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FOREWORD 

The first in this series of conferences had as its host the Office 
OF Ordnance Research (now the Army Research Office), It was held in 
Durham, North Carolina, in late 1962, and was entitled the "AR0 Working 
Group on Computers." It retained this title for only two meetings; then 
the name was changed to the "Army Numerical Analysis Conference." Re- 
cently the name received a modification. The title is now the "Army 
Numerical Analysis and Computers Conference." This new designation 
emphasizes both phases of these meetings. 

The host for the initial conference also served as host for the 
present conference-- the thirteenth in this series of meetings. The 
Army Mathematics Steering Committee (AMSC) continues to be their spon- 
sor. Members of this committee would like to thank Dr. Paul Boggs for 
serving as Chairman on Local Arrangements. He did an outstanding job in 
carrying out the many tasks associated with conducting a conference of 
this size, 

"The Impact of Mini-Computers and Micro-Processors on Scientific 
Computation in Army Research and Development" was the theme of the 1976 
conference. A Panel Discussion in this area was one of the outstanding 
features of this meeting. It was chaired by Professor David J, Farber 
of the University of California at Irvine. The four members of his 
panel were Dr. E. David Crockett, tlewlett-Packard's Data Systems Division, 
Professor E. J. Desautels, University of Wisconsin, Dr. Ivan Sutherland, 
Rand Corporation and Mr. Eric Wolf, Bolt Beraneck Newman. 

The keynote address was delivered by Dr. E. David Crockett. He 
titled his talk “Is the Mini-Computer the Next Dinosaur?" Another 
address which was also closely related to the theme of the conference 
had as its title the "Evolution of Micro-Computer Technology." It 
was delivered by Dr. Evan Sutherland, Two other featured speakers were 
Dr. Achi Brandt, IBM Thomas 3, Watson Research Center, and Professor 
Gene H. Golub, Stanford University. The respective titles for their 
addresses were "Multi-Level Adaptive Techniques (MLAT) for Discretizing 
and Solving Partial Differential Boundary Value Problems" and "Least 
Square and Robust Regression." Members of the AMSC would like to extend 
their thanks to the above-mentioned panelists and invited speakers for 
sharing with members of the audience their knowledge about new numerical 
analysis techniques and new developments in the computer field. Also, 
they wish to thank those scientists presenting the thirty-three con- 
tributed papers. Without their input to this meeting it could not have 
fulfilled its full significance as an Army conference. 

The responsibility for organizing these symposia rests in the hands 
of the AMSC Subcommittee on Nmerical Analysis and Computers. Its chair- 

,man, Dr. Ronald P. tJh1 iq , held an up?rr rrror!tinl;l of this subcommittee on 
the last diry of l.hi< syrrtpoc,ium. Among the topics brought up for discussion 
was the theme for the 1977 conference. After considerable interplay of 
ideas and many suggestions, the theme receiving the strongest indorse- 
merits was entitled "Numerical Techniques for Solutions of Nonlinear 
Partial Differential Equations," We are pleased to be able to announce 
that the Mathematics Research Center, University of Wisconsin at Madison, 
Wisconsin, will serve as the host of this coming conference. 
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A CASE HISTORY EXPLORING THE TRANSPORTABILITY OF A MATHEMATICAL 
ALGORITHM FROM A LARGE-SCALE COMPUTER TO A MICRCCOMPUTER 

S. Kravitz and J.A. Hauser 

Aeronutronic Ford CoToration 
Western Development Laboratories Division 

Pald Alto, California 

Abstract 

Problem-solving techniques as adapted to microcomputers compare 
in varying degrees with those used with large-scale computers and 
minicomputers. The latest hardware technology has re-exposed some 

of the same numerical and programming problems that were 
attendant upon the introduction of minicomputers in replacement of 
,large-scale computers. A case history of a typical microprocessor 

application is presented, with emphasis on algorithm transport- , . 
ability and microprocessor restrictions and capabilities. The 
illustrative example is a Graphics Plotter controlled by an Intel-8080 

microprocessor. Recommendations for future studies in algorithm 
standardization are presented, 

A. INTRODUCTION 

Technological developments in the field of microprocessors within the past few years have 
revolutionized the electronics industry. Microprocessor prices have been drastically 
reduced recently, making it virtually impossible to ignore them as cost-effective alterna- 

tives to minicomputers and, in some applications, large-scale computers. 

Use of a digital computer for problem solving is typically divided into the formulation, 
algorithm development, and programming phases. Problem solving can be viewed as a 
team effort involving a numerical analyst, programmer, and electronic engineer, Micro- 
processor-based applications generally involve some electronic fabrication which includes 

circuit design and integration of input/output sensors. 
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‘The computer architecture must be taken into account in each development Stage. Micro 

precessor applications differ from large-scale or minicomputer applications in the areas 
oi limited arithmetic capability, lack of adequate support software, and in the require- 
ments of solving real-time data acquisition problems. 

The use of large-scale computers for microprocessor software development is an 
accepted technique. Proofing and simulating algorithms before developing them for the 
more difficult microprocessor environment is made possible through the use of cross soft- 
ware, such as compilers, assemblers and simulators, which operate on a host computer. 

However, transporting these algorithms, or those already in use on large-scale computers, 
c&Ill presents numerical and Software-language difficulties. 

The present day use of large computers to solve engineering problems in general is im- 
plemented in high-level languages such as FORTRAN, The use of a high-level language 
hae certain drawbacks, not the least of which is an abstraction (or transparency effect) 

which masks the nature of the actual computer arithmetic operations. In using micrt>- 
computers, however, the practitioner must be keenly aware of the hardware implementa- 
tion of the arithmetic operations and the numerical problems attendant on small word 

sizes. 

A typical microprocessor system generally consists of the following system components: 

CPU - The Central Processing. Unit controls the communication8 between 

memory and the input/output, keeps track of the program, and operates on 
instructions via the ALU (Arithmetic Logic Unit). 

MCU - The Memory Control Unit controls which memory chip is accessed 
by the CPU. A decoder is often uS8d for this purpose. 

DCU - The Device Control Unit selects the input/output accessed by the CPU. 

lb general, these are the selected port addresses. 

MYemory - Most microprocessors employ both ROM (Road Only Memory) and 
RAM (Random Access Memory). 

System Clock - Although some micros now have on-chip clocks, many still 
require an external clock chip for system timing. 
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Interface chip - The interface chip is a register (either programmable or not), 
cm&rolled by the CPU, and is used to interke to the outs:dc world. 

Microprocessor applications fall into the following general categories: controllers, 

terminals, communication equipment; and consumer products. Specifically, micrck 
processors are being used in point-of-sale terminals, onboard vehicle control, banking, 
recreational games, industrial controls, time-sharing, remote batch, and numerous other 

applications. 

B, ALGORITHM TRANSPORTABILITY CONCEPTS 

B. 1 Algorithm Development 

For this discussion, algorithms are those numerical methods which are used to solve 
problems on digital computers, By definition, they are completely unambiguous, and 
should include an error analysis. The error analysis includes accuracy requirements, 
estimation of round-off and ciiscretization error, step-size and iteration counts, and 

non-convergence allowances. For the context of this paper, algorithms include pro- 
gramming considerations which are necessary for software implementation. 

A much-sought-after objective in scientific computer applications is transportability of 

algorithms, Transporting an algorithm involves conversion and translation of the computer- 
dependent features so that the algorithm can be implemented in software on a different 
computer. Computer algorithms have been developed during the last two decades at great 
cost and unfortunately, with duplication of effort in conversion to newer and different hard- 
ware. Some earlier large computers used’for technical problem soKn.g had 36-bit word 

architecture (with some exceptions, notably the Philco 2000 series, 48-bit word); 32-bit 
and 60-bit word machines were adapted later. Mlnicommters, arriving somewhat later on 
the scientific-applications scene generally used 16-bit words, although this also varied. 

More recently, microcomputers became popular. These include 2, 4., 8, 12, and 16-bit 
architectures. In general, the use of floating-point arithmetic hardware has been confined 
to large-scale computers and some minicomputers. 

With a diversity in number representation, arithmetic capability, and software languages, 
it is no wonder that the goal of algorithmic transportability seems no closer in the micro- 
computer era than it did in the minicomputer era. The practical development of n nvunerical 
algorithm involves an analysis which considers not only computer word size ani, zVrithtnetic; 
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but also vagaries of software languages, software library functions, and, in the case of 

microcomputers, the pecularities of real-time data acquisition - notably digitization. 

Ths use of numerical analysis techniques for real-time microcomputer usage differs in 
some respects from that used in defining a large-scale computer algorithm. Memory and 
speed constraints restrict the use of extended-word arithmetic and floating-point software. 

ti trade-offs are not always simple nor are the alternatives clearly defined. 

The extensive algorithmic and software literature (‘* 293) represents a treasure house of 
ingenious techniques developed with great effort and expense. The future usefulness of 
microcomputers to solve problems heretofore reserved for larger and more expensive 

machines, depends upon the conversion techniques adopted. They also depend on the 
s&Ware aids developed to emulate, if necessary, the larger-word machines for which 

the algorithms were originally developed., 

]B. 2 Software Development 

The general acceptance of FORTRAN as the standard in technical software development 
has been aided by the efforts of the X3J3 FORTRAN committeet4). Unfortunately for 
users of mathematical algorithms, standardization is an objective still to be attained. The 

dIff’erences in machine architecture must be taken into account in defining an algorithm. 
This is especially true in the use of microprocessors. The relative newness of this 
technology and its application in general problem solving indicates that little in the way of 
software support tools are available. The first-time user is cautioned against assuming 

the existence of any extensive mathematical library supplied by the manufacturer. 

A purchaser of a microcomputer system can obtain a manufacturer-supplied operating 
system, assembler programs, and, in some cases, higher-level-language compilers. 

Unlike the minicomputer environment, suppliers generally do not furnish a compre- 
hen&e mathematical library which is fully tested and warranted. However, user 
groups are being formed, and programs are being exchanged on an informal basis, Faced 
with the task of implementing an algorithm on a microprocessor, the development team 

must plan to convert, or transport and implement, existmg algorithms (sin, COB, etc. ) 
from larger machines. 

High-level-language compilers have been developed as an alternative to machine language. 

Programs take less time and are easier to write than their assembly language cour!erparts. 
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The Intel PL/M cross compiler (5) is an early example. Other support programs are 
being announced in technical publications; (6) however. there appears to be little in the 
way of standardization. 

Figure 1 illustrates a typical microprocessor software development cycle. The develop- 
ment team of numerical analyst, programmer, and electronic engineer must interface 

throxhout the cycle to ensure a valid and verifiable implementation. 

Develop 

Aleorithm 

1 
Fcrmulate 

Program Specification 
‘ 4 

1 

Program Algortthm in Assembly 
Code or Higher Level 
Language 

HOST I RESIDENT 

COMPUTE COMPUTER 
1 

Assemble Via Cross Alternately Assemble Vie 
Assembler or Cross 
Compiler 

Resident Asscmbhr 
, 4 1 

Y I 

Checkout Vte Checkout Via 
MiCrOprOCeS8Or Developnent 

4 Simulator A 
system 

Program ROM Chips From 
Awembled or Compiled 

Code 

1 

Lxternal 
Inputs 

Pro totypc 
Mictocompurer 

I 
System 

Load program into ROM 
manwry by physically 
‘burning’ in chip 

Program is executed on 
Hictoproceesot hardware 

Resulta ere displayed 
a) on console 
b) via ASB terminal 

Figure 1. Microprocessor SofWare Development Cycle 
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‘C. MICROPROCESSOR RESTRICTIONS AND IMPLICATIONS FOR ALGORITHM DEVELOPMENT 

C. 1 Hardware Restrictions 

unlike the large scale computer, the microprocessor is restricted in its operation by 
various inherent parameters. Although nomenclature differences exist between micros, 

minis and large-scale units, a meaningful comparison can be made, 

Word size - The standard microprocessor word lengths vary from 2 bits to 16 bits. However, 
8 bits seems to have become the industry standard. Compared to 32-bit or 36-bit words 
used in many large-scale computers, the limitations are clear. Although multiword 
definitions increase microprocessor software capability and accuracy, coding, memory, 

and speed restrictions limit their use. 

Speed - The instruction time of microprocessor commands depends primarily on the 

technology of the unit. Whereas the more popular microprocessors, such as the Intel 8080 
and Motorola M6800, use NMOS technology and, therefore, have slow instruction times 
(approximately 2 vs.), bipolar microprocessors are becoming more popular and less 
expensive. These units offer much faster instruction times (approximately 10 to 100 times) 
at the expense of more power and a larger number of chips per system. 

Memory restrictions - The amount of memory a microcomputer system can handle is 
restricted by the amount of addressing available. Many micros use a 16-bit address bus, 

enabling a micm to have a capacity of 65K memory. In addition to memory restriction, 
semiconductor memory access-time restrictions can become important in real-time 

applications. 

Digital to Analog Converter - The restrictions due to Digital-to-Analog Converters (DAC’s) 
are mentioned here because of their implications in the design example. DAC’s are specified 
by resolution (number of bits being converted) as well as type of technology. The higher the 

resolution the smaller the increment of output voltage each bit represents. 

V out = (2-n Vref) 

where n represents the resolution in bits for unipolar operation. 
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The design must also take into account the settling time of the DAC. This is the time re- 
quired for the output function to settle within l/2 LSB for a given digital input stimulus. 

Various other specifications are important in the determination of the accuracy of the 
converted number. 

C. 2 Software Restrictions 

Microprocessor software can be subdivided into two major categories: microprogramming, 
and fixed instruction set programming. Nearly all bipolar microprocessors are micro- 

programmable (a user-defined instruction set, utilized at the fun&mental register transfer 
level). Most MOS microprocessors are not microprogrammable and have a fixed instruction 
set. The more popular Intel 8080 and Motorola M6800 Bll into this later category, .Due to 
general size and speed constraints, microprocessor instruction sets are not as extensive 
as their large-scale computer counterparts. 

Many microprocessor vendors are now making available a higher level language. The more 

popular ones are PL/M and FORTRAN, with newer ones such as MPL (Motorola) soon to 
be released. Although these languages alleviate some of the problems of assembly language 

programming, they create a lot of their own. Some of the problems of assembly language 

and higher level language are as follows: 

Multiply/Divide - Most fixed instruction microprocessors do not have a multiply or divide 

instruction. Some newer microprocessors consider this problem and either have such 
instructions, or have a hardware multiply/divide circuit; however, many algorithms have 

been written to compensate for this oversight. 

Fixed Point Arithmetic - Several higher level languages such as PL/M do not incorporate 
floating-point arithmetic. Although floating-point subroutines have been written and can 
be called as part of the program, a definite disadvantage both in flexibility and time is 

recognized. 

Unsigned Arithmetic - An annoyance one must keep track of in PL/M is the minus sign in 

comparisons. In the case of an A>B check, a negative A which has an absolute value greater 
than B would appear to be greater than B, whereas it is really less than B. 

IKI real-time data acquisition, the special purpose data gathering hardware is usually 
designed and constructed simultaneously with the algorithm development. Thus, 
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sinud.atlon tools must be used to verify the algo *ithms. Especially useful are simulation 
programs that run on large-scale computers an 1 that allow software to be checked out 
before final checkout on the candidate hardware Testing on the candidate hardware will 

then verify that sensors and conversion devices are correct and adequate. The Intel 

Ibtellec microcomputer system permits Wut/oa@ut through a straightforward PL/M 
command that directly connects the application rrogram to a designated hardware input 

port. To output a specific value, the followfng command is used: 

OUTPUT (PORT NUMBER) = OU TPUT VALUE 

D. ILLUSTRATIVE EXAMPLE 

The development of a microprocessor-controlled plotter to draw Iwo-dimensional ellipses, 
although simple, is illustrative of some of the problem areas in algorithm transportability. 

D. 1 Problem Statement 

Given the major, minor axis lengths (a, b), draw a smooth ellipse using a microprocessor- 
controlled analog plotter. This problem is trivial given a modern computer and supporting 
software. However, as will be shown, the microcomputer solution is not trivial, certainly 

not for a first-time microprocessor user who has become accustomed to large machine 

euppo~* 

Figure 2 is an artist’s rendition of the final objective, a portable microprocessor based, 

plotting system. 

D. 2 System Design 

Figure 3 illustrates the system solution to the ellipse plotter 
between algorithm, software, hardware, and human factors, 

problem. The interactions 

influenced the design, 

D.3 Hardware 

The hardware required for the Graphics Plotter can be divided into two sections: (1) the 
development hardware, and (2) the prototype hardware. The development hardware consists 
of a system such as the Intel Intellec S/Mod 80 with the I/o connected to two IO-bit DACts 
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and, subsequently through appropriate amplification, to the X and Y inputs of an X-Y 

~~urder. Data entry is handled through a teletype. 

The portable prototype systim employs an Intel 8080A microprocessor connected to 
several 256 X 8 ROW s and 256 X 4 RAM’% In addition, a programmable I/O interface 

obip handles the input and output, a clock generator and crystal handle the system timing, 
a l-d-8 decoder does the device control selection, and a USART is used for data 

cummunications through a current loop or RS232 me interface. A system-controller chip 
Undone the proper timing signals to the rest of the system. 

The prototype system also employs a keyboard for data entry and an alphanumeric display 
for information verification and data interchange. 

Figure 2, Portable Microprocessor-Based Plotting System 
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Figure 3. Microprocessor-Controlled Graphics Plotter-Systems Block Diagram 

D.4 Algorithm 

The following discussion traces the algorithm development in solving the equation of the 
ellipse on a microprocessor. 

Cartesian Approach 

Solve for x and y, given a and b 

2 2 l/2 y=(b2-b;) 

a 

where x ranges from -b to +b in steps of 0.01 inches 

altmmatively y= (b -p,Y2(b +bxp 
B 

Eq. D4-1 

E4, D4-2 
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Parametric Approach 

xfac0sQ 
pbsine 

Eq. m-93 

Where 9 ranges from 0 to 28in steps of& Olrd&m,s. 

The cosine fuaction (7) was initially approximated by the three-term economized Chebyshev 

series 

Where 

cos(x) = I+ a2x2 f a4x4 

a2= -0.49670 

ad= 0.03705 

Eq. w-4 

The series wae rewritten, replacing the decimal representation with 

CO8 (x) = 1000 

where K=x=lOO 

A more accurate six-term seriestrl) currently being implemented is 

where a2 = -0.4999999963 

a4 = 0.0416666418 

'6 = -0.0013888397 

aa = 0.0000247609 

%o = 
-0.0000002605 

Eq. D4-5 

Eq. D4-6 

The number of multiplications was reduced by factoring,and the decimal constants xi11 be 

replaced by their reciprocal integer counterparts. 
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D.6 Ekror Analysis 

The rwndaff error@)in solving the equation of the ellipse is represented by the function E. 

IEI 5 IEpI + IEgI Eq. D&l 

Ep is tie error due to the finite machine repreaexitition of 

real numbers; it includes the propagation errOr dm to the arithmetic operations. 

Eg represents the generated error, introduced as 8 -result of imperfect machine 

atihmetic operations. 

An eXSlnp18 of geWXat8d 8mOr is tb8 tIuIu%tion caused by integer ditiSioa III th8 micro- 

c#vmplter environment, E will depend upon the range of the parameters, the accuracy of 

&e function approximations, word size, scaling, and th8 fixed or floating-point mathema- 

iid Op8=tiOII.S. Although not shown, a statistical approach can be used to estimate E. 

aopagated error may be aPproximat8d by Taylor’s theorem: 

F(u, v, w,. . . , t) - F(u:v,*w: . . . t*) (V-Z) 

+ 8F &w-w*)+ . . . + s e-t*, Eq. D5-2 

wbere 

Jy* WV l . . t are the true values of the function parameters 

u ,v*,w*,  .  l l t* are machine approximations 

EP 
z AF EJ 8F E 

au pu 
+ @ E 

a.v pv 
+ a E 

aw pw + l l l Bt 
E E 

pt 

E 
pu 

= u-u* 

E 
pv =‘17- 

V* 

E 
PW 

= w-w* 

E 
Pt 

= t-t* 

Eq. IX-3 



For the Cartesian approach, where 

F(& a, b) = (b2 -$fb 

+ 
Epb 

Eq” m-4 

Eq. IX-5 

E Epa and Epb are assumed to be zero, the Cartesian error may be expressed as: 

E 
PY = Epxx Eq. DS-6 

For the parametric approach, where 

F(i, 8)” a cos8 Eq. DS-7 

F@, @)=bsinO Eq. DS-8 

EgndZ 
PY’ 

the parametric error terms are evaluakd’as 

Em-z ms9 E 
pa 

- a sind E 
PB Eq. D5-9 

E 
PY 

t sin9 E 
Pb 

+ b cos8 E 
P8 Eq. D5-10 

Where E and E 
pa Pb 

are assumed to be zero, the parametric error may be expressed as: 

Eq. D5-11 
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The Castesian error, Eg, is evaluated in functional form as: 

E g = fl (Eglv Epzs E@’ Eg41 Eg5’ *gS* Eg7’ 

EtIl 
= Error introduced by squaring a 

Eg2 
= Error introduced by squaring b 

= 
Eg3 

Error introduced by squaring x 

Eg4 
= Error introduced by dividing b2 by a2 

Eg5 
b2 

= Error introduced by multiplying - by x2 
a2 

Et16 
b?x2 

= Error introduced by subtracting - from b2 
a2 

57 = 
-Error introduced by the square root function 

The parametric generated error Fg is evaIuated.in functional form as 

Eq. Ix-12 

Eq. JX-13 

where 

F 
t31 

= Error introduced by sin or COB series approximation 

E 
g2 

= Error introduced by a or b multiplication 

The Intel microcomputer implementation of the Cartesian formulation was made difficult 
by the following factors: 

a. The limited integer range of 0 to 255 for single-length words and 0 to 
65025 for double-length words caused overflow in multipkation, re- 

quiring scaling. 
b. Truncation caused by integer division required scaling. 

c. Truncation caused by the integer square root algorithm required scaling. 
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Extended arithmetic or floating-point arithmetic c&d have been used to alleviate the 

above diBicUt@. This approach is being pursued. 

Iti a similar manner, implementition of the parametric formulation w~ta made difficult by 
ths requirements for an accurate Wgonometric approximation and by the scaling required 
to represent the inditidual 5ctors and the product of their muWplicatLon, 

D.6 Software 

The PI/M language was utilized to implement the elI.ipss soh~ffon(~). The Intel cross- 

mpiler was used on a large scale Honeywell 6060 compter to produce a loadable 

object paper tape. The simulator program was run later to verify the proper operation 

of the object program. Using a high level language reduced training and program develop- 
ment the, although the resulting program used more memory resources than anticipated. 

A ilow ohart of the program code is shown in Figure 4. 

D. 7 Problem Areas 

When implemented in PL/M code the Cartesian approach revealed the following problems: 

a. A lack of supplied mathematical library routines, The original square-root 
5nction did not satisfy the accuracy requirements. 

b. Division and multiplication worked properly on positive (unsigned) numbers only. 

C. Integer division truncated the results’, making accuracy difficult. 

d. Single and double precision word arithmetic was not sufficient to avoid overflow. 

e. The resulting error in the x,y coordinates was too large to present visually 

smooth ellipses. 

