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I. INTROD•c7TION

There is a considerable body of data on sonic boom structural

damage effects from various experiments that have been conducted

over the past fifteen years. Experiments have shown that there is a

small but finite probability of sonic booms breaking especially sus-

ceptible items such as windows, plaster, and bric-a-brac. The

probability of breakage was consistently found to increase with higher

overpressure sonic booms. The results of the experiments have in

general agreed with the Air i.'orce's experience in reimbursing

damage claims from the public from supersonic overflights. The

claims most frequently substantiated and reimbursed have been for

damage to glass, plaster, and bric-a-brac.

Window glass is g,?nerally the most susceptible element in a

house to sonic boom damage. Our previous work [1, 2. 3, 41 has

determined the probability of breakage of various window configura-

tions as a function of sonic boom overpressure. It was calculated

from our statistical model that for a typical window population there

would be 1. 1 breaks per million panes in good condition boomed at

a nominal overpressure of 1 pound per square foot (psf). This

est'mate agreed well with sonic boom claims data.



The statistical modeling method which was used in the previous

studies of glass breakage is a method we call "the response probability

density function technique. " This technique, which will be described

in detail in another chapter, combin'Ts the probability density function

(pdf) of the sonic boom stress with the pdf of the material strength.

The resiiltant pdf readily yields the probability of structural failure.

Since the response pdf technique was first applied to sonic

booms on glass in 1972-73 we have made substantial progress in

extending it to other structural response applications. It was applied

to estimating the probability of air terminal window breakage from

the noise from taxiing aircraft in 1974 (5]. Then in 1975 it was

applied in the Concorde environmental impact statement to determine

the breakage probabilities of windows, plaster ceilings, stone bridges,

and brick chimneys to noise from subsonic overflights. On the basis

of the success of the technique for these cases, this study extends the

method to P,- "eti-n --zf sonic boom breakage for plaster. bric-a-brac,

and brick. Thus, with the glass previously accounted for and the

three items considered in this study, there is now a comprehensive

treatment for predicting the probability of breakage for the vast

majority of sonic boom structural damage cases.

2



IH. SONIC BOOM LOADING

The basic problem in sonic boom breakage prediction is one

o finding the stress created by a transient overpressure. The over-

pressure caused by a sonic boom is usually an N-wave (see Fig-

ure 1). Those small variations in the wave shape that make some

individual waves more peaked or more rounded than the ideal N -wave

have little influence on the results derived here. These variations

are accounted for in the fact that the present statistical model's

parameters were derived from actual field data which represented

the typical waveforms encountered. The paragraphs which follow

review the definitions of the parameters shown in Figure 2.

1. NOMINAL OVERPRESSURE, p0

Adequate methods presently exist for calculating a predicted

peak sonic boom overpressure value based on aircraft's altitude,

speed, weight, and dimensions [7]. This calculated value is called

the nominal overpressure, po. Its value is generally in the range

of 1 paf to 4 psf for typical supersonic aircraft operations. It is

desired to predict P, the probability of a window being broken by a

given boom, as a function of Po.

3
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2. FREE FIELD OVERPRESSURE, pf

The sonic boom suffer3 various attenuation and focusing effects

in passing through the atmosphere to the ground. Thc random inhomo-

geneities in the atmosphere cause a spread in the range of values of

the peak free field overpressure (pf) that is measured on the ground.

By convention, tie value of pf is measured with a microphone mounted

on the ground, usually on a plywood board. This method of measure-

ment results in a pressure doubling effect from the ground reflection

being included in the value of pf. Thus the measured value, pf, is

not really a free field pressure as the term is comrionly used in

acoustics, but it is conventionally called this in the sonic boom com-

munity. Similarly, the calculation of po, the nominal pressure, in-

cludes a conventional value of the ground reflection coefficient of

1.9. In general, the mean value of pf will be very close to Po. but

individual values of pf will exhibit considerable spread. This random

effect results from the atmospheric inhomogeneities and from dif-

ferences in the aircraft operating parameters from those used for

calculating po.

3. EXTERNAL OVERPRESSURE, Pe

When a sonic boom having a free field peak overpressure pf

impinges on a structure it creates an external overpressure waveform

having a peak value pe. The value of Pe will depend on the angle the

6



"incoming wave makes with the structure, the reflection coefficient [
of the structure surface, and whether the wave combines with other

waves reflected off other structures or the ground. For instance, it

has generally been observed '*n experiments [8, 91 that the side of

a house exposed to a head-on sonic boom wave exhibits a much

higher overpressure than the opposite side. There have been some

attempts [10, 11, 121 to obtain analytical solutions for pc in terms of

pf by modeiing the acoustical scattering. These attempts, however.

involved complicated computer solutions which were applicable only

to a single structure geometry and wave angle. For practical engi-

neering situations, the relation between pf and Pe would seem to be

best treated by statistical methods.

4. INTERNAL OVERPRESSURE, pi

Thr waveform of the overpressure inside a structure depends

on the transmissibility of the structure to sound as a function of its

geometry. The solution for the internal waveform is quite compli-

cated and differs for each structure [13, 141. It is generally observed

[13, 141 that the internal overpressure waveform is sinusoidal with

a period the same as that of the N-wave and a peak value Pi which is

some fraction of the external peak overpressure Pe- Subtracting the

waveform of the internal pressure from that of the external pressure

gives the net loading waveform acting on the window (see the top of

Figure 3).

7
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Figure 3. Dynamic Amplification Factor for First Mode
Deflection of a Square Plate to Boom and

Internal Pressure: q = 0. 25
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5. STATIC STRESS

The analysis of the loading of a structure by a sonic boom has

been a problem that has attracted much interest in the past fifteen

years [9, 14-21]. Generally these analyses have included a compari-

son with loading under uniform static pressure. This is because most

structural elements are designed to static wind loading, and hence

static pressure design data are much more readily available than sonic

boom loading data.

A window configuration, for instance, is usually assumed to be

rectangular plate simply supported at all four edges; which has been

found to agree with experimental studies of static window loading [221.

For small deflections, the stress is a linear function of the static

pressure and is given by the well-known formula [231

psa 2 b 2

as = 1(1)
2h2(a 2 +b 2 )

where as is the extreme fiber stress at the center of the plate, ps is

the static pressure, a is the longer side of the rectangle, b is the

shorter side, and h is the thickness of the plate.

6, DYNAMIC AMPLIFICATION FACTOR (DAF)

Since windows are usually designed to static load requirements,

it is desirable to compare sonic boom loads to such static loads. This

9



(7

is accomplished by finding the dynamic amplificatior factor (DAF)

defined by

DAF 'm (2)ad

The numerator of the DAF is the maximum stress in the plate and

the denominator is the dynamic stress defined by

2 2p a b
d: e

a'd = PeeF (3

2a2 - PeF (3)
2h (a +b)

where F is a stress factor. Note that ad is tne stress that would be

produced by a static pressure equal in magnitude to the pea'. external

pressure pc"

Throughout the literature there are various definitions of DAF.

Some definitions use a ratio of deflections rather than stresses, and

others use the peak value of the net loading waveform Pnet rather

than Pe, the peak value of the external pressure waveform. Since

the problem at hand is one of rupture and not deflection the current

definition was deemed more appropriate. In the definition of ad

of (3) it was decided to use pe rather than Pnet because (a) p, is

more easily measured, (b) Pe is very nearly equal to Pnet as can be

seen from the top of Figure 3, (c) the available overflight data base

contains only values of Pe, and (d) it was found by statistical analysis

that the internal pressure does not correlate well with window stress.

10



7. SONIC BOOM STRESS ANALYSIS

According to theory, when a thin plate such as a window is loaded

to the extent that its deflection exceeds one half its thickness, :ionlinear

effects start to come into play. This results because membrane stresses

become comparable in magnitude to the bending stresses. Because of

this effect, the stress will be somewhat lower than that predicted by

Equation 1 once the deflection starts to exceed one half the thickness.

The nonlinear differential equations for large deflec..ions have been

solved in recent years [24, 25 ] and the result.3 have beer. presented as a

series of graphs for rectangles having various aspect rat.ios [26).

siUnfortunately the stresses in glass plates correlate very poorly

with large deflection theory [14]. Although the center deflections of the

plates follow the nonlinear theory fairly well the stresses do not. Thus

what some authors [14-161 have done is to calculate DAF's on the basis

of deflection using dynamic analysis with the nonlinear theory. It can

be seen from Figures 3 and 4 from the linear theory and Figure 5 from

the nonlinear theory that the envelopes of the DAF curves seem to range

between 1 and 2 whether the linear or nonlinear theory is used. The

curves in Figures 3 and 4 were developed by Seaman [14] using the

conventional approach of modeling the window as a linear single degree

of freedom system, finding its impulse response, and ccnvolving with

the excitation to find the maximum excursion. The slight difference

:• 11
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peak external pressure
Pi = peak internal pressure
q = Pi/Pe internal pressure ratio
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Figure 4. Dynamic Amplification Factor for First Mode
Deflection of a Square Plate to Boom and
Internal Pressure: q =. 50
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between the curves in Figures 3 and 4 results from the fact that Figure 3

uses an internal pressure ratio q - - .25 and Figure 4 has q .5.
Pe

Since these figures resulted from linear analysis the deflection DAF's

shown are numerically equal to stress DAF's. Seaman then went

through a large deflection analysis which resulted in the curve in

Figure 5. The other references cited [15-211 all displayed results

similar to Seaman's. These three curves are introduced here to point

out two striking similarities which hold regardless of whether deflection

is assumed linecr or nonlinear and no matter how great the value of

q:

1. Most of the values of the DAF are between 1 and 2.

2. The values of the DAF below 1 occur only for small values

of the period rati 1, for cases where a structural element

with a low resonant frequency fo is excited by a short

duration boom with a small value of T.

