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ABSTRACT

A comparative study is made on the realizability conditions of

various special cases as well as the general case of the positive-real

biquadratic functions. Computer programs are written for this study to

illustrate the realizability regions of zeros (or poles) of the functions,

A limited study is also made on the sensitivity of the function to

variation of element value in a realization.
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I. INTRODUCTION

The problem of realizability of biquadratic functions as driving

point immitance has been studied by a number of investigators [1] - [11],

with realizability conditions given for various special cases as well as

for the general case of biquadratic functions. It has been proved [10]

that, given a pair of poles, the location of the zeros are limited by

two curves, one of which is the locus of the zeros such that the biquad-

ratic function is a minimum positive real function.

In Chapter II of this paper, various realizability conditions are

reviewed and illustrated. FORTRAN programs are written in Chapter III

for illustration as well as comparison of different cases.

Many forms of realizations of positive-real biquadratic functions

are well known. Some of these forms are utilized, in Chapter IV, to

study the sensitivity problem related to the realizability of the

function. The method of graphical representation by Chan [13] is applied

in this study. A computer program is written for the illustration of

the variation of sensitivity phasors [13] as functions of element values.

Finally, in Chapter V, a discussion on the results is made together

with some suggestions for further studies.



II. REALIZABILITY CONDITIONS

A. INTRODUCTION

Consider a general biquadratic function

2 2
s ^2a

z
s + a>

z (s ^
s
2 + 2os + .

2 (• + P
fX- + P-)

(1)

P P

2 2 2 2
-to +2aj(jj + a) (a) - u ) + joo2a

za») = — -
1 = —|—

§

" • (2)

-a) + 2a iaj + a) (u — u ) + ioj2a
P P P P

It has been investigated by Chan and Phung [10], that a biquadratic

function Z(s) as given in equation (1) with conjugate-complex zeros in

the open half plane is realizable as a driving point immitance with

passive one-port if and only if the zeros are located either on the

curve C or C. or inside the area delimited by curves C and C, whoseox o 1

polar equations are given respectively by

max a) =oo + 2a cos
<J>

+ 2 | a_ cos <j)_(a_ cos <j>_ + u)_)
|

(3-a)
z p p z

and

Min oj =oj + 2a cos 4-2
z p p z

[a cos
<J>

(a cos <j> + u )
P z p

y
z p

y

J

r • 1 *
a cos 4 (a cos

<J>
+ to ) (3-b)

P z p z p

where i denotes the compliment of the argument of the zero z , such

that
a =oj cos <$>

z z z



Figure 1

B. NECESSARY AND SUFFICIENT CONDITIONS

To obtain the real part of Z(jto) of equation (2), multiply and

divide this equation with the conjugate of the denominator, so that

Re

(tO - 0) ) (O) -0)) +
zaw) = -J

I
iL-n

—

2 2W 2 2N . . 2
4o a u

P z

2
4a a)

P

(5)

Z(s) is positive real if the numerator of expression (5) is nonnegative

for all values of u, that is

xt/ 2 n 4 2 , 2 ^ 2
/ x _, 2 2

N(oj ) = to -co (a) +w - 4o o ) + a) to

z p z p' z p
(6)

Now we have the following two conditions [10,]:

Condition-1

2
N (oj ) has complex or equal positive real roots,

Condition-2

N (to ) has nonpositive real roots.

2 x .Condition-1 implies the discriminant of N(oo ) is negative or zero

i.e.

2 2 2 2 2
D = (oj + oj - 4a a ) - 4to oo ^ (7)

z p z p z p



or after factoring we get

r 2 "in 2 i
u»x

-ho
p
) - 4vPJ [_

(M
2 - V " VpJ * ° ; (7"a)

thus condition-1 is satisfied if

2 2
(a) - id ) ^ 4a a < (a) +oj ) . (7-b)

z p' z p z p' v y

The right hand inequality is shown as strict since inequality corresponds

to real roots which would in this case be nonpositive, which is a

violation of condition-1.

Next, condition-2 implies the following two conditions simultaneously:

Condition-2a

D > .

Condition- 2b

2 2(jj+a)-4aa^0
z p z p

It can be seen that both conditions 2a and 2b are satisfied if

2
4a a >, (w + u ) (8)

z p ^ z p

With equations (7-b) and (8) we obtain the necessary condition for positive

realness of Z(s) to be

(u - oj )

2
>$ 4a a . (9)

z p' ^ z p

Now suppose that equation (9) is satisfied with the equality sign.

2
Z(s) is then a minimum positive-real function since N(o) ) has a double

positive root u., where

2
a). = 0) a) . (10)
l z p

10



Next suppose equation (9) is satisfied but not necessary as an equality,

then
2

(to - (JJ )

°«>
Z

4o
P

•
(11>

The necessary and sufficient condition obtained in the above discuss-

ion can be conveniently and geometrically interpreted.

Suppose that the zeros z' and z" are conj ungate complex with negative

real parts and the poles p' and p" are similarily located in the open

left half plane.

Let

a =co cos 4> (12-a)
z z z

where & denotes the compliment of the argument of the zero z'.
z

If oj > u , then we let oj = oj + u (12-b)
z p z p o

If uj -S w , then we let w = co - u. (12-c)
z p' z p 1

substituting equations (12-a) and (12-b) into equation (9) , and after

rearranging we get

2
' '

u - 4a (cos d> ) u - 4a a cos 4> < (13-a)
o p z o p p z

and substituting equations (12-a) and (12-c) into equation (9) we get

2 ' '

u. + 4a (cos <b ) u. - 4a a cos <j> < . (13-b)
i p

Y
z i p p z

Both polynomials in the left hand sides of the inequalities (13-a) and

(13-b) have a positive real root and a negative real root, so that these

11



two conditions will be satisfied if u and u. are nonnegative and smaller

than or equal to the positive-real root of the left hand side polynomials

in (13-a) and (13-b) respectively.

