
1 !r

RADC-TR-76-1 9 7
4

Final Technical Report

d bJune 1976

DEVELOPMENTAL SUPPORT OF THE SCIENTIFIC
AND TECHNICAL INTELLIGENCE SYSTC M

CIO: Auerbach Associates, Inc.

C4

Approvied for" punlic release; Ut-

distribution unlimited. •

•' ROME AIR DEVELOFMIENT CENTER
AIR FORCE SYSTEMS COMMAND

GRIFFiSS AIR FORCE BASEs NEW YORK 13441

This report has been reviewed by the RADC Information Office (O)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, Including foreign
nations.

This report has been reviewed and is approved for publication,

APPROVED: p 4
ROBERT N. RUBERTI
Project Engineer

APPROVED: -. A+f 7 ('

HOWARD DAVIS
Technic'al Director
Intelligence & Reconnaissance Division

__ .. ~FOR THE COMMIANDER: V

JOHN P. HUSS\ .,, .Acting Chief, Plans Office

Do not return this copy. Rstain or destroy.

II

+_I+

UNCLASSIFIED

SECURITY CLAIIFICATION OF THIS RAGE flfn D)MO Enfered)

'REPORT DOCUMENTATION PAGE READ INSTNUCTIONS
BEFORE COMPLETING FORM

V. *tEPQ.• MUNIfMUIR 2 GOVT ACCESSION NO. 3 RECIPIENT'% CATALOG NUMBEq

i RADCJTR-76-197 -
4 TITLE (and $wllbU@J I t!-• we Y'fl EO

Final-Technical Report
DEVELOPMENTAL SUPPORT OF THE SCIENTIFIC I June 1975 - Aprtl-49-76 7
AND TECHNICAL INTELLIGENCE SYtTEM _t 1-1ORMDI"G RG. REPORT NUMB[R

N/A
7 AUTh4Oftf*) . CONTRACT O' GRANT NUMBER(a)

Dr. jJerome Sable
F30b02-75- ,-0273ý,

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT, PROJECT, TASK

Auerbach Associates, Inz,. AREA A WORK UIJIT NUMBERS

121 N. Broad Street 64750F /
Philadelphia PA 19107 2C L5360 3

11. CONTROLLING OFFICE NAME AND ADDRESS " t9 , tUP~r--ATE
Rome Air Development Ceater (IRDT) /; June 1976
Griffiss AFB NY 13441 S. NUMIý OF PAGES .

154
14 MONITORING AGENCY NAME A ADORESS(Il dilleront from Controllingl Office) IS. SECURI'Y CLASS. (of Wro 4:port)

Same
UNCLASSIFIED
15a. DECL ASSI FI CATION/ OOWN GRADINO

SCHEDULEIN/A
IS. DISTRIBUTION STATEMENT (of thli Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (*0 the e.5strect enterd In Block 20, If different froan Report)
Same

16. SUPPLEMENTARY NOTES
RADC Project Engineer: Robert N. Ruberti (IRDT)

19. KEY WORDS (Contlnue on revere amide II necessary and Identify by block number)

Intelligence Data Handling
Information Management
Relational Data Technology

Zd0 ABSTRACT (Continue on reverse aide If necessary and Identify by block numb.r)
This project has provided technical assistance to the development team of the
Scientific and Technical Intelligence System (STIS) at Air Force Foreign
Technology Division (FTD). The effort was directed at the design and doc-
umentation of several data structures and programmed capabilities of STIS.
These included the following:

(a) An Indexed-Sequential Access Method and Directory foN ,

DD I Ao.m 1473 EDITION OF 1 NOV 65 IS oBSOLCTE UNCLASSIFIED

SECIURITY CLASSIFICATION OF THISPAGE (When Data Itnteriu)

' lp

UNCLASSIFI ED
SECURITy CLA•StIICATION O0 THIS PAOI(Wh(•, Date KEeterdf)

encoding and decoding STIS user and system terms,

(b) the data structure of a generalized STIS node which can
serve for the elements of the STIS Concept Net, including
entities, semantic elements (attributes and valties), and
derivation rules, and

(c) a set of interpretations of the node structure and the
definition of an approach which can be used by the
analyst in representing intelligence information in the
Concept Net, including source information, credibility,
events, states, transitions, and general deductive

V rules.

II

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*7h.n Data Entered)

11

V ~ I1

- - - - - - - - - - -~~ - -

PREFACE

The work reported here was accomplished under contract F30602-

75-C-0273 under sponsorship of the Rome Air Development Center. The

objective of this project was to provide technical assist3nce to the STIS

(Scientific and Technical IntelligenLe System) development team at the

Air F,.;rce Foreign Technology Division. The report was prepared by

Jerome Sable, Edward Schernecke, and John McCrea of the staff of AUERBACH

Associates, Inc. Grateful acknowledgment for special consultation and

assistance is given to Edward Stull, Jerry Hamilton, and Janet Merelli

of FTD and to the Technical Monitor, Robert Ruberti of RADC. Dr. Sable

was the Program Manager of this project.

liii-

L•

EVALUATION

Program design specifications have been delivered for an information
[structuring method that will be applied to the FTD scientific intelligence

data base. It includes specifications for an entity and semantic network
structure, as well as directory services and a peripheral file access
system. These specifications will be implemented as part of the Scientific
and Technical Intelligence System (STIS) at FTD. This effort is included
as part of TPO #4, Intelligence Data Handlir~g.

ROBERT N. RUBERTI
Project Engineer

VI

I

iv

W
) .:.

TABLE OF CONTENTS

PARAGRAPH TITLE PArG

SECTION I. INTRODUCTION

1.1 OBJECTIVE ..-

1.2 BACKGROUND OF STIS 1-2

1.2.1 The Information Structure as a Key
Element of STIS 1-3

1.2.2 STIS Users.6.............................6............1-4

SECTION II. THE TECHNOLOGICAL FOUNDATIONS OF' STIS

2.]. THE INTELLIGENCE ANALYSIS FRAMEWORK 2-1

2. 2 INFORMATION STRUCTURES 6..6........................2-4

2.3 SEMANTIC NETWORKS AND CURRENT RESEARCH

IN KNOWLEDGE-BASED SYSTEM6.................2-8 1
SECTION III. OVERALL SYSTEM STRUCTURE

3.1 GENERAL PROCESSING FLOW 3-1

3.1.1 User Interfaces6.......6......................3-3
3.1.1.1 Batch .. 3-3

1j3.1.1.2 On-Line .. 3-4
3.1.2 Request Decomposition 3-4
3.1.3 Retrieval Processing6..............3-5
3.1.4 Node Processing6.............3-5
3.1.5 Direct Access Storage Management 3-62
3.1.6 Example of User Request Processing 3-7

3.2 MULTI-USER CONSIDERATIONS......................... 3-li

3.2.1 Physical Equipment and Operating System 3-11 '

3.2.2 Programming Language 3- 12
3.2.3 Parellelism of STIS Functions6...............3-12

3.3 RECURSIVE PROCESSING6.................3-13

3.4 SECURITY PROCESSING 3-15

TABLE OF CONTENTS (C;ON'f' D.)

3.5 SYSTEMS MANAGEMENT FUNCTIONS 3-15

3.5.1 User Access 3-15
3.5.2 Data Base Distribution 3-16

SECTION IV. THE CONCEPT NET -- A NEW
INFORMATION STRUCTURE FOR STIS

4.1 A MODEL rOR INTELLIGENCE INFORMATION 4-1

4.2 THE CONCEPT NODE 4-2I4.3 SUB-NODES -- COMPOSITE ATTRIBUTES AND N-TUPLES .. 4-4

4.4 FORMAL DESCRIPTION OF THE CONCEPT NODE 4-5

It.5 THE SEMANTIC NET 4-5

4.5.1 Attribute Nodes 4-8 .
4.5.2 Value Nodes .. 4-8

4.6 THE ENTITY NET 4-9

4..1Entity Stlateos.......................................4-12

4.62entrity RElaitions..................................... 4-1l
4.6.2 GEnericy Entities 4-12

4..4Fact Qualification 4-13
4..5Computed Values 4-15
4.6.6Quasi-transitive Relationships 4-1.5
4..7Footnotes .. 4-18

4.7CONCEPT NET PARTITIONS 4-19

4.7.1 Physical (Top-Level) Partitioning 4-19
4.7.2 Consistency and Context Set Partitions 4- 22

4.7.3 Use of Partitions In Representing Rules 4-22

4.8 REPORTS .. 4-27

4.8.1 Report Net Structure 4-27
4.8.2 Report Procedures 4-28
4.8.2.1 Simple Updating of Entity Net Facts 4-29
4.8.2.3 Alertness tc. the Absence of Reports 4-30
4.8.2.4 Composite Reports 4-31

S.F4.8.2.5 Multiple Versions and Appearances

of the Same Face 4-31

Vi

TIA BiL E O t (.0 , rE0 4T N (c o s) , ' I)) . "

Mult iple Res ltts From Ont. Re)port -
4.8.3 Systm eport Pro,,,U(trt-> and

Report Nut Structure 4-132

SECTION V. PERIPHERAl. FII.E AC(:FSS SUBSYSTEM

5.1 BACKGROUND

5.2 REQUIREMENTS5-2

5.3 ACCESS SUBSYSTEM DESCRIPTION 5-3

5.3.1 Approach and Design Considerations 5-3
5.3.1.1 Reentrancy and User Core Size Reduction 5-3
5.3.1.2 Common File and Record Access 5-/
5.3.1.3 Minimize Response Time 5-5
5.3.1.4 Manage STIS Term Data 5-5

5.3.1.5 Large Record Volume With If[gh
Create/Delete Activity 5-6

5.3.1.6 Key and Data Considerations 5-7
5.3.1.7 File Considerations 5-8
5.3.2 Functional Outline 5-12
5.3.3 Error Processing 5-13

SECTION VI. DIRECTORY SERVICES SUBSYSTEM

6.1 INTRODUCTION 5-1

6.2 ENCODING MECHANISM 6-3

6.3 DECODING MECHANISM 6-3

REFERENCES 7-1

APPENDIX A. CURRENT STIS STRUCTURE

APPENDIX B. PERIPHERAL FILE ACCESS SUBSYSTEM
FUNCTIONAL DESCRIPTION

APPENDIX C. STIS DIRECTORY FUNCTIONAL SPECIFICATION -5

APPENDIX D. BASIC NODE FUNCTIONS •1

vii

A z ..

________I ST OF tLLUSTRATtONS

".-4 STIS Overat I Flow aw• Prtie.w.sing c t.l- -

2 l'itU- RV(quV-,t Pr4t.eS,.i• L X.'-mp •. ' 3-..

r'- (z) External Recursion 3-14

I- 1(b) M' It i-Leve l Recurs ion itind Stack iný. 3-14

Subnode Relationships 4-14

"4-2 Connect ion Trap 4-17

Fact Partions Example 4-23

4-4 Representation of Rulc: WOxy A DAyv ---- WAx? 4-24

-4-5 Representation of Rule: (TWOxyDAyzF4Axz) 4-25

4-6 Partitioned Concept Net Example 4-26

5-1 Range Key Indices 5-7]
5-2(a) Index and Data Block Structure Before Insertion 5-9

5-2(b) Index and Data Block Structure After Insertion 5-9j

6-i Directory Subsystem 6-2

6-2 Typical Term Encoding Process 6-4

A-I Current STIS Architecture A-2

A-2 Physical Node Structure A-3 3

A-3 Logical Node Structure A-4..A

C-1 Directory Tables c-2

viii

ý4

-LIST OF TABLES

RP 4-1 Node Structure Specification 4-

4-2 Pairtition Tables 21

H-I The PFAPFCT

B-2 Layout of an entry in the PFAPFCT 8.-26

B-3 Lock Area within an entry of the PFAPFCT B-29

B-4 The RUNID Table B- II

9B-5 The Common Buffer TableB-Yi

3-6 The Available Buffer Table B-15

1-7 The Overflow Buffer Table R--36

B-8 The OBT Overflow Area B-36

B-9 The USER FCT .. A-19

B-1O The FILE INFORMATION BLOCK B-39

B-11 Storage Area wiLhin PFAP non-reentrant module 11-41

C-1 Directory Tables C-3

C-2 Role Map Indicators C-3

ix-

S\i:,.

ix)2

hi,4

SECTION I. INTRODUCTION

1.1 OBJECTIVE

The objective of this project was to provide technical assistance

to the development team of the Scientific and Technical Intelligence System

(STIS) [Wl* at Air Force Foreign Technology Division (FrD). The effort was

directed at the design and documentation of several data structures and

programmed capabilities of STIS. These included the following:

(a) An Indexed-Sequential Access Method and Directory
for encoding and decoding STIS user and system
terms,

(h) the data structure of a generalized STIS node which
can serve for the elements of the STIS Concept Net,
including entities, sem.antic elements (attributes
and values), and derivation rules, and

(c) a set of Interpretations of the node structure and
the definition of an approach which can be used by
the analyst in representing intelligence informa-
tion In the Concept Net, including source informa-
tion, credibility, everts, states, transitions,
and general deductive rules.

teferences are listed after the main body of this report.

0A

1.2 BACKGROUND OF STIS

STIS is being developed as a tool to help fulfill the Scien-

tificand Intelligence analysis mission of FTD. It-serves the intelligence

production programs in application areas such as IPS (Intelligence Production

System), IEAS (Integrated Event Analysis System), C3 (Command, Control, and

Communications), and EW (Electronic Warfare), and the processing of metric

sensr!r data performed by the engineering analyst who may wish to operate in

an interactive mode on-line with STIS as well as invoking production type

programs.

STIS is being implemented on the UNIVAC 11.10 and has evolved

from a system called BIAS which was originapll based on the IBM S/360 CIS.

STIS provides an advanced capability for the analysi, of intelli-

gence information. It is based on a network type data structure which per-

mits relationships among entities and new attributes to be freely defined

with minimai impact on previously stored data and programs. Because of

this, it is particularly suited for capturing fragmentary information which

is undergoing collation processing, analysis, evaluation, and synthesis

into finished intelligence.

In another research effort, called the BIAS Augmentation Study,

AUERBACH has developed the design of advanced relational data and inference

providing tools for use in an operational intelligence environment. The

BIAS Augmentation Study has been working with BIAS, and now STIS, as a

vehicle with which to develop and test operations on relations, inference,

and consistency determining functions. The ultimate goal is to incorporate

the . advanced capabilities into STIS so that their effectiveness can be

accurately evaluated, and these new tools can be provided to the STIS

analyst. I.'

In 1973, AUERBACH Associates, Inc. developed a design for an in-

ference capability for an intelligence system such as STIS [2]. The design

concept of this capability, called ARIAS (Augmented Relational Intelligence

1-2

. ...

•'• •. . .. • • • • , .•. .. •- •? ,

-: . . ••. . . •--.. •

- ... 4

Analysis System), embraced both inductive and deductive inferences that an

analyst may desire to pursue in testing an hypothesis (or answering an in-

terrogation) concerning the current state-of-affairs as reflected in an

"intelligence data base. As a result of a subsequent project, the algorithms

concerned with the deductive aspects of this capability, and its interface

with STIS, have been recently detailed (3].
:4

1.2.1 The Information Structure as a Key Element of STIS

STIS is an intelligence system and not a data base management

system in the conventional sense. That is, it is a specialized tool which

serves the unique needs of the intelligence analyst, and is not intended for

generalized use in maintaining and extracting information from predefined files.

It is intended to adapt to the variable information structures created by

analysts who view the world as a dynamically changing state-of-affairs and

must react quickly to new information requirements and employ changing strategies

of information correlation. The intelligence analyst, as distinct from his

-ounterpart in the commercial data processing world, must routinely accept and

maintain conflicting data and partial information, assess the credibility of

the information, and then use it to construct a coherent estimate of a state-

of-affairs.

During the early stages of the evolution of the STIS concept,

attempts were made to utilize commercially available Data Base Management

Systems as a basis for building STIS. These early STIS versions used, or

experimented with, GIS and FORIMS (on the S/360 and the U111O, respectively),

and evaluated other Data Base Management Systems as well. They each proved

inadequate to the task of serving the broad spectrum of requirements inherent

in STI (Scientific and Technical Intelligence) data analysis without redundant

storage of large segments of the data base, continual definition of new data

structures, and redefinition of old structures.

1-3

.. ~4:74sXot4~ .,- -7

The approach taken by the designers of STIS was to face squarely

the variability of intelligence data, the need to accept and qualify information

on the basis of time, source, and credibility, and the need to adapt to multiple

views of the same information with a minimum of redundancy so that the data

maintenance and updating problem could be kept within bounds of processing

and storage cai'sbility.

They consequently developed a powerful, yet tractable network-

oriented information structure that enables the analyst to describe a real-word

object., situation, event, or relationship without being constrained to some

preconceptions of what attributes that description s',Uuud contain. This leads

to more concise data elements and to greater adaptability to new states of affairs.

A major innovation to be implemented fcr STIS (both for the
near-term improvement of STIS 1 and for STIS 2), is the ability to represent

a specified set of data values in a conventional file arrangement, without

the user being explicitly aware that this is being done. This technique makes

it possible to handle large files of metric data in fixed-format records, thus

providing the high degree of processing efficiency which is required for this

functioii.

1.2.2 STIS Users

The users of STIS fall into two broad categories, on-line and
batch. The on-line user is the STI analyst who wants to answer an ad hoc request,

one that has not been formalized to such an extent that a pre-piogrammed

solution for it exists. He wants to extract specified data from the data base
to respond to a Quick-Reaction Request or perhaps to test the validity ,

of a new analysis strategy which he is attempting to formalize. The key element

is that the on-line user must interact effectively with STIS in ways that
cannot be completely pre-specified. He therefore needs a language for man/

machine communication which can invoke responsive search and retrieval
routines and which he can use first to build, and then to conveniently invoke,

special sequences of operations which suit his analysis tasks. An inter-

active communication mode for STIS has been specIfied and will be integrated

with STIS as part of a Design Optimazation and Development effort.

1-4

\

I..5

":'a':

.the batch user can be viewed as being one stage removed from 4
direct interaction with the machine. He is buffered from direct contact with

STIS and the computer by a program which carries out a formalized set of

analyses and reporting tasks, and therefore the batch program which he is

using can be thought of as providing him with a specialized interface with

STIS. From the point of view of STIS, however, the "direct" user of STIS in

this case is the programmer who makes use of the generalized STIS commands

through program calls. He is the user who creates the specialized interface

for the analyst who can formalize his requirements, or who chooses not to

interact directly with STIS. The STIS programmer-user generally writes in a

high level procedural language such as COBOL or FORTRAA, and STIS provides a

3igh-Level Language (HLL) interface for these users.

A

A

1-5

•i > 1-5

,.4

SECTION II. THE TECHNOLOGICAL FOUNDATIONS OF STIS

The technological foundations of scientific and technical I
intelligence analysis embrace three major elements. the framework within

which the problem is viewed, the .information structures which are used, and '

new concepts in semantic networks and knowledge-based systems.

2.1 THE INTELLICENCE ANALYSIS FRAMEWORK

The problem of intelligence analysis has a number of distinct

features which set it apart from other problems in data analysis, yet, in some

of its aspects it shares many features with other areas of scientific

investigation:
•4

- The analyst Is concerned with sets of entities in the

real world: individuals, facilities, organizations,
wystems, events, messagc3, experiments, and observations.

- Each entity can be identified and described by a set of

facts (or properties) and relationships to other entities.

2-1

IFI

- General rules of behavior, association of properties, or
interrelationship among entities of given types can be
defined.

- The facts are, in general, not constant in time but
represent a "1snapshot" of a dynamic situation, and the
influence of temporal events are an important ingredient
of the situation.

- The known state-of-affairs is a result of observations made
on the real world by imperfect sensors and is subject to
equivocating influences, which produce "noisy" and possibly
inconsistent "facts" as well as fragmentary or incomplete
descripti'.s of objects and events.

- Both the facts and the rules can be associated with a
subjective probability of truth (credibility, validity or
acceptability), which reflects the analyst's, the observer's
or the system's estimate of their uncertainty.

- The analyst is concerned with the degree of: consistency
of specific and general statements (facts and rules), the
degree of support (derivability or predictive power) of
hypotheses which he may invent, the uncertainty of source
information and credibility of conclusions.

The scientist and the intelligence analyst are each often

concerned with developing a theory which explains some aspect of the behavior

of the real-world domain on which he is focusing. A major difference, of

course, is that the intelligence analyst is typically concerned with the de-

scription, behavior and plans of a non-cooperating adversary, while the

scientist is typically concerned with a system which is indifferent (but not

necessarily non-reactive) to his observations.

NIotwithstanding the above similarities between intelligence

and other types of scientific analysis, there are distinct differences between

the two. Relative to hypothesis concept formation and testing in most other

areas of scientific investigation, intelligence analysis often involves a higher

degree of uncertainty, a lack of repeatability and control of experiments, and a

lack of accessibility of the subject. There are also distinct differences in

the cost, feasibility, and potential ramifications of observation and experi-

mentation, and the nature of credibility criteria and rules of evaluation.

2-2

because of these considerations. the psychology, philosophy and

personality of the analyst often enter* the situation in a more direct way

In intelligence !.han in other scientific investigation. The intelligence

analyst's sytten. is very often a personal system, and is not easily amenable

to sharing and interpretation by other analysts. Furthermore, there is apt

to be a~ high degree of complexity in the composite factors which the intelligence

analyst is seeking to define and evaluate, such as capability of the enemy to

carry out a given plan, the level of threat represented by the current situation,

the net balance of forces or capability, aet.

The above differences along with other considerations give

rise to a number of unique problems associated with handling intelligence

information. Some of these problems and characteristics of intelligence

information are listed below:

- The volume of intelli?,ence information to be handled is
high. It is very oftmn in non-standardized, or partially
standardized, format. (Screening and processing unformatted
text is typically a bottleneck in intelligence systems, and
represents a problem aspect which is only partially solvable
bv autLOMatiC methods.)

