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CHAPTER 1

INTRODUCTION TO PROBLEM

1.1 General Introduction

The use of high-strength materials in the design of engineering
structures has lead to the development of theories which can be used to
predict the reduced strength of these structures caused by induced or
inherent fiaws in the material. Engineering fracture mechanics
utilizes the concepts of stress intensity factor, K , and critical
stress intensgity factor, Kc » to predict this reduced strength. The
stress intensity factor, K , is a function of applied load and geometry,
while the critical stress intensity factor, Kc » 1s au experimentally
determined constant for a given material aud mode of deformation.

There are three possible modes of deformation associated with a
crack as shown in ¥Figure 1: opening mode, Mode I; edge sliding wode,
Mode II; and tearing wmode, Mode IXI. Until recently, Mode I has been
considered as the wmost significant mode of failure. As a cousequence,
preceding investigations in fracture mechanics have dealt primarily
with this mode, and data on critical stress intensity factors is
restricted to riode I loading. Recent investigations, however, indicate
that Mode Il may L a significant mode of failure in certain cases.
Jones and Chisholm (1) established a compact shear fracture specimen to
study the phenomenon of Mode II fracture and determine accurate critical

stress ifnteusity data. 2
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The object of this investigation was to check the performance of
the compact shear fracture specimen by numerically generating stress
intensity factors using finite element techniques. In addition, initial

crack propagation angles were numerically predicted.

1.2 Purpose of Investigation

This study was conducted to investigate, by finite element tech-
niques, the behavior of the compact shear fracture specimen developed
by Juones and Chisholm. In particular, Mode Il stress intensity factors
and stress boundary conditions were numerically generated {ur comparison
with those obtained by Jones using boundary collocation aud photoelastic
methods. In addition, the initial angle of propagation which could not
be obtained by Joues was determined for selected specimen geometry and

crack lengths.

1.3 Scope of Investigation

This study utilized the compact shear fracture specimen
established by Jones and Chisholm to numerically deteraine the effect
of changing crack length, applied load, and specismen geometyry on the
Hode II stress intensity factor, KII . The specimen,siown in Figure 2,
has a speciwmen height W , thickness B , crack length a and tang
width H . The wodel parameters varied in this iavestigation were crack
length a , and tang width H .

Point and uniform loads were utilized in this investigation to
simulate conditions that could be achieved in a rigid loading frame,

and algn to approximate as closely as possible the loading conditions

adopted by Jones. The stress distribution aloag the upper boundary aud
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vertical axis of symmetry obtained for selected load conditions and
wodel configurations were compared to thogse assumed in the boundary
collocation study.

The initial angle of propagation of the crack, for a given crack

length, applied load, and model geometry, was also determined,.

1.4 Approach Used in the Iuvestigation

A numerical solution, the finite element method, was employed to
generate displacements along the crack flanks, the normal and tangential
stress distribution along the upper tang boundary, and the normal stress
distribution along the vertical axis of gymmetry. A plane strain con-~
dition was utilized for the uumerical analysis thvoughout this
investigation.

The stress intensity factors for the various configuratiouns
studied were determined by the displacement (2] and sirain energy
telease rate methods [2]. Numerical results were compared to those
obtained in a closed forwm solution for a wmodel with similar configura-
tion and loading conditions, and to the boundary collocation results.

A discription of the closed foram solution is given in Appeandix B,

The numerically generated normal and tangential stresses aloung
the upper boundaty and vertical axis of symmetry represented the stress
boundary conditions actually occurring in the model for a given load
and wodel configuration. These were cowmpared to the stress boundary
conditions assumed by Jones and Chisholum.

A strain energy density technique {6] was used to numerically
obtain the initial angle of propagation of the crack for selected crack

lengths and specimen geouetry.
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CHAPTER 11

FINITE ELEMENT TECHNIQUES APPLIED TO LINEAR
ELASTIC FRACTURE MECHANICS

2.1 Introduction

The finite element method was utilized to generate displacements
along the free flanks or the crack, and the normal and tangential stress
distributions along the vertical axis of symmetry and upper boundary of
the compact ghear fracture specimen under consideration. The methods
used to calculate Mode I1 stress intensity factors for given specimen
configuration, crack length and applied loading were the displacement
meth24 and the method of strain energy release rate. A brief descrip-
tion 2f the finite element program used is given in Appendix A. The
initial angle of propagation for selected cases was numerically determined

by the strain energy density method,

2.2 Displacement Method

The displacement method [2] utilized the displacements of nodal
points aiong the crack flanks and equations describing the displacement
field near the crack tip. The equations describing the displacement
field axe those derived by Westergaard [3], and shown below for Mode I

and Mode II plane strain deformations. Tor Mode 1 loading,

] (2.1)

ol

1 ] 2

K 1/2 ,
4, = L [ﬁ% cos Q‘ [1 - 2V + sin2 [

3
'
.
4
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and

K 1/2
R T I 81 _ 9y = cog?
vI T [ZNJ sin 2 [2 2V ~ cos {

while for Mode II loading,

K 1/2
_ X of, . 2(8 A
Uy = = [2ﬂ] gin ) [2 2v + cos [2} ] (2.3) ;

|

7. e

and

K 1/2
_fuors of. 2(8
Vit T T [ ] cos 3 [ 1+ 2v+ s8in [2] J ’ (2.4)

where U 1s the shear modulus, V ig Poisson's ratio, r , 0, u

and v are defined in Figure 3. KI and KII are the Mode 1 and

Mode I1 stress intensity factors.
By using nodal displacements, u* and v* , along the crack
flank as determined by the finite element method, a stress intensity

*
factor KI or K can be found at each nodal point by use of

®
11
Equations (2.1) through (2.4). Chan {2] found that the most accurate

* *
values of KI and KII are attained by using the equations for vy

and uy with 6 = 180% . Thus,

I
* :
1/2 v :
, * {21) E I :
K = (2.5) ;
1 [Q(l - \Jz)] rllz ]
and
| ent% “n* (2.6)
K1 vl v | ff2
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If the exact displacements were used as r approaches zero, the exact
stress intensity will be determined. Since the finite element method
gives accurate solutions along the flanks, and very inaccurate solutions
at the crack tip, a tangent extrapolation must be used to determine
stress intensity factors.

This is accomplished by plotting a graph of the stress intensity
factor, K* s versus the nondimensionalized distance from the crack tip,
r/a , Figure 4, using Equations (2.5) and (2.6). A tangent to the
straight line region of this curve is then extrapolated back to the
point where it iuntersects the stress intensity axis. This intercept
is taken as the value of the stress intensity factor K . A least
squares fit to the data in the straight line region was used to
determine the intercept in this study. As can be seen in Figure 4, the
straight line region does not extend the length of the crack flank.

The observed nonlinearity is due to the boundary condition imposed at
the load points, and the fact that the equations for displacement,
Equations (2.1) through (2.4), are strictly valid near the crack tip.
The procedure used in this investigation was to perform a least squares

fit in the region of r/a ratios ranging from 0.1 to 0.2.

2.3 Strain Energy Release Rate

The concept of strain energy release rate [2] states that
whenever the strain energy released by the structure is greater than
the energy needed to create new crack surface area, the crack will
propagate unstably. Mathewmatically, strain energy released rate, G ,

can be written as:

N dn e il WS 1 e n
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G = T z.7)

where U 1is the strain energy stored in the structure and A is the
new crack surface area formed as the crack extends. Strain energy

release rate is related to Mode I and Mode Il stress intensity factors

by the relation [4]

KI + KII = 7 (2.8)

This equation is valid for plane strain conditiomns.

The finite element method can be used to solve for the strain

energy release rate, expressed by Equation (2.7), by the following means.

The total strain energy of the structure, UT » 1s determined by
numerically summing the strain enmergy of each element of the structure.
The crack is then extended by a small incremental length, Aa , and the
total strain energy, U% y is again deternined. For plane strain
analysis, with the thickness of the model set equal to unity, Equation

(2.7) can now be rewritten as:

G = Aa — . (2-9)

Utilizing Equation (2.9) and the fact that for the fracture specimen
being studied, Mode I stress intensity factors were negative and
therefore could be uneglected, RII can be determined frow the xelation:

uL-u
2 2 E T T
KI + KII 3 a . (2.10)

e ———
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2.4 Strain Energy Density

Because cracks which are not oriented perpendicular to the applied
load tend to propagate in a direction other than along the axis of the
crack, Sih [5] proposed the concept of strain energy density in order to
analytically determine the direction of crack growth. Sih determined
that the magnitude of the energy field in the vicinity of the crack tip

can be written as:

S = a_.K 2 +a, KK _ +

2
111 12551 T Ak (2.11)
where
a . [((1 + cos B)(k - cos 8)]
11 16y ’
a . sin 6{2 cos 6 - (x -« 1)]
12 16y
and
1 .
a,, *© Tén [(k + 1)1 -cos 0) + (1L +cos 0)(3 ces B8 -1)] .
(2.12)

In these equations, K = 3 - 4v for plane strain and (3 - V)(1 + V)

for plane stress problems, 0 is defined in Figure 3, u 1is the shear
wodulus and KI and KII are the Mode I and Mode II stress intensity
factors. The concept of strain energy density states that a crack will

propagate in the direction for which the strain energy density S

At G L THMENG b Sp gyt o

possesses a stationary minimum value, or
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3
—e - 0 ° (2.13)

The initial direction of propagation can now be determined by first
using finite element techniques to solve for the stress intensity
factors, KI and KII . Equations (2.11) and (2.12) are then used to
numerically identify the value of 6 which will result in a minimum
value of S . In this study, the solution of this problem produced two

values of © which yielded a minimum value of S with the correct

value being determined by a physical argument.
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CHAPTER III

MODEL USED IN THE INVESTIGATION AND

VERIFICATION OF NUMERICAL PROCEDURE
3.1 Introduction

As stated earlier, the model considered in this study is a

fracture specimen proposed by Jones and Chisholm and previously shown
in Figure 2. This model was gridded for generation of displacements
and stresses by the finite element method. The boundary and load
conditions applied to the model are discussed in the following para-
graphs and verification of the gridding program and finite element

technique is established.

3.2 Grid Pattern

A typlcal grid pattern utilized in this investigation is showmn
in Figure 5. The pattern consists of a fine region at the crack tip,
a transition region and a course region. In the fine region, a typical
ratio of element area to the square of crack length, A/a2 s 1s
2.6 x 10“3 for a/W = 0.5 . This ratio for the course region is
1.04 x 10"'2 . Ratios were chosen in each region to assure optimal
convergence to the true solution [{2]). The material above the loading
pins was not included in the finite element wodel because it did wnot

contribute any significant stiffness. The fine grid region was woved

with the crack tip as crack length was varied. This required that the
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mesh be regenerated each time a new crack length was congidered. 1In
order to decrease the amount of time spent in regridding the model, a
grid generation code obtained from another finite element program (SAAS-
Stress Analysis of Axisymmetric Solids)[6] was modified to grid the
specimen. The modification and required irput into this program is
discussed in detail in Appendix C. Briefly, this program interpolates
the position of internal nodal noints from those specified on the ex-
ternal boundaries. The program then eliminates nodal points as
described in Appendix C in orde: to achieve the desived reduction of the
grid pattern. Finally, the elerient information is obtained by using

generated nodal point data.

