KEY
§ § é § K.EYl : DATAI § KEYZ ;DA AZ é n ; DATAn FORM B

This type supports a variahle length key and vari.able length data entry each of
Within the physical data block, both key and data
Entries which are

arbitrary character length,
entries will each be positioned to begin on a word boundary.
not multiples of 6 characters will be padded with binary zeroes.

The user must specify the maximum character length for both key and data entries
at file definition time. Each manipulative command will require the actual key
length in characters as a formal input argument and either actual data length

in characters as an input argument or will return the character length rounded to

the next multiple of 6 into a return argument,

S ey ool anky 2 S aek it

A it i LR S - el el

U S i e i, s e i 3l _t 1

i A A i

S —

aid

T T e e o . —— e B .
J ———— TR e——e——— = ST T T e TIEET ETe—— e ——

YeE s
v T M T
U PV S DATA " DATA "DATA
= ;r S L. 2 N Uses FORM A
2|2 B ke - fkevy KEV, 7

This type also supports a fixed key and fixed data entry each of arbitrary length
#s in TYPE 1, However, the data entry will be poaitioned non a character boundary
inside the pnysical block., Only data entrics which are not multiples of 6 char-

acters will be padded with binary zeroes,

When inserting records into this type file, the user will specify a single 'key/
data entry area'. In this area, the user will have packed the key and data
entriee as a contiguous string of characters. The access package will take and

position this contiguous string in the physical data block.

For retrieval cowmands, the access package will locate and unpack the string in
the physical bleck and return just the data entry portion into a user defined

data return area as is normally done for other type files.

Al Al

- tntln

-

et i

ek

ks

v

Ei e S

.3 ey 3

DA

TYPE 6

— (e4] J T T T T T T - . ‘
KEY,! DATA ! DATA; !DATA | I KEY /DATAt ! DATA ises

G588 I'T'] E | m i n : FORM C

Ll il B il]) | M Y ' i

This type supports a fixed key entry with a multiple number of fixed data entries,
Within the physical data block, the key and each data entry are positioned to begin
on a word boundary. Entries which are not multiples of 6 characters will be padded

with binary zeroes,

Each data entry is uniquely identified by a role code number assigned by the user
(designaced in figure by Ri)' ™ere may only exist 1 data entry/role code/key
entry. The role code is a 4 bit field (left justified) embedded in the first
character of the data entry, For this reason, the uscxr must noc use therse bits as
user storable datra bits. The access package will merge the user defined role code
number into these bits when storing data entries and strip off these bits when
returning a selected data entry to the user. The data entries are stored in the
data Llock in the order in which they are received. Sequential ordering according

to increasing role code number is not maintained.

Note that all role code data entries must be of the game fixed size specified at

file definition time,

TYPE 7
-] o o 1] { T T T T
z|elsl & KEYI! DATA IDATA: esves | DATA veue El KEYn | DATA ! .e.. | DATA Usss
5)
m | ;A m) piﬂ 1 g‘gj Ff;ﬂ = Ajﬁﬂ J & FORM C

This type supports a variable length key entry with a multiple aumber of fixed

data entries. The same comments apply h2re as in TYPE 6 above.

RARE

e

g

s e 3 Mo AR L 3 R

if 2

T TR T o R R T

e

T

ACCESS PACKAGE PRIMITIVE COMMANDS

The following commands are used independently of file organization:

1) DEFNFILE (FCT. Data blk size. File Type, Key leungth, Data langth, Role

Coass Flag << , Index Filename, Index blk size >)

This command defines the organication and parameters for the file
named in the FCT,

FCT

Data
blk size

File
Type

Key
Length

Data
Length

The File Control Table defined and residing in the usar's
wemory area. It contains the name of the file to be
defined in its first 2 words.

The size in words to be allocated for the physical data
blocks. This must be a multiple of the disc prep size
(typically 112 words).

Specifies the organization of the file according to the
type of key and data entries to be processed.

1 Fixed kev, fixed data
2 variable key, fixed data
= 3 Fixed key, variable data
4 Variable key, variable data
5 Fixed key, fixed duta packed

Specifies either the actual key length in characters for
fixed key files, or, the maximum key length for variable
key files. No key length can exceed 30% of the total
length of the physical index block.

Specifies either the actual data entry length in characters
foc fixed date files, or, the maximum data entry length

for variable data files. No key/data ertry pair may have

a total length which exceeds the physical data biock size.

.B-10

- - o s e
T Ry T O L R L L I ST

SRS el Mot) Lag Ko L A A

JRRTPRSOFSHVT R APPSR

Role Specific s whether the fila wiil or will not have rcole
Codes -
Flag codes witnfn {t.
= 0 no rcle cedes in fila)
i
$£#0 role codes in file i

eamirln b

If role codes are indicated then 'File Typz2' st be
=1 or = 2. The data entries must be fixed in length

with each data entry equal in size to all other data

3
i
i

|

H

i
4
:
b

entries.

<, Index filename, Index block size

These are optional parameters which specify that the

index blccks are to be stored in a separate physieal

file whose 12 character name is giver in 'Iundex filename'.

'Index block size' specifies t‘he size ir words to pe

allocated for the physical index blocks. This nust be .

a multiple of the disc prep size.

If these two parameters are absent, the index blocks

will e embedded in the same file as the data blocks.

e NG S i

The index block size will be made equivalent to the data

block size.

2) OPEN (FCT, READ/WRITE Flag) § f'\%

This command permits a user access to a particular file.

4 FCT The File Control Table defined and residing in the user's ? 3
k memory area. It contains the name of the file to be i i
opened and accessed in its first 2 words. i

READ/ Specifies read/write mode for this file.
WRITE
Flag =0 reading and writing permitted
i =1 only reading permitted
E
l
: B-11

3) CLPSE (FCT, Inform araa)

This commsnd closes a particular file and inhibits further access
to that file by the same user without a new 'OPEN'.

FCT The File Control Table
Irn.form A seven word array residing in the user's memory area é
area)

into which statistical information will be placed. The
infem-nation will be relative to the actual creation of

the file.
The Inform ares will contair the Ycllowing:

word 1 The :total number of data and index blocks fu the file
iv the index blocks are embedded in the file, or, the
total ..umnber cf data blocks if the index blocks are

mainiained in a separate file.

S MmO i T %P i Sl e

word 2 The total number of index blocks.

word 3 The total number of data block overflows thus causing a

data biock split.

word 4 The total number of index block overflows thus causing

an index block split.

e T

i word 5 The total number of data entry records read.
i K
E word 6 The total number of data entry records written.,

word 7 The total number of existing data entry records.

B-12

e Salle) e ohedl = K

4)

3)

6)

YR T e S T S T

INFORM (FCT, Inform arecs)

OFENAP

CLOSEAP

This command gives the usar information about a particular file

relative tu the execution of the user's last 'OPEN' command.

FCT The File Control Table

Inform The description i{s given under °'CLOSE'
area

numbers relative to the user's last 'OPEN',

The contents of the 'inform area' will be a set of
At

'OPEN' time, these counters are reset to zero and

incremented/decremented for each user action on this
file. Note that word 7 should be interpretad as the
number of insertions and deletions made to the file.
If this number 1is negative, then the user made more

deletions then insertions.

This command 'opans' the accass package to the usar. It sets

up contingency processing linksges for the us~r.

execute this command only once before all other access package

commands.

This command ‘'closes' the access package to the user,

all iocked records on all files that the user may have neglected

to close,

terminating his jobh,

A e AVIRY S A R M A W A O 50, M AT 170 4

The user should execute this command once before

B~13

The user must

Tt clears

R
p

i

ki

o 2 e A R

! 2 s bl e

il M i &

e i RS 2

T TN

e ——

The follows: p comm: (¢~ have parameter lists which are dependent on the file

organization, They are:

1) RDRAN (FCT, Key entry area, < Key size . > Data entry area <, Data size >
<, Role >)

This command retrieves a data entry for a given random key,

FCT The F.le Control Tablce
Key The location in the user's memory containing the
entry
¥ search key,
area
< Key The character length of the key if a variable hev file,
Size, »
Data The location in the user's mumory where the data entry
entry .
Y will be placed,
arca

< ,Data The location in the user's memory where the size of the

size > .
® data entry (rounded to the next highest multiple of ©

characters) will be placed for a variablce data tile,
<, For a file with role codes, the role number ¢7 the
Role >

data entry to be retrieved,

-

2) RD SEQ (FCT, Key entry area,<Key size,> Data entry arca *, Data si.e™)

This command retrieves the data entry for the next sequentially

ascending key for a given random key,

FCT The File Control Table

Key The location in the user's memory containing the key which
entry causes the search for the next ascending key. The new key
area

when found will be placed in this area.

