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"The purpose of this report is to introduce an adaptive

estimation and parameter identification scheme which we OhMU call

Multiple Model Estimation Algorithm (MMEA). The NMOA consists

of a bank of Kalman filters with each matched to a possible

parameter vector. The state estimates generated by these Kalman

filters are then combined using a weighted sum with the a pos-

teriori hypothesis probabilities as weighting factors. If one

of the selected parameter vectors coincides with the true para-

meter vector, this algorithm gives the minimum variance state

and parameter estimates. Algorithms for filtering, smoothing,

and prediction are derived for linear and nonlinear systems.

They are described in a tutorial fashion with results stated

explicitly so that they can be readily used for computer imple-

mentation. Approaches for the extension of MMEA to a more general

class of adaptive estimation problems are outlined. Several

further research topics are also suggested. -
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I. ITRODUCTZON

During the past decade considerable advances have been

made in the theory, algorithms, and applications of stochastic

estimation problems involving linear and nonlinear dynamics. Thp

linear Kalman filter [1] and its diverse extensions to the nonlin-

ear case (2,3,4] are well established theoretical and algorithmic

tools with extensive applications.

In most practical applications of recursive estimation

theory, there are difficulties in obtaining an exact mathematical

model of the physical dynamic process. The uncertain parts of the

systeA are sometime represented by an unknown parameter vector.

Examples of ti.is kind include the ballistic coefficient and lift-

ing parameters modelled in the dynamics of a reentry vehicle

[4,5,6,7,8]. When the state estimation for this type of system

has to be carried out, the variations of these parameters and

their identification play a critical role.

Many approaches have been proposed in attempting to

perform state estimation together with parameter identification.

One very well-known on-line identification method is to model the

unknown parameter as a Markov process with variance related to

References in this category are too many to list, one may consult
the IEEE Transactions on Automatic Control (Dec. 1974), a special
issue on system identification, and reference (9) for listing
of related references.
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the system structure and the range of parameter variation. The

restriction of this method is that its performance is critically

influenced by the system structure, parameter variation, and the

required bias and random errors. This technique usually works

well within a rather small region of the state space and the

variance of the process noise can only be determined by engineer-

ing intuition and extensive simulation study. This method how-

ever, has been able to produce excellent estimation accuracies

in reentry vehicle tracking applications (5,6,81.

There exists an adaptive filtering and parameter identi-

fication method, which we shall call Multiple Model Estimation

Algorithm (09EA) in this report, which has attracted considerable

attentions in the academic field [10, 11, 12, 13, 14]. This algor-

ithm was first introduced by Magill [10] and later refined by

Lainiotis (11). The estimation algorithm was extended to adaptive

control by Willner [12] and Upadhyay and Lainiotis (131.

The basic concept of MMEA is to construct a bank of Kalman

filters with each matched to a possible parameter vector value.

The state estimates generated by these Kalman filters are then

combined using a weighted sum with the posteriori hypothesis prob-

abilities as weighting factors. If one of the selected parameter

vectors coincides with the true parameter vector, this method gives

the minimum variance estimates of both the state vector and the

parameter vector. In most physical problems, one usually has a

2



good idea of the possible values that a parameter may attain.

Furthermore, the construction of the MMEA with a steady state Ral-

man filter bank requires only moderate computation. It therefore

has attracted some attention for real-time applications (15, 161.

The purpose of this report is to introduce the Multiple

Model Estimation Algorithm. It will be described in a tutorial

fashion with results stated explicitly so that they can be readily

used for computer implementation. Furthermore, the discussions

on prediction and smoothing are believed to be new. Only the

algorithms for discrete time system will be discussed. This is

because that the modern estimation and control algorithms are

mostly implemented on digital computers. Due to the fact that

MMEA is theoretically more sound than the previous methods, it

may be a potential candidate in trajectory re-construction appli-

cations.

This report is organized as follows. In the next section,

the problem of state estimation with unknown parameters is form-

ulated. Possible solutions are discussed in a tutorial fashion.

In section three, the Multiple Model Filtering Algorithm (MMFA)

is derived. The extensions to prediction (MMPA) and smoothing

(MMSA) are presented in section four. Discussions of the first

four sections assume linear system and measurement equations.

The extension to the nonlinear system and methods of algorithm

realizatinn are presented in section f3:e. A simple second ordcr

3



example in included in section six to illustrate the theory.

Discussions are given in the last sect!.on. Two appendices which

list the linear smoothing algorithms and the Ralman and the ex-

tended Kalman filter algorithms are included for the reference

purpose.
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2. PROBLEM FORMULATION

2.1 Introduction

Consider a linear stochastic dynamic system whose dynam-

ics depend on a parameter vector •. Let us write its equations

in the standard state space representation and in the discrete

time case.

State Dynamics

x(t + 1) A(X)x(t) + B(y)u(t) + L(y)&(t) (2.1)

Measurement Equation

z(t) - C(y)x(t) + 6(t) (2.2)

Next we define the different variables associated with eqn. (2.1)

and (2.2).

The scalar t is a discrete time index

t = 0, 1, 2, ..... (2.3)
The state vector x(t) E R is an n-dimensional vector. The input

n

or control vector u(t) e Rm is an m-dimensional vector. The

plant noise vector J(t) c R is an p-dimensional vector. We
p

assume that J(t) represents a zero mean discrete white noise

sequence with known covariance matrix B(t) - pxp matrix - i.e.

E { 0(t) 0 for all t (2.4)

coy { (t);•(t) ) = E { f (t) T(T) I = E(t)6(t,T) (2.5)

5



where 6(t,T) is the Kroenecker delta

1 iF t= T

6(t,T) = (2.6)
0 iF t T

Note that the plant noise covariance matrix -(t) is symmetric

and at least positive semideninite

=(t) = -_T(t) > 0 (2.7)

The measurement noise vector OE(t)eR is an r-dimensional vector.
r

We assume that 0(t) represents a zero mean discrete white noise

sequence with known covariance matrix 0(t) - an rxr matrix - i.e.

E f 6(t) 1 - 0 (2.8)

cov ( _(t);_(T) I = E { 0(t) T(T) 0 = _(t)6(t,T) (2.9)

0(t) OT(t) > 0 (2.10)

Furthermore we assume that the plant driving noise &(t) and the

measurement noise O(T) is independent for all values of t and T,

i.e.,

coy [ &it);_(T) 0 = 0 for all t,T (2.11)

The above fix the dimensions of the different matrices that

appear in eqs. (2.1) and (2.2). Thus

6



A(y) is an nxn matrix

B(Y) is an nxm matrix

L(Y) is an nxp matrix

C(M) is an rxn matrix

2.2 The Parameter Vector I

We have explicitly shown the dependence of the state

dynamics and/or of the measurement equation upon the parameter

vector y. We assume that the parameter vector yR is a q-dim-

ensional vector whose elements represent the key parameters.

The elements of the parameter vector y are in general

known only approximately. The degree of accuracy by which the

elements of I are known are strongly dependent upon the accur-

acy of modelling a physical process by eqs. (2.1) and (2.2)

and the experiments that have been carried out.

In general, before the initiation of any real time es-

timation and/or control experiments, i.e.,prior to time t=O,

one has some idea of the nominal value of the parameter vector=,

denoted by yo, and of the degree of uncertainty (e.g.,standard

deviations) associated with the nominal parameter values.

For the above reasons, it is reasonable to view the

parameter vector y as a random vector. All prior information

about y can be captured in its prior probability density function

which we shall denote by p(y). At the very least, our best

guess about y, prior to any additional real time experimentation,

7



is the nominal value Yo which we can view as the unconditional

prior mean

E { •l = (2.12)

The degree to which we "believe" the nominal value 1o can be

communicated to the mathematics by the prior covariance matrix

r o - a qxq matrix - of y, i.e.
_ Tcov[ I ; I = E { (T- o)(I - } A r (2.13)

~-0

It is also reasonable to assume that the uncertainty associated

with the parameter vector y has nothing to do with all other un-

certainties. Thus we make the assumption

, x(o), 1(t), and O(T) are independent (2.14)
for all values of t and T

2.3 The role of Y in Filtering Problems

First of all let us consider the filtering problem in

the context of state estimation. To be more precise let us de-

note by the symbol Z(t) the total measurements obtained from the

initial time T=O to the present time t. These measurements in-

clude both the inputs applied to the system and the actual noisy

sensor measurements. Thus if we assume that the first sensor

measurement is carried out at t=l, and that the first input is

applied at t-0, then the data set Z(t) is defined as follows

8



Z(t) - { z(l), z(2) ... , z(t), u(o), UMl), .,., u(t-1)1(2.15)

In the state estimation version of the filtering problem one is

interested in obtaining in real-time a "good" estimate of the

actual value of the true state vector x(t) based upon the avail-

able data set Z(t)M; this state estimate is commonly denoted by

R(t/t) (2.16)

and the state estimation error is denoted by

i(t/t) A x(t) - (t/t) (2.17)

We can now have several cases, depending upon the relative uncer-

tainty associated with the parameter vector •.