The parametric approach solved some of the above problems and the resulting’graph was 
smoother than the Cartesian results. However, a new series expansion for the 
trigonometric sine function had to be derived. 
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Keyboard Input/ 

COSINE SUBROIRINE 

HIILTIPW SuBROIJTfm 

output 
Subtautine 

Subroutine 

Ngure 4. PL/M Program Flowchart for Ellipse 

&me of the system and hardware problems weret 

a. The original design used an S-bit DAC, which was expanded to IO bits when it was 
realized that more precision was required. 

b. The classic problem of deciding whether a problem was hardware or software 

was approached by using the Intellec development system to step through the 
sofkvare as well as by probing the hardware circuitry. 
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E. CONCLUSIONS 

Problem solving with microcomputers is likely to increase in tie uear future. In some cases, 

microcomputers will replace minicomputers because of price, size, and low power require- 

ment& 
Dl&&3: 

a. 

b. 

C. 

d. 

8. 

0. 

43. 

h. 

To expedite development and reduce redundancy, the following recommendations are 

Use a development team for microprocessor applications. Include a numerical 
analyst, programmer, and electronic engineer. 

Encourage the development of mathematical libraries, and obtain access to 
manufacturers’ libraries. 

Encourage language standardization. 

Use host software tc check and simula-‘d’ codes. 

Anticipate requirements for multiword and floating-point arithmetic through a 
thorough error analysis before algorithm implementation, 

Debug hardware and software on a development candidate unit such as an Intel 

MCS or MDS, or a Motorola EXORciser, 

Consider the accuracy of the hardware (DACls, A/D’s, etc) before determining 
stire accuracy. There is no need for software to be more accurate than the 

hardware. 

Employ scaling techniques that are appropriate for the individual application. 

F. XMPLICATIONS FOR ARMY RESEARCH AND DEVELQPMENT 

The acceptance and use of microcomputers by the military will pace usage in the 
commercial world. High reliability and qualification testing are proceeding, and some 

acceptance is assumed during 1976. 
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~~icrocomputers are viewed not only as a direct replacement for minicomputers but, be- 
cause of their small size and lower power requirements, a8 new devices for various 
tactical applications. The use of minicomputers in radar and fire control systems is 
already well established. In the future, micros will likely be found on board tanks 

(automatic turret positioning and fire control, computer-aided fuel injection systems, 
vehicle communication and display); in guided missiles; in electronic surveillance 
systems; in navigation aids; and in field-portable communication, process control, and 
logistics systems. In any instance where digital circuitry is applicable, the use of a 
microcomputer is suggested, based on,lower design costs as well as increased capacity 

cmlaerations* 

The cost factors in using microcomputers are weighed heavily in the ma&me costs 
ncceasary to prepare software. In a recent article w, the adoption of standardized 
processor algorithms to solve problems in electronic warfare is recommended. The 

author relates the high We cycle costs of custom-designed software as compared to 
the lower costs incurred by using proven building block modules. Such an approach 
could result in libraries of algorithms stored on the disks of large-scale computers with 
-port software that would allow the burning in of read-only-memories with those 

programs of interest. In this style, microcomputer software applications would involve 
integrating proven modules and preparing only the necessary high-level executive 
program and if necessary, problem-dependent algorithms. 

For future Army application of microprocessors, a study of useful common algorithms 
and preparation of guidelines for language standardization may be cost-effective in 
reducing software development and redundancy costs. 
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HIGH SPEED, QUALITY COMPUTING ON A MINICOMPUTER 

Edouard J. Desautels 
Computer Sciences Department 

University of Wisconsin 
Madison, Wisconsin 53706 

ABSTRACT. Factors which should allow the current generation of mini- 
computers to run large scale scientific computations cost-effectively 
in comparison to current large systems are discussed. The obstacles 
to lower-cost software conversion from large systems will decrease 
due to the advent of minicomputers with large physical memories and 
large address spaces. Initiation of the development of a numerical 
analysis problem solving system on a dedicated minicomputer is proposed 
as a means of exploiting recent hardware and software advances. 

1. INTRODUCTION. The title for this paper may be interpreted by 
some as a statement of the obvious. It is intended to raise the 
following questions. To what extent can one today conveniently solve 
large scientific problems quickly and as reliably on minicomputers as 
on large shared systems such as the CDC 6000, IBM 370/158+ and UNIVAC 
1110 series computers? What are the obstacles in reaping the full 
potential of minicomputers in the mathematical software area? This 
paper attempts to address these and related questions. 

As a preliminary, let us agree that minicomputers for our purposes 
are general-purpose computer systems deemed sufficiently inexpensive 
to avoid the need for concurrent sharing via a multiprogramming 
operating system. Thus a minicomputer would either be dedicated to 
a single job or it would run a simple batch system, or it would be 
turned over to single users for hands-on use, etc, Using this defini- 
tion, what might be considered a minicomputer at one site (e.g. a 
$100,000 PUP-11/45) might be used as a shared central facility at another 
site. 

As we proceed with our discussion, the characteristics of mini- 
computers will also be assumed to change with time. We have to be 
thinking of the potential uses of minicomputers as they may be 3 to 
5 years from now, and what efforts have to be undertaken now in order 
to be able to fully exploit them as the new generation of minicomputers 
becomes available. 
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2. HIGH SPEED. The measures of speed we have in mind are the raw 
speed usually measured in millions of instructions executed per 
second (MIPS), sometimes refined as a Gibson mix index (the sum of 
the products of instruction speeds and instruction frequencies for 
an assumed characteristic instruction mix). We are also concerned 
with the perceived speeds as measured by turnaround times under 
actual operating conditions, 

Considering this second aspect first, many times we have heard 
undocumented allegations as to the overhead associated with large 
operating systems, Schneck in [9] discusses the factors which can 
lead to a multiprogramming system consuming an excessive fraction of a 
system's resources. He advocates monoprogramming as a method of 
achieving high performance which yields advantages in turnaround time, 
efficiency and equipment configuration. 

Returning to the raw hardware speed, in spite of the small word 
size of most minicomputers (e.g. 16 bits), single-precision floating 
point hardware, for 32 bit operands, 
for $5,000 - $10,000. 

is now available on many systems 
Many minicomputers have memory cycle times 

of one microsecond or less. Thus when dealing with memory reference 
instructions, a rate of 0,5 MIPS or better is attained. Since some 
minicomputers are equipped with cache memories (a user-transparent 
high-speed program and data buffer), rates of 1 to 2.5 MIPS are 
achievable. 

In a mathematical problem solving situation, one may wish to 
distinguish the speeds for two distinct phases of problem-solving. The 
first phase involves experimentation, program development and trial and 
error until a suitable approach is found. Interractive computing is 
the natural mode of computing in this phase, When a suitable approach 
is found, one enters phase two, the production phase (sometimes 
called number-crunching). 

One can sometimes rather easily cost-justify using a minicomputer 
for the production phase. For instance, suppose one has access 
to a shared facility charging $200 per CPU hour, which typically pro- 
vides its users with only one tenth of its effective power (because 
it multiprograms 10 - 15 programs simultaneously to maximize resource 
utilization). One can imagine a $100,000 minicomptuer system with 
a speed equivalent to the perceived speed of the large system (a 1 
MIPS minicomputer vs a 10 MIPS large computer). The breakeven point 
for hardware purchase occurs after 500 hours. Since a minicomputer 
system entails other costs, supporting costs equal to the initial 
capital investment bring the breakeven point to 1,000 hours (25 
weeks at 40 hours/week). Schaefer [8] reports on the use of a mini- 
computer (a Datacraft 6024/4) for computations in theoretical chemistry 
as a realistic alternative to machines such as the CDC 7600 or IBM 
360/l 95. He reports that the cost of operating and capitalizing a 

22 



minicomputer system can be significantly lower than the cost of 
operating a very large system which has already been amortized, on 
the basis of computations per dollar. He concludes that as a 
theoretical chemist he was able to get three times more computing 
per dollar using a 1973 vintage minicomputer, and that the technology 
forecasts point to the price-performance bias towards minicomputers 
increasing. 

Justification for a dedicated minicomputer used for the inter- 
active phase may be more difficult. If one amortizes the equipment 
over 4 years, then the $25,000 per year may be equivalent to the cost 
of a scientific prograrmler with his overhead. On this basis, the 
justification may not be so difficult, especially if the system is 
also used for the production phase, as would be expected. The inter- 
active phase is labor intensive, and any convenient interactive 
capability suffices, provided it is somehow linked to and software 
compatible with the production system. 

Q Quality mathematical software is being produced by 
l?rojecFt':zh as the the National Activity to Text Software (NATS) 111, 
and organizations such as the International Mathematical and 
Statistical Library (IMSL) [3], in addition to efforts put forth by 
computer equipment manufacturers. As might be expected, these 
products run on large computers (e.g. CDC 6000/7000 series, UNIVAC 
1100 series, IBM 370/360 series, etc.). 

Assuming one has access to a high quality library of mathematical 
software, it is more likely than not written in Fortran, and one 
has the initial problem of selecting the appropriate subroutines, 
then mastering the calling sequences and providing for the data 
handling requirements. This work can be simplified by providing a 
framework or a coherent working environment for the user. 

In attempts to do so, a number of experimental systems were 
developed in the mid and late 1960's, as described in the Klerer and 
Reinfelds book [4]. One in particular focussed on providing the user 
with a means of having a natural notation for problem definition (e.g. 
mathematical notation), providing for selection of appropriate 
algorithms (e.g. using polyalgorithms), and using a natural representa- 
tion of results (e.g. graphical). This was the Numerical Analysis 
Problem Solving System (NAPSS). The paper by Rice [7] is a 
retrospective view of the problems and prospects of NAPSS-like systems. 
Co-existing with the multiprogrammed operating system of a large 
scale machine was a non-trivial difficulty in the implementation of 
NAPSS. 

NAPSS-like systems do not seem to be available for the current 
generation of minicomputers. This may in part be due to the fact 
that it was difficuit to fit NAPSS into a system as large as a 
CDC6500. What efforts might be undertaken at this time? 

23 



4. APPROACHES. One can imagine using a minicomputer as a program 
generator (PG). One would present to the minicomputer a description 
of a problem in a suitable problem-description-language (PDL) 
which presumably has the appealing aspects of NAPSS-like languages. 
The PDL interpreter checks the description for consistency and a 
limited notion of "correctness". After a dialogue with the 
problem originator, it generates a series of calls on a mathematical 
software library, and transmits this collection to a large system, 
as a remotely-submitted batch job. 

The program generator approach is attractive, but it probably is 
the least effective use of a dedicated minicomputer system. It is 
an attractive application for a minicomputer-based timesharing 
system, but it may be equally cost-effective on a large-scale system. 

The second approach we will discuss assumes that, if it is almost 
cost-effective to perform both phases of problem solving on a mini- 
computer today, it will be more so within three to five years. The 
second approach involves dedicating a minicomputer to the support of 
a NAPSS-like system. Instead of having to co-exist with a general 
purpose multiprogram operating system, we can assume the operating 
system will be designed to meet the needs of its one and only user. 
Thus it does not suffer the depletion of resources which seems to 
characterize multiprogram resource sharing systems, it does not have 
to contend with protection problems either for security or as protection 
against unreliable concurrent users. Nor does it need expend much time 
in detailed cost accounting for resource utilization. 

Of course we realize that some protection services are useful as 
debugging and program checkout tools, and that some accounting 
information can be used to identify performance bottlenecks. However, 
instead of supporting services for the primary benefit of the sytem 
(e.g. protection, accounting), we would prefer supporting services 
of direct benefit to the user (e.g. debugging, performance measurements). 

5. CURRENT LIMITATIONS. With a few exceptions, most current mini- 
computers are restricted to directly addressing 64KB (8 bit bytes). 
In a mathematical software context, this would provide for a maximum 
of 16K floating point 32 bit words, or a square matrix of 126 by 126. 
In most systems this would exhaust all of memory. In some, another 
32KW (16 bits) would be available for program storage. In a few systems, 
one could have perhaps1 MB of physical memory, while still being 
restricted to the small address space described above. The report by 
Poppendieck and Desautels [6] describes the range of memories and 
restrictions available on current minicomputers, and their implications. 
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As mentioned previously, floating point arithmetic of suitable 
speed and precision is now available on many minicomputers. The 
availability of sufficient mass storage (e.g. disk) used to be a 
problem with minicomputers. Fortunately relatively inexpensive 
drives (80 MB) are available for under $20,000. 

One additional consequence of operating a dedicated system is the 
possibility of exploiting the microprogramming option which is 
available on some minicomputers. It is very difficult to support 
user microprogramming on a shared system, and it is simpler on a 
dedicated system. In some cases this can yield a performance 
increase of a factor of 2-5 or better. 

6, A POSSIBLE APPROACH. The mathematical software written for large 
computers might be adapted for use on the current generation of 
minicomputers. Much of this software is written in Fortran, and 
adaption might appear to be straightforward. However since most current 
minicomputers have difficulty handling even 16K floating point operands, 
much of the code would have to be rewritten to implement in software 
the virtual memory hardware support for large direct addressing found 
on some large computers. Even after an expensive adaption process, 
performance would leave much to be desired. 

Recognizing that some minicomputers now support direct addressing 
spaces comparable to current large computers, and assuming that 
technological forecasts indicating the cost of logic and memory decreasing 
by a factor of two every two to three years, we would propose to initiate 
development of a NAPSS-like system on a dedicated minicomputer with 
a direct addressing capability of at least 1 MB (20 bits). This is 
equivalent to a floating point word capacity of 256 KW (32 bit words) 
which exceeds the direct addressing capability of large systems such 
as the CDC 6000 series and UNIVAC 1100 series (restricted to 65KW 
each). By the time efforts to convert large machine code into 
16-bit minicomputers might begin to bear fruit, minicomputer technology 
is likely to have advanced to the point where large memories and 
large direct addresses would have invalidated most of the conversion 
effort. The recent interview on the design of the PDP-11 is 
illuminating in this respect [lo]. 

One can argue that the benefits of improved technology apply to 
large and small systems equally, yet it appears to be the case that 
the smaller systems increase in capability while decreasing in price 
much more rapidly than the large systems. 

A very attractive development approach would involve beginning 
software development on a minicomputer which has the appearance 
from the programming viewpoint of having a 32 bit word. The Interdata 
7/32 has the logical characteristics of a 32 bit-word computer, but it 
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provides this at a low cost by using 16 bit internal data paths. 
Having developed software on this "slow" system, one can then upgrade 
into a faster system, the Interdata 8/32, which is upward compatible 
with the 7/32, The 8/32 provides 32 bit data paths and other 
enhancements such as an instruction cache, so that its performance 
is claimed to equal that of an IBM 370/158. 

A computer such as the 8/32 is attr;tctive in that it also 
supports a writeable-control store, with which one can write micro- 
code tuned to support the current application. This can provide 
performance increases and opportunities for monitoring arithmetic 
errors. 

Further performance increases can be obtained through the addition 
of outboard arithmetic units such as the one manufactured by Floating 
Point Systems [2]. In principle it is capable of a maximum of 12 
million floating point instructions per second, on 38 bit operands. 
The problem of course is how to keep it busy [5]. 

7. PRACTICAL CONSIDERATIONS, Developing software is an expensive 
activity, and it is not likely to decrease in cost. The prospects for 
transporting software ("software portability") with little effort are 
not too promising for mathematical software, because of the consequences 
of minute differences in arithmetic, as well as the usual difficulties. 

Since the cost of main storage continues to decrease, it would 
seem foolish to expend much software conversion effort to adaptation of 
quality mathematical software developed for large machines so that 
it can run on minicomputers with minute direct addressing capabilities, 

8. CONCLUSIONS AND RECOMMENDATIONS. Current minicomputers are in 
some instances as cost-effective for scientific computations as 
large scale systems. Within the next few years, minicomputers are 
likely to be much more cost-effective, provided one funds a way to 
minimize the cost of adapting quality mathematical software which has 
been developed for large scale systems, 

Such adaptationsshould be performed for the newer generation of 
minicomputers with larger direct addressing capabilities (1 MB or 
greater), so that conversion costs remain reasonable. 
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THE YUMA PROVING GROUND DISTRIBUTED COMPUTER RING NETWORK 

Edward Goldstein 
U. S. Army Test & Evaluation Command 

Directorate for Management Information Systems 
Aberdeen Proving Ground, Maryland 21005 

ABSTRACT. 

Most present day real-time data systems at test ranges have been implemented 
using large scale computers such as the UNIVAC 1108's at White Sands Missile 
Range. In selecting a new real-time system for Yuma Proving Ground (YPG), the 
US Army Test and Evaluation Command is applying a new approach - Think Small! 
With the increasing sophistication and capability of minicomputers rapidly 
approaching those of large scale computers, it is possible, by separating the 
various processing elements used in a real-time system and substituting inter- 
connected minicomputers, to do the same job for much less cost. This is the 
Distributed Computing System approach. 

Several distributed computer configurations now in existence are examined in 
this presentation as well as the YPG proposed system. Included are the Carnegie- 
Mellon Multi-Processor (C.mmp) System, the Bell Labs Distributed Network and 
the University of California at Irvine (LJCI) System. 

INTRODUCTION. 

The paper I am to deliver covers in part a subject on which one of the 
acknowledged experts is present. However it is not a treatise on the subject 
but an information brief concerning Yuma Proving Ground and how Yuma 
intends to implement a distributed computer network. This paper, originally 
a briefing prepared for the DOD Research & Engineering Directorate (DDRE), 
contrasts some of the known current distributed computer systems with the type 
which Yuma intends to install. We tried to show the practicality, desirability, 
and feasibility of a ring type distributed network for Yuma without getting too 
bogged down in technical details, since those briefed were management oriented 
rather than ADPE technically oriented. Nothwithstanding, these DDRE managers 
are at a policy making level influencing the entire scope of ADPE within the 
DOD. Prior to this briefing their ADPE orientation was towards large stand 
alone computers, which is diametrically opposed to the ring concept planned 
for YPC. This is the briefing paper substantially as it was presented. The 
purpose was to sell a concept and it succeeded in that objective. 
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At TECOM we have a diversity of weapon systems to be tested. Formost among 
these are the Army's big five developments. 

*Mechanized Infantry Combat Vehicle (MICV) 
*Advanced Attack Helicopter (AAH) 
*Utility Tactical Transport Aircraft System (UTTS) 
*Surface-to-Air Missile Development (SAM-D) 
*xMI Tank 

Both instrumentation and ADPE must be able to react to the testing requirements 
of these items as tie11 as all other Army materiel in a timely and economical 
manner. 

At YPG for example, these requirements are prompted by testing application 
ranging from ground vehicles, such as MICV & the XM1 Battle Tank, to Artillery 
such as the XM204 Howitzer; to Aircraft-Armament; and most recently the Global 
Positioning System, A Tri-Service Responsibility of the Air Force. 

Figure 1 depicts the Global Positioning System (GPS) concept. When complete, 
GPS will provide time and positioning data for any receiving unit at any location 
on earth. The initial Yuma testing will constist of: (1) A simulated or inverted 
range, & (2) Testing with up to nine satellites which will be within the reception 
area of YPG approximately four hours per day. 

During both the Aircraft Armament tests and the Global Positioning System 
tests, large amounts of data will be collected within short time frames. It 
is essential to do as much processing in real time as possible, in order to 
speed the analysis of the data collected and to prepare reports in the shortest 
possible time frame. 

Recognizing that a large increase in ADPE workload would result from these 
testing requirements, TECOM initiated action to review all ADPE at YPG. As a 
result several alternatives were identified which were then studied, in full 
recognition of the following dynamic technological thrusts which impact ADP 
today: 

1. Hardware costs are decreasing by a factor of 100 each ten years, with 
every indication of continuation for the next ten years, 

2. Software costs are decreasing by a factor of 10 each ten years, with 
every indication of continuation for the next ten years. 

3. Data communication costs are decreasing by a factor of 10 each ten 
years, with reasonable expectations of continuation for the next ten years. 

4. Personnel costs are essentially stable, after accounting for inflation. 
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The consequences are that overall - personnel costs are looming larger relative 
to all other costs, with hardware diminishing as a cost factor. 

But most present-day real time data systems have been implemented using 
large scale computer systems such as at White Sands Missile Range where large 
UNIVAC 1108's are used in the real time tracking of missiles. These systems 
effectively control input, output and processing of all data for real time 
systems. (Fig 2) As you are aware, the cost of.these large scale computers 
is always high, usually several millions of dollars or more. 

On the other hand the ever increasing sophistication and capabilities of 
minicomputers, are rapidly approaching those of large scale computers. This 
is accomplished by separating the various processing elements used in a real 
time system and substituting interconnected minicomputers for each, The result- 
ing multi-processor system, using a number of minicomputers, can do the same 
real time job as a large scale system and for much less cost. 

As a result, the thrust of our current thinking is more in terms of small 
minicomputers. (Fig 3) For this reason new practical and cost effective 
solutions for meeting the future ADPE requirements of YPG were considered along 
with the traditional approach. 

With the most recent availability of low-cost minicomputers a computer trend 
toward localized computing at the site of the user is developing in industry and 
in Government as well. For example, here in TECOM the computer has become an 
integral part of instrumentation, test chambers, and data acquisition and control 
systems, This requires that at least part of the computing facility be at the 
application site. The minicomputer has been ideally suited to such real-time 
applications. This leads us to a concept of integrating a number of mini- 
computers into a computing system. (Fig 4) 

In effect this is an information utility made up of a number of minis 
rather than one or two maxi-computers. This concept is known as a distrihuted 
computing system. The goal of distributed computing is an integrated hardware 
system which provides reliable service at low cost. 

There are several different kinds of distributed mini-computer networks 
in existence today - all of which are in various stages of development. Rep- 
resentative of these are: 

*The Carnegie-Mellon Multi-Mini Processor 
*The Bell Labs Spider Network 
*The University of California at Irvine Ring Network 

Figure 5 is a schematic of the ADPE contained in the Carnegie-Mellon Multi- 
Mini-Processor or C.mmp. This system will contain up to sixteen mini-processors, 
five of which are shown. These are connected through a switch to memory boxes. 
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The switch allows any processor to access any of the memory boxes. 

The processors are not permanently attached to a memory box, rather each 
time a processor wishes to access a particular memory a connection is established 
through the switch for that access, sixteen separate processor-memory connections 
will be possible simultaneously. 

Peripheral devices are connected to buses associated with each processor 
and gain access through these buses to the shared memory. Each processor can 
intercept each of the other processors at several priority levels and can start 
and stop other processors. This enables one processor to task another to 
perform an operation for a program running on the first processor, Thus user 
programs are not restricted to execute on any particular processor. 

Figure 6 illustrates the techniques used to keep the highest priority jobs 
in processing. If a new user program enters the queue and is a higher priority 
than the job in "A" then the priority will be compared with the priority of the job 
in processor "10". If the new job is a higher priority it will take the place of 
the job in processor "10" and that job will be returned to the waiting queue as 
the highest priority in the queue. 

An algorithm stored in the memory controls the matching of priority jobs and 
processors, and insures that those jobs with the highest priority are processed 
first. 

There are several benefits to the C.mmp - (1) by having multiple processor 
units, the failure of any one will not crash the total system. Removal of one 
processor from the system will affect the system so little that it may hardly be 
noticed. 