3.3 Model Geometry

A list of the parameters cousidered in this investigation is
given in Table I. The ratio of crack length to specimen height, a/W ,
was varied from 0.1 to 0.8. This range was selected to determine the
effect that the model boundaries have on the Mode II stress intensity
factors for short and long cracks. The dependence of the Mode Il stress
intanalty factor on distance frow the load peiut to crack flank was
studied by chaunging the tang width, H , of the specimen. Three widths
were considered; H = 1.5 inches, H = 1.0 iuch, and H = 0.5 inch.
Fox H = 1.5 inches, the same grid pattern utilized for H = 1.0 inch
was adopted with the outer boundary elements expanded to give the desired
tang width, The grid pattern for H =« 0.5 inch had to be vegenerated.
This was easily accomplished by a wodification of the griding program

which allowed it to accept data for H = 1.0 inch, and grid the wodel

pp— s n

s
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TABLE 1

. MODEL PARAMETERS USED IN THE
2 INVESTIGATION

3 H (INCHES) a/wW W (INCHES) |B (INCHES)

0.5 0.2 3.115 1.00

0.5 0.3 3.115 1.00
0.5 0.5 3.115 1.00

0.5 0.7 3.115 1.00

1.00 0.1 3.115 1.00
1.00 0.2 3.115 1.00
1.00 0.3 3.115 1.00

1.00 0.4 3.115 1.00

1.00 0.5 3.115 1.00
1.00 0.6 3.115 1.00 ;
1.00 0.7 3.115 1.00

1.50 0.2 3.115 1.00
1,50 0.4 3.115 1.00 "

1.5C 0.6 3.115 1.00 ;

1.50 0.7 3.115 1.00

1.50 0.8 3.115 1.00
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for H = 0.5 inch. The modification restricted the range over which
the program will search for nodal points, thus giving the desired tang

width.

3.4 Load and Boundary Conditions

The loading conditions used in this investigation consisted of
point and uniform loads applied to the specimen as shown in Figures 6a
and 6b, respectively. 1In order to simulate the loading conditions used
in the boundary collocation analysis [1], it was necessary to pin the
load points in the y-direction as shown in Figure 6a. The left boundary
of the moﬁel was pinned in the y-divection because it is a line of
symmetry, The uniform loading condition, with the nodal points on the
upper boundary pinned in the y-~direction as shown in Figure 6b, was
selected to simulate a fixed grip loading frame. The crack tip was
pinned in the z-direction to eliminate any rigid-body mcvement of the

crack flanks in the z-direction.

3.5 Verification of Gridding Program and Numerical Techniques

Verification of the gridding program and numerical techniques
for obtaining stress intensity factors was accomplished by generating
a representative grid pattern and loading the compact shear specimen as
a compact tension specimen. The transformation from compact shear éo
compact tension specimen was easily made by simply applying the loads
at the side and vertical axis of symmetry along a line perpendicular to
the crack axis as shown in Figuve 7. The Mode I stress intemsity factor

was then numerically obtained usiig both the displacement and strain

energy release rate techniques and compared to an available closed form
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solution. A closed form solution for the compact tension specimen,

shown in Figure 7, is given by Sih [10] as:

- P(2W + a) F {_
T JThW - a)3/2 Wow

c
"6'} . (3.1)

ab ¢
W Wb

be used here only for the geometry considered. The boundary conditions

where F [ } is given for various parameters by Sih [10] and will
necessary for numerical generation of the Mode I stress intensity factor
are shown in Figure 7. Vith these boundary conditions and the model

configuration for a compact shear fracture specimen with a/W = 0.5 and

H = 1.0 inch , the physical parameters of Equation (3.1) become

a = 0.775 inch

b = 1.00 inch
W = 2.340 inches
£ = 0.3
P = 100 pounds
h = 1.0 dinch .
A %- ratio of 0.3 was chosen because this was the closest value listed

by Sih which fit the loading conditions applied to the cowpact tension
specimen. It also should be noted that the value of stress intensity
factor given by Equation (3.1) 13 not the same as that determined by
the displacement technique. The relation between these two values is
glven by

K, = /?kx , (3.2)

1
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where kI is determined by Equation (3.1) and KI is determined by the
displacement method.

A graph of stress intensity factor versus nondimensionalized
distance from the crack tip for the compact tension specimen is given
in Figure 8. A least squares fit was performed on the points in the
region r/a from 0.1 to 0.2 and KI , the intercept, was found to be
KI = 500 psivin . The value determined from Equations (3.1) and (3.2)
with F [%, %, %] = 2,010 is H = 493 peiv1in . These values are
in good agreement with each other and therefore verify the displacement

technique and grid generation program.
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CHAPTER 1V

ANALYSIS OF RESULTS

4.1 Introduction

Having verified the numerical methods and grid generation program
used in this investigation, the behavior of the compact shear fracture
specimen a8 a function of crack length, loading condition and specimen
geometry is discussed. Mode II stress intensity factors generated by
finite element techniques are compared to those determined by boundary
collocation analysis, and to a closed form solution for geometry and
loading conditions that closely approximate those of the compact shear
fracture specimen. The numerically generated stress distribution on the
upper model boundary and vertical axis of symmetr: are compared with those
assumed by Jones and Chisholm [1] in é boundary ct.llocation study. The
initial angle of propagation is also given for selacted crack lengths

and specimen tang widths.

4,2 Stress Intensity Factors

Numerically generated Mode II stress intensity factors for
selected nondimensionalized crack lengths and tang widths are listed in
Table II. This data is graphically portrayed in Figure 9 where the
Mode II stress intensity factors have been nondimensionalized by
dividing K., by the normal stress in the tang, o= P/BH , and the

square root of crack length, Ya . The curves shown in Figure 9

o St e e o

e bt o e st

PR




NUMERICALLY GENERATED MODE Il

TABLE II

STRESS INTENSITY FACTORS
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Mode II Stress Intensity Factors (psivim.)

a/W H = 0.5 Inch H = 1.00 Inch H = 1.50 Inches
Displacement | Energy | Displacement | Energy | Displacement | Energy
0.1 - - 63.29 58.35 - -
0.2 148.09 137.30 78.59 69.00 97.21 46.52
0.3 152.49 145.10 92.80 92.50 - -
0.4 - - 115.83 107.00 101.69 92.90
0.5 137.68 136.70 122.06 118.00 114.71 107.00
0.6 - - 145.85 139.00 142.41 129.50
0.7 158.44 166.44 173.09 164.00 169.48 152.40
0.8 - - 209.27 199.79 - -

Al A 2 i
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indicate that the specimen having a tang width H = 1.0 inch is the
most stable, as evidenced by a relatively constant nondimensionalized
Mode II stress intensity factor., The curves for H = 0.5 inch and :
H = 1.5 inches exhibit rather wide variations in the nondimensionalized é
Mode II stress intensity factors with varying crack length. These cases
will, therefore be examined in more detail.

Figure 10 shows the variation of the noudimensionalized Mode II
stress intensity factor with crack length for a tang width H = 0.5 inch.
Excellent correlation is shown between results obtalned by finite
element techniques and those determined from a closed form solution [7].
However, the boundary collocation data does not agree with the numerical
and closed form results, The curves for the finite element and closed
form solutions show a region of constant nondimensionalized Mode II
stress intensity factors from a/W = 0.4 to a/W=0.,7 . For a/W
ratios greater than 0.7, the lower specimen boundary influencies the
Mode II stress intensity factors. At a/W ratios lower than 0.4, the
curves show a load dependence as the load is now being applied clese to
the crack tip. The boundary collocation curve exhibits constant non-
dimensionalized Mode 11 stress intensity factors over the entire range
of a/W ratios because of incorrect stress boundary conditions assumed
in the boundary collocation analysis. This error in assumed stress
boundary conditions will be discussed in detail in a later section.

Figure 11 shows the variation of nondimensionalized Mode I

gtress intensity factors with crack length for & tang width H = 1.0

U e o P et eV 0 e

iuch. All curves are in good agreecment with each other and have a

O

region of constant nondimensionalized Mode II stress lntensity factors
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from a/W= 0.2 to a/W= 0.6 . At a/W ratios above 0.6 and below
0.2, the specimen boundaries are being sensed by the crack tip, causing
the curves to turn upward.

Figure 12 gives the variation of nondimensionalized Mode II stress
intensity factors with crack length for a tang width H = 1.5 inches.
The finite element and closed form results do not exhibit a reglon over
which the nondimensionalized Mode II stress intemnsity factors are
constant because the specimen is now behaving like a beam in three point
bending. The influence of bending is evident at all a/W ratios
particularly those less than a/W = 0.3 , for in this region the curves
were expected to turn upward as the crack tip semsed the upper boundary
of the specimen. The boundary collocation data exhibits a different
behavior from that of the finite element and closed form results because
of incorrect strese boundary couditions assumed in the boundary colioca-

tion study.

4.3 Stress Boundary Conditions

Stress boundary conditions were determined along the upper
boundaries of each tang and along the vertical axis of symmetry in order
to check those assumed in the boundary collocation analysis and to
provide useful data for future investigatlons utilizing boundary value
techniquas. Of particular ijanterest in this investigation was the stress
distribution along the upper tsng boundary and vertical axis of syanetry

for application of & point load with the load points fixed ia a direction

S, ST

perpendicular to the direction of lcading, as shown in Figure 6a. This

wethod of loading was of interest because it simulates that used by -
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Jones and Chisholm so that resultant numerically generated stress dis-
tributions could be used to check the stress boundary conditions assumed
by Jones and Chisholm. A uniform load with each nodal point on the

upper tang boundary fixed in a direction perpendicular to the direction
of loading, as shown in Figure 6b, was also applied in order to determine
the stress boundary conditions needed in order to perform boundary value
analyses for this common type of loading. The two loading conditioms
just discussed are obtainable through a rigid loading frame. The stress
distribution for two other loading conditions are also discussed in this
gection. These loading conditions are a point load with all nodal points
on the upper tang boundary fixed in a direction perpendicular to the
direction of loading, and a uniform load with the center point of each
tang fixed in a direction perpendicular to the direction of loading.
Although these conditions are easily simulated in a numerical study,

they are very difficult to obtain experimentally and were considered in
this investigation simply to determine the sensitivity of stress
intensity factors to changes in boundary conditions.

The stress boundary conditions assumed in the boundary collocation
analysis are shown in Figure 13. The stress discribution along the upper
tang boundary consists of a uniform tensile stress on the outside tang,

a uniform compressive stress a'nng the center tang and a cosine distribu~-
tion of tangential stress along the top of both tangs. A bilinear
bending stress was assumed along the vertical axis of symmetry.

