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BACKGROUND

During the last decade many articles and reports have been published on the prop-
erties of sea clutter echoes obtained with a high-resolution radar and the detection of
targets in non-Rayleigh sea clutter. The purpose of this report is to present a unified
summary on the status of this work.
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While much work has been accomplished, there remain several outstanding problems:
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®  What should be the polarization of a high-resolution radar?
®  What is the physical cause of the “spikes”; and more importantly, are there any
techniques for suppressing the “spikes”?
® A better understanding is needed of the non-Rayleigh nature of sea clutter
obtained at shallow grazing angles with large pulsewidths. Is this phenomenon
simply due to shadowing causing an apparent large water wavelength?
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NON-RAYLEIGH SEA CLUTTER: PROPERTIES AND DETECTION OF TARGETS

I.  INTRODUCTION

In the last several years, many investigators have studied the scattering mechanisms
that produce radar sea clutter. With results for scattering from slightly rough surfaces
and composite surfaces obtained by Rice [1], Wright [2,3], Valenzuela [4-6], Guinard
and Daley [7], and others, the properties of average radar backscatter can be modeled
fairly well.

The original work on the probability density p(x) of sea clutter is that of Goldstein
[8]. Goldstein states that if many scatterers are uniformly distributed in an illuminated
patch (the area defined by the pulsewidth and the radar beamwidth, c¢7/2 by R0), the
relative phases of the individual echoes will be random. He adds that the central limit
theorem yields the Rayleigh density for envelope-detected sea clutter.

He notes, however, that if the pulsewidth is small, the assumption of uniformly dis-
tributed scatterers does not hold. As an example, he shows a photograph of an A-scope
(Fig. 1) and notes the “spiky” appearaance. Furthermore, he infers that the radar is in
fact resolving the individual waves.

This work was published in 1951. During the next 15 years, very little research was
done on the density of sea clutter, and that which was done was either classified or ap-

I s ¥

peared in reports of limited circulation. In 1969, Nathanson [9] reported some results \:::{':
obtained by the Naval Research Laboratory (NRL) and the Applied Physics Laboratory of \\ ‘-;:::3':\,:,;~::

the Johns Hopkins University (APL). Specifically, he gave standard-deviation-to-mean
ratios for various pulsewidths and showed a deviation from the Rayleigh density for small
yulsewidths. Furthermore, he stated that for short pulses, the density function for hori-
zontal polarization had a longer tail than the density function for vertical polarization.

In 1970, Trunk and George [10] considered the log-normal and contaminated-normal
descriptions of sea clutter and calculated detection probabilities for targets in these den-
sities. With that, the detailed description of the clutter density will begin. In Sec. II,
measurements of the average backscatter gg are given, and the results of slightly rough
scattering and the composite surface-scattering model are introduced so that they may be
used later in this report. In Sec. III, a spatially varying conditional density p(xlog) is
introduced. This conditional density is a natural consequence of the composite surtace-
scatterving model and is used to explain the non-Rayleigh nature of sea clutter. The varia-
tion of the clutter densities, p(x) and p(x|og), with various radar parameters such as fre-
quency, pulsewidth, and polarization are found using analysis of variance techniques. In
Sec. 1V, a way of constructing a realistic computer model of the sea surface is given. The
surface is used to predict non-Rayleigh clutter densities for various conditions and to indi-
cate some finer points associated with the detection of small targets on the surface of the
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' ocean. In Sec. V, various detectors such as integrators, rank detectors, and the Neyman- e : )
Pear 1 detector are compared. The major results of the report are summarized in Sec. VI. SR R :
II. AVERAGE RADAR CROSS SECTION li:f:,:{*:?—"
A
Important developments in understanding the nature of sea clutter have been made ;{:}}s:{-:;-:-_..;
by studying the interaction of electromagnetic waves with the surface of the ocean. These .:_'*A,.,}?__
studies {2-61 -re based on Rice’s work [1] on slightly rough surfaces (surfaces whose :;;{;,__:;.,5;5,;;5,;

height varia .ns are small in relationship to the incident wavelength and whose slopes are e

<<1). Us...g perturbation techniques, they found that the reflected energy was directly s

proportional to the energy densit spectrum of the surface height variation evaluated at
the Bragg scatt.ring condition. Eecifically, the radar cross section for direct polarization
is
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where k = 27/A is the wavenumber of the incident wave, 0 is the grazing angle, W(K) is
the energy tensity spectrum, and K = 2k cosf is the Bragg resonant condition. (Valen-

zuela [4] f..nd the cross-polarization cross section by considering the second-order per-
turbation terms.) The o terms are

“'!4 "l

| €-1)
l[sin() + (€ - cos20)1/2]?

(3

XHH

and

2

(€ - 1)[(e —1)cos20 + €]
[esing + (¢ — cos26)1/2]2

(4)

Qyy =

where € is the complex dielectric constant of the oceann. Now, if the wave spectrum S(w)
is available, W(K) can be calculated since

k)
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KW(K)dK = S(w)dw (5)
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where w? = gk, However, a more useful approach is to use a result of Phillips {11] who
investigated the growth of water waves and concluded that there exists an upper bound
for the height of gravity and capillary waves. Using a dimensional argument, he concluded
that in the range where waveheight is limited, the energy spectrum was of the form

(L e

W(K) = BK™4. (6)

There is uncertainty about the value of B; however, Phillips gives B =~ 6 X 1073 for gravity
waves and B = 1.5 X 10~2 for capillary waves. Substituting Eq. (6) into Eqgs. (1) and (2),
one obtains the following limiting values for the cross sections:
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oyy = 157X 1073 ayy tantd (7)

and

oyy = 157X 1073 ayy tantd (8)

where the o’s are defined by Eqs. (3) and (4).

Guinard and Daley [7] have compared sea clutter data with the theoretical model.
Their data were taken with the four-frequency radar (4FR) system, which is an airborne,
coberent, pulsed radar capable of transmitting a sequence of four frequencies, X band
(8910 MHz), C band (4455 MHz), L band (1228 MHz), and P band (428 MHz), alterna-
tively on horizontal and vertical polarizations. The basic radar parameters of the 4FR
system are given in Table 1. A basic description of the 4FR system can be found in
Ref. 7 and a detailed description in Guinard [12].
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The data used in Guinard and Daley’s study {7] came from two major experiments.
In July 1965, a measurement program was conducted off Puerto Rico. Radar echoes
were recorded for all frequencies, both polarizations, and a variety of grazing angles and
sea states. Sea conditions were measured by a team from the Applied Physics Labora-
tory, Johns Hopkins University. During the measurements the sea state varied between
0 and 2 and the maximum wind was 20 knots with 9-ft seas. The second measurement
program was conducted in February 1969 in the North Atlantic to study rougher sea
conditions. Ground truth was provided by ocean stations India (59°N, 19°W) and Juliet
(52.5°N, 20°W). Sea states varied between 0 and 8, a maximum wind of 45 knots was
recorded, and a significant wave height of 26 ft was observed. The L-band data are shown
in Figs. 2 and 3 for vertical and horizontal polarizations, respectively. Each data point
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Fig. 2— Variation of RCS with grazing angle; W(K)=6 X 1073 K~4,
€=173-85i {7)
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Fig. 3— Variation of RCS with grazing angle- W(K)=6 x 1073 K4,
€= 73-85i [7]

represents the median value of cross section obtained by processing approximately 30 s of
data. The pulsewidth selected for all points was 0.25 us. On July 15, 19, and 21, the
seas were 3 to 5 ft high, on July 20 they were 2 to 3 £t high, and on July 27 and 28
they were less than 1 ft high. In Fig. 2 (vertical polarization), one can see that the theo-
retical bound of Eq. (8) provides a realistic upper bound for sea clutter and exhibits the
correct variation with grazing angle.

However, the situation is more complex when the data are compared to the theoret-
ical limit in Fig. 3 (horizontal polarization). W aile there is good agreement for large
grazing angles, there is a wide decrepancy between model and data for small grazing
angles. To understand the source of this discrepancy, recall that in the ocean the smali
waves (i.e., Bragg scatterers) are sitting on th> much larger gravity waves and swells. In
the composite-surface scattering model (wl...u. defines the role of the large and small
waves), Wright [3] noted that the only significant effect of the large waves is that they
change the angle between the reflecting surface (ocean) and incident radiation. This an-
gular change can be resolved into two components: one a change in the apparent grazing
angle; the other, a rotation normal to the plane of incident radiation. Obviously, the first
component increases cross sections, and Valenzuela [5] has shown that considerable varia-
tion in cross section can be caused by the latter component. Guinard and Daley [7] con-
clude that to bound the cross section observed with horizontal polarization, it is necessary
to use the vertical bound of Eq. (8) for vertical and horizontal polarization.

The purpose of this section was to introduce the slightly rough-surface and composite-
surface scattering models. Those with a further interest in the subject should consult
Guinard and Daley [7}, which provides an overview of the theory and references all the
important work.
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III. DENSITY FUNCTION OF SEA CLUTTER

In this section, the results of fitting the clutter distribution with the log-normal and
contaminated-normal distributions are reviewed. Then, from the composite-surface scat- B )
tering model, a conditional density p(xlog) is introduced, is shown to be Ricean, and is e
used to explain the non-Rayleigh density p(x) of sea clutter. Finally, the variation of the xR
clutter densities p(x) and p(xlog) with parameters such as radar frequency, pulsewidth, Do
polarization, and wind direction is found by analysis of variance techniques.

A. Fitting of Clutter Data

Since 1951 [8], it has been known that the density function of sea clutter was not
Rayleigh if the radar pulsewidth was small. While some research was done by laboratories
and industry on the non-Rayleigh density (for example, Macdonald [13] and Ballard [14]),
nothing appeared in journals until Trunk and George [10]. They considered fitting the
log-normal and contaminated-normal distributions to the distribution of envelope-detected
sea clutter. (Through the remainder of this report, unless otherwise stated, “distribution
of sea clutter” will mean the distribution of the return of envelope-detected sea clutter.)
By log-normal clutter, it is meant that the envelope-detected sample x from the sea re-
turn has the density function

2 ~2[%n (x/xm)]
p(x) = ———— e ) 9
(2ma2x2)1/2 02 ©)
where x,, is the median value of x and o is the standard deviation of [n x] 2, By
“contaminated-normal clutter”, it is meant that the quadrature components y have a
contaminated-normal density
-9 (—y2> Y ( -y2 )
(y) = ——— ex + ex s 10
PB) (2mo2)1/2 P\ 202 (21K202) P\2x202 (10)

i, TR
0

3

where v is the contamination fraction and K is the ratio of the standard deviations of the
two Gaussian densities. In a straightforward calculation, it can be shown that the density
of the envelope-detected sample is

~x2 v2x -x2
0= (1-m? L ex <_x__)+ ox <___>
px) = =77 S exp (0 5% 202 *Plokze

sy
V¥ .

2 e

- —x2(K2 2(K2 -
L 2rd-mx exp(x K2+ 1)) [«2(K 1)>' an

!
Ko?2 ak202 ) O\ agee?

Trunk and George’s data source was a frequency-ugile, high-resolution radar (FHR),
which is an airborne, noncoherent, pulsed X-band radar capable of frequency diversity on
a pulse-to-pulse basis. The radar operates with either a long (100-ns) or short (20-ns) pulse
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with vertical or horizontal polarizition. The beamwidth is 0.5° and the PRF is 2,560 pps.
Standard operating procedure calls for the aircraft to fly at 180 knots sampling the data at

a range of 2 n.mi. to obtain a grazing angle of 4.7°. E‘-;. . ~.:!_~. R
S ;":'-\~‘:.-:':‘:f
Some examples of a non-Rayleigh sea clutter distribution taken by NRL in 1967 [15] i:::::::::::-:::-_‘_::{;
are plotted in Fig. 4 on probability paper in decibels, with the median of the density arbi- .;-:.::*_Q:.}m: g
trarily set to 0 dB. Each curve represents a 2-min sampling interval. As one can see, the N ~'-:-:'
sea clutter distribution is non-Rayieigh; the higher the sea state, the more non-Rayleigh it :
becomes.

The clutter models were fitted to the data by a minimax method. First the param-
eters, x,; of the log-normal and ¢ of the contaminated-normal densities, were used to
equate the medians of the theoretical distributions with the median of the actual data.
Then the remaining parameters, o of the log-no...aal and ¥ and K of the contaminated-
normal densities, were used to minimize the maximum difference in decibels between the
theorized curves and the actual data. The vest fits for the data in Fig. 4 are shown in
Figs. 5 and 6. Because of the recording methods used, data recorded before 1969 could
not be thoroughly processed.

it Cae ankc g

| Y T ST S )

On March 11, 1969, the FHR radar was flown 200 mi (320 km) off the Virginia
capes. In each run, the aircraft was flown in a given direction with respect to the wind,
i.e., upwind (U), downwind (D), or crosswind (C), for about 20 min. After 2 min either
the polarization or pulsewidth was varied so that data would reflect a variety of conditions.
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Fig. 4—Expcrimental sea clutter cross-section data taken by airborne X-band radar; 0.02-Us pulse, vertical
polarization, 4.7° grazing angle. Rayleigh distribution included for comparison [10].
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E Data on sea conditions were obtained from the Fleet Weather Facility, Naval Reconnais- 15 PN
sance and Technical Support Center, Suitland, Md., which reported 25-to-31-knot winds, RN

8-ft (2.5-m) waves, and a 12-ft (3.7-m) swell. E

The best fitting log-normal and contaminated-normal distributions for some short-
pulse (20-ns) data 2re given in Table 2, where “best” is defined by the minimax solution. X
Columns 1 and 2 are identifiers which distinguish the clutter data runs. Column 3 is the R
parameter of the log-normal which rields the best fit, and column 4 gives the maximum e
difference (in decibels) between the data and the best-fitting distribution. Coiumns 5-7
contain similar information about the contaminated-normal distribution. Both distribu-
tions provide essentially the same accuracy of approximation. Also, the previously re-

3 ported cbservation [9] that the density function for horizontal polarization has a longer
: tail than that for vertical polarization seems to be verified.
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Since the publication of Trunk and George [10] in 1970, the log-normal density has
received considerable attention, and the contaminated-normal density has been neglected.
Before we leave this subject, the following cautions are in order:

PO

® Sea clutter is not log-normally distributed. (It is shown in the next section to
have a spatially varying Ricean density.)