Thus solving for the positive real root and then substituting the

result into equations (12-b) and (12-c) gives, for each value of
<f>

>£ 90°,
z

the maximum and minimum values of to , for which the necessary and suffi-

cient condition for the positive realness of Z(s) is satisfied.

Alternatively, we substitute equations (12-b) and (12-c) into equation

(9) and get

2
u - 4a a >$

z p

and

2
u. - 4a a >< .

i z p

Solving these two equations for the positive real root and substituting

the results into the expression for to , gives the maximum and minimum

values of u for which the positive realness of z(s) is satisfied.

Thus we have in this case the two equations

max to =oo+2 vaa (14-a)
z p z p

and

min to = to - 2 /a a . (14-b)
z p z p

Note that these equations will give the same results as equations (13-a)

and (13-b) when poles of Z(s) are complex, and will also give the

realizable area of zeros of Z(s) when the poles are real.

Thus given Z(s) with complex conjugate poles in the left half plane,

or with negative real poles, Z(s) will be realizable if the zeros of Z(s)

are complex and lie on or within the curves of equations (14-a) and (14-b)

12



In the special case where Z(s) has real poles and complex zeros,

it has been shown that z(s) can be realized by a five element series

parallel circuit [11].

The key restriction in this case is given by

p" (p" - p') - (z' - p")(z" - p") * (15)

where p', p", z' and z" are poles and zeros of

WM _ (s ± z')(s + z")
Z(S; " (s + p')(s + p")

and p" > p'

.

If we substitute or's and w's for the p's and z's of (15), then we

get

72 2
p

f = -o + /a - a)

P P P

/2 2
= -a - /a - u

P P P

p. 2
•a + /a - a)

fl 2
= -a - /a = w

z z z

we also obtain

/2 2 2 2

z p z p p z p

rearranging terms, we have

2 2 / 2 2
oj+u) < 2o a + 2 /a - a)

z p z p z p p

Now since

2 2 2 2 2
a) +o) =(w -a)) +2a)a) ,

z p z p z p

13



then we get

2 fl 2
(co -co ) > 2a a + 2a /a - co - 2co cozp zp zpp zp

Comparing this condition to that for the general case in equation (9)

,

we obtain

fl 2
2a a + 2a /a -co < 4a a ,

z p z p p z p

and since a , a , co and co are all positive numbers, the result becomes

2 fl 2
(to - co ) < 2a a + 2a /a -co - 2co co < 4a azp zp zpp zp zp

so that this is indeed more restrictive than the general case and we

should not be surprised to find the area of realizability for this case

enclosed by that of the general case.

In fact this argument could be used as a proof of the realizability

of Z(s) given in (15), since the area of this case is always enclosed

by that of the general case as shown above.

The construction of the realizability region in this case will be in

accordance with reference [11] , that is

p" M- r = p»* (p» - p»)*
,

where p" > p'

.

C. SAMPLE ILLUSTRATIONS

(a) Complex poles (co > a )
P P

Let a =3
P

and co = 5
P

14



Then from equations (14- a) and (14-b) we get

u max = oj + 2 /a a
z p z p

- 5 + 2/3a~" = 5 + /12a ,

z z

and

oo min oj - 2/a a
z p z p

= 5 - /12o .

We obtain the limitation of a as follows:
z

a < oj for complex zeros,
z z

If we let u max = a , then we get
z z

oj = 5 + /12a
z z

20.8 = a , maximum value for a , for oj max.
z z z

Similarly if oj min = a , then

j = 1.2 = a , maximum value for a , for oj min.
z z z z

(b) Real Poles

Let
a = 2.5 and
P

oj = 2 with poles at (-1, -4)

Then we obtain

oj max = oj + 2/ a a
z p z p

2 + /10a
z



and

a) min = u) - /10c
z p z

If a) max = a , then
z z'

u = 2 + /10a
z z

13.7 = a , max a for co max and complex zeros.

From the examples given in this section it can be seen that the

realizability region of a biquadratic function is dependent upon the

restriction we place on the function. That is, as we place more

restrictions on the function and proceed from a general function with

complex poles to one with real poles which is realizable by certain

technique, we see that at each step the realizability region decreases.

This decrease of freedom from the additional restriction is to be

expected.

16



III. COMPUTER STUDY ON REALIZABILITY

For a given location of the complex pole pair (a and w specified)

in the open left half plane, C and C. are simply plots of w versus
<J>

.

Thus the computer program was written to accept a and to as inputs and

to generate C and C
i

on either the line printer or the Calcomp plotter.

Some sample outputs are shown in Figure A-l.A and A-l.B in Appendix A.

The curves are for a normilized set of pole locations with

w » 1
P

and

0° < $ < 90°,
P

where <j> is the compliment of the argument of the pole p .

P

Varying
<J>

from to 90 corresponds to shifting the poles along

a circular path from the negative real axis to the jw axis.

The program was then modified to produce a set of curves C and C.

for various pole locations. Given a specific pair of poles, two types

of plots may be obtained, depending upon the requirements of the problem.

