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SHOCK EFFECTS ON INTERFACES

1. INTRODUCTION

1.  General. From February 1972 through April 1974, the U.S. Army Mobility
LEquipment Research and Development Command (MERADCOM) had subjected over
100 specimens of armor steel to suceessful impacts at hypersonie veloeities' in the
Naval Researeh Laboratory hght gas-gun faeility. The immediate purpose of these
experiments was to develop heunstie theory capable of predicting backface spall and
assoceiated phenomena resulting from impacts of small projeetiles.  The long-range ob-
jective was to obtain snfficient understanding of the impact phenomena to enable the
design of projectiles (or spallators) capable of optimizing the backface spall for the pur-
pose of producing damage to components inside of military vehicles.

Results and analyses of most of the experiments performed prior to
Deeember 1973 have been reported previously.? ~® In this report, phenomena peenliar
tointerfaces and results obtained between December 1973 and Apnl 1974 are reported.

11. BACKGROUND

2. Summary of Hypervelocity Impaet Experiments. Prajectile matenial, shape,
size. configuration, velocity, and impact angle were variable. In all, 36 experiments
were performed using nylon spheres as projectiles, 14 using steel spheres, 14 using
lignid-filled  polymer shells, and the remainder using special projectiles of various
shapes, sizes, materials, and confignrations. These special projectiles mclhded spheres
of titanium, glass, Al 03, tungsten carbide (WC), magnesinm-lithinm (Mgli), hollow
Lexan and steel spheres, hollow and solid Lexan eylinders, and Lexan eylhnders with

steel tips.

Hypersonie velocities or hypervelocities imply veloenies of about 2 to 10 km/s. The terms are misnomers bt

are nsed widely.

= J. W. Bond, Jr., "Shock Damage and Back IFace Spall in Materials,” Proceedings of the Army Symposium ow
Solid Mechaunics, 1972, Army Materials and Meehanies Research Cenler Report, AMMRC MS 73.2, Seplember
1972,

3 J. W. Boud, Jr., and G. W, Ullrich, Two-Dinrensional Spallation Induced by llypervelocity Impact in Wrought

Steel Plate, V.S, Army Mobility Eqnipment Research and Development Center Report 2067, Jnly 1973,

" 1. W, Bond, Jr., “Hypervelocity hnpact Shock-Indnced Damage to Steel Armor,” Army Seienee Conference,
Wesl Point, N.Y., June 1974,

J. W, Bownd, Jr., High Pressures Induced by Short-Prlse Lasers, U.S. Army Mobilily Equipmen1 Rescareh and
Development Center Report 2080, November 1973,

D. A, Shoekey, et al., Physical Changes Ocenrring t Armor Steel Under Hypervelocity Impact, Stanford Re-
search Institule Final Reporl on USAMERDC Contract DAA DO5-73-C-0025, March 1974,




The diameter D of the nylon spheres varied from 0.795 to 1.91 centimeters,
but most of the experiments used spheres with diameters of 0.953 and 1.19 centi-
meters. The steel spheres had diameters ranging from 0.554 to 1.153 centimeters, and
liquid-filled Lexan spheres had diameters between 0.86 and 1.0 centimeter.

Target materials included 1.27-, 2.54-, and 3.81-centimeter-thick rolled
homogeneous armor corresponding to MIL-S-12560B steel, 3-centimeter-thick cast
armor corresponding to MIL-S-11356D, 3.81-centimeter-thick Soviet rolled homo-
geneous steel armor, 1.25-centimeter-thick Eleetro Slag Remelt (ESR) steel, and 1.27-
centimeter-thick MS-12560 steel backed by 1.27-centimeter-thick Plexiglas (used in
Iwo separate experiments).

3. Summary of Previous Results. As indicated ecarlicr, the prime objective of
these experiments was to learn more about the physics and metallurgy of backface
spall.  However, these were numerous “surprises,” most of which have not been
explained satisfactorily.  These various findings will be summarized briefly in this
section.

