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CHAPTER I

INTRODUCTION TO PROBLEM

1.1 General Introduction

The use of high-strength materials in the design of engineering

structures has lead to the development of theories which can be used to

predict the reduced strength of these structures caused by induced or

inherent flaws in the material. Engineering fracture mechanics

utilizes the concepts of stress intensity factor, K , and critical

stress intensity factor, K to predict this reduced strength. The
c

stress intensity factor, K , is a function of applied load and geometry,

while the critical stress intensity factor, K , is an experimentally

c

determined constant for a given material and mode of deformation.

-l There are three possible modes of deformation associated with a

crack as shown in Figure 1: opening mode, Mode I; edge slidiug mode,

Mode II; and tearing mode, Mode III. Until recently, Mode I has been

considered as the most significant mode of failure. As a consequence,

preceding investigations in fracture mechanics have dealt primarily

with this mode, and data on critical stress intensity factors is

restricted to nIode I loading. Recent investigations, however, indicate

that Mode II may b a significant mode of failure in certain cases.

Jones and Chisholm [1) established a compact shear fracture specimen to

study the phenomenon of Mode II fracture and determine accurate critical

stress iuteusity data.
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The object of this investigation was to check the performance of

the compact shear fracture specimen by numerically generating stress

intensity factors using finite element techniques. In addition, initial

crack propagation angles were numerically predicted.

1.2 Purpose of Investigation

This study was conducted to investigate, by finite element tech-

niques, the behavior of the compact shear fracture specimen developed

by Jones and Chisholm. In particular, Mode II stress intensity factors

and stress boundary conditions were numerically generated fur comparison

with those obtained by Jones using boundary collocation and photoelastic

methods. In addition, the initial angle of propagation which could not

be obtained by Jones was determined for selected specimen geometry and

crack lengths.

1.3 ScoPe of Investigation

This study utilized the compact shear fracture specimen

established by Jones and Chisholm to numerically determine the effect

of changing crack length, applied load, and specimen geometry on the

Mode II stress intensity factor, K The specimen,shown in Figure 2,

has a specimen height W , thickness B , crack length a and tang

width H . The model parameters varied in this investigation were crack

length a . and tang width H

Point and uniform loads were utilized in this investigation to

simulate conditions that could be achieved in a rigid loading frame,

and aleg to approximate as closely as possible the loading conditions

adopted by Jones. The stress distribution along the upper boundary and
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vertical axis of symmetry obtained for selected load conditions and

model configurations were compared to those assumed in the boundary

collocation study.

j The initial angle of propagation of the crack, for a given crack

length, applied load, and model geometry, was also determined.I 1.4 Approach Used in the Itvestigation

A numerical solution, the finite element method, was employed to

generate displacements along the crack flanks, the normal and tangential

stress distribution along the upper tang boundary, and the normal stress

distribution along the vertical axis of symmetry. A plane strain con-

dition was utilized for the numerical analysis thr:oughout this

investigation.

The stress intensity factors for the various configurations

studied were determined by the displacement [2] and strain energy

release rate methods [2]. Numerical results were compared to those

obtained in a closed form solution for a model with similar configura-

tion and loading conditions, and to the boundary collocation results.

A discription of the closed form solution is given in Appendix B.

The numerically generated normal and tangential stresses along

"A the upper boundary and vertical axis of symmetry represented the stress

boundary conditions actually occurring in the model for a given load

and model configuration. These were compared to the stress boundary

conditions assumed by Jones and Chisholm.

A strain energy density technique [6] was used to numerically

obtain the initial angle of propagation of the crack for selected crack

lengths and specimen geometry.

"I

a.



CHAPTER II

FINITE ELEMENT TECHNIQUES APPLIED TO LINEAR
ELASTIC FRACTURE MECHANICS

2.1 Introduction

The finite element method was utilized to generate displacements

along the free flanks of the crack, and the normal and tangential stress

distributions along the vertical axis of symmetry and upper boundary of

the compact shear fracture specimen under consideration. The methods

used to calculate Mode II stress intensity factors for given specimen

configuration, crack length and applied loading were the displacement

metl,-.g' and the method of strain energy release rate. A brief descrip-

tion of the finite element program used is given in Appendix A. The

initial angle of propagation for selected cases was numerically determined

by the strain energy density method.

2.2 Displacement Method

The displacement method 12] utilized the displacements of nodal

points along the rack flanks and equations describing the displacement

field near the crack tip. The equations describing the displacement

field are those derived by Westergaard 13], and shown below for Mode I

and Mode II plane strain deformations. For Mode I loading,

K o-1/2 0 2.
- LJ Cos 2 1 2V + sin [ (2.1)

2I
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and

vI  1/2-sin 2 -2V - cos (2.2)

while for Mode II loading,

r 2V + cos 2  (2.3)

and

v r!A []_ cos [-l + 2v + sin 2 (2.4)

11

where 0 is the shear modulus, V is Poisson's ratio, r , 0 , u

and v are defined in Figure 3. K and KI are the Mode I and

Mode II stress intensity factors.

By using nodal displacements, u* and v* , along the crack

flank as determined by the finite element method, a stress intensity

factor K% or K can be found at each nodal point by use of

Equations (2.1) through (2.4). Chan 12] found that the most accurate

values of K, and KII are attained by using the equations for v,

and u11  with 0 180' . Thus,

F 11
", 2 " -- (2 .5):; KI4(l v2, rl

and

K*I 2 (2.6)
4(l- V



Figure 3. Crack Tip Coordinate System
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If the exact displacements were used as r approaches zero, the exact

stress intensity will be determined. Since the finite element method

gives accurate solutions along the flanks, and very inaccurate solutions

at the crack tip, a tangent extrapolation must be used to determine

stress intensity factors.

This is accomplished by plotting a graph of the stress intensity

factor, K , versus the nondimensionalized distance from the crack tip,

r/a , Figure 4, using Equations (2.5) and (2.6). A tangent to the

straight line region of this curve is then extrapolated back to the

point where it intersects the stress intensity axis. This intercept

is taken as the value of the stress intensity factor K , A least

squares fit to the data in the straight line region was used to

determine the intercept in this study. As can be seen in Figure 4, the

straight line region does not extend the length of the crack flank.

The observed nonlinearity is due to the boundary condition imposed at

the load points, and the fact that the equations for displacement,

Equations (2.1) through (2.4), are strictly valid near the crack tip.

The procedure used in this investigation was to perform a least squares

fit in the region of r/a ratios ranging from 0.1 to 0.2.

2.3 Strain Energy Release Rate

The concept of strain energy release rate (2] states that

whenever the strain energy released by the structure is greater than

the energy needed to create new crack surface area, the crack will

propagate unstably. Mathematically, strain energy released rate, G

can be written as;



10

0) 0co

(D $
ci

0

4~

uD

mo

w 0

0

0 0 0

N!/ Isd)M 'JCO3V4 AIISNJ.LNI SS38LLS



ii1

dUG =(2.7)
dA

where U is the strain energy stored in the structure and A is the

new crack surface area formed as the crack extends. Strain energy

release rate is related to Mode I and Mode II stress intensity factors

by the relation [4]

2 2 EG2(.8KI + K - (2.8

This equation is valid for plane strain conditions.

The finite element method can be used to solve for the strain

energy release rate, expressed by Equation (2.7), by the following means.

The total strain energy of the structure, U is determined by

numerically summing the strain energy of each element of the structure.

The crack is then extended by a small incremental length, Aa , and the

total strain energy, U' is again deternined. For plane strain

analysis, with the thickness of the model set equal to unity, Equation

(2.7) can now be rewritten as:

G - (2.9)

Utilizing Equation (2.9) and the fact that for the fracture specimeu

being studied, Mode I stress inLensity factors were negative and

j therefore could be neglected, K, can be determined from the relation;

KI2 +K 2  2  Aa ] " (2.10)

2 •I



12

2.4 Strain Energy Density

Because cracks which are not oriented perpendicular to the applied

load tend to propagate in a direction other than along the axis of the

1 crack, Sih [5] proposed the concept of strain energy density in order to

analytically determine the direction of crack growth. Sih determined

that the magnitude of the energy field in the vicinity of the crack tip

can be written as:

22
S a K I +a 12KIKI1 + a K2 (2.11)

where

a ITu [(( + cos O)(K - cos 0)]

a 6sin0[2 cos 0- (K-)]I2 16- i

and

a 22  16p [(K + 1)(1- COS 0) + (1 + cos 0)(3 cos 0- 1)]

(2.12)

In these equations, K * 3 - 4V for plane strain and (3 - v)(I + v)

for plane stress problems, 0 is defined in Figure 3, 0 is the shear

modulus and KI and KI are the Mode I and Mode II stress intensity

factors. The concept of strain energy density states that a crack will

propagate in the direction for which the strain energy density S

possesses a stationary minimum value, or
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as--s 0 (2.13)

The initial direction of propagation can now be determined by first

using finite element techniques to solve for the stress intensity

factors, K and K . Equations (2.11) and (2.12) are then used to

numerically identify the value of e which will result in a minimum

value of S . In this study, the solution of this problem produced two

values of 6 which yielded a minimum value of S with the correct

value being determined by a physical argument.



