APPLICATION OF CIRCULATION CONTROL ROTOR TECHNOLOGY TO A STOPPED ROTOR AIRCRAFT DESIGN

by

Robert M. Williams

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

December 1975

AVIATION AND SURFACE EFFECTS DEPARTMENT RESEARCH AND DEVELOPMENT REPORT

Report 4574
This paper presents the application of circulation control rotor (CCR) technology to a revolutionary new aircraft concept--the X-Wing stopped rotor V/STOL. This design affords the potential for major advances in rotary wing aircraft speed, range-payload, productivity, and cost through the application of highly innovative aerodynamic and structural design. The technology base for the concept has been derived from almost 6 years of related CCR (See reverse side)
(Block 20 Continued)
aerodynamic and structural design studies at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) and from earlier research in the United Kingdom. Additional design insight has been gained from the experience of various stopped and stowed rotor concepts of the 1960's and also from recent studies of the NASA "oblique wing" transonic transport concept.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF CONCEPT</td>
<td>1</td>
</tr>
<tr>
<td>AERODYNAMICS</td>
<td>2</td>
</tr>
<tr>
<td>EMPTY WEIGHT</td>
<td>5</td>
</tr>
<tr>
<td>MISSION ANALYSIS</td>
<td>6</td>
</tr>
<tr>
<td>ROTOR AEROELASTICITY AND DYNAMICS</td>
<td>7</td>
</tr>
<tr>
<td>STABILITY AND CONTROL</td>
<td>8</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>8</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>26</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

1 -- Circulation Control X-Wing V/STOL Aircraft Concept 10
2 -- Compressibility Characteristics of Two Dimensional CC Airfoils at Zero Angle of Attack 11
3 -- X-Wing Transonic Design Features 11
4 -- Circulation Control Rotor - Basic Concept 12
5 -- Dual Blowing Concept for Transition through High Advance Ratios 12
6 -- Effect of Simultaneous Leading and Trailing Edge Blowing 13
7 -- Rotor Aerodynamic Environment during Transition Flight ($u = 0.7, \alpha_s = 0, C_{T/\sigma} = 0.129$) 14
8 -- Maximum X-Wing/Rotor Thrust Capability 17
9 -- X-Wing Aircraft Equivalent Lift-to-Drag Ratio 18
10 -- Drag Coefficient (Based on Hub Planform Area) for Three Hubs with Shanks 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 -- Wing/Rotor Design and Weight Analysis Approach</td>
<td>20</td>
</tr>
<tr>
<td>12 -- Aluminum Blade Construction: Effect of Design Parameters</td>
<td>21</td>
</tr>
<tr>
<td>13 -- Graphite Composite Construction: Effect of Blade Design Parameters</td>
<td>22</td>
</tr>
<tr>
<td>14 -- X-Wing Dual Cross-Spar Rotor Hub Structural Design</td>
<td>23</td>
</tr>
<tr>
<td>15 -- Impact of the X-Wing Design on Rotary Wing VTOL Empty Weight Trends</td>
<td>24</td>
</tr>
<tr>
<td>16 -- Comparison of X-Wing Payload Capability with Other Rotary Wing VTOL Aircraft</td>
<td>24</td>
</tr>
<tr>
<td>17 -- X-Wing Rotor Blade Frequency Characteristics</td>
<td>25</td>
</tr>
<tr>
<td>18 -- Effect of Four Blades on the Reduction of Peak-to-Peak Moments during the Rotor Revolution</td>
<td>25</td>
</tr>
</tbody>
</table>
APPLICATION OF CIRCULATION CONTROL ROTOR TECHNOLOGY
TO A STOPPED ROTOR AIRCRAFT DESIGN

Robert M. Williams

INTRODUCTION

This paper presents the application of circulation control rotor (CCR) technology to a revolutionary new aircraft concept—the X-Wing stopped rotor V/STOL. This design affords the potential for major advances in rotary wing aircraft speed, range-payload, productivity, and cost through the application of highly innovative aerodynamic and structural design. The technology base for the concept has been derived from almost 6 years of related CCR aerodynamic and structural design studies at the David W. Taylor Naval Ship Research and Development Center (DTNSRDC) and from earlier research in the United Kingdom. Additional design insight has been gained from the experience of various stopped and stowed rotor concepts of the 1960's and also from more recent studies of the NASA "oblique wing" transonic transport concept.