< Key The character length of the imput key. This is replaced

size, > by the character length of the retrieved key for variable

key files.

Data The location in the user's memory where the data entry will
entry be placed.
area

B-14

L N N R T L T R TR o2 S Gl el il & s bkl o i

e g

et e e A

Sn e,

L Dty b oy SR TS TR SRS o S R TR ST e e T e o ey sy oo
] ST o T FTT A RASTT an ~ -
. TP T B L

< The location in the user's memory where the size of the
Data) ,] 4
q?y;A> data entry (rounded to the next highest multiple of 6

characters) will be placed tor a variable data f{ile, 3

3) RDLISTRAN (FCT, Key entry area,~ Xey size, > Data entry area, # of entries)

This command retrieves the data entries 1or all the roles that may ;
i
exist for a given random kev. i
FCT The File Control iuable
Key The location in the user's memory containing the search 3
i entry 3
; key. b
area : ;
!
Key The character length ot the key for a variable key file. ;
sive, - i
v 1
j ;
| i
Nata fhe location in the user's memory where all the data
entrv . 3
entries found will be placed,.
area
@ of The location in the user's memorv where the number of
4

antries .
data entries found and returned to the data entrv area

will be placed.

bl

4) "DLISTSEQ (¥CT, Key entry area, < Key size,> Data entry area, # of entries)

L nlh b wELAE S G

This command retrieves the data entries for all the roles that may

]
k exist for the next sequentially ascending kev for a given random key. 3
FeT The File Control Table
Kev The location in the user's memory containing the key
entr
areay which causes the search for the next ascending key. The

new key when found will be placed in this area.

- Key The character length of the input key. This is replaced

size,=> by the character length of the retrieved key for variable

key files.

bk i e e i T - e g e e PR
: v Te I it I o
Bdal i T Y s T A P B eV T IW R TUr e e - o e

i Data The locatior in the user's memory where all the data
| entry entries found will be placed,
area
of The location in the user's memory where the number of

entries data entries found and returned to the data entry area

will be placed,

5) RDRANLK (FCT, Key area,<Key size, » Data arca <, Data size™> <, Role>)

6) RDSEQLK (FCT, Key area,-<Key size,™> Data arca <, Data size>) E
I RDLISTRANLK (FCT, Key area, <Key size,> Data arca, # of entries)

8) RDLISTSEQLK (FCT, Key area,<Key size, > Data arca, # of entries)

These four commands have paramcter lists which are defined in the

T TR
e in o ais b i e
WENPLTINR

same manner as the standard retricval tfunctions 1 through 4, They

also perform the same function but, in addition, a check is made

i to determine if the retrieval entry is locked by other users, If !
the entry is locked, it is not returned and an indication of this
| is passed to the caller, If the entry is not locked, then it is

returned to the caller and a logical lock is placed on the key

it (il |

entry, Each user may place an arbitrary number (defined at system

generation) of logical locks on ecach file, A lock can only be

removed by performing a MODIFY or DELETE command utilizing the 3

locked key, The same user who initially locked the entry must .

¥ unlock it,

3
] The normal retriceval commands 1 through 4 do not check and do not

set locks. Thus, they act as simple "inquiry only" requests,

9) INSERT (FCT, Key entry arca,<Key ¢’.2,> Data entry area <, Data size>
<., Role>))

This command adds either a key/data entry pair or a data entry : f;

qualified by role number to a file,

FCT The File Control Table

B-16

r
|
|
|
i
|
|

N

" Dy

o v ”

T

Key
entry
area

< Key
size, >

Data
entryv
area

<, Data
size =

<., Role>The role code number that is to be stored (and subsequently

T OIS o™ L N o N O T s T e 42 =

The location in the user's memeccy area containing the
key to be inserted, or iun tue case of a fil:» with rele
codes, possibly the search key., If a reie cude is
specified in the parameter list, a search is made to
find the key within the file, 1f the key s found, then
a new data entry insertion only is attempted, If the
key is not found, then the key is also inserted as well

5 the specificd role code data entry,

The character length of the new key if a variable key file.

The location in the user's memory containing the new data

entry.
The character length of the new data entry if a variable
data file.

used as a secondary key) along with the new data entry if

the file is defined as one having role codes.

NOTE: See description of TYPE 5 file orgenization.

10) DELETE (FCT, Xev entrv area<:, Xey size> <2, Role >)

TR SN TIPS T DR A

This command deletes either a key/data entry pair or a data entry

qualified by role code number from a f{ile.

FCT

Key
entry
area

<<
Key
Size >

St -l st

The File Control Table

The location in the user's memory area containing the

search keyv.

The character length of the key entry if a variable key
file.

R-17

O T S A S

b o i p ki bk b it e Sy it) e AT e o o

AT i R

Lot oot Kok el

R

W g iy s ok

s P ¢ ra T

Role >

The data sni.ry specified hy this role code number is to
be deleted for a file defined with role codes. If more

than one deota entry exists for the given key, then only

the specified role data entry is dealeted. If tihe only

data entry that exists for the given key is that which {is

specified by the role parameter then that data entry and

the key entry are both deleteaq.

11) MODIFY (FCT, Key antry ares, < Kay size,> Data antry aresa <, Data rize>
< , Role>)

This command updates a data eutry possibly specificd by a role

number for a given random key.

FCT

Key
entry
area

< Key
size, >

Data
entry
area

<,
Data

size >

Role >

The

The
the

The
key

The

File Control Table

locition in the user's memory area containing
search key.

character length of thc key entvry if a variable
file.

location in th: user's memory area containing the

xew data entrv vhich will be used to overwrite the old

data entry.

The character length of che rew dava entry if a variable
data file.

The role number of the old daca entry to te updated if a

role code file.

B-18

PO

o

M et e+

i £

R TR AL Y T e 2 N Y a1t

r‘. i G s L R R S Stk i S I AR ML i

FILE TYPE VEPSUS APPLICABLE (OMMAND LIST 3

The following is a2 list of commands with their respective parameter lists for

each fila type:

ALL TYPES ,
DEFNFILE (FCT, Data blk size, File Type, Key lengtk, Data length,]
Role Flag <, Index Filename, index blk zize) :
1
OPEN (FCT, Read/Write Flag) ﬂ
E
E:
CLOSE (FCT, inform area) 3
i INFORM (PCT, Inform area) 4
OPENAP]
¥
CLOSEA? E
TYPE 1

RDRAN (FCT, Key entry area, Data entry area) '
RDSEQG (FCT, Key entry area, Data entry area) E

RDRANLK (FCT, Key entry area, Data entry area)

E RDSEQLK (FCT, Key entry area, Dats entry area)
3 INSERT (FCI, Key entry ares, Data entry area) :
. DELETE (FCT, Key entry area) 3
MODIFY (FCT, Key entry area, Data entry area) ;
E
TYPE 2 1
RURAM (FCT, Key entry area, Key size, Data entry area) ;
RDSEQ (FCT, Key entry crea, Key size, Data entry area) ;

RDRANLK (FCT, h¢y entry arza, Key size, Data entry area)

RDSFQLK (¥CT, Key entry area, Key size, Data entry area)
INSERT (FCT, Key entry area, Key size, Data entry area)
DELETE (FCT, Key entry area, Key size)

MODIFY (FCT, Key entry area, Key size, Datu uontry area)

St Bk

B~19

o nd

TRy

e e

H
|

RDRAN (FCT, Key entry arvea, Data
RDSEQ (FCT, Key entry area, Data
RDRANLK (FCT, Key eatry area, Data
RDSEQLK (FCT, Key entry area, Data
INSERT (FCT, Key entry area, Data
DELETE (FCT, Kev entry area)

MODIFY (FCT, Key entry area, Nata

RDRAN (FCT, Key entry area, Key
RDSEQ (FCT, Key entry area, Key
RDRANLK (FCT, Key entcy area, Key
RDSEQLK (FCT, Key entry area, Key
INSERT (FCT, Key entry area, Key
DELETE (FCT, Key entry area, Key
MODIFY (FCT, Key entry area, Key

RDRAN (FCT, Key entry area, Data
RDSEQ (FCT, Key entry area, Data
RDRANLK (FCT, Key entry area, Data
RDSEQLK (FCT, Key entry area, Data
INSERT (FCT, KEY/DATA entry area)
DELETE (FCT, Key entry area)

MODIFY (FCT, KEY/DATA entry area)