The second point above emphasizes that the structural element's

frequency can be important in some cases. Assuming linear deflection

and simple support around all four edges of a plate, its natural fre-

quency is [271

- rh _______ /1 1 • (4)
2o Y i2-p(1-p2)(a-- T-2

where Y is Young's modulus, p is the mass density, and v is Poisson's

ratio. A case of a low period ratio can occur when an F-104 aircraft

13
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with T - . 067 sec booms a large storefront window with fo 4Hz. In

this case, the window suffers minimal deflection because the excita-

tion is considerably above the window's natural frequency.

In the present study the linear stress theory of Equation (1) is

used exclusively. The reasons for disregarding the large deflection

theory here are the following:

1. The DAF measurements used in the present study were

at small deflections in the linear range.

2. The large deflection theory gives poor results for pre-

dicting breaking stress.

3. The coefficient relating stress to pressure in Equation (1)

will be seen to cancel out later in the analysis anyway.

In effect we will be working only with boom pressure and

breaking pressure, assuming the relation between stress

and pressure to be linear between the sonic boom test

pressures and the structural elLment breaking pressures.

This allows the use of linear transformations.

Having surveyed the problem of sonic boom loading, the dis-

cussion will now review the data from sonic boom s-tructural response

experiments.

15



III. SONIC BOOM EXPERIMENTS

A large data base consisting of over 70, 000 readings from

various experiments of the past twelve years has been utilized in

this study. The experiments which generated this data were the

following:

1. Oklahoma City Sonic Boom TEsts performed by FAA and

NASA in 1964 [28].

2. White Sands Sonic Boom Structural Reaction Tests per-

formed by FAA in 1965 [29,30].

3. Edwards Air Force Base Sonic Boom Tests performed

by FAA and NASA in 1966 [31,32].

Each of these experiments will now be described, together with the

contribution of its data to the present study.

1. OKLAHOMA CITY TESTS

The sonic boom tests conducted in the Oklahoma City area from

April to July 1964 were primarily to determine community response.

In addition to surveying how acceptable the booms were to the public,

the tests also included measurements of ground overpressure. The

16
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overpressures measured were values of pf, the peak free field

overpressure. Over 3500 sonic boom signatures were recorded during

this test series. These signatures form the basis of the present analysis

of the relation between peak nominal pressure p0 and peak free field

pressure pf.

The aircraft used to produce the Oklahoma City sonic booms were

the F-104, F-101, F-106, and B-58 shown in Figure 6. These were

planes whose characteristics had been thoroughly analyzed by NASA,

and they were able to calculate a nominal overpressure p for each

flight. The values of p0 ran from .64 psf to 2.17 psf for the F-101

and F-104 flights. Only the F-101 and F-104 data are analyzed here since

there were an insufficient number of readings from F-106's and B-58's

to be statistically meaningful.

The flight track for the test series is shown in Figure 7. Note

that there were three ground measurement stations at various distances

from the flight track: Station 1, Station 3, and Station 4. A test building

was located at each station with a microphone shock mounted inside.

These inside microphones which measured pi were at the center

of the room 5 ft from the floor level. Outside microphones, which

17
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measured pf were shock-mounted at ground level on the surface of a

plywood reflecting board. NASA obtained strip charts of internal and

free field overpressure for each boom at each station. From these

strip charts NASA determined the peak values pf and pi and the

positive duration T/2 and positive impulse 1/2 for each boom. A

representative page of Oklahoma City data is shown in Table 1. Note

that APo 0Pi IAt0yoS, and Iopos of the column headings are pf,

Pi 8 T/2 , and 1/2 , respectively, in the present notation. The

nominal overpressure values for each station have been added at the

bottom of each station set for comparison.

In its analysis of the data NASA calculated the ratio Pf/P 0 for

each boom measured. Histograms of this ratio were then plotted by

NASA for each station's readings for the F-101 and F-104. These six

histograms are shown in Figures 8-13 In the present notation

ApomeasPPo calc of the abscissas is Pf/Po. Each figure also

includes a cumulative probability plot of the dat.a on a lognormal scale.

Note from the straight lines shown for comparison that the data do

appear to be distributed lognormal. As will be discussed later

this lognormal probability density leads to a simplification of the

analysis.
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2. WHITE SANDS TESTS

The main purpose of the White Sands, N. M., tests of 1965 was

to measure structural reactions to sonic booms. These tests were

conducted by FAA at the White Sands test range. Se. eral structures

were equipped with microphones on various external walls to measure

external pressure p " In addition there were also microphones outside

on the ground for measuring pf and inside at the centers of rooms

for measuring pi " For measuring the structural reactions there

were strain gauges, scratch gauges, and accelerometers attached to

windows, walls, and roofs.

The aircraft used in the White Sands tests were F-104 s and B-58's

as s~hown in Figures 6a and 6d. These aircraft were flown over the

uninhabited test structures at much lower altitude than for normal

operatiorn. to deliberately create high overpressures. While typical

sonic booms from nc 'mal aircraft operations are of the order of 1-4 psf,

those in this test reries were often in the 10-20 psf range. These high

o- .pressures were necessary to cause the large structural responses

necessary to explore damage conditions.
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The particular structure which provided the data used in the present

study was designated W4. The instrumentation on this structure, shown

in Figure 14, consisted of strain gauges (labeled R), microphones

(labeled M), velocimeters (labeled V), and accelerometers (labeled A).

in addition to the instrumentation shown there were also an interior

microphone M-7 and an exterior ground-mounrted free field microphone

M-16. The readings from the instrunent~tion which were utilized in

the present study are shown in Tables 2-5 L33]. In each case the table

values of strain and pressure are the peak values for the tape recorded

sequence. Note that the column headed "vector" has the letters A-H.

These correspond to eight possible angles of sound wave incidence in

450 increments as keyed to Table 6.

In addition to the foregoing strain gauge datit from building W-4,

there was also another series of 484 external pressure reading sets

from this same building. These readings formed the basis of the present

statistical analysis of the effect of the angle of incidence. The first 30

of these sets of readings are shown in Table 7 as printed out by the

computer, including some transformed values. The fourth column

contains the cosines of the angles between the incoming sound rays and

the normal to the surface. Note from the values of the cosines that as

in Table 6 all angles have been approximated as the nearest 450 multiple.

Columns 5 and 7 contain the ratio pe/Pf for the north and south walls,
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Table 2. White Sands Strain Readings Rosette R-1,
November 27, 1964

Alt. Strain i in./in. Recorded Pressures - psf
Run Mach x1.0 Vector a b c H-i M-7 M-16

1-145 1.40 13.5 D 57 35 HR HR HR HR
2-146 1.43 14.0 H 54 29 NR 3.1 1.9 3.5
3-147 1.32 13.5 D HR HR NR 2.4 2.7 3.9
4-148 1.30 14.0 E 40 26 HR 1.4 0.9 3.9
5-149 1.30 14.0 6 80 48 HR HR NR NR
6-150 1.30 14.0 E 69 42 HR 1.9 0.9 3.9
7-151 1.39 15.0 F 40 26 NR 1.8 0.9 3.4
8-152 1.34 13.0 A 66 42 HR 5.5 1.1 3.4
9-153 1.38 14.0 F 46 29 HR 1.9 1.3 3.1

10-154 1.40 14.0 G F2  29 HR 2.2 0.9 3.9
11-155 1.40 14.3 C 43 29 Nk 1.8 1.8 3.9
12-156 1.38 14.0 G NR NR NR HR HR HR
13-157 1.30 14.0 H 86 48 HR 3.6 1.4 2.0
14-158 1.36 14.0 D 66 35 HR 2.5 2.2 3.4
15-159 1.36 14.0 H 57 42 HR 3.2 1.4 1.9
16-160 1.25 13.5 A 66 35 HR 5.0 2.2 7.4
17-161 1.30 14.0 F 63 36 HR 1.7 2.2 3.7
18-162 1.30 14.0 A 89 52 HR 3.2 i.2 2.7
19-163 1.20 14.0 8 100 58 HR 3.2 1.9 2.5
20-164 1.38 1SA E 60 36 HR 1.5 1.0 1.9
21-165 1.34 14.0 8 83 45 HR 4.3 2.0 5.0
22-166 1.45 16.0 C 77 42 HR HR HR HR
23-167 1.39 14.3 6 72 39 HR HR HR HR
24-168 1.45 13.9 C 80 45 HR HR HR HR
25-169 1.30 14.0 0 80 45 HR 4.1 2.7 3.9
26-170 1.30 14.0 H 117 65 HR 3.2 1.4 5.3
27-171 1.40 14.0 D 69 36 HR 2.3 1.8 3.9
28-172 1.35 14.0 E 34 19 HR 1.9 0.8 2.0
29-173 1.30 14.0 B 72 42 HR 4.5 1.4 3-2
30-174 1.33 14.0 E 23 13 HR 1.7 0.8 4.3
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Table 3. White Sands Strain Readings Rosette R-2,