The numerically generated stress distributions along the upper

tang boundary and vertical axis of symmetry for a/W= 0.5, H=1.0

inch and plane strain condltions are shown in Figures 14 through 19 for

e
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POINT LOAD
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Figure 16. Numerically Generated Stress Distribution Along Vertical
Axis of Symwetry for a/W = 0.5, Center Point of Tangs
Fiked, and Plane Strain Conditious
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selected load and displacement boundary conditions. Figures 14 through
16 show the stress distributions for a point and uniform load with the
center point of each tang fixed in a direction perpendicular to the
direction of loading. TFigures 17 through 19 show the stress distribu-
tions for a point and uniform load with each nodal point along the upper
tang boundary fixed in a direction perpendicular to the direction of
applied load.

As can be seen by referring to Figures 14 and 17, the normal and
tangential stress distribution along the upper tang boundaries caused
by the application of a point load does not change as the displacement
boundary conditions are varied. Figures 15 and 18 show that the
tangential stress distribution along the upper tang boundaries caused
by the application of a uniform load is in fact the only distribution
affected by variation in displacement boundary conditions. Figures 16
and 19 show practically no change in the normal stress distribution along
the vertical axis of symmetry for variation in displacement boundary
conditions.

Comparison of Figures 13, 14 and 17 indicates that the numerically
generated stress distributions for point loading are not in good
agreement with those assumed in the boundary collocation analysis. The
major differences occur iu the norxmal stress distribution along the
upper tang boundary. This difference in stress distribution is respon-
sible for the discrepancies observed in the nondiumensionalized Mode IXI
stress intensity factors determined by numerical techniques and boundary

collocation analysis.
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The stress distributions caused by the application of a uniform
load with all the nodal points along the upper tang boundary fixed, as
shown in Figure 18, were somewhat similar to those assumed in the
boundary collocation analysis, shown in Figure 13. The major difference
in the two distributions is that the numerically generated tangential
stress distribution on the center tang is not a cosine distribution as
assumed in the boundary collocation analysis. Figures 16 and 19 show
that the bending stress along the vertical axils of symmetry for both
point and uniform loading 1s not a simple bilinear distribution as shown
in Figure 13.

Numerically generated stress distributions were also obtained for
other a/W ratios and tang widths resulting in distributions having the
same form but different magnitudes then those shown in this section.
Plane stress conditions were also tried for selected load conditions and
model geometries resulting in no difference in stress d.stributions when
compared to those determined using plane strain cordiiions. The Mode II
stress intensity factors were unaffected by changes in loading and

displacement boundary conditions discussed in this sectiom.

4,4 Initial Angle of Crack Propapgation

The angle of propagation 0 1is defined in Figure 3. DBy use of
the strain energy demsity technique propesed by Sih [5] and discussed
in Chapter II, the angle of propagation was datermined for a/W = 0.5
through 0.8 with H = 1.0 inch . These values are listed in Table IILIL.
These particular values of crack length and specimen tang width were

chosen because the experimental work performed by Jones considered an
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TABLE III

NUMERICALLY PREDICTED INITTIAL ANGLE OF
PROPAGATION FOR SELECTED a/W RATIOS WITH
A TANG WIDTH H = 1.00 INCH ;

a/w THETA 6

A R Sty G e g e

0.5 77°

0.6 17°

0.7 77°
0.8 75°
|




43

a/W .ratio of 0.8 with specimen tang width, H = 1.0 inch . With these
parameters, and notching the model along the plane of the crack, Jones
and Chisholm were able to obtain a straight fracture of the specimen,

8 = 0° . As can be seen from Table III, the strain energy demsity
technique predicts that the initial angle of propagation is 75° for
a/W=0,8 and 77° for a/W=0.5 to 0.7 . The path of the crack was
not invastigated after the initial angle of propagation because of the

amount of computer time necessary to accomplish this.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The effect of crack length and specimen geometry on the Mode II
stress intensity factors for the compact shear fracture specimen shown
in Figure 2 was investigated. Stress intensity factors were generated
by the displacement and strain energy release rate methods and compared
to those determined by boundary collocation. Both numerical and
boundary collocation results obtained for a tang width H = 1.0 inch
show that nondimensionalized Mode 1I stress intensity factors are
constant for this specimen over a wide range of crack lengths. This
configuration of the compact shear fracture specimen will therefore be
most suitable for determining critical Mode II stress intensity factors,
KIIc )

Numerical results for H = 0.5 iach and H = 1.5 inches show
that nondimensionalized Mode II stress intensity facters are not as
stable with increasing crack length as the boundary collocation results
suggest. The stress intensity facters obtained for a tang width
He 1,5 inches are affected by bending of the speciwen, a fact that
was not brought out by the L-undary collocation results. Results for
tang width H = 0.5 inch dindicated that the nondimensionalized Mode 1I
stress intensity factors were iufluenced by applied load for a/W ratios

legs than 0.4 . Because of these nonlinearities, the configuratio.s
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having tang width H = 0.5 inch and H = 1.5 inches are not suitable
tor determining the critical Mode II stress intensity factor, KIIc .
For the crack lengths and specimen geometries investigated, the non-

dimensionalized Mode II stres intensity factors were found to be

independent of the applied load, and uninfluenced by the lower free

PR S o i)

boundary through the intermediate ranges of crack lengths.

? "

Numerical results indicated that the tangential stress along the
upper boundary of the center tang did not follow a cosine distribution
as ass.aed in the boundary collocation analysis. In addition the

numerically determined bending stress distribution along the vertical

axis of symmetry was not found to be the simple bilinear distributioen
which was used in the boundary collocation investigation. Therefore,
incorrect stress boundary conditions assumed in the boundary colloration
anaiysis were responsible for differences observed in the behavior of

the nendimensionalized Mode II stress imtensity factors when numerical

and collocation results are cowpared.
The initial angle of propagation was found numerically to be 77°

for the geometry and crack lengths constdered. This difters from the

VP N

experimental work performed by Jones and Chisholw [1], which showed an
angle of 07 of crack propagation, The angle of 0 might have been the i

result of notching the fracture specimen aloug the plane of the crack,

v bt 1o

The difference between the numerically predicted angle of prepagation
and experimental -esults might not have been so great if it were

possibie to numerically determine the complete trajectoxry of the crack.

RIS RGN S Goiins

This was not done because of the amount of cowputer time involved.
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This study also showed the usefullness of the finite element
method in determining Mode II stress intensity factors, for different
loading conditions and specimen parameters. The accuracy of the finite
element techniques discussed in this investigation was brought out by

the good agreement with a closed form solutiom.

5.2 Recommendations

It is recommended that:

1) An experimental verification of the stress boundary conditions
and Mode Il stress intensity factors predicted by the finite element
techniques used in this investigatién b2 perforied.

2) A verification of the crébk trajectory by experimental ox
numerical techniques, with a notch Introduced into the model for
comparison with the experimental work performed by Jones and Chisholm

be undertaken.
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APPENDIX A

FINITE ELEMENT PROGRAM USED IN THE INVESTIGATION

A.l Finite Element Program

The finite.element program utiiized in this investigation was
SSAP-2 (Static Analysis Program For Solid Structures). A complete
listing of the program as well as a description of the elements and
input to the program is given in the program manual [8]. A brief

description of the plate element used in the study will be given here.

A.2 Isoparametric Elements

A isoparametric element [9] is defined as one where both the
displacement and geometry of the element are described by the same
parameter. This means that the relation between the local and global
coordinate systems as well as the displacement approximation for the
element are given in terms of the same interpolation function. An
interpolatioun function is one that has 4 unit wvalue at one nodal point
and is zero at all others in the element. Two advantages of using
interpolation functions are:

1) If continuity of geometry and displacement boih within and
between adjacent elements are satisfied, compatibility is satisfied in
global coordinates.,

2) If the interpelation function is able to give rigid body

digplacements in the local coordinate system, rigid body displacement

s
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and constant strain are satisfied in the global system., This is
necessary for convergence of the method.

The interpolation functions used in SSAP will now be discussed.
For the quadrilateral element shown in Figures 20 and 21 the local and

global coordinates are related by

and (A.1)

y = I h

Yy s
1=1 11

where the interpolation functions, hi y are given as:

hy = FU-8)1-1) ,
b = & @+ s)(-t)
2 a # ’
1 (A.2)
h3 = Z‘(1+8)(l+t)
and 1 _

where s and t axe defined in Figure 21.
The displacements of the element are written in terms of the

same interpolation functions as follows:

4
ux(S)t) = I h,u
el
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Figure 20. Global Coordinate System Used in SSAP

(o

>

Figure 21. Local Cooxdinate System Used in SSAP
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and

uy(s,t) = ¥ th.u . (A.3)

s e e 1wt ) A

The element strains can now be written as

aux
fxx T Tk izl hi,xuxi ’
3%1 4
€ = = I h, u A,
yy oy =1 by vd @.4
and
axy = oy t R C iil hi,yuxi + iEl hi,xuyi
These equations can be written im matrix form as:
H x 0 ux
1] —
g = a(s,t)u = 0 Hy s (A.5)
$
H H u
Y X A

where u, and 21 are the displacements in the = and y directions,

]

respectively and

H,x = [hl.x hZ,x h3.x hé.x] ?

and ‘ ;

H - 1 \ A, :

Wy (b y P2,y B3y Mgyl o (4.6) §

where p

4

1

. hi.x " hi,a S.x + t1,\: t,x i
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Since the hi are given in terms of the natural coordinates, s and
t , the chain rule must be applied in order to compute the derivatives
in terms of the x and y coordinate system. The result of the

application of the chain rule is shown in matrix form below as:

1
= 3" » (A'7)

s S

,t (4.8)

’8

and

y a % h

,t o] bt Yy -

Now Equations (A.7) aad (A.8) can be used with Equations(A.6) to

determine the strain-displacement matrix of Equation (A.5).

A3 Element Stiffness

The element stiffuness for unit thickness is given as

E-Jang_dA. (A.9)

PP AN

[ SN A




¢ 1s the stress-strain matrix and the integration is performed over the
area of the element. This equation can be written in terms of the

natural coordinate system as
1,1 T
K = J J i caJdsdt .
-1 -1

Standard numerical integration is used to determine K for a given

element.

AJd Total Stiffness Matrix

Once the element stiffnesses have been determined, the total
stiffness matrix is obtained by summing element stiffnesses in the

conventional mannerv,

(A.11)

Brorar = % Xpimanr -

A complete description of the finite element method is given by Desi [9].
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APPENDIX B

CLOSED FORM SOLUTION

B.1 Geometry and Equations

The verification of the finite elzment results was accomplished
by comparison with a closed form solution for a model with geometry and
loading conditions similar to those of the compact sﬁear fracture
specimen being studied. Since a geometry and loading condition that
exactly matched this model was not avallable, a configuration was
considered that would give a lower bound to the finite element results.
The loading, geometry and closed form solution were chosen from a
handbook by Tada [7] and the model is shown in Figure 22. This
configuration was chosen because the loading applied is similar to the
loading on the compact shear fracture specimen, The configuration will
give a lower bound to the problew because it is an infinite strip and
therefore stiffer than the actual plate. The equations for the Mode II

stress intensity factor, KII , are given below:

s 3. a s
where a s a s o %% tanh %% ] a a8
by oy | 1o e e v @D
cosh ETY
el I !
I R _

T e ——
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Figure 22. Center Cracked Infinite Strip Used in Closed Form
Selution
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APPENDIX C

GRID GENERATION

C.i Iatroduction

The mesh generation program utilized in this investigation is a
modified version of one used in SAAS {6]. The modification is in the
element generation subroutine and nodal peoint interpolation. Element
generation was changed in order to generate triangular elements in
reglons of traunsition from course to fine gridding and nodal point

interpolation was modified to make grid reduction possible.