RDRAN (FCT, Key entry area, Data

entry area, Data size)
entry area, Data czize)
entry area, Data size)
entry area, Data uize)

entry arca, Data size)

entry area, Data size)

size, Data entry area, Data size)
size, Data entry area, Data size)
size, Data entry area, Data -ize)
size, Data entry area, Data size)
size, Data entry area, Data size)
size)

;ize, Data entry area, Data size)

entcy area)
entry area)
entry area)
entry area)
See TYPE 5 file description

entry area, Role)

RDLISTRAN (FCT, Key entry area, Data entry area, # of entries)

RDLISTSEQ (¥CT, Key entry area, Data entry area, # of entries)

RORANLK (FCT, Key entry area, Data

entry area, Role)

RDLISTRANLK (FCT, Key entry area, Data entry area, # of entries)
RDLISTSEQLK (FCT, Key entry area, Data entry area, # of entries)

B-20

INSERT (FCT, Key entry area, Data entry area, Role)
DELETE (FCT, Key entry area, Role)
MODIFY (FCT, Key entry area, Data entry area, Role)
TYPE 1
RDRAN (FCT, Key entry area, Key size, Data entry area, Role)
RDLIS{RAN (FCT, Key entry area, Key size, Data entry area,
of entries)
RDLISTSEQ (FCT, Key entry area, Key size, Data entry area,
of entries)
RDRANLK (FCT, Key entry area, Key size, Data entry ar2a, Role)
] RDLISTRANLK (FCT, Key entry area, Key size, Data entry area,
; # of entries)
g RDLISTSEQLX (FCT, Key entry area, Key size, Data entry area,
; # of entries)
L INSERT (FCT, Key entry area, Key size, Data entry area, Role)
? LELETE (FCT, Key entry area, Key size, Rolz)
; MODIFY (FCT, Key entry area, Key size, Data entry area, Role)

B-21

T

NS Ea et o 1}

FRROR CODES

B e s s R

The following codes comprise a complete list of error conditions:

Access package alreadv {nitialized. Request ignored.

Access package tot fnftialived. Run terminated.

Rugue st iwored.

Tncorrect number o! arvuments for {unction. Request

The tile has been detined by another concurrent run

is being made by the cailing
Request ignored.

Data block size exceeds maximum. Request ignored.

Kev length size exceeds maximum. Request ignorad.

Data length size exceeds maximum. Request ignored.

The key/data format tvpe does not exist. lequest

Role codes not permitted for key/data type defined.

Data block size less than minimum. Request ignored.

Key length size fess than minimum. lequest ignored.

Data lengtn size less than minimum. Request ignored,

Index file not assigned properly or internal CSF$

Index block size exceeds maximum. Request ignored.

Data block size not a multiple of disc prep size.

Index block size less than minimum. Request ignored.

Index block size not a multiple of disc prep size.

Data file not assigned properly or internal CFS$ -

Error # ause
1.
2.
3. No such function,
4.
ignored.
5.
or a second attewmpt
nrogram to redefiune the 1ile.
6.
7.
8.
G.
ignored.
10.
lequest ignored.
11.
12.
13.
14.
syntax error. Request ignored.
15.
16.
Request ignored.
17,
18,
Request ignored.
19.
syntax error. Request ignored.
20,

i RS RO Y. -

File contrel table full indicating maximum number of

files are open.

B--22

b R TV AT st m«.:..:' et

Request ignored.

EFSHEL

Al A ATASEET Mt R AL AR R POVAPT U T M IIAT T T

Error #

IR BT R

o

21,

22.

23,

24,

25.

26,

27,

28.

29.

P oo SR AR b ol s S8 o R - L Db SR NS, S LN .- b R >

IV, 205 T S, X T TR ST MW A A W AN, (7 oW 0 S e e, T Ty g e o

31.

32.

33.

34.

35.

36,

37.

BAOEE G S R i o ot AN S R Y ST

Cause

No buffer space a-ailable for file. Request ignored.

Acttempt to close a file which is already closed.
Request ignored.

Attempt to close a file which has not been opened. 3
Request ignored. 3

The file cannot be accessed since it no longer ap-
pears in the internal File Control Table. Probable
system software malfunction.

No statistics gathered since the file has not been
opened.

Attempt to read a file which has not been opened.
Request ignored.

Role code argument out of range. Request ignored.
The file is empty. Request ignored.

Block number read not block number desired.
Integrity of file destroyed.

Block type read not block type desired. Integrity -
of file destroyed.

No record exists for the giveu key.

A RDSEQ request not permitted on a file containing
role codes.

A 'Reed List' type request not permitted on a file
without role codes.

R N

End of file reached while performing a sequential
read.

A i e

Attempt to 'change' a file declared 'read only'.

B T

File is being initially loaded. No requests nermitted g
by other users. 'Insert' only by originator of load. 8

1
Attemp* to '1sert a key/data record for which the j

key portion already exists. Also for a file with
role codes, the key and role coce already exist,

B-23

F‘?’t".?’m‘.‘?."-tﬁ"t?’f‘ TR TET T NSRS I AN 2 o SRR M S 6 NG g DT IR T T S T R A R T Sy L TR L R ST W YT TR TR R T TR T 1

Error # Cause
»

38. Attempt to insert a key/data record whose total

length exceeds the data block size. For a file
with role codes, the total length includes all 4
existing role code entries. @
39. A non-ascending key was given during an iunitial , %
load insertion. Request ignored. 3
40. Attempt to open a file that is already open. f
Request ignored. E
i
41, Record is currently locked by another user. 3
) 42, Maximum number of users are active. Cannot 5
support another. E
f 43. User is not active within the access package. 5
Request ignored. ;
44, Maximum number of records already locked by this 3
b user. Record returned Lo user but not locked. y
|
3 A
i ;
1 i
X
1 i
X "
!
/5 o

B-24

PR L NPT I YR

a2ty AR R G SRR fh b o e oo v a L Sl Ty B it

ACCESS PACKAGE TNTERNAL TABLES AND CONTROL BLOCKS

The following is a layout and description of the various core tables and
control blocks used by the peripheral file access package (PFAP).

1. THE PFAP COMMON FILE CONTROL TABLE OR PFAPFCT

the variable MAXFCT at asserbly time, Each entry is defined to be of size
FCTSZE. Access into the table is controlled by a "lock" word (a Test and

PFAPFCT LOCK WORD
ENTRY 1 FCTSZE
F ENTRY 2 FCTSZF
3
3 3
; F
. N ;
& ° f
i .
ENTRY MAXFCT FCTSZE i
i
Table B-1 The PFAPFCT
The PFAPFCT shown in Table B-1 is used by the access package to ;
control the activities on each data file which is "opened" for access by any i
user, The table is partitioned into a fixed number of entries determined by @
3
‘?

3et '"queue' type word). Each new file which is opened by a user is enteved
into the first available '"entry'" space in the PFAPFCT, When a file is no

longer needed by any user, its entry position is c¢leared for re-use,

Table B-2 is a layout of an individual "entry'" in the PFAPFCT,

B-25

Y,

Y ..'u;,‘».z‘ PADEIRL IS A KI2% B el Aad o ikt b N IR 2 Atk i € Bt RS el BN vablbd e S Nl A Sl e

10,0021 A Lt G 2o RIS M L VAT 192 5 S LA Ml il 133 bt 5

B ey

T P TR L

'THIS ENTRY' LOCK WORD

DATA
FILE NAME

1/0
PACKET
AREA

NUSERS

SPARE | FT

DBLSZE

I1BLSZE

W 0 N O W = O

R
[

SPARE KLEN

DLEN

—
o

OFNXKY

DBLSEC

IBLSEC

NN e e e = = e e e
O W O N W N

FCTSZE

NBLKS

NIBLKE
NOBLOV
NIBLOV
NREAD

NWRITE
NRECDS

NHIGH

NLEVEL

INDEX
FILE NAME

1/0
PACKET
AREA

LASTIBL

LASTDBL

HIBUFF

SCRBUFF

AREA

SPARE DATBUFF
t£] seare | 1sze | 1rkyapr
ILRUNID
RECORD
LOCK

TAELE B-2

B-26

Layout of an entry in the PFAPFCT

Ty T e L Mg VAo Y T A Ty I TR 2T BT,

T

ol it v~z sidle n ML e

3
3
E:
A
A
A

SRS R

4

S et o s “ne el TS ST s - ik it

o

T T T P R IR Y R T

T NI ST A NI Y

Definitions for variable names shown in the "PFAPFCT ENTRY"

layout are as followa:

NUSERS

FT

DBL3ZE

IBLSZE
RC

KLEN

DLEN

OFNXKY

DBLSEC

IBLSEC

NBIKS

NIBLKS
NDBLOV

NIBLOV

NREAD

number of concurrent users who have this file
currently open.

file tyge, a wumber from 1 to 7 descr.bed under
"General File Organization" and DEFNFILE
primicive command. (6 hits)

physical data block size in words. (12 bits)
physical index block size in words. (L2 bits)

role code flag, a 1 bit field when set indicates
file has role codes and FT field must be 6 or 7,
when reset indicates file has no role codes and

FT may be 1 through 5.