November 27, 1964

Alt. Strain p in./in. Recorded Pressures - psf

Run Mach 1 1h000 Vector a b c M-2 X4-7 M-16

1-145 1.40 13.5 D 19 35 28 NR MR HR

2-146 1.43 14.0 H 11 9 HR 4.6 1.9 3.5

4-146 1.30 14.0 E 7 9 6 1.9 0.9 3.9

5-149 1.30 14.0 B 30 39 25 HR MR HR

6-150 1.30 14.0 E 11 13 6 2.3 0.9 3.9

7-151 1.39 15.0 F 11 13 9 3.5 0.9 3.4

8-152 1.34 13.0 A 19 22 31 4.5 1.1 3.4

9-153 1.38 14.0 F 11 26 19 4.6 1.3 3.1

10-154 1.40 14.0 G 22 30 28 1.5 0.9 3.9

11-155 "1.40 14.3 C 7 13 9 1.9 1.8 3.9

13-157 -. 30 14.0 H 33 44 46 3.3 1.4 2.0

'4-158 .36 14.0 0 22 22 22 3.6 2.2 3.4

15-159 .36 4.0 H 19 35 31 2.5 1.4 .. 9

16-160 1.25 13.5 A 30 39 38 6.5 2.2 7.4

17-161 1.30 14.0 F 37 44 34 2.6 2.2 3.7

18-162 1.30 14.0 A 19 30 25 4.5 1.2 2.7

19-163 1.20 14.0 8 30 44 41 2.4 1.9 2.5

20-164 1.38 15.0 E 19 22 25 3.2 1.0 1.9

21-165 1.34 14.0 B 22 35 28 2.3 2.0 5.0

22-166 1.45 16.0 C 11 13 13 HR NR NR

23-167 1.39 14.3 G 19 26 28 MR HR NiR

24-168 1.45 13.9 C 7 9 13 MR NR HR

25-169 1.30 14.0 D 11 13 9 2.9 2.7 3.9

26-170 1.30 14.0 H 26 49 44 5.6 1.4 5.3

27-171 1.40 14.0 0 7 9 13 2.0 1.8 3.9

28-172 1.35 14.0 E 7 9 9 1.8 0.6 2.0

29-173 1.30 14.0 3 30 39 34 6.0 v.4 3.2

30-174 1.33 14.0 E 7 9 9 2.3 0.8 4.3

32



Table 4. White Sands Strain Readings Rosette R-1,
November 28, 1964

Alt. Strain u in./in. Recorded Pressures - Osf
Run Hach x 1.000 Vector a b c M-1 M-7 M-16

2-176 1.30 11.9 A 109 61 NR 9.1 3.6 5.9
3-177 1.25 11.7 F 52 29 NR 4.5 1.1 4.0
4-178 1.25 11.4 H 80 25 NR 7.3 1.7 5.3
5-179 1.26 12.5 D 49 29 MR 6.4 2.0 3.8

Table 5. White Sands Strain Readings Rosette R-2,

November 28, 1964

Alt. Strjin V in./in. Recorded Pressures - psf

-H. ueb x IM Vector _aL b c-2 M4-7 M4-16

2-176 1.30 11.9 A NR .2 19 14.3 3.6 5.9
3-177 1.25 11.7 F NR 39 34 16.2 1.1 4.0
4-178 1.25 11.4 H NR 52 53 19.0 1.7 5.3
6-179 1.26 12.S D NR 26 22 4.8 2.0 3.8
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Table 7. External Pressures on Building W4 at White Sands

p p p pzeet 2 01 loge\ to
North South cos Pa p pO

P Aall all 0 f IV0

1 o.20040 3.46060 3.46600 -1.10060 .s4939 .s4039 -. 26091 -. ?6091

2 4.60600 3.20000 4.60006 -. 70700 .66467 ."5633 -. 17609 -. 01684

3 5.60090 2.40000 3.0000 -. 70OOO .SI7G6 .S3S7I -26579 -. 7107

4 S.30000 3.40000 2.39000 O..060 G6A1S1 .43396 -. 19280 -. 36Z55

5 5031000 4.00000 2.30060 0.60600 .T547T .43396 -. 12222 -. 362SS

4 7.OOOO0 3.40000 .7000 0.00000 .S144 .357.36S7 -.28890 -. 41373

7 5.90040 3.00000 6.70600 -1.6h000 .6407 1.13SS9 -. 19107 fSS22

S .080000 6.70006 1e706 1.00000 1.39563 I3S417 .14463 OWTO

9 7o40000 3600000 1.3000 .?7070 .$69?4 .1710S -. 64630 sP7

is 5.30000 3.00000 4.20000 -. 70?00 .56604 .7024S -. 2471S -10.13

11 ?7o.000 9.0000 1.31000 oOsO0 3.26S71 .1GS71 .10914 -. 73115

12 7.36000 6.S0000 1.30000 .76?00 .09041 .e7800 -. 05041 -. 74938

13 4.51000 S.30000 1.10000 .70700 .A1S36 .16923 -. 0864 -.77152

14 7.60000 4.60000 3.20600 0.06000 .6el4 .4ST74 -. 18234 -. 339S5

15 5.40000 4.00060 2.70000 0.0o000 .01429 .40214 -. 16613 -. 31682

16 6.20010 3.40000 1.90000 0.0000 .S4639 .24194 -. 26091 -. 61630

37 6.2010O 3.40000 ).So0* 0.00000 .A4639 .?4144 -. 26091 -. 61636

is 3.96000 2.90000 3.68000 -67060 .74359 .97436 -. 124t7 -. 01126

19 S.390600 .30010 1.30010 .70700 1.16466 ."4S28 .07506 -. 61033
FO 3.9ooeo 2.oo0ee 4.60oo3 -. 7?o8o .143sO 1.17040 -.1266? .07l60

is S.66001 3.006,. 3.20000 -1.60o00 .3571 .A7143 -. 27107 .:24314
22 S.30000 T.60010 I.SO000 1.01100 1.433% .2830? .ISGS4 -.S4414

23 tol0100 3.2OOOO S.70000 *1.0O000 41l613 .9103S o028FI4 -. 036S?

20 S.10000 3.90000 3.00000 -. 70700 .67lt .17SI0 -. 17607 -. 12779

I ?.90000 S.70000 1.30000 .7070T .72IS2 .1466 -. 1417S -. ?8366

-6 7.60080 3.00000 3.60000 -.70700 ,S3S? .60714 -. 27147 -. ?1671

27 4.90000 S.80000 2.30000 0.00000 3.14367 .46439 .07323 -. 32947

28 S.20000 6.00000 1.20000 0.00000 I.IS36S .230?? .06215 ..63682

P• 79 1.90000 3.10000 3.10040 01.00000 h631SS 1.63158 .21 .2l261

3 0 6.00000 I oSO 000 2.O0000 O 0.00000 .2so 0 .33333 -.60206 0.4771?
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respectively. Columns 6 and 8 contain the common logarithms of the

ratios from Columns 5 and 7, respectively. It will be shce-n later how

these ratios and logarithms are used in the present statistical model.

3. EDWARDS AIR FORCE BASE TESTS

The sonic boom tests conducted at Edwards Air Force Base.

California, in June 1966 were for measurement of both human response

and structural reaction. Like the previous tests, these were conducted

under FAA sponsorship. Stanford Research Institute, under the direc-

tion of Karl Kryter. performed the human response stu .. cs a

John A. Blume and Associates again performed the struc s

[31, 34] . NASA also participated in reduction and analysis , sonic

boom data.

As part of the Edwards structural test two test houses, shown

in Figures 15 anrd 16, were extensively instrumented. Of particular

interest in the present study, five windows were instrumented with

strain gauges and two indoor microphones were installed. There was

also extensive instrumentation of walls and ceilings.

Between the Edwards tests and the White Sands tests, there

were seven windows of various sizes instrumented. These are sum-

marized in Table 8. The strain readingi on these windows form the

basis of the present statistical model of the dynamic amplification

factor.
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Of the Edwards data there were 102 de.ta sets which were found

to be complete and suitable for use in this study. These correspond

to 102 different overflights whose readings are shown in Table 9. Note

that for each overflight there are strain gauge readings from windows

on five channels, internal pressure readings from two microphones.

and a free field pressure reading. No readings of external pressure

were made hi the Edwards series. The readings shown in Table 9 form

the basis of the correlation analysis which led to the statist.cal model.
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IV. RESPONSE PROBABILITY
DENSITY FUNCTION TECHNIQUE

All the calculations of breakage probabilities in this report are

based on the response probability density function (pdf) technique. In

order to understand the analysis it is essential that the concept of a

probability density be fully understood. Therefore, this chapter begins

with a review of that concept.

1. PROBABILITY DENSITY FUNCTIONS

For illustration, assume that a group of 402 readings have been

taken, representing the breaking strengths of steel rods. The readings

are then sorted according to size and the number of readings in each

250 psi interval is tabulated. The number of readings in each interval

is then graphed as a bar chart as shown in Figure 17a. (If the readings

were from glass rather than steel the shape of the distribution would

be different, as will be discussed later. ) This particular form of

bar chart, showing the number of readings in each interval, is known

as a histogram. The shape of the histogram in Figure 17a is the well-

known bell shape which occurs often for distributions of men's heights,

students' grades, and many other measurements.
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Figure 17. Example o! a Probability Density Function

46



Now assume that for each interval shown in Figure 17a the num-

ber of readings is divided by the total number of readings for all

intervals combined. This will give the slightly different histogram

shown in Figure 17b. The ordinate oL Figure 17b shows the percentage

of the total number of readings that are in each interval. If the sample

rods tested were typical of the rods being manufactured, Figure 17b

could also be viewed as a histogram of probabilities. Then it could

be observed from the histogram that the probability is . 17 of

picking a rod at random whose strength is in the interval centered at

52.0 kpsX.

Note that the histogram of Figure 17b is a discrete function.