Case 1 Parameter vector known exactly

This is an unrealistic case and corresponds to the random vector

I having zero covariance

-o 0(2.18)

so that

(2.19)

Under these assumption, and the further assumption that all other

random vectors, namely

x(o), c(t), e(T)

9
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are Gaussian, then the standard discrete time Kalman filter (1)

generates the optimal estimate of the state in the sense that the

state estimate x(t/t) is the true conditional mean of the state

x(t/t) = E i x(t)/Z(t) l (2.20)

In addition one can calculate off-line, again through the discrete

time Kalman filter algorithm the true conditional covarianca

matrix E(t/t)

E(t/t) = coy ( x(t) ; x(t'/Z(t) ] (2.21)

Case 2 Parameter Uncertainty relatively "small"

In this case, we assume that the actual value of the parameter

vector • is "very close" to its nominal value. Thus, in this case,

the parameter vector covariance matrix r is small.

II o II = small (2.22)

An alternate way of characterizing this is by

Ii o II << II •(t) II, II r II << II (t) H (2.23)

which means that the parameter uncertainty is much smaller than

the uncertainty induced in the state by the plant noise E(t), and

the errors introduced in the sensors by the measurement noise e(t).

Under these circumstances, one can usually trust the robustness

The discrete Kalman filter algorithm is stated in the Appendix A.
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of the Kalman filter, as described in Case 1, to still generate

"good" state estimates in the sense that

I (t/t) 8 S I x(t)/Z(t) | (2.24)

E(t/t) : coy ! x(t) ; x(t)/Z(t) ] (2.25)

Case 3 Parameter Uncertainty Moderately low

As JIL0oj increases, the errors of modelling the true

values of the parameter vector y by its nominal value Y Q become

more significant and the performance of the standard Kalman

filter begins to deteriorate. In this intermediate case, and

especially when the major effect of the parameter uncertainty

are reflected in the state dynamics (2.1), rather than the mea-

surement equation (2.2), there have been several cures that have

been suggested.

The basic rationale is that the increased parameter in-

certainty in the system dynamics causes errors in the calculation

of the one-step predicted estimate, 9(t + l/t), of the standard

Kalman filter algorithm. These errors can only be corrected by

paying more attention to the measurements, which although noisy,

still contain "good" information about the true state. Techni-

cally, this can be accomplished by increasing the magnitudes of

the gains of the Kalman filter and, hence, the bandwidth of the

Kalman filter.

One way of accomplishing this objective is to artificial-
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ly ifteoase selected elements of the plant noise covarince

matrix 3(t). This trick has been often referred to as introduc-

ing fake white noise. If one can get away with it, in the sense

that the state estimation errors x(t/t) remain acceptably mall,

then this procedure is desirable because one can still complete

the (pseudo) covariance matrix E (t/t) and the Kalman filter gains

off-line. However, this process of turning the Kalman filter is

more of an art than a science.

The same philosophy of changing the magnitude of the

plant noise covariance matrix B(t), but on an on-line *adaptive"

mode, is by monitoring the behavior of the residuals of the Kalman

filter. The residual vector of time t, r(t/t), is defined as the

difference between the actual measurement at time t, s(t), and

the predicted measurement

r_(t/t) A z (t) - C (y) (t/t -1) (2.26)

In the case of no parameter uncertainty (fq - 0) the residuals

are known to be zero-mean white and their covariance matrix, de-

noted by S(t/t), can be calculated from E(t/t). As the parameter

uncertainty increases this is reflected in the nature of the res-

iduals, in the sense that

(a) biases can be observed i.e.,

E I E(t/t) 0 (2.27)
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(b) the residuals becoe correlated in time, so that

they cease to be a white noise sequence.

A variety of methods that carry out real time tests in the rosi-

duals and subsequently change on-line the elements of the plant

noise covariance matrix can be suggested. One of the simplest to

implement in the one suggested by Jazwinski [2,17). The price

that one pays in these adaptive filtering methods is increased

real-time computations associated with

(a) real-time tests and computations involving the

residuals

(b) subsequent transformation of the residual-derived

information into changes in the covariance matrix

(c) on-line calculations of the covariance equation and

of the Kalman filter gain matrix

From a pragmatic point of view, these adaptive filtering

algorithms change in a time-varying way the gains and the band-

width of the Kalman filter, as modelling errors become significant

and diagnosed in the residuals. If well designed, they can be

effective in adjusting the bandwidth of the Kalman filter.

It should be noted that there is a tradeoff associated

with high-gain, high-bandwidth Kalman filters. High-gain Kalman

filters tend to decrease mean errors rapidly; on the other hand

their high-bandwidth allows a greater amount of measurement noise

13



power to pass through, and this can cause increased RMS errors in

the estimates. The successful prior timing and/or adaptive filter-

ing algorithms have to take explicitly into account these mean

errors vs. RMS errors tradeoffs.

Case 4 Moderate Parameter Uncertainty

As the parameter covariance matrix ro increases further,

the off-line or on-line turning of the basic Kalman filter cannot

be counted upon to produce good estimation accuracy. This is due

to the fact that the contributions of the parameter errors to

model uncertainty can no longer be taken care of as equivalent

white noise.

In such cases, one has to increase the real time com-

plexity of the algorithm so as to explicitly carry out some

on-line parameter estimation. In other words, in order to be

able to obtain reliable state estimates, one has to obtain better

estimates of the parameter vector . based upon the real time

measurements. In other words, the filtering algorithm has to

simultaneously generate

(a) a state vector estimate, x(t/t)

(b) a parameter vector estimate, j(t/t).

Unfortunately, even in the simplest case, thL joint

state and parameter estimation problem constitutes a nonlinear

filtering problem. It is well known, (18] to [22], that the true

optimal solution to a nonlinear filtering problem, in the sense

14



.S. '+ eua i, i1-tre ue oonditional mean of the state

• i x(t)/&(t) i requires the on-line solution of a set of _non-

4lax 2DaMtIl4 4ifferential equations at each and every time a

2 .20"Nal. N et. For almost all problems of practical int-

portance, the real time computational resources force the do-

signer to use a suboptimal filtering algorithm.

The simplest suboptimal filtering algorithm is the so-

called extended Kalman filter. A slightly more complex algori-

this is the so-called second order (41 or gaussian 12,231 filter.

The technique that is used to design the extended Kalman

filter is that of state augmentation. Thus, in addition to

eq. (2.1) which defines the dynamic stochastic evolution of the

"natural" n state variables one writes another set of difference

equations of the form

y(t + 1) Y •(t) (2.28)

in case that it is known that the parameter vector • is indeed

a constant. If the parameter vector I is known to change slowly -

wi I.M, then the simplest way of modelling this is by the

stochastic difference equation

X(t + 1) - Y(t) + Pt) (2.29)

The extended Kalman filter algorithm is stated in the Appendix A.
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where j(t) is a "fake" xero mean white noise process with covar-

iance matrix

coy I Y(t) I Y(! I H (t)6(t,r) (2.30)

The cavariance matrix 11(t) has to be suitably selected by the4

designer to reflect how rapidly and by how much one can reason-

ably expect the parameter .1 to change or drift from its prior

nominal value. We remark that more complex dynamic models than

that shown in eq. (2.29) can be used if prior information on the

"dynamics" of the parameter xis available. The extended Kalman

filter algorithm that generates the state estimate x(t/t) and the

parameter estimate j(t/t) has much more severe computational re-

quirements than the algorithms discussed in Case 3. These addi-

tional requirements are due to the fact that at each measurement

time one has to

(a) update an (n + q) -dimensional vector, the number (n)

of state variables plus the number (q) of the para-

meters

(b) propagate an (n +- q)x(n +- q) (pseudo) covariance

matrix using the standard extended Kalman filter co-

variance propagation formula.

(c) calculate a new (n + q)xr Kalman gain matrix

We remark that all the "tricks" discussed in Case 3 which involve

the prior turning, or adaptive turning based on the residual be-

16



haviour, can be used in this case also to change the "fake white

noise" covariance matrices '(t) and M(t).

2.4 Discussion

The above brief semiphilosophical discussion points up

some of the issues associated with the effects of uncertain para-

meters upon estimation problems. One can visualize the "robust-

ness" of the varying complexity Kalman filters described in Cases

i to 4 as shown in Figure 2.1

The way Figure 2.1 is to be interpreted is that if the

true parameter is in band 3, then the estimatorE discussed in

Cases 1,2 will not give satisfactory performance, while the es-

timators discussed in Case 3 will give good estimates. Needless

to say the relative sizes or shapes of these robustness bands are

next to impossible to calculate.

The point that we wish to stress, is that if the true

parameter is outside the robustness band 4, then the extended

Kalman filter discussed in Case 4 cannot be trusted to generate

good state estimates, even though on-line parameter estimation is

accomplished. The basic reason for this is that the covariance

linearizations associated with the extended Kalman filter become

invalid.

For this reason we shall explain in the next section how

one can attack the problem of large parameter uncertainty through

hypothesis testing and subsequently suggest a suboptimal procedure

17
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that am be uaed for problemas with large parameter uncertainty,

am well as sudden transitions of the parameters (as it in the case

with maneuvering reentry vehicles).