CHAPTER III

MODEL USED IN THE INVESTIGATION AND

VERIFICATION OF NUMERICAL PROCEDURE

3.1 Introduction

As stated earlier, the model considered in this study is a

fracture specimen proposed by Jones and Chisholm and previously shown

in Figure 2. This model was gridded for generation of displacements

and stresses by the finite element method. The boundary and load

conditions applied to the model are discussed in the following para-

graphs and verification of the gridding program and finite element

technique is established.

3.2 Grid Pattern

A typical grid pattern utilized ii, this investigation is shown

in Figure 5. The pattern consists of a fine region at the crack tip,

a transition region and a course region. In the fine region, a typical

2
ratio of element area to the square of crack length, A/a2 , is

-3
2.6 x 10 for a/W - 0.5 . This ratio for the course region is

-21.04 x 10- . Ratios were chosen in each region to assure optimal

convergence to the true solution [2]. The material above the loading

pins was not included in the finite element model because it did not

contribute any significant stiffness. The fine grid region was moved

with the crack tip as crack length was varied. This required that the
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Figure 5. Typicail Grid PALt.ern, a/W 0.5
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mesh be regenerated each time a new crack length was considered. In

order to decrease the amount of time spent in regridding the model, a

grid generation code obtained from another finite element program (SAAS-

Stress Analysis of Axisymmetric Solids)(6] was modified to grid the

specimen. The modification and required irput into this program is

discussed in detail in Appendix C. Briefly, this program interpolates

the position of internal nodal points from those specified on the ex-

ternal boundaries. The program then eliminates noda1 points as

described in Appendix C in orde- to achieve the desired reduction of the

grid pattern. Finally, the elerient information is obtained by using

generated nodal point data.

3,3 Model Geometry

A list of the parameters considered in this investigation is

given in Table I. The ratio of crack length to specimen height, aiW ,

was varied from 0.1 to 0.8. This range was selected to determine the

effect that the model boundaries have on the Mode II stress intensity

factors for short and long cracks. The dependence of the Mode 11 stress

intensity factor on distance from the load peint to crack flank was

studied by changing the tang width, H , of the specimen. Three widths

were considered; i1 a 1.5 inches, H - 1.0 inch, and H 0.5 inch.

For It 1.5 linches, the same grid pattern utilized for Ii 1.0 inch

was adopted with the outer boundary elements expanded to give the desired

tang width. The grid pattern for H - 0.5 inch had to be regenerated.

This was easily accomplished by a modification of the griding program

which allowed it to accept data for H - 1.0 inch, and gvid the model
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TABLE I

MODEL PARAMETERS USED IN THE
INVEST IGAT ION

H (INCHES) a/W W (INCHES) B (INCHES)

0.5 0.2 3.115 1. 00

0.5 0.3 3.115 1.00

0.5 0.5 3.115 1.00

0.5 0.7 3.115 1.00

1.00 0.1 3.115 1.00

1.00 0.2 3.115 1.00

1.00 0.3 3.115 1.00

1.00 0.4 3.115 1.00

1.00 0.5 3.115 1.00

1.00 0.6 3.115 1.00

1.00 0.7 3.115 1-00

1.00 0.8 3.115 1.00

1.50 0.2 3M115 1.00

' . 50 0.4 3.115 1.00

, 1.50 0.5 3.115 1.00

1.50 0.6 3,115 1.00

1.50 0.7 3.115 1.00

1.50 0.8 3.115 1.00

iI >:
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for H 0.5 inch. The modification restricted the range over which

the program will search for nodal points, thus giving the desired tang

width.

3.4 Load and Boundary Conditions

The loading conditions used in this investigation consisted of

point and uniform loads applied to the specimen as shown in Figures 6a

and 6b, respectively. In order to simulate the loading conditions used

in the boundary collocation analysis [i], it was necessary to pin the

load points in the y-direction as shown in Figure 6a. The left boundary

of the model was pinned in the y-direction because it is a line of

symmetry, The uniform loading condition, with the nodal points on the

upper boundary pinned in the y-direction as shown in Figure 6b, was

selected to simulate a fixed grip loading frame. The crack tip was

pinned in the z-direction to eliminate any rigid-body movement of the

0 crack flanks in the z-direction.

3.5 Verification of Gridding Program and Numerical Techniques

Verification of the gridding program and numerical techniques

for obtaining stress intensity factors was accomplished by generating

a iepresentative grid pattern and lading the compact shear specimen as

a compact tension specimen. The transformation from compact shear to

compact tension specimen was easily made by simply applying the loads

at the side and vertical axis of symmetry along a line perpendicular to

the crack axis as shown in Figure 7. The Mode I stress intensity factor

was then numerically obtained usi% both the displacement and strain

energy release rate techniques and compared to an available closed form



19

-I

44

.1 " 4"

11

0 4 -

MF

.-

,.-

-

Li
-r4 W

.0.

0

4.-.



20

it

I p

-V
b

*1

p

Figure 7. Coinp~ct Tension Specimen

.1
~l

I
I



*21

solution. A closed form solution for the compact tension specimen,

shown in Figure 7, is given by Sih [10] as:

1c =  P(2W+ a) w- . 31
h(W- a)3/2 W' b "

where F is given for various parameters by Sih [10] and will
w W b

be used here only for the geometry considered. The boundary conditions

necessary for numerical generation of the Mode I stress intensity factor

are shown in Figure 7. ;'ith these boundary conditions and the model

configuration for a compact shear fracture specimen with a/W = 0.5 and

H 1.0 inch , the physical parameters of Equation (3.1) become

a 0.775 inch

b 1.00 inch

W 2.340 inches

c 0.3
b

P 100 pounds

h 1.0 inch

yA L ratio of 0.3 was chosen because this was the closest value listed

by Sih which fit the loading conditions applied to the compact tension

$1 specimen. It also should be noted that the value of stress intensity

factor given by Equation (3.1) is not the same as that determined by

the displacement technique. The relation between these two values is

Igiven by

KI = i ,(3.2)
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where k is determined by Equation (3.1) and KT is determined by the

displacement method.

A graph of stress intensity factor versus nondimensionalized

distance from the crack tip for the compact tension specimen is given

in Figure 8. A least squares fit was performed on the points in the

region r/a from 0.1 to 0.2 and KI , the intercept, was found to be

KI = 500 psi/n . The value determined from Equations (3.1) and (3.2)

with F ~ ,~]=2.010 is K, 493 psiv/i-n . These values arewlt FW W' b

in good agreement with each other and therefore verify the displacement

technique and grid generation program.

'II
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CHAPTER IV

j ANALYSIS OF RESULTS

4.1 Introduction

Having verified the numerical methods and grid generation program

used in this investigation, the behavior of the compact shear fracture

specimen as a function of crack length, loading condition and specimen

geometry is discussed. Mode II stress intensity factors generated by

finite element techniques are compared to those determined by boundary

1 collocation analysis, and to a closed form solution for geometry and

I loading conditions that closely approximate those of the compact shear

j fracture specimen. The numerically generated streqs distribution on the

upper model boundary and vertical axis of symmetr, are compared with those

assumed by Jones and Chisholm (1 in a boundary cf.llocation study. The

initial angle of propagation is also given for selcted crack lengths

and specimen tang widths.

4.2 Stress Intensity Factors

I. Numerically generated Mode II stress intensity factors for

selected nondimensionalized crack lengths and tang widths are listed in

Table II. This data is graphically portrayed in Figure 9 where the

Mode II stress intensity factors have been nondimensionalized by

dividing K by the normal stress in the tang, a P/BH , and the

square root of crack length, la . The curves shown in Figure 9
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TABLE II

NUMERICALLY GENERATED MODE II
STRESS INTENSITY FACTORS

Mode II Stress Intensity Factors (psi i-n.)

a/W H = 0.5 Inch H = 1.00 Inch H = 1.50 Inches

Displacement Energy Displacement Energy Displacement Energy

0.1 - - 63.29 58.35 - -

0.2 148.09 137.30 78.59 69.00 97.21 46.52

0.3 152.49 145.10 92.80 92.50 - -

0.4 - - 115.83 107.00 101.69 92.90

0.5 137.68 136.70 122.06 118.00 114.71 107.00

0.6 - - 145.85 139.00 142.41 129.50

0.7 158.44 166.44 173.09 164.00 169.48 152.40

0.8 - - 209.27 199.79 - -

'I"

I,
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indicate that the specimen having a tang width H = 1.0 inch is the

most stable, as evidenced by a relatively constant nondimensionalized

Mode II stress intensity factor. The curves for H = 0.5 inch and

H 1.5 inches exhibit rather wide variations in the nondimensionalized

Mode II stress intensity factors with varying crack length. These cases

will, therefore be examined in more detail.

Figure 10 shows the variation of the nondimensionalized Mode II

stress intensity factor with crack length for a tang width H = 0.5 inch.

Excellent correlation is shown between results obtained by finite

element techniques and those determined from a closed form solution [7].

However, the boundary collocation data does not agree with the numerical

and closed form results. The curves for the finite element and closed

form solutions show a region of constant nondimensionalized Mode II

stress intensity factors from a/W = 0.4 to a/W = 0.7 . For a/W

ratios greater than 0.7, the lower specimen boundary influencies the

Mode II stress intensity factors. At a/W ratios lower than 0.4, the

curves show a load dependence as the load is now being applied close to

the crack tip. The boundary collocation curve exhibits constant non-

dimensionalized Mode II stress intensity factors over the entire range

of a/W ratios because of incorrect stress boundary conditions assumed

in the boundary collocation analysis. This error in assumed stress

boundary conditions will be discussed in detail in a later section.