For most analyses, it is more convenient to work with continuous

functions, such as the curve in Figure 17c. Note that the curve looks

very much like Figure 17b. In fact, it is what would be obtained if

there were a very large number of samples and the strength intervals

were made smaller and smaller. The curve of Figure 17c is axn

example of a probability density function. The ordinate of the curve

is a density in probability per unit length. For the normal curve

shown (also called a gaussian density function), the probability

density function is

1 (x -4A)2

f(x)=-exp 2 1 (5)
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where I is the mean and a is the standard deviation. To find the

probability that a stress, x, falls between two values. xI and x2,

merely take the definite integral of the probability density function

between x1 and x2 . Obviously the integral of a probability density

function-from -w to w is 1.

Now observe the probability density function of a stress from

some form of random loading as shown in Figure 18. Note the wide

ranbe of values that may be expected for readings of stress from the

randomly occurring loads of this type. Assume that this probability

density function has been determined from a very large number of

experimental values. Now suppose that another large sample of the

same form of random loading is taken. The probability density

functions should be almost identical for the two large samples. (If

both sample sizes are infinite they will be identical.) Thus, although

individual stress values are random, the shape of the density function

is for all practical purposes constant. The probability that stresses

will fall in a given range can be predicted with certainty.

Similar to the probability density function for stress, a proba-

bility density function for the breaking strengths of the specimens is

shown in Figure 19. Again, the probability that a strength reading

wl1 be in a given range can be determined.
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Now, suppose one of the stresses am, from the loads selected

at random acts on one of the random strength samples aGj. For this

case, an effective factor of safety Ne can be defined by

Nek 0 (6)

Since the stress and i9trength are assumed to be statistically indepen-

dent, the probability density function of the effective factor of safety

can be found from the probability density functions of the stress and

strength. 'i'he process for finding the probability density function of

Ne in the general case is a convolution-like procedure [35], which

can usually be accomplished by computer integration only,

GoF(Ne) =fNeamfa a~m 7

Note that the factor in the integral is a joint probability density of

two variables.

Considerable simplification is poasible if the stress and strength

probability density functions are both lognormal. The lognormal prob-

ability density function has the form

f(x) - exp -- (ln x -) (8)
xa.2 2a 2 J

for x>O and a>0, and f(x) = 0 for x>0. A variable is distributed

lognormal if its logarithm is distributed normal.
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If imposed stress and material strength are both distributed

lognormal, the probability density of the effective factor of safety will

then also be lognormal. This is because the logarithm of the effective

factor of safety will be the difference of the logarithms of the stress

ane, strength, and the difference of two normally distributed random

variables is normally distributed with its mean equal to the difference

of the means and its variance equal to the sum of the variances. The

probability of breakage can then be found as the area under the curve

of the probability density of the effective factor of safety, for effective

factor of safety less than 1. Equivalently, this is the area under the

curve of the density of the logarithm of the factor of safety to the left

of zero.

The probability density functions for the effective factor of safety

and its logarithm are shown in Figure 20. The easiest way to find the

probability of breakage in this case is to work with the normal curve

of the logarithm of Ne in Figure 20b, since the probabilities under a

normal curve are a tabulated function.

The following sections will develop the probability density func-

tions of sonic boom stress and material strength so that the above

.iique can be utilized.
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2. SONIC BOOM STRESS

With th- definit'ons of the peak overpressures and the DAF

discussed in Chapter II, a correlation analysis was performed using

experimental data from the sonic boom tests performed at White Sands

in 1965 [29, 30, 33] and Edwards Air Force Base in 1966 [31, 32, 33]

These data consisted of values of pf, ?e, and Pi mcasured from micro-

phones and concomitant values of am measured with strain gauges on

the windows on the test houses.

-Correlation analysis [1, 4] of the Edwards data indicated that

strain in the test windows correlated well with free field pressure and

poorly with other variables. The correlation coefficients calculated

between pf and the strains on four windows were 0. 66, 0. 69, 0. 69,

and 0.42. All these results indicate significant correlation at the

99 percent confidence level. Correlation coefficients were also com-

puted between the strains and the impulse pfT/2, but correlations

were found to be less than for the pressure pf. Similarly correlations

with wave energy pf 2 T/3 were also found to be less than those with pf.

These results indicate that the. free field pressure, pf, is the correct

variable to use in formulating a lirnear expression for stress.

Three variables that were discarded on the basis of low correla-

tion were the internal pressure Pi, the rise time of the free field

pressure waveform tr. and the sonic boom duration T. The strains
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on two windows were found to have correlations of -0. 66 and +0. 18

respectively with pj/pf. These low correlations with signs in both

directions suggest that internal pressure is for all practical purposes

uncorrelated with strain. The DAF's on five windows were found to

have correlations with rise time of +0.20, -0.28, +0.01, and -0.06.

This indicater that DAF is not correlated with rise time. Correlation

analysis and examination of scatter diagrams also showed that stress

is unrelated to the sonic boom duration T except in the case where a

very short duration boom impinges on a very large storefront window.

In this exceptional case, such as might occur from an F-104 boom,

there is a lowpass filter effect. The short duration boom is ineffec-

tive in exciting the window above its natural frequency and a low DAF

occurs, perhaps of the order of 0.5.

A correlation of 0. 78 was found between the peak external

pressure Pe and the peak free field pressure nf. Scatter diagrams

of Pe/Pf from the White Sands data indicated a marked dependence on

the cosine of the flight path angle, 0. On this basis a regression

analysis was performed resulting in the relation

lOgl0(Pe/pf) = .1427 cos 9 - .1258. (9)

Having observed the results of the correlation analysis it was

now desired to formulate a statistical rel, .onship between the stress

and the nominal overpressure. Data from the Oklahoma City sonic
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boom tests of 1964 [28] indicated a correlation of 0.42 between the

nominal pressure po and the free field pressure pf. The dependence

of external pressure Pe and free field pressure pf had also been noted

earlier as had the dependence of stress on pf. Thus the most suitable

form for the stress relation was determined to be

am = Po(PfiPo)(Pe/Pf)(ad/Pe)(am/ad). (10)

In the above form all the ratios shown are measurable values for

which data are available. The Oklahoma City tests provided 3500 values

of Pf/Po and the White Sands tests provided 900 values of pe/pf. The

value ad/Pe is deterministic; it can be visualized as a stress factor F

such as that given in Equation 3 for the f'.t plate case. The value

am/ad is the DAF, for which 500 values are available from the

Edwards Air Force Base and White Sands tests.

It is readily apparent from the physical situation that the ran-

dom variable factors in Equation 10 are all statistically independent.

The value of (pf/po) depends on the inhomogeneities in the atmos-

and on the deviation of the aircraft from its planned altitude and Mach

number. The random variable (Pe/Pf) depends on the geometry of the

surfaces involved and their reflection coefficients. The DAF depends

on window size and mounting. Since the three random variables

depend on independent phenomena, they can be expected to be

independent.
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Using the data from the Oklahoma Ci'ty, White Sands, and

Edwards Air Force Base tests, histograms were computer plotted

for Pf/Po' Pe/Pf' and DAF. The results [1, 4] showed that their

pdf's were to a reasonable approximation lognormal. Thus the histo-

grams of the logarithms appeared normally distributed as did the

example of (pf/po) .,aown in Figure 21; a gaussian curve of the

same mean and variance is also plotted for comparison. Thus we

have verified that the stress was indeed lognormal. The next

section considers the probability density function of the material

strength.

3. MATERIAL STRENGTH

The breaking stress qG of a materiel can be expressed in terms

of a breaking pressure pG multiplied by a stress factor F, which

depends on the loading configuration.

aG = PGF (11)

The materials we are discussing here are brittle in nature, such as

glass, plaster, and mortar. For each of these materials the ques-

tion arise. as to what the shape of the pdf of the breaking pressure

is.

We have been able to obtain data on the shape of the breaking

pressure for some of the materials and found them to be lognormal.
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In our previous work on glass [1, 4 we obtained a large data base

of glass breaking pressure readings from the Libbey-Owens-Ford

Company [36]. By plotting the histograms of the breaking pressures

we found the probability density function of the glass breaking pres-

sure to indeed be lognormal. Similarly we obtained experimental

data on the tensile strength of mortar [37, 381 and determined that

the pdf is also lognormal. For other materials we have been unable

to find sufficient experimental strength data to plot a histogram indica-

tive of a pdf but on the basis of their brittle nature and their similarity

to glass or mortar we have assumed their pdf's to be lognormal

also.

4. PROBABILITY OF BREAKAGE

Having examined the pdf's of the stress and the strength and

found them to be lognormal, the response probability density function

technique can now be applied to find the probability of breakage. The

effective factor of safety Ne is given by

Ne = aC_/am (12)

where qG is the breaking pressure of the material and amn is the maxi-

mum stress created by the sonic boom. Using Equations 10 and 11

for the maximum sonic boom stress am and the material strength

aG we have after taking logarithms
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log10 am = l0g10 Po + log10 (Pf/Po) + log10 (Pe/Pf) (13)

4.• -10F + 1ogl 0(DAF).

log1 0 'G = log1 0 F + log 1 0 PG" (14)

Thus there results from Equations 13 and 14

E Ilogio Nel E ) logj~ PJ pG logj p0 - E Iloglo (pf/po)$ (15)

- E 1og10(Pe/Pf) - E jlog0o(DAF .

and

Var (logl 0 Ne) Var [lOg1 0 (f'po) + Var [iOgl0(Pe/pf)] (16)

+ Var [loglO(DAF)] + Var logl0 (PG)]

The pdf's of the terms involved are illustrated in Figure 22.