19



3. MULTIPLE MODELS FOR HYPOTHESIS TESTING AND STATE ESTIKNTION:

FILTERING

3.1 Introduction

In the previous section we have outlined the different

methods that can be employed to carry out state estimation when

the system dynamics contain uncertain parameters. We have con-

cluded that as the parameter vector variance increases one is

forced to employ nonlinear filtering algorithms, e.g., the ex-

tended Kalman filter, which simultaneously estimate the para-

meter vector and the desired state variables. We have also re-

marked that even these sophisticated algorithms will break down

as the parameter uncertainty increases.

In this section we present the next most obvious level

of complexity to take into account the effect of uncertain para-

meters. The first and simplest case is to subdivide the parameter

space into regions and see what happens to the state estimation

algorithm when such a discretization of the parameter space is

carried out.

3.2 Discretization of the Parameter Space

As we have remarked in Section 2.2, the parameter vector

Z is a q-dimensional vector. In most physical problems, one has

some prior idea of the physical ranges of the elements of the para-

meter vector 1. This engineerin5 knowledge can be translated into

a subset QZ of R ; the physical significance of Q i.s that it re-y q -Y

presents all reasonable values that the parameter vector • can

20



attain.

The next step is to select a finite set of parameter

values denoted by

Y 1 , Y 2 ̀  . . , N (3 . 1 )

These parameter vectors are scattered in the region aY

3.3 Towards the MMFA; Assumptions

Let us suppose that the parameter vector y, which appears

in the state space description of the stochastic dynamic system

(2.1) - (2.2) does indeed coincide with one of the yi defined

above. However, prior to making any measurements we do not know

the "true index" i.

Needless to say, the above assumption is not true in any

real life situation, in the sense that the true parameter vector

xwill be "near," but not identical to, one of the 's. Once

more, we shall postpone discussion of this issue for the time being.

Under the assumption that indeed y coincides with one of

the yi's we can ask two questions:

1. What type of an algorithm can be used in order to
generate

a. the true conditional mean of the state, and

b. the true conditional covariance matrix of the
state

given a set of past measurements. We remark that
this constitutes the standard estimation or filter-
ing question.

21
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2. What type of an algorithm can be used to identify
the true parameter y. given a set of past measure-
ments. We remark thit this constitutes an identi-
fication question.

One may argue that in many applications one may not be interested

in the identification question, but only in the state estimation

problem. Nonetheless, it turns out that one cannot answer the

questions independently, but one must obtain the answer to both

questions simultaneously.

We shall next formulate the problem in a mathematically

precise way, and then summarize the solution algorithm.

3.4 The MMFA: Formulation

For each value of y, denoted by ji, let us redefine the

matrices in section 2 as follows

A(yi)AAi, R(jijiB, E(.i)AL. (3.2)

£(x 1)£ci ; i = 1, 2, ... , N

We remark that the matrices Ai, Bi, Li, Ci can be time-varying;

their time dependence is not explicitly shown.

In the context of tracking RV's, if one tracks a ballistic RV,
and the ballistic coefficient is viewed as the uncertain para-
meter, then one is usually interested in both state estimation
for good tracking, and parameter estimation for discrimination.
A similar situation exists for maneuvering re-entry vehicles;
in the MaRV case one is interested in estimating parameters
that are characteristic of the magnitude and direction of the
maneuver accelerations.
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Using the above notation, one has a class of N distinct

linear stochastic dynamic systems described by

State Dynamics

x(t+l) - Aix(t)+Biu(t)+Lij(t) i-l,2,...,N (3.3)

Measurement Equation

z(t) - Ctx(t)+e(t) ; i=1,2,...,N (3.4)

The characteristics of the Gaussian plant noise F(t) are

still given by eqs. (2.4) - (2.7), while the characteristics of

the Gaussian measurement noise e(t) are still given by eqs.

(2.8) - (2.11).

In addition to the plant noise, measurement noise, and

initial state uncertainty, we must specify the parameter vector

uncertainty. Under our assumptions, the random vector y can

attain a set of discrete values y1' 12' "' IN' In view of this,

I is a discrete random vector.

We can model this fact by a set of hypotheses. Let H

be a scalar random variable ( a hypothesis variable) and let

H1 , H2 , ... , HN (3.5)

denote a set of events.

The interpretation that we attach to the event

H = H is
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and we can think of this phenomenon as that "nature* has select-

ed the J-th linear system, defined by eqs. (3.3) and (3.4) and has

placed it inside a black box.

Before we obtain any data from the system in the block

box, we have to have some idea of the prior probability of which

system is in the black box, or equivalently, the probability that

- 1i for each i.

Let Pi(0) denote the prior probability that the i-th

system is in the "black box." Thus

P (0) a Prob(H=Hi) - Prob(-yui) (3.6)

with

Pi(0) > 0, 1 (0) = 1. (3.7)
L-1

Thus, the probability density function, p(H), of the random vari-

able H is

N
p(H)- • Pi(0)6(H-Hi) (3.8)

where 60() is the Dirac delta function.

Remark: The numerical values of the prior probabilities P (0)
reflect to the mathematics our best guess on whicA
models are more likely to be in the black box prior
to their generating any data. If initially, i.e., at
time t=0, any one of the models is equally likely,
then we would select the Pi(0) by
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Gj~4) ~ u~1) - 3.10)

--and make a not of noise measurements

from the syst in the black box. Am we have done in Section 2

we let 3(t) denote the set of all past measurements

"" *M u IO), u(l), ... , u(t-1), z(1), ... , z(t) } (3.12)

-Define the probabilities

P1 (t) A Prob(H=H /Z(t))

(3.13)
- Prob (Y=i/Z (t))

to be the probability, given the measurement *et 3(t), that the

i-th hypothesis (i.e., the i-th model) is the correct one.

Clearly

Pi(t) > 0 (3.14)

NT Pi) W (3.15)

i=I5
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iv*n all of the above information and notation, we can list all

the information that we would like to obtain, as well on the re-

quired algorithms to compute the variables of interest.

1. The conditional mean of the state

x(t/t) A E 1x(t)/Z(t) M (3.16)

2. The conditional state covariance matrix

1(t/t) A coy [ x(t) ; x(t)/Z(t) 1 (3.17)

3. The dynamic evolution of the posterior proba-
bilities P4 (t); ideally we would like a
recursive-telation, i.e., Pi(t+l) can be com-
puted from the P (t).

Remark: The conditional mean and the covariance can be computed
once p(x(t)/Z(t)), the true conditional density function
of the state of the system in the "black box" has been
obtained.

3.5 The OWFA: Derivations

We shall obtain recursive relationships of the general

conditional density functions at time t+l given at time t.

We start by evaluating the conditional probability den-

sity function

p(x(t+l)/Z(t+l)) (3.18)

Use of the marginal density yields

p(x(t+l)/Z(t+l)) = fp(x(t+l), H/Z(t+l))dH (3.19)
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•;,M•t aa pzVtbability density p(8/I (t+l)) can be written

using the motation of eq. (3.13) as

p(B/S(t+l)) - E Pi(t+1)6(H-HU) (3.21)
ifti

Substitute eqs. (3.20) and (3.21) into eq. (3.19). and integrate

to obtain

p(x(t+l)/B(t+l)) - • Pi(t+l)P(x(t+l)/HiZ(t+l)) (3.22)

Remarks We knov that the conditional densities p(x(t+l)/H4 ,Z(t+l))
can be generated by a bank of N Kalman filters whire each

Kalmn filter is "matched" to a distinct model, i.e. ,i-th
hypothesis.

It is important to realize from basic Kalman filtering theory that

the following relationship is true for each conditional probabil-

ity density

p(((t+l)fHuex(tl ) p(x(t+l)/HiZ (t))

p(Z(t+l)/Hi,$(t+l)) " p(z(t+l)Hi, Z (t)) (3.23)

and that

p(l(t+l)/Hi,Z(t)) - fp(x(t+l)/Hi,x(t))p(x(t)/Hi,Z(t))dx(t)
(3.24)
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:ammtks Ua~ owu- aaauvptions all densities appos4 g-t -eqp.-
(3.23) an1 (3.24) are Gaussian# and hence they Oft be
characterized by their mean and covariance matrix.

The basic idea is to construct a bank of Ni Kalman tilt-

oral eamb Sabanf~ filter in designed using the specific parameter

matice Ai htkvq i, E 2tand1 (the initial state covar-

iance matrix). Bach Kalman filter in the bank is driven by the

same input sequence, !i(t), applied to the system in the "black

box," and by the actual measurement sequence, S(t)r generated by

the aysteM in the "black box."

Let !Ei(t/t) denote the state estimate generated by the

i-th Kalman filter. More precisely, ii(t/t) is defined by.

ii (t/t) A LP ~(t) /Hi P 2 (t) ~ f(t) p(x (t)/!Hi, Z Mt))dx tW (3. 25)

Let i(t/t) denote the conditional covariance matrix

associated with the i-th Kalman filter. More precisely

ji(t/t) A coy I x(t):x(t)/Hj 1 z(t)I

- 9 {xt) Wt x - (ttI/iZt

A ~(t)-i^ tt ~ti(t/t))D(x(t)/HEiitZ(t))dx(t) (3.26)

Rm=ark: All the lift/t)l i-l,2,...N are precomputable.

in essence, from each Kalman filter mean Witt) and covariance

matrix E i(t/t) we can construct the Gaussian density function

28



The next problem is to generate an overall estimate of

the state# X(t/t), according to eq. (3.16) of the system in the

"black box." In addition, it is helpful to generate the true

error covariance matrix, E(t/t), according to eq. (3.17), so that

we have an idea of how accurate the estimate i(t/t) of the true

system state x(t) actually is.

