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ANALYSIS OF THE BINARY EUCLIDEAN ALGORITHM 

Richard P. Brent 
Australian National University 
and Carnegie-Mellon University 

1,     Introduction 

The binary Euclidean algorithm of Silver and Terzian 

[62] and Stein [67] finds the greatest common divisor (GCD) 

of two integers, using  the arithmetic operations of subtrac- 

tion and right shifting (i.e., division by 2).    Unlike the 

classical Euclidean algorithm, nc divisions are required. 

Thus, an Iteration of the binary algorithm is faster than an 

iteration of the classical algorithm on many binary computers. 

The classical algorithm has been exhaustively analyzed 

from the time of Gauss:    see,  for example, Dlxon [70, 71], 

Gauss [12], Heilbronn [68], Khinchin [35a, 35b, 36], Kusmln 

[28], Le'vy [29],  SzUsz   [61],  Tonkov [74] and Wirsing  [74], 

A good survey is given in Knuth [69].    The theory of the 

binary algorithm is much    ess satisfactory.    Knuth   [69] ana- 

lyzed a "lattice-point" model which is, unfortunately, only 

a crude and pessimistic approximation to the actual algorithm. 

In this paper vte analyze a continuous model of the binary al- 

gorithm and find the expected number of iterations.    The re- 

sults agree with the observed behavior of the algorithm much 

better than those predicted by Knuth's "lattice-point" model. 

The binary Euclidean algorithm for finding the GCD of 

positive Integers u and v is given in Knuth [69, Sec. 4.5.2, 

Alg. B],   After steps 51 to B5 of the algorithm have been 

performed once,  the problem is reduced to that of finding 

This research was supported in part by the National Science 
Foundation under Grant MCS75-222-55 and the Office of Naval 
Rasearch under ContractN00014-76-C-0370, NR 044-422. 
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the GCD of two odd Integers.    Thus, we assume here that u 

and v are odd, and the algorithm is as follows. 

RS Binary Algorithm 

[n- 0;] 

LI:     t - |u - v|; 

If t " 0 then return u as the GCD and halt; 

L2:     t - t/2; 

if t Is even then go to L2; 

L3:     [n *• n + 1;] 

if u ^ v then u »- t else v ♦- t; 

go to LI. 

The statements in square brackets are not essential.    We say 

that one "iteration" is one execution of step L3,  so n counts 

the number of iterations.    To distinguish the different val- 

ues taken by the variables u and v, we let u   be the value of 

u at iteration n, etc.    Step 12 is executed twice as often as 

step L3, on the average, but the L2 loop merely shifts t 

right until it becomes odd, and this may be done efficiently 

on a binary computer. 

Let x   ■ min(u  , v )/max(u ,  v ), and let F (x) be  the n n     n n      n n 
probability distribution function of x .    We assume that u. 

and vQ are uniformly and independently distributed in (0, N) 

(with tie constraint that they are odd), and consider the 

continuous approximation obtained by letting N -* •.    In Sec- 

tion 2 we derive a recurrence relation for the continuous 

distributions F (x). 
n * 

In Section 3 we show that F (x) ■ a (x)lg(x)    +0 (x), n n       " n      " 
where ex (x) and 0 (x) are analytic and satisfy certain recur- n n 
rence relations.   An explicit expression for o (x)  is given 

n 

Throughout this paper, lg(x) denotes log^Cx). 

mayaiiaa aaüagta iAAaagaaüJiLaiaädfeiitt^ai. 
-■'■■■^■■■'-"■—^■'- -^-i 
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In Section 4. 

In Section 3 we consider the equivalent recurrence 

f    . ■ Tf   for the probability density functions 

fn(x) - F;(X).   We show than  ||fn+2-fn+1 II < llfn+r
f
nll for a 

certain norm.    Numerical evidence, described in Section 7, 

suggests that convergence is rapid.    Thus, it Is likely that 

f    tends to a limiting density f  ,  though we have not been 
n 

able to prove this. 

The expected number of iterations is asymptotically 

Klg(N)  for large N, and an expression for the constant K Is 

derived in Section 6.    The theoretical value of K ~ 0.706 

agrees with values obtained numerically for moderate values 

of N.    The numerical results are described in Section 7. 

Finally, in Section 8 we consider another algorithm 

which uses only shifts and subtractions.    The algorithm uses 

left shifts (i.e., multiplication by 2)  instead of right 

shifts, so we call it the left-shift binary Euclidean algo- 

rithm (LS algorithm for short).    We show that the expected 

number of Iterations is slightly greater than for the (right- 

shift) binary Euclidean algorithm.    However,  the LS algorithm 

is worth considering for use on a computer with a "normalize" 

Instruction, as the left-shifting loop may be replaced by one 

Instruction.    Either of the binary algorithms could be imple- 

mented in hardware  (or microprogrammed) with approximately 

the same expense as integer division. 

We consider only single-precision Integer GCD computa- 

tions here.    For polynomial and multiple-precision Integer 

GCD algorithms, see Collins  [74], Schönhage [71] and Knuth 

[69]. 

2.    The Recurrence for F 
n 

For notational simplicity we write u for u   and u*  for 

^teaaiiia^aMMai^^    . ■■ iillilliMliHMÜililiiiMllilini 
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u    ., etc.    Also,  there is no loss of generality in assuming 
n+1 

that u i v.    The Iteration terminates if u ■ v, so we assume 

that u > v.    Thus, x - v/u,  t - 2    (u-v), and 
x' " min(t,v)/max(t,v), where k st I   is chosen so that t Is an 

odd Integer. 

Let P(E) denote the probability of an event E. By defi- 

nition, F^Cy) " ?(*'  s y)f but x* - min(t/v, v/t), so 

(2.1) F^^y) - P(t/v i y V v/t ^ y) 

(2.2) P(t i vy V v ^ ty). 

It may be shown that,  for K ■ 1,2,..., 

(2.3) llm P(k - K) - 2"K. 