Figure 11 shows the variation of nondimensionalized Mode II

stress intensity factors with crack length for a tang width H - 1.0

uich. All curves are in good agreement with each other and have a

region of constant nondimensionalized Mode II stress intensity factors

A
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from a/W = 0.2 to a/W = 0.6 . At a/W ratios above 0.6 and below

0.2, the specimen boundaries are being sensed by the crack tip, causing

the curves to turn upward.

Figure 12 gives the variation of nondimensionalized Mode II stress

intensity factors with crack length for a tang width R = 1.5 inches.

The finite element and closed form results do not exhibit a region over

which the nondimensionalized Mode II stress intensity factors are

constant because the specimen is now behaving like a beam in three point

bending. The influence of bending is evident at all a/W ratios

particularly those less than a/W = 0.3 , for in this region the curves

were expected to turn upward as the crack tip sensed the upper boundary

of the specimen. The boundary collocation data exhibits a different

behavior from that of the finite element and closed form results because

of incorrect stress boundary conditions assumed in the boundary colloca-

tion study.

4.3 Stress Boundary Conditions

Stress boundary conditions were determined along the upper

boundaries of each tang and along the vertical axis of symmetry in order

to check those assumed in the boundary collocation analysis and to

provide useful data for future investigations utilizing boundary value

techniques. Of particular interest in this investigation was the stress

distribution along the upper tang boundary and vertical axis of symmetry

for application of Li point load with the load points fixed in a direction

perpendicular to the direction of loading, as showr in Figure 6a. This

method of loading was of interest because it simulates that used by
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Jones and Chisholm so that resultant numerically generated stress dis-

tributions could be used to check the stress boundary conditions assumed

by Jones and Chisholm. A uniform load with each nodal point on the

upper tang boundary fixed in a direction perpendicular to the direction

of loading, as shown in Figure 6b, was also applied in order to determine

the stress boundary conditions needed in order to perform boundary value

analyses for this common type of loading. The two loading conditions

just discussed are obtainable through a rigid loading frame. The stress

distribution for two other loading conditions are also discussed in this

section. These loading conditions are a point load with all nodal points

on the upper tang boundary fixed in a direction perpendicular to the

direction of loading, and a uniform load with the center point of each

tang fixed in a direction perpendicular to the direction of loading.

Although these conditions are easily simulated in a numerical study,

they are very difficult to obtain experimentally and were considered in

this investigation simply to determine the sensitivity of stress

intensity factors to changes in boundary conditions.

The stress boundary conditions assumed in the boundary collocation

analysis are shown in Figture 13. The stress discribution along the upper

tang boundary consists of a uniform tensile stress on the outside tang,

a uniform compressive stress along the center tang and a cosine distribu-

Lion of tangential stress along the top of both tangs. A bilinear

bending stress was assumed along the vertical axis of symmetry.

The numericaily generated stress distributions along the upper

tang boundary and vertical axis of symmetry for a/W 0.5 , H - 1.0

inch and plane strain conditions are shown in Figures 14 through 19 for

N
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belected load and displacement boundary conditions. Figures 14 through

16 show the stress distributions for a point and uniform load with the

I center point of each tang fixed in a direction perpendicular to the

direction of loading. Figures 17 through 19 show the stress distribu-

tions for a point and uniform load with each nodal point along the upper

tang boundary fixed in a direction perpendicular to the direction of

applied load.

As can be seen by referring to Figures 14 and 17, the normal and

tangential stress distribution along the upper tang boundaries caused

by the application of a point load does not change as the displacement

boundary conditions are varied. Figures 15 and 18 show that the

tangential stress distribution along the upper tang boundaries caused

by the application of a uniform load is in fact the only distribution

affected by variation in displacement boundary conditions. Figures 16

and 19 show practically no change in the normal stress distribution along

the vertical axis of symmetry for variation in displacement boundary

conditions.

Comparison of Figures 13, 14 and 17 indicates that the numerically

generated stress distributions for point loading are not in good

agreement with those assumed in the boundary collocation analysis. The

major differences occur in the normal stress distribution along the

upper tang boundary. This difference in stress distribution is respon-

sible for the discrepancies observed in the nondimensionalized Mode II

Istress intensity factors determined by numerical techniques and boundary

collocation analysis.
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The stress distributions caused by the application of a uniform

load with all the nodal points along the upper tang boundary fixed, as

shown in Figure 18, were somewhat similar to those assumed in the

boundary collocation analysis, shown in Figure 13. The major difference

in the two distributions is that the numerically generated tangential
stress distribution on the center tang is not a cosine distribution as

assumed in the boundary collocation analysis. Figures 16 and 19 show

that the bending stress along the vertical axis of symmetry for both

point and uniform loading is not a simple bilinear distribution as shown

in Figure 13.

Numerically generated stress distributions were also obtained for

other a/W ratios and tang widths resulting in distributions having the

same form but different magnitudes then those shown in this section.

Plane stress conditions were also tried for selected load conditions and

model geometries resulting in no difference in stress d.l.stributions when

compared to those determined using plane strain corAli'ions. The Mode II

stress intensity factors were unaffected by changes in loading and

displacement boundary conditions discussed in this section.

4.4 Initial Angle of Crack Propagation

The angle of propagation 0 is defined in Figure 3. By use of

the strain energy density technique proposed by Sih [5] and discussed

in Chapter II, the angle of propagation was determined for a/W - 0.5

through 0.8 with HI 1.0 inch . These values are listed in Table III.

N These particular values of crack length and specimen tang width were

chosen because the experimental work performed by Jones considered an

.. A
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TABLE III

NUMERICALLY PREDICTED INITIAL ANGLE OF
PROPAGATION FOR SELECTED aIW RATIOS WITHI A TANG WIDTH H 1.00 INCH

Ia/W THETA e

0.5 770

0.6 770

0.7 770

0.8 750
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a/W .ratio of 0.8 with specimen tang width, H = 1.0 inch . With these

parameters, and notching the model along the plane of the crack, Jones

and Chisholm were able to obtain a straight fracture of the specimen,

0 = 00 . As can be seen from Table III, the strain energy density

technique predicts that the initial angle of propagation is 750 for

a/W 0.8 and 770 for a/W =0.5 to 0.7. The path of the crack was

not investigated after the initial angle of propagation because of the

amount of computer time necessary to accomplish this.

L'
k .:,



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The effect of crack length and specimen geometry on the Mode II

stress intensity factors for the compact shear fracture specimen shown

in Figure 2 was investigated. Stress intensity factors were generated

by the displacement and strain energy release rate methods and compared

to those determined by boundary collocation. Both numerical and

boundary collocation results obtaied for a tang width H = 1.0 inch

show that nondimensionalized Mode II stress intensity factors are

constant for this specimen over a wide range of crack lengths. This

configuration of the compact shear fracture specimen will therefore be

most suitable for determining critical Mode II stress intensity factors,

K1 c

Numerical results for H - 0.5 inch and H 1.5 inches show

that nondimensionalized Mode II stress intensity factors are not as

stable with increasing crack length as the boundary collocation results

suggest. The stress intensity facters obtained for a tang width

H w 1.5 incbes are affected by bending of the specimen, a fact that

was not brought out by the Lundary collocation results. Results for

tang width H - 0.5 inch indicated that the nondimensionalized Mode II

stress intensity factors were influenced by applied load for a/W ratios

less than 0.4 Because of these nonlinearities, the coufiguratio,.s
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having tang width H = 0.5 inch and H 1.5 inches are not suitable

for determining the critical Mode II stress intensity factor, KI c

For the crack lengths and specimen geometries investigated, the non-

dimensionalized Mode II strea intensity factors were found to be

independent of the applied load, and uninfluenced by the lower free

.: boundary through the intermediate ranges of crack lengths.

Numerical results indicated that the tangential stress along the

upper boundary of the center tang did not follow a cosine distribution

as asbaed in the boundary collocation analysis. In addition the

numerically determined bending stress distribution along the vertical

axis of symmetry was not found to be the simple bilinear distribution

which was used in the boundary collocation investigation. Therefore,

incorrect stress boundary conditions assumed in the boundary collocation

analysis were responsible for differences observed in the behavior of

the ncridimensionalized Mode II stress intensity factors when numerical

and collocation results are compared.

The initial angle of propagation was found numerically to be 77'

for the geometry and crack length& considered. This difters from the

experimental work performed by Jones and Chisholm (1), which showed an

angle of V' of crack propagation. The ingle of 0' might have been the

result of notching the fracture specimen along the plane of the crack.

he difference between the numerically predicted angle of propagatxon

and experimental "esults might not have been so great if it were

possible to numerically determine the complete trajectory of the crack.

l'hit was not done because of the amount of computer time involved.

2) I-

!{LI,
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This study also showed the usefullness of the finite element

method in determining Mode II stress intensity factors, for different

loading conditions and specimen parameters. The accuracy of the finite

element techniques discussed in this investigation was brought out by

the good agreement with a closed form solution.