The mean and variance of the distribution of each logarithm

were found for each case. Note that the mean must be found after

taking logarithms, since the mean of the log is not equal to the log of

the mý,an [39]. For logl 0 (pflpo) the mean was found to be 0. 0471

and the variance was 0. 0446. For sonic booms equally likely from

any flight path direction. the mean of logi 0 (Pe/Pf) was -0. 1251 and

its variance was 0. 0439. If instead only head-on booms are consid-

ered then the mean of 1,)gl 0 (Pe/Pf) is 0. 0174 and its variance is

0.030S. For the remaining random variables DAF and PGthe mean

and variance depend on the material configuration. The other two

numbers F and Po are deterministic.
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Having found the mean and variance of loglo Ne, the probability

of breakage follows directly. By finding the value of

z = E tog, 0 oi/ [voar (logo Ne)]" (17)

the area to the left of zero in Figure 20 can be found by entering a

standard gaussian table.

This is the technique which will be used in succeeding chapters

to find the probability of breakage for various materials. The next

chapter will consider glass, and subsequent chapters will analyze

plaster, bric-a-brac, and brick.
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V. GLASS

Unlike metals, the microstructure of glass is amorphous

rather than crystalline. Because of this fact, the practical design

strength of glass is a surface condition property rather than a con-

stant material property. For example, glass that is acid-etched and

coated with lacquer to protect its surfaces can have an average

strength of 250 kpsi. If the same glass is severely sandblasted,

its average strength is reduced to 2 kpsi [40]. Because of this

dependence on surface scratch condition, strength tests on seemingly

identical panes of glass will show a wide scatter of values. Even if

the panes of glass have received the same handling, the depth and

location of minute surface scratches will be random. The exact

valu,- of breaking strength for a given pane cannot be predicted:

however, the mean and variance of large lots of glass of the same

size. type, and surface condition will be repeatable.

In addition to tht variations due to surface scratch condition,

there are also variations with loading geometry, loading rate, ?tmos-

pheric moisture content, and composition. Glass exhibits a property

known as "static fatigue" in that it is weaker for loads of longer dur-

ation. Static fatigue is a stress corrosion type of process that takes
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place when water vapor gets into cracks during loading and aids their

growth [41]. Thus for sonic boom loading, which has a duration of

the order of 0. 1 sec, the strengths of glass will be roughly twice

those obtained in typical laboratory measurements whose loz'ding

duration is of the order of 60 sec, as shown in Figure 23.

In our study we were fortunate in being able to use a data base

of unpublished static test results on 2500 lites of glass, which the

Libbey-Owens-Ford Company graciously made available. The data

consisted of 119 sets representing a full range of window sizes with

approximately 25 readings of breaking pressure per set. Each

reading was obtained by loading the glass incrementally to failure on

a vacuum test fixture, with the effective load dLration being approxi-

mately one minute.

Two adjustments were necessary in extrapolating from the

Libbey-Owens-Ford data of new glass under static loading to the

case of used glass in people's homes under sonic boom loading.

First, the glass must be considered to have twice the strength under

sonic boom loading as under 60 second laboratory loading because of

the static fatigue effect. Counterbalancing this, a reduction of the

strength must be allowed for the deterioration of the surface condi-

tion over time. After the glass emerges from the factory it suffers

scratches in shipping, unpacking, handling, installing, cleaning, and
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weathering. Although the glass is weakened by this progressive

scratching over time, there appears to be no cumulative dynamic

fatigue effect due to repeated sonic boom loading [42] . On the basis

of comparing the only available published strength data on used glass

with test results on the corresponding size of new glass [42], it was

observed that the used glass appeared decreased in strength by a

factor of 2, as shown in Figure 24. Thus the two factors of 2 above

compensate tor each other, and the strength of new glass under static

loading can be assumed to be the same as that of used glass under

sonic boom loading.

Computer-generated histograms (1,4] were run for the glass

breaking strer.gth and the glass breaking pressure. Both were found

to be lognormal to a reasonable approximation.

It was necessary to provide in the statistical model for the

presence of already cracked glass in the window population. AlhIough

there appear to be no published test data on cracked glass, experi-

menters in the glass community have said that 10 percent of the

strength of ordi.iary used glass is a good rule of thumb. Or, this

basis the present study has assumed that the mean strength oý

cracked glass is one-tenth that of used glass, and that the variance

of the distribution of the logarithm of its strength is the as that

of used gla;•. A previous study [31] found cracked glass to be
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.61 percent of the population. On this basis the glass population

was assulmed in this study to consist of 99. 39 percent gooG glass and

0.61 percent cracKed glass. The pcdf of the logarithm of strengt:

for the entire population is shown synthesized in Figure 25. Note

that in hiis model all glass is assumed to be either used glass in

g-)od condition or cracked glass. No proiision has been made for

brand new glass or for any state between cracked and good. Using

this model the probabilities of breakage for the healthy glass IH and

the cracked glass PC can then be combined into a population proba-

bility of brep.kagý? P by using the relation

P 0. 9939PIHj + 0. 0061 PC. (18)

In applying the rosponse pdf technique to predicting the sonic

boom breakage probability in a group of windows, all the windows

will have the same pdf's of log1i0 (pf/po) and !ogl 0 (pe/pf). But the

pdf's of log1 0 UDAF) and logl 0 (p,) wili. in general. be different for

ean winlow dependimrx cn its geometry. Sev ,n iypical window types

for which data were available are indicated ;rn Table 8. In

table the column headed fo gives thie natural freque.'cy of the rite.

which is irrportant on)v in the case where a short duyation boom

expites a very large w~ndow. The sixth column gives the stress

factor F trorr Equation 3. The last -olumn gives the value of

(ab)//h: stress is roughly p.oportional to the square of this
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parameter for small deflections. The means and variances of the

various facto:s for these windows for all flight paths combined and

for head-on booms are shown in Tables 10-13.

Note that for a given window size the mean of loglONe of Equa-

tion 15 decreases with increasLig po. Probability of breakage vs.

nominal overpressure po was plotted for the seven typical window

sizes in good condition; the results were straight lines on lognormal

paper. These are shown f )r the cases of booms equally likely from

any direction and for head-on booms in Figures 26 and 27 respectively.

These results agree well with sonic boom damage claims data at low

overpressures of 0. 6 breaks per million pares boomed at a nominal

overpressure of 1 psf [43. 441 . The results also agree with NASA

,experiments at high overpressures [45]

Probabilities of breakage were also computed for a model win-

dow population consisting of both good glass and cracked glass using

Equation 17. The results are shown in Tables 14-21 for various

nominal overpressures from I to 100 psf with booms equally likely

from any direction or head-on. The composite glass population

probabilities assurrne equal numbers of each L.f thL seven window types.

Note that for this low crpressure the maprity o0 ,reaks are likely

to occur in already cracked windows.
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Table 14. Probability of Glass Breakage Calculated for Model Window Population for
All Flight Paths Equally Likely at a Nominal Overpressure of 1 psf

Window Type1
Glass in Good Condition Cracked Glass Combined'

Window Mean MearnzPz P P
No. log1 0 Ne log 0 Ne

1 1.8836 5.67 .7 X10- .8836 2.65 0040 2. 44X10-s

2 1.9250 5.71 .6 X10- .9250 2.74 .0031 1.89X00-

3 1.8892 5.59 1.1 X10- .8892 2.63 .0043 2.62X10-

4 1.6875 4.47 4.3 X10- .6875 1.82 .0346 21.53X10-

5 2. 0821 5.11 1.67X10- 1. 0821 2.65 .0040 2.46X10-

6 1.7637 4.51 3.4 X10- .7637 1.95 .0254 15.83X10-'

7 2.3107 5.41 .3 XI0 1.3107 3.07 .0010 .61X10-J

Good Glass P 1. 1X10'

Cracked Glass P 0.0109
C

Glass Population P = 67. 6X10-'
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Table 15. Probability of Glass Breakage Calculated for Model Window Populationfor Head-On Flight Path at a Nominal Overpressure of 1 psf

Glass in Good Condition Cracked Glass W in e

CombinedWindow Mean MeanNo. lOg 1 0 N llog 10 Ne z P P

1 1.7411 5.59 1.2X10-' .7411 2.38 .0087 5.13X10"

2 1.7825 5.62 9. 8XI0- .7825 2.47 .0068 4. 15XI0 5

3 1. 7467 5.49 2. lXI0- .7467 2. 34 .0096 5. 86XI0-
4 1.5450 4. 29 8. 6X10-4 .5450 1. 51 .0655 40. 81XI0cr
5 1. 9396 4. 96 3. 5XI0"- .9396 2.40 .0082 5. 04X10-'

6 1. 6212 4.34 6. 9XI0-' .6212 1.66 .0485 30. 27X10 -sA

7 2.1682 5.26 7.4X10- 1.1-682 2.83 .0023 I. 41XI0-

Good Glass PH 2.3X I'

Cracked Glass PC .0214

Glass Population P 1.33X10-"
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Table 16. Probability of Glass Breakage Calculated for Model Window Population for
All Flight Paths Equally Likely at a Nominal Overpressure of 2 psf

Window Type
Glass in Good Condition Cracked Glass Combined

Window Mean Meanz P zP P
14o. IlogN log1 0 N z

1 1.5826 4.76 1. 02X10-' .5826 1. 75 .04,01 2. 46XI0-

2 1.6240 4.82 .80X10-6 .6240 1.85 .0322 1.97X10-'