- The Input date is often fragmentary. That is, only a small
subset of the possible identifying properties of the real-
world entities being examined or modeled by the system are
specified in a typical input message. Indeed, the completeA
set of descriptive properties of entities, and the relationsA

L among entities which will be of interest cannot be specified
at the outset, and remains a growing set during the life of
the system. Hence collation of new information with previously
stored data Is often difficult, and can be accomplished only
In a conjectural, plausible, or probabilistic sense.

- Input messages must be treated as independent observations
of a dynamic situation, and therefore it is important to
preserve and utilize dateline, source, and temporal aspects
In the data.

- There is an essential problem in establishing the validity

of each message and stored data item. Thus, it is importantI
to associate ancillary Information concerning the source and
credibility of all input data, and some measure of validity
to resulting conclusions.

2-3

Processing and inference rules are usually not completely
rigorous in a formal sense, hence it is important to consider
them, and the information derived by their application, as
"belonging" to specific analysts, with specified areas of
applicability, and levels of validity. Furthermore these
processing and inference rules are not static, hence they
should be embodied in the data base, modifiable, and processed
by generalized routines, rather than being implicit in pro-
grammed routines where they are relatively difficult to modify.

INFORMATION sTRUCTURES

These requirements lead to a rejection of conventional or "pre-

packaged" approaches to structuring information. In particular, the fixed record

customary in conventional data processing systems must be abandoned because

it is virtually impossible to pre-define a fixed set of attributes which

are appropriate for an entity of a given type. Even where this is concei•'fble,

the highly fragmentary nature of facts known about a particular entity would

imply a sparse occupancy ratio of data in the record, hence a poor utilization

of storage.

The major conventional data structuring strategies which have

been evolving in computer-based information processing are called:

a) hierarchic,
b) network, and
0) relational

data base systems*. There have been comercial Data BUse Management Systems

based on each of these strategies (e.g., IBM's INS is basically hierarchic;

CODASYL's DBMS, or Honeywell's IDS, is a network system; and General Motors

RD/S is a relational system). Each has advantages and disadvantages as tools

for Implementing information systems, and each is most appropriate for a given

type of problem and development environment. For example, the chained (link-

sequence) structure within the record used in some data management systems

(such as CODASYL's DBMS) was rejected because it implies a highly sequential

processing of information (i.e., along the chain), and a dedication of space
' for storage of the linkagsa.

• CJ Date: An Introduction to Data Base Systems. Addison-Wesley, 1975

2-4

A ~ - -. . ..

•ms"..... '

STIS solves the information structure problem by representing

an Intelligence entity as a node in a network-oriented data base. Basically,

a node is a list of attribute-name/attribute-value pairs, where the value may,

in general, be either a single or multiple occurrence (array), or a structured

sub-node. Thus an n-tuple (n-ary relation) is available as a special case of

an attribute (relation) value. Furthermore, a value may be an array of

identification codes of other nodes, permitting, in effect, any node to identify

a net of nodes as members of a given relation. This permits any node to serve

as an index (inverted list) of information subject to such powerful retrieval

techniques as set intersection, union, and difference, and permits the nodes

thus inter-connected to serve as an associative network of semantic and in-

telligence information.

In effect, the STIS information structure can be viewed as

an amalgamation of the three data structuring strategies cited above. Within

the node it Is hierarchic, utilizing the lack of redundance characteristic of

that strategy; it is network-oriented when viewed as multi-node system, providing

the richly inter-connected access paths needed in intelligence processing; and

it also utilizes the forma ism of relations for internode relationships and

to provide for ease of communication with the user. (None of the commercially

available DBMS's based on the relational strategy allows for variable (n-ary)

relations, a feature unique to STIS.)

In order to come to grips with the inherent (and unique) character-

Istics of intelligence information, the designers of the STIS At FTD and AAM

have chosen a data concept and data structure distinctly different from that

employed in conventional data processing system.

The STIS structure which is used to store information for on-

line and batch users Is called the Entity Node. Although the current Entity

Node handles variable and frag&entary information, it lacks a gene-al capability

to gather, in a local physical context, sets of n-ary relationships (n-tuples)

and subentities. To accomplish this in STIS, information which may be lgi-.

cally conceived as a single entity must be structured as separate nodes and

therefore be subject to several access operations when retrieved from second-

ary storage.

2-5

"'The ability to retrieve information by condition is quite re- I
stricted in the current STIS, being limited to retrieval under system, user,and AOR sets. Different information structures are used for sets and for

en t it I tes.

ihe improved information structure to be introduced will re-

moec these shortcomings in the near-term and will be adaptable to future en-

hancements of SrIS. The current STIS information structure is described in

detail in Appendix A, and the new information structuire is described in Section

4. A brief description of the new information structure is given below.

The STIS information structure is based orn a network of nodes.

The node is a hierarchic data structure which brings together all properties

and relations which are associated with a particular concept (semantic element, or

entity). A variable formaat is employed which nermits storage to be dedicated

to only those properties of the entity which are actually known, with no

space dedicated to "unknown" attributes. Provision is made for multiple

source information, with multiple (and perhaps conflicting) values for a

given att'ibure. Provision is also made for describing a generic, or "standard",

vtrsion of ar. entity an well as an arbiLrary number of particular embodyments,
and "states", of particular entities.

Each node carries the doscription of a logical entity or

event. The desc-intion consists of a variable number of properties and is

nrtr:trarily nrsted with structure elements representing subentities and

qualifications. The data nodes are logtcally interlinked by attributes which

represent relationships bet'ween entities.

Each descriptive property consists of an attribute-name/attri-

bute-value pair. One of the major innovations to he developed for improve-

ment of STTS, is the ability of a value to be represented by a conventional

$Ile and accessed by a conventional access method, without the user being ex

plicitlv aware that this is being done. This technique makes it possible to

handle large files of metric data in fixed-format records without explicitly

invoking the STIS relational mechanism at a level where a large overhead would

be incurred.

2-6

1 04--

Because the STIS entity is basically an attributes-under-entity

structure and because access to the entity network is typically conditional by

subject, Area of Responsibility (AOR), and/or attribute value, index lists of

the entity network play a very important role in STIS. Indexes are basic/ally

entities-under-attribute structures or "inverted" files, and allow conditional

access to the entity network to be accomplished directly and efficiently, with-

out the necessity of sequential search through the entity network. Whereas

STIS now uses a different information structure for the entity and for the "set"

or index, the enhanced STIS uses a common node structure.

In choosing the STIS node as the particular structure to

represent information ("f -s") in the system, the designers have created an

information structure whlh can provide the following features and capabilities: A

- efficient utilization of random access (secondary)
storage for a very large data base of upwards of
500,000 records

- accommodation of a variable set of attributes for the
entities to be described in the system

- quick retrieval of the facts known about an entity
identified by an arbitrary subset of these facts

retrieval of all entities having an arbitrary
relationship to a given entity, or which are members
of a given set.

- easy modification of the set of facts concerning a
given entity

ability to create and maintain a vocabulary of

terms and semantic relationships for effective repre-
sentatior. and communication of facts about entities and
their membership in conceptual categories and relations

- ability to qualify facts in a very general way, A
including their temporal validity and relationship to
events, access control information, source, credibility,
and relational operators such as "approximately," "not
equal to," etc

ability to store general rules and potential inference
chains as well as specific facts

2-7

.- a variety of data types, including alphnumeric, text,

and data (both fixed and floating-point formats)

- an effective interface to batch mode application prrgrams

- an effective on-line communication both through a
generalized user interface and through special modes
provide by application programs

- :an environment for dynamic data base growth and
maintenance

controls for data access authorization and data base
protection

S- capability to handle multiple values for any attribute,
and

- I enhanced modes of analyst communication through textual
annotations such as warnings and comments.

2.3 SEMANTIC NETWORKS AND CURRENT RESEARCH IN KNOWLEDGE-BASED SYSTEM

Although STIS is based on proven "state-of-the-art" technology,
the enhanced STIS data structure closely resembles the data structures used in
advanced research programs in "semantic networks" and "knowledge-based" systems.
Experimental Systems which model or represent the state-of-affairs of some
real-world situation or, more precisely, a human's view of that situation,
have been reported in the artificial intelligence research literature for a
number of years*. The common thread running through these systems is that
they allow the user to freely describe and define relationship among the

entities and objects which inhabit his "world."

One of the largest and most advanced research program in

knowledge-based systems is the Computer Based Consultant (CBC) system being
developed at Stanford Research Institute under ARPA sponsorship. The CBC is

* A study of such systems was conducted by AAI and reported in Relational Data
Study, RADC-TR-70-180, September 1970, (720263). It includes, for example, a dis-
cussion of Quillian's "Semantic Net" in the Teachable Language Comprehender
(BBN)

2-8

.. M

J

designed to communicate with the user in natural language and help him perform

tasks entailing maintenance and trouble-shooting of electromechanical

equipment. The current test data base describes the structure, parts, and

maintenance of an air compressor, and can generate and execute plans for assembly

and disassembly at several levels of detail, and answer questions about the

equipment posed by an apprentice. The system is programmed in QLISP, an extension

of the LISP language which runs on the PDP-10 under the TENEX operating system.

The data base of the CBC is a semantic net whose nodes and

attributes have been divided into "partitions" forming a partially ordered

set. The main objective of partitioning is to de;fine the scope of quantifi- 1
cation statements,•

The enhanced STIS data structure, called the Concept Net, bears
a close kinship to the type of semantic net used in the CBC. The Concept

Net will also be partitioned. However, partitions in the STIS data base will

serve additional functions. They will define sets of information which "belong"

to a particular analyst or Area of Responsibility (AOR) and which may be allocated

to separate storage modules (i.e., disk packs). Subpartitions will also

identify sets of mutually consistent information (and, in later phases of A

STIS 2, rules and coherent patterns of fact credibility).

2I

•2-

S 2.

SECTION III. OVERALL SYSTEM STRUCTURE

The control structure embodied In STIS zan be considered under

the followitng headings:

(a) General Processing Flow
(b) Multi-user Considearations

(c) Recursive Processing
(d) Security Processing
(e) Systems Management Functions

3.1 GENERAL PROCESSING FLOWJ

The STI system can be conceived of as being composed of a nwicer
of processing levels, providing progressive Interpretation, decomposition, ex-

ecution, and monitoring of user requests. Each level provides a locus for
specialized kinids of data screening and request analysis and support. The pro- A
cessing at each level can be modified, augmented, or replaced with minimum effect

on other levels. The levels and their relationships are indicated in Figure 3-1.

3-1

~NE USERAPPLICAT1ON
PROGRA

DIRECrORY

USE CMMADSPROGRAM CALLS

LINKAGE INTERACTIVE BATCH IAG
MODULE USER -- DIRECTORX USER IMG

INTERFACE PRC~RINTERFACE MDL

I" i

S)'(1) EU" EF

REQUEST DECOMPOSITION PROCESSO R

I I I I "RETRIEVE"
SYSTEM CALLS

MANAGEMENTj "CREATE" "UPDATE" AL
CALLS EiECALLS CALLS

CALL S I RETRIEVAL DEDUCTION
11 US INI O ALYZER A PROCESSORI

CALLS s

I +"I I
I CALL I 7

SEARCH
PROCESSOR

I INTERSECT SI1LEI ' CALLS RETRIEVAL CALLS .4

S~~~~EXTERNAL--- Pi+-O " NODE PROCESSOR N ij

PROCESSOR _____________________

ALLOCATE/ RE/ TERMINATE SEQUEN-
DEALLOCATE CALLS TIAL I/O
CALLS CRE'ALCL CALLS

DIRECT ACCESS STORAGE MANAGER

DIRECT ACCESS SEQUENTIAL I
1/0 CALLS 1/O CALLS

OH-'I.,LIE
STORAGE <OPERATING SYSTEMSTRG

Figure 3-1 STIS Overall Flow and Processing Levels

3-2

S..:,

Although for convenience a processor is shown at each level, the levels should

be thought of as functions, which bear no necessary relationship with modules

of the system.

3.1.1 User Interfaces

The processing of user calls first takes place at the user inter-

face. Included among the functions of user interface processing are the follow-

ing:

S(1) to insure information base security and integrity
by requiring and checking password and access rights

• information

(2) to execute system- or user-specified special pro-
ceasing or contingency routines under appropriate
conditions

(3) to convert data elements from one form to another
(this includes term encoding and decoding)

(4) to retain, for each user, inter-call parameters
and status information

(5) to amplify (or more fully specify) user calls
through the incorporation of previously developed
or specified informaiton

(6) to convert calls to a comon language or form for
processing at the next level

(7) to assign, on initial access by a user, a work area
to be used by STIS for data base manipulation.

In general, error conditions occurring at lower levels in the STIS

system are passed back up to the user interface processors. Subsequent pro-

cessing depends on the nature of the contingency and on whether a batch or on-

line user is involved.

There are two main types of user interface processing: batch

and on-line. A
3.1.1.1 Batch .

Batch user interface processing is responsible for-interfacing

user programs with the STI system. In the current version of STIS, and prob- I
ably in future versions, this interface processing has two aspects:

-W 3-3

"WaIZ1 4A 4.-.4;A;,.4:s.A.. A..1,s

(1) a preprocessing phase (currently called Phase 1)

(2) interaction with the data base access calls made
by the user program (currently called Phase II)

Phase I generates the necessary linkage modules for Phase 11

operation by processing user subroutine calls that identify data base items

of interest, buffer sizes, and special processing and contingency routines.

Once generated by Phase I operation, the linkage modules are incorporated

into the user program and used repetitivel.y, until changed conditions re-

quire a new Phase I generation.

User Phase II programs interact with the STI system via the

linkage modules. In addition to providing storage for data elem~ents and para-

meters, these modules establish the communication path with the interface

modules that process the uses calls under guidance of those specifications

made during Phase I operationi.

B~atch user interface processing is currently oriented toward

programs written in FORTRAN. However, programas written in other languages

are accommodated through interface programs that simulate the FORTRAN call

interface.

3.1.1.2 On-Line

The on-line user interface translates commands expressed in an

on-line interactive language into requests suitable for processing at the next

level. As users sign on and are accepted by the system, they are allocated

suitable linkage modules to allow for communication with the STIS information

base facilities. As with batch processing, these modules include space for

data items and parameters. When a user signs off, or is otherwise terminated,

the space containing his linkage modules is released

3.1.2 Request Decomposition

Fully parameterized requests developed as a result of user inter-
face processing are not necessarily executable as single requests in their

current form, but may require the execution of a number of simpler requests; or

a request may imply the execution of other requests necessary ior successful

3-4 '

Ii,'

completion. For example, an update request may imply one or more "retrieval"

requests in order to locate and access the data element(s) to be updated. Or,

an update operation may also imply a series of lower-level retrieve and update

requests in order to maintain any optional indexes associated with the updated

data element(s). In general, the request decomposition level of processing

breaks down complex requests into individual calls processtble by lower levels

and insures that any implied requests are executed. All data access requests

are executed in terms of lower level "create", "update", "retrieve" and "wrap-

up" type requests. Service requests for STI system management functions are

also handled.

The request decomposition level is responsible for handling any

complexities inherent in create or update requests. Retrieval requests, be-

cause of the wide range of potential modes of analysis, are handled by a

separate level.

3.1.3 Retrieval Processing

Retrieve-type calls transmitted by the request decomposition

level are analyzed to determine processing requirements. Simple retrieve

("get"-type) calls are passed on without further processing to the next level.

In advanced versions of STIS, retrieval operations will be en-

hanced by two additional processors: the search processor and the deduction

processor. A

If exy" criteria are to be applied directly in the nelection

of data, the search processor is called. If rules are available for applica-

tion to the current request, the deduction processor is executed.

The search processor itself can make use of intersection pro-

ceases and ultimately generates simple retrieval calls. The search processor

can also act as an agent for the deduction processor in performing searches

local to deduction processing.

3.1.4 Node Processing :1

At the node processing level, nodes in the Concept net and 'A

associated information in the form of list elements, are created, maintained

3-5.

.-.:..- _. _::•=••. _.= : • • • ,A.....

and retrieved. Some node structures contain factual information; others con-

tain semantic information. All nodes, regardless of role, have a uniform

structure and are serviced by the same functions. The system nod functions

are described in Appendix D.

Node processing is concerned with the packing of information

into blocks, the unpacking of information from blocks, and the .cating, moving

or copying of information Although it deter-ines the need for direct access

I/0 activity and for the allocation and deallocation of mass storage segments,

it does not actually perform these functions itself but gets them accomplished

through calls on the direct access storage manager.

Sometimes the information associated with a node is a collection

of records on an external file. The accessing of such information requires the]
node processor to make sequential-type I/0 calls to the host operating system.

The value associated with a given occurrence of an attribute can

be specified as being determined by the execution of a pre-defined process which

"is called by the node processor.

3.1.5 Direct Access Storage Management

The direct access storage manager respon4s to direct access I/0

requests and to requests for the allocation or deallocation of strings of mass

storage segments. All requests are associated with a partition-determining

reference so that information can be physically segregated. (Physical parti-

tioning is discussed in Section 4.7.)

The storage manager requires terminate calls from higher level

processors in order to know when a particular physical partition is to be
"closed". A closed residentpartition is opened on the first reference to it.

I/0 functions associated with external storage management are

delegated to the Direct Access Storage Manager modules. "Put Node" and "Get

Node" functions within the Node Processor perform compression/decompression

V. operations, and request I/0 functions by generalized calls on the Direct Access

S3-6

KK.

Storage Managtar. External storage to hold node structures will be assigned In

bloc~ks consisting of a standard number of consecutive segment* (choice of the

standard number depends on analysis of typical node sizes and the nature ofR
the physical, mass storage equipment chosen). If a particular node structure

cannot be contained within a standard block, another standard block Is reserved L

and a pointer to the additonal block is placed at the end of the preceding block.

Buffer space in core to hold the complete standard block within

the node processor need not be reserved. The nature of the 1/O coumands, permits

the working buffer within the node processor to be as small as one segment size.

With respect to I/O operations, the storage manager, taking ad-

vantage of information supplied in the I/0 requests, makes use of a separate

buffering system in an attempt to minimize the number of mass storage 1/O calls

(and therefore reduce latency time) by reading~or writing, with one call, stringsI
of consecutive mass storage segments, rather than single segments. The size
of the buffer pool can be independently varied, without affecting node process-

ing.

Allocation of multi-segment strings takes advantage, where

possible, of the track orientation of mass storage devices so as to reduceY

head movement time when the future corresponding I/O operations take place.

3.1.6 Example of User Request Processing

Let us examine the way in which a typical user req iest would be
processed in STIS. We will assume that the request occurs in the form of a

command from an on-line interactive user who has already completed the sign-

on procedure, and has been executing a number of retrieval and update commands

on various network entities. The flow of processing is indicated in Figure 3-2.

The user command "WHAT IS RANGE OF AARDVARKC" is responded to by

the user interface processing modules. The request is examined for syntactic

correctness and completeness. The process of validation of the request (e-.g.,

the determination that "RANGE" is, in fact, the name of an attribute and that

"AARDVARK" is an entity name) is aided by the availability of suitable directory

services. Directory services would also be available for the encoding of var-

iable length external terms, such as AARDVARK, into fixed length internal term

codes.
3-7

"WW IS RANDE OP AAADV•RK"

VALIDATE AN GT RANGE EDIT AND+ -I I :
REFORULATE OF OUTPUTKBQZ1 "AARDVARKC" REPLY

PQUE•ST VCONPOS!TION PROCESSOR,- .• . + - ,.. . "
I usw ILOCATE AND SEARCH FOR SEARCH FOR

R EID--•NT AD I SITT ATTRIBUTE VALUE Of I

I I ' ' RANGE
-- I- ti l I I,

i l.. ANALYZ

""IL I

VMS PROCESSOR

. /I N IN ND U NI L I U TI L

RLiLELIJF.ALFE/ ' - -,,' -.. --. ,- -- -, -- .~.

NODE PROCESSOR " % DATA- -.. " -.... - - •- -- -" -" - - ,,"-"

ST R G Is ~ A T I N O D E/ lM A I N Nob m , l I N T A NOtDE• UNTI"• u L I NF l ps u NTIL II .

I'--- -AE -- I -- FOUND AW-E FOUND
\\ I -• "

DIRECT ACCESS STOPUAGE MANAGER \ - .-

YEI•". I I .5

Figure 3-2 User Request Processing Example

3-8

After validation, the user command is reformulated Into an In"

ternal form (e.g., term codes replace names) and a call Is made to the next
level.

P Before processing the current call, the request decomposition

processor must first ensure the completion of any procesuing on a previously-
accessed node which may have been suspending pending subsequent user action.f In the present case, let's assume that, before the current call, the user had
crested some other node to which he then appended a series of attribute/value

pairs. After each update, the processing state warn left in a posture to re-
ceive more updates for that node. User reference in the current call to aI different node nov requires that any processing associated with the created
node (the currently resident node) be completed. As its first step, then,

in responding to the current call, the request decomposition level directw

the node processor to wind up processing on the currently resident node.

The node processor must perform at least four operations to
complete processing on the current node. Since it must output the created

node to permanent storage, it asks the direct access storage manager to allo-

cate for this purpose the required number of mass storage segments. It then

directs the storage manager to write the node data to the designated segments.

The index, or location table, relating node identification to storage location

is now updated. The windup operation is completed by making available for useI all main memory areas that had been assigned to the processing of the created
node.

When control returns, the request decomposition processor issues

a call to locate and load (i.e., retrieve and make resident) the node repre-

venting the entity AARDVARK. All retrieve calls are issued to the retrieval

analyzer. In this case, the retrieval analyzer determines that the request

can be passed through without further processing to the search processor, which

in turn decides that it is a simple retrieval request and relays it to the node I i
prcso . 7,1J YZ77I -

...

The node processor determines the storage location of the do- -

t sired node by searching the node/storage block index. If the search has been

successful, it then requests the storage manager to read into main memory the

initial node data segment and gives up control with an indication of success-

ful completion. Control eventually returns to the request decomposition level.

Now assured that the node representing AARDVARK is resident, the

request decomposition processor issues a call to the retrieval analyzer to Ia-

cats the kANGE attribute for the resident node. Without further processing,

the retrieval analyzer relays the call to the search processor, which deter-

mines that it is a simple retrieval request and passes it imediately to the .
The node processor steps through the node data segments (issuing

read requests to the storage manager f or more data segments, as required) un-

til it reaches the information packet for the RAN4GE attribute. Control returns

to thE request decomposition level, with an indication that the RANGE attribute

* has been located. (If node data had been exhausted before locating the RANGE

* attribute information, a "no find" indication would have been returned.)