We demonstrate below how the overall estimate x(t/t)

can be generated onue

a. The individual Kalman filter estimates xi(t/t)
are available, and

b. The true conditional probabilities P (t) de-
fined by eq. (3.13) are ava.iLlable.

From eq. (3.22) we have

N
p(x(t)/Z(t))- i Pilt)p(x(t)/Hi,Z(t)) (3.27)

(t/t) E{x(t}/E(t)} - fx(t)p(x(t)/Z(t)

N
- E Pi(t)fx(t)p(x(t)/Hi,Z(t))dx(t)

iwi

N- Wý Pit (t/t) (3.28)
i-l

Thus, the overall state estimate is the probabilistically weighted

average, by the posterior (hypotheses) probabilities Pi(t), of the

state estimate generated by each one of the N Kalman filters.

To derive the true conditional covariance matrix _(t/t)
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we prooe.4 an follows:

E(t/t) A co-v [(t)ix(t)/Z(t)I

-z(x_(t) -3_C'/tO (x (t) -X"(t/t) )T /Z(t) }

- (y (t)_- (t/t)) (X~t)_-_(t/t))Tp (E(t)/Z (t) )dx(t)

"0 •P (t)f(x(t)-•_(t/t)) (x(t)_t/)T

P p(x(t)/HiZ(t))dx(t) (3.29)

After some algebra we obtain

N_E(t/t) - •Ii=(t) [_Ei (t/t)+ (X-i (t/t)-i_(t/t))-

(-i(t/t)-(t/t)) T ] (3.30)

Note that E(t) cannot be precomputed because it contains the real

time estimates xi(t/t) generated by the Kalman filters in addition

to the posterior probabilities Pi(t) which as we shall see require

real time measurements. The only remaining problem is to calculate

dynamic evolution of the porbabilities Pi (t)

Pi(t) - Prob(H-Hi/Z(t)1

- Prob([-7i/Z(t)] (3.31)

We will relate each Pi (t+l) to the Pi (t) and other quan-

tities that can be found from Kalman filters. The interesting

30



aspect of this calculation is that a truly recursive relation-

ship oai be obtained relating quantities only at successive meas- ! 4
urment tines, t and t+l,i with relatively small computational

Towards this goal we proceed as follows. Consider the

conditional density 4
p(H/Z(t+l)) - (3t+.)6(H-H (3.32)

Use of Bayes rule yields

p(H/Z(t+l)) = p(H/z(t+l),Z(t))

H H(H Z(t+l)/E t) )p (zlt-1)/z It) ) ,

=p (Z. (t+l) /H, z (t)) W ez (t) •
P(Z_(t+l)/Z (t)) (3.33) ;

But

N
p(H/Z(t)) - Pi (t) 6(H-Hti (3.34)

Note that according to our notation Z(t+l) - {Z(t),z(t+l)}

Equations (3.32) to (3.34) yield

pl(z(t+l) /Hi, I t))
Pp tl(t+l) = ZP Pi(t) (3.35)

p (z (t+l) /Z Mt))

The density p(z(t+l)/Hi,Z(t)) is Gaussian and can be
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calculated from the i-th Kalman filter
pl (t÷lI /Hi, (t)) N (9, (t+ll x*lt÷tI/t) IS lt~l))* (3.36) •

where

1/)TSi(t+l) - C (t+l)Ei(t*I/t) {(t+l)+G(t+l) (3.37)

Note that the quantity Ci(t+l)i ?(t+J/t) is the predicted measure-

ment at time t+I generated by the i-th Kalman filter.

The matrix S(t+l) is the residual covariance matrix asso-

ciated with the i-th Kalman filter. Note that the residual co-

variance matrices Si(t+l) can be calculated off-line for each

Kalman filter.

It remains to calculate the density p(z(t+l)/Z(t)) in

eq. (3.35). Use of the marginal density leads to

p(z(t+l)/Z(t)) = fp(z(t+l), H/Z(t))dH

- fp(z(t+l)/H,Z(t))p(H/Z(t))dH

N

•- P (t)p(z(t+l)/H-,Z(t)) (3.38)

Remark: Once more all the densities p(z(t+l)/H ,Z(t)) are avail-
able from the bank of Kalman filters; lee eqs. (3.36)

The notation N(a,A) denotes a Gaussian density with mean a and
covariance A.
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and (3.37). Substituting eq. (3.38) into eq. (3.35) I1k
yields the desired result that the dynamic evolution of
the probabilities Pi(t) is given by

Np(Blt~ll/H | #It) )(ilI-

Pilt04) ( - N --) 1 t) (3,39)

SP (t)p(z (t+l)/RU, 9SW

where if we recall that

r - dim 3(t) - number of measurements (3.40)

then

r1

_~~~)H, Mt) - [2w] (det S i(t+l)I _

*ekp -(z~lt+l)-c MU (t+ll•jI+/t) )T - 1It+If..I--j

(z(t+l)-Cj (t+lA i (t+l/t))) (3.41)

with

(jlt+l) - C (t+l)Z (t+l/t) Clt+l)+elt~l) (3.42)

The relation (3.39) becomes more transparent if we introduce a

somewhat simpler notation.

Let us define the residual (an r-dimensional vector)

vector generated by each Kalman filter by

ri(t+l) A z(t+l)-Ci(t+l)xi(t+1/t) (3.43)
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i.e., the difference between the actual measurement and the pre-

dicted measurement.

Then from each Kalman filter we can obtain the scalar

quantity in real time

Wi (t+l) A ri(t+l)T S. (t+l)ri (t+l) (3.44)

Also, let B1(t+l) denote the scalar precomputable quantity

r 1
Bi(t+l) A [2d 7 [det Si(t+)15 2  (3.45)

Using the above notation, the conditional density (3.41) can be

written as

P(z(t+l)/HSZ(t)) = 81(t+l) exp{-iwi(t+l)} (3.46)

From eqs. (3.46) and (3.39) we can now write the dynamic evolu-

tion of the probability density function as

P i(t+l) - P i(t) (3.47)

The above formula illustrates that all measurements up to time t,

Z(t), are captured in the posterior probabilities

P1 (t), P2 (t), ... , PN(t) (3.48)

The new measurement at time t+l, z(t+l), influence all
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N residual vectors associated with the bank of Kalman filters

according to eq. (3.43) and generate scalars wi(t+l), i-1,2,...,N.

This then can be used to update the probabilities

Pl1(t+l), P 2(t~l), ... , P N(t+I) (3.49)

according to eq. (3.47). Thus, this represents a true recursive

solution to the problem of probability updates.

A block diagram illustrating the MMFA is shown in fig-
ure 3.1i.

3.6 The MMFA: Parameter Identification

In the previous subsection, we have described the basic

idea of the Multiple Model Filtering AlIorithm. In addition, we

have derived algorithms for MMFA realization. In this subsection,

we will show that the 4MFA for parameter identification can be

obtained in a straightforward manner. The minimum variance

estimate of the unknown parameter _ is the conditional mean i.e.,

=p(t) -/ p(//Z(t))d-y E{y/z(t)) (3.50)

Recalling the fact that the events H=H. and y7.i are equivalent,

we can rewrite eqn. (3.21) as

N
p(Y/Z(t)) = E P t,)-(1-li) (3.51)

i=l

where P (t) is interpreted as the pýobDility that [uq is true-i
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based upon all the data, Z(t). Using (3.51) in (3.50) yields

j(t) = Pi(t) (3.52)

The covariance of j can be ootained similarly. Assuming that

is unbiased, then

E_(t) -covCj(ti)

mf x1- -.t( - i _

= Pi •() (t))( - (t))T.53)

3.7 Discussion

We now discuss the asymptotic properties of this algor-

ithm from a heuristic point of view. If the system is subject

to some sort of persistent excitation, then one would expect that

the residuals of the Kalman filter associated with the correct

model, say the i-th one will be "small", while the residuals of

the mismatched filters (j~i, j=l, 2, ... , N) will be "large".

Thus, if i indexes the correct model we would expect

Wi(t) << Wj(t) for all j # i (3.54)

If such a condition persists over several measurements equation

(3.47) shows that the "correct" probability Pi (t) will increase

while the "mismatched model" probabilities will decrease. To

see this one can rewrite (3.47) as follows,
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P i(t+l) -i P(t) wt [j B1(t~1).*xp{-~4i(t+4I ],

- P~ (t)B0j(t+1) exp{..+w(t+14] I35~

Under our assumptions

exp{- i(t)} 1

exp{ M1 t) 0.

Hence the correct probability will grow according to

Pi It) [-Plt W1 (lt+I).•
"i (t+l)- i(t) N t I B (> 0 (3.56)

E~ Pj (0)0B (t+l)exp -j(t+l

which demonstrates that as Pi(t) M 1, the rate of growth slows

down.