3 1.5882 4.70 l.31X10- .5882 1.74 .0409 2.50X10-

4 1.3865 3.67 1. 3 X10- .3862 1.02 .1539 1. 07X10-

5 1.7811 4.37 5.5 X10-' .7811 1.92 .0274 1. 73X10-

6 1.4627 3.74 1.0 X10- .4627 1. ,,, .1379 9. 41X10-4

7 2.0097 4.70 1.31X10- 1.0097 2.36 .0081 5.07X10-

Good Glass P = 3.43X10s-

Cracked Glass PCZ 0. 0629

Glass Population P = 4. 18X10-

I7
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Table 17. Probability of Glass Breakage Calculated for Model Window Populationfor Head-On Flight Path at a Nominal Overpressure of 2 pst

Window Type

Glass in Good Condition Cracked Glass Combined

Window Mean 
Mean

No. log Ne loglNe

2.0 X10 .4401 1.41 .0793 4. 86X10

-44

2 1.4815 4.70 1.4 X0IO .481 1.2 .63 .9X

3~- 
4.47 45 8XO*-

311 .4457 1.40 .0808 4.96X10 3
4 1. 2440 3.45 2. 81X10"" .2440 .68 .2451 1. 77X10"•

5 1.6386 4.19 1.5 X10- .6386 1.63 .0515 3.29X10-

6 1.3202 3.53 2. 20X10 .3202 .86 .1949 1. 41XIO-

7 1.8672 4.53 2.8 X10 .8672 2.10 .0179 1. 12X 10'

Good Glass PH = 7.5 x 10"

Cracked Glass PC = ,105

Glass Population P = 7.15 x 10-'
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Table 18. Probability of Glass Breakage Calculated for Model Window Population
for Head-On Flight Path at a Nominal Overpressure of 4 psf

Window Type
Glass in Good Condition Cracked Glass Combined

Window IAlean Mean
No. oN z P Mean P P

eo ogO logioN

-4
1 1. 1390 3.66 I.4X10 .1390 .45 .3264 2.13X10"

A3

2 1.1804 3.72 .9X1O- .1804 .57 .2843 1.82X10-

3 1.1446 3.60 1.6X10 4  .1446 .45 .3264 2.15X10"

4 .9430 2.62 4.4X10"3 -. 0570 16 5S36 7.81X10_3

5 1.3375 3.42 3.2X'l- .3375 .86 .1949 I. 50X10-

6 1.0191 2.73 3.2X10 - .0191 .05 .4801 6. 11X10-

7 1.5661 3.80 .8XI0 -' .5661 1.37 .0853 .60X10-F

Good Glass PH 1.20X10

Cracked Glass P C .723C

Glass Population P = 3.16X10

,-1

• 81

:Ih



Table 19. Probability ox Glass Breakage Calculated for Model Window Popuiation
for Head-On Flight Path at a Nominal Overpressu:e of 20 psf

Window TyPe
Glass in Good Condition Cracked Glass Combined

Window Mean Mean
SlOglo 0 N e z P logl0N e z P P

1 .4401 1.41 .0793 -. 5599 -1.80 .964, .085

2 .4815 1.52 .0643 -. 5185 -1.63 .9485 .070

3 .4457 1.40 .0808 -. 5543 -1.74 .9591 .086

4 ,2440 .68 .2451 -. 7560 -2.10 .9821 .250

5 .6386 1.63 .0515 -. 3614 - .92 .8212 .056

6 .3202 .86 .1949 -. 6798 -1.82 .9656 .200

7 .8672 2.10 .0179 -. 1328 - .32 .6255 .022

Good Glass PH = " 105

Cracked Glass PC = .895

Glass Population P = . 110
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- - jI ~-



Table 20. Probability of Glass Breakage Cr Iculated for Model Window Population
for Head-On Flight Path at a Nominal Overpressure of 40 psf

Window Type

Glass in Good Condition Cracked Glass Combined

Window Mean Mean
No. logON z P logON z P P

010 e 5 10 e

I .i..jO .45 .3264 - .8610 -2.76 .9971 .330

2 .1804 .57 .2843 - .8196 -2.58 .9951 .289

3 . 1 44A .45 .3264 - .8554 -2.69 .9964 .330

4 -. 0570 - .16 .5636 -1.0570 -2.93 .9983 .566

5 .3375 .86 .1949 - .6625 -1.69 .9545 .200

6 .0191 .05 .4801 - .9809 -2.62 .99.6 .483

7 .5661 1.37 .0853 - .4339 -1.05 .8531 .090

Good Glass P "323

Cracked Glass PC = .970

Glass Population P =. 327
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Table 21. Probability of Glass Breakage Calculated for Model Window Population
for Head-On Flight Path at a Nominal Overpressure of 100 psf

Window Type

Glass in Good Condition Cracked Glass Combined

Window Mean Mean
No. logI0Ne z P Nog,0Ne z P P

1 -. 2589 - .83 .7967 -1.2589 -4.04 .9999 .798

2 -. 2175 - .69 .7549 -1.2175 -3.83 .9999 .756

3 -. 2533 - .80 .7881 -1.2533 -3.93 .9999 .789

4 -. 4550 -1.26 .8962 -1.4550 -4.04 .9999 .897

5 -. 0604 - .15 .5596 -1.0604 -2.71 .9966 .562

6 -. 3788 -1.01 .8438 -1.3788 -3.68 .9999 .845

7 +.1682 + .41 .3409 - .8318 -2.02 .9783 .345

Good Glass P 711

Cracked Glass PC = .9963

Glass Population P =. 713
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The external overpressures are somewhat higher for head-on

booms than for flight paths equally likely from any direction as

indicated in Equation 9. For a 1 psf head-on boom, the breakage

probability calculated for the model glass population was 133 breaks

per million panez boomed; for 2 psf head on, 715 breaks per million.

Note that these values of P are almost twice those shown in Tables 14

and 16 for the same overpressures and flight paths equally likely

from any direction. Breakage probabilities for the model population

were also computed for head-on booms at higher overpressures; at

4 psf, 3.160 breaks per million; at 20 psf. 110. 000 breaks per

million; at 40 psf. 327, 000 breaks per million; and at 100 psf.

713,000 breaks per million.

This concludes the analysis of glass; the remaining chapters

extend the response probability density function technique to plaster.

bric-a-brac and brick.
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VI. PLASTER

Plaster, like glass, is a brittle material which is sometimes

subject to sonic boom damage. Plaster is manufactured by heating

(calcining) gypsum at 300 0 -350 0 F. The calcining process drives off

water vapor and changes the state of the material from dihydrate

calcium sulfate to hemihydrate. The calcined gypsum can be used

to form various plasters at the building site, depending on the aggre-

gate with which it is mixed. In older construction the aggregate con-

sisted of lime and sand. Other possible aggregates are wood fiber,

vermiculite, and perlite. When the plaster and aggregate are mixed

with water they form a slurry and entrapped air bubbles float out.

As the plaster sets, a crystallization process takes place and the

gypsum returns to its dihydrate form and bonds in the aggregate

materials.

The proportioning of ingredients, the thoroughness of mixing,

and the removal of air bubbles all aepend on the workmanship of the

individual plasterers. For this reason plaster shows considerable

variation in strength.

The strength of the plaRter will depend to a large extent on

whether the correct amount of water is mixed in; too much or too
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little will lower the strength. The key parameter in determining the

mechanical properties of plaster is the water-to-plaster ratio, which

is called the consistency. If too much water is added the excess will

run off, leaving the set plaster weak. E'" too little is added incomplete

hydration will take place and the resulting plaster wi:ll have places

that have never gone into the crystalline form. Figures 28 and 29

[46, 48, 49 ]show the variation in mechanical properties.

There is also a substantial variation in tensile strength of

plaster depending on the proportion of aggregate and the type of

aggregate used. This variation is indicated in Table 22 [ 50]). Note

from the table that plaster is considerably stronger in compression

than in tension, so that for sonic boom push-pull loading onZy tension

failures would be expected. From Table 22 it appears that a typical

conservative figure to use for the tensile strength of plaster is

100 psi. However, the strength could get up to 350 psi.

Usually plaster is applied to a wall or ceiling in three coats.

The first coat or "scratch coat" is applied directly to the lathing.

Its surface is then scratched with a rough tool to provide better

adherence of the following coat. The second coat, called the "brown

coat, " is somewhat thicker. The "finish coat"| which goes over the

brown coat is the one that is visible to the eye. It is often composed

of 11gauging plaster, a combination of calcined gypsum and lime.
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Table 22. Strength of Basecoat Plaster for Mixtures
With Various Aggregates

Type of Plaster Compressive Strength Tensile Strength
and Mivr* Range, Dry, psi Range, psi

Mill-.• ýý ,•d Perlite

Plaster 600-800 125-160

Wood Fiber Plaster

Neat 150C 2000 320-3q0

Sanded 100:1 1200-1600 180-240

C•.psum Neat Plas:er
I••tee With:

. , .OO:2 750-1100 140-170
100.2-1/2 650-850 120-14".#

100:3 550-750 100-125

Perlite 100:2 600-800 120-150
100:3 450-600 95-110

Vermiculite 100:2 400-525 90-100
100:3 250-325 75-85

*Aggregates shown in cu ft, plasters in lb

Note: Average laboratory test results; actual job str.!ngt.hs may
vary from these data because of job conditions and
methods of mixing and handling.
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The total thickness for all three coais combined is usually 1/2

to 3/4 inch.

The analysis of plaster failures on buildings is much more

difficult than those )f glass, because plaster never appears as a lone

element subjected to sonic boom as glass does. Plaster is always

used in conjunction with a wall or ceiling configuration, which sup-

plies the vast majority of the load-resisting capacity of the assembly.