The maximum key length in characters for variable
key files (FT = 2, 4, or 7) or the standard key
length for fixed key files (FT = 1, 3, 5 or 6).
(12 bits)

The maximum data length in characters for variable
data files (FT = 3 or 4) or the standard data
length for fixed data files (FT =1, 2, 5, 6, 7).
(12 bits)

Used as an "offset to next key" length in words

for files with FT = 1 or 5. Since no Record
control Words are stored in data blocks for these
files, this field provides a ronvenizent incremental
value to skip from one key/data entry tc another.
(12 bits)

number of Fastrand sectors necessary to hold a
physical data block. (12 bits)

number of Fastrand sectors necesséry to hold a
physical index block. (12 bits)

total number of data and index blocks within a fiie
if the index blocks are embedded within the date
file or, the total number of data blocks if the
index blocks are stored in a ssparate index file.

total number of index blocks for this file.

total number of data block overflows (wnich caused
a block split to occur).

total number of index block overflows (which caused
a block split to occur).

total number of key/data entries read.

B-27

Aika el R R AR S A

s

e

TN T ST ANy T e T e

LR SRy

.

.

2

-]
hﬁ&um&v&r.&l@._u..; PR L R o SRS

NWRITE
NRECDS
NHIGH
NLEVEL
LASTIBL

LASTDBL

HIBUFF

SCRBUFF

DATEUFF

IL

ILSZE

ILKYADR

ILRUNID

total number of key/data entries written.

total number of data entries within the file.
the number of the highest level index block.

the number of index levels supporting this file.

the number of the last accessed index block which
resides in the scratch index buffer. (18 bits)

the number of the last accessed data block which
resides in the data block buffer, (18 bits)

address of the highest level index block buffer.
(18 bits)

address of the scratch index block buffer.
(18 bits)

address of the data block buffer. (18 bits)

"inttial load" flag, a 1 bit field when set
indicates this file is being initially loaded by a
unique user.

computed "initial load" size in words. This value
is dependent on DBLSZE. The standard load factor

percentage is defined by LODFAC at assembly time.

Then ILSZE = DBLSZE*LODFAC. (12 bits)

relative address of the last key entered in the

data block buffer. This field is used when checking
for sequentially ascending keys at initial load
time. (12 bits)

the generated '"runid" of the user who initiated the
"initial load" of this file. All other users are
prohibited from performing any access to this file
during an "initial load."

Table B-3 is an expansion of the layout of the RECORD LOCK AREA within

» an "entry" of the PFAPFCT.

LKENTRY

LKBLCK

MAXLOCKS

MAXUSERS

the sequential position number within the data
block of the key that is locked. Also known as

the entry number. For a role code file, the key
lock extends across all data entries stored against
the key. (12 bits)

the number of the data block in which the locked
key occurs. (18 bits)

maximum number of records that may be simultaneously
locked by any user on any one file. This i&a a
variable defined at assembly time and extends across
all files opened to the access package.

maximum number of concurrent users that can be
supported by the access package. This is also a
variable to be defined at assembly time.

B-28

s i

ik,

1

31 LKENTRY | sPARE | LKBLCK

. USER #1

* LOCK Area 3

30-MAXLOCKS - :

30+(MAXLOCKS+1) LKENTRY | SPARE | LKBLCK N E

1

k|

| . USER #2)

; . LOCK Area ‘

30+(2*MAXLOCKS) - A i:

s . i

. 1

L . g

; 2

3

| :

30+(((MAXUSERS-1) LKENTRY | SPARE | LKBLCK i

*MAXLOCKS)+1) 5

. USER #MAXUSERS §

. LOCK Area :

: FCTSZE ' d

3 !

: TABLE B-3 z

;)

A Lock Area within an entry of the PFAPFCT]

] ‘
1
|

B-29

L S A I e iR et e A semnsa AN

Bt hilic aabadi o tis) acs i LI

FCTSZE - total size of an entry in the PFAPFCT. A variable
defined at assembly time as FCTSZE = 30 +
(MAXLOCKS*MAXUSERS)

An entry in the PFAPFCT is considered to be available if the Data
Filename words contain binary zeros. The ''next available entry" is considered
to be the first entry encountered which has its Data Filename words set as

vinary zeros.

If the index blocks are embedded in the data file, then the Index
Filename words will .. ntain the same name as the Data Filename words. The 1/0
accesges will still be controlled through the Index File packet as if the index

filename were unique.

Access to each "entry" in the PFAPFCT is controlled by a ''lock'" word
(a Test and Set ''queue' type word). Thus there are two levels of control into

the PFAPFCT; one at the table level to prevent conflicts when deleting and

inserting whole "entrie« and one at the "entry" level to prevent conflicts
between concurrent use.. 1 the same file.
2, THE RUNID TABLL

The RUNID Table is i list of the generated user '"runid" names obtained
from each user's PCT. Each user who performs an OPENAP command has an entry
made into the next availab.. slot in the table. Each user is removed from this

table when he performs a CLOSEAP.

For commands involving testing and/or setting of record locks (such as
RDRANLK, DEIETE, etc.), the user's RUNID is obtained from his PCT, found in the
RUNID table, and the resulting relative table location used as an index into the

"record lock area' of the PFAPFCT entry for the file being accessed.

Access to the RUNID Table is controlled by a '"lock'" word (a Test
and Set ''queue' type word). 1t is used to prevent conflicts when users are

added or deleted from the table.

Table B-4 is a layout of the RUNID Table.

B-30

el Al WAL ot e 0% M Bk s e b A S A o e i ca R

R et e e A : ¥ 7 "

:
K
3
4
4
¢
1
5

Tl

P S W 1 o M N IO

0 RUNID TABLE LOCK WORD
; 1 GENERATED RUNID

2 GENERATED RUNID y
. :
[L]

r,‘
-
* L]
i

£imiea
A

.
%
; .
g
. 3
3 4
o
¢ %

MAXUSERS GENERATED RUNID

TABLE B-~4 i
The RUNID Table :

I T,

B-31

bt d T MR A R hEY A VG MBI 8 AN 1

LR B

3. THE_COMMON BUFFER TABLE OR CBT

The CBT functions as a contiguous buffer pool cut of which eazh file
that is currently opened has assigned to it an area large encugh tu support
7 ind=x block buffers and 1 data block buffer

Table B-% shows the layout of the CBT,

LASTCBT = size in words of the CBT defined at assembly
time. It should be computed as LASTCBT =
MAXFCT*3*BUFMEAN where MAXFCT is the maximum
number of file entries in the PFAPFCT and BUFMEAN
is the probable mean size of the deta and index
blocks to be used within all files.

4, THE AVATLABLE BUFFER TABLE

The AVLBT is a table of addresses and word lengths defining those areas
in the CBT which are available for use. When a file is closed and no longer
needed for any other user, the buffer space must be returned to the pool. Since
the buffer space was allocated on a first in, first out basis, the CBT is
likely to become fragmented if files are closed (and not needed by other users)
on a random basis. Initial buffer allocation is controlled by a variable called
NEXTCBT which contains the next available relative CBT address (initially 0).

If the difference bvetween LASTCBT and NEXTCBT is large enough to hold the
requested buffer needs, then the absolute CBT address is generated and returned
to the caller. NEXTCBT is then increased by the number of words just allocated.
However when space is returned NEXTCBT cannot easily be wodified, so the AVLBT

i{s used to point to the fragmented free space. If the difference between LASTCBT
and NEXTCRT is tvo small to satisfy a buffer request, then the AVLBT is searched
to find an entry whose "# of words" field is large enough to satisfy the caller's
request The appropriate address is passed to the caller and adjustments made

in the AVLBT entry to compensate for the size needed.

When space is returned to the AVLBT, an attempt is made to find an
entry whose "next available CBT addresz" field is ccntiguous to the "ending
buffer address" of the space being returned. If such an entry jis found then the
AVLBT entry is modified to include the new space being returned.