DESCRIPTION OF CONCEPT

The basic design is illustrated in Figure 1 for an attack-type configuration. Salient features include four highly loaded rotor blades (150-psf wing loading) of moderate aspect ratio (12.0), which are stopped in flight at the 45-degree azimuth position. The rotor/wing is both aerodynamically efficient (hover Figure of Merit ≈0.70, fixed-wing lift system equivalent lift-to-drag ratio ≈20.0) and is also structurally ideal (20-percent root thickness ratio, 10-percent tip, and planform taper ratio of 2:1). The high wing sweep, in conjunction with the excellent critical Mach number characteristics of the CC airfoils (Figure 2), permits the wing to have a drag rise Mach number of approximately 0.90. Also, because of a combination of low solidity ratio and the basic symmetry of the wing cross-sectional area distribution, the X-Wing

aircraft is inherently area-ruled without "coke bottling" (Figure 3). These features permit design of an internal engine configuration with unexcelled transonic drag rise characteristics without the internal space problem, structural difficulties, and added subsonic drag penalty normally associated with area-ruled designs. In addition to these more obvious characteristics, the X-Wing possesses several other unique properties which, when taken as a whole, offer a revolutionary improvement in V/STOL capability. These are discussed briefly in the following section.

AERODYNAMICS

The CCR concept is illustrated schematically in Figure 4. Basically, a thin jet sheet of air is ejected tangentially over the rounded trailing edge of a quasi-elliptical airfoil, suppressing boundary layer separation and moving the rear stagnation streamline toward the lower surface, thereby increasing lift in proportion to the duct pressure.* For a pneumatically controlled rotor application, the azimuthal variation of lift is controlled by a simple nondynamic valve in the hub. At higher speeds and advance ratios, a second duct and leading edge slot are used (Figure 5) so that the rotor can develop significant lift in the region of reverse flow. Two-dimensional airfoil experiments have shown that it is possible to develop large lift coefficients by blowing from either slot individually or from both simultaneously. The latter technique is used for advance ratios from 0.5 to 1.0 where the retreating blade experiences "mixed flow" (i.e., locally reversed flow on the inboard sections and forward flow on the outer sections). Test results for this unique airfoil are shown in Figure 6.

The significance of CCR aerodynamics can be assessed by noting that the critical design parameter for any high speed horizontal rotor concept

*For reasons of brevity, it is not possible to discuss the details of the CC section aerodynamics in the paper. The reader is referred to the bibliography contained in Reference 1 for more information on these unique airfoils.

is, in fact, the maximum lift capability in the intermediate advance ratio range (0.7 to 0.9) where the retreating side of the disc is immersed in mixed flow of low average velocity. Traditionally, the solution to this problem has been to add more blade area, to employ a separate wing, or to use a second contrarotating rotor. Without exception, these approaches have resulted in large and fundamentally limiting weight penalties and usually a hover and/or cruise efficiency penalty. The X-Wing minimizes the transition lift problem by blowing out of both slots in the mixed flow region and by using a cyclic pressure control schedule which shifts the maximum loading to the fore and aft regions of the disc. Figure 7 illustrates the extreme aerodynamic environment which is made tractable by these simple pneumatic techniques in conjunction with the high lift properties of the basic CC airfoil sections. The crucial significance of the transitional lift capability is that it permits the X-Wing to develop blade loadings on the order of three times that of conventional rotors. Figure 8 illustrates performance calculated through the advance ratio range.*

The design implications of this blade-loading capability are far reaching indeed for they permit high aspect ratio blades to be used for efficient hover while also allowing the aircraft to operate in very high speed cruise at the lift coefficient for maximum efficiency. The calculated cruise efficiency for one aircraft design shown in Figure 9 (range is proportional to L/D_e) indicates that a peak vehicle L/D_e of 10.0 is achievable at 350 knots (10,000-foot altitude).

