
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations Thesis and Dissertation Collection

1976-06

An implementation of a CODASYL based data

management system under the UNIX

operating system.

Howard, John Edward

Monterey, California: Naval Postgraduate School

http://hdl.handle.net/10945/17807

Downloaded from NPS Archive: Calhoun

AN IMPLEMENTATION OF A CODASYL BASED
DATA BASE MANAGEMENT SYSTEM

UNDER THE UNIX OPERATING SYSTEM

John Edward Howard

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AN IMPLEMENTATION OF A CODASYL BASED

DATA BASE MANAGEMENT SYSTEM
UNDER THE UNIX OPERATING SYSTEM

by

John Edward Howard

June 1976

Thesis Advisor: G. L. Barksdale, Jr.

Approved for public release; distribution unlimite

T174005

SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Entarad)

REPORT DOCUMENTATION PAGE
* ne^OAT NUMBER

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtttf)

An Implementation of a CODASYL Based
Data Base Management System under the
UNIX Operating System

S. TYRE OF REPORT * RERIOO COVERED
Master's thesis;
June 1976

• • PERFORMING ORG. REPORT NUMBER

7. AUTHORS

John Edward Howard

S. CONTRACT OR GRANT NUMBERf*)

S. PERFORMING ORGANIZATION NAME ANO ADDRESS

Naval Postgraduate School
Monterey, California 939 40

10. PROGRAM ELEMENT. PROJECT, TASK
AREA * WORK UNIT NUMBERS

1 I. CONTROLLING OFFICE NAME ANO AOORESS

Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE

June 19 76
13. NUMBER OF PACES

167
14. MONITORING AGENCY NAME * AOORESSf" dlltaront horn Controlling OHica)

Naval Postgraduate School
Monterey, California 93940

IS. SECURITY CLASS, (ol thla rdpon)

Unclassified
1S«. OECLASSIFI CATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT for thla Roport)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of tho amatrmet ontarod In Block 30, II dlttaront from Roport)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS Continue on rarorao »<do II naeoaaary ond Identity by Hoc* nummor)

Data base
Data Base Management System
Network model
CODASYL DBTG
UNIX

20. ABSTRACT (Contlnuo on rovorao tido II nocoaaawy and Identity by btoak mambar)
This thesis reports the implementation of a Data Base Manage-

ment System (DBMS) based on the CODASYL design. The DBMS was
implemented on a DEC PDP 11/50 computer utilizing the UNIX
operating system. Background material includes a discussion of
data base history and techniques, design of UNIX and the C
programming language. The research performed was the adaptation
of the CODASYL DBMS design to the UNIX environment and the design

DO , 'J™, 1473
(Page 1)

EDITION OF 1 NOV SS IS OBSOLETE
S/N 0102-0J4-S601 I

SECURITY CLASSIFICATION OF THIS PAOE (Whan Data tnterod)

§b C U W1TV CLASSIFICATION OF THIS PtGEC^w n»f Entmrmd-

20. (cont.)

of a C language Data Description Language (DDL) and Data
Manipulation Language (DML) to interface the DBMS to user
programs. Conclusions and recommendations for improvements
are also included.

DD Form 1473
1 Jan 73

S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGEC"**" Dmtm gntmrud)

An Tmol ement at i on of a CODASYL Based
Data Base Management System

under the
UNIX Ooeratinq System

by

John Edward Howard
Captain, United States' Marine Corps

B. A., University of Texas at Austin, 1969

Submitted in Dartial fulfillment of the
reauirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

f rom the

NAVAL POSTGRADUATE SCHOOL
JUNE 1976

DUDLEY KNOX LIBRARY

ABSTRACT «AVAL POSTGRADUATE S<

MONTEREY. CALIF. 9

This thesis reports the i mpl ement at i on of a Data Base

Management System (DBMS) based on the CODASYL design. The

DBMS was imolemented on a DEC PDP 11/50 computer utilizina

the UNIX operatina system. Backqround material includes a

discussion of data base history and" techniques, design of

UNIX and the C orogrammino languaae. The research performed

was the adaptation of the CODASYL DBMS desian to the UNIX

environment and the desian of a C language Data Description

Language (DDL) and Data Manipulation Language (DML) to

interface the DBMS to user programs. Conclusions and recom-

mendations for improvements are also included.

CONTENTS

I. INTRODUCTION 10

II, BACKGROUND 12

A. Data Access Methods - A History 12

1. Technological Effects... 12

2. Access Methods 13

3. Terminology 14

a. Goals of a DBMS 16

B. The Network Model 17

C. The Relational Model 18

D. The CODASYl DBTG DBMS 20

1. History 20

2. Terminology and Concents 21

3. The Schema vs. the Sub-schema 24

a. Data Item Level 25

b. Data Aggregate Level 25

c. Record Level 25

d. Set Level 26

e. Area Level 26

4. The Schema and the DML 26

5. Data Base Administration 26

a. Recovery Routines 27

b. Utility Routines 27

c. Schema Meta-lanauaqe 27

d. Device M e dia Control Language (DMCL).... 27

6. Data Rase Procedures 27

5

7. Record Placement Control 28

8. Data Base Keys 28

9. Ordering of Sets 29

10. Search Keys 29

11. Set Membership 30

12. Set Selection 30

13. Privacy of Data 31

la. Integrity of Data 32

E. Laboratory Equipment and Software 32

1. The File System 32

2. Input/Output (I/O) Calls 35

3. Processes and Imaaes 37

4. The C Language 38

III. IMPLEMENTATION OF THE CODASYL DESIGN 42

A. Implementation Philosophy 42

B. Organization of a Data Base 43

C. Operating Environment 44

D. Source and Object Schemas 47

E. Interprocess Communication 48

F. Data Base Keys 49

G. Area Handling 50

H. Access Methods... 53

1. Direct Access 53

2. Sequential Area Scan 54

3. Calculated or Hashed Access 54

4. Chained Access 55

5. Indexed Access 55

6

I, The Schema Index File 56

J. Privacy 59

K. Integrity 61

I. The Schema DBM 63

1. Schema Constants 63

2. The DBM Skeleton 6a

a. Initialization Phase 65

b. User Reauest Servicinq Phase 65

IV. DESIGN OF THE C DDL AND DML 67

A. Design Goals and Decisions 67

8. Major Conceots 68

1. Currency 68

2 . Find versus Get 69

3. Independence of Schema and Sub-schema 70

C. Comoarison with the COBOL DDL and DML 71

1. Query 1 76

2. Query 2 77

V. CONCLUSIONS AND RECOMENDATIONS 79

A. Conclusions 79

1. Concurrent Retrieval and Update 79

2. A Variety of Search Strategies 79

3. Centralized Placement Control 80

4. Device Inoeoendence 80

5. Privacy of Data 80

b . Independence of Schema and Sub-schema....... 81

8. Recomendations 81

1. Enhancement for Concurrent Update 81

7

a. Centralized Schema DBM 81

b. System P and V Call 81

2. Enhancement for Faster Access 82

3. Automatic Garbaae Collection 82

APPENDIX A. C LANGUAGE DHL AMD DML 84

APPENDIX B. FILES ASSOCIATED WITH A SCHEMA 113

APPENDIX C. DBM - THE DB^ REQUEST PROCESSOR 117

APPENDIX D. SCHEMA DESCRIPTION FILE FORMAT 122

APPENDIX E. INTERPROCESS MESSAGE FORMATS 131

APPENDIX F. DBM SKELETON PROGRAM 145

APPENDIX G. DIFFERENCES IN THE SCHEMA DDL 158

APPENDIX H. CONSTANT FILE CONTENTS 161

LIST OF FIGURES

Figure 1. Data Base Key Format 48

Figure 2. Format of an Index Block 55

Figure 3. Network Represent at i on of a Data Base 71

Figure 4. Schema DDL and Record Entries 72

Figure 5. Schema DDL Set Entries 73

Figure 6. C Sub-schema Entries 74

Figure 7. Query 1 Coded in COBOL 75

Figure 8. Query 1 Coded in C.. 76

Figure 9 . Query 2 Coded in COBOL 77

Figure 10. Query 2 Coded in C 77

I. INTRODUCTION.

The Conference on Data Systems Language (CODASYL) has

defined a data base system TRef. 2 and 3] which is partially

generalized and Dartially tailored to COBOL. This system is

based on network data model ina techniques. CODASYL has made

the claim that the system could have other 1 anquages effec-

tively interfaced to it and that the system could be imple-

mented in a variety of environments. The Computer Science

Department has two Digital Equipment Corporation PDP 11/50

computers running with the UNIX oDerating system (Ref. 1).

The eauipment was acguired for research in signal processing

aDDlications. This environment is one in which a CODASYL

based data base management system has never been introduced.

Relational data modeling technigues are the major com-

petitor with the CODASYL system. Recently* development was

completed on a relational data base management system which

runs under UNIX [Ref. 4 and 51. This system is called

INGRESS and was developed at the University of California at

Berkeley. Currently a discussion is taking place in the

literature over the relative merits and drawbacks of rela-

tional models versus network models (chiefly the CODASYL

version) [Refs. b, 1, * and 9], Although much has been

written about the merits of each model > relatively little

empirical comparison has been done. Therefore/ since steps

10

are being taken to aquire the INGRESS software* it was

decided that a CODASYL data management system would provide

a complete suite of data manaaement software.

The tasks to be accomplished were desiqn and implemen-

tation of a UNIX hosted CODASYL system, design and implemen-

tation of a C 1 anquage IRef. 10] interface to this system,

aquisition of INGRESS and comparative studies of the two

systems for signal processing applications. This thesis

documents the design and implementation of a UNIX hosted

CODASYL data base management system and the design of a C

language interface to this system.

1 1

II. BACKGROUND.

A. Data Access Methods - A History.

1. Technological Effects.

During the first and second generations of computer

hardware* data storage media were tapes* relatively slow

disks and drums and the omnipresent punched card. Data

storage and retrieval conceots were shaped by these devices*

especially the punched card. A file was therefore a seauen-

tially ordered and accessed* contiauously stored group of

records. All the records were of fixed length. This view

is also oriented toward a monoproaramm i ng environment with

absolute separation of one user's files from another's.

With the advent of third generation technolooy*

several factors began to affect data storage and retrieval

conceots. Foremost was the development of fast* high caoa-

city* relatively inexpensive direct access storage devices.

These devices stimulated the development of a whole ranae of

new access techniques such as hash coded and indexed file

organization. Secondly* the multi-user environment caused a

breakdown of the sharo division between the execution

environment of users. This breakdown was accompanied by a

rethinking of the relationships between the overlapping data

reauirements of users. All these factors led to the

12

development of a new kind of file system known as a data

base

.

2. Access M ethods.

The inspiration for a mu 1 t i -puPDose data base came

from management systems in which it was discovered that vast

overlap and duplication of data was occuring between dif-

ferent grouos in a company. For examde the payroll and

personnel sections would typically each have emoloyee files

which were stored and maintained separately but which over-

lapped by 80 oer cent in data content. An early management

information system (MIS) which attacked this oroblem was

IBM's Bill of Material Program CBOMP) [Ref. 121 which

allowed the structurinq of a oarts list with subassemblies

each having its own parts lists; this facilitated the

management of manu f ac t ur i na inventories. When the subassem-

blies occured in many different Darts* the savings afforded

through avoided data duplication were significant. The BOMP

used a relatively flexible list structure and marked a sig-

nificant deoarture from traditional file organization.

With the advent of the consolidated multi-purpose

data base* a whole new level of data structurinq was imoosed

on the techniaues for physically maooinq files to devices.

These data structures emoloyed relatively complex methods

from graph theory and other disiolines which had previously

been used only on relatively small amounts of data residing

in main s t o r aae

.

13

This new level of data base structure combined with

the fact that a very large portion of the data base is typi-

cally on-1 ine» Has imposed on programmers the reauirement

for a new skill. This skill has been called navigation

through the data base [Ref. 131. In this view, a programmer

must travel via access paths through the data base searching

for landmarks until he has located the data he desires.

Choosing an inappropriate access path can be extraordinarily

inefficient and costly in time, so the penalty for lack of

navigational skill is high. It would obviously be desirable

to remove as much of the burden for navigation from the pro-

grammer as is practical. The develooement of modern data

base management svstems (DBMS) has been made difficult bv

the dilemma of desiring both optimal access paths and ease

and simplicity of use for the programmer.

3 . Termi nol ogy

•

This section will attemot to define the terms used

in this field of innuirv. T H e following definition of a data

base is due to Ref. 13:

"A data base may be defined as a collection of

interrelated data stored together with as little

redundancy as possible to serve one or more applica-

tions in an optimal fashion; the data are stored_ so

that they are independent of programs which use the

data? a common and controlled approach is used in

adding new data and in modifying and retrievina

existina data within the data base. One system is

14

said to contain a collection of data bases if they

are entirely separate in structure."

Two t v p e s of languaoes are mentioned in connection

with DBMS. The first is the Data Description Language (DDL)

which describes the types of data entities which may exist

along with the allowable attributes. There may be two DDL *

s

or two levels of DDL for describing a data base. The first

level description is the system's view of the data base as

it is actually organized and the second* a user's view of

the data base. These levels are called the schema and sub-

subschema respectively. In the relational model terminol-

ogy* the DDL may be called the relational algebra.

The second 1 anguaae is the Data Manipulation

Language (DM|_) which is concerned with the storage*

retrieval and modification of specific occurences of the

entity types described by DDL statements. In relational

model terminology* this 1 anauage corresponds to the rela-

tional calculus. The entities handled by DDL and DML may be

records* sets or anything that may need manipulation. The

attributes may be such thinas as data items* set membership*

set ownership or location within the data base.

The data base model is the «et a-st rue t ure which is

imposed on the organization of the data base. The model

prescribes the tyres of entities which are allowed. It

defines the data attributes and structural attributes that

an entity may have. The definition of a DDL and DML is the

15

implementation of the met a-st rue

t

ures of a data base model.

Currently the two most widely discussed models are the net-

work model and the relational model,

4. Goals of a DBMS.

The following qoals have been prooosed for a DBMS

[Ref. 3] .

- Allow the data structures suited to each particu-

lar application while oermittinq multiole applications to

use the data without need for data redundancy.

Allow more than one Drocess to concurrently

retrieve or uodate data in the data base.

- Enable the use of a variety of search strategies

against an entire data base or a portion of it.

- Provide protection of data from unauthorized

access .

- Provide centralized control over the placement of

data

.

- Provide device independence for oroarams.

- Allow the user to interact with the data but be

free of the mechanics of maintaining the structural associa-

tions which have been declared.

- Allow as areat an independence of programs from

data and structures as possible.

- Make the data description independent of any par-

ticular Droqramm i ng 1 anauaqe but aive it fhe capability of

interfacing with a variety of proaramming languages.

16

These goals seem to be oeneral ly agreed on in the

literature as being reasonably complete. There is consider-

able controversy* however, over the relative importance of

individual aoals. In particular, some contend that the pri-

mary goal should be to allow the user to be free of the data

base structures entirely [Ref. 9] .

B. The Network Model.

One of the two data base models which has received wide

attention is the network model. This model is grounded in

graph theory and relationships between data are represented

by some form of directed graph. The nodes of the qraph ma'y

be entities containina data attributes or may simply be

place holders whose only attributes are the arcs of the

graph. The arcs reoresent looical links between the enti-

ties which can be travelled in the direction of the arc to

navigate through the data base. Thus, even though the

implementation of the arcs may be transparent to the user,

the access paths are visible to the user as part of the

structure of the data base. The OML is said to be prescrip-

tive of the data access oaths, that is, it must orescribe

the course through the data structures.

Various restrictions as to the tyoe of network allowed

may be imposed on a network model. For example, the graphs

may be reauired to be acyclic or the structures may be res-

tricted to trees, chains or lists. A non-homogeneous model

has the restriction that if two nodes are connected by an

17

arc then the entities reoresented bv the nodes may not be of

the same tyoe. A SDecia) class of the non-homoqeneous net-

work model is the hierarchical model. Hierarchical models

have the following restrictions: the graphs must be trees*

an entity of any type may appear only once on a particular

branch of the tree and certain entity types must always

appear on a given branch at a higher level than other entity

tvpes. An example of a hierarchical data base would be one

with the entities country, state* county and city. For a

particular country* one or more of the entities of state and

county may be left out between a country and its cities* but

a city cannot appear above a state* nor can it appear above

another citv. An example of a non-hierarchical data base is

the BOMP in which a subassembly may contain other subassem-

blies which may in turn contain subassemblies. Note that

the BOMP is homogeneous since subassemblies are linked to

subassemb lies.

C. The Relational Model.

The second of the two most discussed modes for data

representation is the relational model. This model is

grounded in set theory and specifically in the concept of a

relation in the mathematical sense. Given sets SI* S 2 * ...*

Sn (not necessarily distinct)* R is a relation on these sets

if it is a sub-set of the Cartesian product of SI x S2 x ...

x Sn. The element of R are n-tuples whose jth component is

from Sj* for j from one to n. R is said to be an n-ary

18

relation or of dearee n and Sj is called the j t h domain of

R.

In the relational model f each set Sj must be a set of

1 i k e - 1 y d e attributes. The relations are named and time

variant according to some maintenance algorithm. An example

of a relation would be a set called time-spectrum made up of

freauency; time and amplitude triples. This ternary rela-

tion might represent the latest 30 minutes of data from a

hydrophone. Every relation must have a key by which the

tuples can be identified. The key must be uniaue (no two

tuples with the same key) and non-redundant (the whole key

is needed for identification). In the above example* fre-

quency and time make up the key.

The chief advantage of the relational model is that the

user's view of the data is independent not only of the phy-

sical mapping to media* but also of the access oaths

involved. The chief disadvantaae is the difficulty of

devising an implementation which is reasonably efficient for

all applications [Ref. 8] •

A good deal of work has been done on normalizing rela-

tions to remove undesirable data representational charac-

teristics and providing aoorooriate operations and transfor-

mations for relations. References 14* 15 and 16 give a

definitive exposition on the theory of relational data

mode 1 s .

19

D. The CODASYL DBTG DBMS.

I . History.

CODASYL is an informal and voluntary organization

of interested individuals* supoorted by their i nst i t ut i ons

*

who contribute their efforts and exoenses towards the ends

of designing and develooina techniques and languages to

assist in data systems analysis* desian and i mo 1 ement at i on .

Founded in 1959, its most famous achievement has been the

definition of the COmmon Business Oriented Language (COBOL).

In June* 1965* the CODASYL COBOL Language Subcommittee of

the Programming Lanauages Committee (PLC) resolved to organ-

ire a task force to study list orocessing. In November*

1965* this task force produced a prooosed list processing

extension to COBOL for file management. In May* 1967* the

List Processing Task Force chanaed its name to the Data Base

Task Group (DBTG) and undertook a comparative studv of data

base manaaement techniques and systems. This study was cul-

minated by the oublication of an interim report in February*

1968 and the agreement bv the Lanouage Subcommittee that

"COBOL needs the Data Base Concept" fRef. 2]. At the Tenth

Anniversary Meeting of CODASYL held in May* 1969, considera-

tion was aiven to separating the data description and data

manipulation languages. The idea received wide endorsement

at the meetina and was the basis for the direction of

efforts by the DBTG until October* 1969 at which time Ref.

17 was presented. From the time of publication of Ref. 17

until the publication of Ref. 3 in April* 1971* 179

20

prooosals for changes and extensions to the DDL and DML were

considered/ of which 130 were incoroorated into Ref. 3. In

June* 1971, it was decided that the schema DDL should be

developed seoaratelv from the COBOL DDL and DML. Accord-

ingly, the Data Descriot ion Languaae Committee (DDLC) was

formed as a separate organization from the PLC. The DDLC

proceded with modifications and enhancements to the DBMS and

schema DDL definitions and/ in June, 1973, produced Ref. 2.

This document is currently the basis for the CODASYL DBMS.

2, Terminology and Concepts.

For a comolete description of the CODASYL schema DDL

statements and DBMS desian see Ref. 2. The schema DDL is

used to describe a data base and has the following entity

types: Data items, data aggregates, records, areas and

sets .

A data item is an occurence of a named atomic data

attribute. It is the smallest unit of named data. The set

of values that a data item can assume is called its ranoe.

The range of an item is always restricted to values of a

oarticular tyoe. The possible types are arithmetic data,

string data, data base kevs and imolementor defined types.

A data agareqate is an occurence of a named collec-

tion of data items. There are two kinds: vectors and

repeating groups. A vector is a one dimensional seauence of

data items, all with identical characteristics. A repeating

group is a collection of data attributes that occurs

21

multiple times within a record occurence. The collection of

attributes may include data items and data agaregates.

A record is an occurence of a named collection of

zero or more data items or data aagregates. Each record

entry defines a record type of which there may be zero or

more occurences within the data base. The record is the

smallest addressable entity within the data base.