(2) Minicomputers are produced in large quantities at low cost, and as it 
turns out the C.mmp system costs less than one half of what a single machine of 
similar power would cost. 

(3) Interconnected minis allow user organizations to start at a level 
using only the number of minis needed and, as requirements and usage grows, 
expansion can be achieved by adding processors as required, This technique is 
much more cost effective than replacing a large processor. 

(4) In the C.mmp configuration, if required all the processors may 
cooperate to solve a single problem or each processor may be dedicated to a 
different user or any combination in between, 

The C.mmp is not a geographically distributed network. All processors are 
in the same room. It is however, an alternative to a large maxi-computer. 

Figure 7 shows a Bell Labs type Distributed Network. This network 
has a central control known as "Spider". All communication must first go to Spider 
for messages to be routed to the appropriate network member. This creates a 
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central decision point facilitating workload distribution and resource sharing. 
Depicted are different configuration sets consisting of three mini's each. (The Bell 
Lab system actually links eleven mini-computers of five different types.) Each 
machine connects to Spider through a terminal interface unit (TN). The basic 
idea for this system involves the transmission of data between minicomputer 
terminals in packets, or bursts, rather than a uniform stream. Each mini- 
computer terminal is associated with a buffer, Each buffer is large enough to 
hold at least one data packet. This method provides the time periods needed for 
making effective routine decisions by Spider which operates as a data switch. 

Spider is the central component of the system and switches data between the 
various minicomputers. Each of the minicomputer terminals sends out data bursts 
in response to encoded control signals generated by a Spider controlled interface 
technique. Data transmitted from a mini terminal is picked out by a multiplixer 
at intervals determined by the encoded interface control signals, 

In doing this, the multiplixer assembles the data into the proper packet 
format prior to sending it to Spider on one of the network transmission lines. 
Packets of data are transmitted by placing messages into an open time slot on a 
conveyor belt-like channel. Input messages are received similarly. 

The advantages of the Spider Network are the same as for the C.mmn. 
However, this system is distributed over a larger area, being specifically 
designed to support different laboratories conducting experiments and research. 

One potential shortcoming of the system is the switch communication computer, 
the Spider, thru which all traffic flows. Failure of this component causes a 
failure in the total network. 

Figure 8 depicts the University of California (WI) type system, which has a 
number of minis connected to a single transmission line in a ring configuration. 
Each mini interfaces with the line via a device called a ring interface, or RI. 
Each of the RI units is programmed to impart outgoing and incoming computer 
information. 

Each RI recognizes information on the line addressed to its associated mini 
and passes it on to that mini while rejecting information not so addressed. The 
transmission line is designed so that all information flows in one direction. 
Since all RI's continually reject or accept information from the line, they can 
spot available time slots in which outgoing information can be inserted without 
interfering with other data. 

Thus, control of data flow and destination is time distributed around the 
ring. If one or more of the minis or RI’5 breaks down, the rest of the system 
continues to function. 
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The RI's are equipped with self-monitoring circuits that detect any 
malfunctioning of normal operations. Since RI or mini failure could cause 
road blocking of the transmission line, the self-monitoring circuit acts as a 
circuit breaker to take the RI and its mini off the line if appropriate. 

The only store-and forward message switching technique required in the 
system is that between each mini and its RI. Besides greatly reducing trans- 
mission time, this simplifies the RI design, thus the RI's can be built for 
much less than any other type of communications processor - less than five 
hundred dollars. This further enhances cost effectiveness when the ring is 
expanded by hooking up an additional RI to the line and connecting it to a mini. 

Each RI contains a multi address code. When a message from another RI 
passes it.on the line, the destination code is compared to the stored addresses. 
If a match results, the message is accepted and the information transferred to 
the minicomputer. If the minicomputer cannot accept the message because it is 
occupied, the message is transmitted to the next appropriate computer in the 
ring. 

Figure 9 depicts the completed UC1 ring network including its associated 
peripherals, (i.e., printers, plotters, & disks). Low cost is achieved here in 
several ways. Each of the component computers of the network is relatively small 
and inexpensive. The system software is a modest programming effort, existing 
other software can be integrated readily, and finally standardized interfaces 
to the communication ring are available at low cost as previously indicated. 

The same benefits apply here as in the previous networks. However it is 
even more reliable because no central control computer is required as in the 
Bell Lab's system. Also the ring concept has the advantage of allowing for 
greater geographical dispersion than the C.mmp. 

Having examined 3 examples of minicomputer distributed networks, let us 
turn now to TECOM. 

Profiting from the R&D efforts of others, TECdM at Yuma Proving Ground 
is moving into this new technology with the expansion of the real-time data 
acquisition network on the Aircraft Armament Range. This will be the first 
non-laboratory application of the ring concept. The ADPE (some now in operation) 
to be included in this distributed network will range from programmable 
calculators, to minicomputers, to a large-scale central real-time and batch 
processing system. 

Shown schematically in Figure 10 is the existing instrumentation/ADPE for 
the Aircraft Armament Range for Puma's Cibola Range. 

Two computers (an EMR 6130 and an IBM 7044/7094 Direct Coupled System) 
comprise the main computer site. A real-time cinethedolite data system (CINE), 
located at three separate sites tracks a target and transmits position data to 
the main computer site in real-time. A precision aircraft tracking system(PATS), 

34 



which is a Laser Tracker, also tracks and transmits position data to the 
central site. The data flow illustrated occurs five times/set. Total 
computation time for all processors in the central computer takes under one 
hundred eighty milliseconds. 

Figure 11 is a schematic of how the range will look with the ADPE 
instrumentation system now in procurement. The two additional laser trackers 
(PATS 2 & 3) each have a minicomputer for control, data logging, and formatting. 
The position locating system at site 7 (PLS) also contains a minicomputer. All 
data from these data collection systems will be transmitted to the main computer 
site for real-time data reduction with output then being sent back to the test 
site for analysis and control by the test officer. The output displays (DID) 
also contain minicomputers. 

In addition to the instrumentation and ADPE currently in procurement; the 
central real-time computers at YPG are also expected to be replaced. The re- 
placement will take the form as shown in Figure 12 and represents the new 
technology in software and hardware which we referred to earlier as a distributed 
computer network. The net will incorporate key minicomputers at the test sites 
for data reduction and processing. In this net execution of programs both real- 
time and batch, will automatically be performed on the optimum system available. 

Benefits which are expected to accrue from the YPG distributed computing 
network are: a higher level of performance; increased reliability and availability 
because of the redundant nature of the network; and since the net is fundamentally 
a complex of minicomputers - expandability. In the case of YPG, the capital 
investment for the basic mini-ring network is much less than it would be for a 
new stand alone-system. That alone would make it worthwhile. Additionally, by 
taking advantage of some minis currently at YPG the capital cost of this network 
will be even less, while operating expense for this system will be approximately 
seventy-eight thousand dollars per year less than the current systems. 

Since the new quipment will cost three hundred thirty thousand dollars 
it will pay for itself in a little over four years, primarily from the savings 
in maintenance cost. 

In conclusion, a real challenge we face at TECOM is the increasing 
sophistication of Doll materiel and the demand this places on testing technology. 
The YPG distributed computer system is but one example of what we are doing in 
TECOM to enhance our testing capability in a cost effective manner. 
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LINEARIZED LEAST SQUARES 

Larry M. Sturdivan and John W. Jameson 
Biomedical Laboratory 

Edgewood Arsenal 
Aberdeen Proving Ground, Maryland 21010 

ABSTRACT. The paper discusses iterative methods for fitting linear- 
izable functions by weighted least squares. Starting values of the 
coefficients are derived from data. The method is adaptable for some desk 
top programmable calculators. The effect of various weighting schemes on 
the residual sum of squares is discussed. Two methods are presented for 
making the residuals in the dependent variable sum to zero. 

1. INTRODUCTION. Since the early 19th century the method of 
least squares has been the most widely used mathematical tool for determining 
the values of constant parameters in linear functions (linear with respect to 
the parameters to be determined). The general, nonlinear least squares 
problem, by contrast , remains a largely unsolved problem. There is, 
however, a class of nonlinear functions, which some authors call "intrinsically 
linear", for which good estimates of the least square values of the fitted 
parameters may be easily and reliably obtained. 

2. STATEMENT OF PROBLEM. Let us assume that we have a dependent 
variable y which may be expressed as an explicit function of a set of 
independent variables and constant parameters whose values are to be 
estimated. 

y=F(x iy bj) ;i=l, . * * , n ; j = 1, . . . m 0) 
'y = dependent variable 

Xi= set of n indep. variables 

bj= set of m constant parameters 

The following algorithm may be used to determine the bj if F may 
be made linear with respect to the bj by suitable mathematical transformation, 
i.e. if there is some function h(y) such that 

h(y) = ; bj gj (Xi); i = 1, . . . , n 
j=l 

(2) 

and dh(y)/dy is defined 

The functions F and g. may involve known constants which are not members 
of be; e.g. the fourt 

$ 
il of the following examples of intrinsically linear 

func ions: 
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y = In (bx) 

y = arctan (bx) 

y = 'I*" x _ b j 
i=l 1 

y= Ko 
K1 f "Xp (biXi) Ko, K, Known 

Of course conventional least squares could be used directly on equation 2. 
The result, however, is the minimization of squared errors in h, not y. 

3. THE ALGORITHM. We designate the difference between the actual 
and predicted value of y for the kth data point as: 

AYk = Yk - F (bj, Xik) k = 1, . . . . P 
and 

Expanding h(y - 4y) in a Taylor series with a remainder term, we get 

h(y - AY> = h(y) - Ayh’(y) + Ay2 h"(y) + m.. + l-Ay)qh(q)(y) 
2! q! 

where h(O) (y) is the qth derivative of h(y) with respect to y, evaluated 
at 7, and where i is in the interval between y and y + Ay. Let q = 1, then 

Ah -= h'(y) 
AY 

Now we want to minimize 

E (AY,)2 = ,I, (Ahk12 
k=l 

[h’ (7,) 1’ 

(3) 

This is equivalent to weighted least squares on equation 2 with weights 

Uk2 = [l/h'(jk)12; k = 1, ,.., p 

Initially we do not know the value of the Ayk, much less the position 
of yk in the interval, 
‘k. 

so we use the data points yk to approximate the 
We may then use the Ayk from the first pass to calculate improved 

weights and make a second, etc., continuing the iteration until stability 
is reached. Several methods of obtaining improved estimates Of the uk of 
equation 4 have been tried. Some authors have used regression line values 
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for 7, in equation 4; in effect using the opposite end of the interval 
from the data point. This method improves the fit (decreases the sum 
of deviations in equation 3) most of the time, but if j is closer to 
the data point than the regression value the fit thus o tained Is is actually 
worse than the results of the first iteration, Other methods tried 
include: 

a) The first q terms of the Taylor expansion about the data values. 

b) The first q terms of the Taylor expansion about the regression 
values. 

c) Uk2 = ( 
h' ;y,)) (hi (y; + ayk) ) '~;~;;;;;,;~~; ;;,$$ 

d) uk2 = (Ayk/Ahk)2 (A’s from previous iteration) 

Methods a and b have the serious drawback of requiring the first q 
derivatives of h, almost always an unpleasant task whatever the form 
of h. It is wasted labor in most cases, as well, for method d usually 
gives results as good as, or better than any other. In fact, intuitively 
one might think that method d would lead to convergence on "the" least 
squares answer. However, we must remember that we are determining m weights 
and n b's from just m data points, an underdetermined system. Thus as long 
as the weights are determined from the data, as they must be, one cannot 
guarantee convergence on the global minimum. Indeed, we have observed 
intermediate iterations in which the sum of squared deviations in y was 
slightly smaller than the "converged" value. 

Unlike the linear least squares case, the above algorithm does not 
produce a zero sum of deviations in y: 

i.e. CAy = CuAh # o 

Although, cu'nh = o 

If one has an overriding reason for desiring a zero sum of deviations 
in y, it may be obtained by minimizing 

Cu(dh)* = ZAyAh (5) 

wh ich, of course does not minimize the sum of squared deviations in y. 
In many cases the increase in squared deviations is tolerably 
minimization of equation 5 (i.e. using weights u rather than u 3 

mall with 
) if zero 

sum of deviations is desired. A second method of obtaining a zero sum 
of deviations is to force the fitted line to pass through the weighted 
mean h*, xi*. i.e. fit the model 
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m-l 
h - h” = C b- ge (xi - xi*) 

j=l J J 
i = 1, . . . . n 

where h* = cub 
ni- 

and A.* = cux. 
1 1 

cu 

using weights I.?. The summation running to m-l indicates the absence 
of an intercept; i.e. one of the b's, say bf, for which gf = 1. 
Both methods of obtaining CAy = o work best when the u's are calculated 
by method (d) above. 

4. AN APPLICATION. An example of an intrinsically linear function 
is the Logistic (probability distribution) function 

y= 1 
1 f a/xbl 

The linearized form is 
2 

h(y) = ln(y/l-y) = lna f b,ln x = C b g*(x) 
i=l i ' 

where g, = lnx 

92 = 1 

b2 = lna 

Also 
1 1 

u = h'(y) = jqt-7) 

The following table shows how much improvement in the root mean square 
error was gained by using the iterative algorithm on the Logistic function 
over an unweighted fit. As expected, the fit is perfect when the data all 
lie right on the fitted line, whether the least square fit is weighted or 
not. As the data get more scattered (i.e. with a correlation coefficient 
significantly less than 1.00) the reduction in root mean square error is 
marked (Case III). 

Correl. Root Mean Sq. Error % 
Case Coeff. Unweighted Weighted Improvement 

I 1.00 
II .98 0” 0496 

0 0 
0.0488 

III .94 0:0419 0.0368 1; 
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NONLINEAR SPLINE REGRESSION ON MINI-COMPUTERS 

Philip W. Smith* 

Appendix 

Stanley Hrncir and Philip W. Smith* 

Department of Mathematics 
Texas A&M University 

College Station, Texas 

1. Introduction. -- In this paper we will present our experiences in 
artcq3ting to solve certain nonlinear regression problems on a mini-computer. 
More specifically, we used spline curves of a specified order and treated 
the knots as nonlinear parameters, 

Section 2 contains the relevant notation and theory. In seqtion 3 we 
make some final remarks. At the end is an appendix with a listing of the 
programs and an abbreviated description of their use with examples. The 
reader who is unfamiliar withsplines should first glance through the examples 
in the appendix. 

7 
C .  Description of Numerical Solution. Throughout this section and the 

IlPX f ihe following notation will be used. Let k be a positive integer and 
& be a knot vector satisfying 

t: =a=t = 1 
=..,=t .qt 

k k+l 5 I 1 * 2 tn < tn+l = . " . = tn+k = b 

WhC!l:C! 
t.i+k > t . Given a k and a knot vector 

H-splines N j . 9 ," by [ll , 

g one forms the normali:r.e?rl 

k-l 
Nj,k(&/d = ctj+k - tj>[tj,...,tjlkl('-')+ 1 

where [t 
1 

,,,T3tj+k] denotes the k-th divided difference operator. A 

spline of order k with knot vector k is any function of the form 

*This author supported by the U.S. Army Research Office under Grant Number 
DAHC 04-75-G-0186. 

Note: 
k-l 

(s--v)+ = (s-v)k-l if s > v and is zero otherwise. 
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Given data {(xi,yi)]~=l one can attempt to find &* and &* so that 

min 'r 
:,; i=l 

M&&) - Y,lZ = k Is(g*,q*,x,) - Yi12 1 
i=l 

It is in general Jmpossible to find &* and hence b*; however, given a 
knot vector f and linear parameters $ one can attempt to decrease the 
error sum of squares by some sort of descent algorithm. 

The method of descent which we use is essentially that of deRoor and 
Rir.e [2]. 

Alg:orithlTl: Given $ and j = k + 1 

step 1: Find 4 which minimizes 

Step 2: With & fixed, move 
9 

between tjcl and tj+3. so as to de- 

crease the error sum of squares, Call this new knot sequence $. 

Step 3: If j < n set j = j + 1, otherwise set j = k f 1. * 

step 4: Go to 1. 

This algorithm is described in more detail ;in the appendix, We remark 
that Step 1 consists of solving a linear system and that in Step 2 we use 
a quadratic interpolation to obtain an approximation to the minimum. 

We originally had a Fortraa version of the above algorithm and "trans- 
cribed" this program into Basic when implementing it on an HP 9830A. Same 
of the characteristics of the HP 9830A are detailed in the appendix. Oper- 
ating time on the HP 9830A was quite long. A typical problem with 20 data 
points and k = 4 with 2 fnterior knots might easily take thirty minutes. 

We discovered that most of the time was being spent in evaluating the 
error sum of squares, 

This term must be evaluated quite often during Step 2 of the algorithm. 
Additional time was being spent filling out the matrix to solve for the 
linear parameters. The two routines which were being used to evaluate the 
spline or fill out the matrfx had the following form: 
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Given 5 - <T't: i+1: 

620 

630 

640 

650 

660 

670 

680 

690 

700 

710 

720 

730 

This 

N[l,l] = 1 

FOR S =lToK-1 

P[S] = T[l+S] - T 
MIS] = T - T[Ifl-S] 

N[l,S+l] - 0 
FOR R = 1 TO S 

29 = N[R,S]/(P[R] + M[S+l-R] 
K[R,S+l] = N[R,S+l] + P[R,j * 29 

N[R+tl,S+l] = M[S+l-R] * Z9 
NEXT R 
NEXT S 
RETURN 

computes simultaneously the values of all the non-zero normalized B- * 
splines at the point T, for the matrix computations. 

880 FOR R = 1 TO K 

890 P[Rl = T[I+R] - T 

900 M[R] = T - T[I-K+R] 

910 DIR,11 = A[I-K+R] 

920 NEXT R 

930 FOR S = 1 TO K - 1 

940 FOR R = S+lTOK 

950 D[R,S+l] = (M[R] * D[R,S] + P[R-S] * DW-LSI)/(NRI + P[R-SlI 
960 NEXT R 

970 NEXT S 
980 RETLJti 

This computes s&&T) for the error sum of squares. 

The parameter K is set at the first of the program and determines 
the order of the spline, Since K does not change throughout the program 
we decided to rewrite these routines in such a way that no loops were 

0 
55 



j nvo i ved , This simple expediant reduced the running time by a factor of 
twr, or. thrt?c:. We list below the corresponding changes in the k = 2 
(Tinpar spl.lnc) program and the k - 4 (cubic spline) program. Given 

1892 PI =I T[I-+l] - T 
1894 Ml 2 T -' T[I] 
1896 Z9 = l/(Pl + Ml) 

1897 Sl = Pl * 29 
1898 S2 = Ml * 29 

This cc?my~tes simultaneously the values of all the ponzero normalized B- 
splines at the point T and stores them in Sl and S2. 

2788 Pl = T[I+l] - T 

2792 M2 = 'IT - T(I] 
2802 CI = (M2 * A[I] + Pl * A[Icl])/(M2 f Pl) 

This cmputes s(&,&,T) for the error sum of squares, For k = 4 we have 
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Sl = Pl * z9 

CL! = M3 * z9 

29 = $%/(I?2 + M2) 

52 = C% + P2 * 29 

c’! 3 M2 * z9 

209 = S3/(P3 -t Ml) 
s3 = c3 f P3 * z9 

* 
54 = Ml * z9 

This computes simultaneously the values of all the nonzero normalized B- 
splines at the point T and store6 them in Sl through S4. 

2490 Pl = T[I+l] y T 

2500 

2505 
2510 
2520 
2530 

2s40 
25.50 
2560 

cl i" (M:! * A[?s-21 + Pl * A[I-3])/(M2 + Pl) 
~2 = (M3*A[I-l] + P2 * A[I-2])/(M3 + P2) 

C3 = (M4 fi A[I] + P3 * A[I-l])/ (M4 f P3) 
2562 Cl = .@3 * c2 f Pl * Cl)/(M3 + Pl) 
2564 ~7, = (FI4 * 63 + P2 * C2)/(M4 I- P2) 
2566 ci -- (pi4 * C2 -f- Pl * Cl)/(MC + Pl) 
2570 RETURN 

This CQmputc~ s($,&,T) for the error sum of squares, 

7.t is easi:y seen that as 
K2 

K increases the length of these new routines 
increases by a factor of , 

3 CONrLuDING R~S, ,A---.-rt+.- When writing programs on mini-computers one 
has to be extremely careful not to write the programs in full generality, 
at least for this generation7 mini-computers, due to their slow execution 
t he I) For our particular problem we found it necessary to write a special 
program for each order. Initially this takes more time, but In the long 
run much tim is saved, 
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concCrnin~~ our specific problem we found that most of the computer time 
w;I:; spent in the spline evaluation routine. This occurred quite often 
dr~rirq; the computation of the error stun of squares. Noti, originally the 
sjl)li.nc: evaluation was accomplished in two nested do-loops where the outer 
par;~mcter was K - 1 where K is the order of the spline, Since in our 
applications K was fixed throughout the entire program, it made sense to 
rewrite the program for a fixed K, thus eliminating the loops and lineariz- 
ing the execution. The details are in Section 2. 
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I w -achine Interface 

A, . The program presented in this paper was written in the EASIC 
computer language for the Hewlett Packard Model 9830A digital com- 
puter q The BASIC language is very similar to FORTRAN. 

1. Xn using the HR9830, the user 1. ‘s provided with a man/macIline 
interface capabIlity, With this interface capability, the pro-~ 
gram pauses at various points in its execution co allow the user 
to exercLse differen”r: optJ.ons .ruch as pl.ot:rp~~g the spline, i?lo2.-- 
ting the data points, cdxulating the derivative., etc,, 

cassette magnetic tapes, Progrlms as weli as data poixlts can he 
maintained on these tapes. Having this peripheral capability is 
a tremendous asset especiillly when dealing with large programs 
nnd/ar large volumes of data. 

Currently, there are three scperate versions of the Spline 
1, oi,r:rm being maintained on three seperat@ files. The user can 

~:i~!.t,ct from any of these depending on which degree Spline pro-- 
~:r;uri he wi3hes to run (Linear, Quadratic, or Cubic] ,I 

A. lllrnt. Datz,. The u3ex ia provi.ded the wprioa of h.putr,irrg dara 
through ehe 'keybuard ox having thr, program read pr~ious~y sto%red 
data. from a casserte tapem With eAther aptian, the user musr pro- u-uyI1 
v:Rdc the program with two fil.e lmTlhe.rs, I,f the data is being input 
through the keyboard p the program will bui1.d two new fXles on the 
CaF~ette ta.pA. 