The details of the transitional aerodynamic performance are too lengthy to be described in this paper. Basically, however, the aircraft will accelerate as a thrust compounded helicopter up to the transition advance ratio of 0.7 (approximately 250 knots). Then while maintaining a constant flight velocity, the rotor RPM is rapidly reduced to zero by

*These theoretical results ($C_{pm}/\sigma = 0.16$ at $\mu = 0.7$) have just been experimentally confirmed at this writing by tests on a 7-foot diameter rotor in the DTNSRDC 8- by 10-foot wind tunnel. A DTNSRDC report on these tests will be issued in the near future.
using a rotor brake to decelerate and stop the rotor (approximately 30-second total conversion time). A simple arrestment and lockout system is then used to position the blades during their final revolution. The symmetry of the rotor allows the blades to be stopped in any 45-degree location, thus simplifying the problem of indexing. The aircraft can then either accelerate up to high cruise speeds or operate in a fixed-wing mode at very low forward speeds (below transition speed). The aircraft would also have the capability for STOL takeoffs and landings in the "blown" fixed-wing mode with the large compressor power source used for transition.

Another special aerodynamics problem of high speed rotorcraft is that the excessive drag associated with the rotor hub may account for more than one-half of the total parasite drag. The X-Wing circumvents the problem by eliminating the usual bluff protuberances such as shafting, pitch linkages, control horns, etc., which give rise to flow separation. The rotor blades and hub are designed to be extremely rigid with a 3-degree built-in coning angle. A limited +7-degree blade pitch travel is also included for designs requiring maximum efficient hover operations. The pitch change mechanism is designed to fit within the envelope of the root section so that an aerodynamically efficient hub fairing can be employed. The half-scale model data shown in Figure 10 for several hub-shank designs indicate hub drag values an order of magnitude lower than current helicopter hubs (Reference 2). The remainder of the body aerodynamic design is relatively conventional so that except for the hub contribution, the fuselage drag levels are representative of current fixed-wing designs.

Two alternate modes of operation also appear attractive for the X-Wing. For missions which require extensive low speed operation the rotor could be indexed to a 90-degree orientation (thus increasing the effective wing span). If supersonic operation were desired the blades could be "scissored" so that for an included angle of 60 degrees a Mach number of 1.40 should be achievable. The mechanical implementation of the necessary 15 degree increase in

sweep would be quite straightforward using a variation of the crossed spar hub design discussed in the next section.

EMPTY WEIGHT
Notwithstanding its unique aerodynamic capability, possibly the most important characteristic of the X-Wing is its potential for significantly reducing the empty weight penalty of a VTOL. By obviating the traditional requirement for separate hover and cruise lifting systems, the X-Wing is capable of achieving rotor blade/wing weight fractions below 6 percent of gross weight by using aluminum construction and below 4 percent by using a high modulus carbon fibre composite. A preliminary rotor/wing structural analysis has been employed to design the X-Wing. As indicated in Figure 11, the final structural design must efficiently satisfy the diverse requirements of (1) fixed-wing ultimate maneuvering loads, (2) aeroelastic divergence of the forward swept blade, (3) rotor frequency placement to avoid resonant amplification, and (4) rotor loads and fatigue life. Figure 12a illustrates the typical structural-aerodynamic design tradeoff involved for aluminum construction. Minimum weight is achieved at combinations of high disc loading and blade loading. Consideration of the maximum blade loading during transition flight limits the design blade loading to 150 psf. If one then determines that a high aspect ratio is desirable for a particular mission (say, a range-payload mission), then the indicated point would be a good solution. The disc loading value of 15 psf, although somewhat high for Army helicopters, is satisfactory for Navy shipboard use and results in a smaller diameter rotor. Figure 12b indicates that the divergence speed for this particular design is sufficient for the mission chosen.