Thus, 
00 

(2.4) F^y) -   ^ 2'k P(2"k(u-v)   i vy V v a: 2'k(u-v)y) 

k-1 

(2.5) ^ 2"kP(2'k(l-x)   i xy V x 5 2"k0-x)y). 

k-1 

Since x € (0,1), we have 2"k(1-x)  i xy iff x a l/(1+2ky), and 

x S 2'k(l-x)y iff x s l/(1+2k/y).    Also, assuming y € (0,1), 

we have  l/(l+2k/y) 5 l/(l+2ky).    Thus,  from (2.5), 

(2.6)    F^y) -   2J2"k[l-P(l/(1+2k/y)   ^x ä l/(1+2ky))]. 

k-1 

Since x has distribution function F ,  this gives the interest- 

ing recurrence relation 

miiummmm mmumimm ■-'■——"■-";,~ maiMi Bilffill^ii""-'-'-^1--'-^'''-^"- ■■- ■ ■••-~^'Mri^iti^rtW1i.n 
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(2.7) 

Fn+1(y) - l + 

F0(y) - y, 

irK^)"-©] 
for n s 0 and y € [0,1]. 

The corresponding recurrence for the classical algorithm 

is 

(2.8)    G.^x)-   ^Gn(l/k)   -Vl/(k+x))]- 
k-1 

This was derived by Gauss [12], who conjectured that 

(2.9) lim G (x) - lg(1+x), 

which was proved by Kusmin [28], Sharper results were later 

obtained by Le'vy [29] and Szusz [61]. Finally, Wirsing [74] 

proved that 

(2.10) G (x) - lg(l+x) + 0(Xnx(1-x)) 
n 

as n -» », uniformly for all x € [0,1], where \ -* 0.3036630029 

is a certain constant in (0,1). 
We conjecture that a similar result holds for F (x). 

For a reason which will be clear later,  the term x(l-x)   in 

(2.10) must be replaced by x|ln(x)|. 

Conlecture 2.1 
There exists Fgo(x) - lim F (x), and 

n-« " 

(2.11) Fn(x) - Fjx) + 0(X
nx|ln(x)|) 

as n -• », uniformly for all x € (0,1], where X is some 

- -    ■—- .    - —*-**..,. „i.,,.    i 
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constant in (0,1). 
The theoretical evidence for Conjecture 2.1 Is given in 

the next three sections, and some numerical evidence is given 

in Section 7. 
Differentiating (2.7), we obtain the recurrence 

(2,J^--ifc)2<-6+(i)2<i)] 
(2.12K k-1 

for the probability density functions f (x) ■ F'U), n     n 

x € (0,1], n 2 0. The recurrences (2.7) and (2.12) are 

equivalent, but in Section 3 we prefer to work with (2.7) and 

consider the form of F (x). Result? for f (x) are easily de- n n 
duced by differentiation. 

3.    The Distribution Functions F 
'' LI 

The  following theorem gives the form of F (x)  for finite n 

n. 

Theorem 3.1 
For all n at 0 and x € (0,1], 

(3.1)    F (x)  - a (x)lg(x) + 0 (x), n n n 

where an(x) and 0 (x) are analytic and regular in |x| < 1» 

and an(0) - 0^(0) - 0.    Also, a0(x) - 0 and 

(3.2)    2Vl(2x) - an+100 - o^j " 3fn(1) x. 

Proof 
Define D0(x) - 0 and 

 ■ Mil ti<«ifMMiMII«^tlfriMMMBii»liiliil   ^-  ■   - - ■ 
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We assume that 

(3.4)     F (x) - a (x)lg(x) + B (x), 
mm in 

(3.5) D (x)  - 1  + v(x)lg(x) + 6m(x), mm in 

(3.6) D (l/x) - e (x)lg(x) + ^ (x), 
m D in 

and 

<3-7>  FXi^)"1 + Vx) 

for m < n, where a (x),... ,11 (x) are analytic and regular for 

jx| < 1, and vanish at x - 0.    We shall prove the correspond- 

ing result for m - n,  so (3.1) will follow by induction.    The 

results  (3.4)   to  (3.7) are trivially true for m ■ 0, so we 

may assume n > 0. 

From (2.7)  and (3.3) we have 

(3.8) F (x)  - 1 + D (l/x)   - D  (x), 
n n n 

JO if a (x) j*L(x) are regular at x ■> 0 we must have n n 

(3.9) 0n(x) - Cn(x)   - Yn(x) 

and 

(3.10) p (x)  - ^(x)  - 6n(x). 
n n n 

From (3.3) we also have 

»•")<£)-<D-',,.,(£)• 
so in Che same way we find that 

MHMMalM t/^Mmtämäi      -— -   -        --- 
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(3.12) 2en(2x)   . ^(x) - Vl (^ 

«nd 

(3.13) 2eJ2x) + 2^(2x)  - ^(x) 

Pn-lCi^-VlC^1«^- 
By the Inductive hypothesis,  the right si'.es of (3.12) and 

(3.13) are analytic and regular at x - 0.    Let the Taylor 

expansion of a (x) be m 

(3.14)    o^Cx) -   2.   VJ 

J-l 

J 

and similarly for 0 (x) ,....Tl_(x). By equating coefficients 
in in 

we see that analytic solutions e (x) and d  (x)  satisfying 

(3.12) and  (3.13) exist, and are given by 

(3.15)    e i£U J 
j 

n'i     2j+1-i    L 
2     } k-1 

(-1)' an-l.k(k-0 

and 

(3.16)    £ 
n,J ^-V 

i-h 
-2*+\    .+   U2- 

-l)^e 
sn,j T   L\   ln2 

k-1 

jk+l \   (-1)J 

ln2  j j 
njc 

J 
r 
L 

k-1 
+   L   (-1)^0, n-l,k(k-l) 

where J - 1,2     This,  en(x) and ^(x) are detemtned by 

a   .(x) and 0 .^x), and are analytic aad regular In |x| < 1. 

From (3.3) and  (3.8), 

j^fraffiaüfitiiiÜBaä j u....^.u^ ^^u^iüi^v^ ..- 
.--■u. ■ AiaMBaiHiftyi 
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By the Inductive hypothesis, 

for Fn.l(l^) and Fa.l ^  respectively.    Al. 

so substituting y "^^^^J and(Q<>^^J gives power series 

Lso. 

and 

(3.21) Dn(2+2x)  - -«n(^lg(2+2x) 4.^^   . 