C.2 Input Required

Input into the gridding program will be described by counsidering
the gridding of a plate with a unotch as shown in Figure 23. The
requiremants for gridding a crack problem, without the use of special
crack tip elements, are that a fine grid be placed in the crack tip
vegilou tn accoumodate the high ctress gradient there. Also, in oxder

to save couputer time and storage, a relatively course grid should be

applied at the bcundaries. These two requivements can be accomplished -

by a transition region of triaungular elements. The procedure for
obtaining input data for this program is as follows. Determine what
type of grid pattern is ueeded at the crack tip, using ounly quadra-

lateral elements. This will give a very fine element distribution as

shown in Figure 24, Each horizontal line with the same z-coordinate is

o G ot

RN rominn
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assigned a J Index to identify it, starting with the 2z = 0 line. The
same is done with every vertical line with the same R coordinate, except
these are assigned I indices; therefore, every intersection, nodal point,
has an I,J index to identify it. The transition can now be accomplished
by eliminating sections of J rows and I columns in order to achieve the
desired grid pattern. The only restriction is that a section of
eliminated J row cannot intersect a portion of I column that will be
eliminated because the program will not be able to generate a valid
element. Figure 25 shows a completed grid pattern.

The sequencing of the input data will now be described. A listing
of input data for this problem is given in Figure 26. The first three
cards are control cards and are described in the manual for SAAS and
the control data for the finite element program has been eliminated.

The cards and formating are described below,

Title Card
Describe grid pattern
Format (8Al10)

Columns 1-60 Title

Job Control Card

Format (12, I3, 15, I2, I3, 515, I3, 12, 2I5, 15.0, 315)
Columns 3-5 Start paraueter

= 1 Fresh set of data
Coluun. 6-10 Stop parameter

= 1 Stop after mesh generation

= 33 Punch mesh data on cards

me—" T T

PREIRP WS e




61

(1,12)

(i,11)

(1,3)

(1,2)

—s
(1,1) (2,1) (4,1) (8,1) ao, ) (1) R

Figure 25. Completed Crid Pattern for Notched Plate
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SAMPLE 'PROBLEM: NCTCHED PLATE

1 1
490
1
é
4
8

10
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2+500
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Figure 26.

1 1 1
1
0.0 0.0 1
1.000 0.0 1
24000 0.0 1
3.000 0.0 1
4000 0.0 1
5,000 0.0 1
0.0 0.0 -l
0.0 2,000 1
0.0 4000 1
0.0 §,000 1
12 5 6 6 7

3 7 11 i
0 3.000

4 8

3 9

4 8

¢ 8

3 9

& 8

3 131

3 12

3 12

3 11

5 3

i 11 1 12

Listing of Input to Grid Generation Program for
Notched Plate :

NN
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Columns 21-25 Finite element mesh generation parameter
# 0 Generate mesh using line segment data
= 0 Mesh data read from cards

Columns 26-30 Temperature field
= 0 Must be set equzl to zero

Columns 31-34 Number of materials (6 maximum)

These are the only parameters needed to generate a mesh, the rest can

be set equal to zero.

Mesh Genaration Card

Format (415, 2F10.0, 2I5)

Columns 1-5 Number of line segment cards. The actual number
of cards may be less than this, as long as a line
segment terminator card follows them.

Columns 11-15 Number of material assignment cards

Line Sepment Cards

They describe the boundary of the model.

Format (213, 2F8.3, 15)

Columns 1-3 X2 (or Il if this is the first card)
I - index of point ;
Columns 4-6 J2 (or J1 if fivrst card)

J = index of point

Columns 7-14 R2 R coordinate of point

Columns 15-22 Z2 Z coordiunate of point
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Columns 45-49 IPTION Integer value that determines type of line

segment
IPTION Description of Line Segment
-1 Jump to this point from last, no mesh data will be

generated and no line will connect the points.

0 Same as -1 except a line will be drawn between points.
1 Connect last point specified on preceding card to
this one and interpolate into equal parts as

specified by I, J data.

Line Segment Terminator Card

Format (I3)

Columns 2-3 = -] Signals end of line segment cards. Must be

[y

included if number of line segment cards is

less than number specified on mesh genera-

o v i

tion card.

= =2 The program was modified to f£ix the nodal
points of each vertical line in the same
positicn, same 2 coordinate, as specified

on the external boundary liune,

Internal Nodal Point Generation
If -2 is specified on the line segment teruminator card, the

program has been modified to fix the Z coovdinate of the internal nodal

points to those specified on the external boundary. 1f this option is
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specified, it is only necessary to specify the positions of ncdal points
on two external boundaries. For example, the boundaries with the Z and

R coordinates of zero.

First Card Format (1615)

Columns 1-5 IBMAX-the I index of the last column on which
nodal points will be fixed.

Columns 6-10 JBMAX-the J index of the last row on which
nodal points will be fixed.

Columns 11-15 NUMJ-the number of J indices to be read in on
the following card.

Columns 16-20 ICT-1 index of the column passing through the
center of the crack.

Columns 21-25 JCT-JCT is set equal to ICT.

Columns 26-30 JCMAX~J index of crack tip.
Second Card Format (16I5) - This card contains the J
indices, in sequential order, specified on the

boundary with Z coordinate of zero.

A Blaunk Card Must Appear Here

Shift Axis Card

If coordinate axis are to be woved from the position specified on

line segment card, the move can be made with this card. ILf change is

not necessary, leave blank. Format (2F10.0).
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Columns 1-10 R shift-shift in R coordinate.
Columns 11-20 Z shift~shift in Z coordinate.
The following data is needed to instruct the program how to

perform the transition from course to fine grid.

J Omit Card

Specified the number of J rows which will have segments omitted.

Format (I5) JOMAX

J Segment Cards

Specifies segment of J row that is to be included. Cards must
be in sequential order starting from lowest J-index.

Format (315)

Columns 1-5 JOMIT J index of ‘ow which segments are to
be omitted,
Columns 6-10 MSTART I iudex of flrst nodal point, with

J indax JOMIT that is to be included.
Columns 11-15 MSTOP I index of last nodal point, with J

index JOMIT that is to be included.

1 OMIT Cards
Specifies the number of I columns which will have seguents

omitted.

Format (15) 10MAX
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I Segment Cards

Specifies segment of the I column which is to be included in the

grid pattern. Cards must be in sequential order starting with lowest

I index.

of the

Format (3I5)

Columns 1-5 IOMIT I index of column which segments are
to be omitted.

Columns 6-10 LSTART J index of first nodal point, with
I index of IOMIT that 1s to be
included.

Columns 11-15 LSTOP J index of last nodal point, with I

‘index of IOMIT that is to be included.

Expansion Parameter Card

The information on this card signifies the beginning and the end
fine gridding in the crack tip reglon, in terms of the J index.
Format (315)

Columns 1~5 IEXPAN The J index of the row following the
last JOMIT index specified in the J
segment data.

Columns 6-10 LIBXD I index of a node point which tells
the program that after this point is
passed it is to begin generating
triangular eleuents when the nodal
points are in the correct formation.

This point is directly below the




Columas 11-15
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crack £ip and in the row with a J-

index one less than the first JOMIT

index specified in the J segment data.
JJEXP J index of the nodal point described

in IIEXP.

Material Block Assignment

Each card assigns a material number to a block of elements

defined by I-J data.

The number of cards must agree with the number

specified in columns 11-15 of mesh control data card.

Format (5I5)
Colwumns 1-3
Columns 6-10
Columns 11-15
Columns 16-20

Columns 21-25

Material definition number
Minimum I
Maximum 1
Mininum J

Maximum J

RS TRE RIS S )

e e et
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C MAIN PROGRAM
CHOBADRRRODRROBRDANRADBORRAIRORONDRD IR RIRD RO BB RERBLGGBRDBRURRRDBBEHOO QDY
C SAAS IlIs FINITE ELEMENT STRESS ANALYSIS OF AXISYMMETRIC AND PLANE
¢ SQLIOS WITH CIFFERENT URTHOTROPICs TEMPERATURE-DEFPENDENT MATERIAL
C PRCPERTIES IN TENSION AND COMPRESSION INCLUDING THE EFFECTS OF

C INTERNAL PORE FLUIC PRESSUKES AND THERMAL STRESSES.

CREVUBHORDBNIRDRBBADRIIDRERTDDRRBH RO DR OREDROE B RO R RDOR DR RN RA R BD R OB BBEDOD
COMMON/BASIC/NUMMP g NUMEL ¢y NUMPC -NUMSCoACELZ9sANGVEL 9 TREFsVOLIFREQ
COVMON/NPRDATA/R(1000) +CODE(1000) o XR(1000)92(1000)9X2(1000)+7(1000}
UOLBLE PRECISION CRZ+XIuwRReZZ9SeRRR¢222
CONMON/ELDATA/ZIX(100095) +EPR(1I000) +ALPHA{1000)+PST(1000}
COVMON/SOLVE/NCODE (309100) oNMUMTC
COMMON/TO/IMINCION) o IMAX(LU0) s JMIN(30) s JMAX (201 oMAXT yMAXJ o NMTL 9 NBC

1 sMINI ¢ MINY

COMMON /0MG4/ ISTOF

CUMMON/ZLC2/ KPyRP(250) 9ZP(250)

CONMON/ZJEM/NCHCy TMIV(30) o IMAV(30) o JMIV(30) »JMAV (30)

COMMUON/ONGS/ JSTOP .