A set is a na^ed collection of records. Each set

entry in the schema defines a set type for which zero or

more occurences (sets) may exist in the data base. Each set

type declared in the schema must have one record type

declared as its owner and may have one or more record types

declared as its members. Each set occurence which exists in

the data base must contain exactly one record of its owner

type and zero or more o * its member record types. A special

set type may be delared which has one and only one occurence

and whose owner is the DBMS. A set so declared is said to

be a singular set. There is no provision for a record type

to be both an owner and member record type of the same set.

This means the COOASYL model is non-homogeneous. It is not/

however^ hierarchical in that set types may be defined with

ownership and membership such that cycles can occur.

An area is a named collection of records which need

not preserve owner/member relations. An area may contain

occurences of multiple record types and a record tyoe may

occur in multiple areas. A particular recora occurence of a

22

record is assigned to an area when it when it is created and

it may not migrate out of that area. An area may be

declared to be temporary. Temoorary areas are created espe-

cially for a run-unit/ exist for the life of the run-unit

and are destroyed when the process terminates. Two run-

units may have a particular temporary area open concurrently

but each run-unit is using a different version of the area

which is unique to that particular run-unit. The concept of

area allows the subdivision of the data base. It allows the

DBMS to control placement of an entire area to provide effi-

cient storage and retrieval. Areas are a convenient unit

for recovery and also provide a convient* natural subdivi-

sion for allowing a part of the data base to be removed to

of f - 1 i ne storage .

A schema consists of DDL entries and is a complete

description of a data base. It includes the names and

descriptions of all areas» set tyoes and record types that

may aopear in the data base. A data base is the totality of

all records* sets and areas controlled by a schema. For an

installation to have multiple data bases* it must have mul-

tiple schemas and the content of the data bases must be dis-

joint.

No schema DDL entry may include references to the

physical devices or media soace. Thus a schema written in

the DDL is indeoendent o^f the physical storage of data and

the data may be stored on any combination of storage media

available to a DBMS. Some devices* due to their sequential

23

nature, may not allow the full advantages of DDL facilities*

however the use of these devices is not precluded.

A program is a set or aroup of instructions. User

programs must have access to a sub-schema DDL description of

that portion of the data base thev are interested in. Addi-

tionally, they must be able t o use a DML to interact with

the data base through the DBMS.

A run-unit is the execution of one or more programs

viewed by the ooerating system as a unit. Under OS/360, the

run-unit might be a job and under UNIX, a parent Drocess and

any children. The run-unit makes requests of the DBMS which

in turn consults the schema and interacts with the operating

system to fulfill the request.

A user working area CUWA) is conceptually a loading

and unloading zone where all data provided to a run-unit bv

the DBMS and all data to be oicked up by the DBMS must by

placed. The DBMS has its own svst-em buffers which it uses

to manipulate the data base. It uses the U W A only for inout

and output of data for the reauesting run-unit. Each run-

unit has its own UWA.

3. The Schema vs. the Sub-schema.

The subschema has the following characteristics. An

arbitrary number of oossibly overlapoing sub-schemas may be

declared. Multiple proarams mav reference a sub-schema but

they have access onlv to that portion of the data base

2a

included in the sub-schema. Thus, the sub-schema DDL

description enables the subsettinq of the data base so that

a user program need only worry about that portion of the

data base it uses* and insulates the remainder of the data

base from the user. A measure of the data independence is

provided between the schema and sub-schema. The sub-schema

description may differ from the schema in the following

ways .

a

.

Data Item Leve 1 .

Descriptions of items may be omitted. Included

items may be of a different type or in a different position

within the record.

b. Data Aggregate Level.

Descriptions of sDecific data aggregates may be

omitted. Data aggregates and items may have additional

Structure imposed on them (e.a. vectors may become multi-

dimensional arrays). The position of data aggregates within

a record may be changed.

c

.

Record Leve 1 .

Descriptions of records may be omitted.

Descriotions of new record tyoes composed of data from other

record tyoes nay be introduced (not suooorted by the COBOL

or C DDL's) .

25

d. Set Level .

Descriptions of specific set tyoes may be omit-

ted. Different set selection criteria may be soecified.

Descriptions of soec i f i c membe r
- record tyoes mav be omitted.

e. Area Level •

Descriptions of specific areas and the records

within them may be omitted/ while occurences of the same

record type in other areas are included.

4. The Schema and the DML

.

The relationship between the DDL and the DML is that

between declarations and procedures. In order to specifv

this relationship/ a set of basic data manipulation func-

tions must be defined which is DML and host 1 anouage

independent. Specific commands provided by a particular DML

must be resolved into these basic functions. Basic func-

tions include the capability of selecting records, present-

ing them to a run-unit and addincw changina or removing

records and relationships.

5. Data Base Administration.

Certain facilities must be availible to support the

user programs. These tools are not defined in the CODASYL

DBMS and may include the following.

26

a . Recovery Routines.

Data base recovery routines may be used includ-

ing activity loaging, checkpoint and rollback.

b . Utility Rout i nes

.

Utility and service routines are reguired to

support a data base in day-to-day operations. Examples

include routines for editina and printing, loadina and dump-

ing, Drecondi t i on i no , garbaae collection, statistical

analysis and comparison.

c. Schema M et a-1 anquage

.

This language oermits changes in the schema and

cause them to be reflected in the data base. Without such a

language, the changes must be made by defining a new schema

and recreatina the data base accordingly.

d. Device N'edia Control Languaae (DMCL).

This 1 anauaae orovides for assignment of data to

devices and media space, and specification and control of

buffering, paging and overflow.

o. Data Base Procedures.

At various points in the accessino. of a data base,

non-standard computations or processing may be reauired. To

allow for these situations, the capability is provided to

define data base procedures. These procedures may be

27

invoked for checking of privacy locks/ producing computed

results from other items* searching alaorithms* data

comoression and expansion, validity checking or system

instrumentat ion.

7. Record Placement Control.

The schema DDL permits specification of an area or

areas to which record occurences of a particular type must

be assigned. The schema DDL also includes a clause which

causes records being added to be placed near some other

record. Conceptually* the effect of such clauses is to

cause clustering of records which are likely to be used in

conjunction with one another. These declarations for

selecting the area and location within the area are the

WITHIN clause and the LOCATION clause* respectively* of the

record subentry. The fact that the schema DDL permits

placement control is not assumed by CODASYL to have any phy-

sical connotations.

8 . Data Base Keys .

The DDL assumes that every record occurence in the

data base has a unique identifier which enables the DBMS to

distinguish it from every other record in the data base.

This key must be assigned when the record is created and

remains with it for the life of the record. This key may be

supolied to the DBMS by a run-unit or data base Drocedure*

generated from the record's contents or assianed by the

DBMS. The oermanence of the key must be insured since anv

28

run-unit may use the keys to refer to the record.

9. Orderina of Sets.

Each set tyoe declared in the schema must have an

orderinq soecified for it. This order is maintained by the

DBMS and is a logical/ not a Dhysical » orderinq. Thus* the

same record occurences could oarticipate as members in

several sets of different tvoes and be ordered differently

in each of the sets. The member records of each occurence

of a given set tyoe can be ordered in any of the followinq

ways •

- Sorted in ascending or descending order based on the

value of specified keys. These keys may be data items in

the member records/ the names of the member records/ the

data base keys of the memoer records or some combination of

the above

.

- Sorted in the order resulting from inserting new

member records first in the set/ last in the set or before

or after the set member which is currently known to the

requesting run-unit.

- Sorted in the order most convenient to the DB M S.

10. Search Keys.

An arbitrary number of search kevs may be declared

for a set type regardless of whether it is sorted or not.

The components of the search kevs must be data items

included in the member records of the set. The declaration

of a search key causes the 0B M S to develoo and use some kind

29

of indexing for the member records of each occurence of the

set tvoe. The term indexina is used here to refer to any

technique which does not involve a comolete scan of the

records involved.

11. Set Membership.

A record type may have different kinds of set

membership declared for different set types. Automatic

membership means that membership is established in an

approoriate occurence of a set tyoe when a record is added

to the data base. Manual membership means that membership

can only be established in a set occurence by a run-unit

executing an insert function.

Mandatory or optional membership concerns the remo-

val of a record from a set occurence. Once a record has

been established as a member of a set for which it has man-

datory membership, it cannot be removed until the record is

deleted. If the membershio is optional, the record may

cease to have membershio via a remove function.

A set tyoe may be declared as dynamic. A dynamic

set may have a record of anv type inserted into it or

removed from it. If a set type is declared to be dynamic,

no member records may 0*> declared for it.

12. Set Sel ec t i on .

In general, there will be more than one set of a

given type in the data base. It is therefore necessary to

30

provide a means fop identifying the proper set when member

records are stored and retrieved. The SELECTION clause of

the member subentry in the DDL controls the strategy for

selecting a specific set of a given type. A separate SELEC-

TION clause is reouired for each member record type and set

type pair. The SELECTION clause provides for naming a

series of sets which form a continous path to the desired

set. For all the sets along the path, other than the first

named set» the DB^S limits its search to the member records

of the set selected at the previous steo in the path.

13. Pr i vac v of Data.

Protection aoainst unauthorized data access is pro-

vided through a mechanism of privacy locks which are speci-

fied in the schema. Privacy keys must be orovided by a

run-unit seeking to access or alter data protected by a

privacy lock. The schema DDL provides for declaring privacy

locks at the schema, area, record, data item, data aggre-

gate, set and member levels. Locks can be declared for

specific functions at each of these levels. A privacy lock

is either a value which must be matchea by a cor reSDond i nq

privacy kev or a data base procedure which is called to

validate the privacy key. If a procedure is used, it

returns a yes or no answer, and beyond this the action of

such a procedure is implementor defined.

31

14. Intearity of Data.

The DDL provides for the checking of the validity

of a data item whenever a value is chanqed or a new value is

stored in the data base. In addition, provision is made for

the naming of data base procedures which the DBMS invokes

when a run-unit attemots to uDdate nominated records or

sets. This feature enables a check of any update or series

of updates aoolied to the data base.

E. Laboratory Equioment and Software.

The comouter equipment in the laboratory consists of two

PDP 11/50's with associated peripherals. The information

about the equipment which is relevant to this thesis is

minimal » however it should be noted that the DBMS was

developed using an interactive display terminal and is

oriented toward that environment.

The operating system which supports the DB^S is UNIX.

Reference 1 contains a supplement to the following discus-

sion of UNIX.

1 • The File System.

The most imoctant function of UNIX is to provide a

file system. From the usee's point of view their are three

kinds of files: ordinary files* directories and special

files.

32

An ordinary file can contain any information the

user desires. The system imposes few special structure

requirements on files* however some programs expect files of

a certain format. & text file consists of a string of char-

acters with lines delimited by new line characters. A

binary program file is a seauence of words as they will

aooear in main memory when the proaram is executed. The

assembler and loader programs use special object file for-

mats.

Directories provide the mapping between the names of

files and the files themselves. They induce a structure on

the file system as a whole. A directory behaves exactly

like an ordinary file except that the system controls its

format and contents. Each system user has a di rectory asso-

ciated with his user name and he may create sub-directories

to organize collections of his files. The system has

several directories which it maintains for its own use. One

is the root directory. The directories in a file system

form a tree and the root is the base of this tree. Thus*

any file in the system can be located bv tracina a oath from

the root t^rouah t^e aoorooriate directories. Another sys-

tem directory contains all the programs which are used as

system commands and is special only in that certain proarams

"know" its name.

Each directory must aopear as an entry in exactly

one other directory called its parent. Eac* directory has

two special entries. These are the name "." which refers to

33

the directory itself and the name ".." which refers to the

parent directory. These entries enable reference to the

directory and its narent without knowinq the name expli-

citly.

File names are strinqs of 14 or fewer characters.

Identification of a file to the system is accomplished

throuqh a strinq of directory names separated by virqules

("/") and terminated by the file name desired. This strinq

is called a path name. in hen the path name is smarted with a

virqule, the system beqins the path search at the root

directory, otherwise it starts at the user's current workinq

directory. For example, the path name

"/ fox t rot /un

i

form/char 1 i
e" would cause the system to start

at the root, search for directory "foxtrot", search "fox-

trot" for directory "uniform" and find file "charlie" in

"uniform". The file "charlie" could be any type file,

includinq a directory. In another case* the pathname "kilo"

would cause the system to search the user's current direc-

tory for "kilo". The path name "/" refers to the root

i t s e 1 f .

SDecial files provide the means of handling I/O dev-

ices. Each device suDported by UNIX, includinq communica-

tions lines and main memory, is associated with one or more

soecial files. These files can be read or written in the

same manner as ordinary files except that the result is the

activation of t h e aporoDriate device. All soecial files

reside in directory "/dev".

3a

The access control or protection scheme in UNIX is

relatively simple. Each user known to the system has a

unique user number called the user id. When a file is

created* the aporopriate user id is associated with it and

bits are set in the directory entry indicating which users

have permission to read* write or execute the file. A

facility is provided for executable files called set-user-id

whereby when the files are executed the resulting orocess

assumes the user id of the owner of the executable file.

This enable a system program executed by a user to access

files which the user cannot directly access himself. Since

anyone may cause his executable files to use set-user-idr

this feature is generally available to provide protected

access to files. The system recoanizes one user id (the

"super user") as being free of any access restrictions. The

major flaw in the UNIX protection scheme is that there is no

way to monitor or lock out simultaneous ooening of a file by

multiple proarams with access rights to the files. The

system's authors contend that these features are neither

necessary nor sufficient for integrity controls fRef. 1].

However* the reason ino behind declaring the features

unnecessary was that "we are not faced with large single-

file data bases maintained by independent orocesses".

2. Input/Output (I/O) Calls.

Under UNIX, I/O calls are designed to eliminate the

difference between the various devices and forms of access.

The file system organizes all media soace into 512 bvte

35

blocks which are its smallest readable and writable unit.

Consequent 1 y, reads and writes of 512 bytes starting on a

512 byte boundary are most efficient. However* no loaical

record size is imoosed by the system/ nor is there any dis-

tinction between random or sequential access. To read or

write an already existing file* an "open" call must be made.

This system call is oassed a path name and returns a number,

called a file descriptor, which identifes the open file to

the system. The file descriptor is used in subsequent I/O

calls. In order to create and open a file, a "creat" call

must be made. This call requires parameters which specify

the file name and access mode, and returns a file descrip-

tor. A "creat" on an existinq file truncates it to zero

lenoth. An ooen file may be accessed via "read" and "write"

calls. These system calls require the file descriptor, the

location of a read/write buffer and the length of the

buf f er

.

To enable random access of appropriate files, the

"seek" call is provided. This svstem call merely changes

the read/write pointer associated with an open file. The

read/write pointer contains the byte offset from the begin-

ning of the file at which the next access will beqin. Other

system calls exist for such file manipulations as closinq a

file, finding the status of a file, changino the protection

mode or owner of a file, creatinq or removing a directory,

making a link to an existinq file and deletinq a file.

36

3. Processes and Imaaes.

An image is an entire comouter execution environment

including main memory imaqe* general register values* the

status of ooen files and the identity of the current direc-

tory. Thus the imaae constitutes a state vector of a pro-

cess which contains all information necessary to resume exe-

cution of the process. A process is the execution of an

image while the virtual machine is imposed on the hardware

by the system. The virtual address space of a process is

divided into three logical seqments: the program text

(instructions and constants)* data and stack. Pure text is

read only for the user while the data and stack segments may

expand or contract in size.

A process comes into existence through a "fork" call

executed by another process. This system call creates an

exact duplicate of the image of the calling process. The

only difference between the processes is. that one process is

considered the parent and the other the child. Both execute

as if returning from the "fork" call. The parent receives

as a return value a number called the process id* which

uniauely identifies the child.

The child receives zero as its return value. Synchroniza-

tion between parent and child is provided by the "wait"

call. When a process with children executes a "wait"/ its

execution is suspended until one of its children terminates.

The return value of the "wait" is the process id of the ter-

minated child. Interorocess communication is orovided by

37

the "oipe" call. This system call sets ud a channel which

can be read or written by any process which has as an ances-

tor the process that executed the "pine" call.

The "exec" system call is provided to allow the exe-

cution of a program (i.e.* executable file). The "exec"

call needs a oath name to tHe file as its argument. A pro-

cess executing an "exec" has all its code/ data and stack

soace overlaid by the referenced program if the call

succeeds. Open files* the current directory and interpro-

cess relationships remain unchanqed. A return from the

"exec" occurs only if the function is unsuccessful. Termi-

nation of a process can be accomplished via an "exit" system

call. When an "exit" is executed* the process and associ-

ated image cease to exist.

4 • The C Lanauage.

C is the programming lanquaae primarily used under

UNIX. Most of UNIX itself is coded in C. C provides modern

control structures to allow structured GOTO-less coding.

Its design objectives were to give shorter and c\earer code*

encourage modularity and good oroaram organization and pro-

vide facilities for many different tyoes of data including

pointers and character strinas.

A C prooram consists of a group of functions (one of

which must be named "main") and oossibly some external data

declarations. Parameters may be oassed between functions

via call and return arguments or through external data

38

items. C is not a block structured 1 anauage in that func-

tions cannot be defined locally to other functions and

external data names may not be redeclared locally to a func-

tion. However, the block structured 1 anguaae feature of

allowinq a orouD of statements to be considered as a sinqle

statement is included. This qrouDinq is accomplished by

enclosing the statements within "(" and ">".

The basic data types in C are "int", "char",

"float", "double" and "struct". In addition, arrays of or

pointers to any of these types can be declared. Items of

type "int" are 16-bit two's complement integers. Items of

type "char" are 8-bit values which can be interpreted as

characters or as two's complement integers. Strings are

represented as arrays of characters. Items of type "float"

or "double" are binary floating point numbers of length 32

and 64 bits reoect

i

vely. An item of tyoe "struct" consists

of a group of item declarations (possibly includino arrays)

which can be viewed as a unit. This latter capability pro-

vides for user* definition of a theoretically infinite number

of data t yoes .

C provides a large number of binary and unary arith-

metic and logical ooerators. Arithmetic ©Derations provided

are addition and subtraction, multiolication and division,

incrementation and decrementation, and bit-wise OR, AND and

complement. Looical operators allow exDressions to be com-

pared, logically AND'ed, loqically OR'ed and loqically com-

plemented. No distinction exists between a logical

39

expression and an arithmetic expression. Any expression has

a true value if and onlv if it evaluates to a non-zero

value.

Assignment statements are provided in C which are

unusual in the following ways. An assignment statement can

be used as an expression and has the value that was assigned

to the variable on the left hand side of the assignment

statement. A number of assianment operators exist which

cause a binary ooeration to take place between the left hand

side and the evaluated riaht hand side orior to storage of

the value (e.g. "x = 2;" adds two to "
x

")

.

The major control statements in C are "while", "do-

while", "for", "switch", "aoto", "break" and "continue".

The "while" statements causes execution of a oroup of state-

ments as long as an expression is true. A "do-while" state-

ment is like a "while" exceot that the control expression is

evaluated after the execution of the group of statements.

Therefore, the "do-while" statement is always executed at

least once. The "for" statement is an extension of the

while which provides control variable initialization and

looo incrementation. The "switch" statement allows the exe-

cution of one of a aroup of statements labeled as cases

based on the value of an expression. The "goto" statement

transfers control to a labeled statement in the usual

fashion. "Break" and "continue" exist to provide for

label-free loop termination and skippina.

au

A subroutine library is provided for use with C pro-

grams. It contains system calls for I/O and other func-

tions. In addition, it contains routines for formated out-

put and for the standard functions of analysis. For a more

complete descriotion of Cr see Ref. 10 and 18.

41

III. IMPLEMENTATION OF THE COOASYL DESIGN.

A. Implementation Philosophy.

The overriding consideration in implementing the DBMS

was to avoid any modifications or additions to the existing

UNIX facilities. This decision was made for a number of

reasons. Firsts other research is being conducted in the

Computer Laboratory utilizing the UNIX operatina system as a

research tool. Running systems which reguire non-standard

veresions of UNIX interfers with the control environment and

generally makes other operating system modifications more

difficult. Second, a modification to the operating system

must be re-apolied whenever a new release of UNIX is

installed. Third, the chances of the DBMS beina transported

to other UNIX sites is far greater if it runs under a stan-

dard UNIX. Finally, the research goal of determining if the

DBMS could be implemented in a variety of environments would

be subverted by modifying tHe operating system environment.

Since the most notable feature in UNIX is the design of

its file system, it was decided to utilize the file system

whenever possible rather t-han acouiring a larae block of

physical media space and letting the DB M S manage it. This

philosophy was exoected to simplify the problem of mapping

data to media and thereby reduce the size and complexity of

tHe DBMS and insulate the DBMS from changes in the hardware.

U2

The final guideline was to implement as large a useful

subset of the features in the CODASYL design as feasible

under the above assumptions. Creative extensions to the

CODASYL design were avoided since these would tend to

obscure the research goal of beina able to measure the util-

ity ofi the CODASYL network model against the INGRESS rela-

tional model. Efforts were directed instead to the realiza-

tion of the aoals of the CODASYL DDLC, which are very ambi-

tious in themselves.