If an accurate plot of the realizability region is required, the

program can be used so that a plot of the realizability region is

required, the program can be used so that a plot similar to that shown

in Figure A-l.A is obtained. Otherwise if a quick estimate is all

that is desired, a plot similar to the one in Figure A-l.B can be used.

Other outputs were obtained for various pole locations.

Results obtained for the following cases are included, with

program listing, in Appendix A and B respectively:

1. Complex poles with a moves toward a constant ta .

P P

17



2. Complex poles with u> moves toward a constant a .

3. Complex poles that are moving toward the origin.

4. Real negative poles with one of which moving toward the origin

while the other remains stationary.

5. Real negative poles with one of which moving toward infinity

while the other remains stationary.

6. Double real poles moving from the neighborhood of the origin

toward infinity.

7. Pure imaginary poles moving toward the origin.

8. Pure imaginary poles moving away from the origin.

The above cases are now described in the following sections. In

each case a figure is included showing the pole locations with their

values shown in the accompanying table, in which the location of the

corresponding computer output plots are indicated.

18



Case 1

This case illustrates the zeros region for given complex poles with

P*
a moves toward a constant
P

Figure 2,

Five different poles ( conjugate poles are not shown ) are given in

accordance to show the zero regions for each a as ul remains constant,

The locations of each pole are tabulated in Table 1.

Table 1

Pole
-P...

0.999

0.707

0.55

0.25

0.1

—S-

1.0

1.0

1.0

1.0

1.0

Computer Plot

Figure A-l.A.B

Figure A-2

Figure A-3

Figure A-4

Figure A-5

19



Case 2

CM '
' (j«)

c ^
4

\v
C3 % <3

°
2

t

K
-$c

<o4

cr

P

r

n

Figure 3.

This case illustrates the zeros region for given complex poles with

ojp moves toward a constant a •

Five different pole locations are shown in Table 2.

Table 2

Pole *p W
P

Computer Plot

c
i

1.0 1.05 All plots are

C
2

1.0 2.0 shown in

C
3

1.0 3.0 figure A- 7

.

C
4

1.0 5.0

c 1.0 8.0

20



Case 3

\

'P4I

(>>)

ca^

<0<

Figure 4

This case illustrates the zeros region for given complex poles that

are moving toward the origin. Five different pole locations are

shown in Table 3

.

Table 3

Pole
p

0)

p
Computer Plot

C
l

4 .0 30.652 All plots are

C
2

2.0 15.326 shown in

C
3

0.5 3.834 Figure A-8.

C
4

0.1 0.766

Cq 0.01 0.077

21



Case 4

This case illustrates the zeros region for given real negative pole

with one of which moving toward the origin while the other remains sta-

tionary.

k jtO

Figure 5

Five different pole locations are shown in Table 4.

Table 4

Condition Pole P. Pole P,

8.0, 4.0,

8 .0, 1.0,

8 .0, 0.5,

8 .0, 0.1,

8 .0, 0.05,0

6.0 5.657

4.5 2.828

4.25 2.0

4.05 1.414

4.025 0.632

All plots are shown in computer output Figure A-9



Case 5

This case illustrates the zeros region for given real negative poles

with one of which moving toward infinity while the other remains stati-

onary.

Figure 6

Five different pole locations are shown in Table 5

.

Table 5

Condition Pole P. Pole P

°,
8.0,0 2.0, 5.0 4.0

c
l

15.0,0 2.0, 8.5 5.477

c
3

30.0,0 2.0, 16.0 "7.746

C
4

50.0,0 2.0, 26.0 10.0

C 100.0,0 2. 0, 56.0 14.142

All plots are shown in computer output Figure A-10

23



Case 6

>> (jo) )

P. , P- *"p

Figure 7

This case illustrates the zeros region for given double real poles

moving from the neighbourhood of the origin toward infinity. Five

different pole locations are shown in Table 6.

Table 6

Condition Pole P
x
= P

2 p P
Computer Plot

C
l

1.0, 1.0 1.0 All plots are

C
2

2.0, 2.0 22.0 shown in compu

C
3

5.0, 5.0 5.0 ter output

C
4

10.0, 10.0 10.0

c
.

25.0, 25.0 25.0

24



Case 7

t (j*> )

Figure 8.

This case illustrates the zeros region for given pure imaginary poles

moving toward the origin. Five different pole locations are shown in

Table 7.

Table 7

Condition c
p p

Computer Plot

C
1

0.0 3.0 All plots are

C
2

0.0 1.0 shown in

C
3

0.0 0.5 Figure A-12

.

C
4

.0 0.1

c r 0.0 0.05

25



Case 8

(j«o)

K p

Figure 9

.

This case illustrates the zeros region for given pure imaginary poles

moving away from the origin. Five different pole locations are shown in

Table 8.

Table 8

Condition <j (j
P P

Computer Plot

0.0 4.0

0.0 10.0

.0 2C.0

0.0 100.0

0.0 200.0

All plots are

shown in com-

puter output

Figure A-13.
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IV. SENSITIVITY STUDY

A. INTRODUCTION

It has been shown [12], that in a linear and not necessarily

reciprocal network, with only one independent source and initially at

rest, the ratio of the Laplace transform of the current in any branch

or of the voltage across any node pair to the Laplace transform of

either an independent voltage or current source is given by

W T..(0) + x T__(°°)

W + x
T(x) =

X
TJ I „

X
(16)

where

x = an adjustable immitance.

T(x) = the network function relating a response to an

exitation.

T (0) = Lim T(x) = the network function evaluated with
x — o

x = 0, T (0) is assumed to be finite.

T (°°) = Lim T(x) = the network function evaluated when

x — °°

x = °°, T (°°) is assumed to be finite.