Figures 13a and 13b indicate a similar tradeoff for a graphite composite structure with spanwise and 45-degree cross-ply construction. Significant weight savings relative to aluminum were found with a considerably reduced dependence on aspect ratio. The divergence characteristics were also markedly superior to aluminum. It is apparent from these results that although an X-Wing could be fabricated with aluminum, it is actually ideally suited to the high specific stiffness of composite graphite material. The graphite also possesses important advantages in natural frequency placement design for the rotating blade conditions.
The hub and retention system shown in Figure 14 also represents a new area of structural design for the X-Wing. The use of a titanium "yoke" was found preferable to a composite design (at this time) in view of the requirements for high strength, high fatigue stress, ease of fabrication and machining, and most importantly the need for a high fatigue strength joint with the steel pitch pinion shown in the figure. An additional design feature is the crossed spar layout which permits the root moments and shears to be carried efficiently across the hub, yet allows the blades to be aligned parallel for storage. Collective pitch actuation was accomplished as shown in Figure 14 by using a single spur gear and pinion design with redundant actuators and linkages.

Another new area of weight technology was the fan-in-tail installation. This was designed to comply with MIL-8501A specifications and utilized current knowledge from several industrial sources. The remaining component designs and their weight calculations were straightforward and used the detailed fixed-wing methodology of Reference 3 together with state-of-the-art rotary wing methods. Two levels of materials technology were considered: (1) all aluminum and (2) limited use of advanced materials in structural areas which have been demonstrated in current aircraft programs and are considered practical for a 1980 prototype aircraft.

Figure 15 illustrates the overall impact of the X-Wing empty weight on traditional trends for rotary-wing VTOL's. Note that a reversal of the weight trend has been achieved by utilizing the rotor as the sole lifting system and minimizing the propulsion weight required for efficient aerodynamics.

MISSION ANALYSIS

The results of the weight and aerodynamic studies were combined with a propulsion/drive system study to provide inputs for a mission analysis. From weight and performance standpoints, the optimum propulsion arrangement appeared to be a single fan engine for thrust and dual shaft

engines for rotor drive and compressor power. The detailed mission
calculation shown in Figure 16 illustrates the potential benefits of the
X-Wing for such diverse applications as ASW and civilian transport. It
indicates that the potential payload improvements of the X-Wing for a
typical medium range mission may be greater than 100 percent compared to
other rotary-wing VTOL's.

ROTOR AEROElasticity AND DYNAMICS

The critical aeroelastic and dynamic aspects of the design are (1)
aeroelastic bending divergence in the stopped wing mode, (2) resonant
amplification of blade vibratory bending stresses during rotor slowing
and stopping, and (3) potential high frequency coupled instabilities of
isolated blades, multiblades, and the rotor/body combination. The divergence
design has been alluded to previously. In general, it is not found to
impact the blade weight fraction for blade aspect ratios below approximately
13.0. The mode of divergence is dominantly a clamped root pure bending
condition and, as such, is straightforward to analyze. Resonant ampli-
fication of blade airloads is a potentially serious problem for any
variable RPM rotor. Although the problem was not found to be severe
with an unloaded rotor (Reference 4), it will be of much greater significance
for the highly loaded X-Wing. The major excitation will occur with the
lower blade modes at tip speeds near maximum. For example, a stress
buildup was known to occur on previous unloaded, slowed and stopped
rotors when the first flatwise bending crossed the 2 per rev excitation
near 60-percent RPM. This was due partially to the frequency coalescence
and partially to a significant second harmonic airload content at the
high advance ratio range. The solution for this problem with X-Wing has
been twofold: (1) the rotor is decelerated rapidly by using a mechanical

4Fradenburgh, E. A., R. J. Murrill and E. F. Kiely, "Dynamic Model
Wind Tunnel Tests of a Variable-Diameter, Telescoping-Blade Rotor System
(Trac Rotor)," USAAMRD Technical Report 73-32, U. S. Army Air Mobility
Research and Development Laboratory, Ft. Eustis, Virginia (Jul 1973).
brake so that only a limited number of high fatigue cycles will occur; and (2) the first flatwise blade frequency has been placed above 2 per rev. The latter condition is quite unusual for rotor design as it implies extremely high stiffness. However, the constraint is compatible with good divergence design so that a value of approximately 2.2 per rev is obtained for composite construction without varying either mass or stiffness distributions from the values needed for the basic wing design. Figure 17 indicates the frequency characteristics of a 30,000-pound design.