A schematic diagram of the impact damage geometries is shown in Figure 1.
Most of the experiments resulted in craters and spall layers as depicted in Figure 1,
part (a), which is representative of a 0.95-centimeter nylon sphere impacting MS-12560
steel at 4 to 5 kin/s. The serrations noted on the crater floor are quite regular for
nylon-on-steel impacts. These serrations have not been explained, but it is suggested
that they might be due to dynamie instabilities. They do not exist for steel-on-steel
impacts.  This difference also has not been explained. The large macrocracks shown
extending below the crater floor start at the serration valleys and always go in the di-
rection indicated, 1.e., toward the rear surface of the target and toward the erater
eenter line. Similar mmacrocracks exist for steel-on-steel impacts, but they go upward
toward the front surface of the target and away from the crater centerline. In either
case, the macrocracks have not been explained; in particular, the reason for the marked
diffcrence between the nylon-on-steel and the steel-on-steel macrocracks is unknown.
There is a dark, spherically symmetric region below the crater floor that approxi-
mately covers the region penetrated by the macroeracks. In this region, the hardness is
about twice that of the unshoeked steel, and the grain structure is much finer.
Although there is no direct experimental proof, it is generally agreed that this is the
130-kitobar o« 2 € phase change observed in iron and in martensitie steels. This is also

in agreement with detailed 2-d computations made by Sandia Laboratories.”

b

Bl D. A. Shockey, et al., Physical Changes Occurring in Armor Steel Under Hypervelocity Impact, Stanford Re-

search Institule Final Reporl on USAMERDC Contract DAA D05-73-C-0025, March 1974,
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Below the center of the crater and about at the end of the macroeracks,
there is an extensive network of fine microcracks. It has been hypothesized that these
are adiabatie shear lines.® 1In the region of the microeracks, there are many relatively
large voids. Most of thesc voids are intersected by one or more of the microcracks.

The reason for the microeracks and voids is not known.

The spall layer is formed when the stress in the tensile wave reflected from
the rear surface exceeds the spall threshold, measured at 38 Kilobars for MS-12560
steel by Sandia Laboratories.® This is distinetly different from seabbing, which oceurs
when a penetrator or a shaped charge jet passes through the armor. In this latter case,
some of the back surface surrounding the hole also may be ejected in the form of small
fragments. This is often erroneously referred to as backface spallation. It has been
suggested that armor can be hardened against scabbing by using homogeneous steel
which has not been rolled parallel to the back surface.'®

The backface bulge 6, which has the same thickness as the spall layer, in-
creases exponentially with impact velocity, i.c.,

k(V-V
6=600( °).

(1)
[n this relation, &  is the thickness of the backface bulge at ineipient spall, V is the
corresponding velocity, and K is an empirical constant. This relation is plotted in
Figure 2 for 0.953-centimeter nylon spheres impacting 1.25-centimeter-thick MS-12560
steel. It is seen that the experimental points fall remarkably well on the line. When
the spall layer thickness becomes equal to the initial thickness of the spall plug (dis-
tance from the center of the spall layer to the backfaee), the backface is ejected in the
form of a plug or as small fragments. Based on numerous experiments, the value for
8, can be taken as 0.01 centimeter. As indicated above, the spall layer was generally
parallel to the backface. Thus, a single spall measurement is sufficient to determine the
velocity V  required to cause backface spall.

In all cases where the projectiles were solid spheres and where backfaee spall
resulted, the backface was ejected as a single plug. However, it was thought that a
hollow sphere might cause backface spall at lower velocities than would solid spheres
of the same weight (i.e., at equal impact Kinetie energies); and it was thought that they
might cause backface fragmentation. The reasoning behind these thoughts was that
the impacting mass per unit area for the hollow sphere would be relatively small at the

8 D. A. Shockey, et al., Physical Changes Occurring in Armor Steel Under [{ypervelocity Impact, Stanford Re-
search Inslitutle Final Report on USAMERDC Contract DAA D05-73-C-0025, March 1974,

[
Ibid,
10 M. Backman, Naval Weapons Center, Private Communicalion, April 1974,
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eenter, which would cause the spall layer to form nearer to the backface than it would
for a solid sphere; the impacting mass per unit area would be large at the periphcery,
thus possibly resulting in an “irregular” compressive stress wave. The results of a few
experiments seem to bear out these hypotheses, although more analysis is necded.