W = the Thevenin immitance (independent of x) seen looking

back into network from the terminals of the adjustable

immitance. W is assumed to be finite.

Equation (16) is generic in form in that x can be either an impedance

or admittance. In this paper the symbol T(x) is used to denote a driving

point immitance.

27



B. GRAPHICAL REPRESENTATION OF T(x)

Consider equation (16) for the case of a driving point immitance

function as shown in Figure 10.

Dividing numerator and denominator of equation (16) by W, we get

T (0) + T («>)
X

W
x

T(x) = =

x
1 +

W

which can be rewritten as

T (oo) (1 + ) + T (0) - T (o-)

X XX
T(x) = =

X
1 + —

W

T (0) - T (•)

. » +
x

T(x) = T (-) +^ *
(17)

x
1 +

W

Let

T(x) = T («) + V (18)

where
T CO) ~ T (oo)

V = -5 * . (19)

x

1 +
W

28



X

w — i

T(x)
;

!

Figure 10.

Driving point immitance with variable

component x.

Figure 11.

Graphical representation of T(x) phasor,

29



From equation (19) we have

x
V + V = T (0) - T (•) (20)

W
X X

we note that T (0) and T (<») are fixed quantities.

Now treat each quantity in (20) as phasor, i.e.

V =
I V | exp. je

1

and

W = |W| exp. je
2

then the left hand side of equation (20) represents the sum of two phasors.

If x is real, then the phasor
x V

V = x
|

1
exp. j(9 - 9 )

W W
L

is lagging behind the phasor V by an angle

9 - 9
i

- V
Since T (0) and T (°°) are two fixed quantities, the right hand side

of equation (20) is constant so that the left hand side of (20) is

constant. This requires that the angle must be constant (as x varies).

This implies that the tip of phasor V describes the arc of the

circle, of which the quantity T (0) - T (°°) is a chord as shown in

Figure 11.

To construct the circle we proceed as follows [13]:

1. Plot T (<=°) and T (0) as two phasors from the origin.

2. Draw a straight line D, through the tips of the two phasors in

step 1.

30



3. Calculate the angle and draw a straight line D~ from the tip of

T (0) forming angle with D, having the value -9 measuring clock-

wise from D.. .

Therefore D- is tangent to the circular locus of T .

The centre of this circle, 0', is located at the intersection of

the two perpendicular lines erected on the chord in the middle of

T (0) - T (») and D
1

at the tip of T (0), as shown in Figure 12.

Knowing the locus of T(x) as x varies from zero to infinity, we

can graphically determine T(x) at any value of x.

C. GRAPHICAL REPRESENTATION OF SENSITIVITY PHASOR

If we define the sensitivity as

.TOO d T(x)

dx

then with equation (16) we can obtain, [13]

,T(x)

x S
T(x)

T
x
(0) - T

x
(oo)

T
x
(0) - T

x
(oo)

where

V =
T
x
(0) - T

x
(-)

1 +

31



of T(x)

Figure 12.

Graphical representation of locus of T(x)

Figure 13.

Graphical representation of sensitivity

phasor S.
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It can be shown [13] that the sensitivity of a function may be

graphically represented by a phasor such as PS as shown in Figure 13.

D. SAMPLE ILLUSTRATION

As an illustration of the above discussion in this chapter, let us

consider a biquadratic p.r. function as an RC driving point admittance,

which can be realized in Foster 2 form as shown in Figure 14.

Let

Yr , .
s
2
+ 4s + 3 . (s + l)(s + 3)

s
2 + 6s + 8

" (S + 2KS + 4)

which can be realized in Foster 2 form with the element value as given

in Figure 5, in which all resistance and capacitances are measured in

Ohms and Farads respectively.

Now let R- change by the amount AR, such that

< AR < .

Thus, Figure 15 is modified as shown in Fgiure 16.

We can calculate T (0), T («) and W as follows:

T
x
(0) = Y(s, AR=0) = ±- +

+\, + +\ f
o 1 1 l I

.5s+l -25s + l
s
2 + 6s + g

V> = Y(S
' ^^ — +

R, 1/sCoil
„c ,

-125 s 2.5 s + 3 . (25)
" ,J/:> .58 + 1 4s + 8
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Y(s). H„^
X

Figure 14.

The realization of Foster-2 form of

driving point admittance Y(s).

Y(s) ¥ 2.667

J^Rl =4

±Ci
.125

R
2

=
2.667

_i_C 2
=

- - .09375

Figure 15

The realization of biquadratic p.r. driving point

admittance in Foster 2 form, where

Y(s) = sf+^s+3

s
2+6s+8
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"2 sC
2

Y(s, AR=»)

. 2 . 667 + 10^67 + 4 s + 8

2.5 s + 3

14.5 s
2
+ 40 s + 99

7.5 s
2
+ 9 s

From expression (26) we obtain the expression -=*- to be

2
x 1.5 s x + 9 s x

(26)

14.5 s
2
+ 40 s + 99

(27)

Substitute equations (24), (25), (26) and (27) into equation (22) we get,

s
2
+ 4s + 3 _ 2.5 s + 3

T(x) s
2
+ 6s + 8 4s + 8 , OQ .

I - - 2 r— 5 ^7 '

X
14.5 s + 40 s + 99

± + 7.5 xs + 9 xs
|

7.5 s
2
+ 9 s L 14.5 s

2
+ 40 s + 99j

then for simplification we write equation (28) above as,

T(x) NCs x)
S = - M^4 (29)

x
D(s,x)

where N9s,x) and D(s,x) represent the numerator and denominator of the

equation (28) respectively.