® While the log-normal model of sea clutter can yield useful results, in only one case

does it yield the correct probability of detection in clutter. This problem is discussed
fully in Sec. V.

Table 2—Parameterization of Clutter Data

Log Normal Contaminated-Normal
Guter | Dot Vasimun i
o Difference v K Difference
(dB) (dB)

1145 DH 6.0 1.6 0.025 5.1 1.4
1147 13)Y 5.2 1.6 0.486 2.7 0.8
1155 DH 6.1 1.3 0.034 5.6 1.5
1151 Dv 4.6 1.6 0.426 2.8 0.7
1153 DH 6.0 1.0 0.051 4.9 1.1

1213 cv 4.6 0.4 0.431 2.8 1.4

1215 CH 6.0 1.0 0.051 4.5 1.0
1218 CH 6.1 0.8 0.055 4.5 1.0
1220 Ccv 4.8 0.8 0.456 3.2 1.7

1248 uv 5.6 1.8 0.065 3.0 1.4
1250 UH 6.3 0.8 0.065 4.6 1.4
1252 uv 5.2 1.2 0.358 2.8 0.8
1254 UH 6.3 0.8 0.104 4.9 1.4
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B. Density of Sea Clutter

If the density of sea clutter is not log-normally distributed, what is its density? Some
insight can be gained by examining the time records of FHR sea clutter data shown in
Figs. 7 and 8. Since the plane is traveling at 180 knots, each record corresponds to the
the return from an approximate 2,000-ft swath of ocean. While a structure is apparent in
both sets of data, it is much more obvious in Fig. 8. The basic explanation, provided by
Trunk [16], of this variation with time is that the width (¢7/2) of the radar’s illuminated
patch is less than the water wavelength of the sea (over 60 m for sea state 5). Conse-
quently, the density of the envelope return x of clutter is p[xlog(ge)]. That is, the prob-
ability of any value x is conditioned on the average backscatter oo, which is a function
of the local grazing angle gp (Eqgs. (1) and (2)) at the range cell of interest. If g is the
grazing angle for a flat sea and s is the slope of the large wave structure, go = g + s. Then,
if clutter is observed over a time period corresponding to several water wavelengths, its
density function can be written as

; b
' "L .

p(x) = j plxlog(g + )] plog(s)] day(s), (1.2)
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Fig. 7—Sea clutter: short-pulse data taken upwind with horizontal polarization
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where the integral is a surface integral over the illuminated patch:. Thus, since the average
slope s is a function of space, the non-Rayleigh density p(x) is seen to be due to a spa-
tially varying density p(xlog). (In reality s is a function of time and space. However,
since the data are taken from a plane, the major change is spatial and for our purposes
the sea may be considered frozen.)

Before verifying these facts, it is worth noting that the formulation yields a Rayleigh
density when the illuminated patch (specifically the length along the wave direction) is
large with respect to the water wavelength. This is because if the patch encompasses
many waves, the density of the average slope s is a delta function; i.e., p(s) = 6(s). Con-
sequently, p(x) = p(xlog); an? p(xloy) is a Rayleigh density because of the central
limit theorem.

1. Correlation Properties

For large illuminated patches, independent samples of sea clutter can be obtained
either by using pulses separated by about 10 ms (the decorrelation time usually stated
for X-band sea clutter return) or by using frequency diversity. However, since the decor-
relation is due to phase changes between capillary waves, for a high-resolution radar
both methods should yield independent samples from the conditional density p(xlog), not
from the density p(x).

To verify these conclusions, Trunk [16] calculated the correlation functions using
12.8-s intervals (16,384 data points) of data taken with the FHR system. As can be seen
from Figs. 7 and 8, this interval is long enough to represent a sample function from p(x).
Decorrelation times are given in Table 3. (Decorrelation time being defined as the time

Table 3—Correlation Values for Data Taken by FHR*

Cross-
Correlation
Value

Decorrelation

Time Identifier Time (ms)

1344 VUL 13 0.40
1346 HUL 75 0.57
1411 VDL 19 0.42
1413 HDL 132 0.68
1026 HDS 131 0.83
1028 VDS 168 0.61
1049 VCS 31 0.46
1051 HCS 112 0.64
1125 VCL 12 0.27
1127 HCL 131 0.70
1154 HUS 106 0.74
1156 VvUsSs 193 0.62

*From reference {16].
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it takes the correlation function to fall to 1/e.) The decorrelation times vary from 12 to
193 ms; the average is 94 ms, which is much longer than the quoted time of 10 ms.

—

Ti :se particular data were analyzed because the pulse-to-pulse frequency diversity
used . each 12.8-s interval equaled the reciprocal of the pulsewidth, and this amount of
freq' ency difference is considered sufficient to decorrelate clutter returns [18}. The cross-
correlations for the two frequencies were calculated and are also given in Table 3. It is
seen that frequency diversity does not decorrelate sea clutter returns from a high-resoluticn
radar. Next, the above calculations were repeated by ‘ividing each 12.8-s interval into 64
0.2-s intervals (short enough to represent a sample function from p(xloo)) and averaging
the results of the 64 cases. For each of the 12 data records, the decorrelation time was
less than 20 ms, and the cross-correlation was less than 0.1. This corresponds favorably to
Pidgeon [19], who reports a maximum correlation of 0.2, Thus, time separation of the
samples and frequency diversity yield independent samples from p(xloo), not from p(x).

2. Spatially Varying Ricean Density

What is the density function for the conditional density p(xloy)? First, although the
illuminated patch is rather small (10 ft by 120 ft (3 m by 36.6 m) for FHR data), there
are many capillary waves in it. Consequently, from the Central Limit Theorem one would
expect p(x|og) to be Rayleigh distributed. However, Trunk [16] has shown (the analysis
is repeated in Appendix A) that is not. Rather, because of the presence of doriliunt
scatterers, which can be related to scattering from breaking and very peak-crested waves
[20,21], p(xloy) is a Ricean density.

This is difficult to show because 0¢ changes so rapidly (in airborne systems) that
there are too few samples to obtain a good estimate of p(x|og) before oy changes. Fortu-
nately, this difficulty can be overcome by analyzing the frequency-diverse FHR data in a
special way. For computation ease, a chi density will be used in place of the Ricean
density. This approximation is very accurate [22] when the ratio of the dominant scat-
terer to background noise is in the neighborhood of 0 dB.

Let x; and y; be the independent samples from the two frequencies. The conditional
densities of the samples are then

2xf "1 exp (-x?/202)
I'(k/2)(202)k/ 2

plx;lo;) = (15)

2yk 1 exp (-y?/20?%)
D(k/2)(202)k/2

pr(yilo;) (16)

where k is the number of degrees of freedom (k = 2 is the Rayleigh density) and 0; is a
random variable. The same 0; = ¢ can be used for both frequencies because the time

separation, 1/2560 s, is very small and frequency diversity changes 0y only slightly.
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As mentioned previously, the difficulty in showing that x, and y, are chi (or equiva-
lently Ricean) random variables is that o, changes too rapidly for good estimate of p(x,la,)
to be made. Consequently, a ratio z; = x;/y;, whose density is independent of ¢;, is
formed. The density of z = 2, = x;/y; is found by forming the joint density of x; and
Yi» substituting z = x;/y; and y:- = y;, and integrating over y:-. This yields*

T 22k 1
p(z) = P(k/2)T(k[2) (1 +z2)k.

(17)

Using the FHR data, the sample distribution of independent 2; (constructed from 1,024
samples 12 ms apart, i.e., every 16th z;} was compared to Eq. (17). The value of k was ad-
justed to minimize D, which is the maximum difference in probability between the sam-
ple and theorized distributions. The fitting results are shown in Table 4, where Pp, is the
probability that the maximum difference will be less than D when the theorized distribu-
tion, given here by Eq. (17), is the true distribution. While the Kolmogorov-Smirnov one-
sample test {23], which compares Pp to a threshold «, cannot be run, since k was found
by minimizing D (a procedure which biases the test in favor of acceptance), the small

Table 4—Fit of the Chi Density to the FHR Data*

Identifier Opt‘:‘“m D Pp
VUL 2.7 0.012 0.003
HUL 2.4 0.029 0.663
VDL 2.4 0.016 0.068
HDL 2.6 0.020 0.237
HDS? 4.0 0.035 0.844
VDS 3.4 0.021 0.252
vCS 3.1 0.029 0.681
HCS 3.8 0.019 0.184
VCL 2.4 0.021 0.286
HCL 3.2 0.017 0.078
HUS 3.9 0.014 0.020
VUS 3.2 0.017 0.088

*From reference [16].

TThe optimum k for this case is greater than 4.0. The search
program employed search in the interval 2 <k £ 4.0in 0.1
steps.
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*The reason that the Ricean density was not directly analyzed is that the density for z is much more com-
plicated than Eq. (17). Specifically, if x and y are Ricean,

2z ~-B2j2 2 2 2
p(z) = _-ﬂ)(___/__) (1 +£)IO( B Z >+ B Z "l( B2Z ) ,
1+ 22)2 4 zZ2 + 1] 22 +1 Z2 + 1

where B is the ratio of the dominant scatterer to 0.

W
Ui
il

"

]

wn oo

3
e
’

o

ey

15

o
.:‘T'. ::;w‘;:’. -..;-"‘ -.}\:.\\-:~ A ;‘A‘.-"ﬁ;\"\‘,“.z" - R f! .-;.’. A .-A_—;’—‘;‘—! RNF Y -,\.:" - ‘.'. .q.} -,-bnr}-j:-f— :.‘“""
D I A S N R L L N R oAt At aNa T At el nEWS o ety -\"rg e N,
W et gt TR Ny o Y [ TS, S, Sl _ ol A A T At it m S A AR A A A K

= i - AL e e e st




. W W O Sl Tl Wl i 0 Y BT B el el T e R YL N R T DL NP ) e
T LN AN RN R e e TR LN N N e

Y

»

GERARD V. TRUNK

values of D and Pp indicate that p(x|og) is at least nearly a chi, or Ricean, density. For
the k’s given in Table 4, the ratio of the dominant scatterer to background noise would :
vary between -3 and +4 dB. F

PR

"

(x

3. Dominant Scatterers ’

In 1974, Lewis and Olin [20] measured the frequency dependence of sea return with
a system that transmitted 10-ns simultaneous pulses at 8.6 and 9.2 GHz from the same
antenna with horizontal polarization. The measurements were taken at the Chesapeake
Bay Division of NRL and at a very short range, which yielded a range cell of about 5 ft
by 5 ft (1.5 m by 1.5 m). A typical data record is shown in Fig. 9; the waves were about
4 ft (1.2 m) from peak to trough, with whitecaps forming. Sea return was found to have
a large dynamic range, with the largest returns coming from breaking waves. The relation-
ship between sea spikes and breaking waves was recognized and confirmed by a Loresight
motion picture camera mounted on the radar antenna. The camera was synchronized to
the recorded data, viewing a region of the sea containing the range gate responsible for
the echoes. It should be noted that white water does not produce sea spikes. Waves must
be breaking, a fact which suggests that spray is important.
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Fig. 9—Typical sea spike
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The fine structure in the sea spike was studied and it was noted that the return
from the two frequencies appeared to be uncorrelated. Furthermore, it was noted that
the decorrelation time within the sea spike was about 10 ms. This time was arrived at
by noting times between maximum and minimum values. Lewis noted that these facts
could be explained by a fresnel zoning effect produced by the change in size of the
whitecap within the range cell. As the whitecap changed its length by a fresnel zone
(A/4), the signal amplitude would change from a maximum to a minimum or vice versa.
The peak return was approximated by assuming that a zone had an effecti. e height of
A/2 and a width w. Then the scattering cross section of such a zone would e

= Tw?. (18)

The cross section predicted by Eq. (18) was compared to the data and reasonable agree-
ment was noted. Research is still heing done in this area,

M. Long [21] has also noted the relationship between sea spikes and large wave
structure. He reached the following conclusions.

1. For 50% of the sea spikes, a wave breaks (whitecap forms) simultaneously or a
fraction of a second thereafter.

2. About 40% of the time, a spike was called when a wave structure had a very
peaked crest, as if a whitecap were about to form but did not.

3. No breaking waves were observed in the absence of a sea spike.

Long explains the sea spikes as reflections from facets {(sinooth areas) of the large wave
structure.