None of the above assumotions should be taken as pre-

cluding the possibility of future modifications to enhance

the implementation either of UNIX or of the features of the

CODASYL design. The intent of the i mo 1 ement a t i on philosophy

described herein was to produce a standard CODASYL DB^S run-

ning under a standard UNIX for use as a baseline product.

B. Organization of a Data Base.

Virtually all information about the data base described

by a particular schema is contained in a special directory.

The only exceptions are certain files which are created for

the life of a user process and then discarded. The data

base/ its schema and its directory all have the same name.

Although it is oossible for directories with the same name

to exist in a UNIX file system, no two data bases should

have the same name. The files within the directorv associ-

ated with a data base (called a schema directory) contain

the source and object schemas, the schema Data Base Manaaer

43

(DBM) program and all the non-t emporary data within the data

base. Specific files will be mentioned when they are

relevant to the discussion. Apoendix B contains a complete

listing of the files associated with a schema.

C. Operating Environment.

The environment for both system maintenance and user

access of the data base is provided by the DBM Request Pro-

cessor ("dbm"). This Droaram is a aeneral puroose command

language processor used to orovide interface with any data

base. Appendix C contains a description of the functions of

the DBM Reauest Processor.

When a user wishes to execute a program which accesses a

data base* he executes dbm and specifies the appropriate

schema name. He then gives dbm an "x" command and specifies

a path name to the user program and arguments to be passed

to the program. Dbm opens two oipes as interprocess commun-

ication channels and forks off two children. Through "exec"

calls* these processes become the schema DBM program and the

reauested user program respectively. Both programs are

passed the file descriptors of their respective ends of the

interprocess communication oipes as part of their calling

arguments. The child destined to become the schema D3M

changes directories ("chdir") to the schema directory prior

to executino. the schema DBM.

ua

Once the user and the schema DBM orogram are esta-

blished* dbm waits until thev have terminated before accept-

ing any more commands, Durina execution^ the user program

and the schema DBM pass reauests and data through the two

pipes with the user proaram executing in the user's working

directory and the schema DBM executing in the schema direc-

tory. It is possible for other users to execute con-

currently using the same data base? however, each user has

his own version of the schema DBM and a separate set of

interprocess pipes.

This operating environment differs from the one

envisioned by the CODASYL DOLC in that each user process is

interfaced to its own copy of the DBMS routines. Each copy

has its own buffers and no knowledge of the existence of

other copies* except that which it can derive from the state

of files within the schema directory. In contrast* the

CODASYL designers described implementation of a sinale copy

of the D 8 M S routines which would concurrently communicate

with all the users and have communal system buffers for ser-

vicing all user reauests CRef. 23. The reasons for this

difference are twofold.

First* even thouoh pipes are the only reasonable method

for interprocess communication* thev are limited in that two

processes may communicate onlv via a oiDe ooened by a common

ancestor. In general* the only common ancestor of processes

spawned by different users is UNIX and* althouqh the mechan-

ism exists for finoing the process id of a process ("os")*

45

no mechanism exists for reauestina UNIX to ooen a pipe to a

designated process.

Second* even if a mechanism existed to connect a single

copy of the schema DBM to users* that single copy could not

muster sufficient resources to service them. In particular*

a process may have onl y fourteen simultaneously ooen files

and each user would reauire two files ooen (its pipes) on a

dedicated basis. Thus* since access to an area requires two

files to be ooen* a single schema DBM having several users

each reaui ring several areas would develop a thrashing con-

dition in which almost every access to the data base would

incur the overhead of two file ooens and two file closes.

Additionally* a problem with memory buffer contention might

arise* although this oroblem would orobably be less criti-

cal.

The existence of separate copies of the schema DBM does

not mean that the program must be duplicated in memory for

each of its current users. UNIX provides a facility for

processes executing the same program to share the same text

segment* thus only the data and stack segments are repli-

cated for each process. The conseouences of the multiple

schema DBM environment will be discussed later.

U6

D. Source and Object Schemes.

When a new data base is to be created, a source schema

description must be prepared. A schema directory should be

created (usina the UNIX function "rnkdir") to contain the

source language version of the schema. The source schema

description must reside in a file whose name is formed by

prefixing the schema name with "s." and which is located in

the schema directory. The UNIX text editor ("ed") is suit-

able for entering the source schema description. The source

schema is coded in a modified form of the CODASYL DDL

described in Ref. ?. Differences between the DDL of Ref. 2

and the UNIX D8MS DDL are discussed in Appendix G.

Once the source description of the schema is entered/ it

must be compiled into an object version. This compilation

is accomplished via the "c" command of the DBM Reauest Pro-

cessor. The object version of the schema consists of two

files which contain the schema D9M program and the encoded

schema descriotion, respectively. The schema DBM interprets

and services all user reauests for access to the data baser

while the encoded schema description is a comoact symbolic

form of the schema's structure. The name of the file con-

taining the schema DBM is the schema name prefixed by

"dbm.". The schema DBM is discussed in Section III.L below.

The encoded schema aescriotion file is used to initialize

the schema DBM program and for information about fhe data

base during the move and aarbage collection functions of the

DBM Request Processor. Aooendix D contains a description of

47

the format of the schema description file.

E. Interorocess Communication.

The schema DBM ana the user process communicate via the

pipes set up for them bv dbm. These pipes may be read and

written just as if they were ordinary ooen files. Messages

of a predefined format are sent and received by both

processes. The first messaae sent is the initial call mes-

sage from the user process. This message is triggered by

the C D M |_ "permit" function and contains an encoded descrip-

tion of the sub-schema. The schema DBM response to the ini-

tial call includes the index numbers for all the entities

and attributes contained in the sub-schema description.

Subseauent user orogram messaoes are reauests for data

retrieval or update and are made utilizing the index numbers

acguired in the initial call. Since the schema DBM will

receive an end of file condition when trying to read the

interorocess channel after user termination/ no indication

need be given to the schema DBM that the user program has

termi nated .

Messages sent bv the schema DBM fall into two

categories: normal responses and error messages. The error

codes in error messages correspond to those used by the C

DM|_. For a description of the format of all the interpro-

cess messages see Appendix E.

a8

F. Data Base Keys.

In the COOASYL OB^S each record must be identified by a

unique value called its data base key. This key is assigned

when the record is created and remains with it for the life

of the record. The ability to map a record's data base key

to the record in a auick and unambiguous fashion must be

provided since the key is used for direct access. The key's

order relative to all other keys in the area must be well

defined since it is used for sequential access. However,

the record is allowed to move around in physical media space

as lona as it stays within the same area. Section III.G

below will discuss how the oroblem of satisfying all the

criteria for data base keys was resolved.

The format of a data base key is shown in Fig. 1. This

format makes possible 255 areas (.area zero is the null area)

each containing up to 16,777,215 records.

Bits: 31 24 23

Fields: ! area U ! record U in area !

Data Base Key Format.

F i gure 1

.

rthen a record is first created and assianea to an area,

that area's index number becomes part of its data base key.

It is not Possible, therefore, for a record to migrate to

a9

another area. The record number is a purely logical order-

ing and is implemented as described below.

G. Area Handling.

Each area soecified in the schema has associated with it

two files. The first of these is the file containing the

data stored in the area. Its name is the same as the name

of the area. The second file is the data base key file for

the area. Its name is the area name orefixed by M k."

.

The data base key file is organized into 24-bit entries.

Each entry contains the starting byte offset into the area

data file of the record associated with a particular data

base key for that area. The data base keys are maoped to

the entries sequential 1 y. That is/ multiplying the record

offset portion of the data base key by three yields the

starting byte offset -of the entry in the key file associated

with that data base key. If the value of the key file entry

for a data base key is zero then that key is null (i.e.

unassigned). The first entry slot in the data base key file

for each area is reserved for storing the highest used kev

in the area to facilitate sequential searchinq of an area.

Thus record number zero is undefined in each area

.

Data records are stored in the data file with a three

word prefix. The first three bytes of the prefix contain

the record number portion of the data base key for that

record. The fourth byte contains the record type (a total

50

of 255 types are possible). The last two bytes of the pre-

fix contain the si?e in bytes of the record (maximum record

size is therefore 32767 bytes).

As records are created and added to the arear they are

entered sequentially in the area data file followinq the

last record written (data base keys may be assigned by any

algorithm* however). The records will remain in their ori-

ginal locations until thev are deleted or moved during gar-

bage collection. If a record is moved to a new location*

its key file entry is updated accordingly. Whenever a

record is moved or deleted from the area data file* the

first two words of the prefix at its former location are

zeroed.

The positioning control mechanism provided in the schema

DDL is implemented via data base keys. The area control is

handled in a trivial fashion since the area index number is

a part of the data base key. The positioning of a record

"near" another record is accomplished by assigning the

record being added tHe next available data base kev follow-

ing the data base key of the record it is to be "near".

This method speeds access to records clustered "near" one

another when they are used in conjunction with each another

since their data base key file entries are likely to be in

the same block. Additionally* the aarbage collection func-

tion of the DRM Request Processor automatically re-seauences

the records in the area data file to be in ascending order

of data base key. After qarbage collection the records are

51

clustered in the area data file as well.

If a data base key assianment algorithm causes a sparse

key space* the storage needed for recording the kev entries

is minimized by the fact that UNIX only allocates storage

for blocks actually accessed. For example* if a data base

key were to be allocated whose key entry block would be 200

blocks beyond the current end of the data base key filer

only the block containing that entry would be allocated.

Even though the apparent size of the file would have

increased by 200 blocks* the intervening 199 blocks would

not be assigned any physical media space. Unf or t unat el y * if

an empty block is read/ space for it is allocated. This

means that if the area in the above example were ever

scanned sequential 1 y> all the non-allocated blocks in the

data base key file would be allocated.

Due to the deletion and addition alaorithms* gaps will

develop in the data file durinq the course of processing.

The total size (in bytes) of these gaps is maintained in the

first four bytes of the area data file. During the execu-

tion of the schema QBM, the amount of wasted space is accu-

mulated and at the end of the run the area data file waste

count is incremented. Since this method permits more than

two billion waste bytes to be accumulated* no provision is

made for overflowina the waste count. When the waste count

gets to an unacceptable size* the OBM Reauest Processor can

be used to effect garbaae collection.

52

Areas which are designated as temporary areas are han-

dled in a slightly different manner. Since a temoorary area

is local to the user orocess opening it/ the file names for

such an area are suffixed with the process id of the user

process. Since the process id uniquely identifies the pro-

cess* these names uniquely identify a particular version of

a temporary area. Add i t

i

ona 1 1 y * the files associated with a

temporary area are allocated in the "tmp" directory and are

deleted when the process is terminated. The "tmo" directory

has the characteristic that if a system crash occurs* the

files within it are lost.

The files associated with any area are automatically

created by the schema DB^ if it attempts to open them and

thev do not exist. This means that when a schema is first

created* its areas will come into being automatically as

soon as they are needed.

H. Access Methods.

There are five access methods which may be used for

locating a record in the data base: direct* sequential*

calculated* chained and indexed.

1 . Di rec t Access .

If the data base key of a record is known* it may be

accessed directlv using the data base key mapping mechanism

described above. Every access to the data base ultimately

involves direct access once the data base key is known.

53

Unadorned direct access is provided to the user through

record currency and throuqh exolicit key record selection

expressions (see Section IV below).

2 . Sequential Area Scan.

The "next" and "prior" records in an area are

accessed through a seauential scan. The algorithm succes-

sively increments or decrements the record number in the

current data base key until the next or previous non-null

data base key is found.

3. Calculated or Hashed Access.
«

A data base key may be developed by a hashing algo-

rithm which uses data in a record for a hash key. The

schema record entry for records accessed by hashing must

have a location mode of "CALC". During record creation*

CALC key collisions are resolved by a forward linear scan

until a null key is developed. A key link is estaolished in

the synonym record to enable future access to the new

record. If multiple collisions occur on the same data base

key* a linked list is developed leading to the last synonym

added. A standard schema DBM utility routine is used for

hashing ("randkey"). If non-standard hashing for a record

is desired* a data base procedure may be specified in the

location mode clause of the record's schema entry. When a

record of a type using a non-standard hashing procedure is

to be added* the data base orocedure declared in the loca-

tion mode clause for the record will be called to provide

5a

X
the data base key,

4. Chained Access.

The default method of set linkage is via chaining.

The links in a chain consist of data base keys stored in the

records to be linked. The owner record of a set contains

links to the first and last member records in the set. Each

member record contains a link to the next record in the set.

If a set is defined as "PRIOR PROCESSABLE" in the schema,

each member record has a link to the previous member of the

set. A member record defined as "LINKED TO OWNER" in the

schema will contain a link to the owner record of the set.

The link-to-next-record in the last record of a set and the

link-to-previous-record in the first record of a set both

point to the owner record of the set.

5. Indexed Access.

Sets which are singular or dynamic have indices as

their primary access method. Additionally/ indices are used

for secondary set linkaae to implement "SEARCH" keys defined

in the schema for a record type. An index consists of a

list of data base keys ordered as specified in an "ORDER" or

"SEARCH" clause. When record selection is through set

membership with data field values soecified (see Apoendix A,

Section 8.1. a)* an aoprooriate index will be used to gain

access to the record. See Section III. I below for a further

discussion of indices.

55

I. The Schema Index File.

All indices created in the data base are stored in the

schema index file. The name of this file is the schema name

prefixed bv "index. " . Each index in the file is orqanized

into 512 byte blocks each of which has the format shown in

Fig. 2

.

st rue t i bl oc k

(

int i b 1 ink; // link to orevious index block
int iflink; // link to next index block
char ientryf508l; // up to 127 index entries
>

Format of an Index Block.

F i qure 2

.

When the backward link field (iblink) in the first block

of an index is zero* the index is not in use. Minus one

indicates that it is in use. The forward link field

(iflink) of the last block in the index is zero. The entry

array (ientry) contains uo to 127, four byte data base keys.

Null entries at the end of an index block are all zeroes.

then an index is first created, seven empty entry slots are

left at the end of each block for future qrowth.

An index is searched by a modified form of binary

search. when a record is to be located via the index, the

first index block is retrieved and the records cor respondi no

to the firs*" and last data base kevs entered in the block

are examined. If these records bracket the desired record,

56

a binary search is conducted throuqh the index block to find

the desired record. If the desired record is not associated

with the index block/ subseauent index blocks are read and

the last record for each block is examined to determine if

it brackets the desired record. When the correct block is

found* a binary search of that block is used to find the

record. For an index with k blocks havinq an average of n

entries in each block/ t h *» averaqe number of records exam-

ined in locatinq a record is aoprox i mat e 1 y (k / 2) + m /

where m is the 1 oq base two of n.

When data base keys are added to the last block of an

index* a new last index block is created whenever six or

fewer empty slots remain in the block. If a block other

than the last block overflows while a data base key is being

added/ a new block is inserted into the sequence of blocks.

The last seven entries of the old block are copied into the

new block and the new data base key entry -is added. When-

ever the last key remaining in a block is deleted/ the block

is removed from the index and freed.

Indices are used for set linkage as well as to facili-

tate the maintenance of a "MO DUPLICATES" clause refering to

items not linked in another way. Indices are linked to the

records when needed by storinq the startinq block number of

the index in the record.

In the absence of P and V ooerators [Ref. 22] , an index

may be reserved for use by a particular copy of the schema

57

DBM in the following tortuous manner. When an index is to

be accessed/ the schema DBM attempts to create a file

(" i ndexdum") in the schema directory. This file is created

with a mode that does not allow writing* therefore should

another process attempt to create "indexdum" while it is

open/ the attempt will fail. If a create fails* it is

repeated until successful. Once the "indexdum" file has

been created* the first block of the index is read from the

index file. If the backward link field of the first block

is minus one* "indexdum" is closed and the above process is

repeated until the backward link is zero. The backward link

is then set to minus one and the block written. The "index-

dum" file is then destroyed. If an index is not available*

the schema DBM releases any indices allocated in order to

avo i d dead locks.

When an index is to be released* the backward link of

the first index block is set to zero and the block is

rewritten. Thus* only one schema DBM can use a particular

index at any given time. This svstem avoids integrity prob-

lems stemming from simultaneous update of an index block by

two different copies of the schema DBM.

During the course of day-to-day operations* indices will

be created as well as discarded. When an index is of no

further use* its blocks must be made available for recylc-

ing. The free blocks thus created* are accounted for on a

free block list similar to the free list in a UNIX super

block. Block zero of the schema index file is used to

58

contain the free list. The first word of block zero con-

tains the block number of a free list block or zero if none

exist. The remaining 255 words are used to store the block

numbers of free blocks.

The free list is maintained as follows. When a block

must be added to the free list* its block number is stored

in the first available slot in the free block. If all the

slots are taken, block zero is coDied into the free block;

the block number of this free block is stored in the first

word of block zero? and the remainder of block zero is

filled with zeroes. If a free block must be allocated to an

index* the last non-null block number is extracted from

block zero and the slot is cleared. Tf no free blocks are

on the list and word zero contains a block number* that

block is allocated to the index after first copying its con-

tents into block zero. If block zero is all zeroes* a new

block is added to the end of the file for use in the index.

Other schema DB^ processes are locked out durina block

aauisition and freeing by the same mechanism used to gain

control of an index.

J . Pr i vacy .

The CODASYL DBMS design allows for orivacy locks to be

established at all levels. It allows separate orivacy locks

for each function on a resource. Adai t

i

ona 1 1 y * it allows a

Drivacy lock to be either a strino. to be matched or a lock

orocedure. The UNIX implementation features all these

59

options. Their implementation is accomplished as follows.

when the files in the schema directory are created/ UNIX

establishes the installation's Data Base Administrator as

their owner. By making the access orivileges of a file read

and write for owner only (UNIX function "chmod"), the Data

Base Administrator can prohibit all other users in the sys-

tem from opening the file. Thus, only the Data Base

Administrator (or super user) can directly read or write a

schema file.

The DBM Request Processor mav be used for both system

maintenance and to initiate user execution. However, since

the DBM Request Processor does not set-user-idr it can only

perform system maintenance functions when used by the Data

Base Administrator.

Since the schema DBM program file is executable by any

user, the DBM Request Processor can initiate it to process

user requests. Since the schema DBM does a set-user-id to

the user id of the Data Rase Administrator, it can access

the schema files as required. A user must not be able to

penetrate the schema DBM to gain access to information for

which he does not have the orivacv keys.

The schema DBM orevents unauthorized access using the

following procedure. The schema DBM has a privacy f 1 aq for

every function/resource pair for which a privacy lock can be

defined. When the schema DRM validates the user's sub-

schema (contained in the initial call message)/ it checks

60

the privacy keys defined in the sub-schema. Each privacy

flag for which no lock is defined or for which the sub-

schema privacy key is valid* is set to allow access* other-

wise it is set to deny access. The user receives no immedi-

ate indication as to whether or not his privacy keys fit the

locks. If he later tries to access some data base resource

in a way for which he did not furnish acceptable privacy

keys* his request fails. Once an initial response message

is accepted by the schema DBM/ no further unlocking of

resources can be done. Thus* in order to access the denied

resource* the user proaram must be terminated and restarted

using a fresh copy of the schema DBM which must be provided

the proper privacy keys. Thus* no single execution of a

user program can* through trial and error* determine the

valid privacy keys.

K. Integrity.

As previously mentioned* the CODASYL DDLC envisioned

that the DBMS routines would be contained in a single pro-

cess which would service all users. That concept guarantees

the integrity of the data base since simultaneous update of

the data base is imoossible. Additionally* a conceot called

H keeo" status is included in the COBOL DML [Ref. 33. A

record has automatic "keeo" status for a run-unit durina the

time it is the current record of that run-unit. A run-unit

can also reauest w keeD" status for a record if it desires to

be informed of what haooens to the record. If a run-unit

61

modifies or deletes a record which has "keeo" status for

another run-unit* the run-unit having the record in "keep"

status will be notified of the action. Although the "keep"

mechanism does not resolve the problem of concurrent update*

it does provide a mechanism for identifying potential prob-

lems. "Keep" status allows run-units to update the data

base while still allowing access to it.

Since each user process is coupled to its own version of

the schema QBM* none of the above features can be readily

implemented. As a consequence* if multiple schema DBM pro-

grams concurrently open an area for update* data base

integrity problems are virtually assured. If* however* all

users open any area to be uDdated for protected or exclusive

use (see Appendix A, Section B.2.b)* no integrity problems

can arise.

An area opened for protected use cannot be ooened by

another process for update. An area opened for exclusive

use cannot be opened at all by another process. The mechan-

ism for insuring that these rules are enforced is the Logi-

cal Usage Block File. This file resides in the "tmp" direc-

tory and has the same name as the schema (hence the rule

that no two data bases may have same name). It contains the

logical usage block which records the openinq mode of every

area currently open bv any copy of the schema DRM. When a

schema DB^ desires to ooen an area f it reads the logical

usaae block and determines whether or not a conflict exists

between the ooenina mode it desires and the modes in use bv

62

other processes havinq the area ooen. If no conflict

exists, it opens the area and updates the logical usage

block accordingly; otherwise* it notifies the user that the

open has f a i 1 ed.