1 I* After the program is loaded and xunn?x~g, the program wXl 
request the u5er to input the number of delta points, The request 
will be displayed on the display panel. and the user simply types 
in the number and then hits the execute switch, 
2. The next program request is for the Iiz~8nli by whick ti:c dara 
Is ta be input --either keyboard or cassel”tc ttlp”e. The jlrogrlllri 
Will. diE@d.)- the mesnage: %'ANT TO LOAD DATE FRCiM TAI'~~'", rT( .?, ,.) * !‘k. 
u3erts response is either "Y" or "N" for yes or no, If no, the 
progrilm wiu expect the dam to he loadrxl through the, keyboard, 
and if yes, from files on the cassette tape. 
3, Wit:.11 either option in 2 above, the prO~~r&Tl will. XIC!Xt l+e$UPSt 
two tape file numbers--where the data 2s to be found or where to 
store the data, The first number gives the file location where 
tbs variable X is (will be) stored and the second number 
gives the file location where the dependent variable Y .is 
(will be) stored, - _--. _ 
4. The next program request will be displayed aa: “IWMDER OF 
EQUATXONS? “a The value of this variable (called N) depends on 
the number of internal knots the user proposes to use in his 
xm ~19~3 the order of the Spline (degree f I> he is using. POT 
exampls .a if the UEW is runalng the Cubic Spline Program with I.i 
internal knots, then the value of N would be 14. 
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5. The next program request is for input of the knots. All knows 
are input in order from 1 through N f K, where K is the Spllne 
order. The program requires that K knots be stacked at each end 
of the interval over which the Spline is being fit, 

B. As soon as the knots have all been input, the program im?cdiately 
calls subroutine EQUATE to find the unique Spline function that mini- 
mizes the error or difference between the input data and the Spline 
curve calculated for the knot sequence as initialized. The progrem 
next calls a subroutine to calculate the error and this error value 
is printed when returned to the main routine. At this poir,t, th& ;)r'u- 
gram pauses for 3 seconds to allow the user to halt the program if 
he wishes to branch to some special subroutine. If the user fails to 
halt the program at this point* control is given to the knot moving 
routine which starts the optimization process of moving knots to re- 
duce the error. 
C. The program will remain in the knot moving routine until the user 
halts the program. The knot moving routine will pause periodically 
to allow the user to branch to another subroutine if he wishes. This 
pause will occur at the end of each cycle through the knot moving rou- 
tine, i.e,, after all interior knots have been considered as candidstcs 
for moving. 
D, Program Limitations. The program is currently set up to handle a 
maximum of 50 data points and a max value of 30 for N ('number of 
equations as described in II.A.4.). This restriction is a program 
limitation where array lengths are currently set at 50 and 30 respec- 
tively. By increasing the dimension of certain arrays, the user can 
increase the max number of data points and value of N--machine limit 
for dimension size is 256. However, the program run time on this 
machine, for large values of N and large data sets is tremendous, 
The program assumes the values stored in the independent variable 
array X and the knot sequence T are in increasing order, 

III. Subroutine Descriptions, 

A. EQUATE. -- For all three versions of the Spline progralr,, the :xb-- 
routine EQUATE can be found starting at instruction number 550 in t;),c 
program listings, The structure for the routine was taken from the 
technical report by C. deBoor, [3]. 

1. In order to decrease the program run time, a number of 
changes were made to the subroutine as presented by deBoor (page 
38 of 131). The major changes include the following: 

a. The number of DO loops was reduced. 
b. Cholesky's decomposition method was added to solve the 
system of equations, 
C. Linear arrsys are used to store the diagonal elements of 
the band matrix instead of two dimensional arrays as done by 
deBoor, 
d. Since the matrix being generated is symmetric, only the 
main and upper diagonals are generated and stored. 
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2. For all three versions of the program, the main diagonal and 
first off-diagonal vector of the coefficient matrix are stored in 
arrays C and P respectively, The constant vector is stored 
in array B for the system, The second off-diagonal vector is 
stored in M for the quadratic and Cubic versions and the third 
off-diagonal vector is stored in ;array Q for the Cubic, The 
system of equations in matrix notation has the following form: 
(for Quadratic only) 

Cl p1 M1 
/> 

p1 C2 p2 M2 

5 P2, C3,,,Pt M3 

A\ \ 
\‘\’ ’ \, 

‘1, \ 
\ \‘\ ,\ \ 

a. ‘i 
\ 

“, 
\ : 

I’,Mrne2 

or simply, Ax = B, 
Since the matrix A is real, symmetric and positive definite, 
then it is possible to factor A as LLT where L is a real 
lower-triangular matrix, Then Ax = B becomes LLTX = B. 
Letting y = LTx, then we can solve for y in Ly = B by for- 
ward substitution and finally we can solve for x in LTx = y 
by back substitution. This scheme is known as Cholesky’s Decom- 
position method and is programmed directly into the EQUATE sub-- 
routine. 

B. Plotting Routines. The plotting routines are seperate subrou- 
tines and are not called by the main program or any other routine, 
Powever, they do require that the spline coefficients be generated 
before being called. Also, before they can be used, the plotter 
must be brought on-line and properly adjusted, 

I, Spline Graph, This routine provides the user with a graph 
of the spline function based on the spline coefficients that 
are currently in memory. The user will be asked to specify the 
scaling to use for the graph and step size (distance between 
calculated points-- the smaller the step size the smoother the 
graph) e 
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a. The first program request reads; "4 SCALE VALUES?". The 
user inputs 4 values: First two are the limits on the x-axis 
of the graph and the second two are the limits on the y-axis 
of the graph, For example, if we know that our input data for 
the x-axis spans values from 0 to 100 and we expect our spline 
function to not vary outside the limits of -10 to -t 10, we 
might input the following values: 0, 100, -10, 10. 
b. The second program request reads: "2 VALUES X-CROSS AND 
XTIC?". The user inputs the point he wants the x-axis to 
cross the y-axis and the spacing for the Tic marks on the 
x-axis 0 An input, for the example given above, might be: 
0, 10. 
c. The next program request reads: "2 VALUES FOR Y-CROSS 
AND YTIC?". The user inputs the point he wants the y-axis 
to cross the x-axis and the spacing of the Tic marks on the 
y-axis l For the example given above, an input might be: 
0, 1. With the example inputs given in a, b, and c above, 
the program would sketch the x and y axis as follows: 

d. After having the axis plotted, the program will next ask 
for the step size (Quadratic and Cubic version only). The 
display simply reads: "STEP 4 ?". If the user requires a 
smooth curve, the step size should be small compared to the 
overall length of the curve. Usually 100 to 200 points pro- 
vides a very smooth graph, For the example given above, a 
step size of one would provide 100 graph points of the spline 
function connxcd by straight lines which should provide 
the appearance of a fairly smooth curve, For the linear spline 
Pwv~ 9 a step size is not required because the program sim- 
ply joins the knats with straight lines, 
e. After the spline graph is completed, the program will next 
automatically sketch in the locations of all interior knots, 

2, Data Point Plot, To plot the data points is an option that 
is usually exercised after the Spline Graph has been completed. 
This plot provides an "overlay" of where the input data lie with 
respect to the Spline graph, The routine simply steps through 
each data poPnt and plots a small “x" at the coordinates of the 
pofnt. 
3. Error.Plat. This routine provides a graphical representation 
of the error at each data point, The error is the difference be- 
tween the input data point value and Spline Function value for 
the same point. The routine does its own scaling based on input 
data and on the square root of the sum of squares of the error 
taken over all data points. Tic marks are provided for each axis 
and the value of each is printed on the printer. 
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C. Knot Moving Routine. Once the Main routine transfers control 
to the knot moving rozine, this routinz will stay in an endless 
loop constantly trying to reduce the error. The only way the pro- 
gram will stop is by operator intervention. The program allows 
such intervention at the end of each cycle through the knot sequence, 
i.e., after all knots have been considered as candidates for moving. 
At the end of each cycle, the program pauses for three seconds dis- 
playing the message "PLOT". If the user fails to stop the program 
at this point, the routine branches to the beginning and starts the 
cycle all over again in moving knots. 

1, Logic of Knut Moving Routine. This routine considers each 
knot, in order, as a possible candidate for moving, The routine 
will not change the position of a knot unless the new position -- 
decreases the overall sum of squares of the errors. 

a. The routine starts at t:le current position of the 
knot and steps in the direction of decreasing error. The 
step size El is determined by the variable H8 which is 
set to 128 by default {user can adjust this value if he 
wishes--set in instruction 120 of all versions of the pro- 
gram). El is initially set to l/H8 of the distance between 
candidate knot X5 and adjacent knot. Call the interval Z. 
b. The candidate knot's new position, X4, is determined by 

,X4 = X5 + El. El can be positive or negative depending on 
which interval-- left or right of current knot--is considered. 
c. If position X4 yields an improved error value over X5, 
then El is doubled and a third candidate position X3 is 
examined (X3 = X4 + El). 
d. If position X3 gives a smaller error value, we then con- 
tinue stepping through the interval Z toward the adjacent 
knot until we either step outside 2 or until a candidate 
position X3 produces an error greater than the error at 
position X4. If this happens, graphically, we have the 
following condition: 

i lL As' \ 
A ; 

Error A31 

'\\,, 
I<*' 

/d 

4 i. .."_ - -__ 
x5 xh x3 Positio 

We know that WC are in the v.icinity of a minimum. EC! can 
approximate the position of that minimum by simply fitting 
a quadratic through the points ()15,A5), (X4,A4), (X3,A3) 
and solving for the minimum. 
e. After having found a new location for a knot, we call 
EQUATE, calculate the new sum of squares for the errors, 
and loop on next knot. 

D., Derivative Routine. This routine calculates and prints the 
zeroth through the second derivative of the Spline Function for 60 
equally spaced points along the x-axis for the entire span of data. 
The value 60 is set by default in the program and the user may 
change the value if he wishes (instruction 9050 of all versions of 
the program). This routine is based onthe formulae in [l]. 
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IV, Examples of Output from the Program. Output from two seperare runs _.- 
are presented. 

A. The first run uses the Quadratic version of the Spline program. 
Twenty data points are used and two internal knots. The spline was 
graphed before any knots were moved and again after three cycles 
through the knot moving routine. The error plot routine was also 
run after the knots were -moved. Figure 1 shows output to the printer, 

1, When the Quadratic version of the program was executed, the 
first two messages printed were: 

"QUADRATIC SPLINE PROGRAM" 
"K EQUALS 3" . 

2. The program next requested the number of data points, The 
number 20 was input and the program printed: 

"L9 EQUALS 20". 
(I,9 is a program variable used for storing data point count). 
3 . . The data was loaded via cassette tape and printed. 
4. The next request was for the number of equations; the number 
5 was input and "N = 5" was printed. 
5. The program next requested the input of knots and each was 
printed by the program when input. 
6. After all knots were input, the program calculated the in-i.-- 
tial sum of squares of the error and printed the message: "'SUM 
OF SQUARES = 10.24179658". At this point, the program was 
halted and control transferred to the Spline Graph Routine. The 
first graph (labeled Plot 1 in fig. 2.a) was accomplished. The 
Data Point Plot was also accomplished at this point. 
7. Control was then given to the knot moving routine. As each 
knot was moved, the new location'and the new sum of squares of 
the error were printed. As can be seen in figure 1., the two 
internal knots were moved from 2.1 and 7.0, as input, to 
3.213337131 and 6.893706417 with a 10 fold reduction in the error. 
Three cycles through the knot moving routine were requfred to 
accomplish this reduction. 
8, The program was halted at this point and control transferred 
to the Spline Graph routine again. The new Spline Graph {Plot 
2 of fig. 2.a) was accomplished and the results show a much bet*- 
ter fit to the input data. 
9. After the Spline Graph was completed, an error plot was done 
(fig. 2.b). The scaling was done automatically and the message: 

"XTIC = 0.855 YTIC = 0.458175936" provides the user 
with the value of the X and Y tic marks. 

Pi , The second example used the same data set but was run using chr! 
Linear Spline program and six internal knots. 

1. The output from the printer is shown in figure 3 and the 
plotted output in figure 4. 
2. The program was again allowed to cycle three times througll 
the knot moving sequence. The plots were made after the third 
cycle. 

c. Figure 5 provides an example of output for the derivative rou-* 
tine. The routine calculates and prints the zeroth, first, and 
second derivative for twenty equally*spaced points along the Quad- 
ratic Spline curve generated for example 1 above. I 
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0.4-5 
Q*9 
1 l 35 
1.8 
2.25 
2.7 
3115 
3.6 
4.05 

t:;5 
5.4 
5.85 
6.3 
6.75 
7.2 
7,65 
8,1 
8.55 
9 

FOR EXAMPLE 1 

0.532832779 
1 l 135824019 

1.674336624 
I*850310499 
1.653405543 
1.004342719 

-0.021648662 
-1.23905724.1 
-2.385288895 
-3.176972882 
-3.377363166 
-2.859228 04 
-1.64757377 

0.069777687 
1.968942823 
3.650872173. 
4.724967051 
4.897943545 
4.04801103 
2.266651669 

2 l 705905’7 t-10 5.776486574 
7.023652237 3a765599501 

3,026696625 ?,836770835 
6.964153151 1.763237007 

3.243337154 1.055100397 
6293706417 0.951943319 
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Figure 2a: Example 1 SPLINjZ PLOT 1, SPLINT PLOT 2, and DATA POINT PLOT 

e 2b: BmOB PLOT FOR DATA POINT VS SPLINE 2 VALUE 

.XTIC= 0.855 
YTIC= 0.109083874 
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LINEAR :;IJLIN13 PROGRAM 
K EQUALS 2 
Lg EQUALS 20 

N= 8 

1 
2 
:s 
4 

z 
7 
8 
9 
10 

SUM OF SQUARES = 0.508496390 

2.312506664 0.507836829 

;::30897345 
0.507836829 
0.494072159 

5.514309408 0.487454070 
7.508981167 0.484908316 
8.468580843 0.450663854 

2.312506664 0.450663854 

;:;62157505 
0.450663854 
0.437636837 

5.524269999 0.434330461 
7.508981167 0.434330461 
8.439467487 0.408240592 

2.312506664 0.408240592 
3.3 0.408240592 
4.590545267 0.398339792 
5.532Go7619 0.395976608 
7.508981167 0.395976608 
8.41376275 0.3778665422 
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i*igurc da,: Example 2 LINEAR SPLINE PLOT AND DATA POINT PLOT 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

Figure 4b: ERROR PLOT FOR DATA POINT VS SPLINE VALUE 

0 1 f 
I 

I I 

. 

XTIC= 0.855 
YTIC= 0.068726398 
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Figure 5: EXAMPLE OF OUTPUT FROM DERIVATIVE ROUTINE FOR 
20 EVENLY SPACED POINTS 

X-VALUE 
SPLINE FIRST SECOND 
VALUE DERIVATIVE DERIVATIVE 

0 -1.276456667 3.851459424 -2.240811742 
0.465 0.272212206 2.809481963 -2.240811742 
0.93 1.336361559 1.767504503 -2.240811742 
1.395 'I -915991394 0.725527043 -2.240811742 
1.86 2.011101709 -0.316450417 -2.240811742 
2.725 1.621692505 -1.358427878 -2.240811742 
2.79 0.747763783 -2.400405338 -2.240811742 
3.255 -0.610305260 -3.383637786 2.309543558 
3.72 -1.g34006303 -2.30g700031 2.309543558 
4.185 -2.758326289 -1.235762277 2.309543558 
4.65 -3,08326522 -0,161824522 2.309543558 
5.115 -2.908823095 0.912113232 2.309543558 
5.58 -2.234999914 1.986050987 2.309543558 
6.045 -1 a061795678 3.05998874 2,309543558 
6.51 0.610789615 4.133926495 2.309543558 
6.375 2.759180793 4.62786348 -4.825100395 
7.44 4.389483645 2.384191797 -4.825100395 
7.905 c 4.976479164 0.140520113 -4.825100395 
8.37 4,520167350 -2.lO3151571 -4.825100395 
8.835 3.020548203 -4.346823255 -4.825100395 
9.3 0.477621723 -6.590494939 -4.825100395 
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loo 
110 
120 
130 
740 
150 
160 
170 
180 
190 
200 
210 
220 
230 

40 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
r, 2 0 
/5. go 
440 
450 
460 
470 
480 

K=Z 
RSM **ss H8 USED IN KNOT MOVING ROUTINE *** 
H8=1 28 
I.!RINT "LINI$AR S LINE PROG,;AM" 
I'RINT "K EQUALS"K 
D&Z/N$JBER OF DATA PTS"; 

/ 1 
I'RINT "L9 EQUALS'%9 
DISI' "WANT TO LOAD DATA FROM TAPE"; 
INPUT Hi$ 
IF H$="Y" THEN 300 
DISP "2 FILE #S WHERE DATA GOES"; 
1NU.R" A8,A9 
FOH T=l TO L9 
DISI' "INrUT X Y"1' 
INI-'UT X[I.;,G[t] ' 
NXXT I 
:;TOHiz: DATA A8,X 
;;TORZ DATA A9,G 
GOT0 370 
DISf' "2 FILE #S WHERE DATA IS"; 
INPUT A8, A9 
LOAD DATA A8,X 
LOAD DATA A9,G 
DISI' "TRINT DATA"; 
INPUT H:$ 
IF H.;:#"Y" THEN 400 
FOR I=1 TO L9 
IIRINT I,X[I],G[I] 
NEXT I 

DI Al "KNOT IN !lJ( I)=?"1 ; 

NX i:T I 
30 GOSUR 550 
500 GOSUl.3 8070 
510 I'IIINT "L3lJ-M OF SQUARES ="Sl 
520 DISf' "i'LOT?"; 
530 'AIT 3000 
5:0 GOT'0 7640 

l-l 
71 

di (  1. ?c:~ **UN* T,INEhR :;I)LINT: PROGRAM ***** 
2() [<'qq x*-s* :;URROUTINF JUMl' ADDRESSES *****-**XX************************ 
$0 ;j ; ,;"Jy 1 
4 0 lti;iY 
50 Hi5M ii 

;;.i'J,IN+; G]<;Il'II -----------e---e--- 7000 
2 .l~II?i-~Oh GIURII! --HHH-*HH3c--LH----- 7380 

,3 DATA ?OINT T'LOT "HHHHH-HHH--H--- 7290 
cs 0 IIXM (4) II:i<TUIfN TO KNOT MOVING ROUTINII: --- 7640 



550 ;z:: 
610 
620 
630 :I: 
660 
670 
680 
690 
700 
710 
720 
730 
740 

;z: 
770 
780 
790 
800 
819 
820 
830 
840 
850 
860 
870 
880 
8’30 
900 
910 
920 
930 
940 
‘950 
960 

;iEl 
990 

‘:b;M +- :,~***~,~*+u+*SUBROUTINE EQUATE*“““~“*“~~~~““~~~~~~~*~~~~~~*~~~*j 

FOR 11-l TO N 
l3[11]=c[11]~P[11]=0 
NJSXT 11 
I-K 
Il=O 
FOR I;=1 TO L9 
IF I=N THEN 700 
IF X[L]cT[I+l] THEN 700 
I=I+l 
11=1-H 
GOT0 650 
T=X[L] 
Pl=T[ I-cl 

3 
-T 

Ml=T-T[I 
ZS=l/(Pl+Ml) 
~l=l?l*zg 
52=Ml*Z9 
~;:I"l[~l] 

p[iii:~~;z~;[Ej 

12-121; 
B 12 

1 3 
=S2*Gl+B 12 

c 12 E 3 =s2*s2+c 12 
l 

NEXT L 

R3M -x-k********+**+* BAND&Q) MATRIX Rouq’1-J’~ +***t+W~WW**W*~~~~****~~*~ 

REM SOLVES SYSTEM USING CHOLESKY'S DECOMPOSITION METHOD 
FOR J=l TO Nl 
Jl=J+l 
E Jl=b=S&R(C[J]) 
P Jl=Dl=P[J]/D 

i C Jl)=C[Jl]-Dl+Dl 
NEXT J 
:[y]:;yy\gq 3 
FOR J=2 TO N 
Jl=J-1 
C[J]=(B[J]-=P[Jl]*C[Jl])/E[J] 
NEXT J 
ACNl=C[N]/E[N] 

1000 FOR J=Nl TO 1 STEP -1 
1010 Jl=Jf+l 
1020 A[J3=iC[JJla[JJ+A[~1J)/~[~] 
1030 NEXT J 
1040 RETURN 

l-2 
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“(-;(I0 \i;;D’” X-H-X -XX-XX K;;J’I,IN]( GI~Ap~~~*~“W*W~++ww~~~~*****~~~**~*******~~~~~~~~~**~ 

:IblO .iu:;,F "4 =;CALE VALtJJiS”; 
20?0 INI:UT Q9,(@,Q7,&6 
7030 :.i(:Alll< 'XLQ4QLQ6 
'7040 jjl.:;J, “2 VALUES X-CROSS AND XTIC"; 
7050 INJ'UT Q7,Q6 
7060 X,'I;(IS Q7,Q6 
7070 DISP "2 VALUES FOR Y-CROSS AND YTIC"; 
7080 INI'UT Q7,&6 
7090 YAXIS &7,&6 
7110 It=K 
7120 FOE! J=2 TO Ni-d 
7130 T='?[J] 
7140 GOSUB 8930 
7150 GC',SUB '7550 
:‘160 :ZO’1’ T, Cl 
7170 NVT J 
7180 :=E: 
;;;o" "i;:7; &6=K+l TO N 

<,lk 
7210 T=T[Q6] 
7’20 GOZUB 8930 
7230 GOSUB 7550 
7240 FI,O" T,Cl 
7250 CPLOT -0.3,-0.3 
7?60 LABEL (* ) “0” 
7270 NUT Q6 e 
7280 STOP 
7290 R;<pj -K***-X-* DATA POINT PLOT W~**~*t~~*~+*Y~~C*~~~~~~~~~*~~*~~***~~*~- 
7300 FOR 11~1 TO I&j 
7310 PLOT X[Il],G[Il] 
7'520 CI'LOT -0.3@-013 
7330 LABEL (*)"X" 
7350 I'EN 
7360 NEXT II 
7370 ;TOI‘ 
7380 RxM ,+**** EmOR PLOT R0UTIN-E *~**+**~++*+~~++*Y**~*~**~***~~~*~*~ 
7390 
7400 

Y=T*SQR I Sl/L9) 
SCALI;: X 11 X[Lg] -Y,Y 

7410 XAXIS 0 (X[L9]-xt1 J)/lO 
7420 YA:(TS X[l],Y/6 
7L30 PRINT "XTIC 
7440 1=x 

=I’(x[Lg J-x[ 1])/10wIc=~~~/6 

7450 FOR J=1 TO L9 
7460 T=j:[J] 
7470 GOSUB 8930 
7480 GOJUB 75 50 
71190 PLOT T,G[J]-Cl 
7435 I'LOT T,O 
7 500 7-'EN 
7510 IWXT J 
7520 STOP 

l-3 
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7530 
"!550 
7570 
7600 
7630 
7640 
7650 
7660 
7670 
7690 
7690 
7700 
7710 
7720 
7730 
7740 

;;zo” 
770 

7780 
7790 
7800 
7SlO 
7820 
7830 
7840 
7050 
7860 
7870 
7880 
7890 
7900 
7910 
7920 
7930 
.7940 
7950 
7c36') 
7970 
7980 
7990 
no: io 
8010 
m20 
8030 
8040 
8050 
8060 

I:~<M -X*-*+X** CALCULATE SPLINE VALUE FROM SFLINE COEFFICIENTS *c3c**3t** 
Pl=T[I+lj-T 
MZ=T-T[I 
Cl=(WU I]+Pl*A[I-13)/@2+Pl) [' 
RGTU i{N 
R~:r,lX-X,~*X~~,~*-*CJC*~+KNOT MOVING SUBROUTINE , *****************++******* * 
FOX I?=3 TO N 
.;~l=(!rCIS+l]-T[I5])/H8 
A5=;71 
:1;5df'15] 
T[I5\=-4=T[I5]+El 
G&UB 8070 
IP Sl<A5 THEN 7770 
I~I=(T[I~-~]-x~)/H~ 
T[I5]=xJ=X5+El 
GOSIJB 8070 
IF SlcA5 THEN 7770 
GO'_70 7990 
ii4=Sl 
~l=~j+El 
T[15]=X3=X&+El 
IF (x3cT[I5-l] OR X3=-T[I5+1)) THEN 7990 
GO:;UB 8070 
A3=sl 
IF (A3>A4) THEN 7890 
A5=A4 
x5=x4 
A4=A3 
:;4=:;3 
GOT0 7780 
X6=X3*X3 
x7=x4*x4 
X&x5”Q 
Rl=A5*(X6-X7)+A4*(Xs-x6)+A3*(X7-X8) 
R2=(A5*(X3-X4)+A4*(X+X3)+AP(X4-X5))*2 
T[I5]=R1/R2 
EOSUB 8070 
IF (SlcA4) THEN 8000 
T[I5]=,14 
GOT 8000 
T[I5]=T[15]-E'i 
GOSlJii 550 
c;O:;UB 8070 
mINT r[15],si 
~XT 15 
DI3P "PLOT?"; 
WAIT 3000 
GOT0 7650 

1-4 

74 



$070 R~~M*~***~“*~*COMPUTES SUM OF SQUARES~*~***~~“““*+~~***~***~* 

8080 21-O 
8090 I=K 
8100 FOR I,==1 TO L9 
8110 T=X[L] 
8120 IF T[I+l] >= T THFnN 8170 
8130 I=Icl 
8140 IF I <= N+l THEN 8120 
8150 PRINT "RANGE" 
8160 STOP 
8170 Pl=T[I+l -T 
8190 M2=T-TII 
8220 
8250 

Cl=(M2*A i I]+Pl*A[I-l])/(M2+Pl) 
S=Cl-G[L 

5260 Sl=S1+S*S 
8270 NE>:T I; 
8280 RETURN 
8930 REM"** FIN S I SUCH THAT T(I)<=T<T(I+l) USING FORWARD SEARCH ONLY** 
8940 IF T[I+l] === T THEN 8990 
8950 I=I+i 
8960 IF I (= N+l THEN 8940 
8970 PRINT s'RANGE"; 
8980 STOP 
8990 RETURN 

l-5 
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]<sM *X**YfWt~f** DERIVATIVES*~“*~~~“~~**~~~,~**~~* 

RE:M THIS ROUTINE CALCULATES THE ZEROTH THROUGH Dl DERIVATIVES OF 
REM AND PLACES THEM IN P(1) THROUGH p(Dl+l) RESP. SPUN 
REM THE DERIVATIVES ARE AT T 
Dl=3 

9000 
go10 
9020 
9030 
9040 

;z / 

9070 
9080 
9090 
9100 
9110 
9120 
9130 
9140 
9150 
9160 
9170 
9180 
9190 
9200 
9210 
9220 
9230 
B240 
9250 
9260 
,927o 
9280 
9290 
9300 
9310 
9320 
9330 
9340 
9350 
9360 
9370 
9380 
9390 
3400 
9500 
9510 
9520 

I=K 
GOSUB 8930 
nEM*~-*"~~"~""*"**"~"~*** 
N[l,l]=l 

CALCULATES N(I,K) AT T""***************. 