5.2 Recommendations

It is recommended that:

1) An experimental verification of the stress boundary conditions

and Mode II stress intensity factors predicted by the finite element

techniques used in this investigation b! perforiaedo

2) A verification of the crack trajectory by experimental or

numerical techniques, with a notch introduced into the model for

comparison with the experimental work performed by Jones and Chisholm

be undertaken.

'' ''' ' ......................... ....... '' ' '! I
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APPENDIX A

FINITE ELEMENT PROGRAM USED IN THE INVESTIGATION

A.l Finite Element Program

The finite element program utiiized in this investigation was

SSAP-2 (Static Analysis Program For Solid Structures). A complete

listing of the program as well as a description of the elements and

input to the program is given in the program manual [8]. A brief

description of the plate element used in the study will be given here.

A.2 Isoparametric Elements

A isoparametric element [9] is defined as one where both the

displacement and geometry of the element are described by the same

parameter. This means that the relation between the local and global

coordinate systems as well as the displacement approximation for the

element are given in terms of the same interpolation function. u

interpolation function is one that has a unit value at one nodal poiit

and is zero at all others iv the element. Two advantages of using

interpolation functions are:

1) If continuity of geometry and displacement both within and

between adjacent elements are satiaed, compatibility is satisfied in

global coordinates.

2) If the interpolation function is able to give rigid body

displacements in the local coordinate system, rigid body displacement

1 ,,..
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and constant strain are satisfied in the global system. This is

necessary for convergence of the method.

The interpolation functions used in SSAP will now be discussed.

For the quadrilateral element shown in Figures 20 and 21 the local and

global coordinates are related by

4
x Z hix

i=l

and (A.1)

4
y = hiY

i=l

where the interpolation functions, hi , are given as:

1hi  =Z (1 - s)(1- t)

4
h2 =4"(1 + s)(1 t) ,

(A.2)
hh3  (1 + s)(1 + t)

and 4

where s and t are defined in Figure 21.

The displacements of the element are written in terms of the

same interpolation functions as follows:

4.

u (s,t) E h u

x i A:

.... . . . . . .................
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and

4
u (s,t) Z hU (A.3)
y =l yi

The element strains can now be written as

Du 4
= = Z h U

xx ax ix xi

Du 4
-y- = Eh u (A.4)

i=l

and
au au 4 4

S - +-- h u 1  + E h uxy ay ax iI i,y ii i,x yi

These equations can be written in matrix form as"

ua (Aau5)
R H
y K - -

-A where u and u are the displacemento in the u and y directions,

respectively and

iiih h i h
Sx h [1,x h2,x h3,x h4,x]

and

[h1 ~ 112 hy h~y (A.6),~~~Y [h,y h2,y 3.~y l4,y] ,(.)J

where
hx  hi s O~x +i, t t x  

!

and
j

* 
Si

--:i-{"! '"h~ =O hi, ~ + hi~ ty.

il 's" i t l
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Since the h are given in terms of the natural coordinates, s and
i

t , the chain rule must be applied in order to compute the derivatives

in terms of the x and y coordinate system. The result of the

application of the chain rule is shown in matrix form below as:

F,5 ,X , 1 't ,s,'. =(A.7)

y ,y- ,t Is_

where J is the Jacobian which is defined by

J x y
, t - Xt 'S

4
x Z hi  xis isi=I  i

4
x - h xii-I

4
y Yi, yi'si

and
4

YL E h i't Y

Now Equations (A.7) and (A.8) can be used with Equations(A.6) to

determine the strain-displacement matrix of Equation (A.5).

A,3 Element Stiffness

The element stiffness for unit thickness is given as 4

K J a c a dA . (A.9)
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c is the stress-strain matrix and the integration is performed over the

area of the element. This equation can be written in terms of the

natural coordinate system as

K f c a J ds dt (A.10)

-1 -1

Standard numerical integration is used to determine K for a given

element.I A.4 Total Stiffness Matrix

Once the element stiffnesses have been determined, the total

stiffness matrix is obtained by summing element stiffnesses in the

conventional manner,

1K TOTAL - CLEMENT " (A.11)

A complete description of the finite element method is given by Desi (9].

-1'7

I
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j APPENDIX B

CLOSED FORM SOLUTION

B.1 Geometry and Equations

The verification of the finite element results was accomplished

by comparison with a closed form solution for a model with geometry and

loading conditions similar to those of the compact shear fracture

specimen being studied. Since a geometry and loading condition that

exactly matched this model was not available, a configuration was

considered that would give a lower bound to the finite element results.

The loading, geometry and closed form solution were chosen from a

handbook by Tada [7] and the model is shown in Figure 22. This

configuration was chosen because the loading applied is similar to the

loading on the compact shear fracture specimen. The configuration will

give a lower bound to the problem because it is an infinite strip and

therefore stiffer than the actual plate. The equations for the Mode II

stress intensity factor, KII , are given below:

So__q_ (1? ) (B.1)

11 b

1$where [ i tanh
asas2b 2b a S

F" .'.-) -- , f , ).V .. : ,.. . (B .

.~~~ b , 2,%. - 111. b,, .,..,: .'" ; i, ,. ::.,,, ,
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F1 1 S ) /tan J raia 1(B.3)

!s
cosh 2

f(A + {0.297 + 0.115(1l sech bi La}(2s!- B.4

bp b' bb2

I and
I1 1+ V plane stress

2 CL (B.5)

1. (1-v)plane strain

A1
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APPENDIX C

GRID GENERATION

C.1 Introduction

The mesh generation program utilized in this investigation is a

modified version of one used in SAAS i6]. The modification is in the

element generation subroutine and nodal point interpolation. Element

generation was changed in order to generate triangular elements in

regions of transition from course to fine gridding and nodal point

interpolation was modified to make grid reduction possible.

C,2 Input Required

Input into the gridding program will be described by considering

the gridding of a plate with a notch as shown in Figure 23. The

requiremants for gridding a crack problem, without the use of special

crack tip elements, are that a fine grid be placed in the crack tip

region to accommodate the high stress gradient there. Also, in order

to save computer time and storage, a relatively course grid should be

applied at the boundaries. These two requirements can be accomplished

by a transition region of triangular elements. The procedure for

obtaining input data for this program is as follows. Determine what

type of grid pattern is needed at the crack tip, using only quadra-

lateral elements. This will give a very fine element distribution as

shown in Figure 24. Each horizontal line with the same z-coordinate is
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assigned a J index to identify it, starting with the z 0 line. The

same is done with every vertical line with the same R coordinate, except

these are assigned I indices; therefore, every intersection, nodal point,

has an I,J index to identify it. The transition can now be accomplished

by eliminating sections of J rows and I columns in order to achieve the

desired grid pattern. The only restriction is that a section of

eliminated J row cannot intersect a portion of I column that will be

eliminated because the program will not be able to generate a valid

element. Figure 25 shows a completed grid pattern.

The sequencing of the input data will now be described. A listing

of input data for this problem is given in Figure 26. The first three

cards are control cards and are described in the manual for SAAS and

the control data for the finite element program has been eliminated.

The cards and tormating are described below.

Title Card

Describe grid pattern

Format (8A10)

Columns 1-60 Title

Job Control Card

Format (12, 13, 15, 12, 13, 515, 13, 12, 215, 15.0, 315)

Columns 3-5 Start paraweter

I Fresh set of data

Columt. 6-10 Stop parameter

1 Stop after mesh generation

33 Punch mesh data on cards
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SAMPLE PROBLEM: NCTCHED PLATE
1 1 1 1
400 1
1 1 0.0 0.0 1
2 1 10000 0,0 1
4 1 2e000 0.01
a 1 30000 0.00

10 1 4,000 0,00
11 1 54000 Ono
1 1 00 000
1 3 0 0 2.0
1 11 0 0 49000
1 12 0*0 5,000

11 12 5 6 6
1 3 7 11 12

2w5000 39000
6
4 4 a
5 3 9
6 4 a
a 4 a
9 3 9

10 4 8
4
3 3 11
5 3 12
7 3 12
9 3 11
11 5 3

Figure 26. Listing of Input to Grid Generation Program for
Notched Plate
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Columns 21-25 Finite element mesh generation parameter

S0 Generate mesh using line segment data

0 Mesh data read from cards

Columns 26-30 Temperature field

= 0 Must be set equal to zero

Columns 31-34 Number of materials (6 maximum)

These are the only parameters needed to generate a mesh, the rest can

be set equal to zero.

Mesh Generation Card

Format (415, 2F10.0, 215)

Columns 1-5 Number of line segment cards. The actual number

of cards may be less than this, as long as a line

segment terminator card follows them.

Columns 11-15 Number of material assignment cards

Line Segment Cards

They describe the boundary of the model.

I Format (213, 2F8.3, 15)

Columns 1-3 12 (or Ii if this is the first card)

I - index of point

Columns 4-6 J2 (or JI if first card)

,I J - index of point

t Colums 7-14 R2 R coordinate of point

Columns 15-22 Z2 Z coordinate of point
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Columns 45-49 IPTION Integer value that determines type of line

segment

IPTION Description of Line Segment

-i Jump to this point from last, no mesh data will be

generated and no line will couaect the points.

S0 Same as -1 except a line will be drawn between points.

Connect last point specified on preceding card to

this one and interpolate into equal parts as

specified by I, J data.