On the other hand, for the incorrect model, indexed by

J~i, the same assumptions yield

P (t+l) -P(t) M N -P i Mpi(t)Si(t+l) < 0 (3.57)

F, P (t) j(t+l)exp 1 j(t+l)}

so that the probabilities decreased.
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The ease conclusions hold if we weite (3.47) in the

form

:pit -l Pi(t) ~[~ Pj(t)B1 (t+l)expfbiwj(t+l)}]j~l

P(t) [;iP(t) (0B1 (t+1)exp 01Wj (t+l4

-j (t+l)exp{- (jlt+l4)] (3.58)

The above discussion points out that this "identification" scheme

is crucially dependent upon the regularity of the residual behav-

ior between the "matched" and "mis-matched" Kalman filters.

As pointed out in reference [161, the dynamic evolution

of the residuals may not follow the above regularity assumptions.

This may be caused by errors in the selection of the noise sta-

tistics or using a steady state Kalman filter design, among oth-

ers. To be specific, suppose that for a prolonged sequence of

measurements the Kalman filter residuals turn out to be such that

w 1(t) z W2(t) . WN(t) (3.59)

Then

exp{-2•Wi(t)) z a for all i

Under this condition and using (3.58), we can see that
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•:• • : eI (t) E• Pj Mt (SL (t+l) - ](t+l))

(t - (t) (3.60)

Suppose that one of the a' s, say the B is dominant i.e.,

k Bi for all iik

In this case, the right-hand side of (3.60) will be negative for

all i'k, which means that all the Pi(t) will decrease while the

probability Pk (associated with the dominant Bk) will increase.

The significance of this effect is that the B are independent

of the residuals and their magnitudes are not determined by which

model is true. This issue, which has not been discussed in the

literature, is believed to tie with the "identifiability" ques-

tion of this scheme.

Above discussions merely point out possible shortcomings

of this scheme. These issues may be adequately answered if we

could address the following questions.

(1) a rigorous proof to show the asymptotic properties

of the hypothesis probabilities. To the best of our knowledge,

such a proof is not available in the literature.

(2) How would the hypothesis probabilities behave if

none of the models coincide with the true model? Moor and Hawkes

(14) uzed a distance measure to show that the probability associa-

ted with the model which is the closest one to the true model
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will converge to unity. If this claim is warranted, one may be

able to design an adaptive parameter discretization scheme which

re-discratizes the parameter vector within the parameter subspace

which is the closest to the true model as determined by the hypo-

thesis probability and the distance measure.

(3) Answers to the above questions will certainly shade

light to the identifiability problem.

Finally, let us re-emphasize the significance of this

scheme from the estimation's point of view. This algorithm is

2t. in the minimum variance sense in state and parameter es-

timation if the discretized parameter space indeed contains the

true parameter. This is true because: (1) We use the condition-

al mean as the estimate and (2) the algorithm was derived without

using any approximations.
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14.1 3

In the previous sections we have derived the multiple

nodal filtering algorithm for state estimation wh-en the system

dynamics contain uncertain parameters. The parameter vector is

discretized to cover a range of physical values that it may pos-

sibly attain. A bank of Kalman filters is built with each match-

ing to a parameter vector. The a posteriori probability of a

given model being true is used to combine the output of these

filters. Algorithms for state estimation and parameter identi-

fication are derived.

In this section, the multiple modes smoothing and pre-

diction algorithms (K4SA and OEPA) are derived.

4.2 The tMlSA and WOWPA: Assumptions

The system equations, measurement equations, parameter

space, and hypothesis probability assumptions made in the section

3.4 are the same for the MMSA/.&PA derivation. We only modify

the variables of interest to as follows:

1. The conditional mean of the state

x(T/t) E ( x()I/Z(t) } (4.1)

2. The conditional state covariance matrix

._(T/t) A COV [ X(')rx(T)/Z(t) 3 (4.2)
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3. The dynamic evolution of the posterior probabilities

PM(t)r again, we would like a recursive relation.

1WMu 1ui 41) when rvt, it is called prediction.
.UMn Tit, it is called smoothing.
when T-t, it is called filtering and this part of

algorithm has already been presented.

(2) The conditional meian and the covariance can be com-
puted once the conditional density function has been
specified.

In the following, we re-state various forms of prediction and

smoothing in terms of the evolution of p(x(T)/Z(t)).

(1) Fix lag prediction/smoothing: update p(x(T)/X(t))

from p(x(T-1)/Z(t-1)) where r-t is a fixed constant

(2) Fix interval prediction/smoothing: update Y
p(x(r)/Z(t)) from p(x(r-1)/Z(t))

(3) Fix point smoothing: update p(x(T)/Z(t)) from

p(3(T)/Z (t-l))

4.3 The )USA and MMPA: Derivations

Similarly, we start by evaluating the conditional prob-

ability density function

p(x(T)/Z(t)) (4.3)

Using the marginal density yields

p (Ix() /Z (t))- =jr (X %') , H/Z (t) ) dH

-fp(x(r)/HoZ (t))p(H/Z(t))dH (4.4)
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p (H/I (t)) P (t) 6(H-H) (3.21)

and

Pi(t) - Prob(HmHi/z(t)) (3.13)

Notice that Pi(t) is interpreted as the probability of the event,

H-Hi, being true conditioned upon all the measurements, Z (t).

Unlike the state and the covariance ((4.1) and (4.2)). The by-

pothesis probability is only a function of one time variable, i.e.,

the time index of the measurement space. Using (3.21) and (3.13)

in (4.4) yields

Np(X(T)/Z(t)) P i P(t)p(x_(T)/Hi,Z(t)) (4.5)

This equation is analogous to equation (3.22). Using (4.5), we

obtain the predicted/smoothed state and covariance as

X%, It) E x(r)/Z(t) I

f x(T)p x((T)/z (t)) dx(T)

N
- i PMlt) ilT/t) (4.6)

_(T/t) -cov (x(t) ; x(l/Z(tl]

= Pi(t)J(x/T) - _•(T/t))(•x(T) - *(T/t))
i-I
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•p(T() /Hp,2 (t) ) 42a (T.)

(Pit) [EI(T/t) + (j j(T/t) - j(r/t))

' (i(T/t) - (T/t)) (4.7)

where xi(T/t) is the estimate from the i-th smoother/predictor and

h(r/t) in the covariance of xi(T/t).

Remarks: (1) The realization of MESA/MMPA again requires a bank
of smoother/predictor with each matching to a possible
parameter vector. The algorithms for the individual
smoother/predictor realization have long been made avail-
able, for example, see [3, 24-281, or Appendix B.
(2) From the above derivation, the hypothesis probabil-
ities P4 M for smoothinq/predict-[o'n are the same as
__oe _6__fi~_r9 ore dyai WViUat~TiO~n oT 'M) is
still Zopute-d BYusing equation (3.47). RecalliIg that K
Pi(t) is recursively updated by using the filter resi-
duals. Since the filtering results at time t are ob- V.
tained prior to any prediction and smoothing based upon
Z(t), the probabilities Pi(t), i-l, .... , N are always
available.
(3) From equations (3.52) and (3.53), the parameter
estimate is obtained as the weighted average of discre-
tized parameter vectors. Again, there is only one time
index which is the index of the measurement space. The
smoothing/prediction algorithm for the parameter esti-
mate is therefore the same as the filtering algorithm.

In summary, we state the following procedure for apply-

ing M4SA/MOPA.

(1) Compute filtering results, i.e., obtain _i(t/t)

.Ei(t/t), Pi(t), x(t/t), and E(t/t) from the algorithms of the

previous section.

(2.a) For prediction, apply the individual predictor to
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obtain ji(t+k/t) and Li(t+k/t), i.e., iterate

•i~t÷I/) - Ai(t/t) + Biu!(t)

and

.i(t+3/t) -Aji(t/t)Ai T + LiAt)Li T

I

k times with i(t/t) and Ei(t/t) as initial conditions where k

defines the discrete prediction time. The combined estimate

x(t+k/t) and covariance L(t+k/t) are obtained by using (4.6) and

(4.7) with the hypothesis probabilities P4 (t) the same as those

obtained in step (1) (filtering).

(2.b) For smoothing, apply the individual smoother (see

references [24-28] or Appendix B) to obtain ii(t-k/t) and E i(t-k/t).

The combined estimate x(t-k/t) and covariance _(t-k/t) are obtain-

ed by using (4.6) and (4.7) while the hypothesis probabilities

P,) are constant for all k and equal to those obtained in step (1).
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S.* MULTIPLE MODEL ESTIMATION ALORITH1 FOR NONLINEAR- SYSTEMS

In this section, the MMEA for nonlinear systems is

discussed. From the previous section, it is known that the

smoothing and prediction are rather straightforward extensionst

of filtering, only the filtering algorithm will be emphasized

here.

Similar to the linear case, we define the following non-

linear system and measurement equations corresponding to the i-th

discretized parameter vector, Ii"

State Dynamics

xtl - fxt u(t), E(t).1)

Measurement Equation

z(t) - h(x(t), 0(t), yi) (5.2)

The plant noise J(t) is defined by equations (2.4) - (2.7) and

the measurement noise 6(t) is defined by equations (2.8) - (2.11).

The same as in the linear case, there are three separate

steps in the multiple model estimation procedure, namely, the gen-

eration of individual state estimates matching to a given para-

meter vector, the evolution of the hypothesis probability and the

combination of the individual estimates. Let each steps be dis-

cussed individually below.