FOR S=l TO K-l 

ii 
N 
FOR R=l TO S 
29=N[H,S]/ P[R]+M[S+l-RI) 

R,S+l]=N R t S+l]+P[R]*Z9 
i+l,S+l]=M[S+l-RI+29 

NEXT R 
NEXT S 
FOR S-l TO K 
D[S,i]=A[I-Scl] 
NEXT S 
FOR S=2 TO K 
FOR R=S TO If 
~[R,S~=(D[R~~~S-~]-D[R~S~I])/(T[I~K~~+~]-T~I-R~$]) e 
NEXT R 
NEXT S 
Ml=1 
FOR I=1 TO Dltl 
Sl=O 
FOR J=l TO K-I+1 
S1=S1+D[K-+J,1]*N[J,X+1-1] 
NEXT J 
P[I]=Sl*Ml 
Ml=Ml*(K4) 
NEXT I 
PRINT T,P[l],P[2]&3] 
NEXT T 
STOP 
R3-M -ES-K SpJJ-~ Jj'UNCTI()N -j'NS (T) ~*****Y~*~+~~W~~~+***~***~~~~~~**~~ 
DLW FNS(T) 
I=K 

9530 GosuB 8930 
9540 GWJJB 7550 
9;; ;;;URN Cl 

l-6 
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1C ;,:>:TP*'*". QUADRATIC SPLINE I'ROGRAM **** 
2(-J ;;:%y x*-n** SIJBROUTINX JUMP ADDRZSSES *~~***~~tt*****~*~~*~~~***~~~~~ 
jG Ri~M (1 sI'I;Im G&yJq 3-11 ---I-----**-*-- 7000 
‘1 9 Rim (2 1 ERROR GluI'IJ ----e--------c------ 7380 
50 REM (3) DATA POINT PLOT -l-"--c--------l 7290 
60 R M (4) RETURN TO KNOT MOVING ROUTINE --- 7640 

110 iIEM"*" HR USED IN KNOT MOVING ROUTINE *** 
170 Hf3=1%8 
130 i'TiIN? "QUADRATIC SPLINx PROGRAM" 
140 !'R.INT "K tiQUALS K 
150 DI\?ll "NUMBER OF DATA PTS"; 
160 IN?UT L9 
17 I:RINT "L9 %QUALS++Lg 
130 D%Si; "I/ANT TO LOAD DATA FROM TAPE++; 
190 INrUT H.$ 
200 IF H,$="Y++ THEN 300 
210 ;31s.i "2 PIId j/S WHERE DATA GOES++; 
220 INWT A8,Ag 
230 FOR i=l TO I&I 
.;O Xi " IWUT X,Y"I ; 
250 INlUll >L[I],G[I] 
260 N.i:::;T I 
270 ,;!p(jl;l_;?: DATA h8,X 
280 ,;wiit< DATA A9,G 
'290 (XT0 370 
300 .DIL;1: "2 FILE #S 'ti%ER% DATA IS++; 
310 PNi'UT A8,Ag 
3 0 LOAD DATA A8,X 
330 LOAD DATA Ag,G 
340 DISI' "PRINT DATA"; 
31;O INf'UT Hqj 
360 IP H,;#++Y'+ THEN 400 
370 FOR I=1 TO Lg 
'280 PRINT I,X[I],G[I] 
390 NE:<T I 
400 ;3T:;I: "NUMBER OF EQUATIONS=?'+; 
11 ri INPUT N 
n20 Nl =X-l 
d 25 )J2=I::-? 
430 J‘RINT "N=+'N 

N+K 
IN T(I)=?'+I; 

440 F(i;: -i=l TO 
450 1jISP "KNOT 
469 IN'UT T[I] 
4.'0 PRINT "T(1 
480 Nil:'iT I 
490 GOXJR 550 
5,IO GO3UB 8070 

)='+T[I],I 

510 I'RINT "SUM OF SQUARES =+'Sl 
5?O DI:;T "I'LOT? " ; 
5 ii) wri T'I' 3000 



550 l’\::K ,1(x -)I *xu.~~*~~w*SUBROUTIN EQUATE ‘~*JC*~*******JCXJC*~tJt**t~*~SC**-K**-***~-. 

560 t"Oli 11-l TO N 
570 n[rl~]=c[Il]=P[Il]=M[Il]=O 
610 NUT Xl 
620 I=K 
630 X1=0 
640 FOX L-1 TO L9 
650 IP I=N THEN 700 
660 IF X[L]<T[I+l] THEN 700 
670 I=I+l 
600 11=1-K 
690 GOT0 650 

750 29=1/(Pl+Ml) 
760 Sl=Pl*Z9 

800 Sl=Pl*Zg 
8 0 C2=M2*CLg 
820 Zg=S2/(P2+Ml) 
830 d2==C2+P2*Zg 
840 33=Ml"Zg 
850 Gl=G[Ll 
860 IZ=Il+l 

950 12=12+1 
-33*Gl+B 12 
=sg*s3+c E 12 3 

980 N3XT Ii 

2-2 
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:]go l{;;l’i XX*-***++*X**Y**-W BAN-J)E,JJ ~“JRIX ROUT NE fv**Y-X~**~**-X*tw**~~*~~~**~ 

1000 R15FI SOLVES SYSTEM USING CHOLESKY'S DECOMPOSITION MFTHOD 
1010 POil J=l TO N.2 
1020 Jl=J-tl 
1030 J2=J+ 

1100 NEXT J 

1160 PO3 J=3 TO N 
1170 51=5-l 
Il.80 J2=J-2 
1190 
1:00 

C[J1=(B[J)-M[J2]*C[J2]~~[Jl]*C[J~])/E[S] 
NEXT J 

1210 A[N]=C[Nt/E\N] 
1220 A Nl]= C Nl -P[Nl]*A[N])/E[Nl] 
1230 FOR J=N2 TO 1 STEP -1 
1240 Jl=J+l 
1250 J2=J+2 
1260 A[J]=(CCJ]-P[J]“A[Jl]~M[J]WACJ2])/E[J] 
1270 INEXT J 
1280 RETURN 

2-3 
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7000 RX 7 -Yf3C*C.-X-XK SJ'I;INi$ GFU1PH*"~*"*"*~"~*""*******~~~~~*~*~~*~~~~~~~~*~~ 
7010 Ill.;.:, "4 SCAIJ VAT,UES" ; 
702r, TNTtJT Q9,90,&7,QG 
7030 .iC,ZJ,E &9,98,Q7,Q6 
7040 DISP "2 VALUES X-CROSS AND XTIC"; 
7050 INI'UT 47 ,Q6 
7060 THIS &7,&6 
7070 DIS'P "2 iVhJES FOR Y-CROSS AND YTIC!"; 
7080 INPUT Q7,&6 
7030 YAXIS Q7,Q6 
7100 DISI' "STEP ='I; 
7110 INI'UT Q5 
7120 I=K 
7130 FOR T=Q9 TO Q8 STEP Q5 
7140 GOSUB 8930 
7150 GOSUB 7550 
7160 :i'l.,OT T,Cl 
7170 NUXT T 
7180 I=K 
7190 FOR Q6=K+l TO N 
7200 PF,N 
7210 T=T[Q6] 
7220 GOSUB 8930 
7230 GOSUB 7550 
7240 I'LOT T,Cl 
7250 CI'LOT -0.3,-O. 3 I 
7260 LABEL (*)"O" 
7270 NEXT Q6 
7280 e;TOP 
7230 RK:M Jc***** DATA POINT PLOT ~~~***#+~Y+*~*X~*~***~*~*~~**~***~~~***~ 
7700 I'OK II=1 TO I,9 
7510 
7320 

PLOT X[Il],G[Il] 
CPLOT -0.3,-0.3 

7330 LABEL (*)"X" 
7350 PEN 
7360 NEXT 11 
7370 .;TOP 
738', REM ***** ERROR PLOT ROUTINE ***************+******************** 
7390 Y=3*SQ2 
76cm ~.;CAL~~ x l],X[I&] -Y Y t 

Sl/L9) 

7410 ::;1:J,-rs 0 (X[L91-X[l]j/lO 
7420 YBXIS X[l],Y/G 
7v0 3Iwr IfxTIc =~~(x[Lg]-x[l])/i0"~~1c=~~y/6 
7440 ?=K 
7450 POR J=l TO L,g 
7460 T=X[J] 
7/17q GOSUB 8930 
74r30 GOSUB 7550 
7490 I'LOT T&J]-Cl 
7495 PLOT T,O 
7500 ;'dN 
7 5 1 0 N i--t; T J 
7520 i;TOP 

2-4 
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7530 ;:z:: El:: 
7590 
7600 
7610 
7670 
76-50 
7640 
7650 
7660 
7670 
7680 
7690 
7700 
7710 
7720 
7740 
7740 ;;2: 
7770 
7780 
7790 
7800 
7810 
7820 
7830 
7840 
7850 
7860 
7870 
7880 
7090 
7900 
7910 
7920 
7930 
7940 
7950 
7360 
7970 
7980 
7390 
8000 
8010 
BO20 
8030 
GO40 
SO50 

Ri<ib] ****-K-K* (JAI;CmATE: Sj?LINE VALUE FROM SPLINE COEFFICIENTS *****'* 
:i?j=TrI+l -T 
I-;?=?'[I+2 -T I 
M2=T-T I-l] 

F MS=T-T I 
W=h[I-1 3 
Cl=(M2*C2+Pl*A[I-2])/(M2+P1) 
W=(Pl3*A[I1+P2*C2)/(Ms+y2) 
cl-(~3*C2+Pl*Cl)/(M3+Pl) 
:~1;:Tt.J~~N 
I!I,:FI*C"~~***J~**~~**~YKNOT MOVING SUBROUTINE *w+~*++*~+****~~~**~~~****~~~ 
FOX 15=4 TO N 
j~l=(T[I5+1]-T[I5))/H8 

g;'I5] 
T[I5 =X4=T[I5]+El 5 
GOSU13 8070 
IF SI-=A5 THZN 7770 
.b;l=(T[I5-1]-X5)/H8 
T[I5]=X4=X%El 
GOSUB 8070 
IF Sl<A5 THEN 7770 
GOT0 7990 
A/I=Sl 
2l=El+El 
T[ 15]=X3=X4+El 
IF (X3cT[I5-l] OR Xj>T[I5+1]) THEN 7990 
Nmy 8070 

Iv-(k3>A4) THEN 7890 
A5=A4 
;<5=.:4 
A4 =A3 
X4=X3 
GOT0 7780 
X6=X3"l.X3 
;c7=x/l*x4- 

GOSU3 8070 
IT (S 1 iA4) THEN 8000 
T[I5]=:44 
GOT0 8000 
T[I5]=T[I5]-El 
GOSUH 550 
GOSUB 8070 
YIIINT, T[I5],Sl 
NEXT 15 
DISI' "YIJOT?'~; 
NAIT 3000 

8060 GOT0 7650 

2-5 
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f3070 ~~~W~"*u~"""~""COMPU'~ES SUM ()Jj' sQUA~S”*““~~“*“*~*~*~*~~~~~~~~ 

8000 Sl=O 
8090 1-E; 
8100 FOH L=l TO II9 

110 T=>;[L] 
8120 IF T[I+l] )= T THEN 8170 
8130 1=1-t-l 
8140 IF I <= Ntl THEN 8120 
8150 PI!INT "OUT OF RANGE"; 
0160 STOY 
8170 Pl=T E 11-l 3 -T 
8180 Pz=T I+2 -T 
8190 

8200 

M2=T-T 1 I-l] 

8210 M3=T-T I 3 C2=A[I-1 
8220 Cl= M2*C2+Pl+A[I-2])/(M2+Pl) 
8230 C2= I M3*A[I]+P2*C2)/(M3+P2) 
8240 Cl=(M3*C2+Pl*Cl)/(M3+P1) 
8250 S=Cl-G[L] 
82GO I;l=Sl+S"S 
8270 NXXT L 
8280 X?,TUdN 
8930 RXM** FINDS I SUCH THAT T(I)<=T<T(I+l) 
8940 IF T[I+l] >= T THEN 8990 

USING FORWAD SEARCH ONLY 

8950 I=I+l 
8960 IF I <= N+i THEN 8940 
8970 PRINT "RANGE"; * 
8980 STOI, 
8990 RETKiN 
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9000 
9010 
9020 
9030 
9040 
9050 
9060 
9070 
9080 
9090 
9100 
9110 
9120 
9130 
9140 
9150 
91 63 
9170 
9180 
9190 
9200 
9210 
9220 
9230 
9240 
9250 

p;yJj * 44 **w-xX*X*, DERIVATIVES”**“*w~**~********~** 

,‘(ll:M THIS ROUTINE CALCULAT.ZS THE ZEROTH THROUGH 131 IN7RTVA’t’TVI;l.S nB ;PT,T 
RX4 i1N.1) PLACES THEM IN P(1) THROUGH p(Dl+l) RESP. 

--_- .---1 ,  Y . ,  VL u 1 J,L 

XWi THE DERIVATIVES ARE AT T 
Dl=3 

1=x 
GOi;UB. 8930 
H~~~~x*~~~~*+********~~~** 
N[l,l]=l 

CALCUI#J'ES N&K) AT 'J******+*******+***~ 

FOR S=l TO K-l 
? S]=T[I+S]-T 
M 

i 
5 ;=T-T[ 1+-t-~ J 

N,l,S+l]=O 
FOR R=l TO S 
%%N[R,S]/ P[R]+M[S+l-R]) 
N 

t 
R,Z+l]=-N R S+l]+P[R]*Zg t 

N R+l,S+l]=MfS+l-RI"29 
NXCT R 
NEXT S 
FOR S=l TO K 
D[S,l]=A[I-S+1] 
NEXT S 
FOR S=2 TO K 
FOR !i=S TO K 

9260 D:n,~~~=(D[R-l,S-l]-D~R,S-l])/(TCI+K-R+l]-T[I~R~S]) * 
3270 NEXT 11 
9280 N'GXT S 
9290 Ml=1 
9300 FOR I=1 TO Dl+l 
9310 ::;1=0 
‘3720 FOR J=l TO K-I+1 
9330 ~~1=,l~,D[K+1-JTI]*N[J,g+l-I] 
9340 NEXT J 
9350 P[I]=Sl*M1 
9360 M-t=Pll*(K-I) 
9370 NhXT I 
9380 ERIBT 
9390 N-EXT T 

T,P[l],P[2],P[3] 

9400 ST02 
9500 R3iil ** * SPLINE FUNCTION FNS(T) 
9510 DEP FNS(T) 

*********+**********************+.** 

. ' 9520 1-K 
9530 GOSUB 8930 
9540 GOSUB 7550 
3550 RETURN Cl 
9560 ZND 
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I(1 T#M+** **** CUBIC SI%INE I'lIOGRAM ***** 
20 i{is;M Y*** SUBR0UTIN.I;; JUMt' ADDR13SSES *~a***C***********~**~~~~~~~~~~.~ 
70 RlSN 
40 REM I 

1 SPIJNE GlW'H -I---l--ll-I-c-,-l-~l 7000 
2 1 ERROR GRAFH c-----------L-------- 7380 

50 RiSTI DATA I'OINT PLOT e--------------c- 7290 
60 REM RETURN TO KNOT MOVING ROUTINE --- 7640 
7 0 RX4 (5) DERIVATIVE ROUTINE: -------------- 9000 
81’) DIM 13 301 F:[%o] xc503 G[501 Hs ll, 
90 DIPI 7; 6,6],~[30j,1)[30j,M[3Oj,D t E 3 

[3O] 
696 ,A~303~C~301~S[6~ 

100 K-4 
110 Rl?M*--* H8 USED IN KNOT MOVING ROUTINE *** 
120 H8=128 
138 PRINT '"CUBIC SPLINE PROGRAM" 
140 PRINT "K I<QUALS"K 
150 3IST "NUMBER OF DATA PTS"; 
160 IN.1‘UT L9 
770 PRINT "Id9 EQUAjW'L9 
180 ;)I:;? ":/ANT TO LOAD DATA FROM TAPE"; 
190 IIII,UT H11: 
200 13 H$="Y" THEN 300 
210 Dl'S!-‘ "2 FILE #S WHERE DATA GOES"; 
220 IPiPUT A8,Ag 
230 FOIi I=1 TO II9 
240 DISI‘ "INPUT x,Y"I; 
250 INPUT X[I],G[I] 
260 NEXT I 
270 STO;lE DATA A8,X * 
280 ST0li.Z DATA A9,G 
290 GOT0 370 
330 DISl "2 FILE #S WHiZRE DATA IS"; 
310 INPUT A8,A9 
320 LOAD DATA A8,X 
770 LOAD DATA A9,G 
340 DISP "PRINT DATA". Y 
750 INI'UT HG; 
360 IF H&#"Y" TPKEN $00 
770 FOR I=1 TO L9 
38C PRINT I,X[I],G[I] 
390 NEXT I 
400 DISI, "NUMBZR OF EQUATIONS=?"; 
410 INPUT N 
420 Nl=N-1 
425 N2=:J-2 
/!30 ?RINT "N="N 

N-1-K 
IN T(I)=?"I; 

440 FOR I=1 TO 
450 DISP "KNOT 
46rl INPUT T[I] 
470 l'?iINT "T(1 
180 NEXT I 
490 GOSUB 550 
500 GOSUB 8100 

)="T[I],I 

510 ?RINT "SUM OF SQUARES ="Sj 
520 DISP "PLOT?"; 
530 WAIT 3000 
540 GOT0 7640 

51 
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570 B[11]=C[Il]=P[Il]=M[Il]=Q[Il]=O 
620 NEST 11 
630 I=K 
640 El=0 
650 FOH L=l TO L9 
660 12' I=N THEN 710 
670 IF X[L]<T[I+l] THEN 710 
680 I=I-tl 
690 11=1-K 
700 GOT0 660 

780 Z~=l:(Pl+Ml) 
790 sl=Pl*zg 
800 SF?=Ml*Zg 
810 29=Sl/(Pl+M2) 
820 ;;1=2)lCi;g 
830 c2=m*z9 
840 Zg=S2/(F2+Ml) 
850 s2=C?+i'2*Zg 
360 s;4=)11*~9 
870 Z9=~l/(Pl+M3) 
880 Sl=i'l*Cg 
890 C2=FI3*23 
900 Zg=S2/(P2+M2) 
910 S2=C2+P2*29 
920 c3=rJiz* 29 
930 Zg=S3/@'3+Ml) 
940 sg=c3+23*zg 
950 SJ=Ml*Zg 
960 Gl=G[L] 
970 IZ=Il+l 

1150 NZXT L 
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116~) yr:l -x~~~~t~f+*~~*+E*G+* BANDED MATRIX R()jJTI~J *~~~~***~*~+*~~-~*+3*~~*~ 

1 170 RiZ'! sGLv~:s SYSTEM USING CHOLESKY'S DECOMPOSITION METHOD 
1180 FC;R J=l TO N-3 
1190 Jl=J+1 
1230 J2=Jt2 
1210 J3=J+3 

1273 P Jl" =P Jl.-Dl*DZ 
1280 M Jl &I Jl--D1*D3 
1290 C J2 =C J2/D2*D2 
1300 P J2 =I' J2--DZ*D'-S 
1310 C;JS_=C,J?_-bS*DS 
1320 NEXT J 

1460 FOR J=4 TO N 
1470 Jl=J-9 
1480 J2=J-2 
1490 J3=J- 
1500 C[J]= 
1 510 NZLT 

1550 FOR J 

'3 
IB[J3-M[J2l~C[J23-P[Jl]~C~Jl]~Q[J3]~C[J3]~/E[J] 

1560 Jl=J+l 
1570 J2=5+2 
1580 J3=J+3 
1590 
1600 

h[JI=(C[J]-r[J]*A[Jl~-M[J!wACJ23-&CJI”AtJ3])/~[J] 
NEXT J 

1610 RETURN 
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7000 
7010 
7020 
7030 
7040 
7050 
7060 
7070 
7080 
7090 
7100 
7110 
7120 
7130 
7140 
7150 
7160 
7170 
7180 
7190 
7200 
7210 
7220 
7230 