The request decomposition processor now issues a call to re-

trieve the value for the located attribute. This simple retrieve call is passed

through to the node processor, which steps through the attribute data until the

properly qualified value is found and returned. (The method for determining

the qualified value depends on whether the qualification is global for the node

or specific to the value.)

After successful retrieval of the value, the request decomposition

processor returns the value, with a successful termination code, to the on-

line user ititerface. Here, the user interface, aware of the user's output re-

quirements, formulates a reply message and transmits it to the user terminal.

3-10

3.2 MULTI-USER CONSIDERATIONS M

Multi-user access to a single resident copy of STIS will be pro- I
vided.

The exact organization of STIS so that it can serve "concurrently"

more than one user depends on a large number of factors, many of which are as

yet undetermined. These factors include:

(a) Physical Equipment and Operating System

(b) Programming Language

(c) Parellelism of STIS functions

3.2.1 Physical Equipment and Operating System

Basic to the organization of STIS for multi-user access is the

nature of the physical equipment configuration and of the operating system

services which support its use. These factors determine the way in which

required system operations and data can be distributed among the hardware

facilities, and define opportunities for parallel operation and for queued multi-ri

user access.

For example, a small network of hardware processors and data 4

storage devices may be desirable, in which one hardware subsystem plays the

role of terminal input processor (including interactive communication with 4A

the user), another subsystem actually executes data update/retrieval functions,

and a third subsystem serves a buffering/queuing function between the other

subsystems. j
Operating system services with respect to the registration, in-

terlocking, queueing, and conditional activation of activities and subactivities

will obviously play a crucial role in the design of STIS multi-user control.

3-11

-.. _-

3.2.2 -titrlt Lmusae

The progrming language used for Implementation aloe affects

the multi-user control aspects of system organization. The language, chosen

for ease of implementation and/or to enhance transportability, say not, for

example, provide for reentrant code. In the absence of reentrant code, con-

current users must be queued up to use the services of single copy portions]
of the system.

Whether or not reentrant code Is used, a considerable amount of 1
main memory storage space must be associated with each active user. Most of

this space is used to hold data segments, data pointers and other parameters

required for continuity between calls and to reduce or eliminate reaccess of

already-accessed information. The chosen implenentation language srsten may

allow STIS to directly access this Individual user space (treat it -A Its
own space) or it may require that the contents of user space be moved Into and

out of STIS's own space for each user call.

3.2.3 Parallelism of STIS Functions

System organization for multi-user processing is affected by

natural or induced parallism (or lack thereof) in the execution of STIS functions.

Parallism here refers to:

(a) the degree to which subactivities required to
carry out a particular user request can be
executed independently and asynchronously with
respect to each other, or

(b) the degree to which the subactivities carrying out
& request for a particular user can be overlapped
with those subactivities serving a request for a
different user. For example, the updating of in-
dexes as a result of an update operation by
user A can be overlapped with the initiation of
an update operation of a different data item by
user B.

3-12

3.3 RICURSIVI PROCESSING

While many of the control requirements of STIS are similar to

those of other systems, STIS differs most from theme systems in its require-

mert for extensive recursive processing. That is, recursive processing in the A

execution of data decess operations is a natural and primary component of STIS.

Therefore, a considerable pcrtion of the STIS design effort is concerned with

the pushdovn/popup stacking of control itformation and data associated with

such internal recursion.

A requirement may exist to cope with external recursion, i.e.,

recursion with respect to the entire STIS system, where # call to STIS re-

sults in a call to a non-STIS process that in turn results in a call to STIS,

etc. (see Figure 3-3a). This requirement can be met in one of at least two

ways:

(a) On a call from STIS to an external processor or utility
that may result in a subsequent call to STIS, a new
user identification is generated (e.g., by a suffix on
the original identification) to be used by the external 4

processor in its STIS calls. STIS treatem the first
call from the external processor as the initial call
for a new user, and assigns a separate work area to
be used by STIS. (Of course, this "new" user must
satisfy the same security and access checks as the .:
original user.)

(b) Before executing a call to an external processor or
utility that may, in turn, call STIS, STIS records
the fact that the system is in a potential reentry A
state tor that particular user. If such a reentry
to STIS occurs, it is recognized, and appropriate
measures are taken to allow the user's current work
area to be used in satisfying the request. In either
casm, a stacking mechanism is required to retain
certain information, e.g., exit address from STIS
(See Figure 3-3b).

Non-STIS utilities or external processors that themselves are

subject to recursion during this process must contain their own stacking i -h-

anisms.

3-13

OTIS
CALLAL I -

PUNCTION
OR

UTILITY

Figure 3-3(a) External Recursion

USER PUSH-DOWN
CALL _4 .STIS STACK

(USER *SMITH)

EXTERNAL
FUNCTION _________

"U~,CALL
(USER SMITH-i)

STIS

EXTERNAL
UTILITYI____

"USER!, CALLSIT-
SAVED INFORMATION

(USER * ITU-2)LOAIS

STIS 1SAVED INFORMATION
j LOCATIONS

Figure 3-3(b) Multi-Level Recurwian and Stacking

3-14

7"7

3.4 SECURITY PROCESSI

Security processing within STIS is concerned with the protection

7 of the data base from Illegitimate scrutiny and from uncontrolled moodification

or destruction. As in all such systems, such security processing functions at

swveral levels. A

At the outermost level, only certain terminals, or terminal groups, A

are permitted access to STIS, and the functions allowable to any particular ter- :"
minal are strictly defined by the systems manager. At the next level, user pass-

words are associated with a particular Area of Responsibility (AOR), so that the

AOR code, which is the key to further access, can only be invoked by legitimate .
users. At the next level, the AOR code, through restriction to a particular

partition and/or fact qualification, limits access to certain data, and also

protects that data from unpermitted access by other AOR's.

All such security procedures are governed by system tables

accessible only to the system manager, and by the methods of fact qualifica- .

tion built Into the system.

3.5 SYSTEMS MANAGEMENT FUNCTIONS

Systems management capabilities in STIS are intended to serve

two main functions:

(a) Supervisory control of user access criteria

(b) Overall control of data base distribution and
availability

3.5.1 User Access

Functions are provided to the systems manager to allow for the

entry, modification and deletion of entries in user/terminal/password/access

rights tables in STIS. The systems manager can add or delete terminals or

terminal groups, or change the access privileges of existing terminals. He

can add or delete specific users or change their access rights. The systems

manuger can display or print any information appearing in such systems tables,

including user statistics, if they are maintained.

3-15

3.5.2 Data Base Distribution .

The systems manager has facirities to allow for the definition

of data base partitions, the movement of partitions on and off line, and the

temporary disabling of: partition access (see Section 4.7). He maintains

the configuration of available partitions based on normal usage requirements,

and has the means to create special configurations to meet temporary emergency

needs.

Ii.

3-16 :.

.

.11.LL

SECTION IV. THE CONCEPT NET -- A
NEW INFORMATION STRUCTUR~E FOR STIS

4.1 A MODEL FOR INTELLIGENCE INFORMATION

The Concept Net represents the intelligence analysts' collective-

view of the current state-of-affairs in the real world. It is populated with

"facts" distilled by the analyst from observations, reports of observations, and

assertions concerning his sphere of interest in that world. Since it is a dy-

namic world and viewed, as it were, "through a glass, darkly", each fact has

associated with it an open-ended set of qualifying statements which include,

typically. the source (or message) from which it was derived, its interval of

validity (in time and/or space), the date of observation or entry into the

sys-tem, the credibility (probabilistic truth value) assigned by the analyst,

and the time-constant (or "half-life") which characterizes the volatility ofJ

the information. Because virtually all intelligence information is both ofj

4-1-

questionable veracity and subject to change, we view the original credibility

level as being modulated by an exponentially decaying weighting function

whose time constant is characteristic of the volatility of the type of inf or-

mation in question. For example, the place of employment of an individual

may have a half-life of four years. That is, if it was reported in 1970 that

George Murphy worked for RCA, and this "fact" was accepted with a credibility

of 0.8, then in 1974, in the absence of any new data concerning Mr. Murphy,

the credibility of that fact would be 0.4.
I;A

Another characteristic of intelligence information is that there

may be conflicting reports concerning the facts about a given entity and/or

legitimately differing views among one or more analysts as to what the facts

may be, or, f or that matter, more than one value for a given attribute may

be valid in a given time interval. (The case may be that Mr. Murphy, while

working for RCA, moonlights as an instructor for Rutgers University so that

apparently conflicting reports on Mr. Murphy's occupation may be reconcilable,

and coexist with a high credibility. On the other hand, the report of Mr. 4lurphy's

employment at Rutgers may be a deliberate plant or "cover" to obscure the fact

that he works for RCA.) For this reason, and to provide for simultaneous use

of a common body of information among, many analysts, the analyst or organization

which is responsible for a given "fact' is recorded as part of the information

qualifying that fact.

4.2 THlE CONCEPT NODE

The Concept Net is organized as a network of nodes, each of which

represents a concept (such as an individual or other entity) which is of interest

to the analyst. The node in turn contains a sp-t of facts (properties) made up

of attribute names and qualified values, which describe the entity and its re-

lationsh~ps to other entities. These facts are deri-ied from (and tied to)

messages concerning observations of the real-world, Other nodes may represent .
concepts which exist independently of messages (or observations of the world)

such as semantic concepts representing the attributes and values themselves,

as well as their inter-relationships. (Value nodes will also be related to

the entities which are described by (or use) those values, providing a cross-

index to the Entity Net.)

4-2

L <-~. . . .~ I..

Each node in the Concept Net comprises an open-ended set of

properties of the concept or real-world entity which is represented by the

node. A property is an attribute-name/attribute-value pair which may, in

turn, be qualified by an arbitrary list of properties. Attributes and values

(also teras and words) are themselves represented by nodes in.the Concept Net.

An entity node may stand for a real-world individual, unit, facility, weapon,

event, etc. A node may also represent a state sr sub-entity attached to a

parent node. For example, a parent node may represent a generic class of

weapons, such as the Minuteman missile, while a sub-node may represent a specific

example of that missile installed at a particular site, with a particular target,

etc.

When a g•¢en entity or other concept node (the source) bears

some relationship to another concept node (the target), that relationship is

represented in what is called an entity-relational attribute in the source node.

Its value is the identifier (Node #) of the target node. In order to provide

complete cross-referencing, there will be defined for each relational attribute

R (using its Attribute Node in the Semantic Net) an inverse relation R-1 so

that if entity a bears relation R to entity b "R(a b)" then entity b bears re-

lationship -to entity "R-l(b a)". For example, if the Pershing Missile

has a test site at White Sands "Has Test-site (Pershing Missile, White Sands)",

then White Sands is the test site of the Pershing Hissile "Is test-site (White

Sands, Pershing Missile)" where "Inverse (has test site, is test site)"

and "Inverz'e (is test site, has test site)". In the above example, the first

two statements woild be in the Entity Net (Pershing Missile and White Sands

nodes, respectively) while the latter two statements would be in the Semantic

Net (Has test site and Is test site nodes, respectively).

in addition to entity-relational attributes, an entity may

* possess attributes whose values are names, numbers, or descriptive terms

which are not other entities. These values may be represented by nodes in I
the Semantic Net (rather than the Entity Net) which in turn cross reference,

4-3

as entity (, !,:-) lists, those entities which use them. Hence, the dis-

tinction betweun entity-relational and non-entity-relational attributes has

little operational significance for search strategies in the system. In

either case, the entities possessing a given property are accessible through

the cross-referencing (indexing) feature, whether it be the node representing

the' target of an entity-relational attribute or the node (in the Semantic Net)

representing the value of a non-entity-relational attribute. The entity list

under the value node can be considered the inverse of the non-entity relational

attribute in the entity node in which it occurs. The Concept Net provides for

both an attributes-under-entity (normal file) and an entities-under-attribute

(inverted file) point of view. This redundancy of access path -- sacrificing

space for time -- is built by the system, under control of the Data Base

Administrator (who may limit this redundancy selectively) and need not concern

the analyst who chooses to limit his role to that of an information consumer.

4.3 SUB-NODES -- COMPOSITE ATTRIBUTES AND N-TUPLES

There will be instances in the Concept Net when it will be use-

ful to consider one node as subordinate to another in a hierarchic sense (rather

than the non-hierarchic, or coordinate, relationship between two nodes which

are joined by an entity-relational attribute). When this subordinate relation-

ship is defined, it implies the desirability to store the subordinate node so

that it is physically accessible-with the parent node, reflecting logical de-

pendency and/or predictable access patterns. When this occurs, the subordinate

node is called a sub-node of the parent, or master, node.

The sub-node relationship can arise in several contexts. In
addition to the close master/slave relationship that may exist between two

entities, mentioned above, a subnode may represent what is called a composite

attribute, or n-tuple. A composite attribute is an attribute comprising a

set (n-tuple) of simpler attributes. For example, position may be defined as

a composite attribute comprising the simple attributes latitude and longitude,

or address comprising number, street, city, and state. Composite attributes

provide for generic terms which conveniently reference and retrieve a set of , .

specific information. The analyst or programmer who is concerned about the 4

structure of the 'Concept Net or is developing appropriate terminology for

semantic concepts may work with the Data Base Administrator to define composite

attributes or other sub-nnde relationships.

S" 4-4

S~~~............... '..*Np1 . . .

4.4 FORMAL DESCRIPTION OF THE CONCEPT NODE

Each Concept Node in the STIS Concept Net is represented by 4

the same formal structure, called a description list. Entity Nodes, Attribute

Nodes, and Value Nodes are all instances of Concept Nodes in STIS. Each Con-

cept Code (or Node #) is the name of a description list. (The Node # will be

used as a key to obtain the description list from permanent storage.) Sub-

nodes are also represented by description lists but they do not have separate

Concept Codes associar-- with them since they are stored with the parent node.

A composite value (the qalt.c of a composite attribute) is a special case of a

sub-node in which the attributes have been predefined.

A Concept Node in STIS is a description list. The formal syn-

tax of a description list is specified in Table 4-1. Lower case letters repre-

sent syntactic variables and upper case letters represent concept codes or

other terminal atomic symbols.

There is no syntactic distinction between brackets and paren-

theses. Note that a description list is defined recursively so that there

is no constraint on the nesting of subnodes representing qualifiers or com-

posite values.

4.5 THE SEMANTIC NET

The Semantic Net is that subset of the Concept Net comprising

Attribute and Value Nodes. All attributes and values are represented by nodes

in the Semantic Net. (In the case of numeric values, the Value Node represents

an interval on a lograrithmic or linear scale.) When they occur in the descrip-

tion list of a node in the Entity Net, attributes and non-numeric values are

represented by their Concept Codes (Node Numbers).

4-5I

4-5]

1.7

TABLE 4-1

NODE STRUCTURE SPECIFICATION

Note: The convention used here for syntax specification uses the following
metalinguistic symbols:

is defined as, or can be replaced by

k one or more occurrences of the expression enclosed
by the lower half-bracket

I choice symbol

r optional (at most one occurrence) of the expression
enclosed by the upper half-brackets

deslist [[@ Lprop)]

prop * (A val)

val 4V I [Lvalj) (val qual) I deslist

qual t[* kpropj3

Semantics

deslist * description list

prop - property

val - value J

A - Attribute Code (i.e., Node #)

V - Value Code (i.e., Node 0), numeral, or string
representing a terminal value.

qual - qualification list

(V ...] - array (list) value

(val qual) - a qualified value; qual is the subnode which .14 .. : qualifies Val

iv- (A deslist) a composite property; A is the composite attribute
and deslist is the sub-node representing the composite
value.

4 -6

.. ..

.7..5

TABLE 4-1 (Continued)

Exampleos

The following description list examples represent Entity Nodes.

In the interest of clarity, attribute and value names are used rather than

Node Numbers.

#1 = [@(Name [@(First Jerry) (Last Sable)]) (Age (45 [*(Source Est)

(Accuracy ± 3) (Validity-interval 1975)]))

(Works-at 12)]

.#,2 [@(Name AAI) (Fac-type Consultant-org) (Employs [#l #3 #4])

#2/ (Location ([Phila Wash] [*(Cred 0.90]))]

#3 = ([@(Name Schernecke) (Works-at #2)] [*(AOR Consultants)])

"([@(Name McCrea) (Works-at(#2[*(Validity-interval [1963 1975])]))]

[*(AOR Consultants)])

4-7

4.5.1 Attribute Nodes

The description of any concept consists of a list of properties,

i.e., attribute name/value pairs. Since attributes are concepts themselves,

they are represented by nodes in the Semantic Net subset of the Concept Net.

Some of the attributes which can be expected to be used in the description list

of an Attribute Node are listed. below. (It should be noted that as in all nodes,

these attributes, except when they are self-referencing, are represented by the

Node Codes of Attribute Nodes. Their values are represented either by Node

Codes or by Term Codes.)

Attribute name

Synonyms

niarrower attributes (for composite attributes)

Broader attributes (for components of composite attributes) i
Inverse attribute (for Entity Relational attributes)

Values (the list of values for this attribute, limited to the
first domain element in the case of Entity Relational
attributes)

Attribute Data Information -- the value of this attribute is
a pointer to the Attribute Data Record in a Direct
Access file outside of the Concept Net. The ADR de-
fines the format, precision, units, and "owner" of
the attribute. This is an example of a special attri-
bute, or Process Hook, which invokes an outside routine
to compute a complex value, using the nominal attribute
value as a parameter.

Other Attribute properties, such as transitivity, reflexivity,

a nd symmetry which may exist will also be represented in the property list of

the Attribute Node.

4.5.2 Value Nodes

Each non-numeric value, or range of numeric values, which can

serve a3 a retrieval condition will be represented as a Value Node in the

4-8 '1

Concept Net. When indicated by the analyst, or Data Administrator, the Value

Node will serve as the head of an index to information in the Entity Net.

This provides support for the three basic strategies for retrieving informa-

tion about intelligence entities;

(1) through the context of an explicitly identified
entity, including its association with other
entities via relational attributes,

(2) through a retrieval criterion made up of a set .
of specified properties whic'ý the entity should

Y, possess, and

(3) through properties which are plausible for the
entity because they can be inferred from general-
ized rules stored in the Concept Net.

Some of the attributes which can be expected to be used in the

description list of a Value Node are listed below:

Value name

Synonyms

Narrower values (or subsets)

Broader values (or supersets)

Attribute (the attribute that has this node as a value, the in-

verse o~f the Values attribute in the Attribute Node)

Entities (the entities which have this node as a value. This

serves as the index list for those entities.)

4.6. THE ENTITY NETj

Information about any incelligence entity of concern to the

analyst can be st~ored in STIS by creating an Entity Node to represent it in

the Concept Net. Once the node is created, the description of the entity is

stored as a hlis of properties. Internally, the entity is known by its NodeI Number, which serves as its retrieval key from permanent starage, as is the

4-9

(This page intentionally left blank)

4-10

..

case for any node in the Cone-opt Net. In Its simplest form, the entity

number n is represented by a description list ouch as:

a~iJ O (A a) (B b) (CC) ...)

The interpretation is that the entity represented by node n has all of the'

properties listed. That is, in conventional relational or logical format,

the attributes A, B, C, . are binary relations connecting the entity and

a value and the following conjunction holds:

A(na) A B(n,b) A C(nc) A

Thus, in the Entity Net, information is collected in an "attrn- A

butes-under-entity" format, while In the Semantic Net, one may say that the

same Informatiot, appears in an "entities-under-attribute" format. As will be

discussed below, the simple description list form can be generalized in a

number of important ways.

4.6.1 Entity Relations

The simplest relations are attributes which take scalar values,

either literal or numeric, such as Name(n,Atlas) and Weight(n,150). However,

values are generalized to permit arrays, such as Name(n,[AtlasN12]) and J

Location(n,[ND,FL]). Assuming Node n is 010, this would appear in description

list fprmat as:

#10 = [@(Name [Atlas M12]) (Weight 150) (Location [ND FL]) I

Entity-relational attributes name other Entity Nodes as values.

If entities #11 and #12 were test sites for #10, then the update command "Add

Test-Site (#10, 1#11, #121)" would add the property (Test-Site [#11 #123) to 5
the description list for #10. 1

4-11

By permitting a value to be represented by a description list,

or subnode, the descriptive power of tba system in augmented in a number of

ways. The simplest instance of this, the composite attribute, was described
in Section 3. Other cases will be discussedin the followinA paragraphs.

4.6.2 Generic Entities

It is often useful to describe an object as a generic type for

which, in the real world, there exists a number of specific occurrences. This

can be done by creating a node, called a generic entity, which represents the

comon characteristics for these objects. This can then be supplemented by a

node for each individual object for which specific information Ls required but I
which is not characteristic of the class as a whole. For example, suppone we

have the missile type Atlas represented by:

#20 ([@(System ICBM) (Name Atlas) (Weight 150)

(Accuracy 3) (Instances [#21 #22 #23]) 1

Nodes 121, #22, and 123 then are specific entities whose general characteristics

are given in node 020 and therefore may be inferred by reference and need not

be explicitly repeated. Each instance will reference the generic entity and

give only unique characteristics, such as:

#21 = [(Mocation ND) (Target #31) (Serial 1234) (Generic-entity 020))

Note that the attributes "Instances" and "Generic-entity" are a converse pair.

4.6.3 Entity States

It is often necessary to track changes in a given set of proper-

ties of a specific object. To do this, subnodes called "states" are created.

The relationship between a specific entity and a state of that entity is paral-

lel to that between a generic entity and a specific entity. That is, only pro-

perties'vhose ,alues change from one state to the next need be recorded. In-

varient properties are given in the parent node. For example, suppose a Polaris

i 4-12

•- ~ ~ ~ 1_ •.• •,.•• , .••

type submarine is being tracked. Intermittent reports of its location may be

given in state nodes which reference the specific entity node. The specific
entity node may, in turn, reference a generic entity. This interrelationship 4
of subnodes is diagrammed in Figure 4-1.