^"'^(ife)"14 VX)' 

where Tl (x)  Is analytic and regular in  |x| < 1, 

It remains to consider v (x) and 6 (x).    From (3.3), n n 

(3.22) 20^) - Dn(x) - 1 +Vl(x)» 

so 

(3.23)    2y£j) - vn(x) - 0 

(3.17)     Fn(y) -  1   - i F^^ - 1 F^ffy 

" I Dn<2y) + I Dn(7) ' 1 

Substituting y - l/(l+x) gives | 

■'•'■       '     MMfeBaa I äMMämmm HOM ■ ■,- a i^^a^arf, a^^naB^^-^^aMüMia llilhllMMiiii^'-^'^--'- '-l^HvWfM.lirln   '.^        ILUT,,,,-, .nnl,.«,,' 
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and 

(3.24) 25n(f)-6n(x) ^Y^-V^x). 

Thus, we have the analytic solutions 

and 

(3.26)    6 1 
n,J ,1-J.J Vi,j 

for J a 2,    The constant  6    , may be determined from the re« n,l 
lations ß    , ■ 0    ,   -  6    .and n,l        n,i n,l 

(3.27) F^i) - >  - 1 F^^l) - 1 Fii.,(l)+ i Dn(2), 

obtained from (3.10)  and  (3.17)  respectively. 

We have now proved   (3.4)  to (3.7)   for m ■ n,  so the 

first part of the theorem follows by induction.     (3.2)  fol- 

lows easily from (3.9),   (3.12) and (3.25), so the proof is 

complete. 

It is  interesting to obtain an explicit formula for 

F  (x).    First we need a lemma. 

Lemma 3.1 

If 
«B 

(3.28) D^x) -   )j2"k/(l+2kx)t 

k-1 
then ^ 

2 
(3.29) Dl(x)-xlgx+l+|.^.   I   i^L 

J-2 Z      "' 

for 0 < x < 2, and 

mg^lmätm t .—tu—ftmt—tMät)t MMMMMIH (UtY" ;'--"i" ''"J 
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(3.30)    D^l/x) - 

for    x   < 2. 

Z. „HI 
j-i 

2J+1-1 

Proof 
From (3.5)  and (3.6), we have 

(3.31) D (x) - 1 + v1(x)lg(x) + S^x) 

and 

(3.32) D^l/x) - c1(x)lg(x) + ^(x). 

Since ao(x) - 0 and  VQ(x)  - x,   (3.15) gives c^x) - 0, and 

(3.16) gives ^j- (-1)3+1/(2j+1-1).    This establishes  (3.30) 

From (3.25), V] W  " x'    Al80» since ^o^^ " 1/(1+x)' 
(3.26) gives 

(3.33) 6,   . " (-1)J/(21"J-1) 
' »J * 

for J ^ 2.    Thus 

r   ._„J izxl (3.34) D^x) - xlgx + 1 + 61   ^ -   ^   -^-^j  • 
j-2  1-2 

The series in p«3^   converges for  |x| < 1.    Subtracting and 

adding^-   I    (-x)J gives 

J-2 
«D 

(3.35) yx) - xlgx + 1 + 61$1x -^-   I   fff" . 
J-2 -1 

where the last series converges for |x| < 2.    By analytic 

continuation,  (3.35) holds for  0 < x < 2.    The constant 

' ->-*->-.-       —--     ^                .—     ■■  . „  II.IIIM—iMli-^r«r'-—- -     --- ....■..— .. — - ^ 
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6        ■ - may be determined by equating  (3.30) and  (3.35) with 

x - 1.    Thus,  (3.29)  follows. 

Corollary 3.2 

V (-x)j 23-1 

vx) - .xig(x) + t^r+ 3 ^ ^-i.^^i., + x(5x-1)   |   3 

) 

Proof 

This follows from (3.8)  and Lemma 3.1. 

In principle we could obtain F (x), F (x), etc.  In the 

same way as F (x).    However,   the details become very compli- 

cated.    The situation is similar for the classical algorithm; 

see Knuth [69]. 

Corollary 3.3 

For all n ä 0 and some x € [0,1], F^ 1 (x) / F#%(x). n 

Proof 

Suppose, by way of contradiction, that F , (x) ■ F (x) 

for all x € [0,1]. From Corollary 3.2, n f 0, From Theorem 

3»1. a-xiW " a-W* KM**  from (3.2), tiri     n 

(3-36> Vl^r) - 3 fn.l(1)x ■ *n(&  -  3fn(1)x 

for |x| < 1. 

Substituting y ■ x/(l+x) we obtain 

(3.37) an(y) - a^iy)  - 3(fn(l) - f^(l))y/(l-y) 

for |y| < r. By analytic continuation, (3.37) holds for 

lyl < 1. However, from (3.2) It follows that a  (y) and 
' ' n 
a    ^(y)  •'« regular at y ■ 1, so we must have f (1) ■ f iO)» 

a J'^^iTMil^l^^i:ri^^^iyii^Tlll^^•illhl^llll i^—t-iiiv !■,■■,■, 
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•nd thus a (y) ■ a   i(y).    Continuing in this way, «re finally 
n n-l 

obtain a.Cx) - cr0(x), which contradicts Corollary 3,2 

(«,(«) ■ x, a0(x) ■ 0).    Thus, the original assumption was 

false,and F^ 1 (x) / Fn(x)  for some x € (0,1]. 

4.    Solution of the Recurrence for a 

In this section we solve the recurrence  (3.2) explicitly. 

The method used here can obviously be generalized.    However, 

we have not been able to solve the recurrence for ß (x) 
n 

analytically. 

Define    p(0)        - 0. 

p(2n)      - p(n), 

and p(2n+l) - p(n) •'- 1. 

Thus, p(n) is the number of one-bits in the binary representa- 

tion of n i 0. 