In order to avoid problems with simultaneous update of

the logical usage block bv different processes* a lock out

file mechanism similar to "indexdum" is employed. This file

is named "ooendum" and resides in the schema directory. The

"opendum" file is created to lock out other processes while

the logical usage block is being accessed.

L. The Schema DBM.

As mentioned earlier* the DBMS compiler must produce a

schema DBM orogram when a schema is comoiled. The schema

DBM program is comoosed of two parts: the schema constants

and the DBM skeleton.

1. Schema Constants.

The DBMS compiler must produce a C coded temporary

file which contains all the schema uniaue constants necces-

sary to tailor the DBM skeleton to the schema being com-

piled. These constants cause the various buffers and arrays

used by the DBM proaram to be allocated sufficient memory to

handle the schema. For a descriotion of the constants and

arrays involved see Aopendix H.

63

Additionally, this temporary file must include the

initialization for the arrays "procpoint" and "procname".

These arrays contain, resoectively, pointers to and the

names of all the data base procedures in the schema. When-

ever a data base procedure name is encountered during the

initialization phase of the schema DRM, "procname" is

searched until the matching name is found and a pointer to

the data base procedure is extracted from the corresponding

"orocooint" entry.

When the constant file has been generated, the DBMS

compiler can use the C compiler to form the schema DRM from

the constant file and skeleton DBM. Since pointers to the

data base procedures are used as initializing constants in

"orocpoint", all the data base procedures will automatically

be loaded into the output object module after compilation.

Both the DBM skeleton and the data base procedures must

exist as object modules available to the C comoiler. All

the external arrays which are dimensioned in the constant

file are declared but not explicitly dimensioned in the

skeleton DBM. The finished product of the C compiler is an

executable schema DRM.

2. The DBM Skeleton.

The DBM skeleton is an object module which contains

all the DBMS routines (exceot data base procedures) reauired

to provide user services for the data base. Appendix F con-

tains a complete description of the DRM skeleton. The pro-

6a

cessing of the skeleton (and thus the schema dbm) is divided

into two phases: initialization and user reauest processing.

a. Initialization Phase.

When the schema DBM is called, it has no infor-

mation about the organization of the schema or sub-schema.

Although all its buffers are the right size and all the

necessary data base procedure are compiled into it/ it has

no knowledge of data base names* privacy locks* set rela-

tionships or anv other data peculiar to the schema. In

order to function, it must read in all the data in the

schema description file. Concurrently, it processes the

user program's sub-schema which is passed in the user

program's initial call messaae. By validating the sub-

schema while initializing the schema, the schema DPM can

immediately translate all references into terms of its

internal index numbers rather than store data base names.

This avoids much of the matching overhead for each user

reauest. If the sub-schema fails the validation, the schema

DBM sends the user program an error message, returns to the

beginning of the schema description file and restarts ini-

tialization. The initialization phase will thus be ter-

minated only if the user proaram either submits a valid

sub-schema or terminates.

b. User "eauest Servicing Phase.

After a successful initialization, the user

reauest servicina phase begins. This ohase consists of a

65

loop which reads a user message* processes it* and returns a

response to the user program. The loop runs until user pro-

gram termination, at which point the schema DBM terminates.

Processing a user message is accomplished by

selecting a service routine based on the messaoe type. One

service routine exists for each message type exceDt the ini-

tial call# with an additional routine to Drocess invalid

message types. During this phase* an initial call is con-

sidered an invalid message. Each service routine uses one

or more utility routines. Utility routines are general pur-

pose data base access and maintenance primitives which may

be used by several service routines.

66

TV. DESIGN OF THE C DDL AND DML.

A. Design Goals and Decisions.

The augmentation to the C 1 anquage was designed to pro-

vide a natural interface between the C 1 anguaae and the DBMS

without reducing its ability to supoort a COBOL DDL and DML.

Accordingly, the C DML was desiqned to have as much func-

tional similarity to the COBOL DML as was feasible. This

goal was adopted to support the research objective of test-

ing CODASYL's contention that the DBMS could support a

variety of sub-schema DDL * s and DML's. See Section C below

for a comparison of the COBOL and C DDL and D^L.

One of the desirable aoals of a DBMS is to provide pro-

gram independence from the definition of the data base.

Additionally, one o * the primary desian Dhilosophies of C

was economy of expression. In order to facilitate both of

these goals, the C DDL orovides for describing only a

minimal subset of the relationships and restrictions which

aopear within a schema description. The DDL is restricted

to describing the names and orivacv keys for areas, records,

data items, data agaregates and sets; and the membershio of

record types in set types. Data tyoes of items and aggre-

gates must be specified as well, but this information may be

different from the data types recorded in the schema

description. Additionally, the DDL need only describe those

67

portions of the schema the program is interested in m a n i o u -

lating. Since this information is the only data absolutely

necessary to the DML, unless major changes affecting the

validity of the program logic occur in the schema* a recom-

pilation of the program should seldom be needed. The pro-

grammer obviously needs to know a lot more about the schema,

however he can (and should) obtain this information from an

installation Data Element Dictionary [Ref. 191.

A fourth aoal was to integrate the C DDL and DML into

the host languaae's structure whenever possible. Accord-

ingly, the DDL was arouped into a soecial external function

and the DML functions have been given formats similar to

other C special functions such as "return". DML loaical

expressions are compatible with normal C expressions.

B. Major ConceDts.

This section describes some of the concepts essential to

the implementation and use of the C DDL and DML. For a com-

plete definition of the C DDL and DML, see Apoendix A.

1 . Currency .

The concept of currency is central to the navigating

of access oaths in the DML. The user process as well as

each record, set and area tvoe known to it have a current

record associated with them. This currency is established

by the execution of a "find". When a record is found, it

becomes the current record of the process, its record tyoe,

68

the area in which it resides and the set tyoe of every set

occurence the record participates in as a member or owner.

The current set occurence of each set type is the set in

which the current record of that set type participates.

Information about a record* including data values if

the record was fetched by "aet"» continues to be available

until the record is replaced as the current record every-

where its currency was originally established. For example*

if a record is the current record of a particular area, it

will remain available as the current record of that area

until a "find" is executed which selects a different record

residing in the same area.

2 . Find versus Get.

The difference between the "find" and "get" func-

tions is that the former locates records in the data base

while the latter extracts data values from the data base.

When a "find" is executed* the DBMS spans the access oaths

specified in the record selection criterion and returns all

the information about a record necessary to make it current

in the appropriate olaces. For a description of the record

selection options available* see Aopendix A* Section B.l.b.

The information necessary to establish currency includes the

selected record's data base key* record type and the set

tvpes for the sets it participates in as a member or owner.

The area the record resides in can be derived from its data

base kev

.

69

A "get" is used to access the data values associated

with a record. The record must have been made the current

record of the process prior to executing the "get". The

values of the record's data items are available via pointers

associated with each entity for which the record is current.

Whether an imdementor elects to provide separate buffers

for each currency type or merely reassign the value of

pointers is immaterial.

3. Independence of Schema and Sub-schema.

A user program can be compiled without reference to

the schema descriDtion. A program usina a sub-schema will

continue to execute until the data base name, privacy locks

or set memberships described in the sub-schema are changed

or deleted in the schema. However, changing entries such as

record location modes and set selection clauses in the

schema may alter the loaic of a program.

The data tyoes of the sub-schema may differ from

those of the schema. The D8MS will automatically convert

data to the types desired by the sub-schema before delivery.

Some type differences* however, may cause an error if the

data involved is i ncompat ab 1 e . For examole, converting a

string of characters to an integer will fail if the string

contains any non-numeric characters.

70

C. Comparison with the COBOL DDL and DML.

The comoarision will be made by means of an illustrative

example. For a detailed description of the C and COBOL DDL

and DML see Aopendix A an d Ref. 3 respectively. The COBOL

portion of the example is patterned after" Ref. 20. Several

modifications were made to reflect both recent changes in

the definition of the CODASYL DBMS and UNIX implementation

data types.

The example concerns the representation of a personnel

data base. Figure 3 is a diagram of the network and records

involved. In Fig. 3, the rectangles represent records and

the arrows Doint from set owners to set members. Record

names are written above rectangles? item values within. Set

names are superimposed over the set linkage arrows. Multi-

ple agents may be linked to an assianment and multiple

assignments to an aaent. The fact that a particular agent

is assigned to a particular assignment is represented by the

existence of a LINK record which has membership in both the

AGENT-LINK set owned by that agent's AGENT record and the

ASSIGNMENT-LINK set owned by that assianment's ASSIGNMENT

record. The link records are made necessary by the restric-

tion that a record may only be a member of one set of a

gi ven t ype .

Figures 4 and 5 show the DDL description of the schema.

The COBOL sub-schema could be essentially an exact cony of

the schema. The C sub-schema is shown in Fig. fe. Note that

71

an agent's number is represented as a numeric character

string in the schema and as an integer in the C sub-schema.

In the C sub-schema, all the data base names are spelled

with lower case letters and with hyphen ("-") replaced by

underscore ("«-"). The DBMS translates identifiers to allow

for this difference in spelling conventions. In the UNIX

implementation, data base names spelled with any combina-

tions of upper and lower case letters will be prooerly

recogn i zed.

Department

! Function: espionage !

! Head: M !

department -aaent

Agent
Ass i gnment

! Name: Goldfinger !

J Name: James Bond !

J Number: 007 !

! Name: Thunderball !

agent-
aaent -skill

skill

! Name: spy !

ILevel: 1 !

..A
J Name: 1 over !

10 !

Network Representation of a Data Base

F i gure 3

.

72

SCHEMA NAME IS PERSONNEL-FILE.

AREA NAME IS DEPARTMENT-AREA.
AREA NAME IS ASSIGNMENT-AREA.

RECORD NAME IS DEPARTMENT.
LOCATION MODE IS CALC USING FUNCTION

DUPLICATES ARE MOT ALLOWED;
WITHIN DEPARTMENT-AREA.

01 FUNCTION; PICTURE IS H AC20) H
.

01 HEAD; PICTURE IS "A(l)".
RECORD NAME IS AGENT;

LOCATION MODE IS CALC USING NUMBER;
DUPLICATES ARE NOT ALLOWED;

WITHIN DEPARTMENT-AREA.
01 FIRST-NAME; PICTURE " A (1)

H
.

01 LAST-NAME; PICTURE "ACIO)".
01 NUMBER; PICTURE "9(3)".

RECORD NAME IS SKILL;
LOCATION MODE IS VIA AGENT-SKILL SET;
WITHIN AREA OF OWNER.

01 NAME; PICTURE IS W A(20)".
oi levfl; type is fixed decimal.

RECORD NAME IS ASSIGNMENT;
LOCATION MODE IS CALC USING NAME OF ASSIGNMENT;
WITHIN AREA OF OWNER.

01 NAME; PICTURE IS "A(20)".
RECORD NAME IS LINK;

LOCATION MODE IS VIA AGENT-LINK SET;
WITHIN AREA OF OWNE^.

Schema DDL Area and Record Entries

Fi qure 4

.

73

SET

SET NAME IS DEPARTMENT-AGENT;
OWNER IS DEPARTMENT;
ORDER IS PERMANENT INSERTION IS

SORTED BY DEFINED KEYS;
MEMBER IS AGENT MANDATORY

AUTOMATIC LINKED TO OWNER;
KEY IS ASCENDING NUMBER;
SET SELECTION IS THRU DEPARTMENT-AGENT OWNER

IDENTIFIED BY CURRENT OF SET.
me is agent-skill;
NER IS AGENT;
DER IS PERMANENT INSERTION IS SORTED BY DEFINED KEYS;
MBER IS SKILL MANDATORY AUTOMATIC-

KEY IS DESCENDING LEVEL;
SET SELECTION IS THRU AGENT SKILL OWNER

IDENTIFIED BY CURRENT OF SET.
ME IS AGENT-LINK;
NER IS AGENT;
DER IS PERMANENT INSERTION IS IMMATERIAL;
MBER IS LINK MANDATORY AUTOMATIC LINKED TO OWNER,*

T SELECTION IS THRU AGEMT-LINK OWNER IDENTIFIED
BY CALC-KEY EQUAL TO CURRFNT-AGENT

.

NAME IS ASSIGNMENT-LINK;
OWNER IS ASSIGNMENT;
ORDER IS PERMANENT INSERTION IS IMMATERIAL;
MEMBER IS LINK MANDATORY AUTOMATIC LINKED TO OWNER;

SET SELECTION IS THRU ASSIGNMENT-LINK OWNER
IDENTIFIED BY CALC-KEY EQUAL TO

CURRENT-ASSIGNMENT;

NA
OW
OR
ME

SET NA
OW
OR
ME
SE

SET

Schema DDL Set Entries.

F i aure 5

.

7U

ddl *

schema Dersonne 1 **f i 1 e?
area deoart ment«-area;
area ass i gnment «-area;
record department

char f unc t i on (20] ;

char head Cll ;

>

record agent

{

char f i rst«-name tl 0] ;

Char 1 ast*-name (101;
i nt number;
>

record ski 1 1 *

char name [20] ;

i nt 1 evel 7

>

record assignment*
char name [20] ;

}

record link*}
}

set depart ment«-agent owner is department*
member agent

;

>

set aqent«-ski11 owner is agent*
member skill?
}

set aaent«-link owner is agent*
member link;
}

set ass i gnment «-l i nk owner is assiqnment*
member link;

>

>

C Sub-schema Entries.

Fioure 6

.

75

1 . Query 1 .

The first query is desioned to extract the skills of

agent 007. The procedure is to initialize the agent number*

FIND the agent and orint the agent number* skill name and

skill level for each skill the aqent has (if any). The

COBOL and C realizations of Query 1 are shown in Fig. 7 and

8 resoec t i vel y . In both versions access to the aqent is via

the CALC key in the AGENT record and the appropriate AGENT-

SKILL set is aut omat i ca 1 1 v selected when the agent 007

becomes current. The aaent record need not be fetched since

none of its data fields are needed.

OPEN ALL.
FIND-AGENT-RECORD.

MOVE •007' TO NUMBER OF AGENT.
FIND AGENT RECORD.

READ-FIRST-SKILL.
FIND FIRST SKILL RECORD OF AGENT-SKILL SET.
IF ERROR-STATUS = 0326 GO TO ALL-DONE.

PRINT-SKILL.
GET.
DISPLAY 'AGENT = *

, NUMBER OF AGENT, ' , SKILL = ',

NAME OF SKILL, ', LEVEL = ', LEVEL OF SKILL.
READ-NEXT-SKILL.

FIND NEXT SKILL RECORD OF AGENT-SKILL SET.
IF ERROR-STATUS = 0307 GO TO ALL-DONE,
ELSE GO TO PRINT-SKILL.

ALL-DONE.

Query 1 Coded in COBOL

F i gure 7

.

76

dbooen ()

;

agent .number = 7;
f i nd(aaeot)

;

f or (

f

ind(f

i

rst skill of aqent«-sk i 1 1) ; i error .st at us ;) <

qet ();

orintf (
M Agent = %s, Skill = %s, Level = %s\n",

agent. number, ski 1 1 .name, ski 1 1 .level);
findCnext skill of agen t *-sk i 1 1) ;

}

Query 1 Coded in C.

F i oure 8

.

2. Query 2 .

The second examole Query is designed to find all

department heads concerned with the assignment "THUNDER-

BALL". The procedure is as follows. FIND the ASSIGNMENT

record whose NAME is " THUMDERBALL" . For each LINK record in

the assignment's ASSIGNMENT-LINK set,

. find the link's owner in the AGENT-LINK set it belongs

to,

. find that AGENT record's owner in the DEPARTMENT-AGENT

set it belongs to and

. print the assignment name and department head.

The COBOL and C realizations of Query 2 are shown in

Fig. 9 and 10 respectively. In both versions, once the

desired link is made current, the appropriate DEPARTMENT

record can be reached via the AGENT-LINK and DEPARTMENT-

AGENT set. Note that only the DEPARTMENT records need to be

fetched since all the soannina of access oaths is accom-

plished throunh currency information.

77

OPEN ALL.
FIND-ASSIGNMENT-RECORD.

MOVE 'THUNDERBALL' TO NAME OF ASSIGNMFNT.
FIND ASSIGNMENT RECORD.

FIND-FIRST-LINK.
FIND FIRST LINK RECORD OF ASSIGNMENT-LINK SET.
IF ERROR-STATUS = 0326 GO TO ALL-DONE.

FIND- A GENT -LINK -OWNER.
FIND OWNER RECORD OF AGENT-LINK SET.

RE AD-DEPARTMENT -RECORD.
FIND OWNER RECORD OF DEPARTMENT-AGENT SET.
GET.

PRINT-DEPARTMENT-HEAD.
DISPLAY 'ASSIGNMENT = ', NAME OF ASSIGNMENT,

•, HEAD = ', HEAD OF DEPARTMENT.
FIND-NEXT-LINK.

FIND NEXT LINK RECORD OF ASSIGNMENT LINK SET.
IF ERROR-STATUS = 0307 GO TO ALL-DONE

ELSE GO TO FIND-AGENT-LINK-OWNER.
ALL-DONE.

Query 2 Coded in COBOL.

F i aure 9

.

dbooen ()

;

for(i=0;i<12?i++)assianment .name [i J =" THUNDERS ALL" H J

;

f i nd (ass i anment) ;

for(find(first link of assignment*-! ink) J lerror.status?) {

find(owner of aaent*-l ink) ;

find(owner of depart ment«-aqent) ;

get ();
printfC" Assignment = % s r Head = % s \ n "

,

assianment .namerdepartment .head)

;

find(next link of ass i qnment *-l i nk) ;

}

Query 2 Coded in C

.

F i aure 10.

78

V. CONCLUSIONS AMD RECOMENDAT IONS .

A. Conclusions.

Since the DBMS compiler and the C language augmentation

are not yet implemented, it is difficult to fully evaluate

the effectiveness and efficiency of the DBMS. In general*

it can be said that the UNIX file system seems to be a very

hospitable environment for developing a DBMS* however the

operating system facilities of UNIX are not nearly as well

suited to supoortina this development. The DBMS is measured

against some of the goals of DBMS as they are presented in

Sect ion 1 1 • A .4

.

1. Concurrent Retrieval and UDdate.

The DBMS cannot provide the ability to perform con-

current UDdate of the same area by two users. Although the

ability to open an area for unprotected update exists, its

use can be disasterous. Concurrency between update and

retrieval in an area causes no intregrity problems? however*

the user doing retrievals has no way of knowing if the

records he is accessing are being modified.

2. A Variety of Search Srrateaies.

The DBMS suooorts every form of access path soeci-

fied by the CODASYL DDLC. These forms are direct* hashed,

79

sequential and indexed.

3. Centralized Placement Control.

Placement control by the DBMS is a ourely loaical

mapoing with the UNIX file system providing centralized

placement control for the data onto physical media.

4 • Device Independence.

Device indeoendence is almost total for any file in

UNIX. The DBMS (and therefore the user orogram) is unaware

of either the types or number of devices in the system.

5 . Pr i vacy of Dat a

•

The complete orivacv mechanism in the CDDASYL design

has been implemented. The DBMS itself should be relatively

secure. A program could be written to call the schema DBM

repeatedly and determine a privacy key by trial and error,

but using data base procedure privacy locks which notify a

security console or terminate the proaram when a violation

occurs can greatly reduce the effectiveness of trial and

error "lock picking".

UNIX itself/ however, is too easily penetrated fRef.

21]. Locating and pluggina all the holes in UNIX may be

i mposs i b 1 e

.

BO

6. Independence of Schema and Sub-schema.

The DBMS orovides the maximum amount of independence

possible under the CODASYL desian. In fact, user proarams

could be comDiled without any reference at all to the

schema •

B. Recomendat i ons

.

1. Enhancement for Concurrent Update.

In order to enhance the ability for concurrent use

of a data baser the followinq aooroaches miqht be taken.

a. Centralized Schema DB^.

UNIX could be modified to provide a mechanism

for establishing interprocess communication to any desig-

nated process. This would enable implementation of a cen-

tralized schema DBM as the CODASYL DDLC intended. This

alternative remains imoractical for the reasons Section

III.c* i.e.f the schema DBM would run out of file resources.

Addi t i ona 1 1

y

t the UNIX modification would have an unknown

but probably major impact on the operating system's design.

b. System P and V Cal 1

.

UNIX could be modified to provide a system call

for P and V operators. For a discussion of P and V opera-

tors see Ref. 22. If a fast P and V facility were avail-

able* a schema DBM could temporarily halt all update or

PI

access to an area while oerforminq modifications. "Keep"

status could be implemented/ if desired/ by storinq indica-

tors in the record itself. The impact of such system calls

on UNIX's design philosophy is expected to be minimal.

Additionally/ existinq communications between

schema DBM programs could be soeeded uo. Specifically/ the

methods used with "ooendum" and "indexdum" to lock out

simultaneous undate are essentially a "test and set" opera-

tion which could be implemented more efficiently with P and

V system cal Is.