:g 
7260 
7270 
7280 
7290 
7300 
7310 
7320 
7330 
7350 
7360 
7370 
7380 

REM*********SPLINE GRAPH ********************************************** 
DISP "4 SCALE VALUES"; 
INWT &9,&8,47,96 
SCALE &9,&8,&7,Q6 \ 
DISP "2 VALUES X-CROSS AND XTIC"; 
INPUT &7,&6 
XAXIS &7,&6 
DISF "2 VALUES FOR Y-CROSS AND YTIC"; 
INPUT Q7,Q6 
YAXIS &7,Q6 
DISP "STEP ="* 9 
INPUT 45 

;;: T=Qg TO Q8 STEP Q5 
GOSUB 8930 
GOSUB 7540 
PLOT TIC1 
NEXT T 
I=K 
FOR Q6=K+l TO N 

K$Q~] 
GOSUB 8930 
GOSUB 7540 
FLOT T,Cl 
CPLOT -o.g,-0.3 
LABEL (*)"O" 
NEXT Q6 
STOP 
REM -X-~-W--KU DATA PO-j-NT PLO'11 UUfUUUUUU+U++UUUUUUUUUUUUU~UUUUUUUUUUUUU 
FOR X1=1 TO L9 
PLOT X[Il],G[Il] 
CPLOT -0.3,-0.3 
LABEL (*)"X" 
PEN 
NEXT I1 
STOP 
REM ***** .ERBOR PLOT ROUTINE *********************************~** 

7390 Y=3"SQR(Sl/Lg) 
400 SCALE X[l ,X[Lg],-Y Y 
7410 XAXIS 0, i X[L9]-X[lj)/lO 
7420 YAxzs x[ 1],Y/6 
7430 PRINT "XTIC ="(x[Lg]-~[?])/~o"YTIc="Y/~ 
7440 I=K 
7450 FOR J=l TO L9 
7460 T=X[ J-j 
7470 GOSUB 8930 
7480 GOSUB 7540 
7490 BLOT T,G[J]-Cl 
7495 PLOT.T,O 
7500 PEN 
7510 NEXT J 
7520 STOP 
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;;c 
7550 
7560 
7570 
7580 ;290: 
7610 

615 
7620 
7625 
7630 
7635 
7640 
7680 
7690 
7700 
7710 
7720 
7730 
7740 
7750 
7760 
7770 
7780 

$90: 
7810 
7820 
7830 
7840 

;% 
7870 
7880 

;;z: 
7910 
7920 
7930 

77;;: 
7960 
7970 
7980 
7990 
8000 
8010 
8020 
8030 
8040 
8050 
8060 
8070 
8080 

REM SC****** C!ALCULATE SPLINE VALUE FROM SPLINE COEFFICIENTS ****+** 

FOR 15=5 TO N 
El=(T[I5+1]-T[I5])/H8 
A5=Sl 
X5=T 151 
'??[I5 -X4=T[I5]+El 5 
GOSUB 8100 
IF Sl<A5 THEN 7aOO 
El=(T[I5-l]-~5)/H8 
T[I5]=X4=X5+El 
GOSUB 8100 
;;T;lzAoTHEN 7800 

A4=Sl 
El-El+El 
T[I5]=X3=X&El 
IF (X%T[I+l] OR X3>T[15+1]) THEN 8q20 
GOSUB 8100 
A3=S1 
IF (AS>A4) TlHEN 7920 
:'5=A4 
x5-x4 
A4=A3 
X4=X3 
GOT0 7810 
X6=X3*X3 
x7=x4*x4 
X8=X5*X5 
RkA5*(~6-X7)+A4"(X8-X6)+A3*(X71X8) 
R2=(A5*(XS-X4)+A4*(X5-X3)+A3*(X4-x5))*2 
T[l5]=Rl/R2 
GOSUB 8100 
IF (SWA4) THEN 8030 
T[I5]=X4 
GOT0 8030 
T[I5]=T[I5]-El 
GOSUB 550 
GOSUB 8100 
PRINT T[I5],Sl 
NEXT 15 
DISP "PLOT"'; 
WAIT 3000 ' 
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8100 ~M”*~*t”~~C~*~COMPUTES SUM OF sQUARES”““~*~~““““““~~~~~~~~~~ 

8110 Sl=O 
8120 I=K 
$130 FOR L=l TO L9 
8540 T=X[L] 
8150 IF T[I+l] T= T THEN 8200 
8160 I=I+l 
8170 IF I <= N+l TIIEN 8150 
8180 PRINT "RANGE" 
8190 STOP 
8200 GOSUB 7530 
8210 S=Cl-G[L] 
8220 Sl=Sl+S"S 
8230 NEXT L 
8240 RETURN 
8930 REM*+ FINDS I SUCH THAT T(I)<&T(I+l) USING F'ORWARD SEARCH OnY*** 
8940 IF T[I+l] >* T THEN 8990 
8950 I=I+l 
8960 IF I <= N+l THEN 8940 
8970 SRINT "MNGE"; 
8980 STOP 
8990 RETURN 
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9000 
9010 
9020 
9030 
9040 

%E 
9070 
9080 
9090 
9100 
9110 
9120 
9130 
9140 
9150 
3160 
9170 
9180 
9190 
9200 
9210 
9220 
9230 
9240 
9250 
9260 
9270 
9280 
9290 
9300 
9310 
9320 
9330 
9340 
9350 
9360 
9370 

REM *-XS-Kk-ES-kS+*S DERIVATIYES~~““*““~“~~***~*~~~~ 

REM THIS ROUTINE CALCULATES THE ZEROTH THROUGH Dl DERXVATXVE3 OF 
REM AND PLACES THEM IN P(1) THROUGH p(Dl+l) RESP, SPLlrJ 
R3,M THE: DERIVATIV3S ARE AT T 

/ Dl-3 

STEP Hl 
I=K 
GOSUB 8930 
REM**~*~**t~*t~jt*CY*"Y++~ CALCULATES N( 1,K) AT T***+***********! ' 
N[i,l]=l 
FOR S=l TO K-1 
P S =T[I+S]-T 

i' 

\ 
M S =T-T[I+l-S] 
N l,S+l]=O 
FOR R=l TO S 
29=N[R,S]/ P[R]+M[S+l-R]) 
N R,S+l]=N R 
N R+l,S+l]=M[S+l-R]+Z9 E 

t S+l]+P[R]*Zg 

NEXT R 
NEXT S 
FOR S=l TO K 
D[S,l]=A[I-Si-I] 
NEXT S 
FOR S=2 TO K 
FOR R=S TO K 
D[R,S]=(D[R-l,S-l]-D[R,S~l])/(T~I~K-R~l]-T[I~R~S]) 
NEXT R 
NEXT S 
Ml =1 
FOR I=1 TO Dl+l 
Sl=O 
FOR J=i TO K-I+1 
S1=S1+D[K~l-J,I]~N[J,K~l~I] 
NEXT J 
P[I]=Sl*Ml 
Ml=Ml* (K-I) 
NEXT I 

9380 PRINT T,P[l],P[2],P[3] 
9390 NEXT T 
9500 REM *** SPLINE FUNCTION FNS(T) *w*wY~+~***~~~*~~+*+~~***~~*~*~~~~ 
;;N& I"; FNS(T) d 

9530 GbUB 8930 
9540 GOSUB 7540 
9550 RETURN Cl 
9560 END 
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Charles E. Gray 

Aeronutronic Ford Corporation 

&lo Alto,Califosnia 

This paper devcl.ops some methods for computing the real root-s of 

a rcaal valued function in a finite infcrval. This classirnl problem is 

treated by mctl:ods that are novel in the following respects: the con- 

vcrgencc dots not dcpcnd on the customary “initial guess;” one can con- 

clude that the function has no roots, if that be the case; if that is 

not the case, one can compute al1 real roots of the function in the in- 

tcr-val to witl1i.n a preassigned accuracy. It is assumed that the func- 

tion is Lipscllitz and that a value for the Lipschitz constant is known. 

These assu:nptior?s arc mild enough so that methods are applicable to a 

variety 0T problems, notably in optimal control. From the basic method 

two other algorithms are derived: one computes the maximum of a func- 

tion on an interval; the other computes the roots oE a function, but 

with improved speed of convergence similnr to that af Newton’s method. 

Numerical results are presented which illustrate the properties dis- 

cussed abova. 
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Introduction 

A classical problem Ln numerical analysis is that of finding in a 

given interval (which w@ -assume to be closed and finite) a real root 

of a continuous, real-valued function. Many algorithms have been proposed 

to solve this problem (I1 1*l44 W[4 +I)* 

In one way or another, they all require an initial guess at the value 

of the root; it is hoped that this guess is improved by an iterative 

.application of the algorithm. This hope may be disappointed for a number 

of reasons. It may happen that an initial guess appropriate to the algo- 

rithm does not exist, even though a root exists. Or, if an initial guess 

and a root both exist, the algorithm may nevertheless fail to converge, 

because the initial guess is not close enough to the root. Of course, if 

there are no roots, no convergence is possible. Unfortunately, it is not 

possible to determine whether lack of convergence is due to the first or the 

second of these alternatives. The only recourse then is: if at first you 

don't converge, pick a new initial guess and try, try again. 

By contrast, the method which we present be':cw (first proposed in 
II 

1) 

does not require an initial guess at the value of the root. If there is no 

root of the function in the given interval, the algorithm reveals this fact. 

Otherwfse, the algorithm computes all roots of the function in the interval. 

TO illustrate the problems that can beset ciassical methods, we consider 

two of them: the bisection method and Newton's method. We denote the func- 

tion whose roots are sought by f(x) and the interval of interest by a,b . 
f I 

The problem then is to find an x E [a,b] such that 

f(x) = 0 
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The BiSeCtiCI~‘lc tiled 

In the bisection method it is assumed that WC know two numbers u. f [a,b] 

and voE p .q , such th.4t f ( uo) and f (vo) are of opposite sign. 

Since f (x) is continuous, there is at least one x E [uo,vo] such that 

f (x) = 0. (See Figure 1.) The bisection method will compute one root, 

as foil ow5 : 

Step 0 Guess uo,vo such that f ( uo)a f ( vo) < 0. Set f = 0 

step 1 set xi = l/2 (Ui t Vi) 

- If f (Xi) * f (ui)<O Set vi+l-xi 

Go to Step 2 

- If f (xi) f (ui) = 0 stop: xi is the solution, 

- If f (Xi) f (u,) b 0 set ui-tl-xi 

Go to Step 2 

Step 2 set it--i-!-l and go to Step 1 

However, it may happen that there are no u and v ; in the example 
0 0 

of Figure 2, f (x)20 V x c [a,b] hence f (uo)  f (v,) >_ 0 

VUo~[~,b] ,v c 
0 

b&j 

Newton's EIethac! --_. 

In Newton's method, it is assumed that an initial guess x0 is given. 

This guess is then updated according to the formula 

f(x. > 

Lfke the little girl, who had a little curl, right in the middle of 

her forehead, when Newton's method is good, it is very, very good, but when 

it is bad it is horrid (See Figures 4, 5, 6). 
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A New Root Finding Method. 

Concept 

' Suppose that f (x) is Lipschitz on [a,b] , Thus for some i-4': 

I f (x1) - f (X2) 
I 

C M' Ix1 - x2 
t 

V x1, x2 E [a,b] 

Assume that M' is known and consider the following algorithm: 

Algorithm --I 

step 0 Set i-0, xi-a. 

Step 1 Compute f (x i ). 

Go to Step 2, . 

Step 2 Set Xi + ,!zY"!- +a XFS1 
M' 

Go to Step 3 

Step 3 of yb, stop. 

Otherwise set i-i+1 and go to Step 1. 

The geometric interpretation of the algorithm is the following (cf. 

Figure 7): 

To obtain xi+l, araw from the point with coordinates (xi, f(xi)) the 

line L whose slope is M’ Ln magnitude and which intersects the x-axis ta the 

right of xi; the point of intersection is x~+~. 

Convergence Proverties I-,- --w-m-- 

The algorithm generates a monotonically increasing sequence 1x 
1 i , 1 

. If 

this sequence is finite, then the algorithm stops in Step 3 with xi> b. 

If the sequence is infinite 1x1 UJ 
( ij i=O then it has a limit in [a,b] , 

say x* (because is a sequence bounded from above by b). 

Then: 
1Lm lim * 

xis1 = *i = x 
i---W i-w 
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Because f (x) is Lipschitz, it is continuous so that. 

iFa 1 f (Xi) 1 = ] f (x*) 1 

From Step 2 of the algorithm WC conclude 

* k 1 J- 
X = xf- 

M' I I 
f (x 1 

Hence : 
f (x*) = 0 

Thus the al::orithm either converges to a root in an infinite number 

of steps or it reaches the end of the interval ( xi > b) in a finite - 

number of steps without computing a root. Note that this conclusion holds 

for any positive value of Ml. 

But M' is a Lipschitz constant. This key fact allows us to strengthen 

OUT conclusions, which we now state in the form of a theorem. 

Theorem 

Let f Ix) . be a real valued function on bl such that 

Consider a sequencelui,i=O generated by applying Algorithm 1 to f (x). 

Then either 

(1) The sequence is finite, in which case E (x) has no roots in [a,b] 

or 

(2) The sequence is infinite, in which case it conrerges to the 

smallest x < ca ?b3 such that f (x) = 0. 

Geometrical Sketch of Proof 

Refer to Figure 7. Since M' is a Lipschitz constant, it is greater 

than the magnitude of the slope of f (xl anywhere on [a,b] . Hence the 
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line I, so to sReak,goes to zero faster than the function. Consequently 

if f (xi) > 0, then f (x)> 0 V x c 

Therefore if f (a) > 0 then f (x)>O V c ra,xi] for every i = 1, 2,..*.. 

If the sequence xi "jams up" at x* E [a,b] then f (x*) = 0 while 

f (x)> 0 V x E [a,x*j . Otherwise, f (x)> 0 V x~[a,b] as in Figure 8. 

For a formal proof see the appendix. 

,Realization 

Introduction ------ 

Algorithm 1 allows us to determine the first root of f (x) to 
* 

the right of x = a, say x1 ; by applying Algorithm 1 again we can 

* 
compute the first root to the right of xl , say x2*. i.e., the second root 

to the right of x = a and so on until &I& the roots of f (x) in [a,b] 

have been computed. 

Note that, as stated,Algorithm 1 requires in general an infinite 

* 
number of steps to compute x1 ' and therefore will not be able to compute 

* 
x2' 

in finite time. In order to complete the computation in finite time, 

we must modify Algorithm 1; the result is Algorithm 2, which we call ROOT- 

FINDER. 

Algorithm 2 is obtained by relaxing the requirement that we corn- 

pute the set So= [xc[a,b] 1 f (9 1 = 0 i to the requirement that we s 

compute some set SC of the form % = xc[a,b] /f(x)/ ,< c/ 
t I 

where E 

is a preassigned number. Clearly Se contains So* Also, as E- 0, 

% - so so that S s is an approximation to the set of roots of f (x), 

so; the closeness of the approximation c, can be preassigned, (See Figure 11). 
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$teD 4 

5 Step 

Step 6 

step 7 

step 8 

step 9 

Step 10 

step 11 

Step 12 

Step 13 

ROOTFINDEK -1--- 

set NC* - 1, i-+-o, NR--0, .yi- a, j+l.r,et E> 0 be give~\ 

Compute f (x,) 

If If $1 I< c go tlosrep 5; 

Otherwise go to step 6, 

If NE =I go tostep4; 

Otherwise go to :i~ep 5 I 

Set (j+,--Xi, go to Step 5 f 

set NC*- 0, h*--- +- , NK* 1 

Go to Step 9. 

If NC = 1, go ?o Step S; 

Otherwise go to Step 7. 

Go to Sten 9. 

set xi+ 1+-- xi + h 

i*-- i+1 

If xi ( b go to step 1; 

ott1rrwise go to :;tep 11 l 

If NC = 1 go I.0 step 13; 

Otherwise go to ::tep 12 . 

Set. b--r qj j t 1 ---c j, go to s1.,>p 12. 

If NR = 0, rep01 t “Thrle arc’ nr: roots;” and stop. Otherwise, 

Set j-l-+-.r, repo’-t: “Rou .s 1 ic ii the inrPrv.lls 

and stop, 



Referring to tl~e flow chart nt F’igul-e <) we see that xi is updated 

in one of two ways: 

1) If 1 f (Xi) 1 ' E 

xi+1 2 'i + 

Cl1 , 

f XT.l 
M, 

as in Algorithm 1. The jeep sf::c xi+l- xi is variable, being 

proportional to 

2) If f (x,> *= c then 

- 

Xn this case the step si:re ~f+~-xf i.~ constant. 

The flag NC takes on the value 0 if at tire previous :c 

and takes on the value 1 otrerwfse. 

To understand algorFthrn 2 refer to Fij;ttre 10 whLch depicts the function 

f (x) in the vicinfty of ;r ,zero crossing, The path follor,ted through the 

algorithm is analyzed in Table 1. 

The key paints are the following: 

1) If NE = 1 then, because of tile pruoerty of the variable step size 

of Algorithm 1 the function does not vanish in [xieVl, xi]. 

2) If NE = 0, Xf is incremented by the constant step size which is 

chosen small enough so that in one step I I f(x) cannot exceed E (due 

to the bound on the 51ope of 
1 1 

f(x) ). " 

3) If NC = 1 and 
1 I 

f(x) i6 the algorithm enters an interval -- 

IQ* ql where by 2) above 1 f (x)1 dot:5 not l:xceed c . 

4) If NC e 0 and 
I I 

f (x) > 6 the algorft:hm Xcayres an interval -I 



In summary, Algorith91 2 computes a set of E-intervals ll 

[ f (x) 1 

<j"j J( 

in which dots not exceed E and outside of which (as shown in the 

discussion of Algorithm 1) 
I 1 

f (4 does not vanish (See Figure II). The 

flag NR is initialiycd at 0; it is set to 1 when the first E-interval 

is entered (i.e., when x z tl). If when the algorithm stops h'R is 0, 

then at no point in [a,b] is 1 f (x)1 < E , so that f(x) has no roots in 

[a,b] . 
In temls of the discussion in the introduction we have 

Remark:- 

Considering the simplicity o-f the concep t underlying ROOTFINDER and 

CNEw'fCN, it seems remarkab1.e that these algorithms have remained undis- 

covered until. now , yet such seems to be the casc. This is not to say there 

haven't been some near misses. 

Thus, for exampLe, Milne [2] discusses algcrithms of the form 

1 x 
i+l. 

=x -- 
i m f lx,> 

Various choices for m are considered but the choice of a Lipschitz con- 

stant is not amcng them. Also, the use of the absolute value of the second 

term on the right hand side is not considered; this would ensure that the 

search always proceeds t0 the right, as in ROOTFINDER. 
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Application 

Introduction -I---- 

Algorithm 2 can be modified to find approximately the maximum of the 

function f(x) on [a,b]. The idea is to find the zeros of f(x)-c, 

where c is a constant; then, by some search procedure, increase c until 

the algorithm indicates that f(x)-c is non-positive but not strictly neg- 

ative on [a,b] . 

Algorithm 3 which we call MAXFINDER described below, computes a 

value c + E which exceeds the maximum of f(x) on [a,b] by no more than 

4 (where E is a preassigned number) together with intervals 

where f(x) lies in the band c-E , c+C [See Figure 12). 
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Ugorittm 3: - - -- 

0 step 

step 1 

2 Step 

Step 3 

Step 4 

5 Step 

step 6 

step 7 

s tTJ8 - 

9 step 

step 10 

Step 11 

Step 12 

Step 13 

Step 24 

15 Step 

MAXFISDER ---A- 

Set 0 ,--, Nl l->N, . O+i 13 j 3 -3x 
i -A 4. 

3 
go to step 1. 

Compute f (Xi>. Go to step 2. 

If N1=O go to step 3. 

Otherwise go to Step 4. 

Set f (x,) + c l- N1 Go to srep 4. I 

If f $1 < c + -5 Go to Step 8. 

Othcrwisc, go to step 5. 

Set f (Xi) 4 c 1 j. -7 Go to Step 6. 

Set xi i ~j 
Go to Step 7. 

* 

Set: E + h, O -=? NE. Go to Step 13. 
M' 

If f (x)'c -C, 
i 

go to step 9. 

Otherwise, go to Step 10. 

If NE = 0, go to Step 7. 

Otherwise go to Step 6. 

If N, = 0, gb to step 11. 

Otherwise go to Step 12. 

Set 1 -3 N, , xiv1 j rlj, j+l -3 j 

Go to Step 12. 

Set + ii h* I Go to Step 13. 
M 

Set Xi +h+x 
r+1, 

i + 1 -7 i Go ?o Step 14. 

IExi> b, got0 Step 15. Otherwise go to Step 1. 

IfN, =0 , go to step 16. Otherwise go to Step 17. 
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Step 16 Set b+ rl 
1' 

j+l ,+ j. Go to Step 17. 

Step 17 Set j-l + J- 

Report: c - 6 < Max f (x) < c-l- E 

c -E < f (x) < c I- c f 4 in intervals( 
I 

17 )J k, 
k I ) k=l 

stop. 
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Dis_cussion *- - 

Algorithm 3 can be understood by referring to the flow chart of Figure II: ad 

to Figure 15, which represents a sample f(x) to be maximized. 

As long as f(x) increases E the algorithm steps along in steps of I , 
M 

updating c to f(xi) whenever f(xi) exceeds the previous c by more than 

E ; at the same time f 
j 

is updated to xi. When f(xi) starts to decrease, 

the value of xi at which the decrease is noted, i.e., the xi previous tr t_he cnc 

such that f (xi) - c < - 6 , is retained as n. 
J. The current approximation 

to the maximum is tllen the current c while the location of the naximum is 

approximated by 
I I., v 1 3 j' 

men f(x) decreases, the algorithm steps along in variable steps pro- 

portional to c - f(x) in the manner of Algorithm 1. 

In Figure 15, 
12 successive approximations tc* the maximum are c , c ,*a.. 

c . After c6 
6 the function starts to decrease so c6 is taken to be c, the 

approximation to the maximum. Likewise, t16 Is taken to he the approximation 

to the left hand end of the E- interval around the maximum. When f(xi) < 

C-6, x i-is taken to be 
?f 

and the algorithm starts stepping in vari- 

able steps proportional to c--f(x) in the manner of Algorithm 1. The pro- 

cedure may be likened to plotting f(x) on the side of an aquarium, then 
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filling the aquarium with water until the maxi&m of the curve f(x) just 

touches the surface of the water. Notice that this is a direct search, 

which yields the global maximum. This is in contrast to the method of 

searching for the set of roots of the derivative of f(x), which may or 

may not contain the global maximum (See Figure 13). 

&cceleration of Convergence 

&n&oduction ---- 

One of the virtues of Newton's method is that it exhibits very rapid 

convergence when "close enough" to a root of ,f(x). It is possible to com- 

bine Algorithm 2 and Algorithm 3 to give a new algorithm, Algorithm 4, which 

we call GNEWTON, which has the convergence properties of Newton's method in 

the vicinity of a root but, in the manner of Algorithm 2, computes all roots 

of f(x) in the interval [a,b] ( or indicates that there are none) without 

requiring an Fnitfal guess. This, Newton's method cannot do. 