Theorem 4.1 

Suppose a0(x) ■ 0 and 

(4.1)    2Vl (2x)   - Vl (x)  - ajjty + cn+1x 

for n 2 0, where c ,c2,... are constants, c0 - c-1 ■ 

and a ..(x) is analytic and regular at x ■ 0. Then 
n+i 

«    2^-1 

(4.2) „(x) - | J 2-k [ C-*=*UL 

for all n ^ 0 and all x i  (-% -1]. 

0, 

i . 

Note 

-3f (1) for n 2 0. 
n (4.1) is the same as (3.2) if cn+1 

Thus, (4.2) gives an explicit solution of (3.2) in terms of 

f0(l), ^(l),...,^.^!). 

I ' 

MM—'-ritlilitfiliyMiiirfciiirtl -•""Wlti'i'^niii'ii 'i . I jdj^m 
i^afiMaiiai^.flimtoMgtMMiiaälMmfatte^ 
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Proof of Theorem 4.1 

The result is true for n " 0, and the analytic solution 

of (4.1) which is regular at x ■ 0 Is clearly unique. Thus, 

It is sufficient to verify that If a (x) and an+1(x) are de- 

fined by (4.2) then (4.1) holds. From (4.2) we have 

2Vl(2x)- Wx) "«nClfc) 
2k+1.l 

x \  -k • 
4 Z. 2   L 

k--1  J-0 2k+jx 

•   2k-1 
. x \ -k \ ^-n-pc.i) 
4 L           l' 2k+1x k-0  j-0 ^ JX 

2^-1 
x \  -k  \ 
4 L.   L 

k-0 J-2 

Cn+1-P(j) 

2 +Jx 

■ caf1X» 

since p(2k+J) 

follows. 

p(j) + 1  for 0 ^ j < 2'.    Thus, the result 

Corollary 4.1 

Suppose lim f  (1) » f (1)  exists.    Then 

lim or (x) - a (x) exists, and 
n—   n 

(4.3)    (yjx) 5  ♦(x). 

where 

mmuamammämk 
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(4.4) ^(X) 

k-0    J-0 
2 +JX 

li analytic, regular for x ^ (-% -1], and satlsfiis 

(4.5) 2^(2x) - ^x) + *(—•) + 2x. 

Also, ♦(x) - V (-1)J"\ xJ, where ^ - 1 and 

J-l 

(4-6> t--I^7|<-) 
n-1 

(4.7) 
2n L     k+1 Ak; 

k-0 Z  '1 

for n 3t 2, [Here B^« B .... are Bernoulli numbers.] 

Proof 

Let d - max f (1) - f.d)!, so dn a d. i ... and n   ^_  m     »i    u   i 
man 

llm d ■ 0. For convenience, let d ." d _■...■ 0. 
n -1-2 

From (4.2), 
•    2K-1 

k-0   J-0 "z +Jxl 

Ir 
Thus, since p(J) « k for j < 2 , we have 

. 2k.l 

(4.9)    \a^M.amM\  ^-hl  I   2-
k   I    -iodc- 

k-0       j-o   iz +JXI 

\ 

\ 

m   ^nim 
a-^^'ti-' a ass >  ■        -     —■  ■■'■-  L. :.~   . jaafiiiit  — -  
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For ■iinpliclty we assume x Is reel end positive,  though 

e similer proof goes through for complex x 4 (-•, -1].    From 

(4.9) we heve 

(4.10) ^(x) -aj*i*2f    )'   2"^ 
k-0 

Given c > 0, there exists m such that dm i e.    Thus, 

for n 2 mex(a, m+lg(d /e)), we heve 
m 

k-0 

n-m • 
V      -k ^ -k 1    ,+       /        2 Kd    . n -k L, n -k 

k-0 k-n-mfl 

/    2 ~d    .   s  /    2"Kd    . +       /        2 "d '-> n-k      L-* n-k L, 

i 2t + 2m"nd0 i 3c 

Thus,  11m a (x) exists, and the limit is given by (4.3) and 

(4.4).n^   n 

The recurrence (4.5) may be verified es In the proof of 

Theorem 4.1, end equating coefficients gives (4.6).   Also, 

substituting 

(4.11)    -r1—- 2"k^(-2'kJx)n 

2 +Jx n-0 

in (4.4) end equating coefficients gives (for n > 1) 

(4.12) ^-i [ 2-
k<-*"£  j"-', 

k-1      J-l 

so (4.7) follows from ex. 1.2.11.2.4 of Knuth [68]. 

Corollery 4.2 

Suppose 11m f (1) - f (1) exists, and thet n •» 

km^m  ■■ •-■- ■■ ■ Mitmtlltmmuamm  mtaa iiiriiriliajyaMliMyiiieMiliiW^ 
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n. 
(4.13)  f (1) - f.d) + 0(X") n 

«s n -♦ •, where X 6 (j, 1). Then 

(4.14) a  <x) - « (x) •<- 0(Xnx) 
n     * 

«nd 

(4.15) «'(x) - a» + 0(Xtl) 

«en-*«, uniformly for all x € [0,1]. 

Proof 

From (4.10), 

iVi(x) -«»^ 0(Xnx) )• (2X)"k> 

k-0 

•nd 2X > 1, so the last series is convergent.    The proof of 

(4.15)   is similar. 

5.    Some Convergence Results 

We define a linear operator T, mapping the Banach space 

1^(0,1)   into itself, by 

(5.1) Tf(x) -   ^ 

k-1 

Thus, (2.12)  is 

(5.2) ^1 " Tfn- 

^2<Ä)+fe)2ffe)' 

We write f a 0 tf f(x) 2 0 for almost all x € [0,1] (in 

the sense of Lebesgue measure).    Note that T is a positive 

operator, i.e., Tf a 0 whenever f > 0. 

-  r   ■irMWmM-il.WiTHif-i.-    .-»■„,......,■■■,... 
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For f €^(0,1).  llfll18 the norm of f,  i.e., 

l|f||- J^jfC^ldx. 

The norm of a linear operator L Is defined by 

- »uptlMIl |f €1^(0,1),   ||f||- 1}. 