While the mechanism producing the sea spikes is still unknown, there is no uncer-
tainty in the fact that sea spikes are associated with breaking waves or waves that almost
break.

C. Variation of Clutter Densities

The scanning rate of a search radar is typically 6 to 15 rev/min. Thus, during the
scan time, the large-scale sea structure in a range cell changes very little. Consequently,
if the illuminated patch is smaller than the water wavelength, the radar return from sea
clutter will come from the conditional density p(x|og) rather than from p(x). On the
other hand, if scan-to-scan processing is performed, it is very likely (depending on scan
rates, radar geometry, and sea conditions) that samples are being obtained from p(x).
Since the density will determine the behavior of any detector used, the variation of clutter
densities p(x) and p(xloy) with such parameters as frequency, polarization, pulsewidth,
and wind direction will be analyzed.
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1. Varweticn of p(x)

To {ind the vanation of p(x) with frequency, the 4FR data taken on February 10,
1969, in the North Atlantic was analyzed. Specifically, the data analyzed by Trunk [16]
were taken with a 0.5-us pulsewidth at L and X bands; the antenna beamwidths were 5°
and 5.5°, respectively; horizontal polarization was used for transmission and reception;
and the pulse-repetition frequency (PRF) was 683 pps. The zircraft flew at 200 knots,
the range was 2,000 yd (1,829 m), the depression angle was 10°, and the azimuthal angle
(the angle between the radar beam and the wind direction) was varied from 0° to 45° in
15° increments. Ground truth was provided by Ocean Stations India and Juliet, which
reported winds between 30 and 35 mi/h (48 and 56 km/h) a sea of 13.1 ft (4.0 m), and
a swell of 18 ft (5.5 m).

The log-normal density (Eq. (9)) was fitted to the data by equating x,; to the sample
median and then finding the ¢ that minimized the marimum difference in decibels be-
tween the log-normal distribution and the sample distrinution. The log-normal density
was used instead of the contaminated-normal one because it is easier to interpret: It has
only one parameter (excluding x,,) and a larger value of ¢ indicates a longer tail asso-
ciated with the density. A 36-s sample of data was used, the data were fitted between
the 50 and 99.95 percentiles, and the results of 16 cases appear in Table 5. The fitting
errors ranged from 0.44 to 1.41 dB; the average was 0.78 dB.

From Table 5 it appears that the clutter distribution is a function of the radar fre-
quency but not of the azimuthal squint angle. However, to test whether these factors
cause a significant change in the distribution, a statistical procedure called analysis of
variance was used. This procedure decides whether differences in experirmental results {in

e
3

our case different values for o) are true differences or just experimental (sampling) errors. e
The results of the analysis of variance will appear in this section and further details are 3

given in Appendix B. The analysis of variance procedure was applied to the o’s in Table :

5 and the results arc summarized in Table 6. The quantity S§ estimates the sum of two :

effects, the sampling error and the effect of changing frequency; the quantity S‘f also e
estimates the sum of two effects, the sampling error and the effect of changing azimuthal h

angle; and the quantity s,% is an independent estimate of the sampling error. The quantity
‘3’,? is compared to S,?—;. Since their ratio is large,* a frequency effect is present. Next, S}
is compared to S[?;. Since their ratio is small, an azimuthal effect is not present. That is,
changing the azimuthal angle from 0° to 45° does not change the clutter distribution
significantly.

P-band data (428 MHz) were fitted to the log-normal density in an identical manner:
the results appear in Table 7. 'The P-band distributions have a much larger spread (higher
0) than the X-band data but a slightly smaller spread than the L-band data. Unfortu-
nately, no definite comparison can be made between these bands since the P-band antenna
had a 12° beamwidth resulting in an illuminated patch area 140 percent larger than those
of L and X bands. However, since a larger patch tends to make a distribution have a

*Under the hypothes’s that there is no frequency effect, S,?- and Sg are inderendent estimates of the sam-
p'ing error, and their ratio has an F-distribution. The threshold value for any significance, which feor a
significance of 0.1 is 3.2, can be found in eitler Duncan [24] or Fischer [25], which also provide further
information about analysis of variance. All analysis of variance in this section were conducted at a
significance level of 0.1.
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Table 5—0 in Decibels of the Fitted Log-Normal Distribution*

4FR Radar Azimuthal Squint Angle

Frequency
L band 6.1 6.0
X band 4.8 44

“From reference {16].

Table 6 —Results of Analysis of Variance: The Effect of Various
Parameters on the 4FR Clutter Distributions*

Effect Mean Square Variance Ratio Conclusion

Frequency 5.640 SE/S2 = 55.84 | Frequency effect is present

Azimuthal angle 0.062 S3/82 0.61 | Azimuthal effect not present
Sampling error 0.101

*From reference [16].

Table 7—0 in Decibels of the Fitied Log-Normal
Distribution for P Band*

Azimuthal Squint Angle

0° 15° 30°

5.8 5.7 51 5.8 6.1 5.8

*From reference [16].
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smaller spread, P-band distributions have a larger spread than X-band distributions, but

the relationship between P and L bands cannot be determined. Valenzuela and Laing [26]
analyzed the 4FR data and concluded that L-band data were more Rayleigh then X-band
data; based on results of K-S tests. However, if one studies the results of the in lividual
tests, one sees that the maximum difference in probability (D) between L-band «lata and
the Rayleigh distribution is larger than the difference between X-band data and tr:e Ray-
leigh distribution. The reason Valenzuela and Laing concluded that L-band data were
more Rayleigh than X-band data is probably because Pp is smaller for the L-band than

for the X-band. However, since they concluded that neither data are Rayleigh distributed,
the only reason Pp, is smaller for L-band data is that there are fewer independent samples
for L-band data than for X-band data. The result only indicates that the K-S test is not

a powerful test; i.e., if data do not come from the theorized distribution, many independ-
et samples are needed to reject the hypothesis that the data did come from the theorized
distribution.

The FHR data are analyzed again to .ind the variation of p(x) with polarization,
pulsewidth, and wind direction. First, the data were fitted to the log-normal distribution
(results appear in Table 8); the fitting errors ranged from 0.4 to 1.4 dB, and the average
error was 0.8 dB. An analysis of variance was conducted; the results are summarized in
Table 9. The most significant parameter is pole (zation: the clutter distribution for hori-
zontally polarized data has a much longer tail "aan that for vertically polarized data. The
next most significant parameter is orientation with respect to the wind: upwind or down-
wind measurements have a longer tail to their distributions than crosswind measurements.
While the analysis of variance (Table 9) shows no significant difference between the up-
wind and downwind measurement, an analysis of variance (Table 10) of the short-pulse
data in Table 2 definitely shows a difference between upwind and downwind measure-
ments. (Clutter {ime 1145 was eliminated to make an equal number of cases in each
category.) Finally, while the 20-ns data have a longer tail than the 100-ns data, the

Table 8—Log-Normal Fit of Data Taken by the FHR*

o Maximum

Date Time Identifier (dB) Difference
(dB)
3/11 1344 VUL 4.8 0.45
3/11 1346 HUL 6.0 0.73
3/11 1411 VDL 4.7 0.50
3/11 1413 HDL 7.3 0.81
3/12 1026 HDS 7.5 0.83
3/12 1028 VDS 5.5 1.36
3/12 1049 VCS 4.4 0.52
3/12 1051 HCS 6.1 0.40
3/12 1125 VCL 4.4 0.42
3/12 1127 HCL 5.6 1.40
3/12 1154 HUS 5.9 1.10
3/12 1156 vuUS 5.8 1.08

*From reference [16].
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Table 9—Results of Analysis of Variance: The Effect of Various
Parameters on the FHR Clutter Distributions*

: Source Mean Variapce Conclusion
o Square { Ratio
_\. Polarization 6.75 26.0 Polarization effect is present
, Pulse length 0.56 2.2 Pulse-length effect not present
Upwind vs downwind 0.78 3.0 Effect not present
Upwind and downwind 1.76 6.7 Effect is present
vs crosswind
Sampling error 0.26 -

*From reference [16].

Table 10—Results of Analysis of Variance: The Effect of Various
Parameters on the FHR Clutter Distributions in Table 2

Mean Variance

Source Scuare Ratio Conclusion
Polarization 4,32 141.0 | Effect is present
Upwind vs downwind 0.15 4.9 | Effect is present
Upwind and downwind | 0.15 4.9 Effect is present

-

vs crosswind

-
a

P A,
.

‘...

Sampling error 0.0306 -

,

analysis of variance (Table 9) indicates no significant difference. Since it is known that
the clutter distribution is Rayleigh for large pulsewidth, there seems to be a threshold
effect. That is, small pulse measurements have a larger clutter spread than large pulse
measurements; however, once the pulsewidth is smaller than the water wavelength, changes
are no longer significant.

2. Variation of p(xlogy)

To find the effect of various parameters on the conditional density p(xlog), an anal-
ysis of variance was run on the data in Table 4 (optimum %k are used as data points); the
results 2re summarized in Table 11. The most significant parameter is pulsewidth: the
larger the pulsewidth, the more Rayleigh (as oppose to Ricean) the density of clutter
backscatter. This can be explained by recalling that the dominant scatterers are breaking
waves. If the patch is small, there may be only one breaking wave in it, and the density
will be Ricean. However, if the pulsewidth is increased, several breaking waves may be
present. Since return from these waves will add noncoherently, the density will tend
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Table 11— Analysis of Variance Results: The Effect of Various
Parameters on the Conditional Clutter Density*

Effect Sgﬁ:?e V;r;:ir:)ce Conclusion
Polarization 0.606 7.88 Polarization effect is present
Pulse length 2.706 35.21 | Pulse-length effect is present
Wind 0.006 0.07 | Wind effect not present
Sampling error | 0.076 -

*From reference {16].

toward a R- leigh density as the pulsewidth and thus the number of breaking waves in-
creases. The other significant parameter is polarization, vertical polarization giving rise to

a more Rayleigh-like density than horizontal polarization. This could be explained by the
simple fact that the clutter return is higher for vertical polarization. Thus, if the dominant
scatterers have the same cross section for both polarizations, the ratio of the dominant scat-
terer to background clutter will be smaller, and hence the value of k& wiil be nearer to 2.
Finally, wind direction has no effect on the conditional density.

D. Empirical Density of p(og)
In 1972, Trunk [16] showed that the non-Rayleigh density p(x) of envelope-detected
sea return could be expressed as

p(x) = f p(xlag)p(0g) dag - (12)

While Trunk in. »stigated the densities p(x) and p(x|oy) and concluded that the form of
p(0g) has an important influence on p(x), he did not find the density for p(og). This
situation was rectified in 1974 when Owens {27] used a nonparametric estimator for the
density of 10 log 0y, which is equivalent to finding p(oy). Owens’ analysis is summarized
in the following sections.

1. Nonpurametric Estimation of a Probability Density

If 0y, ..., gy are independent random variables with a common density f, a kernel
estimator of f at a point y has the form

N
fo) =% Y. K0, (19)
i=1

wiere K is a known kernel. A common form of K is
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K(,0) = 75 KL = 0)/h(N)] (20)

where h(N) is a number depending on the number of samples. There are many possible
choices for K and h(N). (If the reader is interested in the area of nonparametric density
estimation, he should consult Owens [27] who quotes some basic results and references
the basic papers.) The choice of Owens was

2
1({sinZ
1 (e @

K(Z)

h(N)

20//N. (22)

Thus, if f is the density function of g = 10 log 0, then

2
. in t;
fo) = == 3" (5 (23)

is an estimator of f(y) where

v -g)VN
;= 55 ' (24)

and gy, ..., gy are independent samples from the density f.

The difficulty in applying Eq. (23) is that the random variables g; are not directly
observable. Rather, the data consist of the envelope-detected returns x;. If the condi-
tional density of p(x|gg) is known precisely, then empirical Bayes methods [28] could be
used to estimate p(0y). However, while Trunk [16] has shown that p(x|0y) depends on
various parameters such as pulsewidth and polar... tion, he has also stated that the density
of p(xlog) has little effect on the density of p(x). Consequently, it is safe to assume that

plxlog) = oio g(x/og) (25)

for some density g. Thus, if

b =j; xg(x) dx , (26)
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P

Now, consider the following procedure. For each i, {i = 1, N}, select a sample o; from f,
and then select % samples, denoted x;1, ..., x;;, from the conditional density p(xlo;).
Since

PR

Fig

‘n
wyr P

E’{xij} = bUi for j= 1, sy k) (28)

Y

o
-

it follows that an estimate of bo; is

ind

A
# e

k

- 1 x~
bG; = % ) Xy (29)

=1

Tak.1g the log yields

g; = 10log b&,— = 10log 6i + 10log b . (30)

That is, g; is an estimate of 10 log 6,, shifted by a constant that is independent of i. Thus,
g; defined by Egs. (29) and (30) can be used in Eq. (23) to estimate f(y).