As a result of the hollow sphere experiments as well as other experiments,
several eomputer-designed projeetiles (spallators) werc built for the purpose of opti-
mizing backface fragmentation. These spallators werc Lexan cylinders with impacting
steel tips. They weighed 3.5 grams. On impaeting 3-ecntimeter-thick wronght steel,
the spallators caused 90 grams of the baekfaee to fragment into more than a dozen
pieces, which penetrated a 0.15-centimeter-thiek aluminum witness platc. The spread
in the cjeet angle was about 50°. Thus, these experiments elearly show that optimumn
spallators are feasible (a 200:1 mass eject ratio is the design goal).

1. RESULTS

4. New Experiments. When this research program first started in 1972, it was
proposed that liquid projectiles be used. The liquid would, of eourse, be eneased in
some type of hollow shell, sueh as a hollow Lexan sphere, but most of the projeetile
mass would be in the form of a liquid. The rcason for using liquids (mostly water)
was because of their low sublimation energy. It was hypothesized that, at impact
veloeitics of 5 to 10 km/s, a large amount of the impacting kinetie energy would go
into vaporization of the projectile/target eombination. Much of this energy would be
lost; i.e., would not eoutribute to the proeess of shoek formation in the target.
Accordingly, it was felt desirable to have projectiles with a low sublimation (or vapori-
zation) energy, such as water. Additional impact energy is lost beeause of penetration.
Hence, low-density projectile materials were proposed.

One of the reasons for eonsidering small projectiles was so that a large
number of them eould be loaded into a warhead and fired in a shotgun pattern, thus
providing a large lethal radius. The primmary target of concern was steel armor 2 to 3
centimeters thick. It was initially assumed that the projeetile diameter should he
approximately the same as the target thickness in order to alleviate loss of shock
strength due to spherieal divergenee of the shoek in the target. If the projectile inass is
to be about 1 gramn, this again suggests low-density material for the projectiles.

During the eourse of the early experimentation, it was found that the en-
cased liquid projeetiles often broke upon firing.  This resulted in the loss of numerous
test shots. In addition, the liquid would cause damage to the light gas-gun. Hence,
solid plastics (mostly nylon), which have even lower sublimation energies (~ 200
eal/g), were used in place of the liquids. Experimental results for nylon and Lexan-
encased water are about the same.



One of the experimental objectives was to determine the importanee of
sublimation energy as an impaet parameter. An MgLi alloy (LA141A) with a density
of 1.35 g/em® has been used suceessfully for projectile materials. A spherical MgLi
projectile (V = 5.2 km/s, D = 0.95 eentimeter, and m = 0.65 gram) was fired against
1.25-centimeter-thiek MS-12560 steel armor (Figure 3). In a qnalitative way, it
appeared to eause eonsiderably more damage than eomparable nylon spheres. The
value of the sublimation energy is not presently available, but the melting point
(~600° C) is considerably higher than for nylon; henee, the sublimation energy should
be considerably higher. Thus, a tentative eonelusion is that other paramneters may be
more important than sublimation energy. However, this is based on a single shot; and
much more analysis is needed.

Two eeramics were tested, Al; 03 and WC. These have a high sublimation
energy. The Al,0;3 resulted in some spallation, but mueh less than for comparable
nylon. The WC shot resulted in a very large and deep crater but no spallation. A tenta-
tive conclusion from these shots is that sublimation energy may be important.

A qualitative and partial explanation for some of these results ean be ob-
tained by comparing the impedances of the undamaged materials, although the geome-
try and impaet eonditions for the above shots are eonsiderably different than those for
which the following analysis holds.