INTEGER TITLE(20)
COUDNDIRNVDRRENAANI RN PN BORO LR R ARN BB RRRNRNCROIOREIRDRG DRI HOBBRNOUD
< READ AND wRITE INRLT DATA CARD IMAGES FOR ALL CASES
CRUBRDIBIRBRDDRAIVERHRODURRBROR PSRN RODDDRODRUDOIDRBHO DRI BIODOVIBO LRSS IS

JSTOP=Y

200 CONTINUE

CALL DATYTA
ZFORCE = 0.0
ELMASYS = 0,0

VOLMu0,.0
CHNBIORRUIRONORRENE PRI BRRBDR VN RERRRRORDRBNENPN LRI RUDRNODOBOUEDRBOIRNOO P
C READ AND wRITE CONYROL INFORMATION
CRROUIRRRIEDERNIRININIROURNGIREIVNRNBORNBRIR PO IRRRRPIRVOBURREARINNBOO WY

READ(9+1000) TITLEWNPRYISTART2ISTOPIDEF+IPLOToNNLAIMESHINUMTYC

1 NEPORFR oM UMMAT ¢ NUMP Gy NUMSC o TREF ¢NTCA» IFREQ
2 r JBPLTyNUNNP Y NUNE L
WRITE (092000) {TITLECI) 01310180

1 ISTARY JISTOP 2 IDGF ¢ IPLOY o NNLAS IMESH
1 NUNTC « NFORPR A UNMAT ¢ NUKPL o NURSC o TREF
2 «18PLY
(OO RIEARIPAICSHERASHOLNANRS0ONNDINDIFNNINRINVERERRRICHNERAOEHNGIDONCRNC
¢ GEMERATE FINITE ELEMENT MESH

I YT TR Y T P Y T Y T T T P Y TR VY TY T YT ST PPy Py YT T 7Y Y Py Y
dlb  CALL MESH

c

¢ INITIALLLE

c
COB0INERENRIERIARNERNNINEHINNINEINGUNISRIRRERIETROGUIEIIVURODOEIRPEROOY
¢ REQD AND WRIYE NOOAL POINT AND ELEMENT DATA

CroonudaedesnniaeeiesriteeltnetIdoutonedeeoeadeslianesdutencossdnicsscastd
225 CALL POINTS
CRrUrastneeienedasaueotieneteoialoodasstecedlodaianondeeelineeseninesssdd

C QUTPUT ELEMENT DATa

CRRBBVNBARNCVONGQRINNIRNOBRRHNNVNCOGRLRNNNNQGUSIDRNORNIVVENNEEIOBINBEOOHOREG

PRINT 3100

HPEINTa(

D0 350 Nmw],NLMEL

1F (NPRINT(NE0)GO YO 300

R S SR T e JU PO

L S 0
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WRITE(692008)
MPRINT®S0
300 MPRINTEMPRINTe]
NSTRSS=20
THICK=0,281
350 WAITE(6¢2009) No (IX(NoI)sI®145) sALPHA{IN)} o T(N) oPST(N) +NSTRSSsTHICK
IF( ISTGP (NEs 33 ) GO TO 362
DO 360 NPUNB]yNUMEL
PUNCH 3002sNFUNs (X (NPUNsI)o181¢5) sNSTRSSsTHICK
360 CONTINUE !
D0 361 NP=lghUMNP ;
PUNCH 3200¢NPoR (NP) 9 Z (NP) )
361 COANTINUE
362 CONTINUE
370 IF(ISTUR.EQ«l+OR,ISTOP,EQ.11)G0 TO 910
910 IF( NPP «NEs 0 ) GC TO 200
IF t IsTOP EQ. 1 ) GU TO 200
IF { IFREG +EQe 0 ) GO TO 200
¢ SUNM THE ELEMENTS OF THE Z=UIRECTION BOUNDARY FQRCE MATRIX
00 905 IFOR s)oNUMAP
805 ZFCRCE ® ZFORCE « XZ(IFOR)
ZFORCE = ZFQRCE « 2, * 3,1415927
ELMASS & ELNASS/2.0
WEIGHY = ELVASS®#12,0932,17
GFORCEL = EUNASS®ACELZ
ELMASS ® EUNASS®#12,0
WRITE (6¢3000) ELMASS
WRITE (6¢300)) 2FORCE
WRITE{693003)WELGET
WAITE (6+3004) GFORCE
G0 TO 290

C
1000 FORMAT (208447
1 1201301593 20134315053¢12+42150F5.00615)
1001 FOBHAY (4F10.0)

€000 FORMAT(IH1¢15A40/s

J3H0 STARY PARAMETERwwmevnnwwoswunny s/

33H0  STOP FARAMETERewwewsacnavenvu=y [4y/

33M0 IF 3 PLOT CEFLECYIUNS y1dy/

32H0  XF 1y SHALL PLOT. IF 2 LARGE./

33HD  PLOT. OTHERWISE NO PLOT.wecmuuydp/

33H0 NUNBER OF APPROXINATIONSwwwwwurldy/

33H0 IF 1y GENERATE MESH»muwwwewaaw;lds/

33H0  NUMBER OF YEMPERATURE CARDSewwylée/

33H0 NUMBER UF MATERIALS=wumwwmeumwwe 9édy/

JAH0  NUMBER OF EXTERNAL PRESSURESwolbe/

3IH0  NUMBER OF SHEAR CARDSewswumaaryliy/

33H0  REFERENCE TENPERATUREwwewswwsuyEi2.40/

33HO BOUNDARY PLCT OPTION vi&e2/)

200) FORRAT (77H A FUNDAMENTAL FREQUENCY WILL BE CONRUTED, A LONGER RUNM
1 TINE wlLi HE OBSEAVED/B0H DUE TO THE NEED TO RECOMPUTE EACH ELEME
eNT STIFANESS MATRIX IN SUBROUTINE 5HTRESS)

2002 FORMAY (24K THE ANGULAR VELOCITY 15+E1244+/731H AND THE ANIAL ACCEL
LERATION IS +EL2ed) _

2003 FORMAT (23N THE R ACCELERAYION 1S ¢E12.4/27TH AND THE 2 ACCELERATIU
IN IS sL1248)

~NOUNLWET OO W
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2004 FORMAT (//42F THE PLANE STRAIN OPTION HAS BEEN SELECTED)
2005 FONMAT (//423F THE PLANE STRESS OPTION HAS BEEN SELECTED)
2008 FORMAT (8gH1 EL I J K L MATERIAL  ANGLE  TEMPERATURE
1 PRESSURE PRINT THICKNESS )
2009 FORMAT (1544149 18sF11e292F13,345X915:5X¢F1044)
2013 FORMAT (30H1 PRESSURE BOUNDARY CONDITIONS)
2015 FORMAT (27H]1 SHEAR BOUNDARY CONDITIONS)
2020 FORMAT (/29M THE PROCEDURE CONVERGED IN +12+34H TENSION = COMPRES
1SICN ITERATICNS )
2021 FORMAT (/36H THE FROCEDURE DID NOT CONVERGE IN »12433M TENSION =
1COMPRESSION ITERATIONS)
2022 FONRMAT (/29N THE PROCEDURE CONVERGED IN »12+30M NONLINEAR ELASTIC
1 ITERATIONS )
2023 FORMAT (/36N THE PROCEDURE DID NOT CONVERGE IN +12930H NONLINEAR
1ELASTIC ITERATIONS )
2030 FORMAT (/51W  NUMBER OF TENSION=COMPRESSION APPROXIMATIONSwewme,
1 1827)
3000 FORMAT(1M o//010Xy 4NMASS220(2Hes) sE2041493XsSHSLUGS)
20040 FORMAT{LH +/930Xe3SHAXTAL FORCE DUE TO NORMAL STRESSESs/»10Xs
1 4ONSHEAR STRESSESa AND CONCENTRATED RADIALe /»
21H 2 10Re 16HAND AXIAL FORCES +14(2Huay)s E2041493X%43NLBF)
3003 FORMAT(IH 5/910Xy GHWEIGHT919(2Hee)y E2041493Xy 3IHLSBF)
3004 FORMATIIN o/010Xe20KARIAL INERTIAL FORCE v12(8hes}sE20e1643X,

1 3rLBF)
3002 FORMAT(615+20Xe15+5XsF1044)
3100 FORMAT(INM 1ZHELEMENT DATA)

3200 FORMAT (]5440%¢2F10,4)
ENG

B e S N N A I

e By e Xt s o




72

MESH== THIS ROUTINE GENERATES THE MESH GIVEN LINE SEGMENT INPUT
SUBROUTINE MESH

COANNRIRIDREDONRGOABDDRRERRNRBERRBRRRBROR BRI BT RR BB DN G REL RN RRE BB RN RSO
NCOCE(I+J) FOR BOUNDARY DEFINITION PQINTS
FOR INTERPOLATED BOUNDARY POINTS
FOR INTERPGLATED INTERIOR POINTS
FOR EXTERIOKR POINTS
FOR VOID POINTS
0 FCR SINGLE POINTS
1 FCR STRAIGHT LINES
2 PCR INTERNAL DIAGONAL
3 FCR 3=PCINT ARC
4
5
6

]
n & e

IPTION =

FCR 2 PCINT o CENTER ARC

FCR 2 PCINT o NADIUS ARC(INITIALIZATION ONLY)

FCR 2 PCINT ¢ RADIUS ARC

XTI T LT YT YY S YT Y LY T T RVY YOt T TYTT TT Y Y LT LY T YT YT LT YT Y S Py e ey

Hun&HH

¢
c
¢
C
Y
C
C
C
C
c
C
C
¢

COMMON/TDAIMINCLO0) o IMAX(100) o MIN{30) o JMAX(I0) sMAXTIMAXJ o NMTL «NBC
1 sMINIoMIAY

CONMON/NPQATA/R(1000)+CODE(L1000) +XR{1000)92(10C0) X 1i000)eT(1000!

COMMON/ELDATAZIX(100095) +EFR(1000) +ALPHACL1000)¢PST(1000)

COMMON/LC2/ KPoRP(280)22P(250)

COPMUN/BSAS IC/NUMNP ¢ NUMEL s NUMPC ¢ NUMSC o ACEL 2+ ANJVEL ¢ TREF S VOL ¢ IFREQ

CONMON/OMG4/ISTOP

CUFMON/JEN/NCHCo IMIVI30) » IMAVII0) ¢ UNIV(30) s JdMAV(30)

CONMON/SOLVE/NGCODE {300100) o+NUMTC

DIMENSION AR{30+100)9+AZ(30»100)

DIMENSION gJB(20)

EQUIVALENCE (R {1 +AR (1o 1)) 2 (2811082101}
CQOQQ'Oé!i’.'#'.ﬁil&ﬂit.d..0000'000.000.&0!3&0000"“06‘00"*&6!%0QOQ008.
€ MESH CUNTROL INFORNMATIUN
CQQ.QQOI!000.“0...0‘.00090000..ﬁ.QQOQQQ*QGQﬂEQOOOQQQOQhO&O.QCOOQ.OO‘G096

READ (¥9e1000)NSEG#NBCoNMTLINLIMeCONTWCONY o ISETyJSET

WRITE (602000 )INSEGeNBCeNMTLoNLIMeCONY o CONG 2 ISETJSET
C066009&00.00@0‘.0!06.Q.OO..O..Q.OOOQOCO“0.0'OQ&GQGQQ50'006‘#6.0&0{000..
¢ INITIALLZE
C000‘0850Q0.0!!‘00.0006.‘.0‘0.0*0000“.‘00000&0.0'.GOO..OCOO.Q.QQOOOO0.0‘

Kita )

1S5€629

PIvd, 1615927

1lx}

1m0

DO 110 uwlel00

00 2100 Iwlqdy

NCCOE (Ll od)wi

AR{Ley)wD,

100 A2(3sy) 20,
ININ(J) =30
130 IMAR(J)®0
D0 120 Ywl,30
JRAX (1) 20
120 JNIN{YI®l00
C!OO.QIQ!.OQ'QUQOQ.Q.QC‘!'0.00.'.0.."'0‘0000OiQQOOQOOQOOO.QOCIOQOOQI000
< LINE SLOMENT CARDS
CROUeBRIBINUNBNICUSRANNLRICRRVNOLRIVLINON NSRBI DINN RGN RDIRORD®
PRINY 200!