The recurring motive for introducing subnode relationships such

as "instance" and "state" is to avoid redundant storage of Information. The

payoff for eliminating unnecessary redundancy is reduction of maintenance and A
-7. retrieval time as well as space. Storage compression at the state level can

be carried to a further stage when changes in state are predictable or can be

represented analytically as a function of time. Opportunities for this may

exist in situations such au when a periodic itinerary for a submarine or other

ship is known, or when a satellite position may be found from orbital parameters

rather than extrapolation or interpolation of tracking data. In such cases,

state nodes may be replaced by compact state-transition information.

4.6.4 Fact Qualification

It is possible to modify or qualify information by appending

a qualification list to either a description list (node or subnode) or a value.

The qualification list has the format of a description list so that the two

forms are respectively (deslist qual) and (val qual) where the second element

is the qualification list. Typically, qualification information in an Entity

Node will coatain fact control (access control) information if it is at

the node level and fact control and/or source, credibility, and temporal Jata

at the value level. Because information may be obtained from several sources

and may be varying with time, multiple values will be common in the Entity

Net. The particular values which are valid for a given analyst at a given

time will be determined on the basis of the qualification list.

The default interpretation of the property (A v) for an entity

(say a) is that the entity has the value v for the attribute A. In symbols A(e)

* v. The value v may either be a scalar V or an array [V...]. However, there

4-13

,x•*j ~~~~~

Weapon

Generic Entities Polaris Type Sub Polaris Missile

Specific Entities Submarine "Henry"Seil#2

State PLosation/Tm

Subnode Relationships

fj
4-14

are occasions when one wants to specify a relational operator other than equality

betveen the attribute and the value. Possible relations are greater-than, less-

then, not-equal, approximately-equal, not-greater-than, etc. The qualification

list in also the mechanism for accomplishing this, with the exception operator

attribute "Rel-op".' For example, Age(e)>40 would be given as (Age(40[*(Rei-op >)])).

4.6.5 Computed Values

There will be instances when it is more convenient to compute

a value for P. given attribute from specified parameters rather than explicitly

store its value. This will be especially true for large arrays of composite

attributes. For example, it will often be more efficient to compute the posi-

tion, velocity, acceleration, etc. of a missile from trajectory, atmospheric

and vehicle parameters rather than store explicit values with the required

precision. Even where analytic computation is not practical, it is often

more efficient to store values in large dense arrays or conventional files

(on serial or random access storage) and provide the appropriate file name

or key in the description list. Another example of the latter situation is

the Fact Control Information required for most entities and properties. Be-

cause this data can be readily formatted into fixed files, it may be more

efficient to provide a key to a Fact Control Data File in the qualification

list pertinent to the basic information, rather than provide that data in

description list format.

This capability will be accommodated by using a special

"Process-Hook" symbol and parameter list in place of the actual value in

the description list. The retrieval mechanism, when encountering the Process

Hook, will invoke the specified program and supply the given parameters. The

called program will return the required value.

4.6.6 quasi-transitive Relationships

The use of entity relational attributes in the description of

the various objects of interest to the analyst results in a network of nodes

in which information is highly associated. This richness of association

4-15

• . -.. .• ';;• :,!'..•''-';"•- n-• •', •"

permits information to be retrieved from many points of view or search paths.

Although this feature is, in general, desirable, unless special precautions

are observed, there are situations in wohich it can lead to the retrieval of

information which does not validly meet the conditions specified by the in-

terrogator.

Consider, for example, a situation in which a weapon platform

(say a fighter-bomber) can be equipped to bear either of two types of arma-

ment (say torpedo or incendiaries) depending upon under which service unit

(aircraft carrier or tactical air base) it is employed. A given entity re-

lational attribute (such as "uses") may be used to enter this information:

j Uses (Carrier Lexington, F-lI)

Uses (F-Il, torpedos)

, Uses (TAC Base Charlie, F-l1)

Uses (F-li, incendiaries)

The five entities would then be interconnected with the "Uses" relation as

shown in Figure 4-2. It is apparent that a request for armament used by the

Carrier Lexington (or TAC Base Charlie)`ýaiy come up with the erroneous answer

"incendiaries and torpedos". The fallacy is caused by what can be called a
"connection trap" in the F-11 "hub" of the network. It is avoided by using

one or both of the following devices:

(1) The set of values of a multivalued attribute are -2

qualified to inform the system that only one of
the values can occur in each instance.

(2) A configuration node (or subnode) is created to
describe each valid configuration of properties.

These approaches are detailed below.

Since an attribute may have an array as a value, we can have

a property such as:

(Armament [torpedo incendiary])

in the description list for an entity (say F-lI). This raises the question as

4-16

::-

Carrier
LexingtonTopd

TAC-Bas a
Char lieIncendiary

Figure 4-2

Connection Trap

4-1:7

k1
to the interpretation of the array.,

when it occurs as a value. The members v~ may be an ordered n-tuple, an

(unordered) set, a bag (unordered set in which repetitions are permitted), a

disjunctive set (any subset is valid), a conjunctive set (all values co-occur),

or a choice set (only one value is valid in each instance). The type of set

which is intended can be identified by using the attribute "Set-type" in a

qualification list for the value. For example:

(Armament ((torpedo incendiary) ((set-type choice) I

The use of the "Set-type choice" qualifier alerts the system

(and the user) that only one value is valid but in itself is not sufficient

to specify which is the valid value in a specific case. This problem can be

solved by using a subnode (or a state) of the entity to establish a description

of each configuration of the parent entity. For example, we c~an have the states

[@(Used-by Carrier-Lexington) (Armament torpedo)]

and

[@(Used-by TAC Base Charlie) (Armament incendiary)

under the generic entity for the F-11. Note that this second approach avoids

the multiple values attribute and is sufficient in itself to unambiguously

describe the situation.

4.6.7 Footnotes

The analyst entering facts into the Entity Net will be permitted

to qualify any value (or entity) with unformatted comments, warnings, or other

text. He~ simply labels this text (generically called footnotes) with the appro-

priate attribute (Comment, Warning, etc.) and enters it with other qualification

information. Rather than store unstructured text as part of the node, a special

use will be made of the Process Hook capability. The value of the specified

attribute will be a pointer to the appropriate record in an external Foot note

File. The footnote will be retrieved automatically with other qualification in-

formation whenever required.

4-l8

...

4.7 CONCEPT NET PARTITIONS

Each fact or node in the Concept Net will belong to some sub-

space of the Concept Net called a partition. Partitions will form a lattice

or partial ordering so that a given partition may in turn contain other par-

titions. The objectives of partioning the Concept Net are as follows:

(1) to establish sets of information (at the highest
level) which should coexist on the same level of
physical storage because of access patterns or
ownership (Areas of Responsibility),

(2) to establish sets of mutually self-consistent (or
"coherent") facts, rules, and credibility measures,

(3) to establish a space in which facts form a set
of homogeneous type, such as and, or, nand(not-and),
choice, eec., i.e., to establish the scope and semantic
of a set,

(4) to establish the scope of quantification in general
statements or rules.

The partition to which a fact belongs will be identified as a

property in its Qualification List. When all the facts in a given node (or

subnode) belong to the same partition it may be "factored out" to become a

property at the node (or subnode) level. The partition may be a property

of the node and also of one or more facts in the node. In that case the

partition established for the node applies to only those facts which are

not qualified by membership in another partition. In these regards, the

partition behaves in the same way as other properties of a fact or node. The

use of partitioning in semantic networks has been described by Hendrix (5] and

its use here in the STIS Concept Net is quite similar.

4.7.1 Physical (Top-level) Partitioning

Partitioning of the Concept Net into physically independent

sections at the highest level is provided to allow efficiency of local refer-

encing within an application area, and to allow the systems manager to make

timely allocation of potentially scarce resources to such application areas.

4-19

. .

The partitioning criterion (such as Area of Responsibility) is

applied during node processing. In simple cases, the partition reference
number

can
be determined

by reference

to a

table,
such

as that
shown

in Table

4-1(a). The partition number is used in all calls to the Storage Manager.

numbier
carng

beodeterminedsiby

reference

toaablesuca
theartishown

ineTable

The Storage Manager is unaware of the criteria by which the partition number

is determined.

Physical partitioning of data, and associated loading and unload-

ing of complete partitions, is supported at the storage managment level through

a number of devices:

(a) A partition may consist of a complti.- file, or a single
file may be divided into a number of partitions.

(b) Separate direct access storage allocation maps are
associated with (and physically reside in) each par-
tition.

(c) Allocation requests, and I/0 operations, are associated
with appropriate physical file space through the use of
a partition status table. (see Table 4-1(b))

(d) The partition status table, in addition to information
about currently "resident" physical partitions, contains
information about the characteristics, locations, and
status of "off-line" partitions.

(e) Facilities are provided to the STI system manager for
the rollin or rollout of partitions between on-line
mass storage files and off-line lower levels of storage. '1
Suitable interlocks are provided during such operations.

(f) The STI system manager can make inquiries with respect
to partition status information (including, potentially,
usage statistics) and can update certain partition status

Intra-partition references are made via a relative block number

(or its equivalent). References within a node to another partition are accomp-

lished through a reference pair consisting of a partition number and a relative

block number within that partition.

4-20

,•~~
......

*.......•

.
.....

. ...

...................

..

,....,....•

:
-•••

,.•
.

.
.,

.

'.,••

;
,

]

ILI

o- 0%I 0)%

0

p46

.0 0% c

= 5P4

4-21N 4

4.7.2 Consistency and Context Set Partitions

Partitions can be used to establish the set of facts which be-

long to a particular analyst, or which are valid or consistent with respect

to a given criterion. For example, suppose we have two sets of facts, Bi and•I
B2 (not necessarily disjoint), which are consistent with stated criteria Cl

and C2, respectively. In Figure 4-3, Bl and B2 point to partitions S3 and

S4, respectively, and indicate their membership in consistency sets Cl and C2.

Bl and B2 identify the partitions as conjunctive sets, that is, the following

are considered independent sets of consistency statements:

Bl - { WOba, WOde, WAbc, DAec}

B2 - { WObf, WOde, DAec, DAfg }
v1

4.7.3 Use of Partitions in Representing Rules

The Concept Net must have the capability to represent not only

explicit sets of facts, but also general rules which are unambiguously quanti-

fied variables in specific domains. For example, we wish to be able to state

that if a person works on a system which is developed at a particular plant,

then that person works at that plant. Symbolically, for any x,y, and z,

WOxy A DAyz =0ý WAxz

This can be represented in the Concept Net several ways. One way is an impli-

cation statement (as above). An equivalent representation is the Nand (Not-and)

form

(t WOxy DAyz WAxz).

This latter representation is closely related to the (disjunctive) clause form

proposed for the inference mechanism:

(V-Oxy UAyz WAxz)

The implication statement form of the rules is shown as both a

Net Graph and a Node Diagram in Figure 4-4. The Nand form of the -ule is shown

in Figure 4-5. Both figures illustrate the essential use being made of partitions

to establish the scope of sets of various types.

Consistency sets made up of rules and facts are further illustra-

ted in Figure 4-6.

4-22

7'.

A -.-,• • • ---- • ? T .T• •,;.....:',.... .• a :.••

BI S3:

aossec Se

I I A

a d
I A

b4 c

LEGEND

A

Negated .

'''~ -' Relation: Apg

- Scope of

assertion B
- -.. is partition

Si, a set of
type f.

Figure 4-3 Fact Partitions Example

4-23

Si

AnteRl

S2~

(a) Net GraphRI

Ptn S3

*1x . 4

=Type Person D

Type

-MIPI

WA I "
Ptn 52(b) Node Diagram

Figure 4-4 Representation of Rule: WOxy A DAyz WAXZ

4-24

S5

S4

y-

R1 ? D

RDA

.'. y

S4t

PDA z

- Ptn S4

Ptn S4

Kb) -Node rDiastram

Figure 4-5 Representation of Rule: (jWOxyDAyzWAxz)

4-25

--- --- - - -, - - - - -...

Il II

I AIQIPET OD

Fi Ar 4-WattoeCnetNtE Aml

:1 4-26

4.8 REPORTS

The reporta made to the information system may, be regarded as the

foundation for all the intelligence information of the system. Because of

the need to protect this initial fundamental information, which comes to the

system in many ways, it is stored in a Report Net whose structure may have

significant differences from the Entity Net in which the analyzed and reduced

information of the system is stored.

In addition, the particular procedures that the analyst or Data

Base Administrator employs to maintain and modify the Entity Net information

in the light of new reports are very varied. It appears important to maintain

a well protected record of system reports so that far-reaching reorganizaition

of the Entity Net can be effectively accomplished. Frequent changes are ex-

pected about what information is important, and what system techniques are

practical.

4.8.1 Report Net Structure

It is expected that reports will be stored in the text in which re-

ceived, as protection for the accuracy and completeness of the report informa-

tion and maintained in time sequence, as a historical log. In order to provide ?

reasonable search and association capabilities, the analyst will provide a de-

scription list in Concept Node format, characterizing the report and its salient

information, thus forming a report header. For example, a missile site firing

report may contain a bulky set of trajectory information, and also identification

and sunmmary information, such as a range capability estimate completed from the

trajectory data. At the discretion of the Data Base Administrator, the above

discussed Process-Hook capability may be employed, treating the original bulky

report as a fixed file.

On the other hand, the report identification and qualification in-

formation, together with certain computer values, may be stored in time se.luence,5

but with a structure like that of a Concept Node, in order that search and asso-

ciation capabilities be available. Depending upon search and operating conditions,

4-27

it may be practical to maintain separate loge of reports dealing with different

classes of information, with appropriate cross reference features. Also, at

the discretion of the Data Base Administrator, references to outside sources

such as documents, recordings, witnesses, or photographs may be included with

the identification and qualification information. Occasionally, such infor-

mation may be more illuminating than the original report details.A

4.8.2 Report Procedures

The intelligence maintenance, search, and interpretation problems

are reflected in both the structure used 4 or the reports, and also the pro-

cedures employed in incorporating the report intelligence throughout the

Concept Net. Great variability is anticipated in these procedures, and it

appears that valuable insights into the practicality of data organization

questions can be obtained from considering such procedures. This appears to

apply to both the Report Net structure and also the Entity Net structure.

First, there is the considerab1
- variety of anticipated reports.4

There may be a report whose impact on't1.c _.ntelligence system may be slight,

consisting of a routine updating of some estimated value appearing once or
twice in the Entity Net. Alternatively, a report may appear which leads to

the establishment of new Entity Net facts, or the reorganizing of old ones.

It is possible that the simple abs.ence of certain reports may carry more in-

telligence than those that actually arrive during a certain period of time.

Second, there is che relat~ive importance of maintenance vs. re-

trieval in the operation of the system. One viewpoint emphasizes the mainte-

nance a~'d construction aspects of the information system~ (updating the Entity

Net from new reports), since it follows the natural flow of information pro-

cessing and distillation. The other viewpoint emphasizes the information

search and interpretation aspect of the system (retrieval of Entity Net facts)

which may comprise the bulk of the system activity. However, a balance must

be sought since this activity is dependent upon an effective information main-

tenance and constructiun procedure in utilizing the fundamental iriformation which

f low from the reports.

4-28

. . : .~..... -----~4 ; *''*

* A'.

4.8 REPORTS

The reports made to the information system may be regarded as the

foundation for all the intelligence information of the system. Because of

the need to protect this initial fundamental information, which comes to the

system in many ways, it is stored in a Report Net whose structure may have

significant differences from the Entity Net in which the analyzed and reduced

information of the system is stored.

In addition, tha particular procedures that the analyst or Data

Base Administrator employl, to tiaintain and modify the Entity Net information

in the light of new reports arp very varied. It appears important tc maintain

a well protected record of system reports so that far-reaching reorganization

of the Entity Net can be effectively accomplished. Frequent changes are ex-

"pected about what information is important, and what system techniques are

practical.

4.8.1 Report Net Structure

It is expected that reports will be stored in the text in which re-

ceived, as protection for the accuracy and completeness of the report informa-

tion and maintained in time sequence, as a historical log. In order to provide

reasonable search and association capabilities, the analyst will provide a de-

scription list in Concept Node format, characterizing the report and its salient

information, thus forming a report header. For example, a missile site firing

report may contain a bulky set of trajectory information, and also identification

and summary information, such as a range capability estimate completed from the

trajectory data. At the discretion of the Data Base Administrator, the above

discussed Process-Hook capability may be employed, treating the original bulky

report as a fixed file.

On the other hand, the report identification and qualification in-

formation, tog cher with certain computer values, may be stored in time sequence,

but with a structure like that of a Concept Node, in order that search and asso-

ciation capabilities be available. Depending dpon search and operating conditions,

4-27

4.8.2.1 Simple Updating of Entity Net Facts

Suppose that a report is received that a particular radar system is

developed at a particular plant. This may support a fact already in the Entity

Net, in which the radar system might appear as system #31, and the plant as

facility #47. Thus, there is no change anticipated anywhere in the Entity Net,

except for a revision upward of the truth probability for a fact already listed

in the Entity Net. If the appropriate system authority places a high estimate

on the reliability (or likelihood) of the report, then the fact credibility

(truth probability) takes a correspondingly large upward revision.

A further illustration would be a tracking radar report of a routine

missile firing from a particular site. It is likely that this may affect sev-

eral facts in the Entity Net, but each as a simple update. It may be that facts

are being maintained as follows:

(1) Best current range capability estimate

(2) Best current staging time estimate

(3) Count of weekly firings or misfirings

The two estimates are likely to be improved by the computed values from the

incoming report, possibly using statistical tools rather than the truth prob-

ability method of the earlier example. The firing count may be set up without

any credibility implementation.

The above has been ciced as a routine firing report. If, however,

there is a problem about whether the supposed site has been incorrectly identi-

fied, or the precise identity of the missile type, then the reports are no

longer routine. The problems in identification and interpretation may lead to

initiating new (or retiring old) facts from the Entity Net.

4.8.2.2 Initiating New Facts in the Entity Net

If we suppose, then, that miasile trajectory reports are being re-

1 ceived from a tracking radar under conditions where an attempt is being made

4-29

L'i1 •

to identify the missile type (or types), a large number of facts may be initiated

andmaintained in the Entity Net. For example, summary calculated values may be

maintained for each reported tra-jectory. This contrasts strikingly with the

routine situation in which we supposed only the maintenarce of current estimat-

ed averages or firing counts for the missile site. When the missile type identi-

fication is complete, then the facts of the Concept Net may be reorganized in

the simpler and more compact manner fitting the routine situation. If we suppose

that unexpected information arrives, indicating the need to restudy the identi-

fication problem under modified assumptions, recourse may be had to the original

reports to appropriately reassess the picture.

Parallel situations appear likely in otner information areas. It

may be that a large number of carefully organized facts may be maintained on

a permanent basis in the Entity Net, related to a scientist of a critical im-

portance. On the other hand, a large number of facts may be maintained on a

temporary basis related to another scientist for whom there is an identification

issue.

4.8.2.3 Alertness to the Absence of Reports

It seems reasonable to anticipate that absence of reports may

frequently be of crucial significance, and yet the initiation of the appro-

priate alert statu3 or action may not be in the area of report procedures or

organization. Two illustrations are considered.

First, we suppose that firing reports for a missile site cease (or

drop off sharply) during a time interval. This is likely to become apparent

when a Entity Net fact, such as the count of weekly firings, is inspected or

reviewed. Intcrpretation and action may likely restilt from a search and

study of related facts. Perhaps the nearby missile sites, or supply activities

may furnish illuminating information.

Second, we suppose that the quantity of firing reports does not alter,

but rather the quality. If the reports indicate a steadily increasing site

range capability, this is likely to become apparent from observation of Entity

Net facts concerning present and old range capability estimates. Neither the

4-30

absence of reports, nor a trend in the information content, is apt to be appar-
ent at the report level.

It appears, then, that the quality and quantity of incoming reports
will often be recognized and coped with as part of the information search, re-
view and interpretation procedures associated mainly with the use of the Entity

Net. It is important that report information is adequately distilled into theJ

Entity Net, of course. Even lack of report information should be so distilled.

The decay of fact credibility discussed in Section 4.1 is one example. The

firing count may serve to indicate lack of reports, as mentioned above.

4.8.2.4 Composite Reports

Especially when the source is non-instrumental, a report can appear

that may well be treated as several reports, even if the facts are interwoven4

in lengthy sentences. Entity Net facts may then be initiated, modified, or

updated in much the same way as if the report were a series of simple reports.

It may well be that the report will be logged in and recorded as a single comn-

posite report in order to maintain the original text for purposes of informa-

tion security. The Report Node, mentioned in Section 4.6.1 above, is
apt to J:

be bulky because of the heavy requirements to provide search and association

capabilities where the information is composite. .7

4.8.2.5 Multiple Versions and Appearances of the Same Fact

It is likely that differing agencies and differing instrumentation

will lead to separate estimates for the same technical quantity, whether it

is the percentage of a metal in a compound, an estimated range capability, or

something very diverse. For easons of information responsibility, clarity,

and security, such separate estimates will be maintained almost as if they

were separate facts.

It is a some what different matter when differing records are kept ý

of an identical fact for search efficiency reasons. One illustration is the

fact that person #32 works at facility #12, routinely stored in "attributes-

under-entity" format in the Entity Net part of the Concept Net relating to

4-31

•il person 1132. The same fact may be stored also as part of an employment list

• ~in a "works at" Attribute Node in the Semantic Net (also in the Concept Net). i

;/ This permits the retrieval of general employment information at one facility

witho:~t laborious general searching through the Entity Net entries for vani-

ous persons.

4.8.2.6 Multiple Results From One Report

Sometimes we expect one report to contribute to one Concept Net fact

already initiated with other reports, with possible complications in the ver-

sions and storage of that fact. It is also possible that distinct Concept Net

facts may be involved.

For example, a missile firing may call for firing count, range capa-

bility, staging time and other updating of estimates, as already indicated in •

discussing simple updating. It may be that both specific estimates for the •i

particular missile site, and general estimates for the missile type design are

involved and must be separately updated. Such practice tmay stem from interest

in the geographic, supply, and operational effects in various site locations.