(1) It is well-known that the realization of the optimum
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state estimation for systems modelled by (5.1) and (5.2) involves

solving a set of countably infinite differential equati3ns 18 - I

22). It is therefore practically impossible to obtain these in-

dividual optimum estimates. Suboptimum filters will have to be

used to construct the filter bank, i.e., to produce Xi(t/t)

approximately.

(2) The equation for updating the hypothesis probabil-

ity is stated in equation (3.39)

Pi(t+l) = N Pi(t) (3.39)
F Pj (t)p (z(t+l)/Hj,'Z(t))
j=1

In arriving at this equation, no assumption was made on which type

(linear or nonlinear) of systems are being considered. It is

therefore still valid for nonlinear estimation. It however, can-

not be calculated exactly due to the fact that the exact realiza-

tion of the individual a posterior density p(z(t+l)/HiZ(t)) can

not be obtained. It can only be evaluated approximated with a

sub-optimal filter (such as the extended Kalman filter ) for

computing (t/t) and Z(t/t).

(3) Assuming that the optimum individual estimate

li(t/t) and its covariance Zi(t) are available, the optimum state

estimate and its covariance can be computed by

The extended Kalman filter eqvations are listed in the Appendix A.
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i(t/t) P (t tt (3.28)
i-I

and

Z (t/t) P i(t) [Ei(t/t) + (XAi (t/t) -x(t/t))

i=l

"(xi(t/t) - x(t/t))T] (3.30)

Similarly, in order to realize (3.28) and (3.30) for states and

measurements represented by (5.1) and (5.2), one has to use !^4

suboptimum filters to generate the individual estimates xi(t/t) ij

and Zi(t/t).

Let us re-emphasize that equations (3.28), (3.29), and

(3.30) are exact representations for the solution of the nonlinear

estimation problem for systems modeled as (5.1) and (5.2). In

other words, the a posterior hypothesis probabilities evolution

and the method of computing the combined estimate are optimum if

each individual estimate can be obtained optimally.

Numerous sboptimum filters have been proposed for non-

linear estimation (2,4,28-333. The most popular filters are the

extended Kalman filter and the second order filter (2,4] among

others. Especially, the extended Kalman filter has attracted

considerable attentions for practical applications [2-81. The

second order filter can generally provide impioved performance
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than the ext -. £-manm filter with the trade-offs of higher
"i1

computational jurden. A comparison of various nonlinear filters

may be found in [34,351. All these filters day be used for the

MWEA realization. A specific selection may be based on a partic-

ular physical problem and the required performance. For real-time

application, one usually favors a simple filter pending on the

available computer resources. For off-linear processing espe-

cially in the post-mission smoothing application, a sophisticat-

ed algorithm is usually preferred.
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6. -MMLE

In this section, we present an example to illustrate

the theory. Only the filtering algorithm is tested.

Consider the following second order continuous system.

1 + 06.1)

This system may be used to describe the motion of a vehicle along

a given axis with drag (represented by "y') and control force

(represented by "u"). If xI denotes the target range and a radar

is used to take range measurements, the measurement equation is

z =x + n (6.2)

where n is measurement noise. The measurements are taken at

discrete instance of times. A corresponding discrete system of

(6.1) is

Xlk+l) -- x 1(W 0 u

I "A {+ e I 2 le-yat (6.3)

where At is the time interval between measurements. A multiple

model filter is used to estimate x1 , x 2 and to identify y. Three

y values are assumed, i.e., Y-0., .5, or l.. The system and con-

trol matrices, A and L for those y values with sampling interval
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(1) 0.

(2) .5- .[

l. .097510
A- L-

0. .951 097

(3) ,.Am[]
1. .0950.

The measurement noise standard deviation is equal to one. The

time initial state is

xI -- 100. x 2 -50.

The following convention is used to relate the hypothesis to the

parameter values.

1 -- -Y 0.

H *2 ' -. 5

H3 1.
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Two experimenta are perfomed. They are described in-

dividually below.

xp•iment it Parameter y stays constant, control %J is equal to

nero.

Three cases with the true parameter being equal to one

of the three possible values in each case are tested. The a

posteriori hypothesis probabilities for all three cases are

plotted in Figure 6.1. The initial hypothesis probabilities are

uniformly distributed. The true system is always identified in

within 10 data points

Experiment 2: Parameter y jumps between models, control u is

nonzero.

The control force is assumed to be equal to 50 and

known to the estimator. Assuming the initial time is zero, the [
true y time history is

y a 0. for 0 t .< 2

y a .5 for 2 < t < 4

Y 4 1. for 4 < t < 6

It therefore represents a y history with sudden jumps. The y

estimates are presented in Figure 6.2. Notice that the filter is

always able to identify the true system. Two modifications are

implemented in the algorithm in this case.

(1) The hypothesis probabilities are hard bounded.

This is to prevent any probabilities from converging to zero (or
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one). Vhon it does, it will be very difficult for the poabili-

ties to branch out again when the true system has actually switch-

ed. The bound used in this experiment is however, very small, i.e.*

Pr[Hi/Z(t)] > .0005 for i-l,2,3

(2) Although there is no process noise assumed in the

system, a process noise term with covariance

4.

is used in the'filters. This Js included also for the purpose

of preventing the filter from being over-confident in its esti-

mates therefore not able to switch to a different system. If

there is no process noise added, the estimates of a mis-matched 40

filter can drift far away from the true states. When the true

parameter jumps to a different value, i.e., an originally mis-

matched filter now becomes matched, it takes extremely long per-

iod of time for the algorithm to identify the true system again.

Leaving proper process noise level in the filter will keep the

mis-matched filter estimates sufficiently close to the true state

so that the algorithm is adaptive to the parameter jumps. The

control variable u also plays a critical role in this experiment.

It represents a persistent excitation to explore differences

among these systems. A basic issue which still needs answer is

on the input design for system identification in using MMEA
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No. of DOta Points

P(H lZ)

CL P(H3/Z)

5 160 20
1a) HI is true.

P(HJZ)

P(H/Z)
CL

PfHtIZ)
0 5 10 1ý

(bi H2 is true.2!

PIH 33Z)

pt~~ i/Z)~ 

PIH /Z)al 
'L

CL P( I / z) E -7P(HjZI7

0 5 10 1--- -- 1
1C) H3  is true.

Fig. 6.1 Hypothesis probabilities of experiment 1
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method.

The above two experiments are simple but illustrative.

The first experiment indicates that the tWA can quickly identify

the true system with a constant parameter. For time-varying

parameters, some modifications are necessary so that the algori-

thm is adaptive to sudden parameter changes.
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7.* SUMMGARY,- DISCUSSION, AND FURTHER PROBLEM4S

7.1 8iVinaY

In this report, we have discussed the problem of state

estimation with uncertain parameters and presented the solution

by utilizating the multiple model estimation algorithm (MEEA).

The following summaries pertaining to the properties of NMA are

listed without any specific order.

(1) Theoretically, the MMEA provides the minimum vari-

ance estimates of both state and parameter if one

of the chosen models coincides with the true model.

(2) If the a posteriori hypothesis testing probabilities

converge asymptotically, the true parameter is iden-

tified with probability one.

(3) The hypothesis probabilities for smoothing and pre-

diction are the same as those .for filtering.

(4) The hypothesis probability update equation and the

weighted sum equations are optin,um in the minimum

variance sense and they are the same for both lin-

ear and nonlinear systems.

The usefulness of MMEA can only be fully understood and

evaluated after applications to significant physical problems.

Applications to the trajectory estimation area have still to be

carried out. The application to the F-8C airplane real-time con-

trol system (161 has shown encouraging results and suggested

further study areas in theory as well as in algorithm design.
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7.2 Discussion: Extension to a Class of Time-Varying Para-

1W, ra and Suboetinal Approadhes

Strictly speaking, the MMNA presented in this report is

optimm only for syste with time-invariant parameters. The

theoretical and practical implications of using MM to systems

with time-varying parameters are not completely understood. The

example in the previous section has clearly indicated that some

modifications must be incorporated in order to make the IMEA to

follow parameter jumps. This is because once the true parameter

is identified, the algorithm is locked on the true system and

the mis-matched Kalman filter begins to drift away from the true

state. %hen the true parameter has switched to a different value,

it usually takes a long time for the algorithm to branch out

again. The requirement for a time-varying parameter ?NEA is to

make the mis-matched output still sufficiently close to the true

state and to keep the hypothesis probability from coming too

close to zero (or unity).

There is a trivialextension of the MMEA to a special

class of time-varying parameters. Consider the parameter space

R which contains N parameter vectors each with dimension q,i.e.,

F t -qi ; i-ul,...,}N

At the time t, the true parameter is equal to At the next

instance of time, the true parameter may be equal to any param-

eters in R . As time progresses, the true parameter is changing
5
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around with its values within R . Defining two types of hypoth-
eses by

Hi(t) - the hypothesis that a- at time * t is true, it
is therefore a local hypothesis

(t) - the hypothesis that a giving history for time up to
t of indexed by k is true, it is therefore a globalhypothesis.