e e 5]
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aee

250
249

5000

252

253

254

READ(9+1001)120J2vR2s22
IPTION=]

PRINT 2008

PRINT 2010+s129vJ29R2422
JSEG=ISEGe]

I1s12

Jiaye

RlsR2

ilsl2

AR(ILevl)=R])
AZ(Ileul) w2l

RP(KP) =R}l

IFLEPTIONGLT«0)RP(1:P) awR]

P (KP)=nZ]

KPaXPeol

NOUDE (Ilsylin}
CALL MNIMX(Ilsudl)

IF (ISEG.EQ.NSEG) 6( TO 500

IF(IC «EQ. 1 ) GO YO 249

READ(De20G ) T29JReR29Z23149U3¢RI9ZI4IPVION
IF(I2oNEe ~24AND.ICEQ.0) GO TO 281

IF(I2.NE. «2) GO T¢ 282

READ(9+5000) JBMAX)JBNAKsNUMJe ICT e uCY o uCRAX

FORNAY (16]5)

READ(2s5000) (JJB M) sNa) oNUNY)

II91ls}
vzl

la=1}
JasduB (i}
H2sAR(I2+1)
Z2uAZ (142}
IPTIONSw}
I3x0

J3=0
R3e0.0
23wd.0

10}

$5O TO 8%

IF{12 OV, I8MAX )} GO TO 25%
IFtudetleJBHARX) GO TO 253

Jdadided
121}
Ja8wE {U)

IF(12.GEeECToAND o I24LE o JCY v AND @24 GT 4 JCHAX) GO TO 253

IPTIUNSY
GO Y0 254
Ilniiei
ANT 3
fam)y

IFL12.0T. IBYAK) OC YO 285

WL NNCTRY)
IPTIONS-)
R2mAR(12¢))
Z2xAZ (1992)

iCaj
GO0 YO &51
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285 IC=0
[23=]
G0 TO 251
251 IF(I2 +Ed. =] } GO TO 500
IF(IPTIONLLT.0)G60 TO 130
WRITE{6+2010)12¢J2sR2+22+13sJ3+sRIeZ3HIPTION
IPTIONSIPTIQON«)
GO TO { 2001300930093469346:346+346) 4 IPTION
W L R L Ty e Yy N Ll ey

C GENERATE STRAIGHT LINES GN BOUNDARY
(AL AR A LR AR LI AT L LIS VT L LT LT TR TLLLRT T TR EEE TR PR R LI eL
300 DI=ABS(FLOAT(I2«1I1))
OJ=ABS (FLOAT (U2=dl})
ISTRT={}
ISTP=12
JSTKT=U)
WSTPeyZ
DIFF=AMAKX]L (DI+DJ)
ITER=DIFFel.
IINC=0
JInCeQ
IFtI2.NEeIl) TINC=(I2=11)/IABS({I2«I})
IF(J2.NEWsyl) JINCa(J2=yl)/IABS(J2=J])
KARPA=|
IF(I24NEeT1laANDeJ24NEeJ1+sANDIPTION,NEL3) KAPPASZ
IF (KAPPACEQs2) DIFF=2e4DIFF
RINCE (R2=R]1)/DIFF
{INC=(22=21) /DIFF
WRITE (642002) DIsOueDIFFyRINCIZINCOITERSIINCoJINCIKAPPA

CHECK FOR INFUT ERROR

aono

IF(IPTION,EQe3 oAND,DILNE.DJ) GO TO 310

IF (KAPPAJNE+2,0R.DIEW,DJ) GO TO 320
310 WRITE(692003)

G0 TO 200

INTERPULATE

[aNoN ol

J2o I=ll
Jagl
WRITE (692006)
WRITE(6e2004)
0O 340 M=1,ITER
IF(ITERCEQeO0eANDSIPTIONLEGS2)GO TO 345
IF (KAPPAGEQZ) GO TO 330
IQLD=]
I=sl+1INC
JOLDay
Jay*JINC
AR(TsJ)=AR(TCLDsJOALD) ¢RINC
AZ (1+J)BAZ{ICLO»JOLD) *+ZINC
WRITE(692008) IedoaR(Igd) sAZ(Yyd)
CALL MNIMX(Iesd)
IF (NCOVE(I9J) «NEo&, WRITE(6+2100) Loy
NOGDE (IsJ) a2




330

340
345

346
4001

75

GO TO 340

I0L0=]

I=l¢IINC

AR(IoJ)}3AR(ICLDeJ) ¢RINC
AZ(IsJ)=AZ{ICLOsJ) ¢ZINC

WRITE (692005) IeJsAR(I9J)sAZ(IyJ}
IF (NCODE(IoJ) eNES4)WRITE (692100319
NQCDE(IsJ) =2

CALL MNIMX({Ied}

JOLD=J

Jay+JINC

AR{I»J)=AR(I+JOLD) ¢RINC

AZ (1o} EAZ (14 JULD)+ZINC

IF (NCOUE(14J) oNEL4IWRITE(692100) Iy
NQGDE (Iyv)=2

WRITE(6+2005) IsJsAR(I9d)sARZ{Ypd)
CALL MNIMX(Isd)

CUhTINUE

IF (KAPPAEGeLl) GO TO 200

IaLD=l

I=I+]INC

AR(I9oJ)=AR(TVCLUsJ) +RINC
AZ(Tsd)=AZ(ICLDsJ)+ZINC
IF(NCOUE(TIsJ) «NEL4IWRITE(692100) 10
NOCDE (IsJ) &2

WRITE(6¢2005) IsJdsAR(LeJ)sAZ(I0J)
CALL MNIMX(IsJ}

GO TO 200

HRITE (6e4001L)

FORMAT (001 renus INPUT ERROR wewaVALUE OF IPTION GREATER THEN 1
t{==ewaE XECUTICN TERNINATED®)

STCP

CRUBUDBERRSSDRRDRDE SR DO %Y BREGOREDDRBRRBRBDRGRRDRERR RN R PR R RECBIRRR SRR

500

503

507

MAXI=Q

MAXJ=(

MINIE30

MINUS1U0

00 503 I=1,30

IF CJMAX(T) sGT o MAXJ) MAXUBJMAX (T}
IFAUMINCI) LT o MINJIMINJuUMIN(I)
CONTINUE

00 507 y=l9100
IF(IMAX({J) o GT«MAXI)MAXIZIMAX (J)
IFCIMIN(U) LT MINIIMINI=IMIN(J)
CONTINUE

READ (S91000)NONC

IF (NUHC,EQ,0)G0 TO 511

WRITE (648500}

00 508 NO=]#NOHC

READ (998000) IMIsINAOUMIoUMA
WRITE(6s8000)IMIeINAIJMIsUMA
IMIVINU)=IM]

IMAV (NU)=IMA

JMIVINU)syM]

JMAV (NU) = MA

DO 508 JsJMIsUMA

i SR e e e . ae e =

o
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OC 508 I=IMIsIMA
508 NOCOE(lsu)=§
8000 FORMAT(415)
8500 FOKMAT(1HOe ZOHVOID SPECIFICATIONS 4/
l €lh  INI IMA UMD JUMaA )
IF (NUHCLLE.30)GO TC 511
WRITE (6+9000)
9000 FOKMAT(33Mou###ERRCR*###TOU MANY VOID CARDS)

STCP
CHURN AR AN B BRI BB R AR B BB R BRI DI R BB B B R B R BRI B RR DR D U TR R P E D RO G G IR DO H G BYE
¢ CALCULATE COCRDINATES OF INTERIOR POINTS

Cwﬁ#ﬁ#*ﬁ“####ﬂﬁdﬁ#‘0“Q%Qi&%'“ﬂdﬂ#ﬁﬁ#*ﬁ&ﬁﬂﬁ#“““ﬁ&““ﬂ#“ﬁ“ﬁﬂ#“#ﬁ&ﬁ###ﬁ“ﬁ#“”

bll IF ( MAXIel JLEs 2 ) GO YO 530
IlaMINIe]
12aMAX]I=1
IF(NLIM.LT, 1) NLIM = 100
DO 520 N=lysNLIM
RESID:U.
00 510 I=Ilel2
JIAJUMIN(I) ]
J2aJMAA(I) =]
00 510 vayleu2
KOCE=NCODE (Isy)
G0 TO{510+510+509+5064510) vKQDE
506 NQCDE(IyJ)a3
509 DR‘(AR(I‘I!J)°AR(I'l’d)OAR(I|J0l)*AR(I¢J'1))/4.'AR(IOJ)
1 ¢CONI # (AR(Ie¢lsy) = AR(I=1sJ)}/FLOAT (B (I«ISET))
2 ¢+ CONu ® (AR(IsJe], = AR(Isd=1)) 7/ FLOAT (8% (JeJUSET))
DZ=(AZ(I*I.J)*AZ(I-IOJ)+AZ(I'J*1)*AZ(IOJ'I))/4.-AZ(IQJJ
1 + CONU # (Ad(Iyuel) = AZ(Isy=1))/FLOAT (8% (J+JSET))
2 ¢+ CUNL # (A2(I¢lpy) = AZ(I=19J)) /7 FLOAT(B8%(I+ISET))
RESID=KESID+ABS (DR) +ABS (DZ)
AR(I+J)BAR(IsJ) ¢1.84DR
AZ(lyJ)sAZ(I9J)ole80D2
§10 CONTINUE
IF(NeEWL1) RES1=RESID
IF(NoEWsl s ANCSRESILEW,0) GO TO 530
IF(RESID/RES1eLTol E=4) GO TO 530
5§20 CONTINUVE
€30 WRITE(652009) N
KPaKPe]
600 CONTINUE
999 WRITE(6+4000)
4000 FOWRMAT(IH o OHEND MESH )
C*0*ﬂﬁﬁﬂ#QOQ“QQ&#GQQ*OQGGOQQ§¢¢QG¢Q““Q&"WQQﬁ'“'ﬁﬂ*&dﬁﬂ’lﬁﬂ*ﬂ.lﬁOiQQQQ'“
C06“!#.0&&0“'&0000!0.'6‘!QQ“QQ*'OGQQQQQOO“ﬂ*l“O#6QﬂﬁiiiQdﬁﬁﬁﬁl‘OOﬂihﬁiﬁﬁ

c

1000 FORMAT (415, 2F10,09315)

1001 FORMAT (2(213+2F843)+¢15)

2000 FORMAT (30Kl MESH GENERATION INFORMATION//
4l1H) NUMBEF OF LINE SEGMENT CARDSeceeswamee,]3,/
41HG NUMBER QF BCUNDARY CONDITION CARDSwesumyl3s/
41H0  NUMBER QF MATERIAL BLOCK CARDSewvesmee,l3,/
41H0 NUMBER OF BCUNDARY CONDITION CARDSwwwwg¢]34/
41H0  NUMBEF (F MATERIAL BLOCK CARDS=eweswea,3,/
41HQ NUMBEF OF I7ERATIONS---.--D-u--...-o--.13'/