R —— e
e i e+ e e Wi

5
3

VL St VMt Lkt A s ik andd 10T s 45 L0

it

e © o T AR TN TR e

. BUFFER
. POOL
. SPACE

LASTCBT=1
LASTCBT

B-33

T B e L e T o s e e L sk s o R B e T S et s L Pt A e il i

TABLE B-5
The Common Buffer Table

Aty

Tellhikwen 1 sl aiestans]

ot e e e d R,]

Tt ket ek

e b it st

N N T T R N L P N T L ST S BT T T e T

Access to the AVLBT and in general to allocation and release of
space in the CBT is controlled through a '"lock' word (a Test and Set ''quaue'

type word).

Table B«6 is a layout of the AVLBT,

Definitions for variable names shown in the AVLBT layout are as

tollows:
AVWRDS = qnumber of available words in the CBT fragmwent
pointed to by NXAVGBT. (18 bits) :
b
NXAVCBT = relative address in the CBT of the next available 3
fragment. (18 bits)
AVLBTSZE = maximum number of entries in the AVLBT. This
variable is defined at assembly time.
5. THE OVERFLOW BUFFER TABLE OR @BT

The OBT is used as a working buffer area whenever a data block or

index block split occurs due to insertion of data causing an overflow situation.

The OBT is also used as a I/0 packet area for DEFNFILE commands.

i
3
]
1
4
4
i
i

Access to the OBT is controlled through a '"lock" word (a Test and
Set "queue' type word). The lo:k word is generallv used to queue more than
1 block splitoccuring concurrently. The size of the OBT is defined at assembly
time as OBTSZE = 2*BUFMAX where BUFMAX is the maximum size in words of any

index or data block likely to be defined for any file.

Table B-7 is a layout of the OB1,

! 6. THE OBT OVERFLOW AREA

o R

The OBT has an overflow ar-3 which again is used during the block
split procedure. This area is used to hold the Record Control Wcrd(s) (RCW)

ard key(s) which need be insaerted into the next successively higher index block.

A LA R i B

At the data block level, a maxiwum of 2 keys may be entered into this area while

at the index block level, only 1 key may be e¢ntered due to the size restrictions

placed on key and data lengths.

Table B-8 shows a layout of the OBT OVERFLOW AREA,

¥ B-34

canlatio oot

AVLBTSZE

AVLBT LOCK WORD

AVWRDS

NXAVCBT

AVWRDS

NXAVCBT

AVWRDS

NXAVCBT

TABLE B-6
The Available Buffer Table

B-35

r e B e E e e R
i

0 OBT LOCK WORD g
1
WORKING %
BUFFER
SPACE
3
) OBTSZE-1 :
3 OBTSZE
' TABLE B=7
i The Overflow Buffer Table
,I!

2 BLOCK E
1 SPLIT ;
?' KEY ﬁ
ﬁ SAVE]

AREA :

OBTOVSZE-1
OBTC '7E

T

Pt

NKYSAV
SAVSZE
RCWADR

i sk

TABLE B-8
The OBT Ovaerflow Area

B~36

T R VT Y TR L R R TR R T T G TR T IR TS U 2T ¢

s R o R Y R O U s W A VT Py A ey S W am asd e SR

pefinitions for variable names are as follows:

U (YRET T ARan AT, e

NKYSAN = npumber of keys being saved in the area while a
block split is being performed.

SAVSZE = total number of words (poth key(s) and RCW(s))
being saved during a block split.

RCWADR = relative address of the RCW in an index block
" after whose associated key the ''saved key' should
be inserted.

OBTOVSZE = total size in words of the scratch save area.
This is defined at assembly time and must be twice
the size of the longest key that is likely to
cccur in any file.

ST W MRS TN STy Qe v

o
=

B-37

e i S S SNE

S AR Tivwn o it ST s

Lok o B G i daiey

- AT TR T o Aol Ubeirie abpdo sy o arionncov cEaL U UASIEMBCRAW AU it gt B3 tea e Sabu AR EA
F- 24 cLanuititt s L gt At 3 il Sudic e S G TR T R YT R T I A RO TR R A N" PR TR y

7. THE USER'S FILE CONTROL TABLE OR FCT

Each user who 1is manipulating a [ile via the access package needs an
FCT within his own core area. It is used to hold the Filename, the relative

statistics pertaining to the usage of this file, and certain internal control
bits.

Table 3-9 shows a leyout of the USER FCT.
Definitions of the variables shown In Table 8 are as follows:
RSVD = the reserved control bits by which the access

package can determine what the state of the
file is (€& bits)

via any read/write request.

é = 0 implies file has not been "opened" at all, there- ;
ﬂ fore first call must be OPEN or DEFNFILE. 3
s 1
: = 1 implies file has been "opened". ;

= 2 implies file has been "opened" and accessed i

= 778 implies file has been '"closed" and can be
subsequently '"recpened".

"

S S BT

R/W the read,/write bit. If 0, the file may be
read or written. If 1, the file is considered

to be a "read-only" file.

Words 3 througk 9 are the statistics cells and have tha same defini- 9
tions ac those in the PFAPFCT.

3
8. THE FILE [NFORMATION BLOCK OR FIB i

Each data file¢ has a contrel record called the FIB residing in the
first Fasirand sector of the file on mass storage. It completely defines the

organization and status of the file.

5

Table B-10 shows the layout of the FIB.

TR

e

The DEFNFJLE command is used to initially define the subfields in the
FIB. An initial FIB is written into the file at that time. The OPEN command
causes the FIB to be read into the PFAPFCT entry assigned to this file (assuming

~
-

RN

B S ek i i

B-38

R N T A ST Lo
T T TP R IR T R A T O U vou a

TR T

TR

T

AT e

Stacitiefimie

a e L L

v oo NN oy Wy~ O

i el el =
[T =

DATA
FILE NAME
RSVD SPARE RZA

NBLKS
NIBLKS
NDBLOV
NIBLOV
NREAD
NWRITE

Y 00 N N B & WD+~ O

NRECDS

TABLE B=-9
The USER FCT

SPARE| FT DBLSZE ‘] IBLSZE

5 SPARE KLEN DLEN

OF NXKY DBLSEC IBLSEC

NBLKS

NIBLXS
NDBLOV
NIBLOV
NREAD

NWRITE
NRECDS

NHIGH

NLEVEL

INDEX
FILE NAME

TABLE B~10
The FILE INFORMATION BLOCK

B-39

R N WIS PP RNEAE PRI TN U IR PV X SR RREUSRITSE) { WSRIPIY BEP AR DIV IR PRI S P TR

the file has not been already "opened" by another user). As each user performs
a CLOSE, a new copy of the FIB is written from the PFAPFCT entry to the file
assuring an up to date status of the file. Also whenever a data block split

occurs, the FIB is updated since the data, index and level counters may have -

changed. B
Note that the FIB resides within ihe data file., There is no FIB
within a separate index file. The relative sector number computation involving 5
data block numbers must cowmpensate for the existence of the FIB. Moreover,
since the index blocks may be embedded within the data file, the sector compu-

taton must 2lso compensate for the FIB. Separate index files therefore have

a Fastrand sector ailocated to a dummy FIB (which is never read or w.litten)

to eliminate having the index block T/0 routines having to check w. :ther the

i’

blocks are embedded or not.

B AP Iy P AT e
s o o e s e M S E S
FOSH ST

The definitions of the variables shown in Table B-10 are exactly as
described under the PFAPFCT.

9. ALLOCATION OF STORAGE WITHIN MODULE PFAP

The one non-reentrant module PFAP acts as a buffer between the

i i

original caller and the reentrant portion of the access péckage. Its main

function is to save the caller's registers, thenu pass on to the reentrant o

mndulas the address of the caller’s parameter list and the address of the
register save and temperary scratch save area. This scratch save area can be

used by the reentrant wmodules to store counters, flags, etc. of a temporary

IR TR SRR

file dependent nature. The maximum size of this areu is defined at assembly

time but shold not exceed 100 words.