2. Enhancement for Faster Access.

In the absence of usaae data/ it is difficult to

estimate the access response soeed of the DBMS. However/ a

logical extension to the access methods provided by the DBMS

would be multilevel indices. The index structure now in the

DBMS is essentially an index seauential access scheme which

could be uoqradea to the multilevel structure which is typi-

cal of such indices. For a disscusion of multilevel index

sequential access method/ see Ref. 13. Use of a two leveled

index would divide the averaqe number of records scanned to

find the riqht index block by the averaqe number of entries

in the index blocks.

3. Automatic Garbaqe Collection.

Since only the Data Administrator can initiate gar-

baqe collection/ the wasted soace arowth rate in a data base

%2

may become a problem. Some consideration should be give to

having the schema DBM automatically garbage collect when the

waste in an area reaches a critical level. This thesis did

not address the problem of automatic garbage collection due

to the difficulty of determining what amount of wasted space

is critical.

P3

APPENDIX A. C LANGUAGE DDL AND DML

.

A. C Language DDL.

The DDL in C is designed to interface the subschema

description with the schema description with a minimal

reguirment for path information from the user and maximal

similarity with existing C language constructs. In the fol-

lowing discussion, words enclosed in apostrophes denote

variable data. when a 'lock' is specified, the data item

must be of tyoe "character pointer". All ' db identifiers'

specified must match the appronriate data base names in the

schema after translation of lower case into upper case and

underscore into dash. All DDL statements are enclosed in a

"ddl " routine with the following format:

"ddM...ddl statements...)".

The ddl routine should apoear prior to any DML statements.

It may be contained in a file INCLUDE'd at an appropriate

point in the orogram. The statements in order of appearance

are as foil ows

.

1 • Schema Entry.

The "schema" statement identifies the schema name

and its privacy lock. Its format is

"schema 'db identifier' with lock 'lock';".

The 'db identifier' must match the schema name and the lock

84

must match the on'vacy lock for the schema entry (see Ref.

2r sect ion 3.1.0).

B. Area Ent ri es

.

For each area to be used, an area entry must be made.

These entries must be in the same order as the area entries

in the schema. The format of an area entry is

"area 'db identifier list' lock is 'lock list';",

where a ' d b identifer list* is one or more comma seoarated

' db identifier's. A lock list is one or more comma

separated lock entries of the form

"'lock' for 'modifier' 'function'",

where the modifier is ODtional. For an area entry, the

allowable modifiers are "exclusive" and "protected" and the

allowable fuctions are "uodate" and "retrieval". The ' db

identifier's and 'lock's must match the area names and

privacy locks in the schema area entries (see Ref. 2, sec-

tion 3.2.0) .

1 . Record Entries.

Record entries must be made in the same order as the

corresponding record entries in the schema. A record entry

is similar in construction to a C language structure defini-

tion. Its format is

re cord 'db identifier' lock is 'lock list' {'item list')

where the "lock is 'lock list'" ohrase is optional. The

Mock list' for records has no modifiers defined. The func-

85

tions allowed are "insert", "remove", "store", "delete",

"modify" and "find". The ' db identifier' and Mock's must

correspond to those of the schema record entry (see Ref. 2,

sect ion 4.2.3).

The item list in a record entry is composed of a

series of item entries of the following form:

"'type specfier' ' db identifier' ['constant expres-

sion'] lock is 'lock list*;",

where the "['constant express i on '

1
" and "lock is 'lock

list'" phrases are optional. A type specifier is of the

form "int", "char", "float", "double", "dbkey" or

"st ruct {
' i tem list'}". These data types are identical to

those of the C language with the addition of "dbkey". An

item of tyne "dbkey" aDDears to be an array of four charac-

ters to the C user. The 'lock list' for items has no modif-

iers defined. The oermissible functions are "store", "get"

and "modify". The item entries may appear in any order in

the item entry list with the following restrictions. Items

must appear with the same records as in the schema. The

data tvoe of the item must be comoatable with the schema

item. Items of type "struct" must corresoona to repeating

grouDS in the schema and have the same dimensionality as in

the schema. Items aooearinq in a repeating group in the

schema must aooear in the item list of the structure

corresponding to that repeating arouc Any item in the

schema record description may be omitted.

86

The record names can be used in non-OML statements

as structures whose format is identical to the record entry.

These record structures are global names and contain the

current record of the respective tyoe.

2. Set Entries.

For each set to be referenced* a set entry of the

following format must exist:

"set ' db identifier* lock is 'lock list' owner is

• db identifier* *
' i den t i f i er * {'member list'};"*

where the "lock is 'lock list'" ohrase is optional. The

'lock list' for sets has no modifiers. The defined func-

tions are "insert"* "remove" and "find". The set name 'db

identifier' and 'lock's must match those of corresponding

set entry in the schema description and all set entries must

be in the same order as in the schema description. The

second ' db identifier' must match the owner name of the set.

The member list is composed of one or more member entries.

3. Member Entries.

A member entry has the form

"member ' db identifier' *
' i dent i f i er

'

1 ock is '
1 ock list';"*

where the "lock is 'lock list'" phrase is optional. The

'lock list' for members has no modifiers defined and the

defined functions are "insert"* "remove" and "find". The

' db identifier' must be the name of a record defined in the

schema as a member record for the set being described.

*7

The *
' i dent i f i er ' s named in the set and member

entries become global Dointers to the appropriate record

structure. These pointers can be used to reference the

current owner record and member record, respec t i ve 1

y

r of the

set. In addition the set name ' db identifier* is the name

of a character arrav which holds the current record of the

set

.

C. C Lanquaqe OML

.

The DML has several global names and functions associ-

ated with it. Besides the record, item and set names from

the ddl routine, there are the pointers "areaname", "rec-

name" and the structure "error". The "areaname" pointer

contains the address of the area array containing the

current record of the process. The "recname" pointer con-

tains the address of the record structure for the current

record of the process. Note the "recname" provides the user

with the record tvpe of the current record of the process?

but the current record of the orocess may not be the current

record of that tyoe and therefore the record pointed to may

not be the current record of the orocess. The current

record of the process will always be available in the area

array oointed to bv "areaname". "Areaname" and "recname"

are set whenever a find or store function is executed. The

88

"error" vector is a structure with the following format:

struct (

i nt status?

int type;

char *set ;

char *record;

char *area J

i nt count ;

} error;

// pointer to set array for error

// oointer to record for error

// oointer to area array for error

The error codes for C DML functions are designed to be com-

patible with error codes defined in Ref. 3 for the COBOL

DML. Addi t i onal 1

y

, a pointer called "areaid" and an array

of four characters called "keyname" exist for the store

funct i on

.

The use of the DML causes certain identifiers to be gen-

erated globally* hence these should be treated as reserved

words by the user. These reserved words are'.

. all arear record and set names

. permit

. store

. member

. areaname

. recname

. error

. dbooen

. dbc 1 ose

. find

. modi f

y

. current

. area i d

. oet

. key

. remove

. emDty

. owner

. duol i cat e

. keyname

. i nsert

P9

1. DML Expressions.

The DML introduces two additional expression tyoes

into C. These are DML loqical expressions and DML record

selection expressions.

a. DML Logical Expressions.

These expressions evaluate to a true/false value

and can be used in a manner identical to normal C loaical

expressions. Their forms are

(1) "
* db identifier' emDty", where ' db identif-

ier' must aopear as a set name in a set entry. The expres-

sion evaluates true if and only if the current set of the

tyDe specified has no members.

(2) "member of ' db i dent i f i er '

"

, where ' db iden-

tifier' must be a set name. It evaluates true if and only

if the current record o* the orocess is a member of a set of

the tvoe specified.

(3) "owner of ' db identifier'", where ' db iden-

tifier' must be a set name. It evaluates true if and only

if the current record of the Drocess is the owner of a set

of the tyoe specified.

b. DML Record Selection Exoressions.

These exoressions result in a data base key

which can be used to find a record. They are evaluated in

part within the user program but must be validated by the

90

schema dbm program. They must appear only in DML function

argument lists. The forms possible are as follows.

(1) Exolicit Key. The simplest form of record

selection expression is by explict key. The format is

"'key'". The 'key' must be either an item of tyoe "dbkey"

or evaluate to a character pointer. The contents of the

'key' are used as a data base key. This form is useful for

accessing records whose keys are known. Tt can also be used

for aoplyina currency which has previously been suppressed

(e.g. " f

i

ndfkey (process)); " applies all appropriate currency

to the current record of the process).

(2) Owner Record. Selection of an owner record

has the fo.r m at " ' db identifier* owner of 'key'"* where the

"of 'key'" phrase is optional. The ' db identifier' is a set

name and the 'key' is an explicit key. If the "of 'key'"

phrase is not used* the owner record of the current instance

of the set specified is selected? otherwise the owner in the

set type specified for the record identified by the 'key' is

sel ec t ed.

(3) Relative Selection. This form allows the

selection of a particular record from an area or set based

on a location criterion. The expression has the format

"'criterion' * db identifier' of ' db identifier'". The first

' db identifier' is optional and is the name of a record

tyoe. The second ' db identifier' is the name of an area or

set type. The 'criterion' determines the location within

<M

the area or set from which the record will be selected. The

allowed criteria are "next", "orior", "first"/ "last" and an

expression which evaluates to an inteaer. When the record

type is included* only occurences of that type record will

be considered for selection. The 'criterion' refers to the

ordering of the area or set. The ordering of an area is

considered to be ascendinq seouence by data base key.

"Next" and "orior" are relative to the current record of the

area or set. If the current record of the set is the owner

record/ "next" and "prior" are equivalent to "first" and

"last" respectively.

(U) CALC Key. If a record type is defined in

the schema as having a location mode of CALC/ the format

"duplicate ' db identifier'"/ where "duplicate" is optional/

may be used. The 'db identifier' is a record type defined

in the schema to have location mode CALC. Prior to the

evaluation of the record selection expression/ the items in

the record designated as Dart of the CALC key must have been

initialized to the desired values.

If the "duplicate" phrase is included/ the

current record of the process must be of the soec i f i ed tvpe

and have the same CALC kev as in the record buffer. If

these conditions are satisfied/ a synonym to the current

record is selected.

9?

(5) Data Value. Selection by data value is

possible using the format "duplicate ' db identifier' via

•set select' ' db identifier' == ' db identifier' ...", where

the phrase "= = • db identifier' . .
.
" , and the word "dupli-

cate" is optional. The first ' db identifier' is a record

name? the second* a set name? and the string of ' db

identifier's is made up of items in the named record tyoe.

The 'set select' phrase consists of either the word

"current" or the format "'db identifier' ... select". The

' db identifier' string in the 'set select' phrase is of made

uo of the items needed for the selection path specified in

the SELECTION clause for the the named record type and named

set type

.

If the word "duplicate" is omitted* the

expression selects the first record occurence in the

appropriate set with values matching those of the items in

the string of ' db identifier's. If the string is not speci-

fied* the first record of the named type in the set is

selected. When the list of items is specified* the items in

the list must have been initialized to the desired values

prior to evaluation of the record selection expression. If

"current" is included* the current instance of the named set

is used* otherwise the set used is selected on the basis of

the selection criteria in the schema for the named record

tvoe as a member of the named set tyoe.

If the word "duplicate" is included*

"current" ^ u s t be included and the item list is mandatory.

93

The record selected will be the next record in the set

matching the current record of the process in the fields

named in the item name strinq.

2. DML Routines.

The ability to access* retrieve and update records

is provided by DML routines. The routines are divided into

area manipulations (dbooen* dbclose)* record manipulations

(key through delete) and set manipulations (insert/ remove).

The oermit function does not fit into any of these

categories. Considerable overlao between categories exists

among the other functions. All functions have the same form

as normal C subroutine calls. In the following description*

all error codes listed have a two decimal digit major code

and a two decimal digit minor code specifying the function

and soecific error respectively.

a. Permit. The permit function must be called only

once and must be before any other DML functions. It causes

validation of the subschema by the sc^e^a D BM program and

estaolishment of the privacy permissions reauired. If the

schema lock is violated* an error code of 0010 is returned

in er ror . st at us . If any other privacy lock is failed* no

indication is given until the user program attempts to use

the feature not oroperly unlocked. If a mismatch occurs

between the schema definition and the subschema definition*

error code 0060 will be returned in er ror . s t at us . When this

occurs* error. count will contain the number of i ncompa t i b i
1

-

QU

ities; eppor.tyoe will be 1* ?. or 3 depending on whether the

first error encountered was in an area, record or set entry;

error. area* error. record and error. set will indicate the

first erroneous entry in the area, record and set entries

respectively. The entry number returned identifies entries

in the C subschema and is zero if no errors were encoun-

tered. If any other OML function is attempted prior to per-

mit* error code nn61 will be returned* where nn indicates

the function attemDted.

b* DboDen. Prior to processina any records in an

area* the user Droaram must call dbooen to open the area.

Obooen Darameters are an openinq mode and a list of area

names. The opening mode is an octal code formed as follows.

If the low order bit is 1* the mode is for update and

retrieval otherwise it is retrieval only. The next most

significant two bits are zero for concurrent update per-

mited* 1 for concurrent retrieval but no concurrent update

(protected mode)? and 2 or 3 for no concurrent use permitted

(exclusive mode). Ml the areas in the parameter list are

opened in the specified mode. If no area list is soecified*

all the areas in the subschema are opened. For all tem-

porary areas opened* a mode of exclusive update is assumed

no matter what mode is specified. Modes allowing concurrent

processes to update areas are included for comoat ab i 1 i t

v

purposes* however* unless the implementation of the data

base manaaement system is modified* these modes can cause

severe integrity problems.

95

To successfully execute a find/ store* delete or

close* appropriate areas must be ooen as follows: all areas

which contain any record occurence which would be deleted or

removed by a delete statement and all areas which are the

objective of a close function. If any of these functions

fails to meet these conditions* error status nnOl is

returned* where nn indicates the function attempted.

In addition to the areas containinq the object

records of the functions cited above* there are additional

(i.e. implicit) areas which could be impacted by D^L func-

tions. This impact can be of two forms: the OBM Droqram

requires information contained within the implicit area (in

which case the area must be "ava i 1 ad 1
e"

) or the OBM program

must alter the information contained in records in the

i mo 1 i c i c t area (in which case the area must not only be

available* but it must permit the necessary alteration).

Implicit areas reauirina modification are termed "affected".

A user may assume the followinq areas will be

affected: all areas containina any record which participates

in a set occurence into which a record is to be inserted or

from which a record is to be removed or deleted and all

areas containina any records which oarticipate in any set

occurence whose membership or seauence is altered by a store

or modify function. If an implicit area which is affected

is not open* error code n n 2 1 will be returned to

er ror . s t at us * where nn indicates the function attemDted.

96

To successfully execute insert* remove* store*

delete or modify functions* both explicitly and implicitly

affected areas involved must be opened for update. If any

of the involved areas are open for retrieval only* an error

code of nn09 will be returned to error. status where nn indi-

cates the function attempted.

Record occurences which are in the search path

of a find or an implicit find which is the result of a

store* remove or delete function need only be in areas which

are available. In order for an area to be available* it

must not be opened for an exclusive mode by a concurrent

process. Although it need not be ODen* the full overhead of

a dbooen and dbclose will be incurred for each implicit

reference to an area which is not ooen. If an implicit area

is not available* error code nnlfl will be returned to

•er ror . s t at us * where nn indicates the function attempted.

Any attempt to execute a dbopen function which

would result in a usaae mode conflict for any area will

result in the failure to open every area. Additionally*

error code 0929 will be returned in e

r

ror . s t a t us . A usage

mode conflict will occur under the following conditions: any

mode of uodate on an area ooened in an exclusive or pro-

tected mode bv another process* any protected mode on an

area opened for update by another process? exclusive mode on

an area ooened for any mode by another orocess* and any mode

on an area ooened for exclusive use by another orocess. In

order to prevent deadlock conditions* a process should ooen

07

all areas needed for exclusive or orotected use in one dbo-

pen. If a dbopen fails because of usage conflict* the pro-

cess should close any other ooen areas obtained previously.

If a Drivacy lock is violated* error code 0910

is returned in error . st at us . If an area ooened was alreadv

open* warning error code 0928 is returned in er ror . s t at us

.

The total number of errors encountered is returned in

error .count .

c . Dbc 1 ose.

when an area is no longer needed it may be

released for use by other processes with the dbclose func-

tion. Dbclose Darameters are a list of area names. All the

areas in the list are closed. If the oarameter list is

omitted* all ooen areas are closed. After the dbclose is

executed* all current records in closed areas cease to be

current. If any area named in the parameter list is not

ooen* error code 0101 is returned to error. status and

error. count will contain the the number of errors detected.

When the process terminates (even abnormally)*

no dbclose is needed as all areas will be closed. If the

dbclose function is executed on a temoorary arear the data

within the area is not lost and the area can be reopened and

processed. When the process terminates* however* all tem-

oorary areas* ooen or closed* are lost.

98

\ d. Find.

The find function al lows the user program to

select a record from the data base and make i\t the current

record of the run unit and* selectively* of the appropriate

record and set types. The parameters are a record selection

expression and a suppress code. The record selection

expression is discussed in l.b above. The suppress code is

an octal code whose least significant bit indicates set

suoression and whose next least siqnificant bit indicates

record suppression. If set suppression is indicated* addi-

tional find parameters are oermited* each of which is the

name of set type.

Execution of a successful find function causes

the selected record to become the current record of the pro-

cess* the area in which it is located* the record type of

the record and all set tvoes in which it participates as an

owner or member record. If record or set suopression is

indicated* the object record does not become current for

these types. When the list of set names is included*

currency update is suppressed onlv in the named sets. After

a find* the data fields of the record are not available* but

its data base key can be derived (through the key function)*

a pointer to its area buffer is in "areaname" and a pointer

to the aporopriate record tyre structure is in "recname".

The record can now be retrieved bv the aet function.

QQ

The fol lowing error codes may be returned into

error. status by a find.

0301 The souaht record is in an area which is not open.

0318 A record occurence alona the search oath of the

find is in an area under the exclusive control of

another process.

0302 A data base key was suoplied or developed which is

incomDatable with the areas specified for a record

of this t ype

.

0307 An end of area or end of set condition was

detect ed.

0326 No record in the area for selection through CALC

key satisfies the record selection expression.

0322 Owner record selection is specified and the data

base key aiven is for a record which does not par-

ticipate in a set of the desired tyne.

0323 Relative selection was specified and the specified

record cannot be in the desired area.

0310 A orivacy breach was attempted,

0361 No call to the oermit function has been made.

e. Get .

The get function is used to transfer the data

values of the current record of the orocess into the pro-

cess' buffers. Its parameters* which are ootional » are item

names from some record type. Tf the record type and item

names are specified/ only the items named are extracted. If

the item names are not soecified* all the items defined in

100

the subschema for that record are extracted. A get must be

executed for a record before any of its item values can be

exam i ned

.

The following error conditions may be returned

to error. status for a get.

0513 The current record for the orocess is unknown.

0510 A privacy breach was attempted.

0520 A record name is SDecified and the current record

of the orocess is not of that type.

0561 No call to the permit function has been made.

0554 Truncation of significance occured during conver-

sion from the schema tyoe to the subschema tvDe

for an i t em.

In all but the last case* no data is transferee! to the user

process .

f . Store.

The store function is used to create a new

record occurence in the data base. It acguires space and a

data base key for a new record occurence in the data base*

causes the data ite^s in the record's buffer to be used in

initializing the record* inserts the record into all sets in

which it is an automatic member and establishes a new set

ocurrence of each set type for which the record is defined

as an owner in the schema.

The oarameters of the function are a record

name* a suooress code and one or more set names. The record

101

name specifies the record type to be created. The suppress

code and set names are exactly analogous to those of the

find function. In order for the store to function properly,

the subschema must include the following: the named record?

the H data-base-i dent i

f

iers" or set specified in the "LOCA-

TION" mode clause of the record; at least one of the areas

specified in the within clause for the record; all sets in

which the record is defined as an automatic member; and all

"dat a-base-i dent i f i ers" , records and sets specified or

referenced in the "SELECTION" and "KEY" clauses of the set

member subentries in which the record is Oefined as

automatic (see Ref. 2, section 3.4.0).

Prior to calling store* it is the user program's

responsibility to insure the followinq is done. All data

items in the record tvpe buffer must be initialized. If

multiple areas are defined in the "WITHIN" clause for the

record with the "dat a-base-dat a-name-1 " option (see Ref. 2,

Section 3.3.0) and the "LOCATION" mode is not direct,

"areaia" must contain the desired area pointer. If the

"LOCATION" mode is direct with the "dat a-base-dat a-name- 1

"

option, keyname must have the appropriate data base key

Stored in it. If any automatic membershio has a "SELECTION"

method of "THRU CURRENT", the current record of the set type

must specify the correct set. All data items mentioned in

the selection clauses of the member entries which are

automatic for the record and all data items mentioned in the

"LOCATION" clause of the record entry must be initialized.

102

If an error occurs during the execution of a

store* the new record is not created* no currency indicators

are changed and an error code is returned to er ror . s t at us

.