4.8.3 System Report Procedures and Report Net Structure •!

It appears that there is considerable interplay between the proce- ••

dures and the data structure employed as the report information is entered

into the STIS. En particular the Report Net occupies a special fundamental •iI

positiion from which restructuring of the Entity Net is occasionally likely, .

making information security specially important in the Report Net.

If the set of Entity Net facts in some information area is to be i

abbreviated, it is possible that the restructuring may be accomplished with- •

out recourse to the Report Net. A simple illustration would be to change

the firing time interval for a missile count record from a monthly to a quarterly •i

• ~~~span. If the reorganization of Entity Net facts is more far-reaching, or more i/i-!

:'• •- detailed, then the Report Net is needed.

: ~We note that the Data Base Administrator's task in entering reports

• " is subtle and substantial, even when the operation is on a routine basis.

71 77 32

This is in part because the search and investigation needs of a whole commu-

nity of analysts are to be met. It would be especially onerous if many analysts

felt a frequent need to go to the reports because of dissatisfaction with the .3

distilling process done in Entity Net facts. Occasional temporary alternations

in Entity Net information, without recourse to the reports themselves, is apt

to be more tolerable, partly because of the difference in data bulk. These

considerations take on added weight when the information situation necessitates

serious Entity Net reorganization.

4-.3

~'S'~SA. ~ s

V1: R- 4 4-" ' -

.....

SECTION V. PERIPHERAL FILE ACCESS SUBSYSTEM

5.1 BACKGROUND

The current production and test versions of STIS utilize a number

of physical files, which taken together comprise the data base, to store and

manipulate information entered by the intelligence analyst or application pro-

> I A

gram. The primary file consists of the network structure of nodes represent-

ing sets, generic and specific entities, states, etc. The access method to

read, store, and traverse this network is a direct one based on a computable

relative mass storage address from a node identification number. This ID

number is sequential and each node is assigned the next number by STIS upon

itF -he node"s) creation. Each node is assigned a predetermined contiguous

a, of mass storage space for which the first sector is directly address-

ab~.- %- its ID number. overflow of this initially allocated segment is

handled by linking to subsequent chained segments in an overflow file.

The remaining files are used in conjunction with the node network

to respond to inputs from the analyst. When sets are defined in their English

language terms, STIS assigns an ID number, -eferenced above, to them. But

5-1

~..

the correlation between term and ID number is stored in the Set Term file

where the term becomes a key for the ID number. The same procedure holds

true for states of entities and for attribute definitions. Additional files

contain fact control information, log-on/log-off entries, and an extcrnal

invoked process log. The access method used to manage these secondary files

is the Univac supplied ISFMS package.

ISFMS is a hierarchial index sequential access method using chained

overflow data block pointers. It is a single thread (user) package. Hence,

it provides no protective physical or logical record lock mechanism in the

event two or more concurrent users are attempting to update the same data

files. ISFMS, being non-reentrant, necessitates each concurrent user suffer-

ing the overhead of having his own core copy of it along with the buffers needed

to support each file. Physical blocks may only be selected at the 1/4, 1/2,

or full track level (448, 896, or 1792 words respectively). The index blocks
for any given file may not be permanently saved and accessed in a separate

physical file, although run temporary index files may be created, used, then

discarded. File reorganization can take place more often than desired due

to the chained overflow mechanism if there is heavy create/delete activity in

the file. The chaining mechanism can also require additional I/0 accesses I
and block search time when locating a unique key.

5.2 REQUIREMENTS

Based on the current and proj.ect,.d requirements of the STI system,

the peripheral file access subsystem was designed to meet the following cri-

teria:

1) be reentrant thus supporting a multi-user environment
and reducing user core requirements

2) provide proper protective access to common files and
records

3) perform functions with minimum response time

4) efficiently manage STIS term type data

5) handle a large number of data records (approximately
200,000 to 500,0`0 terms) with high 'create/delete'S~activity

5-2

"5.3 ACCESS SUBSYSTEM DESCRIPTION

5.3.1 Approach and Design Considerations

The access method developed retains the indexed sequential approach

of ISFMS. An analysis of term lengths shows that any term may extend to 180

characters with 30 characters the average length. This variation in term

size as well as the expected size of the term list (200,000 to 500,000) pre-

c ludes any effective type of computed address or direct address approach.

The design of the subsystem, considered in view of the STIS requirements as

enumerated above, follows.

5.3.1.1 Reentrancy and User Core Size Reduction

Under the earlier versions of the Univac EXEC 8 operating system

and prior to the introduction of the 1110 hardware, a reentrant program was

a self-contained 'I Bank only' program. Each user program wishing to exe-

cute the reentrant program would 'link to' it by executing an Executive Re-

quest from his own program. The reentrant program consists solely of instruc-

tion code, and data and sufficient working storage for its own housekeeping.

User dependent working stroage must be allocated in the user program and would

include any I/0 buffers needed for mass storage files. Thus, creating a re-

entrant version of the access subsystem (much on the same design lines as

FMS-8) would not be sufficient to save STIS the memory overhead normally

allocated for I/O buffers. This could amount to 5500 words per user based

on six peripheral files, double buffering, and minimum 1/4 track blocks.

The upgrading at FTD from the Univac 1108 to 1110 provided a new

joint hardware/software technique that would allow concurrent users to exe-

cute common instructions and share common data areas. The access subsystem

was designed to be written as a set of reentrant modules and collected to-

gether as a common instruction bank sharable by as many concurrent users who

'link to' it via a hardware 'load instruction bank and jump' (LIJ) instruction.

A single set of I/O buffers will reside in a coon data bank and these will

be used to service all the concurrent users. Each user's core requirements

5 -3

then have been reduced to providing only a small area for control tables

and working storage. The EXEC 8 operating system will always maintain the
latest copies of the common I and b banks both in core and on the system mass

storage swap area. This assures that uny changes made to tables, buffers, etc.

by the access subsystem will be preserved.

5.3.1.2 Common File and Record Access

Once a user has linked to the access subsystem, his command and

argument list will be checked for validity. Access to a file after validity
checks are passed will be controlled by a hardware 'test and set' instruction

on a specially marked cell. This will effectively lock out all other concurrent
users from using that file. If the file is currently being accessed by another

user, then the EXEC 8 operating system will place the new user on a queue main-
tained by it. When the previous user's file request has been completed, the
file is unlocked by the access subsystem and the operating system will activateA

the next user on the queue for this file (if any). Each file opened and being
manipulated by the access subsystem will have its own specially marked lock

word and queue maintained by EXEC 8. Each file has its own dedicated buffer

area within a common data area pool. Thus, the access package may perform a
single request concurrently on each file opened within it with multiple re- I
quests on any given file(s) automatically queued by EXEC 8.

Certain users may be declared by STIS to be inelligible for writing

information into the data base. This inelligibility might be determined from

the user's password. STIS then might specify to the access subsystem that

certain files may be addressed in the 'read only' mode for those users. The

access subsystem has been designed to protect against write operations on

read only' files.

In addition to its own internal common file access mechanism, the
subsystem allows individual users to place a logical lock on any selected

record in a file. This logical lock inhibits all requests (except for 'inquiry

only' requests) for this record by other users until the lock is cleared byj

5-4

S'" " -" •:.}•i••'ix ' i : y :•':• ,< .• > ,....

the orginating user. An analysis of typical operations on the peripheral

files shows that only one record lock per user per file should occur. Based

on this, the access subsystem will permit each user to set one lock on each

file he has open. A provision to expand the number of locks per file is

available by redefining a parameter and reassembly.

5.3.1.3 Minimize Response Time

The access subsystem permits the index blocks for any file to be

optionally maintained in a separate catalogued index file (as opposed to being

embedded within the same file containing the actual data blocks). Separate

index block files permit overlap of some I/0 activity through channel separa-

tion on differing mass storage devices or on dual access devices (e.g., FTD's

8440 disc subsystem).

Separate buffers are allocated and dedicated to the highest level

"index block for each file opened within the subsystem. An additional buffer

is utilized for lower level index)locks. All unnecessary 'reads' are avoided

if the appropriate index and data blocks for a given file are already buffer "

resident.

5.3.1.4 Manage STIS Term Data

The access subsystem will support a file which has records in which

"the key and data portion may be variable or fixed in length. The file organi-

zation is specified by the STIS programmer. Once specified, all records with-

in that file must conform to the type given. Generally, there will be a one-

to-one correspondence between key and data entry of a record. However, an

analysis of the present STIF term files (set, plane, and attribute term files)

showed that one English term could represent more than a single role (e.g., be

both a set and attribute). Thus, there are duplicate term entries in the

current files. Combining these files into a single term file would not only

reduce duplicate storage but also reduce search time for language processing

functions requiring all uses of a given term. The access subsystem was de-

signed to allow for a one-to-many correspondence between key and data entries

5-5

,.-: •.. • . ,• .. : ,, - . . . ,. ••. -,4 • - . ,, .i

of a record. Each data entry is tagged by a role code indicator (which may

be interpreted as a secondary key suffixed to the primary key). Thus, a

file of terms might be created where a key is the English term and the data

entries are the specific nodes in the network file which represent the differ-

ing uses of the term.

5.3.1.5 Large Record Volume with High Create/Delete Activity.

File reorganization was one of the prime considerations in the de-

sign of the access subsystem. It was felt that as much maintenance should

be performed as was possible during the execution of requests which physically

alter the data content of a given file. This was especially true of a dy- *
naumically expanding and contracting file such as a common STIS term file. The

maintenance function must be considered when performing a DELETE, MODIFY, or

INSERT operation. A DELETE request causes the key and data entries to be re-

moved from the data block in which they reside. The data block is compacted;

the block control words updated; and the data block is rewritten to mass stor-

age. The deleted space is then immediately available for reuse. An INSERT

request causes a key and data entry to be added to a data block. If the phy-

sical data block will overflow due to the size of the new entry, a data block

split is performed. An attempt is made to split the old block equally with

a new data block and the insertion made in the appropriate place. However, in

some cases, a second additional block may be necessary to properly split and

sequentially maintain the data records. After the insertion is made at the

data block level, the index blocks need to be updated since an additional 1

or 2 data blocks were created. The same procedure outlined above is used to

update the index blocks. As a lower level index block overflows, its next

higher level *block is updated until the current highest level is reached.

If the current highest level block overflows, a new index level is generated.

The access subsystem is designed to handle an unlimited number of index levels.

(Figure 5-2 depicts in a simplified style the results of an INSERT operation.)

A MODIFY request on a variable length data entry file may cause contraction

or expansion of a data block depending on the new data entry size. If con-

5-6

traction is indicated, the DELETE procedure is basically used; if expansion,

the INSERT procedure is basically used.

5.3.1.6 Key and Data Considerations

Since the access package does not employ a chained overflow block

technique, no re.ord then may extend across block boundaries (i.e, no record

consisting of key entry and data entry or multiple data entries when qualified

by role code may exceed the size of a physical data block).

In a hierarchial index sequential file, there must exist some

single high level index pointer block. The length of the key entries with-

in this block must be less than or equal to cne half the effective block size.

If this were not so, there would exist the possibility that only 1 key entry
could reside in an index block. Each index block must be able to hold at A

least two keys (known as 'range' keys) in order to generate a hierarchial

structure. An index 'range' key is used to point to a lower level index or

data block in which the 'range' key itself is the lowest order sequential key.

In Figure 5-1, Range Key Indices

LEVEL 2 "4

B .. KAM L J A KKO ... KA

LEVEL ~K NI i~

:~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ hc Kn is hthrhaendxsqeta flteemuteism

the 'range' key Kh in level 2 points to a block at level 1 in wi th
lowest ordered key. The same holds for 'range' key Kn A on level 2. Thus, all

the records that have a key between 'range' key Ki and up to but not incluing

'rrnge' key Kare contained in the level 1 block pointed to by KAAM
lKAN

5-.7

At e r c r s t a a e a k y b t e n ' a g ' k e A n p t u o n l i g. .:i

SF.

The very first record that must be loaded into a file should have

a key consisting of binary zeroes. This key will function as an initialization

sentinel. It will appear a3 the first range key in each successively higher

index level block. Its appearance guarantees that no sequentially lower (in

the alpha numeric collating sequence) key can be constructed and possibly

cause problems on retrieval operations.

The access subsystem has been designed such that an index block

overflow caused by an insertion of a new 'range' key must be restructured with

the addition of only one new index block. The old and new 'range' keys will

be divided as equally as possible within the old and new index blocks. This

design constrains the maximum key entry size to 30% of the physical index block

size. For the smallest size index block assignable by the programmer of 112

words (Univac 8440 standard disc prep size), the largest size key cannot ex-

ceed approximately 33 words or 198 characters. This appeared very unlikely

to occur within STIS. Figure 5-2 shows the reformatted index and data blocks

after an uverflow caused by an INSERT operation.

5.3.1.7 File Considerations

The tables that have been identified 'or definition and manipulation

by the access subsystem are the 'term encoding table', 'word encoding table'

(both used by the Directory Services subsystem), 'faLt control table', 'log-

oa/off table', and 'invoked processor table'. An analysis of the information

content and current and future usage statistics of these tables was performed.

The results show that the 'term encoding table' (or TET) and 'word encoding

table' (or WET) will be the most heavily accessed tables and the 'fact control

table' (or FCT) also frequently accessed. Thus, these Lhree tables should

have separate index block files. The 'log-on/off table' and 'invoked pro-

cessor table' are very low access tables and need not have separate index

block files.

5-8

•5-8

-4-

-4 4 i-4

-44

-44

040
1.4

1,4

o'.4 Ch
cc4-

co9

CIO wO

00bc

-44.ý

44 4

V L1n

C4

r.3 5-9

--. , - . .

We have assigned each table a set of table definition parameters

based on its record structure and computed sample loading conditions. The

access subsystem attempts to initially load data blocks to 50% ofcapacity

and to completely fill the associated index blocks. The initial load factor

percentage may be changed by reassembly.

The following formulas are used in computing the loading conditions.

of Block Control Words (NBCW) 3

Load Factor (LF) - 50%

Data Record Size (DRS) - Key Length + Record Control
Word + Data Length

Key Size (KS) - Key Length + 1

Max Keys (MK) = (Index Block Size - NBCW)/KS

Initial Data Records (IDR) - ((Data Block Size - NBCW)/DRS) *LF

Total Initial Data Records - IDR * (K)Number of Index Levels

(Fractional sizes are rounded up to next whole word)

I) Term Encoding Table (TET)

Organization is contiguous fixed key/fixed data.

Record Control Word 0

Key Length 2 words

Data Length =I word

Index Block Size= 336 words

Data Block Size = 224 words

Number of Index Levels = 2

DRS - 2 + 0 + 1 - 3
KS- 22+1=3 -.4
MK = (336-3)/3 - 111
IDR = ((224-3)/3) * .50 - 36

Total Initial Data Records - 36 * (111)2 = 443,556

5-10
AV

* '

MM ,.

2) Word Encoding Table ,, T)

Organization is contiguous fixed key/fixed data

Record Control Word - 0

Key Length -2 words

Data Length- 1 word

Index Block Size - 224 words

Data Block Size - 336 words

Number of Index Levels = 2

DRS - 2 + 0 + 1 - 3" KS- 2 +1- 3
MS - (224-3)/3 - 73
IDR - ((336-3)/3) * .50 55

Total Initial Data Records - 55 (73)- 292,545

3) Fact Control Table (FCT)

Organization is contiguous fixed key/fixed data

Record Control Word - 0

Key Length- 5 words

Data Length 2 words

Index Block Size - 336 words

Data Block Size - 336 words

DRS = 5 + 0 + 2 - 7
KS= 5 + 1 = 6
MK = (336-3)/6 = 55
IDR = ((336-3)/7) * .50 23

Number of Index Levels = 2 2
Total of Initial Data Records = 23 * (55) 69,575

Number of Index Levels = 3 3
Total Initial Data Records 23 * (55) 3,826,625

4) Log-On/Off Table

Organization is contiguous fixed key/fixed data

Record Control Word =0

5-11

....2

Key Length - 5 words

Data Length = 10 words

Index Block Size - 112 words

Data Block Size -112 words

DRS -5 + 0 + 10 - 15
KS 5 + 1 6
MK - (112-3)/6 - 18
IDR - ((112-3)/15) * .50 4

Number of Index Levels 1
Total Initial Data Records = 4 * 18 = 72

Number of Index Levels = 2 2
Total Initial Data Records = 4 * (18) 1,296

5) Invoked Processor Table

Organization is contiguous fixed key/fixed data *1
Record Control Word - 0

Key Length =5 words

Data Length 5 words

Index Block Size = 112 words

Data Block Size a 112 words

DRS 5 + 0 + 5 - 10
KS 5 + 1 =6
MK (112-3)/6 - 18
IDR = ((112-3)/10) * .50 = 5

Number of Index Levels = 1
Total Initial Data Records = 5 * 18 - 90

Number of Index Levels = 2 2
Total Initial Data Records - 5 * (18) ; 1620

5.3.2 Functional Outline

The following basic user (i.e., STIS systems programmer or poten-

tially other applications programmers) functions are supported by the access

subsystem. The detailed description and parameter list expansion of each is

given in Appendix B.

-5-12

".

OPENAP Initializes the access subsystem
for the user

DEFNFILE parm list Defines a new file

OPEN parm list Opens a file and its associated

index file

READ RANDOM parm list Reads a data entry associated with
the given key

READ SEQUENTIAL parm list Reads a data entry associated with
next sequential key

READ RANDOM w/lock As above but also inhibits further
READ SEQUENTIAL w/lo.-k access to the data record by other

users

INSERT parm list Adds the data entry associated with
the given key

MODIFY parm list Updates the data entry associated
with the given key

DELETE parm list Deletes the data entry for the given
key

INFORM parm list Gives the user statistics about . 4
file usage .

CLOSE parm list Performs an orderly closing action
on a file

CLOSEAP Closes the access subsystem to the
user

5.3.3 Error Processing

The access subsystem performs a number of validity checks on the

commands issued to it by STIS service modules. If an error is detected, an

error code is returned to the calling module and the command is effectively

not performed. It is the calling module's responsibility to take the appro-

priate action (e.g., inform the user of the error, reformat the command, etc.)

after an error code is returned. A complete list of error codes and their

interpretations is given in Appendix B.

5-13

1V* I

SECTION VI. DIRECTORY SERVICES SUBSYSTEM j

6.1 INTRODUCTION

The STI Directory Subsystem consists of the tables and program modules

shown in Figure 6-1. The Directory is designed to uniquely encode and decode

all system words and terms (of one or more words) used in STIS as attributes,.

values, commands. and noise. These system words, and terms are maintainedJ

in integrated ordered lists (the Word and Term Encoding Tables) so that an

input language scannaer, using the directory services, can recognize and deter-

mine the role played by every word apt to be entered (including the attribute(s)

associated with a value term), the uniqueness of a term, and the equivalence

of a term to other terms. The Directory functions and tables are defined in

Appendix C along with accompanying system level flow charts.

An analysis of the terms used by analysts to define entity names,

attributes, and sets in STIS showed that terms often were not unique in their

usage and were often multi-word. Words often appeared as components of several

terms. The number of characters in a word could be as large as twetity or as

6-1

• ,•l •" '-'.• :.......' ... : ,.' •,. '• .. "'• -" :•.."-..:.--." ": -- --V- ,W-A,.,.O M PR.V WO . •••,,**.,,. .N

NN

- /J-7

\6-2

II

small as one while the total number of characters in a multi-word term could
approximate 180. Based on these facts, we attempted to define encoding/decoding

algorithms and data tables to handle terms as a variable number of variable

length words and their associated roles. We also investigated the possible

partitioning of words into meaningful linguistic units or morphemes and the

treating of definable groups of words as term fragments.

6.2 ENCODING MECHANISM

All words and terms are stored with numeric codes in ordered lists

(via the Word and Term Encoding Tables) along with an associated role map which

defines how the word or term is being used. Words may be of arbitrary character

length and terms may consist of any number of words. In the event a word is

too large to be stored in a single WET (Word Encoding Table) entry, it is A

partitioned, starting at the leftmost character, into segments each of which

will comprise a single WET entry (a segment being the longest string storable

in a WET entry). The last segment will consist of the remaining character

string from the last break to an end of word delimiter. Continued segments

are marked by inserting a special character (e.g., a hyphen) as the last

character of the WET entry. The numeric codes assigned to each word segment

are then recursively encoded from TET (Term Encoding Table) entries until a

single numeric code representation is obtained. Similarly if a term is too

large to store in a single TET entry, it is recursively encoded via a single

left to right scan until a single numeric term code is obtained. Figure 6-2

represents the typical term encoding process.

6.3 DECODING MECHANISM

An integrated decoding table is maintained by the Directory Services

Subsystem. As each word and term (and word and term fragments) are entered

into the Word and Term Encoding Tables, an additional entry is made in the in-

tegrated Term Decoding Table (TDT). When term or word decoding is required

(e.g., in response to an analyst query of the value of some attribute), basically

an inverse encoding algorithm is followed. The given term code is entered in

6-

Encode Term (New York City Philosophical Society) - T? Assume WET

and TET entries are as shown below

W P H I L P S \ W

0 P H I C - 2 W3

W1 W4 F8

1 -WET -TET

W2 W5 F6

OT Y I C I E T F8 F

iY 116 W7
W3 W7 T9 4

The encoding request proceeds as follows:

New York City Philusophical Society

W1 W2 W3 W4 W5 W7V II !
W1 W2 W3 F6 W7

F8 F-

T9

The term code returned by 'Encode Term' function is T9.

Figure 6-2 Typical Term Encoding Process

6-4

-mr-

the initial entry in a push down table. A recursive loop is begun in which 4

the first entry in the push down table is examined. If the entry has the Word

Code Indicator bit set, then the entry is further decoded into its English %

text. The text is the concatenated 'iith any previously decoded text. A 'blank'

cil-acter is added to the text if the word is not marked as continued. This A

entry is then popped off the stack since it is completely processed. If the

entry did not have the WCI bit set, then the decoding entries are retrieved and ', .

entered in the push down table in place of the first entry. Another iteration

in the loop is then begun. When the push down table is empty, the generated

text im returned to the caller.