■flw^rem 5.1 

For all f €^(0,1), 

(5.3) INI! Ä llf ll- 

Also,  if f * 0 thcn 

(5.4) M-   ll^ll- 

Proof 
From (5.1), 

\ 
(5.5)     INII ^   ^ 

k-1 
'^W- i dx 

J0VH2Kxy 

1 f'"~ir,ldx 
0+2 x> 

, _    x     in the first Integral, 
With the change of variables y      ^ 

and      . -L- in the second, this gives 
1+2 x 

r    1 

IN ii ^ y* fU2k
|f(y)|dy + J1      |f(y)|dy 

CD 

. V 2"k fVcy)!^ " llfl! * 
L Jn 

1+2' 

k-1 

.^-■..■■^■^■.i     —---iaii ■ ■—' — ■-  a   ii  a .n,,^^**.»**..*^^ 
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This proves (5.3). To prove (5.4), we merely note that «11 

the iMqualities In the proof of (S.3) become equalities if 

f a 0. 

Corollary 5.1 

f 1. 

Proof 

ThJs is immediate from Theorem 5.1 and the definition of 

IN. 
We would like to prove that the iteration (5.2) con- 

verges to a fixed-point of T.    Unfortunately, the theorems of 

Schauder  (see Simmons  [63]) and Krein and Rutman [43] are not 

applicable, because  [f € L. (0,1) | j|f j| - 1} is not compact. 

Thus, we have only been able to prove the weaker result given 

in Corollary 5.2. 

Theorem 5.2 

Suppose rhat f is continuous on (0,1), changes sign at 

least once, does not vanish on any finite subinterval of 

(0,1), and there exists e > 0 such that f(x) - 0 has no solu- 

tion x € (0,e]. Then 

(5.6)  |N|<||f||. 

Proof 

Suppose, by way of contradiction, that |flf|j B||f ||. Thus, 

all inequalities in the proof of Theorem 5.1 must be equali- 

ties. Hence, for all k 2 1 and all x € (0,1), we have 

(5.7) ^s)£Ö0 a 0. 

By assumption, f(x) changes sign at some point tp € (0,1). 

irii"iii>iiiiiBiB:'iMiiaiiiiHiiaiii'iiiii  
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There exists K 2 1  such that cp > 
1+2' 

.    Suppose k i K, so 

(p >  r .    Then there exists x.   € (0,1)   satisfying 
1+2 

.        k 
«p ■ 1/(1+2 x.).    Thus,  from (5.7),  f must also change sign 

/    k -k 
•' yk " \'(2 +xk^ "^ 2    *    Since k raay ,:>e arbitrarily large, 
this contradicts  the hypotheses of the theorem.    Thus,  (5.6) 

must hold. 

ggrollary 5t2 
Let: e n f _._.  - f . n+1        n Then 

(5.8)     Ik^IMM 

for all n 2 0. 

Proof 

From (5.2), e   ., ^ Te , so we have only to show that e n+l n n 
satisfies  the conditions of Theorem 5.2.    From Theorem 3.1, 

- A 

e (x) - 6 (x)lg(x) + p (x), where a  (x) and B (x) are analyt- 
n '   n n n       n 
ic.    Also, from Corollary 3.3, e (x) does not vanish iden- 

tically. Thus, e (x) is continuous on (0,1) and does not 
n 

vanish on any finite sublnterval of (0,1). 

Since 

(5.9) J' en(x)dx - Jj f^Wdx-j'f^dx-O 

but lie || > 0, e (x) must change sign at least once on (0,1). 
" n      n 

Finally, from Theorem 3.1 we see that e (x) has constant 

sign on (0,e], for some sufficiently small e > 0. Thus, the 

conditions of Theorem 5.2 are satisfied, and the result fol- 

lows. 

From numerical evidence we conjecture that 

«MMMMMMM Htii *m~*~**.a*     1 Mtimmimimmmmm*»* ekuku 1 -    - ■ ■ 
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(5J0)   HvJI^xIM 

for some X € (0,1). Unfortunately, Corollary 5.2 does not 

Imply (5.10). If (5.10) Is true then (fn) ts a Cauchy se- 

quence and the limit f    exists. 

Corollary 5.3 

For all n 2 20, and all x € [0,1], 

(5.11)     iF^x)  -Fn(x)|  s |lenl|< 10"10. 

Proof 

lFirt-l(x)  " Fn(x)l  ' T en(y)dylS ^n"' but numerlcal re" 
suits (described in Section 7)  show that   I^QII < 1°'    t so 

the result follows from Corollary 5.2. 

From now on we assume that the limiting distribution 

F (x) exists.    In view of Corollary 5.3, we may use F/,n(x) 
CO i\) 

instead of F (x) for all practical purposes. 

6. The Expected Number of Iterations 

We use the notation of Section 2. Let s ■ u+v and 

s' - u'+v*. Note that 

(6.1) s/s* - (u-HOAu'+v1) - 2' {  1±2S  1 
Ll+(2k-1)xJ 

Since k 2 1, s/s1 2 2, so the maximum number of iterations is 

at most  U.g(N)J.    The example u ■ 2 -1, v ■ 1  shows that this 

bound is attainable.    For another example see Knuth [69], 

exs. 4.5.2.27-28. 

Let E    be the expected value of Inia/e'),    From (6.1), n 

I    -   ) 2* r1  Inp^l-ldF 
n   k.i     

x"0   u+<2 -l>xJ n 
(x) 

mmmmmmm ifiaM mmmm  iinii^Mi-lr'm ffma.jlm.',».i>t,i,.„..1,|h1||t.t||l||[|a|]|.,||..l||a|| ttiflid 1 lij i Hi iii 
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80 

k-1 

(6.2)    E    - ln2   <-   f1   «(x)F  (x)dx, 
n <Jn n 

M--^-^fe)^]- 

where 

(6.3)    $(x) -   )    -^T  
._J-l+(2 -l)xJ ^..+(2--,). ■     2<'+«>  ■ 

n-1 

The expected value of ln(sQ/s )  is    )    E.,    Thus, assum- 

J-0 
Ing the existence of E^ ■ lim E.,  the expected number of 

iterations for odd Integers uQ, v. ^ N is asymptotically 

K lg(n) as N -♦ •, where 

(6.4) K - ln(2)/E   . 
op 

Approximating E^ by E. - and evaluating the  integral in 

(6.2) numerically gives 

(6.5) K ~ 0.705971246102. 