In the frequency domain, the expression in equation (29) can be

written as,
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1 I

-

>

i.. i-

:

i
Y(s)

>

r"°
c l

A 4R

Figure 16

.

Driving point admittance Y(s) with variable resis-

tance aR.

*2

Figure 17.

Driving point admittance Y(s) with variable resis-

tance R
2

' = R
£
+AR.
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. Re [N(.1o».x)1 + .1 Im fNdu.x)!
(30a)

Re [D(ju),x)] + j Im [D(jw,x)]

where Re [N(ju>,x)], Re [D(jw,x)], Im [N(ju>,x)] and Im [D(jw,x)] are

real and imaginary parts of equation (30) repectively.

From equation (30a) we can obtain the magnitude of that sensitivity

function. If we write equation (30a) in exponential form we have

S^
(x)

(ju),x) = |S^
(X)

|
exp (*N

-
<frD

) (31)

where

T(x)
S - magnitude of equation (30a)

{Re [N(ju),x)]}
2
+ {lm[N(ja3,x)]}

2

{Re [D(ju>,x)]
2
+ {Im[D(jw,x)]}

2

4> = the argument of the numerator of equation (30a)

.

<J>
= the argument of the demominator of equation (30a)

.

E. COMPUTER STUDY ON SENSITIVITY

In this section, the sensitivity of the function T(x) with respect to

the variation of one of its components will be investigated by computer.

Consider the general expression Y(x) in equation (16), which is repeated

here for convenience.

W T (s,x = 0) + x T (s, x = °°)

T(x) = . (16)

W + s

The sensitivity function of this equation is

T , x T (s, x = 0) - T (s, x = °°)

S
Ux; = - — ^ . (22)
x

'[—I-]
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As an example let us consider the function Y(s), as we derived in section C.

Y(s) =
(s + l)(s + 3)

(s + 2)(s + 4)

and the realization of this function in Foster-2 form is shown in Figure

17.

For our investigation, let R
2

change with the amount of AR in series

with ^ and let

R
2

' = R
2
+ AR.

T(s R ')
To obtain the sensitivity S 2 in terms of frequency and R '

,

R
2

2

we use the same calculation from equation (30)

.

The computer output in Appendix B shows us the plot of the magnitude

of sensitivity function (30) versus R^'- For this purpose we use equation

(31) as reference.

Various cases are investigated using computer, resulting in plots

of the magnitude of equation (31) versus R ' for different frequencies.
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V. CONCLUSION

In this paper, a comparative study has been made on the realizability

conditions of a general biquadratic function. The graphical method of

Chan and Phung [10] was used for this study and computer programs are

written for varifications. General observations can be made as follows:

1. The realizability for the zeros expands considerably as the poles

move from the immaginary axis to the real axis. This results both from

C moving away from the origin and C. moving toward the origin.

2. The limits on C and C. are found easily from equations (3a) and

(3b). As a approaches zero, corresponding to the poles moving toward

the ico axis, both C and C. tend toward the circle 0) o> for all <j>
'.

J
' o l z p

Y
z

As can be seen from Figure A-6, C and C. separate very rapidly for

small movements of the poles away from the jo) axis. We can conclude that

when a = we require u u in order for Z(s) to be realizable with
P z p

complex zeros. This can also be seen easily from equation (9).

3. As a approaches o) , corresponding to the poles moving toward

the real axis, C approaches a value of -5.828o) on the real axis, and

C. similarly approaches a value of -0.172o) , as we can see in Figure A-l.A.

A brief study was made on sensitivity functions [13], some computer

results are obtained. However, due to time limitation, a complete

investigation in sensitivity was not possible and is left as a

suggested topic for further studies.
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APPENDIX A

COMPUTER OUTPUT

A. ZERO'S REGION

The illustration of zeros regions will be shown in this appendix.

The computer outputs show us the regions for various given omega

and sigma poles.

Various cases are explained as follows:

Figure A-la and A-lb show the zeros regions for given sigma pole

= 0.999 and omega pole = 1.0 using Calcomp and PLOTP in the computer

program respectively.

All the following plots show us the computer outputs by using Calcom

in the computer program.

Figure A-2, A-3, A-4 and A-5 show us the plots of zeros regions for

given sigma poles equal to 0.707, 0.55, 0.25 and 0.1 respectively with

the amount of omega pole equal to 1.0 each.

Figure A-6 shows all plots given in Figure A-la, A-2, A-3, A-4 and

A-5 in one computer output.

Figure A- 7 shows the plots of zeros regions as pole moves at sigma

pole constant.

Figure A-8 shows the zeros regions as pole moves to the origin.

Figure A-9 and A-10 show the plots of zeros regions as pole moves

to the origin and to infinity respectively.

Figure A- 11 shows the plot of zeros regions of a double real negative

poles as both move along the negative axis.

Figure A-12 and A-13 show us the zeros region plots of a given pair

of pure negative poles, as both move to the origin and to the infinity

respectively.
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B. SENSITIVITY FUNCTION

Various cases of sensitivity as a function of R' are illustrated in

the computer outputs for different particular frequencies.

The computer outputs show us the plots of sensitivity versus R'
9

and the tabulations of this plot.

The resistance R' is select to be varied from the amount of 1 Ohm

to 50 Ohms with increment to 1 Ohm. And the frequencies are choosen

beginning at 1 rad/sec. up to 10,000 rad/sec.