The potentially high frequency instabilities are currently being analyzed for X-Wing. The design philosophy has been to use high stiffness in all modes in order to avoid strong coupling effects. However, the nature of the section design requires the elastic axis and mass center to be coincident at midchord. It thus remains to be seen whether the rotor system can be designed to be flutter free at very high speeds.

STABILITY AND CONTROL

The stability and control characteristics of X-Wing are very specialized. Traditionally coupled rotor/body low frequency dynamics during transition has constituted the most critical stability and control problems as stopped/stowed rotors. A promising solution (Figure 18) is to employ four blades, to transition around zero angle of attack and to use blowing to obtain the lift and control required. This should reduce the oscillatory rolling and pitching moments on the X-Wing very substantially even when allowing for gust effects.

SUMMARY

A new aircraft concept has been presented which employs circulation control rotor technology to achieve an efficient compromise of hover and cruise performance with only a single lifting system. The concept also offers a speed potential approaching Mach 1.0 with excellent fixed-wing maneuvering capability. A low empty weight fraction appears possible by
using the efficient structure of the rotor blades. Certain potential dynamic and stability and control problems are currently being studied both analytically and experimentally. At the present time, there do not appear to be any fundamentally limiting technical problems which will prevent the timely development of this unique aircraft.
Figure 2 – Compressibility Characteristics of Two-Dimensional CC Airfoils at Zero Angle of Attack

Figure 3 – X-Wing Transonic Design Features
(Approximate Drag Divergence Mach = 0.89)
Figure 4 – Circulation Control Rotor–Basic Concept

Figure 5 – Dual Blowing Concept for Transition through High Advance Ratios
Figure 6 - Effect of Simultaneous Leading and Trailing Edge Blowing
Figure 7 - Rotor Aerodynamic Environment during Transition Flight
($\mu = 0.7, \alpha_s = 0, C_{T/D} = 0.129$)

Figure 7a - Angle of Attack Distribution, Degrees
Figure 7b – Mach Number Distribution
Figure 7c – Lift Coefficient Distribution, C_L
Figure 8 - Maximum X-Wing/Rotor Thrust Capability
(w/c is slot height to chord ratio)
Figure 9 - X-Wing Aircraft Equivalent Lift-to-Drag Ratio

DISC LOADING = 15 PSF
DESIGN BLADE LOADING = 110 PSF
MAXIMUM BLADE LOADING = 151 PSF

FIXED WING MODE
(10,000 FT ALTITUDE)

ROTARY WING
MODE (S.L.)

DESIGN MACH
NUMBER = 0.85

DRAG RISE MACH
NUMBER = 0.90

TRANSITION

VELOCITY ~ KNOTS

0 100 200 300 400 500 600

1 2 3 4 5 6 7 8 9 10 11 12 13

L/D_e
Figure 10 – Drag Coefficient (Based on Hub Planform Area) for Three Hubs with Shanks
(1) X-WING DESIGN POINT CONDITIONS

BLADE LOADING, DISC LOADING, GROSS WEIGHT, LOAD FACTOR ENVELOPE, DIVERGENCE SPEED, AND ALTITUDE

(2) EXTERNAL BLADE GEOMETRY

ASPECT RATIO, TAPER RATIO, THICKNESS DISTRIBUTION, ROOT ATTACHMENT, AND HUB GEOMETRY

(3) MATERIAL PROPERTIES

ALUMINUM, ADVANCED COMPOSITES, STATIC AND FATIGUE PROPERTIES

(4) STRUCTURAL ANALYSIS

BENDING AND SHEAR, SKIN AND WEB BUCKLING, TORSIONAL DEFLECTION, INTERNAL PRESSURE, DUCT LOSSES, FATIGUE LOADING AND STRESS, PRECONE ANGLE