2. Data Analysis

The data analyzed by Owens were the small-pulse (20-ns) FHR data that appear in
Table 8. The nonparametric estimation procedure is applied to these data in the follow-
ing manner. First the decorrelation times for selected short-pulse data are extracted from
Table 3 (presented in column 3 of Table 12). Since 10 ms is the decorrelation time of
sea clutter when 0, remains constant, the decorrelation times in Table 12 are good esti-
mates of the times required for o for the illuminated patch to decorrelate. Based on
these times, Owens selected a “sampling interval” (approximately one-eighth of the de-
correlation time), in which it is assumed that ¢ remains constant. For each data record,
every eighth sample was selected to form a new record, with samples 3 ms apart and
adjacent samples recorded at different frequencies. The total number of samples (this
corresponds to k in Eq. (29)) in a given sampling interval is given in column 5 and the
total number of intervals (corresponding to Ng;) used in the analysis is given in column 6.
Then, using the data sets indicated in Table 12, Owens computed the densities as follows:

Table 12—Decorrelation Times and Sampling Intervals

Decorrelation Sampling Number of
Time Identifier Time Interval Samples
(ms) (ms) in Interval

Number of
Intervals

1026 HDS 131 39 14 208
1028 VDS 168 51 18 256
1049 vCs 31 9 4 192

1051 HCS 112 33 12 256
1154 HUS 106 33 12 256
1156 HUS 193 63 22 256
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1. Use Eq. (29), to obtain average the returns in each sampling interval.
2. Compute the estimates g; of 0y (in decibels) for each interval, using Eq. (30).
3. Estimate the probability density of o (in decibels), using Eq. (23).

The density of each of the six cases is given in Ref. 27, and the density functions for the
downwind cases are shown in Figs. 10 and 11.

The density functions for the downwind and upwind cases are quite irregular. This
may be the result of shadowing of the patch by large waves. Furthermore, densities for
vertical polarization are more peaked than those for horizontal polarization. This sup-
ports the conclusion in (Ref. 16) that the density p(x) has a longer tail for horizontal
polarization than for vertical polarization. Further information about p(gy) can be found
in Sec. IV.B.
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Fig. 10—Estimated probability density of normalized RCS
(horizontal polarization, downwind)
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Fig. 11—Estimated probability density of normalized RCS
(vertical polarization, downwind)

IV. SEA SURFACE SIMULATION

Trunk [16] and Owens [27,29] have found that a simulation of the sea surface can
be extremely useful in certain problems associated with high-resolution radars. In this
section, this simulation will be discussed, and two examples of its use will be given.

A. Sea Surface

All investigators [16,27,29] have constructed realizations of the sea surface by using
the method suggested by Neumann and Pierson [30]. The realization is obtained by con-
sidering the linear solution to the Lagrangian equations of motion for the sea. The long-
crested waves are given by the parametric equations in 8,

2
x(t) = & ~ sin %— (8 cosf +ysinf) - w;t},
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z(t) = cos [""—2 (6 cosf +y sin@) - w,-t] R (31)

g

where (x, y, z) are the coordinates of the sea surface and 0 is the direction in which the
wave crest is moving with respect to the x-axis. The realization is constructed by form-
ing a linear sum of elementary solutions, i.e.,

N [eo2
6 - Z a; sin L?‘ (6 cosf; +ysinb;) — w;t + v;
i=1

x(t)

yit) =y
N w2
1 o
2(t) = Z a; cos | - (6 cosb; +ysinb;) - w;t + ; (32)
i=1

where 7; are independently distributed phases between o and 27. Given a wave spectrum
S(w), Trunk [16] suggests setting the N frequencies w; by

w . oo
f ' S(w) dw = &—2-;71 f S(w) dw (33)
0 0

and letting ¢; be a Gaussian random variable whose variance is

02@) = & f S(w)dw . (34)
0

The wave spectrum that was used was the Kitaigorodskii [31] spectrum for a fully de-
veloped sea,

dg? 4
S(w) = — exp [-b(g/uw)?], (35)
w

where d = 0.0081, b = 0.74, g is the acceleration of gravity, and u is the windspeed.

To see the type of realizations this method yields, let us construct two realizations
for a 20-knot wind. First, N = 100 values of w; were chosen by Eq. (33), and 02(q;) was
calculated using Eq. (34). Next, the wave directions 6; were chosen from two Gaussian
densities: the first with a standard deviation of 0.2 rad and the second with a standard

¥
O

deviation of 0.5 rad. The surfaces are shown in Figs. 12 and 13. Each surface is about %:‘1:'
700 £t (213 m) long and 300 ft (91 m) wide. The 40 y cuts are 7.5 ft (2.3 m) apart and )
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Fig. 13—Simulation of 700-ft by 300-ft (213.4- by 91.4-m) sea surface, with 0(6;) = 0.5 [16]

the 6 values (hence approximate x values) are 1.4 ft (0.4 m) apart. From appearance, Fig.
13, with o(6;) = 0.5, is the more realistic sea surface. (Unfortunately, while Trunk [16]
used 6(6) = 0.5 he reported (f) = 0.2. Consequently, Owens [27,29] later used o(6;) =
0.2. It is the author’s opinion that this fact will have little effect on upwind and down-
wind results but could have a larger effect on crosswind results.) While there have been
several measurements of directional spectra, the results of one of which is reported in
Ref. 30, Phillips [32] states that no simple, realistic model for the direction spectrum,
corresponding to the existing one-dimensional wave spectrum, exists.

There are several ways in which the sea surface realization can be used. In Sec. IV.B
it is used to estimate the densities for p(x) and p(6;), and in Sec. IV.C it is used to cal-
culate the probability of detecting a small target on the surface of the ocean.
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B. Estimation of the Densities p(x) and p(0)

From Sec. II, the cross section for horizontal polarization at a grazing angle 8 is

(e-1)

[sin6 + (¢ - cos26)

Opp(0) = 4mk4 sin40 W(2k cosf) (36)

1/ 2] 2
where

€ is the complex dielectric constant

k= 2n/\

KW(K)dK = S(w) dw

w? = Kg g

K = 2k cosf S -

t

renw
.

S(w) is the wave spectrum of the sea surface.

T4

Since the reflected power from elementary Bragg scattering patches in a range cell add
noncoherently, the average cross section in an illuminated patch area A4 is given by

! Rl

o= f f opp()g(x, y, z) dx dy (37)
(x,y,2)€A
where
z is the height of the sea surface at the point (x, y),
a = a(x, y, 2) is the local grazing angle at the point (x, y, z),
0(c) is the reflected power given by Eq. (86), and

g(x, y, z) is the normalized two-way antenna power gain at the point (x, y, 2).

Using Egs. (12), (36), and (37), Trunk [16] calculated p(x) in the following manner:
First, the sea surface shown in Fig. 13 was constructed. Then, 0; (the average radar cross
section for the ith sample) is calculated by approximating the surface integral in Eq. (37)
with a double summation involving 210 points: twice the azimuth beamwidth is divided
into 21 radials (each with a separation of 0.1 beamwdith) and the range is divided into
10 equally spaced ranges. For each of the 210 unshadowed points the local grazing angle
« is calculated, oy (e) is calculated using Eq. (36), and 0; is calculated by Eq. (37).
Next, 0;,1 was calculated by advancing the sea surface 10 ft (3.0 m) and repeating the,
o calculations. This process was repeated until 50 values of o; were calculated. Then, p(x),
: given by ;

»
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p(x) = f p(xlo)p(0) do (12)

was approximated by
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20 x exp [-x2/20?
pa) = 55 ). betiaor], (38)
i=1

where the ergodic theorem has been used to replace the average over p(g) by the time
series in 0, and p(x|o) has been assumed to be a Rayleigh density. The Rayleigh density
has been used instead of the Ricean density because it is casier to manipulate and Trunk
[16] has shown that it will not affect the results. That is, the variation of p(x) from the
Rayleigh is basically due to the density p(o). Several distributions were calculated [33]
and are shown in Fig. 14. These calculated distributions indicate the effects of various
parameters whose significances have previously been demonstrated (Sec. HHI.C): (a) the
clutter distribution for horizontal polarization HUS has a longer tail than that for vertical
polarization VUS; (b) the distribution for the short pulse VUS has a longer tail than that
for the long pulse VUL; and (c) the distribution for the upwind case HUS has a longer
tail than for the crosswind case HCS. (The computer model does not distinguish between
upwind and downwind.) Also, the 20-knot case has a longer tail than the 15-knot case.
The Rayleigh curve was obtained for HUS when the windspeed was 2 knots; i.e., when
the range cell is greater than the water wavelength, the model yields a Rayleigh density.

LT TS T
v
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]
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Owens [29] calculated p(0) in a similar manner. Using a(8;) = 0.2 (Fig. 12), he cal-
culated 200 values of g;. Then Eq. (23) was used to calculate the density for 10 log 0y.
The results are shown in Figs. 15 and 16. In comparing the experimental results with the
simulation, the following paragraph of Owens [29] is quoted,

‘“... one should remember that the observations of log 0y are obtained through different
mechanisms in the two cases. In the simulation the only errors associated with ohservations
of log 0g are caused by the inaccuracies of the model and the mathematical calculations
therein. Whereas, in the experiment, 0 is observed with an error having essentially two
components. The first component of error arises from the fact that on a given sample the
only observable variable is the return x, x being reiated to g through the density p(x|og).
This component of error is further complicated ir that various properties of p(x|0g), which
is not known explicitly, depend on experimental parameters. To reduce this component of
error, a number of observed values of x are averaged to obtain an estimate of g, the average
being carried out under the assumption that ¢ remains constant over the appropriate time
interval. Of course, this assumption is not precisely correct, thus intraducing a second com-
ponent of error in the estimate of 4.”

Owens goes on to say that ‘“‘considering the complexity of the mechanism producing sea
clutter at low grazing angles and that the two sets of results are not based on the same
set of observables, the authors feels that the agreement is good.” It is worth noting that
Owens’ largest disagreement [29] occurs for the crosswind cases. However, if o(8;) = 0.5
is used instead of 0(0;) = 0.2, the spread of p/g) will increase and better agreement will
result.

C. Probability of Detecting Small Surface Targets

T

Some small, fast ships of tomorrow’s Navy, such as surface-effect ships, will probably
use collision-avoidance systems to avoid such ocean debris as oil drums and logs. Conse-
quently, Owens {29] investigated the probability of detecting targets at a given height h
above the local sea surface. It is important to the debris-detection problem that these
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Fig. 14—Distribution functions for various simulations: horizontal (H) or vertical (V) polari-
zation, upwind (U) or downwind (D), short (S) or long (L) pulsewidth. A 15-knot case is
marked; all others are for a 20-knot wind [13].
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targets can he smaller in geometric size than the larger ocean waves, and so the line of
sight from antenna to target may be obstructed by surface waves.

TERTE

This shadowing problem was investigated using the sea surface simulation. At any
) point (xg, ¥o), the target’s height at a time t was hy(t) = h'+ 24(t), where 24(t) is given
1 by Eq. (32} During periods when the line from the point [xg, ¥, hg(t)] to the radar
antenna intersects the ocean suxzface, the target is “shadowed” and cannot be detected.
(This ignores refraction effects, which are presently under investigation.) Vasious cases
] were computed by Owens and a typical case is given in Fig. 17. For example, if the

s antenna height is 75 ft (22.9 m), target height h is 1 ft (0.8 m), and the sea state is 3
(wind about 15 knots), the probability of having a clear line of sight at any moment is
0.5 at a range of 2 n.mi.

Owens also calculated the probability of detecting a target by calculating the clutter
L return in the same range cell as the target. For purposes of illustration, consider the radar
to have a beamwidth of 1.5°, a pulsewidth of 20 ns, and a rotation rate of 60 rpm. The
radar is 75 ft (22.9 m) above the surface, aboard a ship traveling at 80 knots.in sea state 3.
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Fig. 17—Probability of sighting vs range for an
antenna height of 75 ft (22,9 m) and a sez state
of 3
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In Fig. 18, the average received signal-plus-noise and average clutter level are graphed as a
function of range.

These values are for a particular realization of the sea surface and both curves are
referenced to the ambient noise level. First, notice the lower envelope of the clutter re-
turn. This represents the clutter received through the sidelobes; when the clutter level
falls to this envelope, the entire illuminated patch is obscured by large wave structure.
The upper envelope of signal-plus-noise indicates the target return when the target is not
obscured. When the curve drops away from the envelope, the target is obscured (zero
effective cross section).

Furthermore, the signal and clutter returns are highly correlated. When the target is
not obscured, it is likely to be on the front side or top of a large wave; and a large clutter
return can be expected. On the other hand, when the target is obscured, the illuminated
patch is likely on the back side of a wave, and a relatively small clutter return will result.
Owens assumed a square-law detector® and performed scan-to-scan integration. Typical
results are shown in Fig. 19. As will be seen in the next section, substantial improvement
resuits from scan-to-scan integration. For specific details of this work, see Ref. 31.

V. DETECTION OF TARGETS IN NON-RAYLEIGH SEA CLUTTER

Since 1947, the classical works of Marcum [35] and Swerling [36] have been used
to calculate the probability of detecting targets in sea clutter. Their models, based on a

*Since a target can be shadowed for 2 number of scans, the detector incurs a loss similar to a collapsing

loss: A square-law detector is used, since the collapsing loss is greater for a linear detector than for a
square-law cetector {34].
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Fig. 18—Received signal strength for a 20-ns radar in sea state 3

Rayleigh density for envelope-detected clutter, usually provide accurate results when
pulsewidth is large. (Even for fairly large pulsewidths (0.25 us), non-Rayleigh densities
can occur for high sea states [16,26] or shallow grazing angles [21].) However, as the
range-resolution cell decreases in size, the clutter density develops a longer tail than the
Rayleigh. Thus, if the Rayleigh theory is used, too many false alarms will occur.