Figure B-l, B-2, B-9 show us the sensitivity functions as

R' moves from 1 to 50 Ohms, at the frequencies of 1, 5, 10, 50, 100,

500, 1000, 5000 and 10000 rad/sec. The tabulations of those plots

are also shown in Table B-l, B-2 B-9 respectively.

Figure B-10 shows us five different plots of sensitivity functions

illustrated in one computer output.
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THE V4LUE CF SENSITIVITV M GIVEN W = 1.000CF SENSI TIVITV 47 GIVEN W

P2S SENSITIVITYCO -0.005995
1.000 -0.005160
2.000 -0.004489
2. COO -0.0C2940
A. COO -0.002436
5.0C0 -0.002107
6. ceo -C.002796
7.000 -0.002512
6.000 -0.002277
9. COO -C.002073

1C.C0O -0.001896
11.000 -0.001740
12. COO -C.C01603
12. COO -0.001481
14.CCC -0.001273
15.CCC -0.001276
16.CC0 -0.001189
ll.CCC -0.001111
16. COO -C.0C1C40
19.000 -0.000976
2C.CC0 -C.000917
21.000 -C.000664
22.000 -C.OOC615
22.CC0 -C.0CC770
24. COO -C.0CC729
25. COO -C.000691
26.CC0 -C.000656
27.GCC -C.000622
26.000 -0.000593
29.CG0 -C.000565
2C.C0C -0.000539
21.00C -0.000515
22.CCC -C.00C492
22.000 -0.000471
24.CC0 -0.000451
25. COO -C.000432
26. CCO -0.000415
21.000 -C .000298
26.CCC -C.000282
29.CCC -0.000268
4C.CCC -C.000254
41.000 -0.000241
42.000 -0.000229
42. COO -C. 000217
44. COO -C.000206
45.C0C -0.000296
46.000 -C.000286
47.0CC -0.000276
46. CCO -C.000267
49.000 -C.000259
5C.0C0 -0.000251

TABLE B - 1.

66



THE VALUE CF SENSITIVITY M GIVEN W = 5.00C

R2S SENSITIVITYCO -C.086060
l.CCO -C.054744
2.0C0 -0.037662
2. CCC -0.027736
4.000 -0.021188
5.0CC -0.016711
6. COO -0.013516
'.COO -0.011156
6. CCO -C.G09265
'.COO -0. 007972

-0.006668
-C.005979
-0.005252
-0.004649
-0.004145
-C. 003718
-0.003 254
-0.003041

ic.bOO -0.002770
19. CCC -C.002534
2C.0CC -C.002226
21.000 -0.002143
22.0CO -0.C01981
22.000 -C.C01837
24.000 -C. 001707
25.CCC -0.001591
26.CCC -C. 001487
27.000 -0.001292
^ c CCC -C.C01206

COO -C.001228

£. I .UUU
26. CCC
2 9.000
2C.0C0 -0.001157
21. CCO -C.001Q91
22.000 -0.001031
33. CCO -C.000976
34.000 -C.0CC925
35.0CO -C.000678
26. CCC -C.000835
37. CCO -C. 000795
38.000 -0.000757
39.000 -0.000722
4C.00C -C.0CC690
41.000 -0.O0O659
42.0CC -C.000631
43.000 -C.CC0604
44.000 -C.C0C579
45.000 -O.C00556
46.000 -C.C00534
47. COO
48.000
49.000

•C.000513
C.C0C494
-C.00G475

5C.CCC -C.000458

TABLE B -2.
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THE V*LUE CF SENSITIVITY M GIVEN W = 10.000

P2S SENSITIVITY
c.c -C. 227628
1.C00 -C.122C24
2. CCO -0.076772
2. CCO -0.052258
4. CCO -0.037941
5. COO -0.028735
6. COO -C.C22506
7. COO -C.018C97
e.oco -C .014865
9.CGC -C.012425

1C.OC0 -C .010540
11. coo -C.009052

-C.0C785812. CCO
12.COO -C.006885
14.GCC -C.006082
15.000 -C.005412
16. COO -C.004846
n.cco -C.004365
IS.CCO -C.0C2952
IS. COO -0 .002595
2C.CCC -C.003284
21.CCC -C .002012
22.0CQ -C.002772
22. CCO -C.002560
24.000 -C.002271
25.CGC -0.C02202
26. CCO -C.002C51
27.000 -C .001915
28.0CC -0.001792
29.000 -C.0C168C
20. COO -0.001579
21.OC0 -C.0C1486
22. CCO -C.C01401
22.000 -C .001224
24. CCO -C .001252
25. CCO -C.001187
26. CCO -0.001126
27. CCO -0.001C70
28.CCC -C.001018
29. CCO -C .000969
4C.CCC -C.0C0924
41. CCO -C.000882
42.0CC -0.000842
42. COG -C.C00607
44.000 -C.000772
45. CCO -C.O0C740
46.CCC -C.CCC710
47.000 -C .000682
46.CG0 -C.000655
49. CCO -C.0C0620
5C.CCC -C.C00606

TABLE B - 3
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ThE VALUE CF SENSITIVITY AT GIVEN W = 50.000

P2S SENSITIVITY
c.c -0.674758
1.000 -0.270419
2.000 -0.144071
3.000 -C.C89189
4. CCO -C. 060562
5.000 -0.043783
6. COO -0.033117
7.000 -C. 025919
e.oco -0.020636
9. CCO -0.017112