The following errors and codes can be encountered.

1201 The object record is to be stored in an area which

i s not open

.

1221 A record occurence which is affected by the store

function is in an area which is not open.

1209 The object record of the store or some record

occurence affected by the store is in an area

which is open for retrieval only.

1218 Some record occurence needed by the store for

information (e.g. search oaths) is in an area

which is not available.

1212 No data base keys are available.

1211 No media space is available.

1202 A data base key passed by the user or qenerated

via a " C A L C " procedure is not valid.

1205 The record would violate a "DUPLICATES NOT

ALLOWED" clause defined for one of the records or

sets involved.

1225 For one of the set types involved a set occurence

cannot be matched to the relevant set selection

c r i ter i a

.

1210 A privacy breach was attempted.

1227 A check clause applies and one of the data items

did not pass .

1223 The area soecified for the record is not one of

103

those in the record's "WITHIN" clause.

1224 The execution of the store statement would cause a

set occurence to have records in both temporary

and permanent areas.

1219 The value of an item cannot be converted to the

tvoe specified in the schema for that item.

g. Modi f y .

The modify function enables the updating of some

or all of the data items defined in the sub-schema for a

record and the chanaing of set occurences in which a record

participates. The parameters* which are all optional* are a

record name* a list of items in the record and set parame-

ters identical to those of the insert function (see Section

B.2.j). If the items are not soecified* then every item in

the record which is known to the sub-schema is updated* oth-

erwise only the named items are updated. If the set names

are specified* the action taken is eauivalent to a remove

function followed by an insert function for the named sets

with the followina exceptions. The record must be in an

occurence of every set named prior to the modify function.

The set membership in the named sets can be defined as man-

datory or automatic* or both.

The object of the modify is the current record

of the process. All data items to be updated and all items

required for an insert on the named sets* must be initial-

ized for the modify. If any of the modified data items are

104

sort control items for a set occurence in which membership

is retained, the position within the set is modified accord-

ingly. If any of the items changed are in a "SEARCH" key

clause, the index is updated. The record becomes the current

record of its record type and all sets it has membership in.

If an error occurs during a modify/ no data base

or currency changes are made and an error code is returned

to error .status. The possible error conditions and the

associated codes are as follows.

0803 One of the items changed is in a CALC key and the

data base key would be altered, or an area number

specified for owner record selection disagrees

with the CALC key developed for the owner.

0825 A set occurence satisfying the specified criteria

was not found.

0822 The record is not currently a member of every

soec i f i ed set .

0805 The insertion of the record into a set occurence

would violate a "DUPLICATES NOT ALLOWED" clause.

0810 A privacy breach was attempted.

0827 A check clause was failed.

0821 Some record occurence affected bv the modify is in

an area which is not open.

0821 The object record or some record occurence

affected by the modify is in an area which is not

ooen for update.

0818 Some record occurence which is implicitly refer-

105

enced is in an area open for exclusive use bv

another process.

0819 A modified data item cannot be converted into the

format used bv the schema for the item.

0824 Insertion of the object record into some set

occurence would cause that set occurence to have

members in both temporary and permanent areas.

0861 No call to the permit function has been made.

In all cases/ no change is made to the data base or to the

currency indicators of the process.

h. Key.

The key function allows the extraction of the

data base key for one of the current records. The function

needs one parameter which may be a record/ set or area name

or the word "Drocess". The function returns a pointer to a

character array containina the data base key for the current

record of the inout parameter. The key should be treated as

read only.

If an error occurs during the kev function/ a

null pointer is returned and the» error code is returned to

error . st at us . The error conditions possible are no current

record exists for the input parameter passed (code 130b) and

no call to the permit function (code 1361).

106

i . Del ete.

The delete function is used to destroy the

current record of the process, releasinq its data base key

and storage* and to selectively delete all of the records

which are members of set occurences owned by the current

record of the run unit. The function reauires a sinale

integer parameter in the range zero to three with meaning as

follows. A zero parameter causes deletion of the record if

and only if it is not the owner of any non-empty set

occurences. If the parameter value is one* the record is

deleted? all optional members are removed from its set

occurences and all mandatory members of its set occureneees

are deleted. If the carameter is two? the action is identi-

cal to that of one exceot that? if any of the records whose

membership is optional do not participate in set occurences

owned by a different record? then they are deleted also. If

the Darameter value is three? then the record and every

member of its set occurences are deleted. For any member

record deleted? the deletion of the member records in that

record's sets is decided as if that record were the object

of a delete function with an identical parameter as that for

the originally deleted record.

If an error occurs durino. the function? no

records are removed or deleted and an error code is returned

to error . st at us . The oossible errors are as follows.

0230 A delete with oarameter zero was attempted and the

record owns a non-ewDtv set occurence.

107

0213 The current record of the process is unknown.

0210 A privacy breach was attempted.

0221 One of the affected member records is in an area

which is not open.

0209 The current record of the process or some affected

record is in an area open for retrieval only.

0218 An implicitly referenced record is in an area

which is open for the exclusive use of another

process.

0208 The sub-schema does not know about all the record

tyDes which would be deleted or removed* or all of

the set types of set occurences which would have

records removed.

j. Insert.

This function causes the current record of the

process to become a member of an occurence of the specified

set tyDes* Drovidina it is defined as an optional automatic*

optional manual or mandatory manual member of those sets.

The parameters* which are optional* are a record tvoe and

one or more set names. Additional parameters may follow each

set name deoendina on the selection criteria for the member

entry of the object record's tvoe. If the root set in the

selection path has N AT A-BASE-KEY " specified with the

"dat a-base-dat a-name-t " ootion (see Ref. 2* Section 3.4.0),

a pointer to an array containing a data base key or an item

name of tyoe dbkey must be included. If the root set has

the "CALC-KEY" option with the "dat a-base-dat a-names "

108

specified, item names or oointers to data whose type matches

that of the corresponding items in the CALC key must be

included. For each set after the root in the selection path

which uses the "EQUAL TO dat a-base-dat a-name-a" option (see

Ref. 2f Section 3.4.0), an item name or pointer to data

which matches the type of the data item specified in the

selection clause must be included. In addition to tne

explicit parameters above, all data items needed in the

selection oath as specified in the selection clause must be

specified. If the owner record's "WITHIN" clause specifies

multiple areas, "areaid" or the aopropriate data item must

be initialized to the appropriate area. See Reference 2,

section 3.U.11 for a description of the selection clause.

If a set name is specified with no additional oarameters,

then the set used is the current set of that type.

If the set names are specified, the record must

not be in an occurence of any of the named set type. Tf no

set names are specified, the record is inserted into the

current occurence of each set type for which the record is

defined as optional automatic, optional manual or mandatory

manual provided the record does not already participate in a

set of that type. After the insert, the record becomes the

current record of every set to which it has been added.

If an error occurs durinq an insert, tne data

base remains unchanaed, no currency indicators change and

the appropriate error code is returned into error. status.

The possible error conditions are as follows.

109

0713 The current record of the process is unknown.

0714 Set names are specified and the record is not

defined as an optional automatic* optional manual

or mandatory manual member of each of them.

0705 The record, when inserted, would violate a "DUPLI-

CATES NOT ALLOWED" clause for some record or set

i nvol ved.

0710 The current record of some set name SDecified in a

"CURRENT" clause of a selection entry is unknown.

0716 The record is already in an occurence of a set

explicitly specified or of every set implicitly

soec i f i ed.

0720 The record tyoe was passed as a parameter and

disagrees with the tvDe of the current record of

the process.

0721 A record occurence which is affected is in an area

which is not open

.

0709 The record inserted or some affected record is in

an area which is ooen for retrieval only.

0718 A record occurence implicitly referenced by the

insert is in an area which is not available.

072H Insertion of the record into a set would cause the

set to have members in both temoorary and per-

manent areas .

0761 No call to the Derm it function has been made.

1 10

k . Remove.

This function is used to cancel the membership

of the current record of the process in specified set

occurences for which the record's membership is optional.

The parameters* which are optional/ are a record name and

one or more set names. If the set names are specified* the

object record must participate in an occurence of at least

one of them and its membership in each of them is canceled.

If no set names are specified* every optional membership in

a set occurence for the record is cancelled.

If an error occurs during the remove* no set

memberships are canceled* no currency information is

affected and the error condition is returned into

er ror . s t at us . The followina errors are possible.

1113 The current record of the process is not known.

1120 A record tyoe parameter was* passed and it

disaqrees with that of the current record of the

process .

1115 The record is not defined as an optional member of

any named set tyoe.

1122 The record does not participate in at least one of

the sets named; or if no sets are named* in at

least one of the oossible sets for which it is

o o t i o n a 1 .

1110 A privacy breach was attempted.

1121 Some record affected by the remove is in an area

which is not open

.

11 1

1109 The current record of the process or some affected

record is in an area which is not open for update.

1118 Some implicitly referenced record is in an area

ODened for exclusive use by another process.

1161 No call to the permit function has been made.

112

APPENDIX B. FILES ASSOCIATED WITH A SCHEMA.

A. Files in the Schema Directory.

Most of the files associated with a schema are contained

in a directory bearing the name of the schema. This direc-

tory becomes the current directory for the schema DBM pro-

gram. In the descriotion of the files within the schema

directory, the term " schemaname" indicates a variable por-

tion of a file name which is redaced by the name of the

particular schema when the files are named.

1. Source DescriDtion Fi'le.

The Source Descriotion File contains the schema

descriotion in the source CODASYL DDL form. Its name is

"s. schemaname" .

2. Encoded Description File.

The Encoded Description File contains the compiled

descriotion of the schema. It contains data base names and

encoded descriptions for the areas* records and sets in the

schema. It is used Drincioally by the schema DBM program in

the initialization orocess. Its name is "des . sc hemaname" .

1 13

3. Schema DBM Program.

The schema DB^ proqram is the data base manager for

the schema. It is comprised of the DBM skeleton routine

compiled together with any data base procedures used in the

schema. Its name is "dbm . schemaname"

.

4

.

Schema Library.

This file is optional and» when present/ contains

data base procedures uniaue to the schema. It is named

"1 ib. schemaname".

5 . A rea Data Files.

These files contain the data for all the defined

areas in the schema which are not designated as temporary.

Their names are the same as the areas which they represent.

6. Area Data Base Key Files.

These files contain the byte offsets associated with

each data base key for the areas which are not desiqnated as

temoorary. The files are named by orefixina the area name

by "k.".

7 . Index B

1

ock File.

This file provides storaae for all the indices used

for set linkaae in the data base. It is called

"index. schemaname".

1 1 a

8. Open Lockout File.

This file is used by intearity routines to lock out

other orocesses when setting up exclusive or Drotected

access priveleges for a user Drocess. It is created to ini-

tiate any ooen or close operation and removed when the

operation is completed. The file is named "opendum".

9. Index Lockout File.

This file is used to lock out other processes while

attempting to acouire an index from the index block file.

It is handled in a manner analogous to the open lockout

file. The file is name "indexdum".

10. "essage Buffer File.

This file is used by the schema DBM program to

assemble messaaes to the user oroaram which are lonaer the

512 characters. Prior to storing a new message^ the file is

truncated to zero length.

B. Files in the Temporary Directory.

Certain files for a schema are stored in the UNIX tem-

porary directory C'Vtmp"). This directory has the charac-

teristic that should a system crash occurs r all the files

contained within it are lost. This directory is used to

store files * h i c h are associated with the running of a pro-

cess and therefore should be lost if the Drocess is ter-

minated by a system crash. The files are as follows.

115

1

.

Area Files.

These files are the area data files and area data

base key files for all areas designated as temporary. The

naming conventions for these files are identical to those

for non-t emoorary data and data base key files with the exe-

ceDtion that the orocess id (pid) of their user process is

suffixed to the name.

2. Logical Usage Block File.

This file contains the loaical usaae block. This

block is used during open and close ooerations to record the

usage modes for the various areas currently in use. Its name

is the same as the name of the schema.

lib

APPENDIX C. DBM - THE DBM REQUEST PROCESSOR.

A . Int roduct i on

.

Dbm is a simple command 1 anguaqe orocessor for schema

level requests. It enables the data administrator to per-

form such functions as compiling a schema* moving data from

schema to schema and aarbaqe collection. It provides the

user with a method of executing a orogram to utilize the

schema. The functions of "ALTER", "DISPLAY" and "LOCKS"

described in Ref. 2 are provided by different means.

Namely, the UNIX "ed" and "list" functions are used, with

privacy provided by the file access privacy of UNIX. The

function "COPY" (for subschema use) is inapplicable since

the C language DDL is not a proper subset of the schema DDL

as was the case with COBOL. In addition, the cross checking

of the sub-schema and the schema is done at execution time.

Prior to usina dbm, the schema directory must exist

(UNIX function "rnkdir") and the schema source file should

have already been created using "ed", the UNIX text editor.

Dbm is called by entering "dbm oathname", where the pathname

is a oath endina with the schema name of the schema to be

used. The program will resDond in one of two ways: it will

display "cannot access schema" or ">". The first resoonse

indicates that either the schema soecified does not exist?

access privacy orev*»nts access? the schema is not

117

directory; or a file called "s.schemaname" does not exist in

the directory* where "schemaname" is the name of the schema.

This response is followed by immediate termination of the

program. The second response is the dbm prompt character

and means that dbm is ready to accept commands.

B. Commands.

Upon recieving the oromot character* the user has the

option of soecifyina any of six commands as follows.

i

1 . Comoi 1 e

.

The compile command causes the schema to be com-

piled. The command format is H c" followed by a carriage

return. The compilation process causes the scanning of the

schema source file* "s.schemaname"* and creation of the

encoded schema description file* "des

.

schemaname" * and the

schema data base manaaer* "dbm. schemaname". If the necessary

permissions are not Dresent to create these files* dbm

displays "cannot compile". If errors exist in the source

file* they are diSDlaved. In order to divert the error list*

an optional path name parameter is allowed with the "c" com-

mand. If the specified file can be opened* the error listina

is output to it* otherwise an error message is displayed at

the user's terminal. When the "c" command is finished* the

user receives a prompt. The compiler is currently a stub.

1 18

2. Move.

This command allows data to be moved from an old

version of a data base to the current one. The command for-

mat is "m" followed bv a Dath to a schema directory. Move

will check the specified schema name to determine if it is a

directory containinq an encoded schema description and

schema data base manaqer. If the schema is nonexistent or

i naccessab 1 e , dbm will display "schemaname cannot be

accessed 1*, otherwise the data from the desiqnated schema

will be moved to the current schema. The data moved is

selected by findinq all area, record and set entries with

common names and transferinq the data which is associated

with these common areas, records and sets. Area, record and

set entries should have the same order in both schemas. All

data presently in the current schema will be lost. If the

move is unsuccessful, move produces error messaoes. After

the move is completed, the user receives a prompt. The move

function is currently a stub.

3. Execute.

This command causes the execution of a user oroqram

to access the data base. Its format is "x" followeo by a

path to a user oroqram and the arauments for that user pro-

gram. If the user program is i naccessab 1 e , nonexistent or

not a oroqram, dbm orints an error messaae and prompts.

Otherwise dbm executes the user proqram ana, upon its termi-

nation, prompts.

119

4. Garbaae Collection.

This command allows waste compression in area data

files for the data base. The format is "g" followed bv a

carriage return. This causes the followina events for each

area in the schema. The messaae "number of bytes wasted in

areaname is NNN. Collect? (y or n)" to be displayed* where

"areaname" is the area beina Drocessed and "NNN" is the area

waste count. Enterinc "y" causes the area file to be

recreated with all records written in ascending order of

data base key and with all wasted space eliminated. Enter-

ing "n" causes the next area to be processed, when all areas

have been processed, the user is orompted.

Due to the lack of a aarbage collection facility in

the schema dbm skeleton, freauent aarbage collection may be

necessary. Note aarbage collection causes any assianment of

aata base keys desianed to juxtapose related records to be

reflected in the area data file as well.

5

.

F ree .

If UNIX crashes durina a dbm spawned function, cer-

tain files may be left in a state makina restart impossible.

The command "f followed by carriaae return causes this con-

dition to be eliminated. The free command removes the files

"opendum" and "indexdum" from the schema directory, if they

exist, and scans the index block file, " i ndex

.

schemaname" ,

freeing any locked indices.

120

C • Interprocess Communication.

Whenver dbm must create a process, it uses the UNIX

functions "fork" and "exec". The former causes a comolete

copy of the current process, called the child* to be created

and the later causes the current process to be overlaid and

reolaced by the proaram specified. Dbm creates children as

needed to do its work. Whenever a need may arise for the

children to communicate with each other, dbm creates inter-

process communications pipes. These pipes appear to be a

pair of files, called the ends, each with an open file

descriptor. One end of the pipe is ooen for readinq and the

other for writing. Since all children of a parent executinq

a pipe call have the pipe open also, the pipe can be used

for passing data back and forth. Certain protocols must be

observed, however. The pipe can only effectively be used

for one way transmission since there is no protocol for

preventing a process from readina its own t ranm i ss

i

ons back

before the intended receiver has a chance to read them. The

receiver should close the writinq end of the pipe, otherwise

the receiver will wait forever if trying to read the pipe

after the sending process has terminated. This phenomenon is

caused by the fact that the process reading a pipe will go

into wait state if any process, includinq the orocess doinq

the read, has its writinq end of the pipe ooen. If no pro-

cess has its writinq end open (termination automatical 1

v

closes all of a process' ooen files and pipes), a read on

the pipe will return an end of file condition.

121

APPENDIX D. SCHEMA DESCRIPTION FILE FORMAT.

The schema description file contains the encoded schema

description. The file is used by the dbm move command and

in initializing the schema DBM proqram. Its format is

described below.

A. Schema Entry.

The schema entry is headed by a null terminated string

containing the schema name. Next is a orivacy lock consist-

ing of a null character; if no privacy lock is defined; or a

one character type followed by a null terminatated string,

if a orivacy lock is defined. If the lock is defined, a

lock type of "s" indicates that the string is a lock string

and "p" indicates a lock data base procedure name.

B. Area Entries.

The area entries are oreceded by a two byte number which

is the number of areas areas and a two byte maximum record

size. Each entry contains the follow i no items.

The area name is a null terminated string. The tem-

porary indicator is a one character f 1 aa which is equal to

one for temporary areas and zero otherwise.

122

Fourteen data base procedure names are stored next. The

first six names are procedures to be called when the open

functions for retrieval* protected retrieval, exclusive

retrieval/ update, protected update, and exclusive update,

are executed normally. The seventh name is a procedure to

be executed when a close is executed normally. The final

seven names are procedures corresponding to the first seven,

but which are executed when errors occur. If a procedure is

not specified for a function, a null string will aopear in

the file at the appropriate Dosition.

Following the data base procedure names are the six

privacy lock entries. These locks have the same format as

the schema privacy lock. The six locks apply to the open

function for retrieval, protected retrieval, exclusive

retrieval, update, orotected update and exclusive update

respect i ve 1 y

.

C. Record Entries.

The record entries include information aenerated by the

member subentries of the schema's set entries as well as

information from the schema's record entries. The record

entries are preceded bv a one bvte number indicating the

number of record tyoes present. Fach record entrv contains

the following data.

The record name is a null terminated strinq. It is fol-

lowed by a two byte sianed integer indicatina record size

123

for records o* this entry type. A one byte location mode is

next. Additional location mode information may follow

depending on the mode: for modes zero and seven, no addi-

tional information; for mode one, a one byte record index

and a one byte item index; for modes two and three, two or

more one byte item index numbers preceded by a one byte

number indicating the number of indices present; for modes

four and five, a null terminated string naming a data base

procedure and two or more one byte item indices preceded by

a one byte number indicating the number of indices present;

and for mode six, a one byte set index. The location mode

infromation is derived form the LOCATION clause of the

record entry and the encodina matches that in "rlocmod" of a

schema DBM record vector.

Following the location information is the area data

derived from the record type's WITHIN clause. This consists

of a one byte ootion code and area specifications. The area

specification format deoends on the ootion code: for code

zero, a one byte area index; for code one, two or more one

bvte area indices preceded by a one byte number indicating

the number of indices present; and for two, no further data.

The encoding of the WITHIN information matches that of

" r a r e a " in the schema R M record vector.

Fourteen data base procedure names are stored next in

the entries. The first seven are procedures to be called

when the functions of "insert", "remove", "store", "delete",

"modify", "find" and "get", are executed normally on records

124

of this entry's type. The second seven data base procedures

are called when any of the above seven functions is executed

and an error occurs. If no orocedure is defined in the

schema for a function, a null string replaces the function.

Following the data base procedure names are seven

privacy lock entries. These locks have the same format as

the schema orivacv lock. The locks apply to the seven func-

tions listed in the previous paragraph.

1 . Member Dat a

.

Each record entry has zero or more set membership

entries followina the record orivacv locks. These entries

are preceded by a one byte number indicatina the number of

membership entries present. The member entries for each

record type appear in the same order as the set entries in

the schema for which membership is defined. The contents of

each membership entry is as follows.