To remedy this situation Trunk and George [10] approximated the clutter return by
the log-normal and contaminated-normal densities and calculated probability-of-detection
curves for the mean and median detectors. Trunk {37] generated detection curves for
fluctuating targets and the trimmed-mean detector. Schleher [38] found a bound for the
optimal detector in log-normal clutter and showed that the binary integrator approaches
the performance of the optimal detector. Before reviewing the performance of various
detectors in the next sections, let us consider the applicability of the various models.

Except for the ratio detector {39] and the work of Owens [29], all investigations
have assumed that the available samples are independent samples from p(x). Since it has
been shown (Sec. III.B) that frequency diversity produces independent samples from
p(x|o), only samples obtained on different scans ran ke considered independent samples
from p(x). (In this section, clutter is restricted to that resembling Fxgs 7 and 8, as op-
posed to Fig. 9.) However, since the range cell i3 very narrow (this is why the densxty is
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Fig. 19—Probability of detection vs range for a high-resolution radar
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non-Rayleigh), in order for the target to remain in the same range cell it must either be almost
stationary or some kind of range tracking (during detection) or collapsing must be applied.

Besides the problem of independence of the samples, there is the question of the ap-
propriate density for the clutter return. From Fig. 20, it is obvious that the signal required
to obtain a particular performance level is very dependent on the distribution assumed for
the clutter—a log-normal distribution requires more signal strength than a contaminated-
normal one, which requires more than a Rayleigh distribution. Also, the differences are
larger for 1 pulse than for 30 pulses. Thus, the choice is extremely critical when only one
or a few independent samples are available. It is this author’s opinion that for small false
alarm rates (i.e., below 10-6), the log-normal density will yield pessimistic results, i.e., per-
formance will actually be better than predicted. This is because p(x) is not really log-
normally distributed and has only been used to approximate the density to its 99.99 per-
centile. As shown in Sec. III. B, p(x) eventually falls off as a Ricean density; i.e.,
expouentially. Thus, the threshold need not be set quite as high as the log-normal den-

sity requires.

R,

-
e

-

Keeping in mind the previous comments, detection results are presented for the log-
normal and contaminated-normal densities.

T

A. Log-Normal Density

For the log-normal model the envelope-detected sample has the density function

) 2 —2[szn<x/xm)12>
p(x) = W XP(—r 9)

where x,, is the median value of x and ¢ is the standard deviation of (¥ x)2. Following
Rice’s procedure [40], we can show [41] that the density function of a constant signal A
in log-normal noise is

099 =
o it [} -
| | ozod gl d |
Tig. 20—Comparison of the Rayleigh, 5 gz <
contaminated-normal (y = 0.25, K = :f-’ ogsl = < 3 F 1
2.25), and log-normal (0 = 6 dB) de- S Lol & 2 z R
tection probabilities for N = 1 and 30 ) w g 2
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distributions {10]. g ouh .
0 4l -
03k -
52l -
o1 3 1 ! 1 3 1
2 € 10 14 8 22 26 30 33 38

TN fAD)
S s




e e R R T Sl St Tl Bl i Al & T §
Cii DALV i ey S by

W E TR TR A A
e, = A S A W N I 2 I L A T

PN AT AT ST A N

GERARD V. TRUNK

o o ey T st e O L T i N i

x 4) fzﬂ x exp [-2072 €2 (x2 - 2xA cos8 + A2)1/2] 4
pix, =
0 7(2m02)12(x2 - 2xA cosh + A2)

(39)

where the return has been normalized by median, so that x,, = 1.

Various detectors will now be evaluated using the log-normal model.

1. Mean Detector

T I e

The straightforward method of determining the probability density for the sum of
N independent pulses (i.e., the mean detector) is the characteristic function method. If

TR T

#(w) = E {exp(iwx)}= fm p(x, A) exp (iwx) dx (40)
0

is the characteristic function, the probability density of the sum of N statistically inde-
pendent envelope-detected pulses is

ot A) = 3 [ (8N exp (-iwm) doo. (41)

o

The probability of false alarm Pfa for a threshold T is given by

Pr, = f py(x, 0) dx, (42)
T
and the probability of detection Pp, is
Pp = f py(x, A)dx, (43)
T

With the fast Fourier transform, it is fairly simple to calculate Egs. (40) and (41).
Then, Pr, and Pp are calculated by straightforward numerical integration. Threshold
values for N = 1, 3, 10, and 30 for values of Pr, ranging from 10-2 to 10°8 are shown
in Fig. 21 for the log-normal density, with 0 = 6 dB.* With these thresholds, Eq. (43) is
evaluated, yielding P_ vs signal-to-noise ratio $/N per pulse, where S/N is the signal divided
by the median value of clutter. This is not the usual uefinition of S/N, in which the noise
reference is the rms value of the noise. However, it is an appropriate choice, since it is
the median value of clutter that is usually reported [7]. The Pp curves for 0 = 6 dB are
plotted in Fig. 22. An inspection of these curves shows that the S/N required for

* Additional threshold values and detection probabilities for 0 = 3 dB and 0 = 9 dB can be found in [41].

It should be denoted that for all detectors ¢ is not known a priori. Consequently, an adaptive thresholding
technique must be used.
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detection decreases rapidly as N increases. In fact, the integration gain I, is greater than
would be obtained for the coherent integration of a Gaussian density, i.e., I; > 10 log N.

It has been pointed out [37] that this means the optimal beamwidth for a high-
resolution scanning radar need not be the smallest. For instance, consider a case in which
S/N is 20 dB per pulse, and a three-pulse scan-to-scan integration is being performed. If
the clutter has a log-normal distribution with ¢ = 6 dB, Pp will be 0.1 for a Py, of 1076,
If the beamwidth and scanning rate are both increased by a factor of 10/3, then 10 pulses
can be integrated in the same time. In this case, while S/N falls to about 15 dB per pulse,
Pp is greater than 0.99. Thus, better performance is obtained with the larger beamwidth.

2. Binary Integrator and Rank Detector

It is well known that the binary integrator (sometimes called a dual-threshold detector
or M-out-of-N integrator) is exactly equivalent to a rank detector. Given a set of N ordered
samples, x; € ... € x, < ... € xy, the kth ordered rank detector involves simply com-
paring x;, to a threshold. The median detector is the special case where & = N/2. How-
ever, since the implementation and evaluation of this detector is simpler in the form of
the binary integrator, the detector will be discussed in this form. A simple block diagram
of the binary integrator (or kth rank) is shown in Fig. 23. The probability p(4) that the
returned signal exceeds T is

pa) = [ p 4)d (44)
T

where p(x, A) is given by Eq. (39). The probability that more than m = N— k of the N
returns exceed T is given by the binomial distribution

N (N
Py = )’ (Q)pQ(A)u-p(AnN'Q. (45)

L=m+1

N-STAGE SHIFT REGISTER

INPUT X . +/COMPARATOR
T

Fig. 23—Implementation of binary integrator or,
equivalently, rank detector [10]
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The desired probabilities are given by Py, = P(A = 0) and Pp = P(A). In 1970 [10], the
median detector for the log-normal distribution with ¢ = 6 dB was evaluated. The thresh-
olds are presented in Fig. 24, and the detection results are presented in Fig. 25. Com-
paring the mean and median detectors in Fig. 26, one concludes that the median requires
a smaller S/N than the mean and that the difference increases with increasing N: for

N = 3, the median is 1.6 dB better than the mean; and for N = 30, the median is 2.8 dB
better. The performance difference between the two detectors for large sample sizes can
be obtained from Pitman’s asymptotic relative efficiency (ARE) [42]. This criterion is
quite appropriate when the signals are very weak. Specifically, it is the ratio of the num-
ber of samples required to maintain a Ps, and Pp for the first detector to the number re-
quired for the second detector as the S/N approaches zero:

Nl(Pﬂn PD’ S/N)
ARE (d;,dy) = lim

46
SIN-0 N2(Pfa’PD:S/N) (46)

where N; is the minimum number of observations required for detector d;. The simplest
way of calculating the ARE is by employing the concept of efficacies, which was also
introduced by Pitman. Using a result of Noether [43], Trunk [44] calculated an ARE
of 129. (See Appendix C.) Assuming that a noncoherent integration gain of 10 log\/N

is appropriate for small signals, the median detector is approximately 10.5 dB better than
the mean detector for very small signals.

LOG-NORMAL
N=3 k=2

IN MEDIANS

T

3 LOG-NORMAL -1
N=30 k=I5

NORMALIZED BIAS LEVEL
[2)
i

0 Y SN S I | TS B RN | L)
¢ [ 2 3 4 5 6 7 8 9 10 0 12

~L06 Py,

Fig. 24—Normalized bias values for the median detector
(log-normal distribution with 0 = 6 dB)
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Since the log-normal density is unsymmetrical about its median value, there is no
reason to expect that k = N/2 (the median) is the optimal rank. Rather, because of the
long tails of the log-normal, one would expect that the smaller ranks (¢ < N/2) would
behave better. While Trunk [45] showed that 1 dB could be gained with respect tc, the
median by using 2 = N/3 against the contaminated-normal density, Schieher [38] showed
that larger gains were obtained with smaller ranks against the log-normal. Schleher [46]
obtained the optimal value of m for different values of N by calculating the detection
curves for each possible value of m and choosing the best value. The optimal values of m
for N = 3, 10, and 30 pulses, for the log-normal density with ¢ = 6 dB, are given in Table
13 along with the optimal values for the Rayleigh density, which were determined by
Schwartz [47]. Detection curves were generated by Schleher [46] for the log-normal
density (0 = 6 dB) with N = 3, 10, and 30 pulses. The detection curves for the optimal m
are given in Figs. 27, 28, and 29. Comparing these results with the median detector shows
that the largest differential is for smaller N. For N = 3, the median is about 4 dB worse
(for Pp ~ 0.9 and Py, = 1076) than the binary integrator (m = 2); for N = 30, the median
is only about 1 dB worse.

Table 13—Optimal Value of
Second Threshold m

- iaat et e
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Fig. 27—Probability of detection vs S/N for the log-normal distribution
(0 = 6 dB) and optimal binary integrator: N=3,m=2
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3. Trimmed-Mean Detector

Since Tukey [48] has shown that the trimmed-mean detector is effective against
contaminated distributions (Tukey only considered symmetrical densities), Trunk [49]
conjectured that the trimmed mean would also be effective against long-tailed noncoherent
densities, specifically log-normal and contaminated-normal densities.

Given a set of N ordered samples, x; < xg9 < ... € xp, the frimmed-mean detector
is given by
Ny
SN, Np) = ) % (47)
i*‘-“Nl

where 1 < N; < N, < N. This detector class contains the mean S(1, V) and rank de-
tectors (binary integrators) S(k, k). Unfortunately, when r{x) is a log-normal density,

the density of S(N}, Ny) can only be expressed in terms of an (N2 N; + 1)-order integral
to which there exists no known closed-ferin solution. Since it is impractical to evaluate
those densities by numerical integration, a Monte Carlo simulation, involving 10€ trimmed
means,* was performed {49] to estimate the threshold values for desired Pg,’s. For N = 2
and Ny = 5, the equation

—log Py, = —3.1735 + 1.0685T - 0.0070 72, (48)

relating the threshold T to P, was obtained for the log-normal density with o = 6 dB.
The Pp curves were generated using Monte Cariv techniques and the results are given in
Fig. 30. Of the two trimmed-mean detectors, the one using the lower ordered samples
yields the higher Pp. This corroborates the previous result [38] that the lower ordered
ranks were the better detectors. Comparing the trimmed-mean with the binary integrator
shows little or no difference in their performance. However, since the binary integrator
is much simpler to implement, it is definitely to be preferred.

4. Optimal Detector

It is well known that the optimal detector is specified by the likelihood ratio, or
equivalently, the log-likelihood ratio. That is, a decision is obtained by

_ pyx 4)

Ax) = n pnE A=0) < T, (49)
where py(x, A) is given by Eq. (41). A decision of “no signal present” is made if A(x) < T,
and a decision of ‘“‘signal present” is made if A(x) > T. Unfortunately, since the density of
pn(x, A) involves an integral, the likelihood ratio cannot be obtained in closed form. Thus,
the optimal detector cannot be found.

*It should be noted that several authors [50,51] using the importance-sampling technique {52] have gen-
erated threshold values for the range of Py, = 1072 to 1078 with about 104 cases. It is this author’s opin-
ion that the technique is very significant. A deseription of the method is given in Appendix D.