Line Segment Terminator Card

Format (3)

Columns 2-3 -1 Signals end of line segment cards. Must be

included if number of line segment cards is

less than number specified on mesh genera-

tion card.

-2 The program was modified to fix the nodal

points of each vertical line in the same

Ii position, same Z coordinate, as specified

on the external boundary line.

Internal Nodal Point Generation

If -2 is specified on the line segment terminator card, the

I program has been modified to fix the Z coordinate of the internal nodal

points to those specified on the external boundary. If this option is
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specified, it is only necessary to specify the positions of nodal points

on two external boundaries. For example, the boundaries with the Z and

R coordinates of zero.

First Card Format (1615)

Columns 1-5 IBMAX-the I index of the last column on which

nodal points will be fixed.

Columns 6-10 JBMAX-the J index of the last row on which

nodal points will be fixed.

Columns 11-15 NUMJ-the number of J indices to be read in on

the following card.

Columns 16-20 ICT-I index of the column passing through the

center of the crack.

Columns 21-25 JCT-JCT is set equal to ICT.

Columns 26-30 JCMAX-J index of crack tip.

Second Card Format (1615) - This card contains the J

iudl.ces, in sequential order, specified on the

boundary with Z coordinate of zero.

A Blank Card Must Appear Here

Shift Axis Card

If coordinate axis are to be moved from the position specified on

line segment card, the move can be made with this card. If change is

not necessary, leave blank. Format (2FlO.O).

"' Njii
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Columns 1-10 R shift-shift in R coordinate.

Columns 11-20 Z shift-shift in Z coordinate.

The following data is needed to instruct the program how to

perform the transition from course to fine grid.

J Omit Card

Specified the number of J rows which will have segments omitted.

4 Format (15) JOMAX

J Segment Cards

xSpecifies segment of J row that is to be included. Cards must

be in sequential order starting from lowest J-index.

Format (315)

Columns 1-5 JOMIT J index of ow which segments are to

be omitted.
Columns 6-10 MSTART I index of f.rst nodal point, with

J index JOMI'*,' that is to be included.

Columns 11-15 MSTOP I index of last nodal point, with J

index JOMIT that is to be included.

I OMIT Cards

Specifies the number of I columns which will have segments

, omitted.

-. Format (15) IOHAX
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I Segment Cards

Specifies segment of the I column which is to be included in the

grid pattern. Cards must be in sequential order starting with lowest

I index.

Format (315)

Columns 1-5 IOMIT I index of column which segments are

to be omitted.

Columns 6-10 LSTART J index of first nodal point, with

I index of IOMIT that is to be

in&lsded.

Columns 11-15 LSTOP J index of last nodal point, with I

index of IOMIT that is to be included.

Expansion Parameter Card

The information on this card signifies the beginning and the end

of the fine gridding in the crack tip region, in terms of the J index.

Format (315)

Columns 1-5 IW.PAN The j index of the row following the

last JOHIT index specified in the J

segment data.

Columns 6-10 IIXD I index of a node point which tells

the program thst after this point is

passed it is to begin generating

triangular elements when the nodal

points are in the correct formation.

This point is directly below the
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crack tip and in the row with a J-

index one less than the first JOMIT

index specified in the J segment data.

Columns 11-15 JJEXP J index of the nodal point described

in IIEXP.

Material Block Assignment

Each card assigns a material number to a block of elements

defined by I-J data. The number of cards must agree with the number

specified in columns 11-15 of mesh control data card.

Format (515)

Columns 1-5 Material definition number

A Columns 6-10 Minimum I

Columns 11-15 Maximum I

Columns 16-20 Minimum J

Co:lumns 21-25 Maximum J

.
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.4C MAIN PROGRAM

C SAAS III* FLiNITE ELEMENT? STRESS ANALYSIS OF AXISYMMETRIC AND PLANE
c SOLIDS WITH CIFFERENT jRTHOTROPIC# TEMPERATURE-DEPENDENT MATERIAL

C PRGPERTIES LNTNINANDf COMPRESSION ICUNGTHE EFET0F
C INTERNAL PORE FLUlIC PRESSUNES AND THERMAL STRESSES,

COMMON/BASIC/NUMNPNUMELNUMPC NUMSCACELZANc3VELTREFVOL,!FREQ
CONON/NPOATA/R(100O),CODEC1000),Xk(100O)oZ(100O),XZ(1O0),T(100O)

~1 U4,LE PRECISION CAZXIiRHAZSRRR*ZZZ
COMMON/ELOATA/IX(100095),EMR(1000htALPMA(1000),PSTC1000)
COMMON/SOLVE,'NCODE C3O,100) . "JMTC
COMMON/TOIMIN(100) IMAX( 00) ,JMIN (30) ,JMAX (30) ,MAX1,HAXJNMTLNBC
1 #MINIPMINJ
CONMON /OMG4/ ISTOF
CUI'MON/LC2/ KP9RP(25O) ,ZP(250)

~ ~1' ~COOMN/JEM~/NCHC, 1MIV(30) ,IMAV (30) ,JFIV (30) ,JMAV (30)
CUNMN/DHGS/ JS.TOP.
INTEGER TITLE (20)

'JST OP.UU
400 CONTINUEIi C CALL DATA

C EDDWRITE CON TOLE INFORMATION

1ED9t00 TIStN~ISA TASTTE*OID LIPOTNNLA IMSM

I NUMTC.NPORP~NUMATNUPI(.NUMSCTREF

C (38NEMATE FINITE ELEMENT MESH

215 CALL MLSH

C INITIALIZE
C

C NEOU AND WRITE NODAL POINT AND EL.EMENT DATA

245;CAL ~OIeO**N *.*.@.(T)e**...OO*.e**eeOa..*

C OUIfPUT ELEMENT DATA

PRINT 3100 30IPINw

00 35 NalNLML
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WRITE(692008)
MPRINTc5O

300 NPRINT=MPRINT-1
NSTRSSc2O
THICKuO.281

350 WRITE(bt?009) N,(IX(NsI)Ixl5),ALPHA(N)oT(N),PST(N)hNSTRSSTHICK
IF( ISTOP @NE* 33 ) 60 TO 362
00 360 NPUNu1tNUMEL
PUNCH 3002,NFUN,(LX(NPUNI)Iul1S)oNSTRSSTHICK

360 CONTINUE
UO 361 NPmINUMNP
PUNCH J200,NPtR(NP)vZ(NP)

361 CONTINUE
362 CONTINUE
370 IF(ISTUPeE,.1.OR.ISTOP9EQ,11)GO TO 910
910 IF( NPP *NE. 0 2 GO TO 200

IF ( IbTOP .EQ. 1 ) GO TO 200
IF ( IFREG .EQ. 0 ) 60 TO 200

C SU' THt ELEMENTS OF THE Z-OIRLCrION BOUNDARY FORCE MATRIX
00 905 IFOR n1,NUMKP

905 ZFGRCE a ZFOCE * XZ(IFOR)
ZFORCE n ZFORCE * 2e * 391415927
ELMASS a ELPASS/2,O
WEIGHT a ELPASS*12e0*32#17
GFORCL a EUPASSOACELZ
EL0ASb a EURASS012oO

WRITE (693000) ELMASS
WRITE (6o3001) ZFORCE
WRITE(t,30031WEI WT
WRITE(693004)OFORCE

GO TO 200

1000 FORMAT(2OA4#/w

I IZ913o15912913*35Soi3ol2*2l~oFS,0t6lS)

1001 FORMAT (0F10s0|
Z00O FONMAT(IH115A4,/t

I 33H0 START PARAHETR .--..-. ....... I4o/
2 33H0 STOP FAR"A-tER ---------- wo 49/
3 33H0 IF 1 PLOT CEFLECTIUNS 014/
4 32H0 IF It SMALL PLOT. IF 29 LARGE,/
5 33H0 PLOT. OTHERWISE NO PLOT------ 49/
6 33H0 NUMBER OF APPROXIMATIONS .-... 14
7 33H0 IF Is GENERATE MESH--.- *...#.t4,/
8 3380 NUMBE6 OF TEMPERATURE CAROS---4I4,/
3 33H0 NUMBER OF MATERIALS-- .---- -'.I4ot
4 33H0 NUMBER OF EXTERNAL PRESSURES--,t14v/
5 33H0 NUM8EA OF SI-EAR CARDS----- 9149/
6 33H0 REFERENCE TEMPERATUREw--......*E12,W
7 33H0 BOUNDARY PLCT OPTION 14t!//)

4001 FORMAT (77H A FUNDAMENTAL FREGUENCY WILL BE COMPUTED. A LONGER RUN
I TIME WILL BE OBSERVEOBOlH DUE TO THE NEED TO RECOMPUTE EACH ELEME
2NT STIFFNES5 MATRIX IN SUBROUTINE STRESS)

2002 FORMAT 124H IHE ANGULAR VELOCITY IStE12*.4/31H AND THE AXIAL ACCEL
1ERATION IS 9E12*4)

2003 FORMAT (23H THE R ACCELERATION IS 9EI2o./2?H AND THE Z ACCELERATIO
IN IS .L1o4)

*,!
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0 r

2004 FORMAT (//42t THE PLANE STRAN OPTION HAS BEEN SELECTED)2005 FORMAT (/i4a1 THE PLANE STRESS OPTION HAS SEEN SELECTED)

2008 FORMAT (88H1 EL I J K L MATERIAL ANGLE TEMPERATURE
1 PRLSSURE PRINT THICKNESS

2009 FORMAT IS,4t I8tF11.ho2Fl3.3,5XI5 5XFO.4)
201.3 FORMAT (3Ol1 PRESSLRE BOUNDARY CONDITIONS)
2015 FORMAT (2TH1 SHEAR BOUNDARY CONDITIONS)
E020 FORMAT (/29H THE PROCEDURE CONVERGED IN ,12t34H TENSION - COMPRES

1SICN ITERATICNS I
2021 FORMAT '136H THE PROCEDURE DID NOT CONVERGE IN 912933H TENSION -

1COMPRESSION ITERATIONS)
2022 FORMAT (/29H THE PROCEDURE CONVERGED IN tI2*30H NONLINEAR ELASTIC

1 ITERAT'ONS
2033 FORMAT (/36H THE PROCEDURE DID NOT CONVERGE IN *12t30H NONLINEAR

IELASTIC ITERATIONS
2030 FORMAT (/51H NUMBER OF IENSION-COMPRESSION APPROXIMATIONS.-.