The set name for the membership is stored as a' null

terminated strina. Following the set name is a two byte

series of flag bytes which correspond to the bits of

"mflags" in a schema D8M member vector. The information

contained in these bits is derived from the MEMBER clause,

the KEY clause and the total number of SEARCH clauses

defined in the schema.

Next is a one byte number indicating the number of

items included in the primary key for the item. This number

125

is at most 16 and is zero if no key is defined. Following

this value is the appropriate number of Drimary key element

pairs. Each key pair consists of a one byte collatina code

and an item index. The collatinq code is zero if this ele-

ment of the Drimary key is ascending and one if it is des-

cendi ng.

Following the primary key soec i f i cat i on are up to

seven search key strings (Mie exact number is recorded in

the flag bytes above). Each search key string is a null

terminated string of the item indices for the items in the

search key.

i

Following the search key strings is the set selec-

tion data. If Format 2 of the SELECTION clause was used/

this data consists of the name of a data base procedure. If

Format 1 was used* the data is as follows. First is a one

byte code indicatina the root selection mode. The code

corresponds to that in "mselflag" of a schema DBM member

vector. The remaining root selection data depends on the

root selection mode. For mode one and two* a one byte set

index follows the mode. For mode three* there is no further

root selection data. For mode four* the data is a null tem-

inated string of two byte oairs each of which contains a

record index and a set index.

The remaining set selection data for Format 1 con-

sists of the number of "THEN THRU" clauses followed bv the

aporooriate number of two byte selection oairs. Each pair

126

contains a set index and an item index. These pairs are the

source data for "mssel" in a schema DBM member vector.

Following the set selection information are six data

base Drocedure names. The first three Drocedures are called

when the functions of "insert", "remove" and "find" are exe-

cuted normally. The second three procedures are called when

these same functions are executed and an error results. If

no data base Drocedure is defined for a Darticular function,

a null string will appear in its position.

Following the data base procedure names are three

privacy lock entries in the same format as the schema lock.

These privacy locks are for the functions described in the

previous paraqraph.

2 . I tern Dat a

.

Each record entry has one or more item descriotion

entries following the set membership entries. The item

entries are preceded by a one byte number indicating the

number of items present. The item entries are stored in the

same order that the items they represent appear in the

record tvoe being described. The contents of each item

entry is as follows.

The first data in an item entry is the name of the

item stored as a null terminated string. If the item is one

that is not generated by an item sub-entrv in the schema,

the item name will be a null strina. Followina the name is

127

a one byte level number. A level number between one and 100

is generated bv a schema item sub-entry; 101 is a forward

link; 102 is a backward link; 103 is a link to owner; 10a is

an owner's link to first member; 105 is an owner's link to

last member; 106 is an owner's link to index and 107 is a

CALC synonym link.

\

The remaininq data depends on the level number. If

the level number is between one and 100, inclusive* the next

byte contains the data tyDe; between 101 and 106, inclusive,

the next byte- is the set index; and for 107 no other data is

needed. If a picture is defined for the item, it is stored

next as a null terminated strina.

Following the level and tyoe data is a validity

checkinq description. The validity checking description is

a null terminated strina which is encoded to fit the

requirements of "icheck" in a schema OBM item vector. It is

generated bv the CHECK clause of a schema item sub-entry.

If no validity check is defined for the item, the strinq is

null.

Followinq the validity check description are three,

two byte numbers represent inq the size (in bytes) of one

occurence of the item; the number of occurences of the item

in a record; and the startinq byte number of the item within

the record.

The names of six data base Drocedures are next. The

first three are names of procedures to be called when the

128

functions of "store", "get", and "modify" are executed nor-

mally. The second three procedures are called when these

functions are executed and an error occurs. If a procedure

is not defined for a function, a null string will aooear in

its pi ace.

Following the data base procedure names are three

privacy lock entries in the same format as the schema lock.

These locks apply to the functions mentioned in the previous

paragraph .

D. Set Entries.

Following the record entries are the set entries. These

entries are generated by set sub-entries in the schema. The

entries are preceded by a one byte number indicating the

number of sets defined. The contents of each entry is as

follows.

The first element in each entry is the set name stored

as a null terminated string. The set name is followed by a

one byte code which corresponds to the lower order byte of

"sflags" in a schema DBM vector and describes OWNER, SET IS

and ORDER clauses of the set sub-entry.

Next is a pair of bytes indicating the owner record.

The first byte is the owner record's index and the second is

the item index of the first item in the owner record having

to do with the set. Followinq t^e owner record data is a

one byte number inoicatina the number o * member records and

129

three byte member descriptions oresent. Each member

description consists of the record index of the member; the

index of the set membership vector in the schema D8M record

vector for the record; and the item index of the first item

in the record having to do with this set. The order of the

member descriptions is alphabetical by member record name.

Following the member descriptions are four data base

procedure names stored as null terminated strings. The

first two are names of procedures to be called when the

"insert" or "remove" functions are executed normally. The

last two represent the same functions, but are called when

an error occurs. If a procedure is not defined in the

schema for a function? a null string appears in that place.

Following the data base procedure names are three

privacy locks. These locks are of the usual format. They

lock the functions of "insert"* "remove" and "find", respec-

tively.

130

APPENDIX E. INTERPROCESS MESSAGE FORMATS.

A. Messages Received bv the Schema DBM.

Messages received are read into "smesin", a character

buffer of lenath 512. The first byte of the messaae is a

function code. The remainder of the messaqe will vary

depending on the function code. The message is terminated

by a mark, which is ten bvtes of the octal code 0252. In

the message descriptions that follow, the function code is

included as cart of the description heading.

1. Initial Call w essaae (Code 0).

The initial call is made by the user to reauest

validation of his sub-schema and to establish his access

permissions. Immediately followinq the function code is a

null terminated string containinq the schema name. After

the schema name is a null terminated string containing the

privacy key for the schema. Following the schema entries

are the area entries.

a . A rea Entries.

The area entries are preceded bv a one byte

number indicating the number of areas in the sub-schema.

Each entry consists of seven null terminated strinas. The

first string is the area name, the other six strings are

131

privacy keys and mav be null strings. The orivacy keys

specified are for retrieval, protected retrieval, exclusive

retrieval, update, Drotected uodate and exclusive update

resoec t i ve 1 y

.

b. Record Ent ries.

The record entries are Dreceded by a one byte

number indicating the number of records in the sub-schema.

Each entry consists of seven null terminated strinas, an

encoded member list and an encoded item list. The first

string is the record name and the remaining six are orivacy

keys and may be null strings. The privacy keys are for

insert, remove, store, delete, modify and find respectively.

An encoded member list is headed by a one byte

number indicatina how many member entries follow. Each

member entry consists of four null terminated strinas. The

first string is the name of the set and the remaining three

are orivacy keys and mav be null. The privacy keys are for

insert, remove and find resoec t i ve 1 y .

An encoded item list is headed bv a one bvte

number indicating how many item entries are in the list.

Each entry has a one byte entry code followed by four null

terminated strings. The first string is the item name and

the rest are orivacy keys and may be null. The privacy keys

are for store, get and modify. The remainder of the item

entry varies depending on the entry code specified below.

132

(1) Atomic Item (Code 0). No further fields

exist in the item entry for an atomic item.

(2) Vector (Code I). A one byte number indi-

cating the number of occurences of the item follows the

or i vacy keys

•

(3) Repeatina Grouo (Code 2). A pair of one

byte numbers follows the privacy keys. The first number

indicates the number of subseauent item entries in the

repeating grouo and the second indicates the number of

occurences in the grouo.

c . Set Ent r i es .

The set entries follow the record entries. They

are preceded by a one byte number indicating the number of

set entries. Each set entry consists of four null ter-

minated strings. The first strina is the set name and the

remaining three are Drivacy keys and may be null. The

privacy keys are specified for insert* remove and find.

2. Ooen Message (Code Q) .

The function code is followed by a one byte mode*

which uses the same encodina as the C dbooen function (see

Appendix A, Section B.2.0). The remainder of the message

consists of one byte area index numbers. Mo area numbers

should be included if everv area known to the subschema is

t o be ooened

.

133

3. Close Messaqe (Code 1).

The function code is followed by a list of one byte

area index numbers. No area numbers are included in the

message if all open areas are to be closed.

a. Find Message (Code 3).

The function code is followed bv a one byte selec-

tion tyoe and selection codes. The possible selection tynes

and their corresponding record selection codes are:

a

.

Expl i c i t Key .

Code zero indicates direct access and the selec-

tion code will be a four byte data base key.

b. Owner Record.

Code one indicates selection of the owner record

for the set of the specified type that the soecified record

belonqs to. The first selection code is a one byte set

index and the second is a four byte data base key.

c

.

Relative A rea .

Tyoe code two specifies relative selection in

the designated area. The first selection code is a one byte

criterion with zero, one, two and three meaning next? previ-

ous* first and last* resDectivelv; and four, five, six and

seven meaning next, previous, first and last of a specified

record tyoe. If the criterion is four throuah seven, the

13a

second selection code is a one byte record index. The last

selection code is a four byte data base key.

d. Rel at i ve Set .

Type code three specifies relative selection in

the designated set. The first selection code is a one byte

set index. The remaining selection codes are identical to

those for tyoe code two.

e. CALC Key.

Type code four indicates hash key selection.

The first selection code is a one byte record index. The

remaining codes are item triples for all the items of the

specified record tyoe which are know to the sub-schema and

are not associated with an "OCCURS" clause. An item triple

consists of an item specification, a one byte data type

code, and a data value of the specified type. An item

specification code consists of a one byte item index fol-

lowed by zero c more one byte subscript values as appropri-

ate. The data tvpe codes are one for inteaer, two for sin-

gle precision floating point, three for double Drecision

floating point, four for null terminated string and five for

dat a base key

.

f . Dupl icate CALC Key.

Type code five indicates selection of the next

record with a hash key duplicating the hash key of the

specified record. The selection code is a four byte data

135

base key.

g. Current Set Data Value.

Tvpe code six indicates that the first record of

the specified type which matches the specified item values

in the specified set occurence is to be selected. The first

selection code is the one byte record type index of the

record type to be selected. The second selection code is a

one byte set type index. The third selection code is a four

byte data base key of a record which belongs to the set

occurence to be scanned. The remaining selection codes are

zero or more item trioles.

h. Selected Set Data Value.

Type code seven indicates that the first record

of the specified type which matches the specified item

values in the set occurence selected through the SDecifed

record tyoe's member subentry "SELECTION" clause is

selected. The first two selection codes are identical to

those in the orecedina oaraaraph.

The third selection code is a one byte number

which indicates the number of path selection codes which

follow. The oath selection codes are item auadrudes. An

item quadruple consists of a one bvte record index, an item

SDec i f i cat i on , a one byte data type code* and a data value

of the tvoe specified in the data type code. The remainina

selection codes are zero or more item triples for items in

136

the specified record t VDe.

i. Current Set Duolicate Value.

Type code eight indicates that the record to be

selected is the next record (if any) which is of the same

type as the soecified record; in the set of the specified

type; and matches the specified record in the specified

items. The first selection code is a four byte data base

key. The second selection code is a set type index. The

remaining selection codes are item specifications.

5. Get Messaae (Code 5).

Following the function code is a four byte data base

key. The remainder of the messaae consists of item doubles

for the items the user program desires. An item double con-

sists of an item specification and a one byte data tyoe. An

omitted subscript in a data specification means every

occurence of the vector or repeating group is desired. A

double for a repeating arouo has a data type of zero. The

doubles for the elements in the repeating arouo must be

immediately following the reoeatina arouo's double.

6. Store Message (Code 12).

The remainder of the messaae is a one bvte record

t ype i ndex

.

137

7. Resoonse to Request for Data Message (Code 100).

This message crovides data requested in a Reauest

for Data Messaoe sent by the schema DBM.. The function code

is followed by an item specification for each requested item

consisting of a one byte record tyoe index* a one byte item

index and a one bvte data tyoe. The requested data follows

the item tyoe SDec i f

i

cat i ons in exactly the same order as in

the Request for Data. For aroup items? the order of aooear-

ance of the subordinate items of the qrouo in the item

SDec i f i cat i ons is the order the items must aopear within

each occurence of the qrouo item in the data portion of the

messaqe. The other data may be area or set type indices or

data base keys

.

8. Insert Messaoe (Code 7).

The function code is followed by a four byte data

base key of the record to be inserted. The remainder of the

messaqe consists of set specifier oai rs. A set specifier

pair consists of a one byte set tyoe index followed by a

four byte data base key indication the current record in the

current occurence o* the set of the type specified.

9. Remove Messaqe (Code tl).

Following the function code is a four byte data base

key. The remainder of the messaoe is zero or more one byte

set type indices.

138

10. Modify Messaqe (Code 8).

Following the function code is a one byte number

indicating how many set membershios are being modified, fol-

lowed by the required number of set specifier oairs. The

remainder of the message consists of zero or more item tri-

ples.

11. Delete Messaae (Code 2).

Followina the function code is a four bvte data

base key. The remainder of the message is a one byte dele-

tion code with the same values as for the parameter of the C

"delete" function (see ApDendix A, Section B.2.i).

B. Messages Transmitted by the Schema D8M.

Messages transmitted are in response to messaaes

received and fall into two categories: normal responses and

error messages. The first byte of the message is a response

code and is zero for normal responses and eaual to the error

code for error messages. The format of the responses, after

the first byte, varies deoendina on the previously received

message (for normal resoonses) or on the error type (for

error messaaes). These formats are detailed below.

1. Normal Responses.

139

a. Ini t i a) Call Messaqe .

The normal resDonse to an initial call is an

encoded schema description for thp user. This descriotion

is a series of one byte numbers each of which represents the

index number associated with the data base names (except the

schema name) in the Initial Call Message. For areas* this

is the index number of the area? for records* the index

number of the record followed by the index number of each

data item or data aaqreqate? for sets* the set number.

b. Find Message.

The normal response to a Find Message contains

the information necessary to establish currency for the

selected record. This information consists of a four byte

data base key? a one byte record tyoe index indicatinq the

type of the record? and zero or more one byte set tvoe

indices indicatinq the set types for the set occurences* in

which the record participates.

c . Store Message

.

The normal response to a Store Messaae is a

Request for Data Messaae. This message requests the data

needed to perform the store function. The message is com-

posed of reauest entries each prefixed by a one byte request

tvpe code. The request entry formats are listed below alonq

with their reauest tyoe codes.

iao

(1) Data Item Reauest (Code 0). This reauest

entry consists of an item soec i f

i

cat i on . A reDeatinq grouD

index is an implied request for all subordinate elements in

the repeatinq group known to the sub-schema. If a subscript

is missinq/ the data in all occurences of the relevant ele-

ment is requested.

(2) Area Index Request (Code 1). This request

consists of the reauest code alone. It reauests the con-

tents of "areaid" in the user oroqram.

(3) Data Base Key (Code 2). This request con-

sists of the request code alone. It requests the data base

key associated with "keyname" in the user program.

(4) Current of Set. This request consists of a

set type index. It requests the data base key of the

current record of the soecified set type.

d. Request for Data Message.

The normal response to a Request for Data is

identical to that for a find. The record information passed

is for the record just stored.

e. Messaaes with a Null Response.

The normal response to certain messages is a

response code only. These messages are Ooen, Close* Insert/

141

Modify* Remove and Delete.

2. Error Messaaes.

a. Invalid Sub-schema (Code 60).

This resoonse is the result of a mismatch

between the schema and the sub-schema oresented in the user

program's Initial Call Messaqe. After the error code is a

one byte first error tvpe: zero for schema entry; one for

area entry? two for record entry? and three for set entry.

Following this code are three* one byte entries giving the

number of the first erroneous entry in area* record and set

entries resoectivelv.

b. Area Already Ooen (Code 28).

This response to an Open Message has a one byte

error count following the response code.

C. Truncation of Data (Code 5a).

This response to a Get Message has identical

format to the normal response to a Get Messaoe except for

the response code.

d. Messaaes with Error Code Only. The remaining

error responses consist of an error code only as follows.

(1) Data Base Key Invalid (Code 2).

142

a).

(Code 5).

(Code 9).

14).

(2) Data Items Invalid or Inconsistent (Code

(3) Violation of DUPLICATES NOT ALLOWED clause

(4) End of Set or Area (Code 7).

(5) Invalid Record or Set Index (Code 8)

(fe) Attempted Uodate on Retrieval Only Area

(7) Privacy Breach Attempted (Code 10).

(8) Media Space not Available (Code 11)

(R) Data Base Key not Available (Code 12).

(10) Insert into Mandatory Automatic Set (Code

(11) Remove out of Mandatory Set (Code 15).

(12) Insert into Set with Existing Membershio

(Code 16).

(13) Implicitly Referenced Area not Available

(Code 18).

(14) Affected Area not Ooen (Code 21).

143

(15) Illegal Area Index (Code 23).

(16) Set Occurence would Scan Temporary and

Permanent Areas (Code 24).

(17) No Set Occurence Satisfies Specified Argu-

ment s (Code 2S)

.

(18) Mo Record Satisfies Record Selection

Expression (Code 26).

(19) CHECK Clause Violated (Code 27).

(20) Usaae Mode Conflict with Other Processes

(Code 29).

(21) Unaualified DELETE on Owner of a Non-empty

Set (Code 30).

(22) No Initial Call Messaae (Code b\).

(23) Indecipherable or Unoroccessab 1 e Message

(Code 100).

144

APPENDIX F. DBM SKELETON PROGRAM.

The skeleton program is identical for every schema DBM.

Compiled schema DBM's differ only in the values associated

with certain DEFINE'd constants controlling array sizes* in

the initialization of certain arrays/ and in the data base

procedures which are included in the compiled version. when

the schema DBM is executed* it initializes its tables from

the schema description in the Schema Description File.

These tables drive the Drocessing of the data base. The

schema DBM concurrently reads the user's sub-schema descrip-

tion from the interprocess communication pioe. The' sub-

schema description is validated and index numbers are pro-

duced to allow translation of user requests and data into

svstem requests and data.

This ApDendix describes the data organization of the

skeleton. Documentation for each service routine and util-

ity routine is contained in the source program listings.

Listings and machine readable source of the DBM skeleton can

be ootained by contacting the Department of Computer Science

(Code 52Rs). For an explanation of the values associated

with DEFINE'd constants mentioned in this Appendix see

ApDendix H. For a description of a user's view of the ser-

vice routines* see ApDendix A.

1U5

A. General Tables.

Certain tables and buffers are available for use by

other t abl es .

1. The character buffer, "scharbuf" , is dimensioned by a

DEFINE'd constant. It is used to stored character strings

and other relatively short variable length data.

2. "Procname" is an array of strings containing the

names of the data base procedures. "Procpoint" is an array

of function pointers pointing to the functions defined in

"orocname" . These arrays are used to set uo the data base

procedure pointers used in other tables. Both "procname'1

and "procpoint" are dimensioned by a DEFINE'd constant.

3. The orivacy vector array (
M
p v e c "

) , dimensioned by a

DEFINE'd constant/ is used for data item and data agaregate

privacy information. Its elements are structures of type

"privect". The format of a "orivect" structure is

struct orivect (

char otype? // type of privacy lock
char *olock; // pointer t o privacy lock
>

The "ptype" code is "s" if the "plock" Dointer ooints to a

string, and "o"r if a data base procedure is indicated.

a. The record buffer array, "srecbuf"* contains all the

record buffers for areas, records and sets.

146

B. Organization for Area Management

•

The schema DBM contains an array of structues of tvpe

"areavect "
f dimensioned by a DEFINE'd constant* called

"avec". Each structure in the array is used to describe an

area in the data base. The format of an "areavect" struc-

ture is as foil ows

:

struct areavect {

int aflags; // see below
int ause? // usage count of last reference
char *adaf aoat h ; // oointer to path to data file
int adatades? // file descriptor for data file
char *akeypath; // oointer to oath to key file
int akevdes? // file descriptor for key file
char acrecloct31? // location of current record
char *acurrec? // pointer to current rec buffer
int aeurkey[21? // first kev # in current key buff
char akeybuf 1768] ; // buffer for db key maDpings
int (*provec) C) t 1 4] ; // pointers to db procedures
int aDflags; // oermission flaqs for functions
int awaste? // current waste count
>

"Aflags" is formed by a bit-wise OR of the following

oc t a 1 codes :

The area is temoorary

The files are physically open

Current key block modified

Current record modified

Key b 1 oc k is valid

CRECVAL 02000 Record buffer is valid

CRECSIZ 01000 Current record has increased size

KNOWN 0400 Area is known to the sub-schema

RETRV 01 Area open for retrieval

PRETRV 02 Area ooen for protected retrieval

ERETRV 03 Area open for exclusive retrieval

TEMP 0100000

PHSOP 040000

KErBMOD 020000

CRECMOD 010000

KEYBVAL 04000

147

UPDT 04

PUPOT 05

EUPOT 06

Area open for update

Area open for protected update

Area open for exclusive update

The "aDflags" are set when the user sub-schema is vali-

dated. These flags indicate the functions allowed the user

for the area as follows:

0100000 Retrieval

040000 Protected retrieval

020000 Exclusive retrieval

010000 Update

04000 Protected uodate

02000 Exclusive uodate

C. Logical Usaqe Block.

The logical usaqe block records the current usage mode

for each area in the data base currently being used by any

schema DBM. The loaical usaae block is organized into two

bvte integer entries* one for each area in the data base.