These two types of hypothesis are related by the following equa-

tions

Hk(t) - Hk(t) 0 H k (t-1) 0 ---- 0 H kcl)"t kt.l 1

where the index for kI., .... , kt is 1, .... , N, the index for k

is 1, .*.., Nt, and 0 denotes the "and" operator. It is clear

that each ffk(t) defines a possible sequence of I history. With

this definition, one may proceed in parallel to the development

of this report to obtain a new MMEA for time-varying parameters.

The derivation is briefly stated below.

1) For state estimate and covariance
S

Let

Pi(t) - Prob(ff(t) -Hi(t)/Z(t)) (7.1)

for i1-, ... , N t. It is trivial to show that

(t/t) w. E (x(t) /Z(t))
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'" t
"•Pi (t)!Ei (t/t) (7.2) .

z (t/) cov (!x(t), x(t)/5(t)]

tt
Nt " -Pi (t) (£ji (t/t) + (x-- (t/t) - (t/t)] I:.

i-i

"(x-(t/t) - j(t/t)) T (7.3)

A
where xE (t/t) - E(x(t)/Hi (t),Z(t))

E~(t/t) = cov [x(t),x(t) / Hi(t),Z(t) I

2) For probability update

Using the conditional probability relation yields

P(ff(t+l)/Z(t+l)) - p(H(t+l)/ff(t),Z(t+l))p(if(t)/Z(t+l)) (7.4)

Using Bay's rule on p(H(t+l)/i(t),Z(t+l)) yields

p(H(t+l)/H(t) ,Z (t+1))

p (z (tjl) /H (t~l) ,W (), Z (t))

p~~tl)-Ht)Z~))p (H (t+l)/Hf(t), Z (t)) (7.5)

Define the following probability density functions
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N
p(H(t+l)/I(t),Z(t+l))- • P(Hi(t+l)/f(t) ,Z(t+l))6(H-Hi) (7.6)

i=1l

N
p(H(t+l)/fi(t),Z(t)) - • P(Hi(t+l)/H(t),Z(t))6(H-Hi) (7.7)

i=l

where P(Hi (t+l)/H(t),Z(t+l)) = Prob(H(t+l)=H. (t+l)/R(t),-.(t+l))

and P(H (t+l)/ff(t),Z(t)) is the probability that the parameter

will switch to ji given a past history of y and all the past

measurements. It is determined by the property of the hypothesis

process. If the hypothesis process is a Markov process, this

probability becomes the transition probability, i.e.,

P(Hi(t+l)/H(t), Z(t)) = P(Hi(t+l)/if(t)) (7.8)

= P(Hi(t+l)/H(t))

For example, if the parameter may change to any parameter in Rq
with equal probability, we may assume

S1

P(H (t+l)/!?(t), Z(t)) = for i=l, ...

Using (7.6) and (7.7) in (7.5) yields

62



P~P~ti 1(tHl)/HltLZft)) (7.9)

p(z(t+l)/H(t) ,Z(t))

Using the equation

Nt

P(ff(t)/Z(t)) 2: p Pk t)4 (W - k) (7.10)

k-1

in (7.9) yields

P(H.i (t+1)/ffk(t),Z(t+l))

P(H i(t+l)/gk(t)IZ(t))

p(-Z(t+l)/ffk(t) ,Z(t)) (7.11)

where p(z(t+l)/Hi (t+1),Hfk(t),z(t)) is the residual density of

the filter which was matched to the k-th history and is now

matched to Li and

k= (7.12)

Next, we relate P(H. (t+l)/z(t+1)) to the conditional
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probability. Using

P (Hi(t+l)/Z (t+l))

-f P(Hi (t+l)/H(t),Z(t+l))p1((t)/Z(t+l))dN(t) (7.13)

and equation (7.10) one obtains the following equation for each

ffk(t).

P (H i (t+l) "Hk(t)/Z (t+l))

= P(Hi (t+l)/-Hk(t),Z(t+1))P('fk(t)/Z(t+l))

for i-1, .... N, I and k-l, ..... , Nt (7.14)

where P'Hi(t+l)/gk(t),Z(t+l)) is specified in equation (7.11).

Notice that P(Hi(t+l),Wk(t)/Z(t+l)) is the updated hypothesis

probability. Next, we derive the equation for computing

P(Hi//Z(t+l)). Using Baye's rule on P(lHk/Z(t+l)) yields

P (C (t)/Z (t+1)

p (z(t+1)//k (t) Z (t))(
SP (H k (t) /Z ('40 (7.15)

p(z_(t+1)/Z (t))P(kt/t)

where P(ffk(t)/Z(t)) is the a posteriori hypothesis probability

at time - t, i.e., Pk(t). The probability density functions of

(7.15) are computed by using
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p (a(t+1) fk (t) .1(t))

N
= •p~st~l/l~~t).vH (t+l)t&lt))PlHs (t~l)/lkt •(}

Jul (7.16)

:And

p (s (t+l)/Z Mt))

Nt

- ( p(Z(t+I)/m(t) Z(t) )Pm(t) (7.17)

The probability update is therefore carried out by using equations

(7.11), (7.14), and (7.15). These relations can be further con-
I ,-!..•

densed with the following simplified notations.

P(Hi/-k,Zlt)) - P(Hi(t+l)i-(t),Zlt)) (7.18)

p(z(t+l)/Hi (t+l) ,i (t) Z (t))X.(1,i/Rk)• . , W-
SP Iz(t+l)/.H (t+l) ,• (t), z(t))P IHJ/gk,'• t))

ji- (7.19)

- conditional likelihood ratio
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t(!k) - /I
mm

p (s (t+l) /Z (t),

E P((t+l) H/Wk(t)a ji(t+l)tZ(t))P()j/ (k72(t))1)

N t N
E=• ( E•= P(Z(t+l)/Hmf ) H(t+l) 9 (t))P (Hnm'()Pm)

(7.20)

=likelihood ratio

Using C17.18), (7.19), and (7.20), equations (7.11), (7.14), and

(7.15) may be combined to become

Pj (t+l) - Z( (i/'-k) P (H i/Hk, z (t)) I • Pk (t) (7.21)

Notice that for i-1, .... , N and k-l, ... , Nt, the index for j is
Nt+l

1, .... , N The probability update is carried out with the

conditional probability which characterizes the hypothesis process

itself and the likelihood ratios which use the new information

through residual density functions of each filter.

The MMEA for a constant parameter, i.e., the algorithm

discussed in Section 3, is only a degenerate case of (7.21).

When the parameter is a constant, the local hypotheses, Hi. and

the global hypotheses, Hk, become the same. The number of hypothe-

ses is limited to the number of parameter vectors in R . Further-

more, the conditional probability of equation (7.11) becomea
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/Kk
P (I±(It4)/fk (t) , Z t) )

-. when Hi"lmik""k

S(7.22)

- 0 elsewhere

Using (7.22) in I(Hu/f) and 1(ffk) yields

(1 when H m-k

E(Hi/k (7.23)

0 elsewhere

P(Z(t+l)/Hk (t+l) ,Z(t)) (JLNk k - (7.24) '

F, p(z(t+l)/Hm (t+l) ,Z (t))Pm (t)

M-1

Using (7.22), (7.23), and (7.24) in (7.21), we obtain equation

(3.39), the probability update equation for the constant parameter

case. This completes our a posteriori hypothesis probability

derivation.

An obvious problem with this algorithm is that the number

l:t, of Hk(t), is growing with t. In order to make this algo-

rithm practical, one has to limit the growing number of hypothe-

ses. In the following, several suboptimal approaches for the

time-varying parameter MMEA problem are outlined. The first two
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approaabes are aimed at limiting the number of possible sequenco..

(or hypotheses). The last two approaches are m•inly to reduce

the chance of the algorithm being locked on a particular system.

(1) Maximum Likelihood Probability Approach

Consider the case that at time t there are only M

hypotheses selected. For the next time period, each

hypothesis may grow with N possibilities. It therefore

has N - N hypotheses after each filter update. These

M • N hypotheses are then limited by selecting only

those M which have the largest hypothesis probabilities.

(2) Transition Probability and Finite Memory Hypothesis
Process Approach

Suppose that the filtering process has limited mem-

ory so that Wk(t) is replaced by the most recent local

hypothesis T k(t). Furthermore, it is assumed that the

hypothesis process is a Markov process. Then one is

interested in updating

P(Hi(t+l)/Z (t+l)) ;i,...,N.

from

P(Hi (t)/Z(t)) for all k-1, ... , N.

With this assumption and using (7.13), one obtains
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P(B~ ~~ 1tl/~~) P(Ri(t+l)fHk(t)tI(t+l))

kai

P (Rk (t) /Z(t+'))(.)

where P(H (t+1)/U.kCt)tZ(t+l)) is obtained by an .qua-

tion similar to (7.11), i.e.,

p (H ±(t+l) /Bk(t) 'Z (t+1))

p (a(t+l) /Hi (t+1) , Hik(t) ,S(t))

/Sk t) ' (t)(7.26)

P(H.k/Z(t+l)) is obtained by an equation similar to

(7.15), i~e.,

p(z (t~l)/H k(t) ,Z(t)) -
P (Hk/Z (t+l)) P (H k(t)/Z(t)) (7.27)

where

p(z(t+l)/Hk (t) ,Z(t))

Uk

- p(z.(t+i)/H (t),Hj(t+1),Z(t))P(Hj (t+l)/Hk W)Z(t))
i-i (7.28)

6 9_ 
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31ng(7.25).p (7.26)t sand (7.27) onte obtains. on qgu"g

-uisivilr to (7.21),, i.e.,

P (t+1) a. P(a(t+l)/a(t+l))

N
It ~ (HI/kPU/k X(Hk)Pk(t) (7.30)

k-1

where -(j/% P (Hji(t+pt) ,i(t) Z (t)

. transition probability

L(Hj/Hk,) -conditional likelihood ratio defined
in (7.26)

L(Hk) o likelihood ratio defined in (7.27)

The difference of (7.21) and (7.30) is that with limited
memory, we are interested in P(H (t+l)/Z(t+l)) and not in

P(i (t+l)/Z(t+l)). This also limits the number of filters

to the number of xls. One critical issue of this ap-

proach is the selection of the transition probability

P(Hj/Hk). In practical problems, it may be selected

a priori with engineering intuition and physical reasons.