3000 FORMAT C1H t/liOXv 4HMASS.20(2H..)E20.1493Xt5HSLUGS)i! "00i FORMATQ1H tiftlOX939MAXIAL FORCE DUE TO NORMAL STRESSESo/91OX*

I 40HSHEAR STRESSESs AND CONCENTRATED RADIAL9 /9
41H olOXt 16HAND AXIAL FORCES 914|2H**)t E2O.1493X93HLBF)

3003 FOHMAT(1H 9/91OXt 6HWEIGHT9191(H..), E20s.l4,3X 3HLBF)
3004 FONMATQ1H */#l0Xs2OHAXIAL INERTIAL FORCE ,12(2H..),E20.1493X*

I 31LBF)
3002 FQRMAT(615,2CX*I5t5XvF1O.4)

3100 FOWMATRlH IEHELENENT DATA)
3200 FORMATI15,4O062FIO.4)

ENC

ia

'I
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C MESH-- THIS ROUTINE GENERATES THE MESH GIVEN LINE SEGMENT INPUT
C SUBROUTINE MESH

IPIN a 2E FOR VIDTEPOLATEDBUDRYPIT

c x- ~FOR INEPONT DITRORPIT
C 1 FR TRIXTERO L OINE S
C v FR VNTRNA POIGNAL

C P Na0F'CR S-INL POINTS
C a I CR STRAINT LIC~NE

Ca 2 FCR 2CINTNAL DIGSNACIIILZTO NY

C x 6 FCR 2 PCINT * CADIUS ARC

1 a HI2NIM*IAIU RCIITALZTINONY

COFOMON/CLDATA/IX(L00O,5),Et'R(1OO0),ALPHA(1000OhPST(10iO)
CQFJMON/LC2i KPvRP(250) ,ZP'(250)
COPMUN/GASIC/NUMNPNUMEL,.IUMPCNUMSCACELZAN ZVELTREFVQLeIFREQ
COPMMON/OHG4d ISTOP
CUMMON/JEH/NCHC, IHIV (30), IMAV (30) .JMIV (30) tJMAV (30)
COMMON/SOt.VE,NCOOE (30.100) ,NUMTC
OI?'EN51ON AN4309,I0),AZ(30910O)

EQi.IVALENCE 1i) ,AR (1,1) ) iZUl) AZ (1,1))

c MESH CUNTROL INFORMATIUN

READ) tV,1oO)NSEGi~NBCNPTLNLINCONI*CON.J.ISETJSET
WRIT 6,200O)NSEGdCNMTLNLNCONCONjZSETtJSETj

c INITIALIZE

00 110 J81#100

100 AZ(IJ)0

IMIN(JI*30
110 104AX Wl v

D0 120 I1130
jMAXWIl0I120 JMN (C) =I 00

C LINE SLf3HENT CARDS

PRINT idO0!
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RED9s10O1)I2#JaR2,Z2
A IPTIQNu1

130 PRINT 2005

200PRINT ?010912#42,R2Z22

2182

AR CII, j1) R1
AZI1,j1)*Z1
RP(KP)mRI
IFUIPTION*LT*.0RP(KP)*-R1
ZP(I(P)SZl
KP&KP.1

IF(ISE6.s.QN5EQ) GC TO 500

249 1Ft12oNE* -2*AN~o4C*EQ*0) 6O TO 251
IF(129NE. -2) 6O TO 252
kEAD(9#5000) IBPA~vJSMAX9NUNMJoIGT,4CT,4CMAX

5000 FORNAT41615)
HR.AD(95OOO) Wt486ON,tI.UMOJ

Jr. I

W28AR(12*1)
Z2sAZ~lvj2)
£PTIQNsb-1

ij3u 0

60 O e 5l
i!Si IF(12 .Gt. IBMAX ) 0 TO 255

1PtJ2.tQU.,jBN*AX) 6O TO 253

IF(12..ETAO.12LEJCTANDJ2GT4CMAX) 0O T'O 253
IPISONWI
60 to 254

IF1P(2.*T* 1610AX) GC TO 255

WPTIONa-1
254 A20AN41201)

Z~xAZ(l9J2l

Ica cl
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255 IC=O
12:-1
GO TO ?51

251 IF(12 *EQ. -1 )GO TO 500
IF(IPTION.LT.O)GO TO 130
WRITE(b,2010) 12.J2,R2.Z2,13,J3,RatZ3,IPTION
IPTION=IPTION.1
GO TO ( 20a.000930093469346t346#346) # IPTION

c GBNERATE STRAIGHT LINES ON BOUNUARY

300 DI=AUS(FLOAT(I2-I1))
DJz A8S CFLOAT C J2 .Jl))

>4 1STRTi11

JSTPcje
UIFF=AMAAI CDItUJ)
ITER=DIFF-1.

IININ(1CcIo

IF(.J2.NE..Jl) JINC=(JZ-J1)/IABS(J2-il)
KAPPA~l
IF(12,NE.Il.AND.J2.NE.J1,*ANO.IPTION.NE.3) KAPPA22
IF(KAPPA*EQ*2) OIFF=29*DIFF4 RI',NCz(H2-R1l /DIFF
LIb\C= CL2-Zl) /DIFF>4 WRITE(692002) OI4D%,DIFFRINCZINCITERIINCJINCKAPPA

C CHLCK FOR INFUT ERROR
C

IF(IPTION,EG*3 *ANO*DI.NE.IXj) 6O TO 310

IF(KAPP.ANE#E.OR#DI*EW*DJ) GO TO 320

GO TO 400

CITER(PULATE

WRITE (bo2004)
00 340 Mu1,ITER
IFCITEH*EQ.0.AND*IPTION*EQ*2)GO TO 345
IF(KAPPAoEGQ:2) 6O TO 330

IsI+IINC

Umw*JINC
AR (IoJJuAR (ICLOoJOLD)*RINC
AZ CItJ)mAZ(ICL#JOLD)*ZINC
WRITEC692005) ItJAR(IJ)#AZ(I#J)
CALL MNIMX(I#J)
IF(NCOUE(IJ).NE4;WITE6z10)Ioo.
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30GO TO 340

Ir£I+IINC
AR (IJ)*AR (ICLDe*J) RINC
AZ (IJ)=AZ(ICLO;J) ,ZINC
WRITE(b92005) It.iARCItJ) AZCI#J)
IF(NCOUECI.J) NE.4)WRITE(6.210011,J
NOODE(IvJ)m2
CALL MNIMX(I,,J)
~JOL~uca
J~gw+4INC
AR (IPJ) AR CI JOLD) .RINC
AZ (IoJ) AZ CIJULD) .ZINC

IF (NCOUE(IJ) .NE.4) WRITE(b,2100) I.j
NOODE (IoJ) =2

CALL OF NTIN XETERTHN

34 FKPP~l GO TO 200

AR---.-LACUTI'CN TRINTD

A 00NAJD(ItJ c

CALL NIMX J

00 503 Xe ,3

503 -- CONTI U JNTRIAEI

500 507A jmv 10

IF (IHAA(J) .cT.MAXJ)MAX~uIMAX(l)
IFE4MI('lI)TNC~ mjIN

503 CONTINUE

00IT 5 0 m00 tI~~,J4,M

READ (NoO) wIMIC

READV (NU800uIMA l~JM#M

JMIV(NU)OJHI
,MAV(NU)8JMA4 DO0 508 J8JMZ.JMA

Pi'
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iC58ImM9M
508 NCCDE(lj)=5

8000 FORMAT(4IS)
8500 FOIHMAT(IHO* 20HVOIC SPECIFICATIONS 9/t

1 21hI IFN IMA JMI JNA4 IFCNUHCaLE,30)GO TC 511
WRITE (6#900)

9000 FOHMAT(33mO****ERRCR****TOU MANY VOID CARDS)

C CALCULATE COCROINATES OF INTERIOR POINTS

IMAX 1-1
IF(NLIM*LT*1) NLIM =100
DO 520 N1,vNLIM

RESIDUo.
DO 510 I=IlI2i

J23JMAA~l-

DO 510 Oiv.