Each wall or ceiling configuration thus represents a different support

for the plaster mounted upon it and the stress on the plaster car be

expected to v•ary accordingly. The more the support structure de-

flcLs. the greater the stress on the plaster. Because of the many

variations possible, the best that can be attempted within the scope

of this study is to perform the analysis for a few configurations which

seem typical.

Besides the structural variation another problem which compli-

cates plaster failure predictions is the nature of plaster f'ailures.

Generally the overstressing of building plaster in tension merely

results in hairline cracks, but not in immediat-. catastrophic failure.

This is much different from sonic boom failure of glass where it is Z

likeiy that the window will shatter, or that a highly visible crack

will appear. Plaster cracks by comparison are very thin and are 4

A
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difficult for the untrained observer to detect with the naked eye,

especially if they occur in a ceiling. Only when a catastrophic failure

occurs, such as a piece of plaster falling from the ceiling, is the

damage apparent. For such a failure, where the plaster actually

breaks loose and falls, it is necessary not only that it be cracked at

its surface, but also that its hold on the lath structure be craczed.

Patterns of plaster failures caused by sonic booms in the White

Sands tests [30] are shown in Table 23. Note from the table that

almost all the observed damage consisted of hairline cracks and the

extension of existing cracks. The table indicates two types of failure

for plaster, diaphragm and racking. In diaphragm failure the wall or

ceiling bellies out due to the sonic boom, bending the plaster on its

surface. In racking failure the adjacent walls and ceiling lean forward

slightly, trying to push the wall into a parallelogram shape. This

results in a tearing action on the plaster at the corners of the room

and near doors and wiz.,:aws. As seen from the table, diaphragm

failures and racking failures occur at about the same overpressures.

Since racking failures are much harder to treat analytically and data

on them are scarce, we treat diaphragm failures only here. The

results should also extend to racking failuran, however, on the basis

of the similarity in failure overpressures.
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We performed calculations of the probability of plaster cracking

from sonic boom for the six plaster configurations shown in Table 24.

The entries in the table for Numbers 1 and 2 are calculated static

pressures fcr the ceiling configuration indicated. The first ceiling

has low strength plaster with a tensile strergth of 100 psi, and the

second has high strength plaster with a tensile strength of 350 psi.

The four plaster wall configurations shown ."Dpresent t.xperimental

results from pressurizing wall sections in laboratories £51, 52 ].

Plaster configurations 3 and 4 failed at lower overpressures than

would be expected for a typical external wall in a home, since th'-se

configurations represented party walls rather than outside walls.

Configurations 5 and 6 represent the most susceptible configurations

of external walls, those of wood frame houses. The fact that the

failure pressures in Table 24 are so low shows the reason why plas-

ter often fails in ordinary occurrences, such as slamming a door

or hammering a nail in the wall.

A thorough search was made for data on the probability density

function of the breaking strength of plaster. We reviewed the litera-

ture and contacted manufacturers, trade associations, and the

National Bureau of Standards. Unfortunately no probability density

function data on plaster were available, We were, however, able to

find sufficient data o.,i a similar material, mortar [37], aizd found

94



-1 In (D- ~cn C1 Lo I
1-

54

-4 r-. r.C .qq - I

41 a, 4) v
0 10 C 4 6
$4 0 , , .0 >S Ea r
:3 ~ 0 0 to : W

0. 0 r *. 
m a

ub C u
41 W- 4) tot 9 1

w 0
54 -4 .

'.' CU 0

* ~ * C) .C ,)

4-t 41~ w :3 tic L

0U *-,- fn, 0 U
ul 00 W

Q) 00M W s45
... V4 0 0nG

$- C) o

Q)~~~~ IE x dC .4

'U 1 toN Go 44 to

LOU

c a = ) . C Ea

44-- - -4 -4 -4

C)d

.0 . c - >a -

-q N CO

49

Cd--~ -- - ---- ~ ------ - - ~ - - -



its distribution to be lognormal. The fact that mortar has a lognormal

distribution allows us to apply the response probability density function

technique, as we did for glass, ir treating brick-mortar systems later

in this report. On the basis of the structural similarity of plaster and

mortar, we represent the probability density function of plaster here

with a lognormal probability density function having the variance of its

logarithm the same as the variance of the logarithm of the breaking

pressure of mortar. The variance of the logarithm of the breaking

pressure of mortar was found to be .0324; this figure vas thus also

used here as the variance of the logarithm of the breaking pressure of

plaster.

The response probability density function technique was used in

analyzing the plaster configurations shown in Table 24. The resulting

estimates of the probability of breakage as a function of nominal

overpressure are shown in Figure 30. Note that the breakage proba-

bilities indicated are comparable to those of glass.

In calculating the breakage probabilities of the ceiling configur-

ations 1 and 2. different values of the mean and variance of

log10 (Pe/Pf) were used than were used for the walls. This is done

to account for the transmission loss of the boom in passing tb.:ough

the attic structure. For ceilings the mean of lo010(Pe/pf) -. 1609
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and the variance of logl 0 (pe/pf) = . 0029. For the wall configurations

the mean and variance of log1 0 (pe/pf) which were used for windows

were again used. The dynamic amplification factor distribution found

for the large window, Window 4, was used with the plaster calculations,

since this window is comparable in size to a wall or ceiling. On the

basis of the above procedures the graphs snown in Figure 30 resulted.

In summary, the estimated breakage probabilities for plaster,

shown in Figure 30. are similar to the results found for glass. As

in the case of glass there is a great deal of variation in the probab-

bility of breakage for the various configurations.
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VH. BRIC-A-BRAC

For the purpose of this study bric-a-brac is defined as an

assortment of miscellaneous ornamental articles, which sit on sur-

faces such as shelves or tables. Typical examples would be figurines,

ashtrays, clocks, cup and saucer sets, or candlesticks. Not included

in this definition are objects which hang from walls such as pictures

and mirrors. The exclusion of hanging objects from this category is

in keeping with earlier sonic boom claims categorization work [321.

By its very nature this type of sonic boom damage is very diffi-

cult to analyze. The objects which make up this category vary by

orders of magnitude in the force needed to overturn or slide them.

They also vary by orders of magnitude in their probability of breaking

once they fall from their supporting surface. For one extreme,

imagine a heavy steel disc paperweight sitting on a rubber mat in

the middle of a table. For the other extreme, imagine a delicate

saucer whose owner has balanced it on edge, precariously leaning on

the wall of a narrow knick-knack shelf, with a concrete floor below.

The steel paperweight would be immune to any sonic boom ever

created, both in the matter of falling and also of breaking if it did

fall. The precariously balanced saucer, however, would probably
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I4
break with any small disturbance such as a door slamming, a footfall,

or a wind from opening a window.

The above examples point out three key factors:

There is no "typical" piece of bric-a-brac.

Pieces of bric-a-brac vary tremendously in their
strength.

The susceptibility of pieces of bric-a-brac to overturning
or sliding off their supports depends to a large extent on
how their owner places them.

It is apparent from the above discussion that bric-a-brac do not

lend themselves well to a stress analysis, such as was used for glass

windows. The determination of the probability of breakage of bric -a -

brac will have to be based instead on claims data and on observations

of bric-a-brac breakage during severe booms at White Sands. Our

analysis extrapolates from these measured breakage probabilities by

assuming a lognormal effective factor of safety holds, such as was

observed for window glass.

The two measured breakage probabilities for bric-a-brac are

indicated by the circles on Figure 31. The point at 2 psf is from the

Edwards Air Force Base claims data [32 1. The point at 38 psf is

from the White Sands experiment.

The break: ze probability shown at 2 psf of 8.8 x 10-7 was

calculated by observing the ratio of bric-a-brac claims to window

100
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claims from the data in Table 25 to be 3/58. We also estimated that

there are roughly twice the number of bric-a-brac items in an average

home as there are windows, based on a count in the author's own home.

We assumed the breakage probability of a typical window population to

be 3.4 x 10-5, as found in our previous studies. Thus multiplying

these gave (3.4 x 10-5) x (3/58) x (1/2) = 8.8 x 10-7 as the bric-a-brac

breakage probability.

The point at 38 psf indicating a breakage probability of 0.2 per-

cent was derived from the White Sands data [30]. It was observed

that 2 out of an estimated 900 pieces of bric-a-brac in the test houses

were broken by a sonic boom with an overpressure of 38 psf.

In Figure 31 these two points are connected by a double line on

a lognormal probability scale. This is the same scale that was used

earlier in Figure 26 to display the probability of breakage of glass as

a function of sonic boom nominal overpressure. The graphs for

glass breakage are shown with single lines on the same graph for

comparison. It can be observed from the very steep slope of the

bric-a-brac line shown that the standard deviation of the effective

factor of safety is much higher for bric-a-brac than it is for windows.

This is as expected since, as discussed above, bric-a-brac has a

much greater structural variation than does glass. The bric-a-brac

line indicates that because of the very wide variation of strength and
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support condition there would be a breakage probability, comparable j
to the less susceptible glass, even at very low nominal overpreusures,

such as 1 psf. By the same token, however, it is unlikely that more

than about 1 percent of the bric -a -brac boomed would be broken even

for the highest overpressures.

In summary, bric-a-brac breakage is generally less tlau slags

for the normal range of sonic boom nominal overpressures. Estmates

of bric-a-brac breakage probabilities are given by the line in Figure 31.

However, it must be emphasized that the breakage probabilities for

bric -a -brac exhibit large variations depending on the strength of the

individual items and their support conditions.
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VIII. BRICK

Brick is a far stronger material than glass or plaster and is

generally not susceptible to s3nic boom damage. For the sake of

completeness, however, we are also considering brick in this report.