46
“.,. wo JOPA v;‘ e _.
] . . . Q ' o . ®
. . !} .\\\'—E\-\‘-“"“‘“’b q"x;\:’ v\:.( ﬁ\.' \.‘ :ﬁ‘\ \,}

RSN \,:\_ "“.“F ’\\”\“‘; xf\.\,‘h N \%-'L"", '

- -:v:\ .*‘\r,.k % N .“\.\ ~ -.' ‘\,. Y

LT %

s \'

AL -&‘- AR o ‘HUA = NIRRT
ML &Xx‘ii L&’ﬁ L\\\ '&‘ AT AL \\1&.12&& SR I I s S



NRL REPORT 7986

o°
0
Ir}
"
-5

()

1 i
LOG-NORMAL

aw et e e
e

0.90

0.80]
0.70
0.60
0.50
0.40
0.30

PROBABILITY OF DETECTION

0.20

0.10

6 8
S/N1{dB)
() N=10,N; =2,Np =5

0.99 T T
0.981- LOG —NORMAL

0.95

090

2

/
o

0.80 o
0.70
0.60
0.50
0.40

0.30

PROBABILITY OF DETECTION

0.20

0.10

0
S/N(dB)

(b)N= 10,N1 =4,N2 =17

Fig. 30~—Probability of detection for the log-normal distribution
(0 = 6 dB) and for the trimmed-mean detector

R UV S ALY

S DAL CHOR CCRN N

® ® d ®

AR ,,'\-'\;\. S RS -.\-

P S A A ,}‘r. ,

R NV T s

N T _}.L\-‘ LY .-_'h‘h'\ ‘QFP s
S A A *.

o,

\\;,, » ;\-

\ =
R



GERARD V. TRUNK

However, if one can bound the performance of the optimai detector and find a sub-
optimal detector that approaches this performance, then there is no reascn to specify the
optimal detector.

e b i 1A nrd |

The Chernoff [53] bound,

UG

Pr, < exp[u(s) - su(s)]

Pp > 1 - exp[us) + (1-s)u(s)],

where the semi-invariant u(s) is given by

u(s) = n f [on (e, A)) oy (s, A= 0)] 17 dx (51)

provides a rather coarse bound for the desired probabilities. Van Trees [54] tightened
the bounds by finding a multiplicative factor for the exponentials, in Ref, 50, using a
central-limit-theorem argument. Schleher [38,46] obtained a more accurate result by
using an Edgeworth series expansion to approximate the desired probabilities. Schieher
[46] shows that Py, is given by

Pry = % etfe [a(S)] exp [03(S) + B(S)]

u(s)

- sy PO { et (1 [SVATE] exp a2(s)

+\/—1§ [1- s2ii(sn}

a(S) = S[i(s)/2]11/2 (53)

B(S) = u(S) - Su(s). (54)

An expression for 1 ~ Pp can be found [46] by substituting 1 — S for S in Egs. (52),
(53), and (54). Evaluation of Eq. (52) for P;, and Pp requires the determination of the
first, second, and third derivatives of u(S). gchleher calculated these derivatives by eval-
uating u(<) at many points in the interval (0, 1), fitting a cubic spline function to the
points, and differentiating the spline function. (The N-degree spline function produces
the smoothest curve through the data points while maintaining continuity of the first

N -1 derivatives at each data point.) Receiver operating curves were generated and are
given in Ref. 46. Curves comparing the mean, median, binary integrator, and trimmed-
mean detectors with the optimal detector are given in Figs. 31, 32, and 33, for N = 3,

N =10, and N = 30 pulses, respectively. From these curves it can be seen that the binary
integrator and trimmed-mean detector are within 1 dB of the optimal detector. Since the
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trimmed-mean detector requires a ranking of the samples, the binary integrator should be
used to detect nonfluctuating targets in the presence of log-normal interference.

5. Fluctunting Targets

In the previous sections, Pp curves were generated for various detectors. It has been
assumed that the target is not fluctuating and that the noise samples are independent.
However, to obtain independent samples from sea clutter (whose density is approximoted
by the log-normal), the returned samples must be from different scans. Since tne time
separation is probably laxger than 1 s, it is quite likely that the target is fluctuating. Con-
sequently, Trunk [55] calculated the performance of the mean, median, and trimmed-
mean detectors against the log-normal density, with Swerling II and IV fluctuations as-
sumed [36].

i

LEILEE

"
Y

Since the threshold value for any Py, is independent of the target model, they have
been already calculated; all that remains is to calculate the P;, for various S/N. Since the
interesting range of Pp is from 0.01 to 0.59, Monte Carlo techniques, which require con-
siderably less computer time than the characteristic-function approach, will be used. Itis
well known that the ith sample x; of an envelope detector can be generated by

X = (yiz t2

2)1/2 ’ (65)

where y; and 2; are in-phase and quadrature-phase components. For the generation of
log-normal clutter
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A
v y; = exp {0[-2 2 (v;1)1¥/2 sin (2nu;9)} sin (27y;3) + A,

~
"\

2; = exp {0[-2 % (v,-l)]l’ 2 cos (27mv;9)} cos (2my;3) , (56)

el
1
f

where {v;} are independent and uniformly distributed random numbers on (0, 1) and A y“ :::.;
is the signal. For the fluctvating signal, the probability densities are T T

",
LT

ot
\

p(4) = 22 e-a%lo? (57)
for the Swerling II case and
843 _ A2[02
p(4) = Tk 24%/0 (58)

for the Swerling IV case. The generation of a variable having the density given in Eq. (57)
is straightforward. Integrating Eq. (57), one obtains

Pu< A) = 1 - ¢-4%[a®
or

e~4%l0% = 1 - Pu<A). (59)

Now, the quantity 1 — P(u < A) is uniformly distributed between 0 and 1 and so can be
replacca by a random number u. If Eq. (59) is solved for A4, giving

A = o[-t (u)]'/2 (60)

then A is seen to have a Swerling II distribution. The power density for a Swerling IV
case is

. (61)

If 7 = xy + x5 and if p(x) = (2/0) exp (-2x/0), Z will have the density given in Eq. (61).
Consequently, if

1/2
A= {—% [ (uy) + Qn(uz)]} : (62)

A will have a Swerling IV distribution. With Egs. (55), (56), (60), and (62), a Monte
Carlo simulation was performed. The results are given in Ref. 55.

In Fig. 34, the fluctuating results are compared with the nonfluctuating results. This
figure illusfrates the fact that for a given number of samples N, the fewer the samples in-
volved in the detector (i.e., ng — ny + 1) the larger the required increase in S/N to maintain
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the log-normal (0 = 6 dB) distribution and for fluctuating
targets
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the desired Pp. For instance, to maintain Py, = 107% and Pp = 0.9 for N= 3 and a
Swerling II target, the mean detector (which uses all three samples) requires a 4.6-dB in-
crease, whereas the median detector (which was only one sample) requires a 6.0-dB in-
crease. Similarly, for N = 10, the mean requires a smaller S/N increase than the trimmed
mean,

e Since the binary integrator uses only one sample, like the median, this author be-

3 lieves it will suffer a “fluctuation loss” similar tc that of the median. Thus, for fluc-
tuating targets and log-normal density, the trimmed-mean detector is the most effective
one, the binary integrator is next, and the mediun is third, only slightly better than the
mean. Of course, for large samples, the behavior of the detectors for fluctuating targets
will approach the nonfluctuating behavior. Consequently, for large sample sizes, the
binary integrator and trimmed-mean detector are equivalent, and both are better than the
median, which in tum is better than the mean.

B. Contaminated-Normal Density

For the contaminated-normal model, the envelope-detected sample x has the density
function

2 72x2 —x2
%) = (1-7)2 == ex )+ ex (
p() = -7 -3 p( 202) KZg? P

- e 2( K2 22 —~
L2 - exp( %2(K +1)) I (x (X 1)>, 1)

Ko? 4K2¢2 4K202

reg

PR NS
(N

where v is the contamination fraction and K is the ratio of the standard deviations of the
two underlying Gaussian densities. Following Rice’s procedure [40]. we can show [56]
that the density function of a constant signal A in contaminated-normal noise is

,..._.,-_m.
-

&
47

"

2n
p(x, A) = p(x,A,0)do, (63)

where

3

YA

p(x, A, 0) = —*— 1 (1-v)2 exp[~(x2 - 2¢A cos + A2)/202]
2n02

.

e e e ey

r
et

2
+ % exp [-(x2 - 2xA cosf + A2)/2K202]

R

1- .
+ 13- exp [~(x2 sin20 — 2xAK2 cosf + A2K2 (64) %
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;

+K2x2 cos20)/2K202]

1 P
+ 'Y(Tﬂ exp [-(x2 cosf - 2xA cosl + A2

+K2x2 sin20)/2K202]} . (64)

Various detectors will now be evaluated using the contaminated-normal model.

1. Mean Detector

The threshold T for a desired Py, and the Pp have been calculated using the charac-
teristic function approach given by Egs. (40) through (43). The thresholds for v = 0.25
and K = 2.25 can be found in Ref. 10, and the detection curves for N = 1, 3, 10, and 30
pulses are given in Fig. 35, where S/N is still the signal divided by the median clutter,
which for this case is 1.416. Two points should be noted: (a) the integration gain for
the contaminated-normal density is greater than for the Rayleigh density, but less than for
the log-normal density; (b) comparing Figs. 22 and 35 shows that the contaminated-
normal model requires considerable less signal strength then the log-normal model to ob-
tain the same probabilities. The curves for N =1 and 30 and Py, = 10-6 are shown in
Fig. 20.

2. Binary Integrator and Rank Detector

The threshold values and the Pp can be found with Egs. (44) and (45), by using
Egs. (63) and (64) for p(x, A). The threshold values are given in Ref. 45, and the detec-
tion curves for N = 3 and 30 for the median (k = N/2) and 33d percentile (k = N/3) are
shown in Fig, 36. The following observations can be made.

1. Whether the 33d-percentile value or the 50th-percentile value (median) is better
depends on Py, and Pp. For the values of Py, and Pp investigated, there is only
a 1-dB difference between the two. Furthermore, since the difference is so
small, only a minor improvement can be made by finding the optimal rank.

%

et

bty
e

ST

2. For a fixed Pp, as Py, becomes smaller, the 33d percentile becomes the better
detector.

P
by}
A
KN

3. For a fixed Py,, as Pp becomes larger, the 50th percentile becomes the better
detector.

Comparing the mean and median detectors in Fig. 37, one concludes that the mean re-
quires a smaller 5/N than the median. However, the difference decreases with increasing

N. For N = 8, the mean is about 1 dB better than the median; for N = 30, the mean is S )

less than 0.2 dB better than the median. The performance difference between the two P e

detectors for large sample sizes can be obtained from the ARE. In Appendix C, it is C:;‘ PR

shown that the ARE of the mean with respect to the median is 1.76. If a noncoherent oS
f‘dp'
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integration gain of 10 log+/N is appropriate for small signals, the median is approximately
1.2 dB better than the mean for very small signals.

3. Trimmed-Mean Detector

With the previously outlined procedure of Ref, 49, a Monte Carlo simulation was
performed. For Ny = 2 and N, = 5, the equation

~log Py, = -1.691 + 0.3123T + 0.0308T2, (65)

relating the threshold T to Py,, was obtained for the contaminated-normal model, with

v = 0.25 and K = 2.25. The Pj; curves were generated using Monte Carlo techniques; the
results are given in Fig. 38. Again, the detector with the smaller ranks (Ny = 2 and

Ny = b) is the better detector. Comparing the trimmed-mean detector’s performance with
that of the mean (Fig. 35) indicates that the trimmed-mean is the better detector, re-
quiring 0.5 to 1 dB less S/N than the mean.

- 4. Fluctuating Targets

g The Pp curves for fluctuating targets are generated by the Monte Carlo method dis-
¥ cussed in the previous section on the log-normal method. For the contaminated-normal
model with paramcters K and v, the in-phase and quadrature-phase components are
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y; = [-2% (u;1)) /2 sin (2mu;5)S(u;3) + A

z; = [~28n (4;1)1Y? cos (2mu;9)S (u4) (66)
Ko, u; <2y
] S(utl) =

g, u,-]->'y,

where {u;j} are independent, uniformly distributed, random numbers on (0, 1). Using
Eqs. (55), (66) in place of (.6), (60), and (62), a Monte Carlo simulation was
performed; the results are given in Ref. 55. In Fig. 39, the fluctuating results are com- =
pared with the nonfluctuating results. This figure illustrates the fact that for a given R
number of samples N, the smaller the number of ranked samples involved in the sum R
(ng — ny + 1), the larger the required increase in S/N to maintain the desired Pp. That
is, the median suffers the largest “fluctuation loss,” the trimmed mean the next largest,
and the mean the smallest. Thus, for fluctuating targets and contaminated-normal
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densities, the mean is the most effective detector, the trimmed mean is the next best, and
the median the least effective.

[}

L

C. Pulse-to-Pulse Processing

n..,,..,.-
s A

Trunk [39] investigated the problems associated with pulse-to-pulse processing of : ’
data taken with a high-resolution radar. His results are summarized in this section. It O AN
should be noted that if integration takes place during a single scan, the detection curves : "
(given in Secs. V. A and V.B) cannot be used, because the integrated samples are not
independent samples from p(x). If they are used, a higher number of false alarms than
predicted will occur. To illustrate this, the threshold values for N = 3 and Py, = 1072,
and 10~3 were taken from Ref. 10. Letting S; be the sum of three samples taken 12.5 ms
apart, we calculated 3,000 values for Sj from the FHR data (run 1153, HUS [10}). The
sums were compared to the thresholds and Pfa values of 0.15, 0.016, and 0.0032 were
obtained. Thus, the Py, is higher than predicted; the relative error becomes larger for
smaller Pr,. The only way of calculating the correct thresholds for a detector summing
N pulses per scan is to calculate (approximate, as in Sec. IIL.A) the density of S; rather
than that of x;. While Trunk approximated a density of S, for the HUS case, he noted
that adaptive thresholding was a more fruitful method.