In the next section we give some numerical evidence which 

suggests that the expected number of iterations  is 

K lg(n) + 0(1).    This is not surprising if Conjecture 2.1 

holds,  for then E    - E    + 0(X'n). 
n        0O 

7.    Numerical Results 

The recurrence relation (2.7) was solved numerically by 

three different methods.    All computations were  performed on 

a Univac 1108 using double-precision (60-bit fraction), and 

the numerical results given by the different uethods agreed 

to the accuracy expected. 

.y ^^^^f^f^'-*—*^., ;-■.■* yti^msiiu^mm^M^iä^mmmMi^^^. ....-^..^    i i mämmmm^mmim^tiMdäiki^. 



gmpiPPHmpqp«lppMWPPnMlWi>^^^ii>i■■■■■■■ i    i     <      PIU.I.   up    ^i 14.1111^1    —— -^^^r- 

23 

A. The Recursive Mtthod 

This is the most obvious method. F (x) is evaluated re- n 
cursively, using the recurrence  (2.7) with the infinite sums 

truncated after the terms become negligible.     The method is 

only useful for small n, as the computation time increases 

exponentially with n. 

B. The Discretization Method 

If F (x)   is known ?.t a finite set of points, say 
n 

x," 0 < x, < x» < ... < x   ■ 1. then we can use the recur- 
0 i        2 m 

rence  (2.7)  to approximate F^j.1 (x)  at the same set of points, 

using linear or quadratic interpolation to approximate F  (x) 

at points x / x    for j ^ m.    Computations were performed with 

a uniform grid.   I.e., x    ■ jh, where h ■ l/m.     (It might be 
j J 
| more efficient to use a non-uniform grid, because of the log- 

i arlthmic singularity of F'fa)  at the origin.)    Using several 

\ different h, we found that the error in the computed value 
! 

of F (x) was 0(h),  for fixed n and x.    The accuracy could be 
n 2 

Improved to 0(h )   or better by using Richardson extrapolation. 

For example, using m - 1920,  3840 and 7680, we obtained F (x) 

to eight decimal places  (8D)   for n £ 20. 

C. The Power Series Method 

In Section 3 wie showed that F  (x) ■ a (x)lg(x) + 0 (x), 
n n n 

where the coefficients a    . and 0     .  In the power series n,j ;n,j 

a (x) ■   )    a    .x    and 0 (x) -   )     B    .x^ satisfy certain re- 
n LJn,j n 4-'n,j 

j-0 j-0 
currence relations.    Thus, it is possible to compute the co- 

efficients or    .  and ß    . by working with suitably truncated 
n,j n,j 

power series.    To avoid numerical difficulties it is essential 

to stay well within the radius of convergence of each series, 

which ensures that the truncated terms are negligible.    This 

■ ■■■' —""" 'jettMütäiäulSiMättäätiam   ■  ■ ■ •  ■•■ —.«ha..»..».».^-^ „.n.*:*^,,.^-.,....,.^.:...,......       .    ....„.,,.,.. ...^.uJ.j^^/,-»a....t... ...... 
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la always possible. With the series truncated after the 

first 100 terms, we computed F (x) to 12D, and the results 

agreed with those computed by the discretization method. The 

value K - 0.705971246102 should be correctly rounded to 12D. 

Table 7.1 gives F (x) to 4D for x - 0.1(0.1)0.9 and 

n- 1(1)5. It Is clear that the distributions F (x) converge 

rapidly. Table 7.2 gives the limit F (x) to 10D for various 
-12 

x. The computed values of F (x) differ by less than 10 

for all n 2 20. 

Table 7.3 gives the coefficients o ,, ß_ . and C  . In 
"»J   »J      »J 

the power series a  (x), 6 (x), and e (x) - F (1+x), for 
> QO CD w QO 

j £ 20. Note that the coefficients alternate in sigu, and 

their absolute values decrease monotonically, for j ^ 2. 

The values given in Tables 7.2 and 7.3 confirm several 

Identities which may be derived theoretically, for example: 

"jh + ^ ■2F«^+ 2F.^+ F-(^ + 3' 

and 

35 •,1 •6? «,2 '2a 
%1' 

18e«,2 + ^«J  +  <10 + 3/ln(2))Os0)1  - 0. 

Table 7.1:     Values of F (x)  to 4 D 

X FjU) F2(x) FjU) Vx) F5(x> 

0.1 0.3329 0.2871 0.2772 0.2753 0.2750 
0.2 0.4967 0.4478 0.4370 0.4349 0.4346 
0.3 0.6111 0.5666 0.5567 0.5548 0.5544 
0.4 0.6989 0.6611 0.6526 0.6510 0.6507 
0.5 0.7699 0.7394 0.7325 0.7312 0.7310 
0.6 0.8294 0.8060 0.8007 0.7997 0.7995 
0.7 0.8805 0.8637 0.8599 0.8592 0.8590 
0.8 0.9251 0.9144 0.9120 0.9115 0.9114 
0.9 0.9646 0.9595 0.9584 0.9581 0.9581 

lii'riiiiHiMi«ivi^.^.a...va.^am,^s,n.. ■.■ .:,. u-aianflwiigifcaiiiaimi ittÜiafiillMkiii ■- ■■■ --■—■'■'- ■.■...-.^ 



wmpipfmrmm mmmm ■ «^fllWIW w pif^ppi »ii, n ,'  lVI)!)IJf(.iu fff^HWHHWPW"«"^» -TiTwrTTTl 

25 

Table 7.2:    Values of F 1 x)  to 10D 

X FJx) X FJx) 