Teble B~11 shows a layout of the storage area,

3o G TR S
s AR

The OPENAPFLAG contains a 1 bit field which if 0 indicates no OPENAP .E B

has been performed Zor this user; if 1, indicates an OPRUAP has been done. @_'

B-40

A R TR T

R TS T, 83 T e e

S TR T A v

AREGSAV SAVE
A€
THRU
i AlS

XREGSAV : SAVE+10

X1
THRU
X11

RREGSAV SAVE+21

R4 ;
THRU s
R15 1

; SCRAREA SAVE+33 :

‘ PFAP ;
| SCRATCH
SAVE
! AREA

| Maxsave

CPENAPFLAG SPARE ‘PY

TABLE B-l1

Storage Area within, PFAP non-reentrant module

. TR T i e
i e A s

B-41

ot iRk T AR e

CFORNPE WY PR PIPYIPLS,

PRSI MR T LIS, TSR

APPENDIX C. _ STIS DIRECTORY

FUNCTIONAL SPECIFICATION

PR A DO Os Tt

AT 1

i

AL SR i R/ 2. i

Sl

BT N T e A e

T SO T TR T N

R T ¥ e T S PRI L T T, * T ke iy tang g

N NIRRTy ey
RS Rk R 02 e dt i SRR L A Mt & FE R0 S

STIS DIRECTORY FUNCTIONAL SPECIFICATION

1. DIRECTORY CAPABILITIES

Directory services are designed to allow the encoding and de-
coding of all system words and terms (of one or more words) used in STIS as
entity names, attributes names, attribute values, commands, etc. These system
words and terms are listed in integrated ordered lists (the Word and Term En-
coding Tables) so that an input language scanner can recognize and determine
the role played by every word apt to be input (including the attribute associa-

ted with a value term), and also determine when a value term Or entity name

is not unique.

1.1 DIRECTORY TABLES

The Directory Tables are shown in Figure C-1 and listed in Table 1.
They are described below.

1.1.1 Word Encoding Table (WET)

The WET entries are three 36-bit cells each,

The input argument is a word or word fragment of one to twelve
6-bit characters. If the word or word fragment is longer than 12 characters,
then Cl12 is a hyphen "-" designating a continued word fragment. Words of fewer
than 12 characters are left justified and filled with blanks (word space) to
Cl2. Entries are ordered by input argument and words of arbitrary length can

be accommodated as a series of word fragments.

The Role Map is a 12-bit field which is used only if the word
is 12 characters or less and represents a one-word term. If the word is a
fragment of a term, then all 12 bits are "0". The interpretation of the Word

Map for a tc.m is discussed below in connection with the Term Encoding Table.

The Word Code is a 24-bit field, assigned in a sequence as words

(and terms) are entered into the system.

A e Vaaa S T S SR LR RN MM I E S et

Tridas 3.4

N e

okl kansitd ™ thaiad AR yRT TRy ek kst iatl L AE T TR R
(a) WORD ENCODING TABLE =
roles
character string WET — word code ‘
6 L N] 6
Cl | | | Cl,...,Cl2 = character string
T Ic12 RM = Role Map
RM 14 WC = Word (or word fragment) code
: 12 24
(b) TERM Ei ENCODING TABLE TABLE =
5 term fragment > roles
% code string term code
1 4 il .
~ I F2 Fl, F2, F3 = term fragment, word,
a 72 3 word fragment codes .
, ' To RM = Role Map
- o
12 2% TC = Term or texrm fragment code
(c) TERM DECODING TABLE =
1
] term code
(virtual key) =~ -—> ——>tem (word string)
4
24 12 6 6 6 6 6 6 :
- F1 2 1
G U ol N
: F2 F3 T T 1T 1 Jlci2 ‘
12 24 ‘
ga Term Fragment Format Character Format
i !
|
2 Figure C-1 Directorv Tables A
b c-2 “
st G SAEEIECININTI WP et Lm,.imm‘..»Lu\;; Lo e Ate f et ot e e thant sy et AT A rttab e r ot el S Lo

TR S o iR T thile e Carsilnidaaatio ik ba TA L b i
RSN RIEEGH 2000 R0 LU S TR I L S A A AN A TR A O S S AU AR A b e Ty i A D R AR AL Ut R AL e Ll S it it St e R R M AR

TABLE 1
DIRECTORY TABLES

Word Encoding Table (WET)
Term Encoding Table (TET)
Term Decoding Table (TDT)

TABLE, 2 1
ROLE MAP INDICATORS

, S Role 3!

Noise

System Command

User Command

Attribute

Attribute Value
-12 Unused ("0")

R B~ W N

R e e b P R S eitakiny] W

a !ﬁ;\'wwm‘:‘(fm!ﬂww.anw LT T RE RAEARE R v omEs s TR G R M G e A TR TR S, AR TR :m._q;‘ww"‘.‘v\" SRR LY
f
.
i
1.1.2 Term Encoding Table (TET) ;
The TET entry is three 36-bit cells. The input argumont is a - g

string of three 24-bit fields, Fl, F2, and F3 in which bit one is always "O"
and bit two is a Word Code Indicator (WCI) which is set "1" for a wurd or word
fragment code and "QO" for a term fragment code. The T(is a term ov term frag-

ment code and is 24 bits long. (TC correaponds to WC in the WZT entry.)

i Lty - .
2 5,7 0 8 5 er

] The Role Map is a 12-bit field which is all "0" if the input
‘ argument represents a term fragment. If the input argument is a complete term

then RM represents the roles of the term. If bit i (L =1,...,12) is "L"

4 then the term role is role i. For a term, one or more of bits 1 through 12
* will be set "1". The role interpretations are listed in Table 2.

1.1.3 Term Decoding Table (TDT)

G Do AT £ 2222 LIS e 118 e

D

The TDT entry is two 36~bit cells in one of two formats, either

e

three 24-bit fields or twelve 6-bit characters, The argument is a term (term

palisdic i AL A

fragment) code or a word (word fragmeut) code. Since these will form a dense _
set (assigned in sequence by the system) they will be interpreted as an entry ?
number and will not te stored in the entry (i.e., the code is a virtual key). If
thae Word Code Indicator (WCI) in the key 1s '"0" then the entry is in Term Frag-

ment Format, otherwise, it 1s interpreted as a character string.

: In decoding each term fragment fizld the WCI (bit two) is ex- K
g amined to determine whether the corresponding TDT entry should be interpre-

ted in Term Fragment or Character format. In this way terms made up of arbi-

trarily long strings of arbicrarily long words may be decoded.

1.2 DIRECTORY SUBSYSTEM COMMANDS .
il Each high level Subsystem command is generally decomposec into %
a series of lower level commands which act on words, word fragments, or term é
fragments. These lower level commands then either search or mak: entries in 3

a
SATE

the various tables like the Term Encoding Table, Word Encoding Table, etc.

o
P

This modular nucleus of word and fragment oriented nommands will allow con-

struction of other high level term oriented commands when needed in the future.

C-4

AT ORI Ok e R Mt

W oo PRI el

P T T VTR NPT TN C R S rms I3

TR Gy

1.2.1 Term Oriented Commands

A term 1a defined to be any string of English language words each

of arbitrary length and separated by blanks or any other designated delimiter(s).
The end of term is signaled by a1 end of term sentinal following an optional last

end of word delimiter, Information will be requested &t the term level as a re-

sult generally of a query by an intelligence analyst.

defined to act uvpon term data,

M A GBI £220 G % E s et et un b £ B

B N ¥ e

Retrieve Term Code and Role (term) = {term code,
(role 1 <, role 2...>)]

This command will find the numeric term code associated
with the given English language term if the term code
exists, The function will also supply a list of roles
that define the various ways the term is being used. If
the term code exists then at least one role will be
returned,

Each word in the term is encoded into its apprcpriate
word code then the lowver level command 'Find Term
Code and Role' is usnd to fetch the appropriate term
code, If the term consists of a single word then the
word code found in the initial word encoding procesa
is the desired term code.

Retrieve Term Code (term, role) = term code

This command will £ind and return the numeric term code
associated with the given English language term pro-

vided the term exists for the specified role in the

Term Encoding Table. The role acts as a qualifier for

the term. The command provides the ability to answer
quastions such as ",...is this term used as an attribute,,.?"

The function 'Retrieve Term Code and Role' is called to
find all the roles for the given term, A match for the
desired role is then sought in the role list found.

Find Term Code and Role (word code <, word code, .., >) =
{term code, (role 1 <, role 2,,. >))

This command will find the numeric term coda associatad
with the given string nf numeric word codes if the term
cxde exists. The function will also supply a list of roles
that define the various ways in which the term is being
used, If the term code exists, then at least one role will
be raturned,

T ORI T TTYT 3TV N AR L e v TR Rer v e e g e

The foliswing commnands are

,'a
3
3
k
3

Bt LT B Ao

N e AL s e

M e b o

Ry

I R T TR T P I ey T e - - ey
‘

Thie command performs tha same functions as 'Retrieve Term

Code and Role' but at a lower level of input, Here it 1is

assumed that the English term has been encoded into its .
word components.

e Sdcel s

The word codes are reencoded recursively via the 'Reencode
Fragments' function into the term code desired,

Find Term Code {(word code <, word code,,. >), role } = term
code i

This command will find and return the numeric term code
assoclated with the given string of numeric word codes
provided the term code exists for the specified role in
the Term Encoding Table,

i e

Again, this cormand performs the same functions as
'‘Retrieve Term Code' but at a lower level of input,

The function 'Find Term Code and Role’ is called to find
all the roles for the given term. A match for the desired
role is then sought in the role list found.