Algorithm 4 is based on two ideas: the first i.s to introduce an 

iteration on e: the interval [a,b] is scanned by ROOTFINDER with a coarse 

value of E, ROOTFINDER computes E-intervals [ x1, y, I,......[&, yk ] . 

Then E is refined so that,say,new E = E' <old c; As we saw above 

f(x) + 0 outside of [xl7 ~~1. l l [xk) Y,J , so on the next pass KOOTFINDER 

need only scan [x1, yl] I  .  .  .  ,  [ \ .  YJ l The algorithm then computes 6' - 

intervals x;, YJ , 9a.e [<, yi ]. Again < is refined, the 6' inter- 

vals are scanned and so on until * 
c is less than some preassigned E . 

Signfficant improvements in computational efficiency result when this idea 

is combined with the following one: prior to scanning an e-interval 

PI.2 ylcl* with ROOTFINDER, MAXFINDER is used to estimate the maximum value 

of the slope of f(x) on [ \s Yk] - The result is then used as M' in 

ROOTFINDER. 
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Sfx!~ set a-x, - b-y, Choose f:c and c -> 6:". Set 1-K-k. 

step 1. Apply MtZXFIXDER to the function f'(x) on the interval[x,yJ 

to compute M'. 

Step 2 Using M' computed in Step 1, apply ROOTFINDER to f(x) on 

the interval [x,13 

Store the resulting E-intervals 
'[ 

11 
I 'j' 'j Jj 

in Stack B 

(Number these sequentially as they are computed). 

Step 3 If k < K go to Step 6. Otherwise go to Step 4. 

Step 4 If f < E" Report results. 

Otherwise go to step 5. 

Step 5 Refine 6 . 

Note K, the total number of E-intervals just computed 

Transfer {['k, 'k]j 
I the E-intervals just computed, from 

Stack B to Stack A, which contains the intervals to be scanned 

on the next pass; label them 

Clear Stack B. 

set 1-k 

Go to Step 7. 

6, step set k + l-k. Go to Step 7. 

step 7 set Xk'X 3s - Y- 

Go to Step 1. 

Algorithm 4 can be understood by referring to the flowchart of Figure 16 

and the discussion in the introduction. Some further discussion of the entries 

in Stack b is appropriate: the intervals [tj> "j] arc numbered sequentially 

in the order in which they are computed. For example, suppose that in scanning 
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c 1 x1' y1 three intervals are computed; these are numbered 1, 2, 3 from left 

to right. Then in scanning two more intervals arc computed; these 

would then be numbered 4 and 5; and SO on, An example is given in Figure 17. 

As mentioned before, when close enough to a root, Newton's method ex- 

hibits very rapid convergence. To see why this is so, let us consider 

Newton's 
tk 

Lteration formula in the Vicinity of a simple root x V 

X i+l = xi - ' (ki) 

. f'(Xi) 

using Taylor's expansion around x* for f(xi) and f'(xi) there follows: 
2 

* k % (de) + f' (X"')( X."Xqf 0 ((x 
1 + i 

-x';) ) 
Xifl. - x = xi - x - 

f'(x*) f 0 (x -x") 
i 

where 0 (*I denotes any function such that: 

Noting that f(x*) = o and f'(x;k) c 0 (because x* is a simple root) there 

follows: 

xi+p = 0 ( (xi-xq2) 

Hence the speed of convergence [7 ] of the method is at least quadratic. 

Notice that the same result would be obtained with any iteration scheme 

of the form: 

xi+l = xi - 
'(Xi) 

4 (Xi) 

provided only that: 

'$(Xi) = f'(x*) + 0 (xi-x*) 
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In fat t , GIE!~~~RV4 3ppcars to he just such nn iteration scheme. This 

is suggested by the following argument. Consider (for 

simplicity) the case of 3 single, simple root x 
k 

of f(x). Denote by 

c 1. tiJi the strcccssivc C-intervals around it computed by GNXWTOFJ and by 

M' (ti,?') the corresponding value of M computed by MAXFTNDER. Then : 

Max f' (x) - E < M' (ti, $- ) < Mnx r'(x) -I- 6 

If the seyuencc C converges to 0, we obtain 

M' ($7 - x*) 

It then seems plausible to assert t.ll:lt, for sm:~ll 1:' - XT? 1 the 

iteration scheme is of the form: 

which, by what was said above, assures NlTwton convergence. This con- 

jecture is supported by the numerical br*itav~or of GNE~JTON, as will be 

discussed below. 

Discussion --*--- - 

marison of ;Issumnions ---1.- - 

jet us cornpar: first the assumpti.n\:; ~lnde in using bisection and in 

using ROOTFINDER. In both cases f(x) fs assumed to be continuous. In 

addition, ROOTFINDER assumes that the ::l,~pc of f(x) is bounded and that a 

bound M ' is known, while the bisecti,jl\ method assumes that E(x) changes 

sign on [a,b] . 

Among the questions that we might .:::k at this point are the following. 

Are these ass~mpti.onS ~r,duly restricti\)tb :I Are they easy to vcrlfy? Thcsc 

are rather vague questions, SO the answcI-s will likewise bc somewhat vague. 
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In many applf.cations the functions of interest are continuous. The 

class of band limited functions, for example, are not only continuous but 

have bounded slope and the maximum value of the slope can bc predicted on 

the basis of the bandwidth. In other cases, the assumptions can be verified 

by inspection of the analytical expression for f(x) together with a few 

rough numerical. calculations. 

It is worth notFng that the assumptions underlying ROOTFmDER buy some- 

'what more than those underlying bisection, since ROOTFINDER provides informa- 

tion about all the roots of f(x), including none if there are none. 

If we now compare GN'EWTON and NEWTON, we find that both assume 

that f(x) is continuously differentiable. In addition GNEWTON assumes 

that the slope of 
I I f 'Cd is bounded and that a bound M" is known. This 

additional assumption buys, as above, information about all the roots of f(x), 

SLnce these assumptions are stronger than those made for ROOTFIh9ER or 

bIsection, the class of functions to which GNEWTON or NEWTON can be applied 

is more restricted. This class is by no means empty, as the following non- 

trivial example will show. 

In solving a certain linear optimal control. problem ([7] ,[9] ) Ft is 

necessary to find the roots in [a,b] of a funct:on f(x) of the form 

f(x) = 4 (4 - /9 

where B is a constant and 4 (x) is a given functton of the form: 

4 (x) = g a. e 'ix 
i=l ' 

(A, real, $ 0 ) 

Thus, the derivative 4' (4 is given by: 

4'(x) = r" ai Ai ehi x 
i=l 
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The upper bound M" on the slope of 4'can bc crudely estimated from 

the SCCOII~ deriva ~LVE d, "(X) : 

n 

Such an estimate is: 
hi 

a 

A, 2 x i" if Ai < ' (Note that 
i, bib if hi > 0 a<b > 

This problem musr be solved for a sequence of values of /?, so that it 

is important to have the fastest convergence possible. It is also important 

to compute a11 the roots of f(x) in [a,b]. Thus, GNJZWTON appears to be 

made to order for this application. 

Comparison of Nurncrical Performnnce 

Newton's method, CNEWTON and ROOTFEKER were applied to the problem of 

finding the roots of f(x) on [a,b] for the particular case where: 

f(x) = k+ sin2xx 

[a&l = Lo, 11 

The constant k was chosen successively to be 0, 1 and 2, thus ilXus- 

trating the case There f(x) has several sfmple roots, one double root and no 

roots at a11 (See Figure 18). 

The termination criterion was 

1 f(x) ( < E 

Three values of 6 were used, 10 -2, 10-4, 10% 

Also, to illustrate the effect of overestimating M' (for ROOTFINIYIEE:) or 

M" (for GNWTON) three values were considered: 
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M’ zz M” = M =2Tr 
0 

M ' = M” = 5 MO 

M ' = M" = lo Mo 

Here MO is the optimum value of the Lipschitz constant M' or M". 

The measure of efficiency of a method was taken to be the total number 

of function evaluations of f(x) and f'(x) required to meet the termination 

criterion. 

To compare two methods, the relative efficiency was computed by divid- 

ing the number of function evaluationsfor one method by the number of func- 

tion evaluation for the other. If one method could not converge (as for 

example, when the bisection method was applied to a non-negative function) 

the number of steps was taken to be infinite. 

The results are presented in Tables III, IV, V, VI, and VII. The data 

on which they are based is presented in Table II. 

Table III compares the performance of GNE:JTON and ROOTFINDER. Because 

of the overhead involved in evaluating the slope GNEWION is less efficient 

than ROOTFINDER when M' is equal to the value of the slope of f(x) at the 

root (M' = 2;TT,f(x) = sin 2rrx i.e. k = 0). 

As M' increases ROOTFINDER takes smaller and smaller steps and its ef- 

ficiency decreases. As M" increases the efficiency of the slope estimations 

in GNWTON decreases because of the smaller steps; howe%,--r, the improved slope 

estimates accelerate the zero searching phase of GNEwTQN so that overall, its 

efficiency relative to ROOTFINDER increases. 

Likewise, in the case (M' = 2~, f(x) = 1 + sin 27rx, i. e. k= 1) the 

value of M' is much greater than the value of the slope at the root (which 
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is 0). Thus ROOTFINDER must take Small Steps to avoid overstepping the 

root, while GNEVT(IIJ can adapt its step size. The result is that GNKVTON 

becomes significantly more efficient. 

Tables IV and V sl~ow the degradation in efficiency of th.e algorithms as a 

function of M' or If" relative to their own performance when M' or M" are 

chosen optimally (M' = M" = 2n). The degradation of GNEWTON is slight, 

while ROOTFINDER degrades by an order of magnitude when M' is overestimated 

by an order of magnitude. 

Table VI comptires ROOTFINDER to NEWTON. When M' is well chosen (PI' = 27-r) 

and the slope of the function near the root is close to M' (k = 0) ROOTFINDER 

is only slightly less efficient than NEWTON. As these conditions are departed 

from, its efficiency decreases. (The table illustrates only the result of varying k!. 

However, for k>l NEWTON does not converge while ROOTFINDER does, so its 

relative efficiency is infinite. 

Table VI also compares ROOTFJNDER to RISFXTION. If ~I>~wR that RO@TFfNDER,is 

uniformly more efficient (i.e. for every k and 6 , when M’ = 2T). 

Table VII similarly compares GTU'EKTON to BE'!MK and l3ISE:CTIO;~:. 

The method is somewhat less efficient than either of the.se methods except 

in the cases where they fail to converge (k = 1. 2 for BISECTION, k = 2 for 

NEWTON) . 

Finally Table VIII summarizes these results by tabulating the Efficiencies 

of GNEWTON, NEWTON and BISECTION relative to that of ROOTFINDER for M' = 2 'IT 

which was chosen because it converges in every case). 

It is to be noted that these comparisons are overly favorable to NEWTON 

and BISECTION as they do not take into account the computarional effort neces- 

sary to obtain an initial guess, which necessarily degrades the efficiency. 
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Advantages and limitations of GNETJTON and ROOTFINDER 

The distinguishing feature of GNEWTON and ROOTFINDER is that their 

convergence does not depend on an"initial guess". This is especially im- 

portant if they are to be used as a subalgorithm within a larger program, 

where human supervision of a trial and error search is impractical. 

The logic of ROOTFINDER is simple enough that it can be programmed on 

a commercially available 8 register, 49 program step pocket calculator with 19 

steps and 4 registers left for programming the function whose roots are 

sought. This is sufficient to solve non-trivfal problems. On the other 

hand it can, in some cases, be prohibitively inefficient. This shortcoming 

is overcome to a degree by GNEWTON at the cost of a somewhat more limited 

applicability and more algorithm complexity. 

A second shortcoming of these methods is that it is difficult to extend 

them.to several dimensions. Indeed, in order to preserve the feature that 

all roots are computed, the computational effort must increase at least ex- 

ponentially with the dimension of the space. For the same reason it is dif- ' 

ficult to extend MAXFINDER to many dimensions. 

Conclusions 

We have developed some methods for computing the real roots of a real 

valued function in a finite interval. These methods are novel in that their 

convergence does not depend on the customary "initial guess"; one can conclude 

that the function has no roots, if that be the case; and if it is not, one can 

compute all the roots of the function in the interval. On the opposite side 

of the coin, these methods appear to be substantially less efEicient than the 

notably efficient but erratic method of Newton. This penalty in efffciency may 
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be a reasonable price to pay Eor the definitive nature of the results obtained. 

This is particularly true if these algorithms are to be used as subalgorithms 

within a larger program, in which case human supervision of a trial and error 

search would not be practical. 
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APPENDIX 

Proof of Theorem 

Suppose first that f(a) = 0, Then from Step 2 of Algorithm 1: 

i 
1 = ' la, a, a, . . ..I 

Suppose now that f(a)>0 (to fix ideas). For any 

xi1 if E(xQ>0, then f(x)> 0 V x E 
[Xi> xi+l] l 

Indeed from Step 2 of Algorithm 1: 

M’ (x i+l-xi) =f (Xi)> 0 

From the LLpschitz condition 

(1) f(x) - f$) > - M' (x .. xi)2 - M (xi+l-xi) vx < x [ Pi+1] 

Hence: 
f(x) 3 0 V x d[ii, xi+11 i = 0, 1, 2,.,,. 

I i Thus the sequence (xij is strictly monotonically increasing. If it is 

finite, it must be true that for some k, “k > b since only this condition 

leads to a Stop command in the algorithm, In this case: 

Since b, Xt&&+] d(X) h as no roots in [a,b ] , 

Conversely, if the sequence is infinite, then for every i : 

Hence the sequence has a least upper bound x*(_b, Since the sequence is 

monotonic, it converges to x*, Therefore, as was shown above, 
f(x*) = 0 

on the other hand from (1) there follows: 

f(x) > 0 Y xE [a,x*) 

Hence H is the smallest x* in [a,b] such that f(x+) = 0. 
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X 

X 
0 

COhXIITIONS PATH 
THROUGH ALGORITHM 

1 (>r j 1-2-6-8-9-10-l - 

l-2-6-8-9-10-1 

1 <E p F-2-3-4-5-9-10-1 

I 

1-2-6-7-8-9-10-l 

i 

REMRKS -j 

I 
i 

--/ 
-! 

- 

N, initialized to I 

NE comptlted as 1 
-._ .--_ .-_I_ -- ._.. --__.--- - -I 

Transition of f(x) from 
I I 

>E to <c 

tj is left hand end of interval 

There is 

at least one such interval, ficnce 

N is set to 0. _- _ --_- .._. -- _ll.l--_ .- 

-- - ----.-I_ ~-~ 

Transition of f(x) from 
I I 

<c to >e - 

q3 is Right hand end of interval 

where f 
I t 

(E. Set value of j I 

to j + 1 as index of next such I 

I 

1 

interval. 



TABLE II 

- - ”  

Algorithm 

ROOTPINDER(27: > 

ROOTFINDER(10 TT ) 

ROOTFINDER(2Oz-) 

GNEWTON(2 TT ) 

- 

GNEWTON(L0 TT ) 

GNEWTON (20n) 

BISECTION 

NEWTON 

k 

0 

1 

2 

0 

1 

2 -- 

0 

1 

2 

0 

1 

2 

0 

1 

2 I- 

O 

1 

2 

0 

1 

2 

0 

1 

2 

t-l0-2 *j <=lo4 
-- 

7.7 12.3 

56 565 

4 4 

42 72.7 

283 2825 

19 19 

84 145.3 

566 5650 

37 37 

18.7 1 
I 25.7 

46 92 

7 7 

22.3 ] 30 

95 " 153 

15 I 15 

24.7 
i 

33 

115 
/ 

218 

18 ‘18 
! 

10 
j 

17 

-c * 

I 
! 

z‘ m 

S 7 

7 13 

'55 DC 

6 ;: 10 -6 

17 

5656 

4 

103.3 

28280 

19 

206.7 

56560 

37 

33.3 

161 

7 

37 

211 

Remarks 
-*-^. - 

(*) (See below) 

(*> (See below) 

PI_ 

(*> (See below) 

(*) (See below) 

(*) (See below) 

15 1 - 

4o i 
(*) 3 roots To get 
total funct+on eval- 

325 I uations multiply; 
entry by 3. 

18 

23 

* 

.I ' 

BISECTION cannot 
LI converge 

m 

7 

21 

m NEWTON cannot 
converge 

Average Number of function evaluations per root for various algorithms. 
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TABLE ITI 

2n 0 

1 

2 

0 

1 

2 -- 

0 

1 

2 

.41 

1.22 

.57 

1.88 

2.98 

1.27 

3.4 

4.92 

2.06 

2.42 

.57 

2.79 

18.46 134.03 

5X degraded 

Lipschitz Constant 

1.27 1.27 

4.4 5.17 10 x degraded 

25.92 174.03 Lipschitz constant 

2.06 2.06 - 

Efficiency of GNEWTON relative to R.OOTFI?DEK as a function of Lipschitz constant 

-.---, --- 

k 
-2 

E =lO 

--- 
-4 

fz =lO 

.48 

6.14 35.13 

.57 

-6 
c= 10 

l 51 

---- 

REMARK 

Optirrmn Lipshcitz 

Constant 

(M ' , M") , accuracy ( E ) and function (fk (x) = k + Sin 2ZX ). 
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TABLE IV 

pschitz ; 
Instant k 

,+.-- 

0 

2r 1 

0 

1 , 

0 

1 si 1 

es 

-2 * 
E =lO 

---- 

1 

1 

1 

.84 

.48 

.47 

-76 

.40 

.39 

-4 
E=lO 

1 

1 

.86 

.60 

.47 

.78 

.42 

.39 

--. 

-6 
cc10 

_.--II_ I 

1 

1 

1 

.90 

.76 

.47 

.83 

*SO 

-39 

__.--“___-..-.-- _- ,...,.. .- 

Remarks 
-- , .._..." . . . . ----.., --- -., - ,-_ ,,..,, __ . . . . .._. _, 

Optimum value 
of Lipschitz 
constant 

Efficiency of ROOTFINDER (Ml) relative to ROOTFINDER (2 n ) 
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Lipschitz 
Constant -- 

TABLE V *-.-- 

K 

0 

1 

_- r 
1 1 

1 1 Opticrum value 

of 1,ipscllirz 

1 1 constrnt -- 

.17 .16 

.20 .20 

.21 

I 

i .21 1 -- 

.08 -08 

.lO. .lO 

.ll .11 

Efficiency of GNEWIION (M”) relative to GNEhTON (2 7i > 
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TABLE VI I 

.-.--- 

:OOTFINDER 
:ompared to 

ZSECTION 

EWTON 

k 

0 

0 

1 

2 

E = 10 
-2 

~~- 

1.3 

co 

% 

.65 

.13 

w 

- 

-4 -6 
c= lb 6 =lO 

1.38 

fx 

cc 

.57 

.02 

x 

I.35 

OS 

SC 

.41. 

.004 

oc) 

Remarks 

Optimum Lipschitz 
constant used.for 
ROOTFINQER 

Bisection cannot 
converge 

Optimum Lipschitz 
constant used for 
ROOTFINDER 

Newton cannot 
converge 

Efficiency of ROOTFINDER relative to BISECTION and NEWTON. 
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k 
-- 

0 

1 

2 

0 

1 

2 

E=lO -2 E -10 -4 
" 

.54 .56 

co 

t -- 

co 

m co 

.26 .27 

.15 -14 

m 03 

c =10 
-6 

.69 

w 

03 

.21 

.13 

cc 

Optimum Lipschitz 
constant 1Ased for 
GNEWTON 

BISECTION cannot 
converge 

Optimum Lipschirz " 
Constant usccl for 
GNEWTON 

NEWTON cannot 
converge 

Efficiency of GNEW.ON relative to BISECTION and NEWTON 
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. . 

TABLE VIII 

.,^-. .-_ 111* , 
Algorithm Compared 
to ROOTFINDER (2 7 > k =o kc1 

ROOmINDER (2 x ) 

ROOflINDER (XI T: ) 

GNEWTON (2 7.r ) 

GNEWTON (20 x > 

BISECTION 

NEWTON 

-0: / .I I 
.41 

I 
1.22 

.31. .49 

+----- 

.77 0 

1.53 
I 

8 

k=2 / Remarks 

.57 I 

.22 GNEWTON's perfar- 
mance degrades Sy a 
factor 1~2s than S , 

0 BISECTION cannot 
converge for k 1 1 

0 NEWTON cannot 
converge for k = 2 

Efficiency of varigus algorithms relative to the optimum ROOTFINDER algo- 
rithm for f =lO 
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r 
8L 1 
, 

I 

“0 
b 

fb,) < 0 

Figure 1. The bisection method works 

Root, 

Figure 2. The bisection method fails 
(there do not exist ,uO , vO e [ a,b ] such that f(uO) f(vo) < 0) 

8 b 

Figure 3. The bisection method fails 
(there is no root) 
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b 

Figure 4. Newtou’s method is very. very good 

‘Figure 5. Newtou’s method is horrid 
(because of an irlflectiori point near the root) 

Figure 6. Newtons’s method is horrid 
(because there is uo root) 
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Figure 10. Analysis of Algorithm 2 
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COMPUTE flx,l 

Figure 14. Flow chw of Algorithm 3 
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Figure 16. Flow chart of Algorithm 4 : GNEWTON 
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Figure 17. Rootfinding using GNEWTON 

73 roots 

1 root 

0 (b) 1 

Figure 18. The function fk = k + sin 2nX on [O,i j 

g :I; 
(c) k = 2 
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M’large - small steps 

Figure 19. Effect of M’on step size of ROOTFINDER 
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AN IMPROVED ITERATIVE METHOD FOR OPTIMIZING 

SYMMETRIC SUCCESSIVE OVERRELAXATION 

Vitalius Benokraitis 
Applied Mathematics and Sciences Laboratory 

U.S. Army Ballistic Research Laboratories 
Aberdeen Proving Ground, Maryland 21005 

ABSTRACT. An algorithm is proposed to determine the optimum relaxation 
parameter wo as well as the spectral radius of the iteration matrix S 

wO 
corresponding to the symmetric successive overrelaxation method. The 
algorithm is based on the work of Evans and Forrington and Young. Computa- 
tional results indicate that the improved algorithm converges to the 
optimum parameter even when the scheme of Evans and Forrington fails. 

1. INTRODUCTION. Consider the linear system 

(1) - Au = b 

where A is a real, symmetric, positive definite matrix of order N. The 
real N-vector b is given and the N-vector u is to be determined. 

Systems of the form (1) arise in the finite difference solution of 
boundary value problems involving elliptic partial differential equations. 
In particular, we shall be concerned with the generalized Dirichlet problem 
involving the differential equation 

L[u] = & (Ag) +$ (C$+ Fu = T 

where* A = A(x,y) > 0, C = C(x,y) > 0, and F = F(x,y) c 0 in R u S. Here 
R is a bounded connected plane region and S is its bouKdary. Given a 
function g(x,y) continuous on S, we 'seek a function u(x,y) twice continuously 
differentiable in R and continuous on S such that L[u] = T in R and u = g 
on S. 