0.1 0.2750116116 1/3 0.5886652481 
0.2 0.4345648990 2/3 0.8400418266 
0.3 0.5544181563 1/4 0.4981238639 
0.4 0.6507109442 3/4 0.8860223000 
0.5 0.7309648721 1/6 0.3370894190 
0.6 0.7994844345 5/6 0.9275771715 
0.7 0.8590163978 1/12 0.2420627866 
0.8 0.9114387997 5/12 0.6650572783 
0.9 0.9580992159 7/12 0.7887496125 
1.0 1.0000000000 n/12 C.9653900331 

Table 7.3:     The Coefficients a .r *'.iand ?.,J 
J "».J S-,1_ 5.., 

0 0.000000 0.000000 1.000000 
1 -0.596884 0.765619 0.397923 
2 0.099481 0.347519 -0.198961 
3 -0.056846 -0.191979 0.111631 
4 0.035529 0.138115 -0.067966 
5 -0.023839 -0.105276 0.044193 
6 0.016962 0.082567 -0.030365 
7 -0.012663 -0.066260 0.021861 
8 0.009823 0.054283 -0.016369 
9 -0.007853 -0.045299 0.012666 

10 0.006428 0.038417 -0.010072 
11 -0.005361 -0.033033 0.008194 
12 0.004540 0.028739 -0.006795 
13 -0.003893 -0.025255 0.005725 
14 0.003375 0.022384 -0.004890 
15 -0.002953 -0.019989 0.004225 
16 0.002605 0.017966 -0.003688 
17 -0.002315 -0.016242 0.003247 
18 0.002071 0.014760 -0.002881 
19 -0.001864 -0.013476 0.002574 
20 0.001686 0.012357 -0.002313 

For integers u and v, let b(u,v) be the number of itera- 

tions required by the binary Euclidean algorithm as described 

in Section 1.    Let 

mmmmamtimitim " a^aaa&jKüüiBa ma^aaiSi •■*■■>---■ afca^a  «MM 'iMMlitiWrillimi 1 ■—"■""**""- * filfl 
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B(N) -        ^       b(u,v) 

0<v<u<N 
utv odd 

and 

Ä(N)  - 2B(N)/(LN/2J(LN/2J  - 1)). 

Thu8,*9(N)   is the average number of Iterations required for 

distinct, odd u and v less  than N.    Table 7.4 gives B(N) , 

Ä(N) and MN) -0(N)   -(2>(N/2)   for N - 23, 24,   .... 215. 

From the results of Sections 6 and 7, we expect MN)   to con- 

verge to K - 0.705971246...  as N -» «.    In fact,   the values 

given in Table 7.4 satisfy 0 < K - MN) < 2 lg(N)/N, and give 

the approximation 

^(N) ~ Klg(N)  - 0.93. 

Table 7.4:    Exact Counts for Small N (algorithm RS) 

N B(N) 0(H) MN) 

l? 10 1.6667 0.6667 
2* 60 2.1429 0.4762 
2^ 341 2.8417 0.6988 
2, 1701 3.4294 0.5878 
2g 8254 4.0942 0.6648 
2! 38692 4.7603 0.6661 
2:0 178046 5.4548 0.6945 
2): 804192 6.1475 0.6927 
2J2 3586234 6.8469 0.6994 
2 !: 15822368 7.5484 0.7015 
2\l 69216057 8.2532 0.7048 
2it    300540247 8.9579 0.7047 
215 1296893644 9.6632 0.7053 

8.    Other "Binary" Euclidean Algorithms 

As well as  the algorithm described above,   there are 

several other "binary" variants of the Euclidean algorithm. 

- • MaaauiiuMi».^f.,,- [.r^^niMr^w™^,, ..^  ,„,  .,.,...,, „,,„ „ ^aaiiliüiiümii^toBMa^aMata^ 1 .■..^•.a.,.Jj:„i„...,J...,. 
'"'•'•''•■"""* 
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For example, Harris [70] suggested an algorithm which uses 

both division and right shifting, and requires less itera- 

tions than the classical algorithm, on the average.    Yao and 

Knuth [75] considered the "subtractlve" Euclidean algorithm, 

which requires neither shifts nor divisions.     In this section 

we analyze the "left-shift" algorithm (LS) mentioned at the 

end of Section 1.    For positive Integers u and v, even or 

odd, the algorithm is as  follows. 

LS Binary Algorithm 

L0:    If u < v then interchange u and v; 

if u ■ v or v - 0 then return u as the GCD and halt; 

t •- v; 

while 2t S u do t «- 2t; 

Ll:    u - u - t; 

go to L0 . 

The  interchanging of u and v can be avoided by duplicat- 

ing some of the code.    The "while" loop merely shifts t left 

until its leading one bit is In the same position as that of 

u, or one position to the right of it.    This may be done 

with a floating-point "normalise" instruction, possibly fol- 

lowed by one right shift. 

We say that an iteration Is one execution of st«tp Li. 

The expected number of iterations is given by the following 

theorem. 

Theorem 8.1 

If Integers u, v are chosen uniformly and independently 

in (0,N], the expected number of Iterations of algorithm LS 

Is asymptotically K-lgCN) as N -» «, where 

(8.1)    K2 - 12(ln(2)/TT)2 c ~ 0.875837091, 

itaMiüMiai 
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(8.2) c - I   „(j)^^-] . 
J-1 

And p(J) is defined in Section 4. 

Proof 

We shall only sketch the proof.    Suppose u>   v > 0 and 

ve perform one Iteration of the classical Euclidean algo- 

rithm,  i.e., we find q ■  lu/vJ i ' " V'Vt  Bet u ♦- v and 

v *- r.    Then the new values of u and v would be obtained 

after exactly p(q)  iterations of algorithm LS.    [Let 

P^>    m 

where m1>m2>,.,>m.vi0.    Ifläji p(q),  then the 

j-th execution of step LI of algorithm LS replaces the cur- m 
rent u by u-t, where t ■ 2 Jv.] 

Let the regular continued fraction for u/v be 

(8.3)    u/v - q0 + lA^ + 1/  ... + l/qk, 

so the classical algorithm requires k+1  iterations.    From 
k 

the above discussion, algorithm LS requires ^ p(q.) itera- 

J-o 
tions (actually one less if q. ■ 1, because of our test 

"if u - v ..."). 