This command and 'Find Term Code and Role' could be used
ty a language processor which scans and encodes a term
a word at a time into a string of word codes and subse-
quently desires the final term code.

Ingert Term (term, role) = term code ;

This commend will effectively add the English term quali-
fied by role to the Term Encoding Table, The term code
which is assigned to it by the system will be returned, i
If the term already exists, then an additional role is being |
defined in which case the pre-existing term code is re-
turned, If both the term and role pre-exist then an error
status 1is returned,

The term is encoded into its string of word codes, Appro-

priate entries are made into the dictionary for any new

words encountered, The string of word codes are further

encoded into term fragments and subsequently into a single

unique numeri: term code. The appropriate role is set and

the entry made in the Term Encoding Tabie. Entries are

also made in the Term Decoding Table during the process to 3
permit proper retranslation into English. ¢

Equate Term (new term, old term, old role) = term code

r.. P Y T T YT YT T T & - - -
’ ; " s Sas e g T e e e sy g e s g R T e
. E T R R T T T TR T A g e e .
& K . R TNy ey e g
i ! 3 ey 5 VT,

This command will find the numeric term code for the
given old English language term, It will encode the new i
tem to the point of assignment of a unique term code, £
At this point, the old term's codc number will be assigned
&8 well as the old role type indicated, The 'new'" entry
with the appropriate role set is made in the Term Encoding
Table, Entries involving term fragments are made in the
Term Decoding Table; however, no final entry involving the
"new'" term code is made since the old term decoding is con-
sidered to be the '"reference'" term,

: The old numeric term code will be returned., However if the
| old term code or old role does not exist, then an error status
is returned,

° Decode Term (term code) = term

S Sl nl e vl o

This command decodes the given term code into the English

language text of the term. The Term Decoding Table is Cd
ugsed in a recursive look-up process until the final text

is completely generated.

The term code is entercd as an initial entry in a push

down table., A loop is then begun in which the first

entry in the push down table is examined, If the entry

has the Word Code Indicator bit set, then the entry is
decoded into English text via 'Decode Word' function,

The text is then concatenated with any previously decoded
text. A 'blank' character is added to the text if the

word is not marked as 'continued', This entry is then
completely processed and the push down stack is then popped.
If the entry does not have the WCI bit set, then the de-
coding entries are retrieved and entered in the push down
stack in place of the first entry. Another iteration in the
loop is then begun, When the push down stack is empty the
generatad text is returned,

Ak e TSI -y

1.2.2 word Oriented Commands :

A word is defined as an English language word of arbitrary character

i g

: length and followed by a blank or other designated delimiter(s)., Words are
partitioned on twelve character boundaries 1if they exceed twelve characters. The

following commands are defined to act upon words,

o

] Encode Word (word) = word code

This command will attempt to find the associated
numeric word code for the given English word. The word
i code is returned if found or an error status is set if
not found,

If the word is partitioned due to its size, a fragment
code list is generated and the 'Reencode Fragments'
function i# ugsed to find the unique desired word code,

Insert Word (word) = word code

This command will add the English word to the Word En-
coding Table, The numeric word code assigned to it by

the system will be returned. 1If the word is partitioned
due to its size, then the appropriate fragment entries are
also made in the Word Encoding Table. Entries are also
made in the Word Decoding Table (which ig integrated with
the Term Decoding Table) for prouper retranslation to
English, The Word Code Indicator bit is set for those
entries made in the Word Encoding Table., However for frag-
ments which need further encoded entries in the Term En-
coding Table, the WCI bit is not set,

Equate Word (new word, old word)

This command allows the user to synonymize a new word

not in the dictionary with a pre-existing word, The

final encoding of the new word is equated to the word

code for the old word, This entry is then made in the

Word Encoding Table for new words that are not partitioned
or in the Term Encoding Tahle for words which are parti-
tioned, Appropriate entries are made in the Dacoding
Table for proper retranslation into English, If the old
word does not exist, an error status is returned,

Find Word Code (word fragment) = word code

This command is used to find a numeric word code
associated with a given fragment of an English word, If
a single word, as mentioned earlier, contains more than
the maximum number of characters representable in the
Word Encoding Table, it is partitioned into fragments.
Each fragment then is assigned a word code which is re-
trievable via this command,

Any word of size less than the maximum number of chavacters
before partitioning may be given aa an argument to this
command,

If the word code is not found in the Word Encoding Table,
an error status is returned,

Decode Word (word code) = word

The character string represented by the given word code ias
retrieved from the Decoding Table and returred, This
function would generally be called by the command 'Decode
Term' when it has determined that it has ercountered a
word code with the Word Code Indicator bit set,

c-8

:

i i G A g b s

R N R s

WL L

e et iR il

AT

AT ARt ol i Rt

=TT o
e
i
P
-3
3
4

e e L o i ki wt B - 0 P bl -

e T

WY

RN .C

il A

e i

T

o

RGN S B

3y

S NATATIN P ST TR T S e e

1.2.3 Commands For Words and/or Terms

The following commands accept fragment codes as parameters. These
fragment codes may be interpreted as ecither word fragment codes or term fragment
codes depending on the calling command,

o Re-¢ncode Fragments (frag code,...) = Word/Term code

This command accepts a string of fragment codes and
at-empts to further encode them into a single code
via the Term Encoding Table. The code found in the
encoding process is returned, If a code is not found,
an error status is returned,

[1]

Insert Fragments {(frag code,...), Word/Term code, role,
equate flag)

This command forms entries for the Term Encoding Table

using the fragment code list supplied, Each packet entered
into the TET is assigned a new code number, The last entry
into the TET is given the Word/Term code number supplied in

the parameter list., The role supplied is also given to this
final entry,

As each entry is made into the TET, an appropriate entry
48 also made in the Term Decoding Table, However no entry
is made in the TDT for the last TET entry if the 'equate'
flag 18 set, The 'equate' flag is set whenever 'Equate
Tera' or 'Equate Word' is the calling function.

1.2.¢4 Miszellaneous Fuuctions

Several low ievel modules are defined in the support of the commands
outlined in 1.2.1, 1.2.2, and 1.2.3. These modules are shown in the accompanying
f iowchr»cs but not formally defined here.

TPITT DI TNR W Ty 9. YV Y TTA >y

g T S i £ e R e S el S T it A R L

e e i e e e

RO LA e A L S R S LA

RIRE AP SIS S LU 1 Y

APPENDIX D. BASIC NODE FUNCTIONS

CASEETT SVARE 8D Tt e N e e e e e Ve s eeh B AN

P

T TP A T TG T AN S RO YRR TETITR, ARA oT TRT YI S FUpE T T R A R g R T RN [AR L R

BASIC NODE FUNCTIONS

1. BASIC DATA OPERATIONS

Data services will be provided for the creation, malntenance,
and retrieval of nodal information based on the implementation of the new
node structure. These services are intended to provide all inforration ser-

vices supplied by the current STIS,

A set of functions are specified which operate on a node re-

siding either in the Semantic or Entity Net areas of the S8TIS Concept Net,

The functions can be grouped into the following broad categories:

(ua) Create (new nodes assigned and created)

(b) Maintenance (existing nodes expanded, changed,
deleted, or displaved)

(¢) Retrieve (existing nodes, and/or data located _ i
or accessed) '

These functions are defined at the noae processor level and are accessible
by the STIS intermediate language processor and possibly by user written
applications programs.

The special symbols used in delimiting parameters in

the following functional illustrations are d2fined
as follows:

(1) < arg > implies some value of "arg' must be
; coded where "arg" can take one of
i several values (i.=2., 7 arg > t:v

l
Vzl...lvn) !

[arg] implies this parameter is optional

i.1 CREATE FUNCTIONS

The ''Create' category of functions includes the following:

) Create Entity Node (<AOR>) = Node ID

C o e, TR JUMHE AWGST B feae s S W P ety Lyiad

STy T ATV TAY PTG

PRI L AT

¢ Create Attribute Node (<AOR>) = Node ID
¢ Create Value Node (<AOR>) = Neode ID
Node ID

Node ID

i

] Create Term Node (<AOR:)

® » Create Word Node (<AQR>)

() Create Node (~node type>, <AOR>) = ID
where node type :: entitylattribute|value]tPrmlword
AOR = Area of Responsibility identiticr

Node ID = The integer number assigned to
this node (and henceforth by
which it will be acressed) by
the storage allocator.