2Ty

A common adaptive thresholding technique is the cell-averaging constant-taise-alarin-
rate (CFAR) method considered by Finn and Johnson [5§7]. Their detector for the jth
range cell can be written as a ratio,

N
1 £2
N iy
- =1
E; = A ’ (67)
2MN QZ Z (x5, jee1 * %P jog-q)
=1

1

[}

where x;; is the ith envelope-detected sample in the jth range ~ell. (The samples on either
side of t‘xe test cell are not used because when a target is present, the Gaussian pulse shape
causes target returns in the adjacent cells.) A decision is made by comparing R: to a thresh-
old T(CFAR). This detector provides CFAR when the noise samples are Rayleigh distri-

buted. The threshold T(CFAR) is a function of the number of reference cells and ap- X 4,

proaches the threshold T (which is the threshold if the o of the Rayleigh density i known .,.“,L...L

a priori) as the product MN approaches infinite. The difference in S/N caused by 7'(CFAR) "“-"’ 'y

being larger than T is called the “CFAR loss.” It can be found in Mitchell and Walker [58] 5

and it is given in Table 14 for N = 3. Thus, to minimize the “CFAR loss,” one wants M as

large as possible.

v 'd,

Unfortunately, if one views the clutter in Fig. 40, which was generated by assuming E: : s

the sea to be frozen and converting time data in Fig. 8 to spatial data, one sees that the B

e m
‘g

return goes from a minimum to a maximum in 30 or 40 ft (9.1~-12.2 m). Therefore, RO
Trunk [39] suggested setting M small to detect in the nulls of the sea clutter (for targets S
that are not shadowed, i.e., low-flying targets) and evaluating the detector with M = 1 and
actual clutter data. First, if x;; are independent samples from the conditional dersity
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p(xlo), which is Rayleigh, then the density of R, under the assumption of no signal present,
is the F-distribution with 2N and 4N degrees of freedom. The thresholds can be found in
Ref. 24. Since it has been assumed that p(x|o) is a Rayleigh density, x,zj has a chi-squared
density with two degrees of freedom. If the chi-densities obtained in Table 4 were used,
the degrees of freedom for the F-distribution would be greater than 2N and 4N. Conse-
quently, the threshold obtained from Ref. 24 would be lower. Thus, we see that the
Rayleigh assumption is a conservative approach: the actual Py, will be lower than desired.

To calculate the Pp of the detector, a Monte Carlo simulation that used actual clutter
data (run 1153, HUS [10]) was performed. The output of the cell containing signal was
generated by

z% = (2 cos; +A)2 + (2 sin(),-)2 (68)

where xij is the actual FHR data sample, A is the nonfluctuating target amplitude, and

6; is a random number uniformly distributed on (0, 27). The detection curve for N = 3
and Py, = 1076 (which was derived from 512 cases) is shown in Fig. 41. The ratio detec-
tor is compared to the one-pulse detector (i.e., x; is compared to an appropriate thresh-
old) and the three-pulse integrator

3

= 2

S =0,
i=1

is compared to a threshold, assuming that p(S;) is known a priori. (This is equivalent to
a ratio detector with M = o). The ratio detector is better than the three-pulse integrator
except for Pp > 0.96, in which case the integrator can be 1.2 dB better.

The explanation for this is that when signal strength is fairly low, the ratio detector
can detect signals in the null of the clutter. On the other hand, when signal strength is
high, resulting in high Py, signals must be detected in all regions, including the high-
clutter region. However, in the high-clutter regions the three-pulse integrator is better,
since no CFAR loss is suffered in estimating the threshold. While the Pp is fairly low for
low S/N, it should be noted that this Pp is for a single scan. It can be improved by using
scan-to-scan integration or a binary integrator. It should be noted from Table 14 that the
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\ ratio detector with M = 1 incurs a CFAR loss of 7.8 dB. If the geometry of the situation
y (the range resolution with respect to the water wavelength) permits M to equal 2, the
E CFAR loss can be reduced to about 4.0 dB.
3 VI. SUMMARY

When the range resolution of a radar becomes less than the water wavelength, the
probability density of the radar echoes from the sea has a longer tail than the Rayleigh
density. This non-Rayleigh density p(x) has been approximated by the log-normal and
contaminated-normal densities. However, p(x} is neither of these densities. Rather, the
non-Rayleigh nature of p(x) is due to a spatially varying density p(xlo). The density of
p(x) can be expressed as

px) = f p(xlog)p(og) do

where p(6() is the probability density .f 0¢ and is related to the low-frequency sea spec-
trum (i.e., large wave structure). The conditional density p(xlog) is a Ricean density and
the dominant scatterers are associated with return from breaking, or near-breaking, waves.
From the analysis of variance, the following conclusions were drawn about the effect of
various parameters on the density p(x):

1. Data taken with horizontal polarization have a large clutter spread than those
taken with vertical polarization.

2. L-band data have a larger clutter spread than X-band data. This is true for very
high sea states and may be true for lesser sea states.

3. Upwind and downwind data have a larger clutter spread than crosswind data.

4. Small-pulse data have a larger clutter spread than large-pulse data. However,
if the pulsewidth is smaller *han the water wavelength, changes are no longer
significant. (This ignores the extremely small (5 ft by 5 ft; 1.5 m by 1.5 m)
resolution cells.)

Analysis of variance was also applied to the conditional density p(xlog), and the follow-
ing conclusions were reached:

1. Data taken with vertical polarization follow more closely the Ravleigh distribu-
tion than horizontal-polarization data, which are more Ricean.

2. Large-pulse data are more Rayleigh, while short-pulse data are more Ricean.
3. Wind direction has no effect on p(xlog).
A simulation of the sea surface has been developed. It has been used to predict the

variaticn of p(x) and p(0y) with various radar parameters. The simulation has also been
used to ¢’ :wate the probability that a small surface target is being shadowed and to
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show that the times that the target is not shadowed are correlated with large clutter
returns.

Various problems associated with detection of targets have been investigated. Using
samples separated by about 10 ms (the decorrelation time usually stated for X-band sea
clutter return) or employing frequency diversity produced independent samples from
p(xlag), not from p(x). Independent samples from p(x) can be obtained only by col-
lecting samples from different scans. Since p(x) has been modeled by log-normal and
contaminated-normal densities, det :ction curves for these two densities have been gen-
erated for the mean, median, binzzy integrator, and trimmed-mean detectors for fluc-
tuating and nonfluctuating targets using independent samples (scan-to-scan processing).
Overall, the trimmed mean detector is the best. However, because of implementation
problems, the appropriate binary integrator should be used. If pulse-to-pulse processing
is used, it is recommendad that if the target is above the surface a small number of refer-
ence cells be used, so that the target can be detected in the clutter nulls. On the other
hand, if the target is a small target on the surface, it can be shadowed and the sea surface
simulation must be used to evaluate detector performance.

AT Cli TN
L P « & & &

-
l'.n

The question of what polarization should be used remains. Croney and Worcncow
[59] recommend vertical polarization, and Trunk and George [10] recommend horizontal
polarization. This author believes the question is now open; no generalization can be made.
Depending on radar parameters, data-processing constraints, and environmental require-
ments, either horizontal or vertical polarization could be used. However, in general this
author favors vertical polarization because of the fase-alarm psoblem associated with the
sea spikes attributed mainly to horizontal polarization.
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Appendix A
ANALYSIS OF SPATIALLY VARYING RAYLEIGH MODEL
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It can be shown from the frequency-diverse FHR data that the conditional density
p(xlo;) is not a Rayleigh density. If x; and y; are the independent backscatter samples
from the two frequencies, the conditional densities of the samples are

X
p(x;l0;) = — exp(- «F/207) (A1)
Ce

H

and

Yi 2192
py;loy) = — exp(- ¥;/207), (A2)
o
1
where 0; is a random variable. The same g; can be used for both frequencies, since the

time separation (1/2560 s) is very small and the frequency difference, of the order of the
reciprocal of the pulsewidth, changes g, only slightly.

Since 0; changes rapidly with time, only a few samples of x; and y; are available for
a fixed 0;. Consequently, a ratio 2; = x;/y;, whose density is easily shown to be

p(z;) = 22;/(2F + 1)%, (A3)

is formed. The ratio p(2;) is independent of 0;. Thus, even though o; changes, all the
samples can be used to test whether Eq. (A3) gives the correct density for the ratio. From
the FHR data, the sample distribution of independent 2; (constructed from 1,024 samples
taken 12 ms apart) was compared to Eq. (A3) using the Kolmogorov-Smirnov (X-S) one-
sample test.* The results of the test are shown in Table Al; D is the maximum difference
between the sample and theorized distributions and Py, is the probability that the dif-
ference will be less than D when the theorized distribution is the true distribution. All 12
cases are rejected at the o = 0.002 level (i.e., Py = 0.998), indicating that x; and y; are
not indepei.dent random variables of a conditional Rayleigh density. However, the sur-
prising thing is that the sample density is more peaked (has a narrower spread) than Eq.
(A3). This indicates that either x; and y; are correlated, or the density of x; and y; is
more peaked than a Rayleigh density, like a chi or Ricean density.

However, it can be shown that the first of these explanations is not possible. To
test whether correlation between x; and y; can account for the observed peaked sample
density of 2z, one must calculate the density of 2 when x and y are correlated Rayleigh

*8.S. Wilks, Mathematical Statistics, Wiley, New York, 1962.
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Table A1 — Test of FHR Data
for a Conditional Rayleigh
Distribution

Identifier | D Pp

VUL 0.081 | 0.999
HUL 0.080 | 0.999
VDL 0.059 | 0.998
HDL 0.093 | 0.999
HDS 0.224 | 0.999
VDS 0.161 | 0.999
VCS 0.152 | 0.999
HCS 0.166 | 0.999
VCL 0.059 | 0.998
HCL 0.133 | 0.999
HUS 0.192 | 0.999
vUs 0.136 | 0.999 |

random variables. Let the in-phase and quadrature components of x and y be x,, X, Yo
and y ; let the in-phase components be independent of the quadrature components and
let both have correlation p. The joint density of the components, then, is

expf- (xf -2px,Y,

PXy Xy Voo ¥o) =
OETETC (2m2( - p?)
+y2 + 22 - 2px.y, +3)/2(1 - pH)]. (A4)

Using transforms x, = x sin 0, x, = x cos 0,y, =y sinv, and y, =y cos v, one obtains

exp {-[x2 + y2

plx, 3, 0,7 =
@2m2(Q1 - p?)

~ 2pxy (cos 6 cos vy +sin 0 sin 7)1 /2(1 - p2)}. (A5)
Letting & = 6 - v and 8 = 6 and in‘tegrating reveal that
~2

J

i
f exp [2pxy cos (8 - 7)/2(1 - p?)] dex dy
0

2n
= f fexp [2pxy cos af2(1 - p2)] do dp
0
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Consequently, the joint density of x and y is i-_::‘-:-:d o 3

g
RS S L,
A s
e

(<

plx, y)=

exp [-(x? +y2)/2(1 - p2)]1, ( Py ) . (A7)

2) l-p2

1-p

Letting z = x/y and R = y and integrating over R produces

0o 2 2
)= [ EZ exp - R2+ 2201 - g2, (2R . (A8)
0 (1-p2) O\1-p2

To, evaluate Eq. (A8), we use the series expansion of I,.
k
(=)
<\ 4

L)= Y i (A9)
0 RZ;O (k1)

By substituting Eq. (A9) into Eq. (A8) and letting A = (1 + 22)/(1 - p2)and B = pz/(1 -~
p2), we find the kth term in the series to be

z B%*
1-p2 228(k)?

f R***3 oxp [- AR2/2] dR. (A10)
0

Integrating by parts 2k + 2 times yields

z B[22kl (9p 4 1)1
1 _p?> 22k(k!)2 A2k+2

. (A11)

Substituting for A and B gives the density of z as

2(2k + 1)t p2k(1 _ p2)22k+1

p(2) =
B0 (RDE (14222

(A12)

The FHR data were used again. This time they were compared to Eq. (A12). The
K-S results are presented in Table A2, where “Opt p2* is the value of p? at which the
minimum D is obtained. (The only values of p2 used were 0.0 to 0.4, in steps of 0.1.)
Since (a) only 4 of the 12 cases are accepted at the o = 0.1 level, (b) the maximum cross-
correlation calculated for this data is 0.1, (c) Pidgeon reports a maximum correlation of

.- e W - - AL ML M TR M, TL TN AL LTI TR T WS e,
e TR M TN TR T T R T AT e TR T T T e s el s el 7 AL T Ty S0 Lo v St N TR
i~ _“—;-; e WA Nt AR RS d = o b MR

AT . O
PCSERRCRIAEIA, CE St R A5 N R T
e I B e - - - P -y ¥ -




s PR 34 1 Pa R Pl W B

s Xal Sl Tl Bl . ™ 3 ; - P - oW e &
A
) 5
LS SR

GERARD V. TRUNK

Table A2 — Test of FHR Data for a
Correlated TVR Distribution

Identifier | Optimum p2| D | P,
VUL 0.4 0.015} 0.037
HUL 0.3 0.042| 0.951
VDL 0.3 0.027 0.558
HDL 0.4 0.037} 0.879
HDS 0.4 0.138| 0.999
VDS 0.4 0.077] 0.999
VCS 0.4 0.069 | 0.999
HC3 0.4 0.088| 0..-:
VCL 0.3 0.0310.749
HCL 0.4 0.046 | 0.974
HUS 0.4 0.104 | 0.999
vUS 0.4 0.060 | 0.998