An abrupt change in the physical propertics of a material will result in the
modifieation of a pressure pulse as it eneounters this ehange. In general, a portion of
the pulse will be transmitted, and a portion will be refleeted. The relations which
deseribe the modification of a pulse are based upon the boundary eonditions of eon-
tinuity of pressure and continuity of partiele velocity aeross the interface between two
materials. These relations depend upon the value of pc, ealled the “charaeteristie im-
pedance,” of the two materials. If p ¢ is for the projectile and p,c, for the target,
and if P is the effective pulse amplitude for the projectile, the amplitude of the
component transmitted to the target is:

B 2p‘cl g
lr)l = P() 2 ("')
pl(l L pu (:0
and the reflected component is:
p((‘l - p() Cu
P=—] P. 3)

r .
pie ta,e,
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These relations are somewhat simplified by letting

o,
B els 4
p() (‘0
giving
l)l 2K &
P, K-l A2
r
Values for this ratio are shown in the following table:
lmpedance and Pressure Ratios for Various Projectile Materials
Material Density Sound Veloeity pe K Pk
(g/em?) (km/s)
wC 15.02 5.2 78 0.513 -2.1
Al 04 3.95 9.9 39 1.03 6.8
Steel 7.9 5 40 1 0
Nylon 1.14 2.5 2.9 13.8 2.8
Mgli 1.35 4.25 3.9 6.8 2.34

Any conclusions drawn from these values must be considered tentative; however, there
is reasonable qualitative agreement with experiment. For examnple, WC has a large
impedance and a negative pressure ratio. Thns suggests that spallation should not be
obtained as shown by experiment. On the other hand, impedanees for nylon and Mgl.i
are low suggesting large spallation, also shown by experiment.

In attempting to develop danage eriteria, impact kinetic energy and impact
mowmentuin have been compared as parameters. According to Shockey et al.,'" steel
and nylon spherical projectiles cause about the same spallation damage at equal Kinetic
energies; but, on the basis of equal momenta, nylon is much more damaging than steel.
Based on MERADCOM analysis, it is not elear that this 1s correct. Furthermore, the
relevant damage parameters are not known; e.g., it is not known which is the more
unportant parameter, energy or momentum.

it D. A. Shockey, et al., Physical Changes Occurring in Armor Steel Under Hypervelocity Impact, Stanford Re-
search Institute Final Report on USAMERDC Contract DAA D05-73-C-0025, March 1974,




ESR steel 1s made by a process of electroslag refining in which an ingot or
rolled slab formns an electrode suspended in a water-cooled copper mold with its tip in
a pool of specially formulated flux. The electrode is remelted by the flow of electrie
current from the tip through the flux and into the lower portion of the mold. The flux
becomes superheated and melts the metal at the tip of the electrode, causing a continu-
ous fall of droplets to forin a new ingot below. In the process of melting and passage
of droplets through the flux pool, the metal is refined. Accidental contaminates from
refractories and oxidation during pouring are avoided. The undesirable elements, oxy-
gen and sulfur, are reduced significantly, resulting in a steel that is extremely clean and
virtually free from nonmetallic inclusions. What few inclusions remain are widely
dispersed due to progressive solidification. MERADCOM tested a specimen of
ESR steel 1.25 centimeters thick in the NRL light gas-gun facility. This specimen had
a tensile strength of 21.6 kilobars, which is about twice that of the MS-12560 steel
used in most of the previous tests. The Rockwell hardness was 55.3 at 30° C, about
one-third greater than for the MS-12560 steel. The spherical nylon projectile weighed
0.52 gram and had a diameter of 0.95 ecntimeter. The impact velocity was 5.3 km/s.
The resulting spallation is shown in Figurc 4. The height of the backfacc bulge was 0.1
centimeter. From Figure 2, the corresponding height of the backface bulge for MS-
12560 steel would have been 0.5 centimeter, although backfaee spall actually occurred
at about 0.4 centimeter. Of particular interest is the shape of the spall layer. It is
curved in a dircetion opposite to that of the bulge and has a much more pronounced
curvature. In most of the previous ftests, the spall layers of similar thickness were
parallel to the backfaee bulge. Based on cquation 1, the amount of ESR stecl showing
the same momentum damage as for MS-12560 steel would weigh 16 pereent less; it
would wecigh 35 percent less if the parameter were impact kinctic energy.