VLR eSw




17

7 4l1H0 POLAR COORDINATE PARKAMETER Jecewcvaom=yfl2,44/
8 41H0 POLAR COQRDINATE PARAMETER JmewecoammeyE1Z2,44/
9 4lHO I CURVATURE MODIFICATIONwwecmmmecccnmswuy]3,/

1 4140  J CURVATURE MODIFICATIONwewcacvcvenmn=,134///)

2001 FOWMAT(lHOs 81N IAPUT I J R Z Iz Je2 Rz
12 IPTION )
2002 FORMAT(1M s SK DI=2sF4,0y SH DJ=sF4,0s 7TH DIFF=:F640s
1 TH  RINCEsFH,3s TH ZINC®¢FB843s7H ITERz,13,
2 TH  TINC®sI3, TH JINC=¢I.jsy B8H KAPPAs,12)
2003 FORMAT (1Xs38H##BAD INPUTe=T:iS LINE IS NOT DIAGONAL)
2004 FORMAT (30h ! v AR AZ)

2005 FORMAT (21542F10,3)

2006 FORMAT (51k %% BAD INPUT = THESE POINTS DO NOT DEFINE A CIRCLEs/»

13X96F1de09104+2E20,8)
€007 FORMAT(IK 4y 1M CENTER COORDINATE (sFB8e3slHesF8.391H))
2008 FOHMAT(1IH o TH ANGLIE¢F9.697H ANG2=9F9.697TH DIFF=¢F340s
1 9H DELPHI=sF9uE)
2009 FOKMMAT(ln0s -30H CCORDINATES CALCULATED AFTER 413
1 110 ITERATIONS )
€010 FORMAT(TX42(214+2F8.3)016)

2100 FORMAT (B4ponasawARNING#ewwe NODAL POINT WITH (Iesd) COORDINATES (9

1 I12v1Hee12¢é1H) HAS BEEN RE«DEFINED)
3000 FORMAT(1615)
3100 FORMAT (2E15.84110)
3200 FORMAT(BF10¢E}

RETURN
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POINTS== THIS RCUTINE ASSIGNS MATERIALSs TEMPERATURES, ETC,
SUBROUTINE RCINTS

CONMON/BASIC/NUMNP'NUMEL'NUMPCoNUMSC»ACELZOANGVELoTREFoVOLoIFREQ
COPNON/NPDAIA/R(IOOO)’CODE(IOOO)9XR(1000)02(1000)vXZ(lOOO)oT(lOOO)
CONHON/ELDAT&/IX(IOOO!S)vEPR(lOOO)|ALPHA(1000).PST(1000)

OOUBLE PRECISION XsYsTEM

COMMON/SOLVE/NCODE (30+100) sNUMTC
COPNON/TD/IMIN(IOO)oINAX(IOO)GJNIN(303oJNAX(30)rNAXInMAdeN“TLoNBC
1 sMINIsMINY

COMMON/PLANE/NPR
CONMMON/JUEH/NCHCy IMIV(30) s IMAV(30) 9 JMIV(30) + JMAV (30)

COMMON/OHG4/ ISTOP

OIMENSION AR{30+100)9AZ(309100) 9yMATRIL(2045) +BLKANG(20)

OIMENSION IORDER(304100)

DIVENSION JONMIT(40) nMSTART (40) ¢NSTOP (40)

DIMENSION IOMIT(40)sLSTART(40)+LSTOP(40)

DATA IURDER,3000%0/

EQUIVALENCE (R(1)9AR(1s1))0(2(1)sAZ(1s1))

CHRRORRGHNORIRRGRGH IR OO RN RERPLBOBI R BDEGH LR R DBRRB RO R BRGNP R BN RPN OB B

4999
50900
5001
7

5004

6

90

91

92
93

95
96

READ(9+4999) RSMIF4ZSHIF

FORMAT (2F1040) N
READ(9+5000) JOMAX
FORMAT (15)

DO 7 Uu=l,JONAKX
READ(9+5001) JOMIT(JO) s MSTART(JO) e MSTOP (U0}
FOKMAT (315)

CONTINVE

READ(995004) 10MAX

FORMAT (1I5)

00 6 Iu=),I0NAK

READ(995001) JOMIT(I0)9LSTART(I0)sLSTOP(I0)
READ(9+5001) IEXPANSIIEXPJJEXP
NRasQ

Jo= g

00 120 JaMINy¢MAXY

IF( J oEQe JOMIT(JO) ) GO TO 90
NSTART®IMIN (i )

NSTOP=IMAX (J)

GO TO v}

NSTARTSMSTART (J0)
NSTORP=MSTOP (4 0)

JosJlel

lo=)

00 120 I=sNSTART¢NSTOP
IOKQER (I vy} =0

IF (NCOVE(TIoJ) «EQ44) GO TO 120
IF(I«NELIONMIT(10)) GO TO 96
IF(JeLEoLSTOF(I0) ) GO TO 92

G0 TO 93

IF{J +GE. LSTARY(10) ) GO TO 95
I108)0e}

G0 TO 120

10s10e]

NPaNPe]

RONPYSAR( L)




120
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Z(NP)SAZ(Iyd)
IORDER(Isy) 2NP
CONTINUE
NUNNP=NP

CHNONDDRBUD RN R RRDRBRRERERRRBRRRRRRRGRRRBRIRRBRRRERRERDRR DR R BB

¢

READ AND ASSIGN BOUNDARY COWDITIONS

CHUBEDRBFRRPCHERDRBRBBRDRRRRRIRRBRRBRRPERRIRBRFRRIRRBRREIRER GG BBRERBD BB

C
C

150

200

alo
220

2és

226

254
287

285
256

230

INITIALILE

DO 150 I=1,41000

T(1)=0.0

PST(I1)=0.0

DO 200 I=1.MUMNP

CoLE(1)=0,

IF(H{I) sEQeUe o ANDWNPPsEQLD) CODE(I) = 1.
XR(I)=U,

XZ(1)=0,

CONTINUE

IF(NHC.EW,0) 60 TO 220

DO 210 IECON=lyNBC

READ(9+1002) TI1l9I20519J2sCONsRCONOZCON
00 210 I=li.l2

00 210 J=Jlew2

NP JORDER (I #y)

COCE {nNM)=CON

AR (NP} =RCON

XKZINP)3ZCON

MPRINT=(Q

PRINT 1300 4NUMNP

NPz ()

Jos]

DO @40 JaMINy ¢ MAXJ

IFC U +EQ. JOMIT(JO) ) 6Q TOQ 225
NSTART=IMIN ()

NSTUPEIMAX (J)

G0 T0 e26

NSTART=MSYART (JU)
NSTOP=MSTOP {-.¢")

J0aj0e]

10w}

DO 240 I=NSTARTINSTOPR

IF ( NCODE(IsJ) +EG, 4 ) GO TO 240
IF(INEIOMIT(IO0) ) GO TO 256
IF(J +LE«LSTCP(10) ) GU TO 254
60 TO &57

IF{u +UEe LSTART(I0) )} GO TO 2585
108]0+]

GO TO 240

I0a]0e¢)

NPuNPR¢]

IF (MPRINT,NE«0) GO TO 230
WRITE(0+2000)

MPRINTe50

MPRINTEBMPRINT=]

RUNPYaR (NP)=RSNIF

1 A P Mkiats s R s s x4 e 4s =i
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ZiNPY=Z (NP)=2SHIF
WRITE(692001) 1o JyNF+CODE(NP)Y sR{NP?2Z{(NP) s XR(NP) o XZ(NP) yNCODE (14 dJ)

240 CONTINUE
CHRRUEVERBIRDRBRNERGRRBRRDDORRDVRRERUGPRERBE PR VB RORE BB RN BB REEDPRRER DRSNS
C ASSIGN MATERIALS IN BLOCKS
c""'.’ﬁ‘”“"““ﬁ“"'ﬁﬁQ.Q»‘Q“'G‘Qﬂ"&&‘*ﬁ““#’.‘Q’Q'Q".'.Q‘ﬂ‘“‘“.“"...

00 300 Ml=ls1000
300 Ir{Mlen)s(
DO 310 IMTL=]lyNMTL
READ (941000) MTLo (MATRIL (IMTLoIM) o IMu295) o BLKANG (MTL)

310 MATRIL(IMTLsl)sMTL
CRRRRBRBARARDBERPUUIRCHPARIVGRPDIRRBERRBERRPRRIIDRRLBPORBRPRERTIVERGGH R DO RIS
C ESTABLISH ELEMENT INFORMATION
CUHENRDBAAURRRPRADPRBRRDREBRRRODORDIBRHRVOVRRB B LR RGN FRDRRRPBRIRDRRAC RSN P

JUMNAXAMAX jal
1000E=]
JOGDE=L
JJCODE=]
NEL=(
Jusi
1130
G0 YO 312
311 CONTINUE
3l JdsJguel
IF{JJ +O6T, JJMAX) GO TO 400
JuUCODEsL
IT=0
NSTARTSIMIN (yJ)
NSTOP=]IMAX (Jy)
ITaNSTART
GU TV 314
313 IIsllel
IF{ITGENSTCP) GO TO 311
314 IF(IORVER{IYsJu) +EQe 0 ) GO TO 313
IIFe]lel
JuRsJJe]
IF ( NCODE(IlsJd) oEQe & ) GQ TO 317
IF(NCODE(TIRPsJJ ) +ERQ.4)GO TO 317
IF(NCOLE (1T »JJUP)2EQe4)G0 TO 317
IFINCOVE(IIP1JUP) «EQe4) GO TO 317
IF(JJGEJJEXP s ANDSITGE JIEXP) GO YO 216
IF (NCODE(II sJu Y «NEW5)G0 TO 318
IF(NCODE(1IPsJuU ) JNESIBC TO 318
IF(NCODE(IT +JuUP) #NE4H5)B0 TO 318
IF(NCOUE(TIPyJUP) «NELS)G0 TO 318
DO 315 NU=m) ¢hOMC
IF(ITWGEIMIVING) oANDeIT oL EoIMAV(NO)AND
1 JUGBE e JMIVINO) o ANDeUUSLE ¢ UMAV (NQ)Y 4 AND
2 TIIP4GELIMIV(ND) s ANDIIPeLE«IMAVINO) s ANDoUUPGE ¢ UMIV (NQ) ¢ AND,
3 JUPJLE«JUMAV(NO) GO TO 313
318 CONTINUE
316 JJCODEw?
G0 YO 318
317 JJUCODEm2
GO YO 313
318 CONTINUE
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CHECK FOR ODIRECTICN OF EXPANSION

IF (JUCUDE,EG.2) GO TO 320

CONTINUVE :