Let E9(N) be the expected number of Iterations for 

algorithm LS, and E (N) be the expected number for the class* 

leal algorithm. Thus, 

..■il:,m'«.j.J.,»w^^^^i...-,-~i,i|.|,M|..|lf|t|r||r||V||.    ,,.,      .■■.|l|-|ff|,^,,^-.J..l..„ai,tr.llM, 
atBateamfa^firi^aajafcjia 
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(8.^) 11m E (N)/E (N) - lim lim p(q ), 

whcr« p(q ) is Che expected value of p(q_) • From results 

like those of Khinchin [35a, 35b, 36], 

(8.5) lim lim p(q ) - c, 

where c is given by  (8.2).     [Intuitively,  the probability 

that q    - q is about if mir. l8[j(j+2) 
,  from (2.9).]    Also, 

(8.6) Ec(N) ~ 12(ln(2)/n)2lg(N) 

as N -* «» (see Knuth  [69]).    Thus, the result follows from 

(8.4). 
The constant c is difficult to evaluate numerically 

from (8,2).    The following lemma is much better for numerical 

purposes.    Using (8.8), we found 

(8.7) c s 1.49930818096 

very easily. 

Lemma 8.1 
If c is defined by (8.2),  then 

I    I 
(8.8)    c- 2 +   /jlgr(l+2"J) 

j-l 

(8.9) 
_J  
ln(2) '      l:2    j(2j-l)_ 

^ — - - -     --i    i «ifc ■ iMäJMlällMI—M^ ^.^•^^.-i..^^^.^-.,..^.,,.. 
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(8.10) 1 + 
1 

21n(2) ^ j2J(2J-l)_ 

Here, v " 0.5772... is Euler's constant, Hx) Is the Gaoma 

function, and C(j)  *■* the Riemann Zeta function. 

«snatch of Proof 
Splitting the sum in (8.2)  into odd and even indices, 

and using p(2j+1) - p(J) + 1  and p(2j) - p(j), gives 

(8.11)    c -   ^   lg 

J-0 
l+l/(2j+2) +   ^P(j)lg 

j-1 

H1/(21) 
l+V(2j+2) 

Continuing the splitting process eventually gives 

00 » 

(8.12)     c -   ^    ^   lg 

k-1  j-0 

'l+l/(2k(j4)) 

1+l/(2k(j+l)) 

From Stirling's approximation, 

(8.13)     fl" [1+x/(J+y)] ~ nXr(y)/r(xfy) 
J-o 

as n -» •, so (8.12) gives 

(8.14)    c 

k-1 

T(l)TO+2'k) 

r(5+2"k) 

From the well-known identity 

(8.i5)   r(x)r(x+j) - r(2x)r(j)21"2x 

 _ _ _       I'llMiWlTfiiMlT iüllii-l .^^u-.v.^^^..^,,^.,,,..^^^.^,,^^ i^fc^^MM—■—■^■aaatg^'^f*... i»   .H    .        - ...^ J-. 
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1   -k 
with x - 2 + 2 , it Is easy to show that 

(8.16) I   lg[r(j)/r(j<-2"k)] - 2, 
k-1 

so  (8.8)   follows from (8.14). 

Suppose  |x| < 1,  n 2 1.    We have 

n-1 

(8.17)     Inrd+x) - Anr(tH-x)\ ^    ln(l+x/k) 

k-1 

(8.18) 

"■ n-1 

lim xln(n) -   ^    ln(l+x/k) 
n-*m 

_ k-1 

(8.19) 

j-2 

(8.9)   follows from (8.8)  by putting x - 2'K in (8.19) and 

summinB over k ■ 1, 2,   ...   .    The proof of (8.10)   is similar. 

Numerical Results for Algorithm LS 

For integers u and v,  let 

tions required by algorithm LS, 

For integers u and v,  let b2(u,v) be the number of itera- 

(8.20) B2(N) -       2,       b2(u.v). 
0<v<usW 

(8.21) ^(N) - 2B2(N)/[N(N-1)], 

and 

\ 

A t|&^^^^^r iltliimiiltii'iiiil'iiiiiiirilri BKna-aemn 
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(8.22)     ^(N) -^2(N)  -^2(N/2). 

T«blr. 8.1 gives B2(N),^2(N) and ^(N) for N - 22, 23,... ,2 

(compare Table 7.4 for algorithm RS). 

12 

Table 8.1: Exact Count 3 for Snal 1 N (algorltb 

N B2(N) ,32(N) /^(N) 

1 8 1.3333 0.3333 
55 1.9643 0.6310 

305 2.5417 0.5774 
1625 3.2762 0.7345 
8135 4.0352 0.7590 

39282 4.8329 0.7977 
184670 5.6578 0.8249 
851566 6.5096 0.8519 

3860856 7.3712 0.8615 
17268497 8.2383 0.8671 
76392955 9.1090 0.8707 

From Theorem 8.1, we expect 

(8.23)  lim /UN) - K, *- 0.875837, 

and the numerical results support this prediction. 

Summary 

Table 8.2 summarizes the average and worst-case behavior 

of four algorithms:    the classical algorithm, the RS and LS 

binary algorithms, and the sub tractive algorithm of Yao and 

Knuth [75].    The subtractive algorithm is of theoretical 

interest only.    The choice of which of the other three algo- 

rithms is to be preferred depends on the instruction set and 

Instruction timing of the machine used. 

 \ i 
iassmmttittlUlMilUttomi&Mä 
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Table 8.2:    Comparison of Various Euclidean GCD Algorithms 

Algorithm Average iterations Maximum Iterations 

Classical 

RS Binary 

LS Binary 

Subtractive 

0.5842lg(N) 

0.70601g(N) 

0.8758lg(N) 

0.2921(lg(N)): 

1.4404ig(N) 

lg(N) 

1.44041g(N) 

N 

Notes;     1.    Lower order terms are neglected (in most cases 
they are 0(1)). 

2. An Iteration of one algorithm (e.g., the binary 
algorithm) may take less time than an iteration 
of another algorithm (e.g., the classical algo- 
rlthm). 
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