(A * KOECO DE*(AIJ) 1

1* CNI * (A(I*1,J) - A(I-19,J/ FLOAT8*IISETfl

RE6SID=HESID*ABS (DR) .AbS(DL)
AR(I*J)uAR(ItJ) .1.800M
AZ (I,,J)mAZ(I.~j)o*8*Di

510 CONTINUE
IFCN*EU.1) RESIURESID
IF(N.EU.1,ANC.RESIC.E(J.O) GO TO 530
IF(RESlD/RESl*LT*1vE-4) GO TO 530

520 CONTINUE
530 WRITEeZ929 N

KPxKP-1
600 CUNTINuL
999 WRITE(bt4OaO)

4000 FORMAT(H #9HEND MESH)

C
1000 FOHMAT(4I5, 2F1090,315)
1001 FORMAT (2C2l3#2F8&3)vI5)
e0OO FORMAT (30H1 MESH GENERATION INFORMATION//

3 41MO NUMBER~ OF LINE SEGMENT CARDS ---------.oI39/
4 41H0 NUMBER OF UOUNDARY CONDITION CARDS ----,139/
541H0 NUMBER OF MATERIAL BLOCK CARDSo10 UBEO-M-EIL LCKCAw#::::139/
441H10 NUMBER~ OF BCUNDARY CONDITION CARDS ---- 9139/5111N M E F M T R A B O K C R ~ ---1 ,

6 41 O N MBE OF ITER TIO S-% w- -,-.~w -- 139
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7 41HO POLAR COORDINATE PARAMETER I -----.-- ,E12,49/
8 41HO POLAR COORDINATE PARANETER J-- ----- 9E12,4,/l 9 41HO I CURVATURE MODIFICATION ----------
1 41140 J CURVATURE MODIFICATION ----....... i3,/11)

2001 FOhMAT(IHO .ell INPUT I j R Z 12 J2 R2
1 Z IPTION

2002 FORMAT(1H , 5H DI=,F4.0# SH DJ=F4.0, 7H DIFFx 9F4,0,
1 7M RINC=,F8*,3 7H ZINCtF8,39?H ITERz#13,
2 7M IINCutl3t 7H JINCzI.j, 8H KAPPA=912)

2003 FOHMAT (IX#38HM*BAD INPUT--T':;S LINE IS NOT DIAGONAL)
d004 FORMAT (30H I J AR AZ)
2005 FOSMAT (215,EF10.3)
2006 FOHMAT (51M .* BAD INPUT - THESE POINTS DO NOT DEFINE A CIRCLEt/t

13X#GFl4,4tlOx9 E20,8)

2007 FOMAT(1H # ilH CENTER COORDINATE (9FB,3#lHt#F8*3,1H))
2008 FOHMAT(1H , 7M AKGlm9F9.6s7H ANG2=,F9.6,7H DIFF=tF3.09

1 9H DELPHI tF9.e)
2009 FORMAT(ihO, .30H OCGORUINATLS CALCULATED AFTER *13#

I 1hR ITERATIONS
e010 FOHMAT(7X,2(2I4#2Fe,3)vIb)
2100 FORMAT(54HM***oWARNING***** NODAL POINT WITH (Ito) COORDINATES it4 0 I29l,I2tlh) HAS BEEN RE-DEFINED)
3000 FOmMAT(lbIS)
3100 FOHMAT(2El5,eIlO)
3aO0 FOHMAT(BFj~v5)

RETURN

ENC

;I
i'

.dt
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C POINTS--. THIS RCUTINE ASSIGNS MATERIALS, TEMPER~ATUR~ES, ETC.
SUBROUTINE PCINTS

COPSMON/BASICNUMNPNUMELINUMPC9NUMSCACELZANGVELTRE.,VOL, IFREQCOtMON/NPDAT/R(looo),CODEclooo),XR(loaa),zclooo,,XZ(1000)oT(1000)

DOUBLE PRECISION X#YTEMi
COMMON/SOLVE*#NCODE(30,100) ,NUMTC
CoPMON/TD/IMINc1oo),IMAX(10o),JMINc30o,MAX(30,,.AIAX09NMT,NBC
1 oMINIsMbaMj
CO?'MON/PLANE,NPP

CONMO4N/OHG4I ISTOP1. DIMENSION AR(30.1O0),AZ(30,10O),NATRIL(2o95),BLKANG(20)DIVENSION IOIRDERC309100)
DIPENSION JOFIT (40) oMSTART (40) ,MSTOP (40)
DIMENSION IOPITC4O)9LSTART(40)tLSTOP(40)
DATA IURDER/-2000*0/
EQUIVALENCE (RU1) AR(ltl) )t. Z(1) AZ(lw1))

READC9,4999) RSHIF#ZSHIF
4999 FORMAT(2F10*O)

IREAD(995000) JOMAA
5000 FORMAT(I5)

0O 7 ~jUxlJORAX
READC9,5001) .JOMITUJO),t4START(J0)tMSTOP(J0)

b001 FONMAT(3I5)
7 CONTINUE

READ(9v5004) 10MAX
5004 FOHMAT(I5)

DO 6 Iou1,IONA(
6 RLAD(Yi,5Oo1) IOMIT(I0)9LSTART(I)LTOP(I0,)

HE.AD(995001) IEXPAN*IIEXP#~JJEXP

DO 120 JUMINwoIMAXJ
IF( J *Ego JCMITW~O) ) 0 TO 90
NS7ART=IMIN (I.)
NSTOPwIMAX U)
GO TO 9~1

90 NSTARTaMSTART (40J)
NSTOPuMSTOP Ch0)
~JDXJO.1

91 1081
DO 120 ImNSTART#NS7OP
IOROER (ItJ)a0
IF(NCOUE(I,9J)eEQ*4) GO TO 120
IF(I*NL*IOM1T(10)) GO TO 96
IF(IJLk.LSTOP(10) ) G0 TO 92
GO TO 93

92 IF1J sU~Es LSIART(1O) ) G TO 95
93 10810*1

GO TO 120
95 I0*I0,1
96 NPuNP.J,

R ONP) &AR (190J
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j ZCNhP)=AZIqJ)

120 CONTINUE
NUP.NP=NP

READ AND ASSIGN BOtJNDARY CUi4DITIONS

C INITIALIZE
C

DO 150 I101000
TCI)=0.0

ISO PSYCI)CO.0
DO 200) I119KMNP

IF(NCI)oEG*0..ANO.-tPP*EQ*0) CODEd) I*1

C200 CONTINUE
IF(NbiCoEU.0) GO TO 220
DO 210 IbCONw1,NbsC
REAU(9*1002) Il#I2,dlJ2,CUNtRCONvZCON
0O 210 1211912
DO 210 JBjlvg2
NPmIORUERCIi0%)
COCE(N')xCON
AR (NP)=RCON

21 XtP=CON

PRINT 1300#NLM'NP

U0 240 JaINvtMAXJ
IF( 0J *EQ. JOMITWOJ) 60G TO 225
NSIARTuIMIN (0
NSTtJPUIMAX (J)
GO TO 426

225 NSTAHTMSTART(.jO)
NSTOP=MSTOP (..()

226 I~al
DO 240 InNSTARTNS7OP
IF ( NCODE(l,%J) .5G. 4 00G TO 240
IF(IeN~aIOMI7(IO) 60G TO 256~
IFW~ *LE*LST'CP(IO) 00G TO 254
0O TO 257

254 IFW~ *OE* LSIART(I0) ) GO To 255
257 10:10.1

0O TO e40
255 10.10.1

a256 NP*NP,1
IFCI4PRINT.NE*0) 00 TO 230
WRZTL(6#2000)
MPRiINTeSO

230 MPISINToMPRIN7-1 R4NP~k(NP)AS~l
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Z0NP)mZ(NP)-t2SHIF
WRITE(b,200I.%tJNPCODE(NP),R(NP~iZ(NP),XR(NP),XZ(NP),NCODE(1,J)

240 CONTINUE

C ASSIGN MAILRIALS LN BLOCKS

00 300 MisitlOOG
300 I?'AMlob)80

00 310 IM?L=1,NMTL
READ (9,1000) MTLCMATRIL(IMTLIM),IMu2,5),BLKANGCMTL)

310 MATRIL(IMTL91U.MTL

C ESTABLISH ELEMENT INFORMATION

~JJPA~vMAX4-j.
IOGDE:1
~JOGDEVI
~JJCOUE21
NELs.O

GO TO 312
311 CONTINUE
312 JJJ.1~

IF(J-J sGT, Jv~MAX).6O TO 400
JCODEtl

NSTAHTtIMIN ~iJ)
NSTOP=IMAX (,Jw)
IIUNSTART
GQ TO 314i

313 llall.1
IF(II*GE.NS'CP) GO TO 311

314 IF(IUKUER(II#4Jj) *Ego 0 )60 TO 313
IIPIuII.1

IF ( NCODE(II,%JJ) *EO. 4 )GO TO 317
IF(NCOUE(lIP.J4 )*EQ@4)6O TO 317
IF(NCOUE(II s~J~P)EQo4)G0 TO 317
IF(NCOUU.IIPv1 JJP)oEQ*4)GO TO 317
IF(JJ.GE#QEPANDIIlc3E*IIEXP) GO TO 3-16
IF(NCODE(II *J )*,hE*5)GO TO 318
IF(NCOOE(IIPJ1 )&.$Em5)GG TO 318
IF(NCOUECII *JQP.NlEsb8O TO 318
IF(NCOUE(IlPtJ.JP).INE.5)60 TO 318
00 315 NUa1,iNOHiC
IF II. .,IMIV (NO) .AND.II.L~eIMAV (NO) .ANDm
1 JJ.b$E.*Jt4I(NO) .AND.eJJ.LEt~JMAV (NO) .ANO.
2 IIP.GE.IMIV(No).AND.IIP.LE.IMAV(N).ANDhJJPoGE,JMIV(NO).AND*
3 JJP*LEoiMAV(NO))GO TO 313