1C.CC0 -0.014305
11. CCO -0.012135
12. CCO -C. 010424
13.000 -0.009050
14. CCO -C.CC7932
15.000 -C.CC7C03
16. COO -0.006237
17.000 -0.005587
16.000 -C.C05C33
19.000 -0.004557
2C.CCC -0.004146
21.000 -0.003788
22. CCO -0.003475
23.000 -0.003199
24.000 -C.C02954
25. CCO -C.002737
26. CCO -0.002542
27.000 -0.002368
26.CCC -C.002211
29. CCO -C.002069
3C.0C0 -0.001941
31. CCO -C.C01624
32. COO -C.001717
33.000 -0.001619
34.000 -0.001530
35.000 -0.001447
36. CCO -C .001371
37. CCO -0.001301
36.CCC -C.001237
3C.CCC -0.001176
40. CCO -0.001121
41.000 -0.001069
42. CCO -C.001020
43. CCO -C.0CC975
44.000 -C.000933
45. COO -C.C00693
46.000 -0.000656
47.000 -C.000621
46. COO -0.C00789
4C.0CC -0.000758
5C.CCC -0.000729

TABLE B - k
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CF SENSITI VI1K AT GIVEN w = 100.000

P2S SENSITIVITY
0.0 -C. 739854
1.000 -C. 284703
2.0CC -0.149252
2. COO -C. 091733
4. COO -C.061999
5.00C -0.044683
6.000 -C.022724
7. COO -C.026252
6. CCO -0.021157
9.CGG -C.017259

10.000 -0.014499
11. CCO -0.012292
12. CCO -C.010552
12.000 -C .009158
14. CCO -C.C08C23
15.0C0 -0.C07C86
16. CCO -C.006204
17. CCO -C.005645
16. CCO -C.005C84
19.CCC -0.G04603
2C.CC0 -C.004187
21.000 -0.002825
22. COO -0.003508
22. COO -C.002229
24.000 -C.002981
25. CCO -C .002762
26. CCO -C.002565
27. CCO -C .002289
26.CCC -C.CG2230
29. COO -C.C02C87
2C.CC0 -C.001957
21. COO -C .001839
22.000 -C .001731
22.0C0 -C.001633
24. CCO -C. 001542
35.000 -0.001459
26.CCC -C .001283
37.CCC -C.001212
28. CCO -0.001247
29. CCO -C.001186
4C.0CC -C.CCU20
41.000 -C .001077
42.0G0 -C.001C28
42. CCO -C.0C0983
44.C0C -0.0C0940
45.000 -C.CC0900
46.000 -C.CC0863
47.CCC -C.000628
46.C0C -CC0C795
49.0C0 -C.00C764
5C.C0C -C.00C734

TABLE B - 5
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CF SENSITI VI7Y AT GIVEN W = 500.000

R2S SENSI7IWTY
0.0 -0.764546
1.GG0 -0.289726
2.OC0 -0.151158
2. GOO -0.092591
4.CGG -0.C62480
5.GC0 -G.044982
6.CG0 -0.032925
7. CCO -C.026495
8.GOO -0.021263
9. CCO -C.017441

1C.0CC -C. 014563
11. CCO -0.012244
12.CG0 -C.01C595
12.CCC -C.C09193
14. CCO -C .008053
15.CCC -C.0G7112
16. COG -C.006227
17.0C0 -C .005665
16. CCO -C.CG5101
IS. CCO -C.C04618
2C.CC0 -C.C04200
21.0CC -C.002837
22. CCO -0.002519
22.0C0 -C. 002238
24.CCC -C.0C2990
25.C0C -0.CC2770
26. CCO -C.002573
27.CCC -C. 002296
26.0CG -C.C02237
29.0CC -C.G02C93
3C.CC0 -C.001963
21.000 -0.001644
22.CGC -C.001736
32.0CO -C.001637
24. CCO -0.001546
25. CCO -C.001463
26. CCO -C .001286
27.CCC -0.001215
28.CCC -0.001250
29. CCO -0.001189
4C.CCC -0.001132
41. CCO -0.001C8C
42. CCO -0.001031
42. CCO -C.000985
44. COO -C.0C0942
45. CCO -0.C00902
46. CCO -C.GCG865
47.000 -C.0C0620
46.CCG -0.000797
49. CCO -C.000765
5C.G00 -0.000736

TABLE B - 6
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CF SENSITI VITY 47 GIVEN W = 1 000.000

„
R
* S SENSITIVITYCO -C. 765254

l.CCO -0.289687
2. CCO -0.151215
3. CCO -0.092619
4. CCO -0.C62495
5.0CC -0.044992
6.000 -0.032921
7.000 -0.026499
e.ccc -C.021266
9. CCO -0.017442

10. 000 -0.014565
11. coo -0.C12245
12.000 -C.01C596
12.C0C -0.C09195
14.000 -C.008C54
15.GCC -C.007112
16.0C0 -0.006227
17. COO -0.005665
le.ooo -0.005102
IS. CCO -0.004619
2C.CC0 -C.C04201
21.000 -C.002627
22. COO -0.002519
22. CCO -C.CC2229
24. CCO -0.002991
25.C0C -C.CC2770
26. CCO -0.002573
27.000 -0.002296
26. CCO -0.002257
29. COG -0.002C93
2C.CCC -C .001963
21. CCO -0.001844
22.0CC -0.001726
22.CCC -C .001637
24.CCC -0.001546
25.GC0 -0.001463
26. CCO -0.001286
37.00C -C.001215
26.000 -0.001250
2C.CCC -0.001189
4C.CCG -C.001133
41. COO -0.001080
42.CCC -C.001031
42.000 -C.GC0S85
44. CCO -C.000943
45. CCO -C. 000 903
46. COO -0.C00865
47.CCC -C.OC0630
48. CCO -C.00C797
49.CGC -0.000765
5C.CCC -C.C00736