It has becn suggested that a piece of plastic on the backside of the armor
would allcviate the backface spallation, or fragmentation, thus protecting soft interior
components (of a military vehicle) from damage. This was tested on a 1.25-centimeter-
thick MS-12560 steel target which had 0.9 centimeter of Plexiglas glued to the back-
face. The impacting spherical projectile was nylon at 0.5 gram and 0.95 eentimeter
diameter. The impact velocity was 5.3 km/s. The result is shown in Figure 5. The
ejected Plexiglas was highly fragmented and would have donc considerable damage to
interior components. The ejected mass was about 40 times greater than the mass of
the impacting nylon spherc. At the impact velocity of 5.3 kin/s, the stcel target would
have exhibited backface spall. This type of damage was alleviated; however, it is seen
from Figurc 5 that a small backface bulge did occur. The impedance mismateh K
between stcel and Plexiglas is probably greater than an order of magnitude; hence, it is
questionable that the ejected Plexiglas was due to spallation of the Plexiglas. Instead,
it was probably due to simple displacement rcsulting from formation of the backface
bulge in the steel, which occurred in about 0.1 second. An experiment to resolve this
question will be performed in the near future.

10
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Figure 5. Nylon spherieal projeetile impaet on wrought steel/Plexiglas target.
(V =5.29 km/s, D = 0.953 centimeter, and m = 0.52 gram)
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Figure 6. Nylon spherical projectile impact on wrought steel/Plexiglas target.
(V =5.22km/s, D) = 0.953 centimeter, and m = 0.52 gram)
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Another interface experiment was made in which the Plexiglas was in front
of the steel instead of behind. Everything else was the same as deseribed in the preeced-
ing paragraph. ln this case, the Plexiglas was shattered, as shown in Figure 6. There
was virtually no damage to the steel armor. This seems to be an obvious result since
most of the shock energy indueed in the Plexiglas by the nylon projectile impact would
reflect from the steel surface, as shown by the nuinbers in the table (page 9).

Finally, there are two other important and inexplicable results which have
been reported previously.’ The first is that smaller spheres cause relatively more
damage than larger spheres. The second is somewhat more complicated. 1t is well
known that martensitic steel exhibits the 130-kilobar phase change, as noted previous-
ly. It was further postulated that this phase change affected the stress pulse in such a
way as to enhance spallation phenomena. Measurements show that austenitie stecl
does not exhibit the same phase change. llowever, an impact experiment on austenitic
stecl showed that the spallation was just as large and perhaps larger than for martensitic
steel. It is apparent that there are many parameters mmvolved and that their interde-
pendeney is largely unknown.

IV. SUMMARY AND CONCLUSIONS

5. Summary and Conelusions. New and important phenomena have been
isolated. These include crater serrations, erater macrocracks, adiabatie shear lines and
voids beneath the craters, and various aspeets of the spall layer and backface spall.
Some of the older phenomena have been delincated. These include the 130-kilobar
phase change in martensitic steel and details of the spall layer. Further experiments
have demonstrated that it is feasible to design a projectile for the speeific purpose of
optimizing backface spallation and fragmentation.

Perhaps the most important eonclusion is that there are numerous param-
eters involved in hyperveloeity impaet-induced spall. These must be isolated and de-
lineated in order to develop a heuristie spallation theory. The 2-d caleulations are far
too complicated and unreliable to use for predictive purposes.

12 A. Shockey, et al., Physical Changes Occurring in Armor Steel Under Hypcrvelocity Impact, Stanford Re-
search Institute Final Report on USAMERDC Contract DAA D05-73-C-0025, March 1974.
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