Common bricks are typically manufactured by heating rectangu-

lar prisms of clay or shale in a kiln. The processes used include the

dry-press process, the stiff-mud process, and the soft-mud process

[53). In the dry-press process relatively dry clay mixes are used

and the molding of bricks is done at high pressure. This results in

all six surfaces being smooth and even with good uniformity among

the bricks. In the stiff-mud process the clay mixture is more moist

and it is extruded by a machine into a long ribbon with the cross-

section of a brick. The ribbon is then cut by wires into brick-length

pieces, leaving rough surfaces at the wire cuts. -n the soft-mud

process the brick is formed from a wet mix of clay under only slight

pressure.

Various forms of kilns are used for firing the brick. In tunnel

kilns the bricks are placed on cars and move slowly through the tun-

nel gradually reaching a temperature of about 2000 0 F, and then they

are gradually cooled as they emerge. The tunnel kiln method of
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firing results in very uniform bricks. Other ,inds of kilns, however,

results in more variation among bricks depending on where in the

kiln the brick was fired. These other kilns include scove kilns,

round kilns, continuous kilns, and permanent kilns. The brick may

be classified as "top brick" from the top of the kiln, "body brick"

from the center, or "bench brick" from the arches of the kiln.

Variations in strength of bricks have practically no effect as far as

sonic boom loading is concerned; the weak point in the brick struc-

ture is almost always the mortar.

Mortar consists of cement, lime. and sand combined in vari-

ous proportions. The proportions used result in mortars with desig-

nations as M, S, N, 0. and K as shown in Table 26. In general the

compressive strength of the mortar increases with increasing pro-

portions of cement. There is a trade-off, however, since mortars

with more lime and less cerient tend to be easier f sr bricklayers to

apply.

For the purpose of this study we gathered data on the strength

of mortars when used in walt assemblies subjected to uniform load-

ing [37,54,55]. An analysis of the data, covering types M, N, 0,

and S mortars showed the probability density function of the strengths

to be lognormally distributed with a mean modulus of rupture of 45.6

psi and a standard deviation of 16. 9 psi. The distribution of the
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logarithms of the strengths had a mean of 1. 6252 and a variance

of. 0324. On the basis of these data probability of failure of brick

structures was calculated for sonic boom loading using the response

probability density function technique.

The first calculation presented here should lay to rest once

and for all any fears that people may have of sonic booms knocking 1-

down brick walls of homes. Table 27 from the nuclear effects

literature [56] shows that it takes a pressure of 7 psi (1008 psf) to

knock down a brick wall of a house. The most intense ,sonic booms

deliberately created for test purposes were of the order of 100 psf.

Even if one of these acts on the brick wall the breakage probability

is 1.3 x 10-15. With an astronomical probability like this we can

say that for all practical purposes there is no chance of knocking

down a brick wall of a home.

The question remains, however, of the probability of damage

to other parts of more susceptible brick structures; for instance.

cracking mortar on free-standing brick walls. The probability of

such occurrences will be examined here using National Bureau of

Standards data on tests of brick walls [571.

The four brick wail configurations analyzed are shown in

Table 28. All the brick walis shown were tested by National Bureau

of Standards using an air bag technique to create the pressure load.
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Table 27. Conditions of Failure of Peak
Overpressure -Seasitive Elements

Approxmate

Srvwctmnol Blement Foilhw Incident Mlost
Overprteine

Gla0 windows, large and S.atOring uwully. 0.5-1.0
"ameN. occasional frame

foalure.

Corvvgoaed asbesitos sding Shattering. 1.0-2.0

Conrete e or $feet lotluma- CcSnn fctio 9 failure 1.0-2.0
kwm paneling. followed by bu-k-

. ang.
Wood sidang panels, stand- Usally fo lhure occurs 1.0-2.0

ora house constrction. an the lr.an con.noctions allowing a *
whole panel t* be
blownin

Concrte or cinder-block Shattering of the wall. 2.0--3.0
wall panels I in. or 12
Kn N& (not reinforced).

*rik Wall panel, 8I in. or Shearig andl fexure 7.0-8.0
12 in. thick (not ren.n failures&

forced).
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All the walls were constructed of bricks with a nominal width of

4 inches. The static failure points indicated were when the first

cracking of the mortar was observed. In each case two specimens

were tested; the value shown in Table 28 is the lower of the two

static failure pressures. All tests were performed on 4-foot wide

by 8-foot high test panels. The mortar referred to in the table as

1:1:4 consisted (by volume) of one part of Type 1 portland cement,

one part hydrated lime, and four parts sand. The mortar referred

to in the table as "high-bond: contained one part (1 cubic foot) port-

land cement, one part (1 cubic foot) fine limestone (passing a No. 200

sieve), four parts (4 cubic feet) masonry sand, and four gallons of

a polyvinylidene chloride additive called Sarabond.

The breakage probabiiities for sonic boom loading of the four

brick wall configurations were calculated using the response proba-

bility density function technique. The results are shown in Figure 32.

Note that the breakage probabilities shown are generally lower than

those for glass except for the 17.3 psf wall, which was not made

from high-bond mortar. The results from the four wall cases shown

and the house example make it appear extremely unlikely that any

damage to brick structures would occur during supersoric overflights.

It would be very unusual for anyone to have a free-standing 4-inch

brick wall, and only one made from lower bond mortar would be more
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susceptible than windows. In fact, the only damage to brick struc -

tures reported in the White Sands tests was that three bricks

loosened below a window under a 38 psf boom.

Structures made of brick are not very susceptible to sonic

booms. For rare cases of free-standing brick walls the probability

of breakage is generally somewhat lower than for windows.
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IX. CONCLUSIONS

The analysis presented here has generally confirmed the

findings from sonic boom claims experience. The most likely

elements to break are windows, plaster, and bric-a-brac, and their

likelihood of breaking increases with increasing overpressure.

The combined graph for the probability of breakage of glass.

plaster, bric-a-brac, and brick is shown in Figure 33. It presents

the results that had been shown earlier for the separate materials,

except that the bric-a-brac curve has been broadened to indicate a

range of probabilities at each overpressure typical of other mate-

rials. The curve for the brick wall with low strength mortar was

eliminated, since it is not a very representative structure; it was

merely a sample in a laboratory test rather than a real wall in use.

For sonic booms with a nominal overpressure of 1 psf, with

all flight paths equally likely, the breakage probability ranges for

the structural elements were as follows:

Windows: 4 x 10-6 to 3 x 10-8

Plaster: 3 x 10-4 to 5 x 10-7

Bric-a-Brac: 1 x 10-6 to 1 x 10-8

Brick Walls: • x 10-7 to 1 x 10- 9 .
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On the basis of the results of the study various measures can

be suggested for reducing the probability of structural damage from

supersonic overflights. These measures are summarized in Table 29

and listed below:

1. In planning flights -reducing nominal overpressures

2. In designing aircraft-

(1) Increasing altitude capability

(2) Decreasing weight

3. In designing window installations-

(1) Reducing the width to thickness ratio

(2) Reducing the lite size

(3) Replacing cracked panes

(4) Avoiding scratches during installation and cleaning

(5) Placing windows so that they face away from the
flight path of supersonic aircraft

(6) Mounting windows carefully to avoid stress con-
centrations from direct contact with the glazer's
points or looseness of the window in the sash

4. In designing plaster installations-

(1) Stiffening walls and ceilings

(2) Using higher strength plaster

(3) Mixing plaster thoroughly with correct proportion
of water during installation

5. In ?lacement of bric-a-brac -avoiding precarious
positioning of items near edges
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6. In designing brick walls-

(1) Using thicker walls

(2) Laying of bricks with high-bond mortar.

In conclusion, this report has estimated the probabilities of

structural damage of various susceptible elements using the response

probability density function technique. These probabilities were

found to vary widely with the specific material configuration, but

to consistently increase with increasing nominal overpressures.

For all materials in good cordition. breakage probabilities were

found to be below .001 for a nominal overpressure of 1 psf. By

using appropriate measures in aircraft design. flight planning, and

material installation the probability of sonic booni structural

damage can be significantly reduced.
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LIST OF SYMBOLS

a length of window (inches)

A area of window (square feet)

b width of window (inches)

DAF c-rm/d dynamic amplification factur

E( ) expected value (mean) of random variable

fo natural frequency of window (Hz)

F statiqti' used in testing for differences
between groups

h thickness of window (inches,)

I = PfT/2 impulse of a sonic boom signature

Iopos = pfT/4 impulse of positive half of a sonic boom signature

n number of factors of the sensitivity random variable

Ne effective factor of safety

Pe peak external overpressure (psf)

Pel peak external overpressure measured on the north
wall of Structure W4 (psf)

Pe2 peak external overpressure measured on the south
wall of Structure W4 (psf)
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pf peak free field overpressure (psf)

PG material breaking pressure (psf)

Pi peak internal overpressure (psf)

Pnet peak net overpressure on window (psf)

PO nominal overpressure (psf)

Ps static pressure (psf)

P probability of glass breakage for the model
population

PC probability of breakage of cracked glass

PH probability of breakage of glass in good condition

q Pi/Pe internal pressure ratio

Atopos duration of the positive half of the sonic boom
signature

tr rise time of the free field pressure waveform

T total duration of the sonic boom signature

Var( variance of a random variable

Y Young's modulus of elasticity (psi)

Z normally distributed random variable with zero
mean and unit variance

0 flight path angle

; mean of random variable

v Poisson's ratio
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I.I

p ma,,a density

cr standard deviation of random variable

ard dynamic stress (psi)

9rG strength of material (psi)

am Maximum stress (psi)

ars static stress (psi)
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