J

It

6-5

,II

6-

REFERENCES

1. STIS Users Guide. Foreign Technology D~ivision, May 1975.

2. 3. Sable and S. Forst: Design Concept for an Augmented Relational In-

ta1ligence System (ARIAS). AUER-2022-TR-2, August 1973 (RADC-TR-73-
342/AD 773 189)

3. 1. Goldhirsh and R. Carson: A Deductive System for Intelligence

Analysis. AUER-225.5-TR-l, March 1976.

4. J. Sable and S. Foretz Needs Analysis For Inference Systems at FTD.

RADC-TR-73-4, January 1973 (AD 757 218)

5. G. Hendrix% Expanding the utility of semantic networks through par-

titioning. Artificial Intelligence Group Technical Note 105, SRI

(June 1975).

7-J

...-. k.. --.---- r .1 ý -. -

AA.

APPENDIX A. CURRENT STIS STRUCTURE

•~.. "

CURRENjT STIS STRUCTURE

The capabilities, operating characteristics and performance

of STIS follow largely from the general architecture of its system componentq

and its data structures. The general architecture of STIS and its relation-

:ship to the on-line and batch user is shown in Figure A-1. STIS is a modular

system in which user requests for information services may pass through several

levels of translation during processing. It provides a "general" (non-applica-

tion specific) language called IPL (Interactive Processing Language) for the

user who wants to "browse" through the data base and perform his own analyses.

Other users, whcpe analysis requirements have been iormalized can be provided

(e.g., IPS) and FORTRAN (e.g., IEAS). The HOL (High Order Language) programmer

user writes a special Program Interface Module (PIM) which is compiled and linked

(collected) with the application program. HOL requests for STIS services are

made through the PIM, which is typically a 5K word module of the users code.

In the current operation, each user (on-line or batch) must have his own "copy"

of STIS, some 40K words, in memory. Large user programs, such as IEAS may run

from 85K to 90K words (perhaps reducible to 50K with segmentation), putting a

severe limit on the number of active users which can be accommodated in the four I
65K word memory banks available to users in the 1110. A fundamental goal of a

near-term optimazation effort would be co handle multiple users with a single copy

of STIS.

The architecture of the STIS data structure can be described

as an amalgamation of different classical data structures. It can be called

a Relational Data Network in that it is composed of nodes which are interre-

lated through binary relationships (and their converse) using a unique Node

Identifier (NID) as a logical link. The nodes themselves have a variable .

hierarchic format in which common elements are "factored" to avoid redundancy p ?

within the node. In addition to control data embedded at various levels in

the node structure, the basic user infornmtion is carried in attributc name

(A#)/attribute value format. Multiple ve ies are permitted for each attribute,

along with warnings, comments, and other text. The current STIS 1 node is seen

in its physical and logical form in Figures A-2 and A-3 respectively.

A-1

I,;,
a = .,- -.

On-Line User

"General"I

Language (IPL) "Special" Language
e 0/

Interactive
Language (IPL)

Interface
FORTRAN User

_____(Engineering Analysis)

(F IProgram

FORTRAN-

INTERFACE STIS Service Requests in FORTRAN

g ~COBOL
I i Interfa~ce]

Intermediate Language Requests I Se c
ISTIS Service

Im Requests in COBOL
(Relational Language)

Processor Program Interface
Module (PIM)

F COBCL User

Node (Info Processing)
(Entity/Set/Semantewe) Proi..-am

Processor

General (Non-STIS) Programming
Physical I/O Proc. and Computational Support

UNIVAC-1llO/ EXEC-8

11W/SW HOST ENVIRONMENT

Figure A-I Current STIS Architecture

A-2

LEGEND

N - Node
P - Flane
C - Data Control

2 A - Attribute

woN Tl Y - Relation
words N R - Converoe RelationN TYPE OFFSET AOR - Area of R.-.-'panslbilizy

.. I DOB - Date of Observatior.
SEC - SecariLv Clasific;.tlon

indicates one-to-many
relatiPnsh;.p

2
wO. I dsp

P# P TYPE OFFSET

OFFT SE PE=RC

--1 1 wo d R-_I1
1 ; J'] ATYFE=R R-1

A A TYPE AOR ONLY

poitesdspndng n ttibte

3

S"N# P# R POINTERS

"I "AST FACT'

_ z 7 ,..
wordsr C#DT WLIR CT E4

C# OB •G SE TCE.,FIOF_F ~ ~o• DO OFF-_ I OFF-OF- F-

VALUE QUIN 02fiNTI TEX

Value is arbitrary size array char string, or N#/P#
pointers depending on Attribute.

Figure A--2 Physical Node Structure,..

A-3 ::

Nf
N TYPE

LNODE

P#

P TYPE

PLANE

AOR

AT T RIBUT) A 11

DOB VALUE

CMT CMT

ff~LEVALUE
VALUEDO

KN#/P# C# N#/P# C4 Cl C#

Fiaure A-3 Logical Node Structure

A- 4

!~

*
NODE5

-� - -. - � � � -.

rr ... --

Ifs

p
[3

4

H

I I
APPENDIX B. PERIPHERAL FILE ACCESS SUBSYSTEM

.1 FUNCTIONAL DESCRIPTION

I

I
F
2;

I I-

[I

a,;

GENERAL DATA BLOCK STRUCTURE FORMS

The 3 general forms employed to store key/data entries are outlined below:

ii

SKEY,/DATA, KEY2/AA2 KEY n/DATA nFORM A

"N Cn,'oo I[

I KE •Y, ••• E ,=n, • ,• FO• B
KY/DATA KEY /DATAKE

I nf' KEY,: FORM~ C-

The Block Control Words (BCW's) are defined as follows fcr all forms:

Ti S3 S4 T3
BCW 1 BNEXT 1BT ISPAREI BENTRY

BNEXT = next available word in this block

BT = block type = 1 indicating this is a data block

BENTRY = number of key/data entries in this block

Hi H2
BCW 2 SPARE BFRWRD

BFRWRD = block number of next sequentially forward data block.

(In last data block, BFRWRD 0).

HI H2
BCW 3 SPARE EN

BN this block's number

B-I•

The Record Control Words (RCW'a) are detined as follows:

FORM A No RCW appears within the data block for fixed key and

fixed data records. An implicit RCW is defined in

various fields of the File Control Table for this file.

Note that for this structure, only one data entr may

Axist for a given key entry (a I to I correspondence

exists).

FORM B
T1 T2 T3

RCW KLEN SPARE NKEY

KLEN = length of following key in characters. Can be used I
as an offset to data entry by converting to words,

rounding up, and adding 1.

NKEY = 'offset to next key in block' in words. This is a

total count in words of the key and data entries

and increased by 1 to compensate for the RCW.

Note that the size of a variable length data entry

is computed as the difference in words between

'offset to next key 'and' offset to data entry'.

This implies that on a retrieve operation for a

variable length data entry, the record returned

to the user could be up to 5 characters longer

than the original insertion size in characters

since we always return an integral number of words.

As in FORM A above, this structure only permits a

1 to 1 correspondence between key and data entries.

B-2

FORM C

TI S3 S4 T3

RCW KLEN SPARE I DENTRYI NKEY

KIEN - length of following key in characters (as in FORM B)

NKEY - 'offset to next key in block' in words (as in FORM B)

DENTRY iiumber of data entries that exist for the following

key.

This structure permits a I to many correspondence

between key and data entries. Note that use of

this structur•. carries the restriction that the

data entries mnat be of the same fixed length.

BI

"I

g-,3

INDEX BLOCK STRUCTURE

KEY KEY KEY

~jE2 n_________

TI S3 S4 T3

BC*W I. 1 B8TRY 1

bNEXT next available word in this block

BT = block type = 2, indicating this is an index blockII
BENTR~Y niumber of 'key' entries in this block

BCW 2 S P RD_

BFRWRD = the number of the next physical block at the same

deptb level as this block. (A forward pointer).

(in last block of any level, BFRWRD = 0) A

H! H2
BCW 3 ! SPARE ! BN J

BN this block's number

TI 33 H2
RCW LKEN ISPAREI BDOWN

KLEN = length of followive, key in characters. Can be used as an

offset to next key by converting to words, rounding up,

and adding 1.

BDOWN block number of next lower level block in which this key

rangc is further expanded. (At lowest index level, this

field points to the actual data blocks).

B-4

0-0

r-.4

000

V 0

*0

'-.4

B-54

SPEC FIC Kt'Y/I)A'IA OR:ANIZAIo, 11YP4S

Merv are I methods for organizing and manipuiatinK key/data entries within the

access package. A descrption of each alony, with the general data block struc-

ture ei.i loyed follows:

I Uses
iq KEY I DATA I KEY2 DAIA2 KEY n DATAn FORM A

ThIlls type supports a fixed key and fixed data entry each of arbitrary character

length. Within the physical data block, both the key and data entries will each

be positioned to begin on a word boundary. Entrioes which are not multiples of 6

characters (1 word) will be padded with binary zeroes.

When inserting records into this type file, the user will specify a 'key entry

area' and a separate 'data entry area'. '11e key and data entries can be thought

of as being logically but not physically connected:

TYPE 2

D KEY 1 DATA 1 • KEY2 DATA2 KEYn DATAn FORM B

This type supports a variable length key entry with a fixed length data entry

each of arbitrary character length. Within the physical data block, both key and

data entries will each be positioned to begin on a word boundary. Entries which

are not multiples of 6 characters will be padded with binary zeroes.

The user must specify the maximum character length the key entry may asoume at

file definition time. Each manipulative command also requires the characte..

length of the particular key entry being accessed as a formal argument.

B--I6

TYPE 3

S J jKEY 1 D ATrA I jKEY 2 DATA 2 EYS DATA n FORMI B

This type supports a fixed length key entry with a variable length data entry

each of arbitrary character length. Within the physical data block, bath key

and data Iontries will each be positioned to begin on a word boundary. Entries

which are not multiples of 6 characters will be padded with binary zeroes.

The user must specify the maximum character length the data entry may assume

at file definition time. Each manipulative command either require:I the char-

acter length as a formal input argument or returns the character length rounded

to the next multiple of 6 into a formal return argument.

VrPE 4

M KEY 1 DATA 1 KEY 2 DATA2 .. ?KE =DATA UsesB

This type supports a variable length key and var~able length data entry each of

arbitrary character length. Within the physical data block, both key and data

entries will each be positioned to begin on a word boundary. Entries which are

not multiples of 6 characters will be 'padded with binary zeroes,

The user must specify the maximum character length for both key and data entries

at file definition time. Each manipulative command will require the actual key

length in characters as a formal input argument and either actual data length

in characters as an input argument or will return the character length rounded to

the next multiple of 6 into a return argument.

TYPE 5

DAFF' TA1 4AA- A~
." .. •I .KEY2 Uses FORM A

This type also supports a fixe.d key and fixed data entry each of arbitrary length

Ps in TYPE 1. However, the data entry will be pomttioi~ed on a character boundary

inside the physical block. Only data entries which are not multiples of 6 char-

acters will be padded with binary zeroes.

When inserting records into this type file, the user will specify a single 'key/

data entry area'. In this area, the user will have packed the key and data

entries as a contiguous string of characters. The access pa;kage will take ana

position this contiguous string in the physical data block.

For -etrieval commands, the access package will locate and unpack the string in

the physical block and return just the data entry portion into a user defined

data return area as is normally done for other type files.

B-8 !I

TYPE 6

I DATA I DA'DATA ýKEY. FORT4

This type supports a fixed key entry with a multiple number of fixed data entries.

Within the physical data block, the key and each data entry are positioned to begin

on a word bou.adary. Entries which are not multiples of 6 characters will be padded

with binary zeroes.

Each data entry is uniquely identified by a role code number assigned by the user

(designated in figure by Ri). There may only exist 1 data entry/role code/key

entry. The role code is a 4 bit field (left justified) embedded in the first 1

character of the data entry. For this reason, the uscr must not use these bits as

user storable data bits. The access package will merge the user defined role code

number into these bits when storing data entries and strip off these bits when A

returning a selected data entry to the user, The data entries are stored in the

data block in the order in which they are received. Sequential ordering according

to increasing role code number is not maintained.

Note that all role code data entries muist be of the Game fixed size specified at

file definition time.

TYPE 7

SI' I I I
KEY 1 DATA i DATA' I. 'DATA KEY I DATAI DATA Uses

1 1h' 1) re ai n FORM 6Cboe

This type supports a variable length key entry with a multiple aumber of fixed
data entries. The same comments apply hire as in TYPE 6 above.

B-9

ACCESS PACKAGE PRIMITIVE COMMANDS

The following commands are used independently of file organization:

1) DEFNFILE (FCT. Data blk size. File Type, Key length, Data length, Role

Coose Flag < , Index Filename, Index blk size >)

This comand defines the organization and parameters for the file

namea in the PCT.

FCT The File Control Table defined and residing in the ustir's

memory area. It contains the name of the file to be

defined in its first 2 words.

Data The size in words to be allocated for the physical data
blk size blocks. This must be a multiple of the disc prep size

(typically 112 words).

File Specifies the organization of the file according to the
Type type of key and data entries to be processed.

0 1 Fixed key, fixed data

w 2 'ariable key, fixed data

w 3 Fixed key, variiable data

S4 Variable key, variable data

a5 Fixed key, fixed dhca packed

Key Specifies either the actual key length in characters for
Length fixed key files, or, the maximum key length for variable

key filies. No key length can exceed 30% of the total

length of the physical index block.

Data Specifies either the actual data entry length in characters
Length for fixed data files, or, the maximum data entry length

for variable data files. No key/data entry pair may havea total length which exceeds the physical data block size.

B-1O

Role Speclfic, whether the file will or will not have role
Codes codes within it.
Flag

0 no role codes in file
0 role codes in file

If rule codes are indicated then 'File rype' lncst be

1 or = 2. The data entries must be fixed in length

with each data entry equal in size to all other data

entries.

-<,ndex filename, Index block size

These are optional parameters which specify that the

index blccks are to be stored in a separate physicil

file whose 12 character name is giver, in 'Ividex filename'.

'Index block size' specifies the size irt words Lo oe

allocated for the physical index blocks. This "nust be

a multiple of the disc prep size.

If these two parameters are absent, the index blocks

will be embedded in the same file as the data blocks. A

The index block size will be made equivalent to the data

block size.

2) OPEN (FCT, READ/WRITE Flag)

This command permits a user access to a particular file.

FCT The File Control Table defined and residing in the user's

memory area. It contains the name of the file to be

opened and accessed in its first 2 words. A

READ/ Specifies read/write mode for this file.
WRITE
Flag = 0 reading and writing permitted

= 1 only reading permitted

71

3) CLOSE (FCT, Inform area)

This comasnd closes a particula'r file and inhibits further access

to that file by the same user without a new 'OPEN'.

FCT The File Control Table

Ir.form A seven word array residing in the user's memory area
area into which statistical information will be placed. The

infvri.ation will be relative to the actual creation of

the file.

The Inform airea will contain the fcllcwi.g:

word I The Lotal number of Tita and index blocks in the file

iý the index blocks are embedded in the file, or, the

total .-.umber of data blocks if the index blocks are

matrn~ained in a separate file.

word 2 The total number of index blocks.

word 3 The total number of data block uerflows thus causing a

data block split.

word 4 The total number of index block overflows Lhus causing
an index block split.

word 5 The total number of data entry records read.

word 6 The total number of data entry records written.

word 7 The total number of existing data entry records.

B-12

4) INFORM (FCT, Inrorm arer)

This command giveT the user Information about a particular file

relative to the execution of the user's last 'OPEN' cotmand.

FCT The File Control Table

Inform The description is given under 'CLOSE'

area The contents of the 'inform area' will be a set of

numbers relative to the user's last 'OPEN'. At

'OPEN' time, these counters are reset to zero and

incremented/decremented for each user action on this

file. Note that word 7 should be interpreted as the

number of insertions and deletions made to the file.

If this number is negative, then the user made more

deletions then insertions.

5) OPENAP

This command 'opens' the accass paAage to the user. It sets

up contingency processing linkoges for the user. The user must

execute this command only once before all other access package
commandsa.

6) CLOSEAP

This command 'closes' the access package to the user. it clears
all iocked records on all files that the user may have neglected

to close. The user should execute this command once before

terminating his job. I .4

B-131

Thr fnllow,, comm; ' have parameter lists which are dependent on the file

organization. They are:

1) RDRAN (FCT, Key entry area, < Key size. > Data entry area <, Data size "

<, Role >)

This command retrieves a data entry for a given random key.

1CT The FV.c Control Table

Key The location in the user's memory containing the
entry search key.
area

< Vey The character length of Lthec key i f it var iabl(.- '..,(-v f ilev.
Size,

Data The location in the u.-cr's m mory wherre the dara en try
entry will be placed.

area

< ,Data The location in the user's memory where the size of the
size>

data entry (rounded to tile ntxt highe.st multiplte" of

characters) will be place~d for a variable, dat• file,.

., For a file with role codes, the role number C: the
Role >-

data entry to be retrieved.

2) RD SEQ (FCT, Key entry area,<Key size,> Data entry area , Data si>.e>-)

This command retrieves the data entry for the next sequentially

ascending key for a given random key.

FCT The File Control ['able

Key The location in the user's memory containing the key which

entry causes the search for the next ascending key. The new key
area when found will be placed in thi.i area.

<Key The character length of the input key. This is replaced

size,>- by the character length of the retrieved key for variable 4 .
key files.

Data The location in the user's memory where the data entry will

entry be placed.
area Y-

B-1.4

I :T .I i

< D The location iii the user's in.mory where thc size of the
Data data entry (rounded to thit next highest multiple of 6
s i ze >

characters) will be placvd for a variable data file.

3) RDILISTRAN (FCT, Key entry area,- KL!\' si !M, Dat. entry area, P of entries)

This command retrieve-, the dilla entries ior all the roles that may

exist for a given random key.

FCT The F.ile Control i.tbl.Q

Key The locat ion in the user 's memory containing the search
entr, key.
area

Key The character length ot the key for a variable key file.

Da)ta i he location in the user's memory where all the data
entry entries found will be placed.
are a

Sof The location in the user's memory where the number of
entries data entries found and returned to the data entry area

will be placed.

4€) DI)ISTSEO (;'CTI, K~ey entry area, ,:- Key size,ý> Data entry area, ::of entries)

This command retrieves the data entries for all the roles that may

exist for the next sequentially ascending key for a given random key.

CT The File Control Table

KeyV The location in the user's memory containing the key
entry which causes the search for the next ascending key. The
area

new key when found will be placed in this area.

Key Tfhe character length of the input key. This is replaced
size,:--- by the character length of the retrieved key for variable

key files.

.B1

B-i

Data The location in the user's memory where all the data
entry entries found will be placed.
area

of The location in the user's memory where the number of

entries data entries found and returned to the data entry area

will be placed.

5) RDRANLK (FCT, Key area ,< Key si ze, >Data nrea <, Dta size <, Role >)

6) RDSEQLK (FCT, Key area,<Key size, Data area < , Data size>)

7) RDLISTRANLK (FCT, Key area,<Key size,-> Data area, # of entries)

8) RDLISTRSEQLK (FCT, Key area,<Key size, > Data area, # of entries)

These four commands have parametur lisLs which are defined in the

same manner as the standard retrieval functions 1 through 4. They

also perform the same function but, in addition, a check is made

to determine if the retrieval entry is locked by other u.sers. If

the entry is locked, it is not returned and an indication of this

is passed to the caller. If the entry is not locked, then it is
returned to the caller and a logical lock is placed on the key

entry. Each user may place an arbitrary number (defined at system

generation) of logical locks on each file. A lock can only be
removed by performing a MODIFY or DELETE. command utilizing the

locked key. The same user who initially locked the entry must

unlock it.

The normal retrieval commands i through 4 do not check and do not

set locks. Thus, they act as simple "inquiry only" requests.

9) INSERT (FCT, Key entry area,<Key s--,> Data entry area <, Data size`>

<, Role>)

This command adds either a key/data entry pair or a data entry

qualified by role number to a file.

FCT The File Control Table

B-.16

Key The location in the user's memncy area containing the
entry key to be inserted, or in t•,v case of a fillý with role

codes, possibly the search key. If a role code is

specified in the paraineter list, a search is made to

find the key within the file. If the key is found, then

a new data entry insertion only is ittemptced. If the

key is not found, then the key is also inserted as well

a, the specified role code data entry.

<Key The character length of the new key if a variabla key file.
size, >

Data The location in the user's memory containing the new data
entry entry.
area

<, Data The character length of the new data entry if a variable
si~ze --siz data file.

, Role>The role code number that is to be stored (and subsequently

used as a secondary key) along with the new data entry if

the file is defined as one having role codes.

NOTE* See description of TYPE 5 file organization.

10) DELETE (FCT, Key entry area<=, Key size><, Role>)

This command deletes either a key/data entry ,piir or a data entry

qualified by role code number from a file.

FCT The File Control Table

Key The location in the user's memory area containing theentry,

entry search key.
area

The character length of the key entry if a variable key
Key file.

Size >

B-17

The data en:.ry specified by this role code number is to
be deleted for a file defined with role codes. Tf more

than one data entry exists for the given key, then only

the specified role data entry is deleted. If the only

data entry that exists for the givon key is that which is

specified by the role parameter then that data entry and

the key entry are both deletes.

11) MODIFY (FCT, Key entry area, <Key size,>. Data entry area <, Data rize-.

< , Role >)

This command updates a data entry possibly specifid by a role I
number for a given random key.

FCT The File Control Table

Key The loct-tion in the user's memory area containing
entry the search key.
area

<Key The character length of the key entry if a variable
size,> key file.

Data The location in th.. user's memory area containing the

entry .aew data entry i'hioh will be used to overwrite the o!d Iarea
data entry.

The c.iaracter length nt rhe rew dara entry if a variable
Datze data file.
size >-

The role number of the old dalA entry to ',e updated if a

Role:> role code file.

4B

B-18

FILE TYPE VERSUS A^IPFICABLE -OMWAND LIST

The following is a list of comimnd'. with their respective parameter lists for

each file type:

ALL TYPES

DEFNFILE (FCT, Data blk size, File Typo, Key length, Data length,

Role Flag<, Index Filename, T.ndex blk also>)

OPEN (FCT, Read/Write Flag)

CLOSE (FCT, In'orm area)

INFORM (?CT, Inform area)

OPENAP

CLOSER?