(5) DYNAMIC/AEROELASTIC ANALYSIS

AEROELASTIC DIVERGENCE, FLATWISE, IN-PLANE AND TORSIONAL FREQUENCY PLACEMENT, MODE SHAPES

(6) WEIGHT CALCULATION

SKINS, WEBS, ROOT STRUCTURE, CARRY THRU STRUCTURE, DEAD WEIGHT ITEMS

Figure 11 – Wing/Rotor Design and Weight Analysis Approach
Figure 12a - Blade Weight/Gross Weight Ratio

Figure 12b - Divergence Dynamic Pressure

Figure 12 - Aluminum Blade Construction: Effect of Design Parameters
Figure 13a - Blade Weight/Gross Weight Ratio

Figure 13b - Divergence Dynamic Pressure

Figure 13 - Graphite Composite Construction: Effect of Blade Design Parameters
Figure 15 - Impact of the X-Wing Design on Rotary Wing VTOL Empty Weight Trends

Figure 16 - Comparison of X-Wing Payload Capability with Other Rotary Wing VTOL Aircraft (200-nautical mile mission)
Figure 17 – X-Wing Rotor Blade Frequency Characteristics

Figure 18 – Effect of Four Blades on the Reduction of Peak-to-Peak Moments during the Rotor Revolution
(Taken from Reference 5)
REFERENCES

INITIAL DISTRIBUTION

Copies

1 AMC/AMCRD-FA
1 ARO/Engr Sci Div
 S. Kumar, Asso Dir
1 AASC/Lib
1 AAMCA/AMXAM-SM
2 AAMRDL/Ft. Eustis
 1 Lib
 1 SAVRE-AM
2 AAMRDL/Ames Res Cen
 1 Tech Dir
 1 A. Kerr
1 CMC/Sci Advisor
 A. L. Slafkosky
1 ONR/Aeronautics, Code 461
2 NRL
 1 Tech Info Office
 1 Lib, Code 2029
1 USNA
2 NAVPSCOL
 1 J. Miller/Aero-Engr
 1 L. Schmidt
4 NAVAIRDEVSCEN
 1 Tech Dir
 1 Tech Lib
 1 R. McGiboney
 1 G. Woods
16 NAVAIRSYSCOM
 1 AIR 03
 1 AIR 03PA (W. Koven)
 1 AIR 03B (F. Tanczos)
 1 AIR 03P
 CAPT von Gerichten
 2 AIR 320D (R. Siewert)
 4 AIR 320B (A. Somoroff)
 1 AIR 5104

Copies

NAVAIRSYSCOM (Continued)
1 AIR 530B (H. Andrews)
1 AIR 530214A (R. Malatino)
1 AIR 530112 (R. Tracey)
1 AIR 530311 (F. Pagliante)
1 AIR 604
1 AIR PMA-247
 CDR Friichtenicht)
2 NAVAIRTESTCEN
 1 Dir, TPS
 1 N. Jubeck
12 DDC
1 AF Dep Chief of Staff
 AFRDT-EX
2 AFFDL
 1 FDV, VTOL Tech Div
 1 FDMM, Aeromech Br
1 AFOSR/Mechanics Div
1 FAA, Code DS-22
 V/STOL Programs
3 NASA HQ
 1 A. Evans
 1 A. Gessow
 1 J. Ward (MS-85)
6 NASA Ames Res Cen
 1 Tech Lib
 1 Full-Scale Res Div
 1 M. Kelley/Lg-Scale Aero Br
 1 R. T. Jones
 1 J. McCloud
 1 J. Rabbot
4 NASA Langley Res Cen
 1 Tech Lib
 1 R. Huston
 1 L. Jenkins
 1 R. Tapscott
1 Va Polytechnic Inst/Dept Engr Mech
 D.T. Mook