Each two byte entry is divided into four fields: bit 15 is

the exclusive use bit? bits 14 through ten form a count of

retrievers; bits nine through fiver a count of Drotected

retrievers; and bits four through zero form a count of

uDdaters. The loaical usaae block can record uo to 31 users

in each category. If a schema DBM has an area ooen for a

protected mode* the undater count is set to 31.

lafl

D. Organization for Record Management.

The schema 0B M contains an array of structures of type

"recvector". Each element of the array is the record vector

for a record type defined in the schema. The format of a

"recvector" structure is:

struct recvector {

int rflags; // see below
char rlocmod(31; // see below
char rarea[3]* // see below
int (*pprovec) () (1^1 ? // pointers to db procedures
char rnumsets? // number of set types for record
struct member *rsets? // oointer to member vectors
char rnumitem? // number of items in record
struct itemvect *ritems; // pointer to item vectors
int roflags; // permission flags for functions
char *rcurrec? // pointer to current record buffer
>

"Rflags" is currently used only to indicate whether or not

the sub-schema knows about the record type. The octal code

KNOWN (0400) is used for this function.

"Rlocmod" is derived from the LOCATION clause of the

schema RECORD entry (see Section 3.3.4. of Ref. 2) and is

interpreted as follows. Character zero gives the location

mode: zero for DIRECT with key passed as a parameter; one

for DIRECT with key stored in a record; two for CALC using

the standard key transformation with no duplicates? three

for CALC using the standard key transformation with dupli-

cates allowed? four for CALC using a data base procedure

with no duplicates? five for CALC using a data base pro-

cedure with duplicates allowed? six for VIA a set? and seven

for SYSTEM mode. The last two bytes in the "rlocmod" vary

in meaning depending on the mode. For mode zero* bytes one

149

and two are unused. For mode one* byte one contains the

record type and byte two* the item index of the data item

which holds the data base key. For modes two throuqh five*

bytes one and two hold a pointer to the randomizing key

description. A randomizing description is a null terminated

series of bytes* the first containina the item index of the

key link item and subsequent bytes containing the item

indices of the fields of the randomizing key. For modes

four and five* the randomizing key descriDtion is headed by

a pointer to the aoprooriate data base Drocedure. For mode

six* byte one contains the set index of the set to be con-

sulted and byte two is unused.

"Rarea" is derived from the WITHIN clause of the schema

RECORD entry and is formatted as follows. Byte zero is the

wITHIN option code and has the following interpretation:

zero* all records are within a sinale area* one* multiple

areas are possible (selected by a user input value); two*

the area will be fhe area of the owner of the set of a

specified type in whicn the record oart i c

i

pat es . The values

of bytes one and two of "rarea" vary deoendina on the WITHIN

option: for zero and two* byte one contains an area index

number and byte two is unused* for one* bytes one and two

contain a pointer to a WITHIN criteria. A WITHIN criteria

is a null terminated strina of bytes each containing one of

the allowed area numbers for this record.

150

1. Member Vectors.

Each record vector contains a pointer ("rsets") to

an array of set membership vectors if it oa^t i c i pat es in any

sets. A set membership vector is a structure of type

"member". The format of the "member" structure is:

struct member {

char mset num;
i nt mf 1 ags }

int morder;

char *mokey?
char **mskey J

// set index for this entry
// see be 1 ow
/* flag bits for key item

= ascending, 1 = descendina*/
// pointer to items for prime key
// oointer to SEARCH index pointers

char mselflag; // root selection flag
int *mselid; // pointer to root selection id
int (*mssel)H; // oointer to set selection soec
int (*morovec) () [6] ; // Dointer to db procedures
char molfags, // permission flags for functions
>

The "mflags" for a member entry is formed by a bit"

wise OR of the followina codes:

MMAND 0100000 Membershio is mandatory

MAUT0 040000 Membership is automatic

MLINK 020000 Member is linked to owner

MSSEL 010000 Set selection by db Drocedure

MPKEY 04000 Primary key is defined

MPRKEY 02000 RANGE ootion

MPFKEY 01000 Duplicates first

MPLKEY 0400 Duplicates last

MPDKEY 0200 Duplicates arbitrary

MPNKEY 0100 Nulls allowed

MKNOWM 040 Membership is known to sub-schema

Whenever anv of MPRKEY through MPNKEY are set, MPKEY must be

151

set. Additionally/ the low order three bits of "mflags"

contain the number of secondary indices defined to support

SEARCH keys for this membership.

The pointer "mskey" points to a strinq of pointers

dimensioned by the count stored in "mflags". Each pointer

points to a null terminated strinq. The first byte of this

strinq indicates whether duplicates are allowed? the second

byte is the item index for the owner record item linkinq the

search index? and the remaininq bytes are item indices/ each

representing a field in the SEARCH key for the search index.

Duplicates are allowed if the first byte of the string is a

one and not allowed if it is a two.

"Mpflaqs" is set when the sub-schema is validated.

These flags indicate the functions allowed the user for the

record/set pair as follows:

0200 Insert

0100 Remove

040 Find.

When "mflags" has MSSEL set/ "mssel" is a pointer to

a data base procedure for set selection and "mselflag" and

"mselid" are unused. If MSSEL is not set/ "mselflaa" is a

code describinq the root set selection in the set selection

chain for this member. The possible values of "mselflag"

are as follows: one for singular sets? 2 for current of set

type? three for throuah data base key? and four for through

CALC key. The data in "mselid" depends on the value of

152

"mse 1 f 1 ag" . For sinqular sets and current of set selection,

Mm sel id" contains the set index of the root set. For selec-

tion by data base key, "mselid" is not used. For selection

by CALC key, "mselid" is a oointer to a null terminated

string of character pairs which are the record and item

indices of the items to be used in forming the CALC key.

When set selection is not by a data base procedure

and the number of THRU clauses in the SELECTION clause for

this member entry is greater than one* then a selection

Chain exists and "mssel" is a pointer to a null terminated

string of byte oairs. Each pair in this string describes

the set selection for one of the successive set types in the

set selection chain. Each Dair consists of the index of the

next set in the chain and the index of the data item which

must be matched in the owner record.

2. . I tem Vec tors .

Each record contains a oointer ("ritems") to an

array of item descriot ion vectors. Each element of the

array is a structure of tyoe "itemvect" and describes one of

the fields appearing in the record. A field may be in a

record for CALC key Hnkaae* for set linkage or as a result

of a data sub-entry in the record's source descriot ion. The

format of an "itemvect" structure is:

153

st rue t i temvec t {

char * i name

;

char ilevel;
char i t ype»*
char *i des

;

Char * i chec k

;

int i s i z e ;

int inoccJ
i nt i sbvt e?

// oointer to name of item
// item 1 eve 1

// type of data represented
// data description pointer
// oointer to validity check
// size of one occurence of item
// number of occurences of item
// startinq byte within record

int (*

i

Drovec) () [6] ? // oointers to db procedures
struct or

i

vector *iovec?//. pointer to privacy locks
char ipflags; // item orivacy f 1 aas
>

The "ilevel" entry specifies the level number of the

item. A level number beween one and 100 indicates the item

was generated by an item sub-entry; level 101/ a forward

chain link for a set; 102, a backward link; 105, a link to

owner; 104, an owner's link to first member; 105, an owner's

link to last member; 106, an owner's link to index; and 107,

a CALC synonym link.

"Itype" is the data type code for the item: zero for

repeating arouos; one for a PICTURE'd character string; two

for a PICTURE'd numeric string; three for a binary integer;

five for a single precision floating Doint number; six for a

double precision floating point number; seven for a charac-

ter string; eight for a bit strina; and nine *or a data base

key

.

If the item is a set link, "ides" is the set index

for the set. If the item has a oicture specified, "ides" is

a pointer to a character string containina the Dicture (see

Ref. 2, Section 3.3.* for a description of PICTURE'd data).

In other cases, "ides" is unused.

15a

"Icheck" is a oointer to a validity checking

description for the item. The first character in the

description is a flag byte. If the high order bit of the

flag byte is on, the oicture is used as a check. If bit six

is on, a data base procedure is used as a check. If bit

five is on, check values are used. If a data base procedure

is specified, a pointer to the procedure is stored immedi-

ately after the flag character. If check values are speci-

fied they are stored at the end of the validity checking

description. Check values consist of a series of check

entries seperated by ASCII comma characters and terminated

by a null byte. Each check entry is either a literal of the

same format as the item or a pair of such literals separated

by an ASCII dash character.

The "ipflags" are set when the sub-schema is vali-

dated. The octal codes and function permissions are:

0200 Store is permitted

0100 Get is oermitted

040 Modify is permitted

E. Organization for Set Management.

The schema DBM program contains an array of set vectors.

Each set vector describes one of the set tvpes defined in

the schema and is a structure of tvoe " setvect". The format

of a "setvect" structure is:

155

struct setvect <

i nt sf 1 ags ;

char sowner?
char sf i tern;

char *smemb

»

// see be 1 ow
// owner record type
// index of 1st item for set
// oointer member description

int (*sprovec) () [4] ; // pointers to db functions
char spflags? // function permission flags
char scurown [3] J // db kev of current owner rec
char *scurrec? // oointer to current record buf
>

The value of "sflags" is formed by a bit-wise OR of the

following octal codes:

KNOWN 0400

SYSTEM 0200

DYNAMIC 0100

PRIOR 040

INDEXED 020

Set tyoe is known to sub-schema

Si ngul ar set

Dynamic set type

Members contain backward links

Primary set order is via an index

The lower four bits of "sflaas" indicate the order criteria

for the set: zero* the order is immaterial; one* new records

are inserted on the front of the set; two* new records are

inserted at the end of the set; three* new records are

inserted after the current record of the set; four, new

records are inserted prior to the current record; five

through 11, a sortinq order. Five indicates sorted by data

base key; six, sorted by record names and then by member

keys; seven, sorted by the member record kevs with relation-

ship between records of different tyDes immaterial; and

eight throuah 11 indicate sorted by member keys (this

implies that the format of each member record's keys is the

same). The last four codes soecify duolicate orocessing:

eight* duplicates are allowed; nine, duplicates are first;

ten, duplicates are last; and 11, duplicates are not

156

allowed. Items in the owner record dealing with the set are

assumed to be stored contigously.

"Smemb" points to a null terminated string of bytes

indicating the member record types for the set. The string

is made up of three byte entries. The first byte is the

member record index; the second is the membership vector

index of the member record for this set; and the third is

the item vector index of the first item in the record deal-

ing with this set. All items havina to do with the set are

assumed to be stored contiguously in the member records.

The "spflags" are set when the sub-schema is validated.

These flags indicate the function allowed the user for the

set

:

01 00 Insert is all owed

040 Remove is allowed

020 Fi nd is all owed

157

APPENDIX G. DIFFERENCES IN THE SCHEMA DDL.

This Appendix gives a detailed description of the

differences between the DDL in the UNIX DBMS and that

described in Ref. 2. The Appendix is organized in parallel

with Section 3 of Ref. 2 and section references below are

sections in Ref. 2 unless otherwise noted. The meta-

language used to describe entries is identical to that of

Ref. 2 with the exceptions that no distinction is made

between reguired or ootional words and that options enclosed

in brackets are separated by virgules ("/") in lieu of being

on separate 1 i nes

.

A. Words.

The rule in section 3.0.3 for forming words apolies to

the DDL. However/ when validating a sub-schema/ the DBMS

considers upper and lower case letters to be equivalent and

considers underscore ("<-") a synonym for hyphen ("-").

B. Schema Entrv (Section 3.1.0).

The "ON [ERROR DURING!" clause is not supported. In the

"PRIVACY LOCK" clause/ onlv the "(FOR COPY!" option is sup-

ported. Specifying alternate privacy locks for the same

function is not supoported.

158

C. Area Entry (Section 3.2.0).

Specifying alternate privacy locks for the same function

is not supported.

0. Record Sub-entry (Section 3.3.0).

In the "PRIVACY LOCK" clause, specifying alternate

privacy locks is not supported. Specifying a data base pro-

cedure for area selection in the "LOCATION MODE" clause is

not supported,

E. Data Sub-entry (Section 3.3.0).

In the "TYPE" clause, the only arithmetic types sup-

ported are "BINARY FIXED", "BINARY FLOAT a" and "BINARY

FLOAT 8". The word "BINARY" is assumed if missing, and "4"

is assumed if neither " 4 " nor "8" is specified. If the

"TYPE" clause uses the "BIT integer-3" option, "mteger-3"

must be a multiple of eight. Since all records must be

fixed length, the "OCCURS dat a-base- i dent i f i e r- I TIMES"

option is not supported. "RESULT" and "SOURCE" items, both

virtual and actual, are not supported. The "FOR

{ENCODING/DECODING}" clause is not supported. Specifying

alternate privacy locks on the same function is not sup-

ported.

159

F. Set Sub-entry (Section "5.a.0).

The "TEMPORARY" ootion of the "ORDER" clause is not sup-

ported. The "[INDEXED [NAME IS i ndex-name-1 1
]

" clause is

not supported. Specifyinq alternate privacy locks for the

same function is not supported.

G. Member Sub-entry (Section 3.4.0).

In the "RANGE KEY" clause* no more than sixteen data-

base-identifiers may be specified. The "DUPLICATES NOT

ALLOWED FOR" clause is not supported. No more than seven

"SEARCH KEY" clauses can be specified. In the "SEARCH KEY"

clause* the "USING" phrase is not meaningful since all

search keys are implemented usinq indices. In Format 1 of

the "SET SELECTION" clause, the "DATA-BASE-KEY EQUAL TO

data-base-ident i

f

ier-1" and "CALC-KEY EQUAL TO data-base-

data-name-2 [dat a-base-dat a-name-3] ..." options are not

supported. In the same clause* the only form of the "THEN

THRU" phrase supoorted is without the "EQUAL TO" option.

Soec i f i cat i on of alternate orivacv keys on the same function

is not support ed

.

160

APPENDIX H. CONSTANT FILE CONTENTS.

As mentioned in Section III.L.K a constant file must

be created by the DBMS compiler to allow the skeleton pro-

gram to be transformed into the schema DBM for a particular

data base. This file dimensions the tables and arrays of

the schema DBM and initializes arrays for the processinq of

data base procedures. The specific tables and arrays are

described below.

A. The Character Buffer.

The character buffer, "scharbuf", is utilized for

storage of character strings and several other types of

variable length data. This charact-er buffer must be large

enough to contain the schema name; the Dath names to all

schema files (including temoorary ones)? the item names of

every item in every record; the primary key, search key and

selection data for every membership vector; the data and

validity check descriptions of every item vector in every

record; and the member record strinq for every set vector.

161

B. Data Base Procedure Table.

This table is composed of two arrays. The first array*

"orocname" * is an array of character strings and must be

initialized with the name of every data base procedure men-

tioned in the schema. The second array? "orocoo i nt

"

* is an

array of function pointers which must be initialized to

point to the data base procedures listed in "procname". The

references to data base procedures in "orocooint" cause the

C compiler to load these functions into the schema DBM.

C. Privacy Vector Array.

This arrav of structures of type "privector" must be

dimensioned large enouah to hold the maximum number of item

privacy locks defined in any one record entry. The format

of a "privector" structure is described in Appendix F, Sec-

tion A . 3

.

D. Record Buffer Array.

This is a character array which is used to provide

record buffers for the various areas* records and sets. Its

dimension must be the number of areas and sets times the

maximum record size plus the size of each individual record.

162

E. Area Vector Array.

This array of structures of type "areavect" must be

dimensioned larqe enough to provide one area vector for each

defined area. An "areavect" structure is described in

Appendix F, Section 8.

F. Record Vector Array.

This array of structures of tyoe "recvector" must be

dimensioned large enough to orovide one record vector for

each defined record type. A descriotion of the "recvector"

structure is contained in Appendix F, Section D.

G. Member Vector Array.

This array of structures of tyoe "member" must be dimen-

sioned large enough to provide one member vector for every

record membership defined in everv set. A descriotion of

the "member" structure is contained in Appendix F, Section

D.l.

H. Item Vector Array.

This array of structures of tvoe "itemvect" must be

dimensioned larae enouah to provide an item vector for every

item in every record tyoe. A description of the "itemvect"

structure is contained in Aooendix F, Section D.2.

163

I. Set Vector Array.

This arrav of structures of type "setvect" must be

dimensioned large enough to provide a set vector for every

set defined in the schema. A description of the "setvect"

structure is contain in Appendix F, Section E.

16a

LIST OF REFERENCES

1. Ritchie, D. M., "The UNIX Time Sharing System", Communi-
cation of the ACM, Vol. 17, No. 7, p. 365-375, July,
l<?7a.

2. Conference on Data Svstems Languaaes, CODASYL Data
Description Language JOD , U. S. Department of Commerce,
June, 1973.

3. Conference on Data Systems Lanquaaes, CODASYL Data Base
Task Group April 71 Rpoorf , ACM, 1971."

a. McDonald, N., Stonebraker, M. and Wong E., "Preliminary
Design of INGRESS: Part I", Electronics Research Lab.,
Univ. of California, Berkeley, ERL-M435, April 10, 197a.

5, Held, G. and Stonebraker M., "Storage Structures and
Access Methods in the Relational Data Base Management
System, INGRESS", Proc. ACM Pacific Conf ., San Fran-
ci sco, Apri 1 1 7-1P, 1975.

6. Earnest, C. P., "A Comparison of the Network and Rela-
tional Models", Comouter Sciences Corporation, El

Segundo, Calif., April, 197a.

7. Date, C. J., An In t rpduc t i on to
Addi son-rtes^ey , 1975.

Data Base Systems ,

8. Huits, M., "Requirements for Languaaes in Data Base Sys-
tems", o. 85-109 in Data Base Description , Douque, B. C.
M. and Nijssen, G. M. (eds.), North Holland/American
Elsevier, 1975.

9. Codd, E. F. and Oate, C. J., "Interactive Supoort for
Non-Programmers: The Relational and Network ADproaches",
Proc. 197a flCM-SIGMOD Debate , "Data Models: Data Struc-
ture Set versus Relational", Rustin, R. (ed.), Ann
Arbor, Mi C h., May 1-3, 197a.

10. Ritchie, D. M., C Reference Manual , Bell Telephone
Laboratories, 1975.

11. Kaimann, R. A., Structured Information Files , Vi i 1 e y and
Sons, 1973.

12. Bachman, C. rt., "The Proarammer as Navigator", Cpmrr,

ACM # Vol. 16, No. 11, o. 653-658, Nov. 197*3'.

165

13. Martin, J. T., Computer Pat- a Basp 0roani7 atinn.
Prentice-Hall , 1975.

14. Codd, E. F., "A Relational Model of Data for Large
Shared Oata Banks", Comm. ACM , Vol. 13, No. 6, d. 377-
387, June, 1970.

15. Codd, E. F., "Relational Completeness of Data Base Sub-
languages", Courant Computer Science Symposia b , "Data
Base Systems", New York, M ay 24-25, 1971, Prentice-Hall,

. 1971 .

16. Date, C. J., "Relational Data Base Systems: A Tutorial",
Proc. Fourth International Symposium on Computer and
Informational Sciences , Miami Beach, Florida, Dec. 14-
16, 197?, Plenum Press, 1972.

17. Conference on Data Systems Languaaes, CODASYL Data Base
Task Group October 69 Reoort , ACM, 1971.

18. Kernighan, B. W., "Programming in C - A Tutorial", Bell
Laboratories, 1

Q 74.

19. McEwen, H. E. (ed.), Management of Data Elements in

Information Processing , National Technical Information
Service, 1974.

20. David W. Taylor Naval Ship Research and Development
Center Report 4751, "User Interface to Database Manaoe-
ment Systems", by D. K. Jefferson.

21. Richtie, D. M., On the Security of UNIX, Bell Labora-
tories, 1975.

22 • Haberman, A. M., Introduction to Operating Svstem
Design , p. 76-79, Science Research Associates, 1976.

166

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center
Cameron Station
Alexanderia* Virginia 22314

No . Copi es

2

Library, Code 0142
Naval Postgraduate School
Monterey/ California 93940

DeDartment Chairman, Code 52
Department of Comouter Science
Naval Postgraduate School
Monterey, California 93940

Asst. Professor Gerald L. Barksdale, Jr
Code 528a
Deoartment of Comouter Science
Naval Postgraduate School
Monterey, California 93940

LT Lyle V. Rich, SC, USN, Code 52Rs
Department of Computer Science
Naval Postgraduate School
Monterey, California ^3940

Caot . John Edward Howard, USMC
238 Erskine Place
San Antonio, Texas 78201

167

thesH821565

An implementation of a CODASYL based dat

3 2768 002 06736 5
DUDLEY KNOX LIBRARY