RDRAN (FCT, Key entry area, Data entry area)

RDSEQ (FCT, Key entry area, Data entry area)

RDRANLK (FCT, Key entry area, Data entry area)

RDSEQLK (FCT, Key entry area, Data entry area)

INSERT (FOT, Key entry area, Data entry area)

DELETE (FCT, Key entry area) I
MODIFY (FCT, Key entry area, Data entry area)

TYPE 2

RDRA, (FCT, Key entry area, Key size, Data entry area)

RDSkA (FCT, Key entry area, Key size, Data entry area)

RDRANLK (FCT, Kcy entry aria, Key size, Data entry area)

RDSFXLK (FCT, Key entry area, Key size, Data entry area)

INSERT (FCT, Key entry area, Key size, Data entry area) k

DELETE (FGT, Key entry area, Key size)

MODIFY (FCT, Key entry area, Key size, Data ontry area)

B-19

TYPE 3

RDRAN (FCT, Key entry area, Data entry area, Data size)

RDSEQ (FCT, Key entry area, Data entry areh, Data size)

RDRANLK (FCT, Key entry area, Data entry area, Data size)

RDSEQLK (FCT, Key entry area, Data entry area, Data uize)

INSERT (FCT, Key entry area, Data entry area, Data size)

DELETE (FCT, Key entry area)

MODIFY (FCT, Key entry area, Pata entry area, Data size)

TYPE 4

RDRAN (FCT, Key entry area, Key size, Data entry area, Data size)

RDSEQ (FCT, Key entry area, Key size, Data entry area, Lata size)

RDRANLK (FCT, Key entry area, Key size, Data entry area, Data 'ze)

RDSEQLK (FCT, Kcy entry area, Key size, Data entry area, Data size)

INSERT (FCT, Key entry area, Key size, Data entry area, Data size)

DELETE (FCT, Key entry area, Key size)
MODIFY (FCT, Key entry area, Key size, Data entry area, Data size)

TYPE 5

RDRAN (FCT Key entry area, Data entry area)

RDSEQ (FCT, Key entry area, Data entry area)

RDRANLK (FCT, Key entry area, Data entry area)

RDSEQLK (FCT, Key entry area, Data entry area)

INSERT (FCT, KEY/DATA entry area) See TYPE 5 file description

DELETE (FCT, Key entry area)

MODIFY (FCT, KEY/DATA entry area)

TYPE 6

RDRAN (FCT, Key entry area, Data entry area, Role)

RDLISTRAN (FCT, Key entry area, Data entry area, # of entries)

RDLISTSEQ (FCT, Key entry area, Data entry area, # of entries)

RORANLK (FCT, Key entry area, Data entry area, Role)

RDLISTRANLK (FCT, Key entry area, Data entry area, # of entries)

RDLISTSEQUK (FCT, Key entry area, Data entry area, # of entries)

B-20

INSERT (FCT, Key entry area, Data entry area, Role)

DELETE (FCT, Key entry area, Role)

MODIFY (FCT, Key entry area, Data entry area, Role)

TYPE I

RDRAN (FCT, Key entry area, Key size, Data entry area, Role)

RDLISiAIIN (FCT9 Key entry area, Key size, Data entry area,
of entries)

RDLISTSEQ (FCT, Key entry area, Key size, Data entry area,
of entries)

RDRANLK (FCT, Key entry area, Key size, Data entry area, Role)

RDLISTRANLK (FCT, Key entry area, Key size, Data entry area,
of entries)

RDLISTSEQLK (FCT, Key entry area, Key size, Data entry area,
of entries)

INSERT (FCT, Key entry area, Key size, Data entry area, Role)

DELETE (FCT, Key entry area, Key size, Role)

MODIFY (FCT, Key entry area, Key size, Data entry area, Role)

B2

B- 21

ERROR CODES

The following codes comprise a complete list of error conditLons:

Error 0 Cau se

1. Access package already initialized. Request ignored.

2. Access package not I nitaiali ed. Run terminated.

3. No such Vfunct ion. Rteqiteit iiiored.

4. Tncorrect number ot arguments for tunction. request
i gnored.

5. The file has been de ined bv another concurrent run
or a second atLtempt is being made by the caiitng
program to redefinme the ile. Pequest ignored.

6. Data block size exceeds maximum. Request ignored.

7. Key length size exceeds maximum. Request ignored.

8. Data length size exceeds maximum, Request ignored.

9. The key/data format type does not exist. Pequest
ignored.

10. Role codes not permitted for key/data type defined.
Q~eqmest ignored.

11. Data block size less than minimum. Request ignored.

12. Key length size Less than minimum. !,equest ignored.

13. Data lengtn size less than minimum. Request ignored.

14. Index file not assigned properly or internal CSF$
svntax error. 1Request ignored.

15. index block size exceeds maximum. Request ignored.

16. Data block size not a multiple of disc prep size.
Request ignored.

17, Index block size less than minimum. Request ignored.

18. Index block size not a multiple of disc prep size.
Request ignored.

19. Data file not assigned properly or internal CFS$
syntax error. Request ignored.

20. File control table full indicating maximum number of
files are open. Request ignored.

B-.22

t, r : rrr:.rr';•=••¸ " .• • :-. . . r; ;J1 -¸.¸' -r;••-r. '• " -* .••.-: '•• °-. W. nu•wiirr •- .- . - 7 .•* - .- f. T rF. r. • - _, n .. .yr-

Error 4 Cause

21. No buffer space a-ailable for file. Request ignored.

22. Attempt to close a file which is already closed.
Request ignored.

23. Attempt to close a file which has not been opened.
Request ignored.

24. The file cannot be accessed since it no longer ap-
pears in the internal File Control Table. Probable
system software malfunction.

25. No statistics gathered since the file has not been
opened.

26. Attempt to read a file which has not been opened.
Request ignored.

27, Role code argument out of range. Request ignored.

28. The file is empty. Request ignored.

29. Block number read not block number desired.
Integrity of file destroyed.

30. Block type read not block type desired. Integrity
of file destroyed.

31, No record exists for the givet, key.

32, A RDSEQ request not permitted on a file containing
role codes.

33. A 'Retcd List' type request not permitted on a file
without role codes.

34. End of file reached while performing a sequential
read.

35. Attempt to 'change' a file declared 'read only'.

36. File is being initially loaded. No requests permitted
byotherusers. 'Insert' only by originator of load. d.

37. Attempt to ý)ert a key/data record for which the 4
key portion already exists. Also for a file with
role codes, the key and role code already exist.

B-23

m " + '' • ! r .M

Error • Cause

38. Attempt to insert a key/data record whose total
length exceeds the data block size. For a file
with role codes, the total length includes all

existing role code entries.

39. A non-ascending key was given during an initial
load insertion. Request ignored.

40. Attempt to open a file that is already open.
Request ignored.

41. Record is currently locked by another user.

42. Maximum number of users are active. Cannot

support another. L

43. User is nIot active within the access package. 4
ReqUest ignored.

44. Maximum ntimber of records already locked by this
user. Record returned to user but not locked. I

B-2i

B- 24

ACCESS PACKAGE INTERNAL TABLES AND CONTROL BLOCKS

The following is a layout and description of the various core tables and
control blocks used by the peripheral file access package (PFAP).

1. TH1E PFAP COMMON FILE CONTROL TABLE OR PFAPFCT

PFAPFCT LOCK WORD
•ENTRY I FCTS'-,,

ENTRY 2 FCTSZE

ENTRY MAXFCT FCTSZE

Table B-I The PFAPFCT

The PFAPFCT shown in Table B-i is used by the access package to

control the activities on each data file which is "opened" for access by any

user. The table is partitioned into a fixed number of entries determined by ,

the variable MAXFCT at assembly time. Each entry is defined to be of size

FCTSZE. Access into the table is controlled by a "lock" word (a Test and

Set "queue" type word). Each new file which is opened by a user is entered

into the first available "entry" space in the PFAPFCT. When a file is no

longer needed by any user, its entry position is cleared for re-use. "K

"Table B-2 is a layout of an individual "entry" in the PFAPFCT.

B-25

'I.

0 'ThIS ENTRY' LOCK WORD

1 DATA

2 FILE NAME

3 I/O

4 PACKET

5 AREA
6

7 NUSERS

8 SPARE FT DBLSZE IBLSZE

9 SPARE KLEN DLEN

10 OFNXKY DBLSEC IBLSEC

11 NBLKS

12 NIBLKS

13 NOBLOV

14 NTBLOV

15 NREAD

16 NWRITE

17 NRECDS

18 NHIGH

19 NLEVEL

20 INDEX

21 FILE NAME

22 I/0

23 PACKET

24 AREA

2_5

26 LASTIBL LASTDBL

27 HIBUFF SCRBUFF

28 SPARE DATRUFF

29 SPARE ILSZE ILKYADR

30 ILRUNID

31

RECORD

LOCK

ARF1

FCTSZE

TABLE B-2
Layout of an entry in the PFAPFCT

[B-26

Definicions for variable names shown in the "PFAPFCT ENTRY"

layout are as follo%4:

NUSERS number of concurrent users who have this file

currently open.

FT file type,a aumber from I to 7 descri ed under
"General File Organization" and DEFNFILE
primitive command. (6 bits)

DBLSZE - physical data block size in words. (12 bits)

IBLSZE - physical index block size in words. (12 bits)

RC = role code flag, a 1 bit field when set indicates
file has role codes and FT field must be 6 or 7,
when reset indicates file has no role codes and
FT may be I through 5.

KLEN = The maximum key length in characters for variable
key files (FT = 2, 4, or 7) or the standard key
length for fixed key files (FT - 1, 3, 5 or 6).
(12 bits),

DLEN The maximum data length in characters for variable
data files (FT = 3 or 4) or the standard data
length for fixed data files (FT = 1, 2, 5, 6, 7).
(12 bits)

OFNXKY Used as an "offset to next key" length in words
for files with FT = 1 or 5. Since no Record

Control Words are stored in data blocks for these
files, this field provides a convenient incremental
value to skip from one key/data entry to another.
(12 bits)

DBLSEC number of Fastrand sectors necessary to hold a
physical da'ta block. (12 bits)

IBLSEC number of Fastrand sectors-necessary to hold a
physical index block. (12 bits)

1 NBLKS total number of data and index blocks within a file
if the index blocks are embedded within the data
file or, the total number of data blocks if the
index blocks are stored in a separate index file.

NIBLKS - total number of index blocks for this file.

NDBLOV total number of data block overflows (which caused
a block split to occur).

NIBLOV c total number of index block overflows (which caused
a block split to occur).

NREAD total number of key/data entries read.

B-27

- ..:

NWRITE - total number of key/data entries written.

NRECDS total number of data entries within the file.

NHIGH the number of the highest level index block.

NLEVEL - the number of index levels supporting this file.

IASTIBL a the number of the last accessed index block which
resides in the scratch index buffer. (18 bits)

LASTDBL = the number of the last accessed data block which
resides in the data block buffer. (18 bits)

HIBUFF address of the highest level index block buffer. :

(18 bits)

SCRBUFF = address of the scratch index block buffer.
(18 bits)

DATBUFF - address of the data block buffer. (18 bits)

IL "initial load" flag, a 1 bit field when set
indicates this file is being initially loaded by a
unique user.

ILSZE computed "initial load" size in words. This value
is dependent on DBLSZE. The standard load factor

percentage is defined by LODFAC at assembly time.
Then ILSZE = DBLSZE*LODFAC. (12 bits)

ILKYADR relative address of the last key entered in the
data block buffer. This field is used when checking
for sequentially ascending keys at initial load
time. (12 bits)

ILRUNID the generated "runid" of the user who initiated the
"initial load" of this file. All other users are
prohibited from performing any access to this file
during an "initial load."

Table B-3 is an expansion of the layout of the RECORD LOCK AREA within

an "entry" of the PFAPFCT.

LKENTRY the sequential position number within the data
block of the key that is locked. Also known as
the entry number. For a role code file, the key
lock extends across all data entries stored against
the key. (12 bits)

LKBLCK the number of the data block in which the locked
key occurs. (18 bits)

MAXLOCKS maximum number of records that may be simultaneously
locked by any user on any one file. This ia a
variable defined at assembly time and extends across
all files opened to the access package.

MAXUSERS - maximum number of concurrent users that can be
supported by the access package. This is also a
variable to be defined at assembly time.

B-28

31 LKENTRY SPARE LKBLCK

*USE #1
* I LOCK Area

3O4+4AXLOCKS
30+(MAXLOCKS+l) LKENTRY SPARE LKBLCK

* USER #2

30+(2*WAXLOCKS)LOKAe

30+(((Q4AxuSERS-1) LK.ENTR =f PARE ILKBLCK M UER

*~jQ~(~s)1) LOCK Area

FCTSZE

TABLE B-3

Lock Area within an entry of the PFAPFOT

B- 29

FCTSZE total size of an entry in the PFAPFCT. A variable
defined at assembly time as FCTSZE - 30 +
(MAXLOCKS*MAXUISERS)

An entry in the PFAPFCT is considered to be available if the Data

Filename words contain binary zeros. The "next available entry" is considered

to be the firut entry encountered which has its Data Filename words set as

binary zeros.

If the index blocks are embedded in the data file, then the Index

Filename words will -. ntain the same name as the Data Filename words. The I/O

accesses will still be controlled through the Index File packet as if the index

filename were unique.

Access to each "entry" in the PFAPFCT is controlled by a "lock" word

(a Test and Set "queue" type word). Thus there are two levels of control into

the PFAPFCT; one at the table level to prevent conflicts when deleting and

inserting whole "entrie' and one at the "entry" level to prevent conflicts

between concurrent use,. i the same file.

2. THE RUNID TABLE

The RUNID Table is i list of the generated user "runid" names obtained

from each user's PCT. Each user who performs an OPENAP command has an entry

made into the next availab•. slot in the table. Each user is removed from this

table when he performs a CLOSEAP.

For commands involving testing and/or setting of record locks (such as

RDRANLK, DELETE, etc.), the user's RUNID is obtained from his PCT, found in the

RUNID table, and the resulting relative table location used as an index into the

"record lock area" of the PFAPFCT entry for the file being accessed.

Access to the RUNID Table is controlled by a "lock" word (a Test

and Set "queue" type word). It is used to prevent conflicts when users are

added or deleted from the table.

Table B-4 is a layout of the RUNID Table.

4-
!. N
i''F

B-30

- AW.i

0 RUNID TABLE LOCK WORD

1 GENERkTED RUNID

2 GENERATED RUNID

0A

00

MAXUERS ENERTED UNI

TAL B-

Th 0UI al

*B 3

3. THE COWON BUFFER TABLE OR CBT 9

The CBT functions as a contiguous buffer pool cut of which each file

that is currently opened has assigned to it an area large enough tu support

2 index block buffers and 1 dala block buffer

Table B-5 shows the layout of the CBT.

LASTCBT size in words of the CBT defined at assembly
time. It should be computed as LASTCBT -

MAXFCT*3*BUFMEAN where MAXFCT is the maximum
number of file entries in the PFAPFCT and BUFMEAN
is the probable mean size of the data and index
blocks to be used within all files.

4. THE AVAILABLE BUFFER TABLE

The AVLBT is a table of addresses and word lengths defining those areas

in the CBT which are available for use. When a file is closed and no longer

needed for any other user, the buffer space must be returned to the pool. Since

the buffer space was allocated on a first in, first out basis, the CBT is

likely to become fragmented if files are closed (and not needed by other users)

on a random basis. initial buffer allocation is controlled by a variable called

NEXTCBT which contains the next available relative CBT address (initially 0).

If the difference between LASTCBT and NEXTCBT is large enough to hold the

requested buffer needs, then the absolute CBT address is generated and return~ed

to the caller. NEXTCBT is then increased by the number of words just allocated.

However when space is returned NEXTCBT cannot easily be modified, so the AVLBT

is used to point to the fragmented free space. If the difference between IASTCBT

and NEXTCBT is too small to satisfy a buffer request, then the AVLBT is searched

to find an entry whose "# of words" field is large enough to satisfy the caller's

request The appropriate address is passed to the caller and adjustments made

in the AVLBT entry to compensate for the size needed.

When space is returned to the AVLBT, an attempt is made to find an

entry whose "next available CBT address" field is contiguous to the "ending

buffer address" of the space being returned. If such an entry is found then the

AVLBT entry is modified to include the new space being returned.

B-32

h "

1*

01

* BUrFFER

SPACE

LASTCBT-1
LASTCBT

TABLE B-5

The Common Buffer Table

B-33

Access to the AVLBT and in general to allocation and release of

space in the CBT is controlled through a "look" word (a Test ard Set "queue"

type word),

Table B-6 is a layout of the AVLBT.

Definitions for variable names shown in the AVLBT layout are as

follows:

AVWRDS - number of available words in the CBT fragment
pointed to by NXAV(;BT. (18 bits)

NXAVCBT - relative address in the CBT of the next available
fragment. (18 bits)

AVLBTSZE - maximum number of entries in the AVLBT. This
variable Is defined at assembly time.

5. THE OVERFL)W BUFFER TABLE OR OBT

The OBT is used as a working buffer area whenever a data block or

index block split occurs due to insertion of data causing an overflow situation.

The OBT is also used as a I/0 packet area for DEFNFILE commands.

Access to the OBT is controlled through a "lock" word (a Test and

Set "queue" type word). The loo-k word is generally used to queue more than

I block 3plitoccuring concurrently. The size of the OBT is defined at assembly

time as OBTSZE - 2*BUFMAX where BUFMAX is the maxlmuin size in words of any

index or data block likely to be defined for any file.

Table B-7 is a layout of the OB1.

6. THE OBT OVERFLOW AREA

The OBT has an overflow ar-9 which again is used during the block

split procedure. This area is used to hold the Record Control Wcrd(s) (RCW)

arid key(s) which need be inserted into the next successively higher index block.

At the data block level, a maxium of 2 keys may be entered into the s area while

at the index block level, only 1 keyy may be entered due to the size restrictions

placed on key and data lengths.

Table B-8 shows a layout of the OBT OVERFLOW AREA.

B-34

V; .. ~ .= :• .• '•- •. h~ -

0 AVLBT LOCK WORD
1 AVWRDS NXAVCBT

2 -AVWRDS " NXAVCBT

I 9

I I

II

II

AVLBTSZE AVWRDS NXAVCBT

TABLE B-6
The Available Buffer Table

B-35

0 OBT LOCK WORD
1

2

WORKING

BUFFER

SPACE

OBTSZE-l
OBTSZE

TABLE B-7

The Overflow Buffer Table

1

2 BLOCK

SPLIT

KEY

SAVE

AREA

OBTOVSZE-I
OBTC '%E

NKYSAV

SAVSZE

RCWADR

TABLE B-8

The OBT Overflow Area

dT

B-36

:i..,

5•: . I I

Definitions for variable names are as follows:

NKYSAN - number of keys being saved in the area while a

block split is being performed.

SAVSZE total number of words (both key(s) and RCW(s))
being saved during a block split.

RCWADR - relative address of the RCW in an index block

after whose associated key the "saved key" should

be inserted.

OBTOVSZE total size in words of the scratch save area.

This is defined at assembly time and must be twice
the size of the longest key that is likely to

occur in any file.

if I

B-37

.. ...

""mim

7. THE USER'S FILE CONTROL TABLE OR FGT

Each user who is manipulating a file via the access package needs an
FCT within his own core area. It is used to hold the Filename, the relative

statistics pertaining to the usage of this file, and certain internal control

bits.

Table B-9 shows a layout of the USER FCT.

Definitions of the variables shown in Table 8 are as follows:

RSVD the reserved control bits by which the access
package can determine what the state of the
file is (6 bits)

S0 implies file has not been "opened" at all, there-
fore first call must be OPEN or DEFNFILE.

- 1 implies file has been "opened".

= 2 implies file has been "opened" and accessed
via any read/write request.

778 .mplies file has been "closed" and can be
subsequently "reopened".

R/W the read/write bit. If 0, the file may be
read or written. If 1, the file is considered
to be a "read-only" file.

Words 3 through 9 are the statistics cells and have the same defini-

tions as those in the PFAPFCT.

8. THE FILE INFOPRMTION BLOCK OR FIB

Each data file has a control record called the FIB residing in the
first Fastrand sector of the file on mass storage. It completely defines the

organization and status of the file.

Table B-10 shows the layout of the FIB.

The DEFNFXLE command is used to initially define the subfields in the

FIB. An initial FIB is written into the file at that time. The OPEN command

causes the FIB to be read into the PFAPFCT entry assigned to this file (assuming

B-38

0 DA TA

I. FILE NAME
2 RS

3 NBLKS

4 NIBLKS

5 NDBLOV
6 NIBLOV
7 NREAD

9 NRECDS

TABLE B-9

The USER FCT

0 FT IDLSE NAM

1 SPARE KLNDLEN

2 OFNXKY DBLSEC IBLSEC

3 NBLKS

4 NIBLKS

5 NDBLOV

6 NIBLOV

7 NREAD

8 NWRITE

9 NRECDS ,

NLEVEL

13 FILE NAME

TABLE B-10

The FILE INFORMATION BLOCK

B-3

+ OFNXKY DBL- 39SE

the file has not been already "opened" by another user). As each user performs

a CLOSE, a new copy of the FIB is written from the PFAPFCT entry to the file

assuring an up to date status of the file. Also whenevet a data block split

occurs, the FIB is updated since the data, index and level counters may have

changed.

Note that the FIB resides within ;:he data file. There is no FIB

within a separate index file. The relative sector number computation involving

data block numbers must compensate for the existence of the FIB. Moreover,
•ince the index blocks may be embedded within the dat& file, the sector compu-

taton must Plso compensate for the FIB. Separate index files therefore have
a Fastrand sector allocated to a dummy FIB (which is never read or 4.,itten)

to eliminate having the index block I/O routines having to check w,_ th;'•r the

blocks are embedded or not.

The definitions of the variables shown in Table B-10 are exactly as

described under the PFAPFCT.