TABLE B - 7
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CF SENSITIV I7V M GIVEN W = 5000.000

P2S SENSITIVITY
C.C -0.765613
l.CCC -0.289939
2.0CC -0.151234
3.000 -0.092627
4. CCO -C.C62500
5. CCO -0.044995
6.CCC -C.033923
7. CCO -C.C26501
6.000 -0.021267
9. CCO -C. 017444

1C.CCC -0.014566
11.000 -C.012346
12.CCC -C. 010597
12.000 -C.009195
14.0CC -0.008054
15.GCC -C.007113
16. CCC -C.C06327
17. CCC -C .005665
16. CCO -C.C05102
IS. CCO -0.004619
2C.CCC -0.004201
21. CCO -C.CC3637
22. CCC -C.003519
23. COO -0.003239
24. CCO -C.002991
25.0C0 -0.002770
26. CCC -C.002573
27. CCC -C.002296
28. COO -0.002237
29. CCC -C.002093
3C.CC0 -C.001963
31. CCO -0.001844
r2.GC0 -0.001736
33.000 -C.001637
34.000 -C .001547
35. CCC -C.001463
36. CCO -0.001386
37. CCC -0.001315
36. CCC -C.001250
39. CCO -C.001189
40. CCC -0.001133
41.000 -c.ocicao
42.C0C -0.001031
43. CCC -COC0985
44.C0C -C.0CC943
43. CCO -0.000903
46. CCO -C.OC0665
47. CCC -C.CC0630
46.0CC -C.C0C797
49. CCC -C. 000766
5C.C00 -0.000736

TABLE B - 8
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CF SENS ITI VI TV M GIVEN k = 10000.000

R2S SENSITIVITY
0.0 -0.765621
1.000 -0.289940
2.0GC -0.151234
2.COO -0.092627
4. 000 -0.062500
5. CCO -0.044995
6. COO -0.022932
7.000 -0.C26501
8.000 -0.021267
9.000 -0.017444

1C.CCC -0.014566
11. ceo -0.012246
12.000 -C.010597
12. CCO -0.009195
14.000 -0.008054
15.CCC -C.0C7U2
16. CCO -0.006227
17.000 -C.C05665
18.000 -0.CC5102
19. CCO -0.C04619
2C.CCC -C.C04201
21.000 -C.002837
22. CCO -0.003519
22.000 -0.002229
24.000 -0.002991
25. CCO -C.OC2770
26.000 -0.002573
21. CCO -0.002296
26. COO -C.CC2227
29. CCO -0.002092
2C.CCC -0.001963
21.000 - -C.C01844
22.0C0 -0.001736
22. CCO -0.001637
24.000 -0.001547
25.000 -0.001463
26. CCO -0.001286
27.CCC -C.C01215
28.000 -0.001250
29.000 -0.001189
4C.CC0 -C.001133
41.000 -C.001030
42. CCO -0.001031
42.000 -0.000985
44.CCC -C .000943
45.C0C -0.C0O9O3
46. CCO -0.CCO865
47. COO -C.000830
48. CCO -C.C0C797
49.000 -C.000766
5C.CC0 -C.O0C736

TABLE B - 9
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APPENDIX B

COMPUTER PROGRAM

A. ZEROS REGION

This program will plot the realizability region of general bi-

quadratic function of the form

Z(s)

2 2
s + 2*SIGMAZ*s + OMEGAZ

s
2
+ 2*SIGMAP*s + OMEGAP

2

The input to this program is via punched card. One card is required

for each plot. The input variables are Sigmap and Omegap specified in

columns 1 - 20 as two fields of F 10.3 format.

The output is a plot of allowable region for zeros of Z(s) for a given

pair of poles. The criterion for the plot is that Z(s) must be positive

real.

The output may be either one (or both) of two types of plots depend-

ing on the needs of the programmers. If a fast solution is desired the

"CALL DRAW" statements must be removed to enable the program to be run

on QUICKRUN. The result will be a rough plot on the line printer

output.

If maximum accuracy is desired a CALCOMP plot may be obtained by

making a regular FORTCLG run with the "CALL DRAW" cards in the deck.

In this case a line printer plot will also be generated, unless the

"CALL PLOTP" cards are moved. For the CALCOMP run, "REGION. GO-100K"

must be specified on the EXEC card.

The routines DRAW and PLOTP are called by this program. Both are

in the MPSLIB at NPS. Neither a copy of the decks nor special job

control language is needed to run this program on the NPS IBM 360.
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The computer program is shown in Figure A-14.

B. SENSITIVITY FUNCTION

This program will plot the sensitivity of general biquadratic

function with respect to the changing of its components at a particular

frequency.

The equation used in this program is,

T(>,R;) ,<» .n - _
W <T^ R

2
=

°) - T <J ">R
2

= INF ")

2"

R
2

2
(W + RJ 2

where T(jw,Rp, W, T(ju>,R£ = 0), T(ju>,R£ = INF.) and R^ correspond to

Figure 17 in Chapter IV. E.

The output is a plot of the magnitude of the sensitivity function

above versus R '

.

The input of this program is via punched card. One card is required

for each plot. The input variable is frequency in rad/sec. specified

in columns 1 - 10 as one field of F 10 .-3 format.

The output is a rough plot on line printer output.

The routine "CALL PLOTP" is called by this program.

The computer program is shown in Figure B-ll.
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