27
<table>
<thead>
<tr>
<th>Copies</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>McDonnell-Douglas/Long Beach</td>
</tr>
<tr>
<td></td>
<td>T. Cebeci</td>
</tr>
<tr>
<td>1</td>
<td>Northrop Corp/Hawthorne</td>
</tr>
<tr>
<td></td>
<td>Lib</td>
</tr>
<tr>
<td>1</td>
<td>Paragon Pacific Inc.</td>
</tr>
<tr>
<td></td>
<td>J. H. Hoffman</td>
</tr>
<tr>
<td>2</td>
<td>Boeing Co/Seattle</td>
</tr>
<tr>
<td></td>
<td>1 Tech Lib</td>
</tr>
<tr>
<td></td>
<td>1 P. E. Ruppert</td>
</tr>
<tr>
<td>1</td>
<td>Piasecki Aircraft Corp</td>
</tr>
<tr>
<td>1</td>
<td>Rochester Appl Sci Asso, Inc/Lib</td>
</tr>
<tr>
<td>2</td>
<td>Boeing Co/Vertol Div</td>
</tr>
<tr>
<td></td>
<td>1 Tech Lib</td>
</tr>
<tr>
<td></td>
<td>1 W. Z. Stepniewski</td>
</tr>
<tr>
<td>2</td>
<td>Teledyne Ryan Aeronautical</td>
</tr>
<tr>
<td></td>
<td>1 P. F. Girard</td>
</tr>
<tr>
<td></td>
<td>1 Lib</td>
</tr>
<tr>
<td>1</td>
<td>Fairchild-Hiller/Farmingdale</td>
</tr>
<tr>
<td></td>
<td>1 Republic Aviation Div</td>
</tr>
<tr>
<td>1</td>
<td>United A/C Corp/E. Hartford</td>
</tr>
<tr>
<td>3</td>
<td>United A/C Corp/Sikorsky</td>
</tr>
<tr>
<td></td>
<td>1 Lib</td>
</tr>
<tr>
<td></td>
<td>1 T. Carter</td>
</tr>
<tr>
<td></td>
<td>1 I. Fradenburgh</td>
</tr>
<tr>
<td>1</td>
<td>Vizex, Inc/R. A. Piziali</td>
</tr>
<tr>
<td>2</td>
<td>Honeywell, Inc/S&R Div</td>
</tr>
<tr>
<td></td>
<td>1 Tech Lib</td>
</tr>
<tr>
<td></td>
<td>1 R. Rose</td>
</tr>
<tr>
<td>2</td>
<td>Hughes Tool Co/Culver City</td>
</tr>
<tr>
<td></td>
<td>1 E. Wood</td>
</tr>
<tr>
<td></td>
<td>1 A/C Div</td>
</tr>
<tr>
<td></td>
<td>30 5211 Reports Distribution</td>
</tr>
<tr>
<td>1</td>
<td>5221 Library (C)</td>
</tr>
<tr>
<td>3</td>
<td>Kaman Aerospace Corp</td>
</tr>
<tr>
<td></td>
<td>1 Tech Lib</td>
</tr>
<tr>
<td></td>
<td>1 D. Barnes</td>
</tr>
<tr>
<td></td>
<td>1 A. Lemnios</td>
</tr>
<tr>
<td>2</td>
<td>5223 Aerodynamics Library</td>
</tr>
<tr>
<td>1</td>
<td>Ling-Temco-Vought, Inc/Lib</td>
</tr>
<tr>
<td>4</td>
<td>Lockheed A/C Corp/Burbank</td>
</tr>
<tr>
<td></td>
<td>1 Tech Lib</td>
</tr>
<tr>
<td></td>
<td>1 P. Kesling</td>
</tr>
<tr>
<td></td>
<td>1 E. Martin</td>
</tr>
<tr>
<td></td>
<td>1 B. R. Rich</td>
</tr>
<tr>
<td>1</td>
<td>Lockheed-Georgia Corp/Lib</td>
</tr>
</tbody>
</table>