0.2 when the frequency difference is the reciprocal of the pulsewidth,* and (d) the
smallest “Opt £2” was 0.3, the hypothesis that x and y are correlated, Rayleigh-distributed,
random variables must be rejected. It is worth noting that the value of p“* was set by
minimizing D; a procedure which biased the test in favor of acceptance.
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*V.W. Pidgeon, “Time Frequency and Spatial Correlation of Radar Sea Return,” Proc. Amer. Astronaut,
Soc. Symp. (Boston, May 25-27, 1967), in Use of Space Systems for Planetary Geology and Geophysics
The Society, Tarzana, Calif., 1968, pp. 455-458.
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Appendix B
BRIEF DESCRIPTION OF ANALYSIS OF VARIANCE

The analysis of variance (ANOVA) procedure will be demonstrated by finding the
variation of the clutter distribution with changing frequency and azimuthal squint angle.
As shown in Table B1, the distribution can be represented by a single number ¢. In
analysis of variance, the data 0y, are represented by a linear model which consists of a
mean y, a frequency effect F, an azimuthal angle effect A and a random error €;;;,, such
that

i=1,.,Np

‘-\ .'o *

k=1,.., Ny

»

et

)

where Ny is the number of frequencies, N, is the number of azimuthal angles, Ny, is the
number of repetitions of each frequency azimuth . ise,

'l

willa? 0%

Np Ny
Z F;=0, Z 4;=0,
i=1 =1

and €,;, are independent Gaussian random variables with mean 0 and unkn>wn variance 2.
The significance of a change in frequency is checked by tes ing the hypotheses,
Hy:F;=0, foralli(no frequency effect present)

H,:F;#0, forsome i (frequency effect present),

using an F-test (an optimal test for the equality of unknown variances). The test is per-
formed by takmg the ratio R of two statlsmcs, S , an unbiased estimator of A% + 4(Fy -
F, )2, and S an unbiased estimator of A2, Under H, the ratio has an F-distribution,
and under I-I1 the ratio has a noncentral F- dlstnbutlon. For a type-I error of 0.1, the
threshold value is found in Duncan to be 3.2.* In Table B2, R = 55.8; consequently, the
null hypothecis is rejected. That is, a frequency effect is present. The procedure is re-
peated for the azimuthal angle, and the effect is not significant. Interactionst were found
not to be significant at the 0.1 level in this or any other data used in this paper. Conse-
quently, to avoid unnecessary complications, the results of interactions were not men-
tioned in the report. Further details about analysis of variance can be found in either
Duncan* or Fisher.T.

*A.J. Duncan, Quality Control and Indusirial Statistics, Irwin, Homewood, 1., 1959.
R.A. Fisher, Statistical Methods for Research Workers Oliver and Boyd, Edinburgh, 1941.
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GERARD V. TRUNK

Table B1—0 in Decibels of the Fitted Log-Normal Distribution*

L ¢ ]
4 FR Radar Azimuthal £ ;aint Angle
Parameters 0° 15° 30° 45°
Frequency
L band 6.1 6.0 5.4 5.7 5.5 6.3 6.1 5.6
X band 4.8 4.4 4.9 4.3 4.6 4.5 5.0 4.7

*From reference [16].

Table B2—Results of Analysis of Variance: The Effect of Various
Parameters on the 4FR Clutter Distributions*

Effect Mean Square Variance Ratio Conclusion
Frequency Sl?» = 5.640 S}/S? = 55.84 | Frequency effect is present
Azimuthal angle S? = 0.062 S#s? = 0.61 | Azimuthal effect not present
Sampling error SZ = 0.101

*From reference {16},
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Appendix C
ASYMPTOTIC RELATIVE EFFICIENCY OF MEAN
AND MEDIAN DETECTORS

The asymptotic relative efficiency (ARE) can usually be calculated rather easily by
employing a concept known as efficacy.* That is, the ARE of two detectors d; and d,
is

Yo e
»

Fo)

P¥
o

P

&
ARE (d,, d,) = -5—2— (c1)
1

where &, is the efficacy of detector d;. Specifically, given a binary hypothesis-testing
problem (Ho:A = Aq vs Hy:A >Ayp), if the detector d; is based on a statistic T;, = Ty(x4,%3,
s X,) and if E{T; } = ¢, (A) and Var{T } = o‘?n(A) and m and § are defined by

. Uin(Ag) = . = 9140 = 0, Yi™)(4) > 0 (C2)

where
' o™ Y. (A)
Vi (4g)= ———
0A™ A=Ay
and (m)
it (A,)
lim n-md 0% o5, (C3)
n-> ain(AO)

then the efficacy of detector d, is

wgzn )(Ao) 1/mé
0;n(4g) ’

(C4)

subject to certain regularity conditions.” When dealing with the class of translation
alternatives, the following conditions generally apply: m =1, § = 1/2, and the evaluation
of Eq. (C4) is very simple. However, when dealing with other alternative classes (e.g.,
noncoherent detection), generally m = 2, § = 1/4, and the evaluation of Eq. (C4) is not
always simple. ‘

*E.J.G. Pitman, “Lecture Notes on Nonparametric Statistical Interference,” Columbia University, Spring
1948,
1'G.E. Noether, “On a Theorem of Pitman,” Ann. Math. Statist. 26, 64-68 (1955).
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An expression for the efficacy of the mean against the log-normal density is derived
from

2 0
[0‘1 _8_?:2— f xp(x, A)dx] (C5)
0 A=0

by taking the second derivative inside the integral and dropping terms that when evaluated
at zero signal strength are zero. The efficacy of the mean can be written as

" fT" Fi() 4(02 -1) . 16(02 n x + (2 22)

6. =
0 02x3 04x3

2
X (2m02)"2exp [- 2(2n x)%/02]) dx| , (C6)

whell}ez, for the efficacy of the sample mean, F, (x) = nx, Ty =, and g, = [ne"z(e"2 -
1)]%4,

The expression for the efficacy of the median is derived by first noting that making
a decision when the median is greater than a threshold value T is entirely equivalent to
making the decision by counting the number of samples greater than 7. Thus, as the
number of samples approaches infinity, T approaches the median value of the distribution,
since the median detector is consistent. Hence, if

X
m
E{T,}=np=n f p(x, A) dx, ((o1))
0
the efficacy of the median is

2 212
6, =n [‘a ploA )] (C8)

05w J
which reduces to Eq. (C6) with Fy(R) =1, T, =1, and 02 = 0.5/\/n.

Now, if one repeats the previous procedure, one obtains for the efficacy of the mean
against the contaminated-normal density

T,
i . PRV 2 2
6. = f F.(x) Q_J.)_ -1+ ;x__ exp _x_
J ¢ 4 2 2
0 o 20 20

+ X i1+ X Jexp(= (C?)
(Continued)
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n/2 2 el
+ 2v(1-7) f [(_1+ x“ cos 0>
0

Knod o2

X exp <‘ [x% + (K% - 1)x? cos? 0])

2K2¢2

sk o1+ x2 cos? 6
K262

22 2 2 2 2
X exp (-(x K% - (K -1)x* cos 0)\]‘10 }iif__) (C9)
2K202 / 0;

where F, (x) = nx, T} = o, and 0, is the standard deviation of the sample mean for the
noncoherent contaminated-normal distribution with A = 0, which is (12 - 1r/2)1/2 o/n
for v = 0 and is 1.11 oy/n for v = 0.25 and K = 2.25. The latter value for g, was
found by numerical integration.

The efficacy of the median against the contaminated-normal density reduces to Eq.
(C9) with #,(x) = nx, T, = the median value of the noncoherent contaminated normal
distribution (whick is (2 % 2)!/2 ¢ for v = 0 and is 1.410 for ¥ = 0.26 and K = 2.25),

and 0, = 0.5¢/n.
For the Rayleigh case (v = 0), the integral in Eq. (C9) can be performed. It yields
% mn

= m = (0.915n

&1

and
6, =(fn 2)%n = 0.48n
for the efficacies of the mean and median, respectively. The ARE is

6
ARE (median, mean) = -éf = 0.525.
1

This implies that in the limit as A = 0, in order to maintain the same probabilities of
false alarm and detection, the mean requires only 52.5 percent as many samples as the
median. Thus, the mean is the better large-sample detector for the Rayleigh distribution.

For the noncoherent contaminated-normal (y # 0) and the log-normal densities, -
Egs. (C6) and (C9) have been evaluated numerically; the results obtained are given in
Table C1. These show that, in all cases, the median is the better large-sample detector.
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Table C1 — Asymptotic Relative Efficency of the Mean
and Median Detectors

L Efficacy of Efficacy of
Distribution Sampled Mean Median ARE
Log-normal (0 = 3) 0.286n 5.334n 18.6
Log-normal (0 = 6) 0.0103n 1.333n 129
Contaminated-normal
(y=0.25 and K = 2.25) 0.0137n 0.0238n 1.76

e e
. *n

E. K. AL Hussein* has solved the integral in Eq. (C9) for &, and has )btained

e

&, = 8n/mo?, (C10)

R AR LE R T

Substituting 0 = 0.23030(dB) into Eq. (C10) with 0 = 3 dB and ¢ = 6 dB, one obtains
5.834n and 1.333n, respectively.
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*EX. AL Hussein, Cairo Univeriity, Giza, Egypt, in a letter received April 8, 1976.
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Appendix D
IMPORTANCE SAMPLING

Ll b p el e el ety e 00

T

l:‘:':: vy -\; - ',:;:

A straightforward method of dstermining the required threshold for a giver P, is to GQ;?-Q-:;'&L
perform a Monte Carlo simulation. Unfortunately, for P, = 10-8, more than one million
repetitions would need to be run, and the computation time on any c.»nputer would be
large. However, a simulation that uses importance sampling can be used.* The main pur-
pose of importance sampling is to modify the probabilities that govern the outcome of
the basic experiment of the simulation so that the event of interest (i.e., a false alarm)
occurs more frequently. This distortion is then compensated for by weighting each event
by the ratio of its probability if the true probabilities F.ad been used to its probability
with the distort=d probabilities. Consequently, by proper choice of distorted \-robabili-

ties, the number of repetitions can be reduced greatly. For instance, in estimating the
mean of a function Q(x)

E[@(x)] = fﬁ?{x) dP(x), (D1)

ey e rame— o

where P(x) is the distribution of x; the mean can be estimated by selecting m independent

samples x; from P(x) and associating the probability 1/M with each event. Then, E[Q(x)]
can be estimated by

. -
.

M

1)
[y

1

i

The importance-sampling technique used the Radon-Nikodyn derivative to express the
mean value of Q(x) by

(ot 22
ELQE)1 = [Q) 3575 d6(), (D3)

where G(x) is a distribution function. Now, £[@(x)] can be estimated by selecting M
independent samples from G(x) and associating the probubility dP(x;)/MdG(x;) with
event @(x;). Thus, E[Q(x)] is estimated by

&~ i(x -"G(xi) . (‘- )

R

*F.S. Hillier and G.J. Lieberman, Introduction to Operation Research Holden-Day, San.Francisco, 1967,
pp. 457-459.
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Since Eqgs. (D3) and (D4) are both unbiased estimates of Q(x), it is possible to select
G(x) so that the variance of Eq. (D4) is less than the variance of Eq. (D2).

To illustrate, let us generate the distribution function (and hence curve of threshold
Tvs Pf ) for the trimmed-mean detector against the log-normal density with 0 = 6 dB. Wy
If {u,-jf1 are independent and uniformly distributed on (0, 1), then the variables {xi}, By
such that "."_\\Vf“‘:_ X

e St

x; = exp{o[- 2 fn(u;;)11/2 sin (271u;5)}, (D5) e

I3

2
A
Rcr
ol
2

P
XA

<
e R
F. '.z“;
4

v

have a lognormal density,with x_ = 1. Recalling" th.at the ¢ in Eq. (D5) is in natural
units (¢ = 0.23030 (dB)), choose 0y, which is greater 1han ¢. To simulate the trimmed
mean for n, =2, ny = 5, and N = 10, generate 10 samples x;, using Eq. (D5) with o
replaced by 0y;. Order the {r;} and form the sum

g
'

i= Yy

Since this procedure is repeated M times, denote log-normal samples by x;; and trimmed-
mean samples by S;. The estimated curnulative distribution of Sj for the l’og-normal

model with parameter o is
1 M
i’(sj <7T)= M Z 5jpj (D6)
j=1
where
1 Sj <T
5; = (D7)
0 S; >T
N 2 exp{-2[n(x;)] 2102} (27"02":,')” 2
p; =
1710 2 expl- 28n(x;)) 2 lofH(2nofx,)
This reduces to

N N
) (2 2) 5 panen® . o8
=1

p.=|—] expjl— - .
A lof{ o2 {

While, a priori, the desired value of oy is unknown, an appropriate value can easily be
found since the variance of the estimate p(T) is given by
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*S,F, George, “The Detection of Nonfluctuating Targets in Log-normal Clutter,” NRL Report 6796, Oct.
4, 1968.
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1 M
= ), (8P =p(T)?). (DY)
M° =3
That is, every value of o;; allows us to calculate the density accurately in a particular
interval. Ejuation (D9) is used to find the accurate interval. A much simplier heuristic
method is t> plot i)(sj < 7). In the regions where the function is smooth, the estimate
is accurate.
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