These functions will add a node of the specified type to
the concept net. The space is allocated in the node data
base and the identifier returned to the caller. The node
is initially created in the user's work space. (Subsequent

Al M TR T R i

g S b K it S Ao 8 .o

windup operations fnr a fact store will generally cause the
node to actually be written to mass stcrage.)
} . Create Subnode (<Nnde ID>) = Sub-Node ID 3
4 o
' The parent node is brought into the user's workspace if it ‘ 3
does not already exist thetre. The next available sub-node E
number is fetched from the parent node and the sub- node ID . 3
is forred and returned to the caller. §
1.2 MATINTENANCE FUNCTIOQONS

The "Maintenance' category includec the largest number of func-

s LT R

tions. It includes the folilowing:

. Szore Fact (value, attr ID, < Fact Control >,
[< mode >, < Fact Seq # >1,
[< Footnote type >, text)

where value = actual numeric, string, list, etc.
value of the attribute

AT

attr ID = node ID of the attribute

Fact Control = cne or more of the following
qualifiers: Area of Responsi-
bility, Classification, sensor,
credibility, etc.

ermpan i tman s PR

AR AN Y YL tl et MW meTect e ee ot

Fr.\ﬁ?_’.wsvg‘-‘m;{}; ST I g SR R AL ST IR G et DR 1 Y VWAL SRR T S TR AT R IR U T TR rrigeT sy i T s AP

wode :: Insert!Modify

Fact Seq! = Fact sequence number in a multi-
. fact situation

Footnote Type :: cemment |warning | text : ?

Text = alphanumeric textual data of cthe footnote

This function stores the actual value against the specified
attribute for the "'current" node previously located or created
by the user. The fact zontrnl information and opticnal foot-
note text is also stored with the value. If the attribute
does not exist in the current node, then the attribute/value
pair is stored. If the attribute pre-exists and a value with
the exact Fact Conntrcl parameters is found, then the first old
value 1s overwritton by the new value if the "mode' and Fact
Sequence # fields were omitted. The "mode" and Fact Sequence
fields determine the action to be taken in the case of pre-
existing facts. Facts are implicitly numberad 1 through n.
The "mode"” srgument allows the insertion of new facts and the
modification of old facts., Insertions occur after the fact ' 1
number specified in the Fact Sequence number field. If it is
necessary to insert a new value before the first pre-existing
value, then the Fact Sequence # field = 0. An old value may
, be modified by specifying its Fact Sequence number. (Note a
i "modify" of Fact Sequence #0 is not permitted.)

e P LTy g

prdcnsls

AT TS N S P A

] ° Storz ¥ootnote (attr ID, <Fact Control>, [<mode>,
4 <Fact Seq. #>, <Foot Seq. #>],
4 <footnote type>, text)

where attr ID = node ID of the attribute

Fact Control = one or more of the following
qualifiers: Classification,
sensor, credibility, etec.

mode :: Insert|Modify

Fact Seq # = Fact Sequence Number

S R 3 R S e AN i i i

Font Seq f## = Footnote Sequence Number
footnote type :: comment|warning‘text

text = alphanumeric textual data of the
footnote

The function will store a footnotz for a valuc cualified by
the given Fact Control undrr the given attribute. A seerch
is made for the given att: bute under the current node. 1If
it 14s not found, an error status is returned. If the attri-
bute is found, a search is made for the correct Fact Crintrol
qualified value. IY not found, sn error status is returned.

r D‘3

2] A et AR B e b e PP . G s T e AN
PR

et b

T TR T e

If found, the footnote is stored. The text may replace a
previsus fooctnote of the same type in which case the "mode"
and Footnute Sequence ## fields are examined. The Footnote
Sequence # fielc - +t~-1s which specific footnote is to be
modified or afre ¢ th. new footnote will follow. Multi-
fact situatione :.e prucessed using the Fact Seq. # field

as descrihed in Store Fact.

™ Delete value (attr ID, < Fact Control >, [<Fact
Sequence # >])

where attr ID = node ID of the attribute

Fact Countrol = one or more of the following
qualifiers: Area of Responsi-
bility, classification, sensor,
credibility, etc.

Fact Sequence # = Fact Sequence Number

The function deletes the specific Fact Controlled value (includ-
ing attached text) for the given attribute for the 'current'" node
previously specified by the user. ither existing values are not
affected. 'The Fact Sequeunce Number specifies the unique fact

in the nulti-fact case. If the specified value cannot be found,
an error status is returned.

° Delete Attribute (attr iD)
where attr ID = node ID of the attribute

This function wilil delete the specified attribute under the
current node. Al) values and associated text for this attri-
bute are likewise deleted. 1If the specified attribute does

not exist within the current node, an error status is returned.

. Delete Footnote (atti ID, <Fact Control>,
[<Fact Sec. #>, <Foot Seq #>], <footnote
type>)

where attr D = node T of the attribute

Fact Control = one or more of the following
qualifiers: Area of Responsi-
bility, classification, sensor,
credibility, etc.

i}

Fact Seq # = Fact Sequence Number
Foot Seq #

footnote type :: comment[warning[text

Footnote Sequence Number

Al 2 e M

LB P N i S e

1.3

The function deletes the text of the specified footnote for the
given Fact Controlled value. Other text is not affected as are
other Fact Controlled values not affected. An error status is
returned on any 'no find' condition. The Fact Sequence Number
specifies the unique fact in the multi-fact case, The Footnote

Sequence Number specifies the unique footnote in the multi-footnote
case.

® Display Node (node ID)

This function lists the configuration of the node
in the Concept Net specified by the node ID.

° Display Attributes (node ID)

This function lists all the attributes stored in
the specified node.

RETRIEVE FUNCTIONS

The "Retrieve'" category of functions includes the following:

o Retrieve Node (node ID)

The function locates the node specified by node ID
in the concept net and logically loads it into the
user's workspace. It becomes the !"current' node.

. Retrieve Fact (atir ID, < Fact Control >,
[< Fact Seq # >] = value(s)

where attr ID = node ID of the attribute

Fact Control = one or more of the following
qualifiers: Area of Responsi-
bility, classification, sensor,
credibility, etc.

Fact Seq ## = Fact Sequence Number

This function returns a value or value list to the caller for

the attribute specified for the "current" node. If the attribute
is not found or the proper Fact Control qualifiers cannot be
found, an error status is returned. The Fact Sequence Number
field specifies the unique fact in the multi-fact case. If a
warning is attached to the fact, this indication is also returned
with the value(s). The value may be a single dats item or an
array of data items. The value(s) may also have been generated

by an external program called as a part of the internal node
processing function. ‘

T T T T R T Ty gy T L S T e

™ Retrieve Footnote (attr ID, <Fact Control>,

| [<Fact Seq. #>, <Foot Seq #>], N
<footnote type>) = text
where attr ID = node ID of the attribute 5
LI i

Fact Control = one or mure oi the following
qualifiers. 4rea of Responsi-
bilitrv, classification, sensor,
cred ibility, etc.

WU

Fact Seq # = Fact Sequence Number

s S

Foot Seq f## = Footnote Sequence Number

2 i

footnote type :: comment|warning|text

The function returns the alphanumeric text of the footnote

& s Tt G)

type specified to the caller. The attribute is sought,
then, the proper Fact Controlled value, then the specified
footnote. If any search condition results in a 'no find',

i 2 5 ke

an error status is returned. The Fact Sequence Number srec-
ifies the unique fact in the multi-fact case. The Footnote 3
Sequence Number specifies the unique footnote in the multi- :

footnote case.

PRI

e L 6 e hokick i

wssov &

Rome Air Development (,en!m'

RADC p.lans and conducts research, exploratory and advancod .
development programs in command, control, and communications
3y ‘activities, and in tke ©3 areas of information sciences
and intelligence. The pr.in cipal technical mission arsas.

. .are communications, electromagnetic guidance and ceontrol,

.surveillance of ground and aerospace objects, intelligence
data collection and handling, .information system technology,

Aionospheric ‘propagation, solid state sciences, microwave .

' physics and electronic reliabihty, maintainability and
oompat.ibihtg. A

2ZNE

e

” 76-191°

A AR S O RALAGK WO AN RN R0 RS0 ST AR .. i BB S e i S AT A R S A

.'

B 14 Pl Bt Y A i R e ey Rl v ali