70



(3) Aging Filter Approach

When the system dynamics are uncertain and changing

with time, the aging filter (36, 371 in often used to

place exponentially higher weighting to the more recent

measurements. Its extension to the NMEA case (e.g., in

the probability computation) is not available. Prelimi-

nary results are discussed in [381.

(4) Others

There exist many methods that can be applied to

open up the bandwidth of each Kalman filter and to pre-

vent the a posteriori hypothesis probability from locking

on zero (or unity). The method used in the previous

section, i.e., increase process noise and bound the prob-

ability, is indeed just one of them.

A useful study would be to compare the above approaches

by applying them to a significant physical problem, such as the

Re-entry Vehicle Tracking problem.
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7.3 Further Problem Areas

In this subsection, we conclude by suggesting the follow-

ing further problem areas.

(1) From section 3.7, it was found that some fundamen-

tal issues of MM pertaining to its convergence and

identifiability still require rigorous investigation.

(2) It is demonstrated in section 6 that a known input

may be required in acme situations to help identify time-

varying parameters. The problem of optimal signal design

in using MMRA for system identification is still an open

issue.

(3) Further studies are required to extend MMEA to time-

varying parameters. The optimum MMEA for a special class

of time-varying parameters and several suboptimal ap-

proaches are discussed in section 7.2. The extension of

MKEA to other types of parameter variation is needed. A

Comparative study of the suboptimal approaches is an

interesting further topic.
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APPENDIX A

TER DISCRETE KAIMAN AND RXTENDED
KALIMAN FILTER ALGORITHM

Zn this appendix, we state the discrete Salman filter

algorithm and its first order extension (the extended Kalaan

filter) to the nonlinear case.

A.1 The Discrete Kalman Filter Algorithm

Consider the discrete system represented by

x(t+1) A x_(t) + B u_(t) + L I(t) (A.1)

with measurement equation represented by

:(t+l) - Cx(t+l) + 8(t+1) (A.2)

where x, u, and z are state, control, and measurement vectors,

respectively. §(t) and S(t) are white Gaussian noise sequences

with zero mean and covariances 2(t) and G, respectively. The

matrices, A, B, L, and C may be time-varying although not expli-

citly shown. The discrete Kalman filter algorithm is stated

below.

Predict Cycle

,(t+4/t) - A ,(t/t) + B u(t) (A.3)

TT(t•+4l/t) - A _(t/t)A + L _(t)L_ (A.4)
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Update Cycle

_(t+l/t+l) j •(t+l/t) + w(t+l)(z(t+1) - _ X(t+l/t)) (A.5)

W(t+l) - _(t+l/t)CT(c E(t+l/t)CT + 1(t+l)]- (A.6)

s(t+l/t+l) - (I - W(t+l)C] E(t+l/t) (A.7)

where

x(t/t) - E(x(t)./Z(t)) (A.8)

ý(t+i/t) - E(x(t+l)/Z(t)) (A.9)

Z(t/t) = cov(x(t);x(t)/Z(t)) (A.1O)

E(t+l/t) = cov(x(t+l), x(t+l)/Z(t)) (A.11)

Z(t) m the set of all past measurements

- {u ( 0) , U ( ) . . u t 1 , ( ) . . z t } (A . 1 2 )

The initial estimate x(0/0) is assumed to be Gaussian with mean

x(O) and covariance _(0/0).

A.2 The Discrete Extended Kalman Filter Algorithm

Consider a nonlinear system represented by

X(t+l) = f(x(t)) + B u(t) + L §(t) (A.13)

with measurement equation represented by
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z(t+l) - h(x(t+l)) + e(t+i) (A.14)

where all the matrices and vectors are the same as previously

defined except that f( ) and h( ) now represent nonlinear aystem

and measurement equatior -espectively. The extended Kalman

filter is derived by expending f( ) and h( ) in using the Taylor

series expansion up to first order term. Let

PF Jacobian matrix of f( )

=af ((tl))

Wx~t M x(t) - 2(t/t) (A-15)

H = Jacobian matrix of h( )

h h(x (t+l))"xa-t+l) 2 j(t+l) = ,_(t+l/t) (A.16)

The discrete extended Kalman filter algorithm is stated below.

Predict Cycle

j(t+l/t) = f(_(t/t)) + B_ u(t) (A.17)

E(t+l/t) = F E(t/t)FT + L =(t)LT (A.18)

Update Cycle

R(t+l/t+l) = R(t~l/t) + W(t+l)(z(t+l) - h(,_(t+i/t))) (A.19)

-1) -(t+l/r)HT(H E(t+l/t)HT + e(t+l)}1l (A.20)
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E~+1t+) ( -W(t44)H]E(t+l/t) (A.21)
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APPENDIX S

DISCRETE LINEAR SMOOTHING ALGORITHMS

The system and measurement equations are re-stated

below.

X(t+1) - A(t+l,t)X(t) + B u(t) + L 1(t) (BI)

z(t+l) -C(t+l)x(t+l) + e(t+l) (B.2)

All the definitions and statistical properties defined in the

Appendix A still apply. Notice that the time-varying property

of A(t+l,t) and C(t+l) is now explicitly shown. We still use the

following definition for state estimate and covariance

R(T/t) = E[x(T)/Z(t)] (B.3)

E/t) = Cov[x(•)t;x•)/Z(t)] (8.4)

Three kinds of smoothing are considered. They are de-

fined below.

(1) Fixed-interval smoothing: given Z(T),

obtain ,^(t/T) and Z(t/T) for all t<T.

(2) Fixed-point smoothing: given T,

obtain R(T/t) and E(t/t) for all t>T.

(3) Fixed-lag smoothing: advance j(t/t+k)

and Z(t/t+k) to ,Z(t+l/t+l+k) and

E(t+l/t+l+k) where k is a positive

constant.
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Only the algorithms will be stated here. Their deriva-

tiIu may be found in many references, e.g., refs (24-28J. These

algorithm are stated individually in the following subsections.

I.1 rimxd-interval Smoothing Algorithm

In order to use the fixed-interval smoothing algorithm,

the filtering resultA must be first made available.

State

A(t/T) = i(t/t) + G(t) [g(t+l/T) - 2(t+l/t)) (B.5)

Gain

T -G (t) - E_(t/t) A (t+l, t)_ -(t÷I/t) (B.6)'

Covariance

_(t/T) = _(t/t) + G(t)[E(t+I/T) - _(t+l/t)]GT(t) (B.7)

Initial Conditions

_j(T/T) , Z (T/T) (B.8)

B.2 Fixed-point Smoothing Algorithm

There are several equivalent algorithms in this category.

Only one of them is stated here. Similary, the filterin.- results

are needed for fixed-point smoothing.

State

% (it} "j~t.! -_ -) (B. 9) 7
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D(¶/t) - D(T/t-l)E(t/t)AT(t+l,t)E- (t+1/t)

Covariance

T_E(T/t) = _(T/t-1) -D_(T/t)W_(t)C(t)L_(t/t-l)n_ (T/t) (.1

Initial Condition

_(TIT), E (T/T), D(t/:) = I (B.12)

where W(t) = filtering gain, defined in (A.6).

I - identity matrix.

B.3 Fixed-lag Smoothing Algorithm

In order to perform fixed-lag smoothing, the filtering,

fixed-interval smoothing, and fixed-point smoothing results must

be available to obtain initial conditions.

State

_(t+l/t+l+k) - A(t+l,t)-(t/t+k) + B u(t)

+ L (t)LTA-T(t+It)_-l(t/t)[^(t/t+k) --(t/t)l

+ C(t+l/t+l+k)W(t+l+k) [z(t+l+k) - C(t+l+k)j(t+l+k/t+k)] (B.13)

Gain

D(t+l/t+l+k) - G (t)D(t/t+k)G(t+k) (B.14)

80



Covarianco

_(t+l/t~l+k) - _t+l/t) - D(t+l/t+l+k)

'C(t+k+k)C(t+l+k) E (t+l+k/t)D (t+l/t+l+k)

- G- (t)IlE(t/t) - E(t/t+k)G -T(t) (8.15)

where W(t) - filtering gain, defined in (A.6). G(t) - fixed-in-

terval smoothing gain, defined in (B.6).

Initial Conditions

x(t It i-k), E~t ft +k), D(t /t +k)

These conditions are obtained from fixed-point smoothing.
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