315 CONTINUE
316 JJhCODEw2

GO TO 318
317 ~JJCOUE*2

00 O313
318 CONTINUE
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C CHECK FOR DIRECTION OF EXPANSION
IF(JJCODEoEQ.2) GO TO 320

319 CONTINUEGOT32
IF(IORUERCIJJ) .GT.O.ANO.IORDERCIIJJP),GT.O)GO TO 333

600FORMAT(' ItlSO**ERRCR*** POINTS',41590 DO NOT DEFINE A VALID

LEXPANSION EXECUTICN TERMINATED')
3?0 CONTINUE

IF( J.J *GE* IEXPAN )GO TO 319
IF(I0RUER(Ij..oJ) *EQo 0 ) GO TO 31341 IF(IURU.ER(I?$,#JJP)*EQ*O) GO TO 321
bO TO 319

321 CONTINUE
C EXPANSION IN J-DIRECTION

IF(IORUERcJItiPEQO.ANDIORDERIPJJP2.EQ.O) GO TO 331
IF(IORUER(IIoJ1 P).GT.0.ANU.IOROER(IIPojJP).GT.o) GO TO 329
IFCIUROER(II.jjP)*EQ#0) GO TO 322
IITEMPsII

JtJTEMP=JP

3 60 TOP331

JJTEMPnJJP

GO TU 331
323 CONTINUE
C TRIANGULAR ELEMENTS

lAxIORUER(IoijJ)
I8. IOF4ER (ZIF9,JX)
IC=IORUER (IITEMP9JvhTEMP)

GO TO 332
324 IAgI0RUERtIJUJ2

10IB0RIER(II7ENP#JwTEMP)
ICcIORUER(IIsjjP)
ION IC
JOCOEu4
fO TO J32

326 lAzIURUEH(IIj.jP)
I~nIURUER (IIlEMP9Jw.TEMP)
I~u IURUER ( 11 ,oJP)
IONIC

Go0 TO 332
327 IAvIORUE:R(lIPJ

IBVIORUER 'lipo.j)
IC.lOR0ER (IITEMPvJwTE14P)
I~mIC
00 O 332.
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60 TO 332
328 IAxIORDERIP,%h.JP)

IBuIORLJER(119JJP)
ICsIORUER cIITENP.J"TEMP)
IOZIC
JOG UEl1
0O TO 332

329 (30 TO (330,3230326) ,9JCODE
330 IA=IORUER(IIJJ)

IBmIORDER CIIF#JJ)
IC=IORUEH(IlPJJP)
IDzIORUER II#.j4P)
(30 TO 332

331 J sjjP4
IF(JJP*GT*MAAJ) CALL ERROR(1,JJP#MAXJoII)
6O 7O 321

332 PELONE461
IF(NEL.GT*1O0O) CALL ERROR%2oNEL#1OoOO)
IX (NEL*1)zIA
IX CNEL92) .18
IX CNELt3) sIC
IX(NEL94)mIO
IX CNEL95) uMTL
ALPHA (NEL) uBLKANG ('ITL)
GO TO ( 345v324#.32702Z59328I ).jCOOE

333 CONTINUE
C eXPANSIUN IN I-DIRECTION

IF(IURUERIIFJJ)EQOAN.IORERIP 1 JP)hQ.O) GO TO 337
IF(IORUER(IIFJJ).TO.AN4D.I0ROERCIZP9,jJP),GT.o) GO TO 335
IF(IONVER(IIPJJ)*EQ*0) GO TO 334
IITEMP=IP

ICOUE~i
6O TO J37

334 IIYEt4PvIIP
JTEJPCJJP

335 0 TO(33642939) ICOt

33 IA. IURUERIfH 4

I~sIORUEH (II~JJP)

IuP-1
60 TO 330

337 IIPwIIP~l
IFCIIP9GTNSl0P) CALL ERRUH(3#IIP*NSTOPJJ)
0O TO 333

336 NELENEL41
IF(NEL*GT.10O00 CALL ERROR(2#NEL9100090)
IX(NELl)jIA
IX(NELo2)wlG

I I! INLL~u8tKANGl0L
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$ GO TO C345f343*34093419344 )v ICODE
339 CONTINUE
C TRIANGULAR ELEMENTS

lA=!URER(IItJJ)
IBCIGROER CII7EMP.J4TEt4P)
ICzIURUER(IIvjoP)
IDSIC
6O TO .3w

340 IAxIOHOEHCIItJJ)
IBm IOROER (lP ,JJ)
ICmXORUEHC 'ITENP#JwTEMP)

IOCDE=4
GO TO J38

341 IA=IOHUER(IIJJ)
4 ~I~xIORUER (IIF#EMPJTE

IC. IORUEW (IITEMJQTP
ID31C

GO TO 338
342 IAdIOHiUERcIIlJd)

IBaIORUER (II7EMPvbJTEMP)
ICtIUHVE4 IIP,*JP)
IDGIC

344 IAsIORUER(IIFJJP)

IbmZORUEM (II1EMPtJTEP)
lIcwu (IpJp

IOG0Eab
(30 TO 338

344 0 IA*TLEl.NMTLj

0O TO 338
365030 CTI ~e oNT

130 TO 383
360 CONTINUE

PRNT~~uE 4l0N~v~
380] IP(NU?4NP.GT.I0)LIT(,02

* c*.........,..*..*o*.*.. G.*..**....,.*...tg...*.e..o
00 TO 31

40 ONIU NURE~aNI
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. C SET NOUAL POINT TERPERATUHE TO REFERENCE TEMPERATURE

IF(NUMTCoNE.0)GO TC 550
DO 500 N=1,NLMNP

500 TOK)=THEF
550 WRITE(b400O)

4000 FOHMATt1h , 1OHEND POINTS 3
RETUMN

I . C

1000 FONMAT (5150F10.0)
1002 FOHMAT (4I153Fl0&0)
1300 FUOMATtINOt 40HNODAL POINT DATA---NO. OF NODAL POINTS= 915)1000 FO4MAT( 104HN I J NP TYPE R-ORDINATE 2-ORDINA

ITE H LOAD OR DISPLACEMENT Z LOAD OR DISPLACEPENT)
2001 FOHMAT(2lISeF12.1 ,F12.3,Fl4.3,Ek6.T7E24.T7tlS)
2001 FORMAT (35H BAD INPUT - TOO MANY NODAL POINTS)

e100 FORMAT(1N09 eHELEMENT ,14s3X#23HWITH (I.) COORDINATES(912,1HMsI30
1 31H) HAS BEEN ASSIGNED MATERIAL 1
ENC;

.1
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C DATA--- W IS ROLTINE HEADS CARDS AND PUTS TP~EiM ON TAPE NO.9
SUBROUTINE DATA
CONMON/OHG5/ JbTOP
O0t'ENSION CARD(20)
REWIND 9
N20a
IF ( JTOP EQG. 1 )60 TO 400
REAO(591000) CARD

GO T n
100 REAUt5*10009ENO=300)CARD

20WRITE (691003) CARD

V ~wHITtE~,oooo CARU

6O TU 100
30ENLFILL 9

HE1INO 9

1003 FOkMATS2A4aO)

1003 FOUd4AT15X920W D F O

ENC
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c MNINX-. ThIS IS A UTILITY ROUTINE
SUUROUTINE MIIMX(IoJ)I C COliMON/TU/IMIN(10O),IMAX(100),jMIN(30),JAX3)IPAXIMAX~JNMTLNSC

REURNEN



87

C NUDE~- A SMALL .LTILITY ROUTINE WHICH' MAY BE NEEDED BY MESH OR POINTS
§ PFUKCTIUN NODE(IJ)

C
COYMON/TD/IMINi1O0) ,IMAXtIOO) ,JMIN(30) ,JMAX(30) ttAX!,MAXJNMTLNBC
1 sMIN19MIKNJ

C
NOCEso
D0 100 JhJalo.
NS7AHT=IMINV,.J)
NSTUP=IMAX( v)
DO 100 IluNSTAHTsNSTOP

NODExNUDE.1
IF(JJ*LQ.JAND*IX.EQoI) RETURN

100 CONTINUE
c

WETUN
I ENC
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bU8ROUTINE EFROR(NMtLtK)

10 FUNMAT(l *,tijpz 0,,5stExCEEDS J~JA 
.5

0O TO !20

2 wRITE~b,11)*t'L
~i FOR94AT(' 09,'EL 99159#EXCEEDS I4AXNELu .5

GO TO bO
3 wRITECbv12)-P#.L*K

12 FORMAT(It' il'IP a 9*lbIEXCEEDS NSTOP z #915'i'J 1915)

50 WRITE(b,13)
13 FOHIMATI' o*OEXLCUTION TERMINATED')

bTGP
tNC
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