9. ALLOCATION OF STORAGE WITHIN MODULE PFAP

The one non-reentrant module PFAP acts as a buffer between the

original caller and the reentrant portion of the access package. Its main

function is to save the caller's registers, th'ieii pass on to the reentrant

modules the address of the caller's parameter list and the address of the

register save and temporary scratch save area. This scratch save area can be

-used by the reentrant modules to store counters, flags, etc. of a temporary

file dependent nature. The maximum size of tf.s area is defined at assembly

time but shold not exceed 100 words.

'fable B-lI shows a layout of the storage area.

The OPENAPFIAG contains a 1 bit field which if 0 indicates no OPENAP

thas been performed cor this user; if 1, indicates an OPRUAP ha,, been done.

B-40

... ".,, -

AREGSAV SAVE

A15

XRE GSAV SAVE+1O

RREGsAvr SAVE+21

R15

SCRAREA ARASAVE+33

SCRATCH

SAVE

AREA _____ MAXSAIVE

GPENAPFLAGSPR

TrABLE B-11
Storage Area withiri~PFAP non-reentrant module

B-41

........ . ..

APPENDIX C. STIS DIRECTORY
FUNCTIONAL SPECIFICATION

'I-

....... --------

STIS DIRECTORY FUNCTIONAL SPECIFICATION

1. DIRECTORY CAPABILITIES

Directory services are designed to allow the encoding and de-

coding of all system words and terms (of one or more words) used in STIS as

entity names, attributes names, attribute values, commands, etc. These system

words and terms are listed in integrated ordered lists (the Word and Term En-

coding Tables) so that an input language scanner can recognize and determine

the role played by every word apt to be input (including the attribute associa-

ted with a value term), and also determine when a value term or entity name

is not unique.

1.1 DIRECTORY TABLES

The Directory Tables are shown in Figure C-1 and listed in Table 1.

They are described below.

1.1.1 Word Encoding Table (WET)

The WET entries are three 36-bit cells each.

The input argument is a word or word fragment of one to twelve

6-bit characters. If the word or word fragment is longer than 12 characters,

then C12 is a hyphen "-" designating a continued word fragment. Words of fewer

than 12 characters are left justified and filled with blanks (word space) to

C12. Entries are ordered by input argument and words of arbitrary length can

be accommodated as a series of word fragments.

The Role Map is a 12-bit field which is used only if the word

is 12 characters or less and represents a one-word term. If the word is a

fragment of a term, then all 12 bits are "0". the interpretation of the Word -

Map for a tcým is discussed below in connection with the Term Encoding Table.

The Word Code is a 24-bit field, assigned in a sequence as words

(and terms) are entered into the system.

C-1

............

(a) WORD ENCODING TABLE

froles

character string - > WET >) ord code

6 .. 6

Cl Cl,...oeCl2 - character string

C]c12 RM - Role Map

RM Wc - Word (or word fragment) code

12 24

(b) TERM ENCODING TABLE

term fragment ,,_TET _ter__o
des

code string > em code

"14

F2 Fl, F2, F3 - term fragment, word,
F2 f F3 word fragment codes

RM TC RM - Role Map

12 . 24 TC - Term or term fragment code
12 24

(c) TERM DECODING TABLE

term code TDT term (word string)

(virtual key)

24 12 6 6 6 6 6 6

-F-1 F2 ICli
F2F3 orC12

12 24

Te•m Fragment Format Character Format

Figure C-i Director?, Tables

C-2

...., q?.,!

TABLE 1

DIRECTORY TABLES

Word Encoding Table (WET)

Term Encoding Table (TET)

Term Decoding Table (TDT)

TABLE 2

ROLE MAP INDICATORS

i Role

1 Noise
2 System Command

3 User Command

4 Attribute

5 Attribute Value

6-12 Unused ("0")

C-3

;5 T-

1.i.2 Term Encoding Table (TET)

The TET entry is three 36-bit cells. The input argumont is a

string of three 24-bit fields, Fl, F2, and F3 in which bit one is always "0"

and bit two Is a Word Code Indicator (WCI) which is set "1" for a word or word

fragment code and "0" for a term fragment code. The TC is a term or term frag-

ment code and is 24 bits long. (TC corresponds to WC in the WET entry.)

The Role Map is a 12-bit field which is all "0" if the input

argument represents a term fragment. If the input argument is a complete term

then RM represents the roles of the term. If bit i (i - 1,...,12) is "1"

then the term role is role i. For a term, one or more of bits 1 through 12

will be set "'". The role interpretations are listed in Table 2.

1.1.3 Term Decoding Tabl.e (fT)

The TDT entry is two 36-bit cells in one of two formats, either

three 24-bit fields or twelve 6-bit characters. The argument is a term (term.

fragment) code or a word (word fragment) code. Since these will form a dense

set (assigned in sequence by the system) they will be interpreted as an entry

number and will not be stored in the entry (i.e., the code is a virtual key). If

thet Word Code Indicator (WCI) in the key is "0" then the entry is in Term Frag-

ment Format, otherwise, it is interpreted as a character string.

In decoding each term fragment field the WCI (bit two) is ex-

amined to determine whether the corresponding TDT entry should be iinterpre-

ted in Term Fragment or Character format. In this way terms made up of arbi-

trarily long strings of arbitrarily long words may be decoded.

1.2 DIRECTORY SUBSYSTEM COMMANDS

Each high level Subsystem command is generally decomposed into

a series of lower level commands which act on words, word fragments, or term X4,

fragments. These lower level commands then either search or make entries in

the various tables like the Term Encoding Table, Word Encoding Table, etc.

This modular nucleus of word and fragment oriented commands will allow con- I
struction of other high level term oriented commands when needed in the future.

C-4

,f{.n .. , . .4..~t...L

1.2. 1 Term Oriented Commands

A term is defined to be any string of English language words each

of arbitrary length and separated by blanks or any other designated delimiter(s).

The and of term is signaled by a. end of term sentinel following an optional last

end of word delimiter. Information will be requested at the term level as a re-

sult gerterally of a query by an intelligence analyst. The iollwing commands are

defined to act upon term data.

0 Retrieve Term Code and Role (term) - (term code,
(role I <, role 2...>))

This command will find the numeric term code associated
with the given English language term If the term code
exists. The function will also supply a list of roles
that define the various ways the term is being used. If

the term code exists then at least one role will be
returned.

Each word in the termi is encoded into its apprcpriate
word code then the lover level command 'Find Term
Code and Role' is used to fetch the appropriate term
code. If the term consists of a single word then the
word code found in the initial word encoding process
is the desired term code.

0 Retrieve Term Code (term, role) - term code

This command will fin, and return the numeric term code
associated with the given English language term pro-
viWed the term exists for the specified role in the
Term Encoding Table. The role acts as a qualifier for
the term. The comr mand provides the ability to answer
questions such as "...is this term used as an attribute...?"

The function 'Retrieve Term Code and Role' is called to
find all the roles for the given term. A match for the
desired role is then sought in the role list found.

a Find Term Code and Role (word code <, word code, ... >) =
(term code, (role 1 <, role 2... >))

This command will find the numeric term code associated
with the given string nf numeric word codes if the term
cide exists. The function will also supply a list of roles
that detine the various ways in which the term is being
used. If the term code exists, then at least one role will
be returned.

C-5

This cowmmand per forms the same functions to 'Retrieve Term

assumed that the English term has been encoded into its

wodcomponents.

The wodcodes ore reencoded recursively via the 'Reencode
Fragments' function into the term code desired.

Find Term Code ((word code <, word code... >), role 3-term

This command will find and return the numeric term code
associated with the given string of numeric word codes
provided the term code exists for the specified role in
the Term Encoding Table.I

Again, this comrn~and performs the same functions as
'Rtiv Term Code' but at a lover level of input.

The function 'Find Term Code and Role' is called to find
all the roles for the given term. A match for the desired
role is then sought in the role list found.

IiThis commnand and 'Find Term Code and Role' could be used
by a language processor which scans and encodes a term
a word at a time %.nto a string of word codes and subse-
quently desires the final term code.

* Insert Term (term, role) -term code

This commaend will effectively add the English term quali-
fied by role to the Term Encoding Table. The term code
which is assigned to it by the system will be returned.
If the term already exists, then an additional role is being
defined in which case the pre-existing term code is re-
turned. If both the term and role pre-exist then an error
status is returned.

The term is encoded into its string of word codes. Appro-
priate entries are made into the dictionary for any new
words encountered. The string of word codes are furtherI
encoded into term. fragments and subsequently into a single
unique numerit term code. The appropriate role is set and
the entry made in the Term Encoding Table. Entries are
also made in the Term Decoding Table during the process to

permit proper retranslation into English.

41 Equate Term (new term, old term, old role) -term code ~

C- 6

This coimmand will find the numeric term code for the .
given old English language term. It will encode the new
term to the point of assignment of a unique term code.
At this point, the old term's coda number will be assigned
as well as the old role type indicated. The "new" entry
with the appropriate role set is made in the Term Encoding
Table. Entries involving term fragments are made in the
Term Decoding Table; however, no final entry involving the
"Snew" term code is made since the old term decoding is con-
sidered to be the "reference" term.

The old numeric term code will be returned. However if the
old term code or old role does not exist, then an error status
is returned.

0 Decode Term (term code) - term

This command decodes the given term code into the English
language text of the term. The Term Decoding Table is
used in a recursive look-up process until the final text
is completely generated.

The term code ij en~tered as an initial entry in a push
down table. A loop is then begun in which the first
entry in the push down table is examined. If the entry
has the Word Code Indicator bit set, then the entry is
decoded into English text via 'Decode Word' function.
The text is then concatenated with any previously decodedii text. A 'blank' character is added to the text if the
word is not marked as 'continued'. This entry is then
completely processed and the push down stack is then popped.I, If the entry does not have the WCI bit set, then the de-
coding entries are retrieved and entered in the push down
stack in place of the first entry. Another iteration in the
loop is then begun. When the push down stack is empty the
generated text is returned.

1.2.2 Word Oriented Commands

A word is defined as an English language word of arbitrary character

length and followed by a blank or other designated delimiter(s). words are
partitioned an twelve character boundaries if they exceed twelve characters. The

following commands are defined to act upon words.

0 Encode Word (word) - word code

This cotmmand will attempt to find the associated
numeric word code for the given English word. The word
code is returned if found or an error status is set if
not found.

c- 7

If the word is partitioned due to its size, a fragment
code list is generated and the 'Reencode Fragments'
function is used to find the unique desired word code.

* Insert 4ord (word) n word code I

This commwand will add the English word to the Word En-
coding Table. The numeric word code assigned to it-by
the syste~m will be returned. If the word is partitioned
due to its size, then the appropriate fragment entries are
also made in the Word Encoding Table. Entries are also
made in the Word Decoding Table (which is integrated with
the Term Decoding Table) for proper retranslation to

English. The Word Code Indicator bit is set for thoseIentries made in the Word Encoding Table. However for frag-
ments which need further encoded entries in the Term En-I
coding Table, the WCI bit is not set.

* Equate Word (new word, old word)

This commuand allows the user to synonymize a new word

final encoding of the new word is equated to the word
coefor the old word. This entry is then made in the
WodEncoding Table for new wr3ta r o attoe

orin the Term Encoding Table for words which are parti-
tioned. Appropriate entries are made in the Decoding
Table for proper retranslation into English, If the old
vord does not exist, an error status is returned.

Find Word Code (word fragment) - word code

This commnand is used to find a numeric word code
associated with a given fragment of an English word. If
a single word, as mentioned earlier, contains more than
the maximum number of characters representable in the
Word Encoding Table, it is partitioned into fragments.
Each fragment then is assigned a word code which is re-
trievable via this command.

Any word of size less than the maximum number of characters
before partitioning may be given as an argument to this
command.

If the word code is not found in the Word EncodinC Table,
an error status is returned.

* Decode Word (word code) -wordQ

The character string represented by the given word code is
retrieved from the Decoding Table and returned. This
function would generally be called by the coimmand 'Decode
Term' when it has determined that it has encountered a
word code with the Word Code Indicator bit set.

C-8

1.2.3 Commanids For Words and/oa Terms

The following cormnands accept fragment codes as parameters. These

fragment codes may be interpreted as either word fragment codes or term fragment

codes depending on the calling comnand.

* Re-encode Fragments (frag code,...) Word/Term code

This conmnand accepts a string of fragment codes and

at.empts to further encode them into a single code

via the Term Encoding Table. The code found in the
encoding process is returned. If a code is not found,
an error status is returned. A

I Insert Fragments (frag code,...), Word/Term code, role,
equate flag)

Thl.s command forms entries for the Term Encoding Table

usf.ng the fragment code list supplied. Each packet entered

into the TET is assigned a new code number. The last entry

into the TET is given the Word/Term code number supplied in

the parameter list. The role supplied is also given to this

final entry.

As each entry is made into the TET, an appropriate entry
is also made in the Term Decoding Table. However no entry

is made in the TDT for the last TET entry if the $equate'

flag is set. The 'equate' flag is set whenever 'Equate

Tern' or 'Equate Word' is the calling function.

1.2.4, Misz•ellancous Fuuctions

Several low level modules are defined in the support of the commands

outlined in 1.2.1, 1.2.2, and 1.2.3. These modules are shown in the accompanying

fiowchr-cs but not formally defined here.

C-9

_____________________________________ I
APPENDIX D. BASIC NODE FUNCTIONS

I
I

Li 4 1
[1
I1

7.

BASIC NODE FUNCTIO!?S

1. BASIC DATA OPERATIONS

Data services will be provided for the creation, maintenance,

and retrieval of nodal information based on the implementation of the new

node structure. These services are intended to provide all inforration ser-

vices supplied by the current STIS.

A set of functions are specified which operate on a node re-

siding either in the Semantic or Entity Net areas of the STIS Concept Net.

The functions can be grouped into the following broad categories:

(a) Create (new nodes assigned and created)

(h) Maintenance (existing nodes expanded, changed,
deleted, or displaved)

(c) Retrieve (existing nodes, and/nr data located
or accessed)

These functions are defined at the nooe processor level and are accessible

by the STIS intermediate language processor and possibly by user written

applications programs.

The special symbols used in delimiting parametrs in

the following functional illustrations are dfined
as follows:

(i) < arg > implies some value of "arg" must be
coded where "arg" can take one of
several values (ie., arg > ::v
v2!... Ivn)

[arg] implies this parameter is optional

1.1 CREATE FUNCTIONS

The "Create" category of functions includes the following:I Create Entity Node (<AOR>) = Node ID

D-1

S'a t..VVM. • , ,: ,..•.z : ;

,q',mq.-qy.-yr ,"• . •, ,•,,••..•.•h7IJ..,.. • -s.. ~, -
7. 7 . . I.

* C,'eate Attribute Node (<AOR>) = Node ID

9 Create Value Node (<AOR>) = Node'ID

* Create Term Node (<AOR>) Node ID

* Create Word Node (<AOR>) = Node 11)

0 Create Node (<node type>, <AOR>) = ID

where node type entitylattributelvalueitermjword

AOR Area of Responsibility identifier

Node ID = Toe integer number assigned to
this node (and henceforth by

which it will be accessed) by
the storage allocator.

These functionis will add a node of the specified type to j
the concept net. The space is allocated in the node data
base and the identifier returned to the caller. The node
is initially created in the user's work space. (Subsequent
windup operations for a fact store will generally cause the

node to acLually be written to mass storage.)

d Create Subnode (<Node ID>) = Sub-Node ID

The parent node is brought into the user's workspace if it t

does not already exist there. The next available sub-node
number is fetched from the parent node and the sub- ode ID
is forred and returned to the caller.

1.2 MAINTENANCE FUNCTIONS

The "Maintenance" category includes the largest number of func-

tious. It includes the following:

* Storc Fact (value, attr ID, < Fact Control >,
[< mode >, < Fact Seq # >1,
[< Footnote type >, text)

where value = actual numeric, string, list, etc.
value of the attribute

attr ID * node ID of the attribute A

Fact Control = cue or more of the following
qualifiers: Area of Responsi-
bility, Classification, sensor,
credibility, etc.

D-2

mode : InsertlModify

Fact Seq# - Fact sequence number in a multi.-
fact situation

Footnote Type :: cmnent warningitext

Text - alphanumeric textual. data of che footnote

This function stores the actual value against the specified
attribute for the "current" node previously located or created
by the user. The fact control information and optional foot-
note text is also stored with the value. If the attribute
does not exist in the current node, then the attribute/value
pair is stored. If the attribute pre-exists and a value with
the exact Fact Contrcl parameters is found, then the first old
value is overwritt..n by the new value if the "mode" and Fact
Sequence I fields were omitted. The "mode" and Fact Sequence
fields determine the action to be taken in the case of pre-
existing facts. Facts are implicitly numbered 1 through n.
The "mode" argument allows the insertion of new facts and the
modification of old facts. Insertions occur after the fact
number specified in the Fact Sequence number field. If it is

necessary to insert a new value before the first pre-existing
value, then the Fact Sequence # field = 0. An old value may
be modified by specifying its Fact Sequence number. (Note a
"modify" of Fact Sequence #0 is not permitted.)

0 Store Footnote (attr ID, <Fact Control>, [<mode>,
<Fact Seq. #>, <Foot Seq. #>],S~<footnote type5, text)

where attr ID = node ID nf the attribute

Fact Control = one or more of the following
qualifiers: Classification,
sensor, credibility, etc.

mode ,: InsertlMoe.ify

Fact Seq # = Fact Sequence Number

Foot Seq # = Footnote Sequence Number

footnote type :: coinmentlwarningltext

text =alphanumeric textual data of the
footnote

The function will store a footnote for a value "ualified by
the given Fact Control under the given attribute. A 3eerch
is made for the given att: -bute under the current node. If
it is not found, an error status is returned. If the attri-

"* bute is found, a search is made for the correct Fact Crntrol
qualified value. If not found, sn error status is returned.

D-3

If found, the footnote is stored. The text may replace a
p-evious footnote of the same type in which case the "mode"
and Footnote Sequence # fields are examined. The Footnote
Sequence # fieln '-ls which specific footnote is to be
modified or afre (thw new footnote will follow. Multi-
fact situations ý.e processed using the Fact Seq. # field
as described in Store Fact.

* Delete value (attr ID, < Fact Control >, [<Fact
Sequence # >j)

where attr ID = node ID of the attribute

Fact Control = one or more of the following
qualifiers: Area of Responsi-
bility, classification, sensor,
credibility, etc.

Fact Sequience # =Fact Sequence Number

The function deletes the specific Fact Controlled value (includ-
ing attached text) for the given attribute for the "current" node
previously specified by the user. other existing values are not
affected. The Fact Sequence Number specifies the unique fact
in the n.ulti-fact case. If the specified value cannot be found,
an error status is returned.

* Delete Attribute (attr)D)

where attr ID = node ID of the attribute

This function will delete the specified attribute under the
current node. All values and associated text for this attri- I
bute are likewise deleted. If the specified attribute does,4
not exist within the current node, an error status is returned.

Delete Footnote (att;r ID, <Fact Control>,

[<Fact Seq. i,>, <Foot Seq #>J, <footnotetype>)

where attr ID = node TID of the attribute

Fact Control = one or more of the following
qualifiers: Area of Responsi-
bility, classification, sensor,
credibility, etc.

Fact Seq # = Fact Sequence Number
Foot Seq # = Footnote Sequence Number

footnote type :: commentjwarningltext

D-4

S............. " ,.. N 'A"

The function deletes the text of the specified footnote for the
given Fact Con~trolled value. other text is not affected as are
other Fact Controlled values not affected. An error status is
returned on any 'no find' condition. The Fact Sequence Number
specifies the unique fact in the multi-fact case. The Footnote
Sequence Number specifies the unique footnote in the multi-footnote
case.*

0 Display Node (node ID)

This function lists the configuration of the node
in the Concept Net specified by the node ID.

* Display Attributes (node ID)

This function lists all the attributes stored in
the specified node.

1.3 RETRIEVE FUNCTIONS

The "Retrieve" category of functions includes the following:

"* Retrieve Node (node ID)

The function locates the node specified by node ID
In the concept net and logically loads it into the

usrs workspace. It becomes the !'current" node.

"* Retrieve Fact (attr ID, < Fact Control >1
[Fact Seq # >] -value(s)

where attr ID -node ID of the attribute

Fact Control one or more of the following
qualifiers: Area of Responsi-
bility, classification, sensor,
credibility, etc.

Fact Seq #I Fact Sequence Number

This function returns a value or value list to the caller for
the attribute specified for the "~current"~ node. If the attributeis not found or the proper Fact Control qualifiers cannot be
field specifies the urnique fact in the multi-fact case. If a
warning is attached to the fact, this indication is also returned
with the value(s). The value may be a single datr item or an
array of data itemns. The value(s) may also have been generated
by an external program called as a part of the internal node
processing function.

D- 5

Retrieve Footnote (attr ID, <Fact Control>,
[<Fact Seq. 0>, <Foot Seq #>],
<footnote type>) - text

where attr ID - node ID of the attribute

Fact Control - one or e Aie following

qualifiers. Area of Responsi-
bilit-,, cla&ýification, sensor,
credibility, etc.

Fact Seq # = Fact Sequence Number j
Foot Seq # - Footnote Sequence Number

footnote type commentlwarningltext

The function returns the alphanumeric text of the footnote
type specified to the caller. The attribute is sought,
then, the proper Fact Controlled value, then the specified
footnote. If any search condition results in a 'no find',
an error status is returned. The Fact Sequence Number srec-
ifies the unique fact in the multi-fact case. The Footnote
Sequence Number specifies the unique footnote in the multi-
footnote case.

D-6!

II I

D- 6

MISSION.
qf

RADC plans and conducts research, exploratoryj and a*cdvaod

~...developwent. progvr~hfs In commnand, control'1, .and commuunications
(C3) activities, and In the .c3 areas of informna- ýn s~iG21ces
and intelligence. The pri noipal technical misision ra~s
are communications, electromagnetic guidance and control,
ýsurvfilllance of cjround and aerospace objects, i-ntelligeance
data collection and handling, information s!stSDI tI3CIZolQog,

ionsphricproagation, solid s4tate sciences Izw~ave
#1!. ~physaics and electronic reliability, mitnblt and

comnpatibility.

4 0 ~.3JTIO

AlI,
";JWT1

~A