IF(TORDER(ITIrJJ} aGT40¢ANDSIORDER(II4JJP),G6T40)GO TO 333
IF(IORUER(TIIsJJ) oGT40«AND¢IORDER(IIPsJJ)+GT40) GO TO 321
WRITE(056000) IXsdusIIPyJuP

6000 FORMAT(! ¢, veuwERACR*##® POINTSY94159¢ DO NOT DEFINE A VALID

320

321

3éz

323

325

3as

31

* $XPANSION EAECUTICN TERMINATEDY)
CYQP

CONTINVE

IF{ JJ «GE, IEXPAN ) GQ TO 319
IF(IVURUVER({IIFsuJ) +EQe 0 ) GO TO 313
IF({IORLCER(ITF+JUP) .EQe0} GO TO 321
G0 TO 319

CONTINUVE

EXPANSION IN J=DIRECTION
IF(IORVER(II+JuP) 4EQe0.AND«IORDER(JIPyJJP) (EQ.0) GO TO 331
IF(TORDER(IIsJUP) «CTe0sANDIORDER{IIPoJJP) «GT40) GO TO 329
IF(IORDER({II+JuP)+EQsD) GO TO 322
IITEMP=]]

JJTEMP=JUP

JCCDERJ

60 TO 331

IITEMP=IIP

JUTEMPaJUP

JOQDE=a¢

GO0 Tu 331

CONTINVE

TRIANGULAR ELEMENTS
IAz3JORDER(ITvJu)

IBaJQRDER(IIF U}
ICIORUER(TITEMP U, TEMR)

10alcC

G0 TO 332

TA]QRUER (I T U0)

I8 JORVER(IITERP yJy TEMP)
ICEIORUER(IT9JuUR)

10u1C

JOCVE=4

60 TO 332

TABIURDER (1T e JuP)

I8 IORUER (TITEMP s J, TEMP)
ICeIORUVER (TLk e JuJP)

108]C

JOODE=]

60 TO 332

IA®JORUER (I s W}

188 JORDER(IIF s JV)
IClORVER(ITTEMP ¢ J  TEMP)

102]1C

60 T0 332

IAaIORVER(ITFsuJ)
IBsJORDERITIIF vuuP)
ICaJORVER(IITENMP ¢+ J, TEMP)

10=]C

JOCDEwd




328

329
330

331

33e

333

334

335
33é

337

338

60 7O 332

IASIORDER(IIF o JUP)
IBsJORDER(IT9Jur)
ICsJORDER(IITEMPoJUTEMP)

10=1C

JOCLE=]

G0 TO 332

GO TO (330e323+726) »JCODE

IA= JORDER(IT9oJu)

IB=TORDER(IIF syJu)
ICSIORUER(TIIF»JJP)
I0=I0RDER(IIsJuB)

G0 TO 332

JUFsJPel

IF (JJUPWGTMAXJ} CALL ERROR()sJUPsMAXJID)
G0 10 32l

MELBNEL*]

IF(NEL.GT,1000) CALL ERROR{2¢NEL100000)
IX(NELs1)=1A

IX(NELs2)mIB

IX(NELs3)sIC

IX(NELsa)=]ID

IXINELoS)sMTL

ALPHA(NEL) 2BLKANG (NTL)

GO TO { 345¢3242327+325+328 ) »JCODE
CONTINUE

EXPANSION IN I=DIRECTION

IFC(IORDER(TIIFsuJ) sEQa 04 AND TORDER(IIPoGJP) 4kQ,0) GO TO 337
IF (IQRUER({TIFPouUJ) «CGTe 0, ANDTORDER(IIPoyuP),6T,0) GO TO 235

IF(IORDER(IIFoUJ) +EQe0) GO TO 334
IITEMRSIIR

JUTEMPBJY

ICQDE=¢

60 YO 337

11TEMPET P

JWUTENPGUUP

10C0t=d

60 TO0 437

GO TO (336:342+339) +ICOLE
TA3JURDER (IXedu}
IosJURDER(IIF vud)
ICaJORVER{TIIF s JuP)
I10sJQRDER(11+JuP)

Iln]liPe)

60 TO 334

IIRallPe]

IF(IIP«BT NSTOP) CALL ERROR(I9IIPeNSTOPsuUJ)
60 TU 333

NELSNELe]

IF(NEL.GT,1000) CALL ERROR(2sNEL+1000+0)
IXN(NELe ) 2]A

IX(NELs2)w]B

IX(NELe3inlC

IX(NEL¢4)}unlD

IX(NEL+S)mMTL
ALFHA(NEL ) sBLIKANG (M TL)

82
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GO TO ( 345+363436093419344 )9 ICODE

339 CONTINUE

C TRIANGULAR ELEMENTS
TA=I0RDER (11 sJd)
IB=JORDER(IITEMPyJUTEMP)
ICaIURDER(ILvuuP)
10s81C
GO TO 338

340 IASIORDER(IIedu)
IB3JORDER(ITF 2uJ)
ICaYORUER( "ITEMP s JyTEMP)
1D=IC
I0CDE=e
60 TO 338

341 IAaIURDER{IIFsuJ)
IBasICRVER(IIF 2+ JJP)
ICaIURDER(IITENP y Uy TEMP)
IDslC
I1laliP=]
10C0E=)
60 TO 338

342 IAIICRUEREIIIeJJ)
IBaJORLDER(IITEMP UL TEMP)
ICBI0RDER(ITeJuP)
IDslC
60 Y0 238

343 JAa]ORDER({IIeJuUP)
IB2aJORDER({IITEMP ), TEXP)
ICIVURDER(I1FsuJP)
1D=1C
IQCDEaYy
GO TV 338

344 JARIORDER(IIFsJJ)
182 IORVER(IIF o JUP)
ICHJORVER(IITEMP s J, TEMPR)
10s1C
Iln]ii=]
IOCOEs§
60 TY 338

345 DO 360 INTL=]«NMTL
IF(ITaLToNATRIL (INTLS2))IGO YO 360
IF(ITOEMATRIL LYHTL3})G0 YO 360
IF{UJoLT «MATRIL CINTL#4) G0 TO 360
IF(UJSLE «MATRIL {INYL5))IGO TO 360
HYL » MATRIL(INTLS L)
G0 YO 380

360 CONTINVE
PRINTY 2100sNELITwud
HTLs)
380 IXINELeS)uNTL
ALPHA(NEL ) nBLKANG OFTL)
80 YO 413
400 CONTINUE
NUVELwNEL :
. ABYU IF (NUMNP.GT.1000) WRITE(6+2008)
CQOQ0.000QQQQOOQQO..QQQC HONGQRRRRRUNVNCAINEEINENNQOICNIRVUOROERNBRNCVOINNNE

e Mt I T bR A 22 27 AR Va
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C SET NOUAL POINT TENPERATURE TO REFERENCE TEMPERATURE
CHENABERUBIDRRBRRBELRAIRURBODRRARRNBRODREBBRRBRDERBR R RS EHBRDIRR BRI DR BB
IF (NUMTCJhEL0)GO TC S50
00 500 Ns]yNLMNP
500 TON)STHEF
550 WRITE(694000)
Q000 FONMAT(IH s 10HEND POINTS )
RETURN
C
1000 FONMAT (S515+F10,0)
1002 FONMAT (4]15+3F10.0)
1300 FONMAT(1ROs 4OWNODAL PCINT DATA==«NO, QF NODAL POINTS= 415)
2000 FORMAT( 104M] 1 J NP TYRE R=0RDINATE 2=0RDINA
ITE R LOAD OF DISPLACEMENT 2 LOAD GR ODISPLACEMENT)
2001 FORMAT (2169 1€4F12¢1cFl243eF14431EC6aTHER4,T4]118)
200¢ FORMAT (35H BAD INPUT « TOQ MANY NODAL POINTS)
2100 FORMAT(1HOs EMELEMENT 3J4¢3X223HWITH (Iod) COORDINATES (#I1241Mse13e
IE J1H) HAS BEEN ASSIGNED MATERIAL 1 )
ENG




85

c DATAe=a TFIS ROLTINE READS CARDS AND PUTS THEM ON TAPE NO,9
SUBROUTINE DATA i
CONMMON/OHGS/ JSTOP
DINVENSION CARD(20)
REWIND @

Na( H
IF ( JOTOP +EQ. 1 ) 60 TO 400
READ(59¢1000) CARD
10 wRITE (641002}
GO TO 200
100 READ{S+1000+END=300) CARD

200 WRITE(691003)CARD
WRITE (991000} CARL
Nahel
GO0 YU 106

300 ENCFILEL 9
REAIND 9
WRITE(6¢1004)
JST10P=)
RETURN

400 WRITE(Ge100%)
STuP

1000 FORMAT(2044)

1002 FORMAT(IN) Z13X¢ZH10e8X2H20¢8Xe2H30+8X02HG098X12H50
18K 12H60 1 BXe3FTOsBAI2HBO/5A+BON123456T89012345678901234567890123450

. 2789012345678%0123056789012345678901234567890)

1003 FONMAT(5X,2084)
1006 FORMAY{IN o JIMEND OF QATA)

. 1005 FOKMAT(1H o LOREND OF 40B)

ENC

P A

1
4
]
5}}
)
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C MNINX=e TFIS IS A UTILITY ROUTINE
. SUBROUTINE MNIMX(I44}
c
COVMMON/TOD/IMIN(100) s IMAX(100) s UMIN(30) s JMAX(30) o MAXIsMAXJNMTL ¢ NBC
i sMINIIMIAJ
C
IF (JoLTouJMIN(IYY JNIN(I)my
IF(JeBToUMAX(I)) JNMAX(T)mY
FF(IoLTIMIN(JY) ININ(J) 2]
IF(I1eGToIMAX(J}) TVAK(J)al
C

RETURN
ENC
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C NUDE== A SMALL LTILITY ROUTINE WHICH MAY BE NEEDED BY MESH QR POINTS
FUNCTION NODE (Ied)

CONMON/TO/IMIN(LOO0) o IMAX(100) s UMIN(30) o JMAX(30) ¢MAXTI yMAXJ9NMTL 4 NBC
1 sMINIoMINY

NOCEsQ

00 100 Jdsle,

NSTART=IMIN O, J))

NSTUPSIMAX (Jy)

00 100 II=sNSTART¢NSTOP

NODE=NUDE e}

IF(JJabQaJs ANDsIT4EQal) RETURN
100 CONTINUE

RETURN
ENC
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SUBROUTINE EFRROR(NyMsLoK)

GO TU (le2s3) 9N

WRITE (0e10) Mel oK

FUKMAT(Y v9t JP= ty IS0 1EXCEEDS JJMAX = 1,15¢0113 *418)
GO TO 50

wRITE{bsl]1) Mol

FORMAT (! Vo UhEL = 1,15+ tEXCEEDS MAXNEL = t415)

GO TO S0

WRITE(6el2) MeloK

FORMAT (! t,4']1IP = 1,15 YEXCEEDS NSTOP = ve15etyd & 1915}
WRITE(6+13)

FONMAT(? 9 ¢EXECUTION TERMINATED ¢}

sTCP

ENC

%
:
i
i
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