In order to apply the method of finite differences, we superimpose over 
the region R a grid consisting of a network of horizontal and vertical lines 
spaced at intervals of h = Ax = Ay units apart. For simplicity, we assume the 
spacing to be uniform, although this is not a necessary requirement. 

Now for some h0 and some (x0, yo) in R, we consider the set "h 
0 

which contains all points of the form (x + iho, y0 + jho) for integers i 
and j. Following Young [1974], we assum that for any point of n 

h0 
which 

lies in R, the four adjacent points lie in R or on S. Furthermore, this 
property is assumed to hold for all h such that ho/h is an integer. More- 
over, we define Rh = "h n R and Sh = fib n S. 

*The coefficient A = A(x,y) should not be confused with the matrix A of the 
system (1). 
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= 52 n R, the differential equation given by 
(2) i~"r~~a,P~d"~y(X,~~)s~~~~ric bifference equation 

(3) L~[u] = + {A(X + 5, Y) [u b + h, Y) - u (x3 Y)I 

- A (x - ;, y) Cu(x, Y) - u (x .. hs ~11 

+ c (x5 y + +) [u b, Y + h) - u (~9 Y)] 

- c(x, Y - ;)h lx, Y) - u (x, Y - h)l 

+ F (x, Y) u 1x3 Y) = T (x, Y). 

Thus we have transformed the continuous problem to a discrete generalized 
Dirichlet problem. That is, we now seek to determine a function u defined 
On Rh U Sh such that Lh[u] = T(x, y) On Rh and U = g On sh. 

Multiplying (3) by -h* and bringing the known boundary values to the 
right-hand side yields a system of the form (1) where the order of the 
matrix A, assumed to be N, is the number of mesh points in Rh. Besides 
being positive definite the matrix A can be shown to have Property A. Also 
it can be verified that the matrix A is an L-matrix, irreducible, and weakly 
diagonally dominant(Young [19711). 

Another property of the matrix A, which naturally (but not exclusively) 
points to iterative techniques as a mode of s 
that A is large (the order is about 103 to 10 8 

lution for the system (1) is 
) and sparse (i.e., the number 

of nonzero elements is small compared to the total number of elements in A). 

The iterative scheme on which we shall focus our attention is the 
symmetric successive overrelaxation (SSOR) method. In particular, we shall 
be interested in obtaining certain parameters of an accelerated SSOR method. 

2. THE SSOR METHOD. In order to define the SSOR method it is con- 
venient rewrite (1) ln the form 

(4) u=Bu+c 

where I 
B=I -D-'A=L+U 

(5) 
C = D-lb 

and where D = diag (A) and L and U are strictly lower and upper triangular 
matrices,respectively, 
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The SSOR method is defined as follows (Sheldon [1955]). Let u(O) 
be an arbitrary initial approxima i n t 
Au = b, and define the sequence u M, ,,Pl~teu~~lz~lo,(,,,the,s~~tem 

,(n++) = 

(6) 
,(Lu(""+) t "J") t c) + (1 - w) u(n) 

u(i+1) z w(Lu(n+Jd + Uu(n+l) + c) + (1 I w) ,h+Q 

n = 0, 1, 2,... 

Eliminating u (WI we get 

(7) ,(n+l) = s ,b-d + k 
w w 

where 
SW = uw L 

= (I -wu")-l (WL + (1 - w) I) (I - wL)-' (WU + (1 - w)I) 

ku = ~(2 - w) (I - wU)-' (I - wL)*' c 

One of our goals will be to determine the relaxation parameter so that the 
rate of convergence of our method is optimized in some sense. 

Let us look at the SSOR method a little closer. Anyone familiar with SOR, 
will recognize that each SSOR iteration is composed of two SOR half iterations. 
The first half iteration is just a "normal" SOR iteration. The second half 
iteration is another SOR iteration but taking the equations in reverse order. 

Even though one SSOR iteration is composed of two SOR iterations, there 
is a way to reduce the work required for each SSOR iteration by providing 
storage space for an extra N-vector. How this is accomplished can be seen by 
explicitly exhibiting two full SSOR iterations and noting that certain vectors 
are repeated in a pair of half-iterations. 

,h+4) = w(Lu("+J") + U"(") t c) f (1 - w) u(n) 

save Lu("+~) 

,(n+l) = &u("+4) + u&n+') + c) (1 - w) ,(n+&) 

save Uu("+') 

I 
,h+W ) = w(Luh+W + uuh+l ) + c) + (1 - &) Jn+') 

I 

save Lu("+~'~) 

Jn+2) = 4Lu(n+3/2) + uu(n+2) + c) + (1 - ti) u (n+3/2) 

save UU("+~) 
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This scheme is due to Niethammer [1964]. The work required per 
this technique is approximately the same as with the SOR method. 

iteration using 

We noted that the SSOR method can be written as 

u(n+l) = s ,tn) + k 

with SW and kw appro;riately deyined. 

Evidently, SSOR is a stationary iterative method of first degree. It 
is stationary because Syn$fy k are fixed from iteration to iteratio 
of first degree since u dgpends only on one preceding iterate u n . 2) 

It is 

It is well known (Young [1971]) that we must have S(S,) <lin order to guarantee 
convergence. Flere S(S,) denotes the spectral radius of S,. This conditions holds 
if 0 c w c 2 and A is positive definite. Also, if we define the error 

&n) = ,(d _ u 

where u is the exact solution of Au = b, 
appropriate norm) 

we have approximately (in some 

I/m I I = S@& I I An-‘) I I 
and 

1 p 11 = CS(~Jl”l IE(“)l I 

To reduce 1 IS(~) 11 to a fraction, say F, of I we must have 

,h) 

i-b+ E O II 
= IS(SJJ” < r 

and we must iterate n times, where 

We define R(S,) = -log S(So) as the rate of convergence of the SSOR method. 

As indicated, we suspect that the rate of convergence of the SSOR method 

R(S,) = -log S(S,) 

depends on w. Not evident from our notation, the rate of convergence is also 
governed by the ordering of the equations. Given an ordering, the optimum w 
will be considered to be the w which minimizes S(S,) or maximizes R(S,). 
Assuming the "natural ordering", for a certain "good" choice of w = w , which 
depends on upper bounds of S(B) and S(LU), Young [1974] has shown tha the i 
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number of iterations necessar to solve the discrete generalized Dirichlet 
problem is proportional to h- s( . This is the same order of magnitude required 
by the SOR method with optimum W. 

Thus, even if Niethammer's work-saving techniques are employed, there 
seems to be little justification to choose SSOR over SOR. 

However, what is nice about the SSOR method is that the eigenvalues of 
the iteration matrix S, are real and nonnegative (Young,[l971]). Under these 
conditions, it is possible to accelerate SSOR by an order of magnitude by means 
of semi-iteration. (This is not possible for the SOR method, since many of 
the eigenvalues of its iteration matrix L, are complex for the optimal ti.) 

3. SSOR SEMI-ITERATION. Semi-iteration was studied by Varga (1957) and 
Golub and Varga (1961). The optimum semi-iterative method based on SSOR, 
denoted by SSOR-SI,is defined by 

Jn+l) = P,,+~ { &SW utn) + k,) + (1 - ;r) I,#, + (1 - Pn+l) u(~-') 

Here 

z- 

Pl 

P2 

=&T-J 
= 1 

= (1 - u2/2) -1 

2 
0 P, -1 

Pn+l = (1 - y ) , n = 2, 3, ..* 

where 
(5 

Wu) 
= mq- 

S(S,) 
We see that in order to apply SSOR-SI, we must estimate the parameter 

along with W. Using estimates derived, again, by Young [1974], the 
required number of iterations is proportional to h-4, an order of magnitude 
better than SOR. 

4. OPTIMAL PARAMETERS. The parametersw and S(S,) determined by Young 
are not optimal. Habetler and Wachspress (1961) determined what they pre- 
sumed were the optimum parameters: 

w. = 
2 

1 + n - 2a + 46 
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‘- ‘-a 

S(Suo) = Jl - 2a f 48 

1+ 
l-a 

Jl - 2a + 48 

where 

and where v is a vector such that S v = S(S 
wO 

)v. However, these formulas are 
wO 

not usable directly, since these are implicit relationships. Thus we are unable 
to determine w. and S(Sw ) from the formulas since the formulas imply that we 

know the eigenvector v (ind therefore S(Swo) and wo). 

Evans and Forrington [1963] used an iterative technique based on these 
formulas to determine the optimum w and corresponding S(S,). Starting 
with an initial guess of w, the power method on the matrix S was used to 
determine an approximation to the eigenvector associated wit! S(S,). Then, 
via c1 and 8, w and S(S ) were updated by the formulas, and the procedure was 
repeated until w and Sysw) settled down. 

This procedure worked quite well for Laplace's equation. However, our 
numerical results indicate that for certain cases where S(LU) < $, the 
Habetler-Wachspress formulas do not hold, and in turn, the Evans-Forrington 
procedure fails. It was found that the optimum parameters seem to be 

loo = 2 

1+- 

1-m s(swo) = - 
1+/P--O 

Incorporating these formulas into the Evans-Forrington scheme we have a 
new method for determining the optimum parameters w. and S(S ) for the SSOR-SI 
method. The algorithm follows wO 

1. 
v # 0. 

Choose convergence tolerances cl and ~~ and initial values of w and 

2. Iterate with the power method to obtain S(S@) and a vector v such that 

suv q S(s) 
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3. Compute 

a = (VI ~DBv)/(v. Dv) 
6 = (v, DLUv)/(v, Dv) 

4. Compute 

I 

2 

1+n -2cl+46 
w ' al 

2 

1+- 

ffaf48 

ifa> 

it l- 1 - $I - 20 -0 + 4s w lt n-2 1-U a + 46 > if a 148 

5. Terminate process if 

lo - w'l < E' 

Is&)) - S' I < 9 

and choose 

w. = w' 

s(s40) = 5' 

Othemfse set w = W' and go to Step 2. 

5. NUMERICAL EXAMPLE. Ue now apply 
generalized Dfrlchlet prob'lem of the form 

WY) - C(X.Y) = e 1OWY) 

F(x.Y) - Thy) = 0 

the algorithm to a specific dfscrete 
(3). In particular, ltt 

dnd let the region be the unit square with zero boundary values txctpt unity on 
side y = 0. Inltlrlly, t "good* w (Young 119741) wts chostn. Tht toltrrncts 
El =c2= 10-4 were specified. Rtsultr art glvtn in Tablt 1. 
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TABLE 1 

h-' 

OPTIMUM PARAMETERS w. AND S@o) OBTAINED BY ALGORITHM 

Number of 
wO S(Swo) Iterations S(LU) 

20 1.5866 .5866 
1; 

.2329 
40 1.7653 .7653 .2455 
80 1.8742 .8742 35 .2489 

The Evans-Forrington algorithms did not converge in this case. For a more detailed 
discussion of this example and a number of other problems, see Benokraitis [1974]. 
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VP - SPLINES, AN EXTENTION OF TWICE DIFFERENTIABLE INTERPOLATION 

Royce W. Soanes Jr. 
Watervliet Arsenal, Watervliet, New York 

1. Introduction. Since the cubic spline is a special case 

of the Variable Power - splines presented here, the latter may be 

regarded as a generalization of the former. This generalization 

does not take place in the direction of obtaining higher degrees 

of differentiability, however, but rather in the more practical 

direction of obtaining greater flexibility and better local be- 

havior while retaining two orders of differentiability. The 

cubic spline has the optimal property of being the interpolater 

of smallest quadratic mean second derivative; this is a global 

property, however, and as such may conflict with the curve 

fitter’s desire for certain local behavior. Specifically, the 

cubic spline has a tendency to misrepresent the behavior of a 

function which passes from a region of low curvature through a 

region of high curvature. The cubic may underestimate the high 

curvature and overestimate the low, This tendency may be mani- 

fested in the cubic interpolater by the presence of inflection 

points where none are desired. VP - splines make it possible to 

develop a more aesthetically pleasing functional curve from a 

given set of data by eliminating or at least diminishing undesir- 

able local behavior when it is encountered. 
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NOMENCLATURE 

xl<x2<...‘XN is a sequence of nodes over an interval on which 

we desire to interpolate the function y. 

Ri = Xi+l-Xi = length of the ith subinterval. 

yi = known function value at the ith node. 

yi,yy = unknown first and second derivatives at the ith node, 

yi (x) , y; (x) , yy (x) = interpolating function, derivative and 

second derivative at any point in the ith subintexval. 

r- 1 = (X-Xi)/ai 

2. The Basic Form. Consider the following interpolatory 

function defined on the ith subinterval. 

m- n. 
(11 kiyi(X) = ai+biri+ciri’+di(l-xi) ’ 

The parameters mi and ni are positive real numbers and ki = mi 

+ni-mini. ‘To insure a bounded second derivative, mi and ni 

should both be greater than 2. The functions yi (x) and Y;(x) 

can be evaluated at Xi and Xi+1 to obtain ai,bi,ci and di in 

terms of Yi>Yi+lSY; and Y;+~. 

C23 ai = kiyi+~i(miqi-(mi-l)yr-yl+l) 
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(3) bi = ei(-miniqi'*iY~+"iY1+11 

(4) =i = Ri(niqi-yl-(ni-l)y;+l) 

(5) di = Ili(-miqi+(mi-l)yl+yi,l) 

The interpolater is only once differentiable at this juncture, 

. SO we enforce continuity of its second derivative at the ith node 

by setting yy(xi) = ~y-~(xi) and obtaining Eq. (6). 

(61 [aimi-lki(l-ki-1)+~i-lniki-l(l-ki)lYf 

Qi,lki-lniCni-1) (miqi-yl+l) 

Once mi and ni are set for each subinterval, we may solve 

the linear system represented by Eq. (6) (plus end conditions) 

and obtain the nodal derivatives which insure the continuity of 

the second derivative of the interpolater. Setting mi = ni*= 3 

on each subinterval would give us the cubic spline formula. 

3. Effect of Large m's and n's. Some insight into the 

effect of increasing the m's and n's may be obtained from the 

consideration of a special case. Equation (7) may be obtained 

from Eq. (6) by setting mi = ni = m on each subinterval. 

(7) (m-l)(Q+"i-llyi = Qi Cmqi-l-Y~-ll+Qi-l Imqi-YI+l) 
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It is apparent from Eq. (7) that the corresponding linear system 

will become increasingly more diagonally dominant as m becomes 

large, and in the limit as m approaches infinity, yi will be 

given by Eq. (8). 

At the same time, Equations (1) through (5) show that yi(x) 

approaches yi*riQiqi (the linear interpolater) as m approaches 

infinity. 'l'his example indicates that we should obtain a well 

conditioned set of linear equations as we judiciously increase 

the m's and n's to obtain the flattening effect which will pro- 

duce desirable local behavior in the VP interpolater. 

4. Elimination of Improper Inflection Points. When the 

cubic spline is used for interpolation, the curve fitter may 

be faced with the undesirable situation of having yiyi+l<O 

while (qi-y~)(qi-y1,1)<0. These conditions indicate the presence 

of an inflection point in the interior of the ith subinterval 

when qi is between yi and yi+l. This is an aesthetically dis- 

pleasing situation created by the average curvature diminishing 

property of the cubic spline. The cubic is trying to deny the 

existence of a point of high curvature in the function. In 

order to eliminate the undesirable inflection point, of which 

there can be at most one per subinterval, we must insure that 
II It 

YiYi+lL"* This is equivalent to having CidiO. We therefore 

want to enforce condition (9) in the event that qi is between 
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1 
But since Cqi-Yi> (qi-Yi+l ' )<O, condition (9) can obviously be 

enforced by insuring that mi and ni obey conditions (10) and 

Cl13 - 

(101 miZ_CYi+l-Yfll (CLi-Yfl 

(111 niL(Y~+l-Yfl/ (Yf+l”qi) 

Conditions (10) and (11) must naturally be enforced in an itera- 

tive manner if two orders of differentiability are desired, since 

mi and ni must be set before y; and ~f+~ are obtained. 

5. A Local Consideration. A local VP - spline over the 

restricted node set [Xi-l,Xi, Xi*l] will be found useful in the 

initial setting of the m's and n's. If We Set yy(Xi*l) = 0 = 

Yy-1 Cxi,13 I we obtain the following end conditions. 

Equations (12) and (13) can then be used to eliminate yf+l and 

rim1 from Eq. (6) to yield Eq. (14). 

Equation (14) can now be solved for the ratio of ni to mi-1, 
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If we now set y; at each node according to some preferred local 

formula, we may set the m's and n's according to the following 

rule. 

(163 miml = L and ni = LRi if Ri>l 

n. 1 = L and mi-1 = L/Ri if Ri'_f 

Rule (16) sets a lower bound of L on the m's and n's and assumes 

that Ri is positive and finite. If Eq. (15) and Rule (16), are 

used to initialize the m's and n's, Conditions (10) and (11) can 

be used in conjunction with Eq. (6) to iteratively eliminate any 

unwanted inflection points. 

A simple local formula which has been found effective in practice 

for initial setting of the nodal derivatives is given by Eq. (17). 

Cl71 Yi = Clmwi) (Ii-1 + ‘i9i 

where wi = l/f1 + J[(l + q,?)/(l + q;_l)J} 

This derivative is obtained from the slope of the line through 

cx. 1 , yi) which makes equal angles with the left and right chords. 

When this formula is used, it is usually unnecessary to increase the 

m's and n's gradually in order to enforce conditions (10) and (11). 

146 



6. A Simple Computational Procedure. An abbreviated procedure 

which can be followed in most cases is: 

I. Set L equal to a value between 2 and 3. Values 

greater than 3 may flatten the curve too much 

between the nodes. Values closer to 2 will produce 

more roundedness in the interpolater. 

XI. Compute the initial nodal derivatives according to 

Eq. (17) for 2 2 i 2 N - 1. 

III. Set nl = L = mNl and calculate R 
i 

for 2 < i < N - 1 - - 

using Eq. (15). 

IV. Compute the rest of the m’s and n’s using Rule (16). 

V. Solve the tridiagonal set of equations represented 

by Equations (6), (12) and (13) for the final nodal 

derivatives. 

7. Examples. The following drawings, which were produced on 

a graphic display CRT, illustrate the more stable behavior of the 

VP-spline as compared with the oscillatory behavior of the cubic 

spline. Each of the VP-spline curves was computed using the 

abbreviated procedure previously outlined [not making use of 

conditions (10) and (1131. 
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ITERATIVE SOLUTION OF THE TRANSONIC POTENTIAL EQUATION 

D. I:. Adams and Gary Vander Roest 
U.S. Army Air Mobility R&D Laboratory 

Ames Directorate 
Moffett Field, California 94035 

ABSTPACT. The unsteady, transonic small-disturbance equation is a suit- 
able model for the flow on advancing rotor tips. This paper discusses the rela- 
tive efficiency of two implicit iterative techniques used in the solution of 
this nonlinear equation; namely, the point SOR technique and the Douglas-Gunn 
A31I technique. While the two-dimensional calculations of both methods demon- 
strate the effect of varying lift and incident Mach number on a high-speed heli- 
copter rotor, the ADZ technique proved to be the more efficient method. 

1. INTRODUCTION. The advancing blade of a helicopter in high-speed for- 
ward flight often enters the transonic flow regime. This type of flow is 
marked by the presence of local pockets of supersonic flow which are usually 
terminated by a shock. A feature of transonic flow which is beginning to be 
considered is that these flows are intrinsically unsteady. This is especially 
important for the helicopter in forward flight, since the rotor sees a con- 
stantly varying incident Mach number and angle of attack. 

The first treatment of this problem was the paper of Caradonna and Isom 
(ref. 1) where nonlifting three-dimensional flows were considered. It was 
shown that the Mach number variation alone is a considerable source of unsteadi- 
ness. "his treatment used a point SOR scheme to solve the set of nonlinear 
difference equations derived from a mixed differencing of the small-disturbance 
potential equation. However, SOR is often not the fastest technique at our 
disposal. In this paper, an iterative AD1 scheme to solve the nonlinear system 
of difference equations is devised and then compared with the SOR method. 

2. STATEMENT OF PROBLEM. The second-order nonlinear partial differential 
equation to be solved is 

A%t + Wxt = Wxx + 9 
YY 

(1) 

where 

A = Mf+Q2S2/~ ) 

B = [2Mp!F&3)1 (1 + p sin $J) 

C 
1 - Mi(l + p sin 11)~ 

z 

[ 
,r2/3 

- (1 -I- ~)%(l + 1~ sin *)$x 

a 

$ = disturbance potential 

t = time 

2 = chordwise coordinate 
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7 = normal coordinate 

x = Ix/c 

y = (y/c)d3 

and where 

AR= aspect ratio = r/c 

c = blade chord 

MR = blade tncident Mach number due to rotation 

r = blade radius 

:,y z!F physical coordinates 

y = specific heat ratio 

6 = thickness ratio 

u = ratio of forward flight speed to rotational speed, Vw/mr 

$ = blade azimuth angle (measured from the downwind direction) 

The linearized body boundary conditions are given by 

~y(x’o”) = -& [f,,+LY)l (2) 

where f, R 
given by ' 

(x,y), the equation for the upper and lower airfoil surface, is 

(3) 

where T, a. is the thickness distribution and ~1 is the blade angle of 
attack. ' 

The far-field boundary conditions are gjven by 

G(X,Y) = - 4n::,3 tan-l(:y $ , X2 4 y2.+m (4) 

where 

C 
L 

= lift per unit length 
[ (1/2)P~JJC 

and where 

v = total velocity of the rotor 

p = air density 
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The right-hand side of cq. (1) is of mixed type, being elliptic when flow is 
subsonic (ML c 1) and hyperbolic when flow is supersonic (ML > 1). 

Equation (1) is differenced as follows: 

N+l N+l N-t-1 Nfl N+l N+l N-t-1 

= &.C M 6xx$M+l li f (1 - 
YY 

$M+1 (5) 

where 

N = time level 

M = iteration level 

WI" 1 
M+l 

6YY4 

M-t1 =L$ 

[ 

( Ay2 j+l ) 

N+1 

- 2+j + 4. 
M-t1 

J-1 i 
N+l 

cy = 
l- % 2Cl + p sin $J)~ 

&2/X 
- (1 + y)$(l + u sin $) 

E. = 1, E 1 
1 i-1 = for ML < 1 

E z!!E 
i 0, Ei. 1 = 0 for ML > 1 

E = 
i 0, LBl=l for ML = 1 

E = 
i 1, EiBl = 0 for shock point 

The epsilon notation denotes that backward and central differences in the 
x-direction are used in supersonic and subsonic regions, respectively. The use 
of mixed differences is required for stability. Also, this notation indicates 
that the sum of the central and backward operators are used at a shock point. 
This is necessary in order to satisfy the equations in the global sense and 
insure proper shock jump conditions. 
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The differencing of 4 
YY 

is modified on the body as follows: 

+ 
YY 

= -?-- (LQ 2 - @i,l - AY+~) 
Ay?. I 

For the lifting problem, the potential must be discontinuous in the wake 
of the rotor. The difference in potential at this discontinuity is equal to the 
circulation, r. In order to difference across this discontinuity, 9 dif- 
ferencing is modified as follows: YY 

where 

cL r =I--- 
+I3 s 

+ 
2 + 

= i,2 
- 2$ 1 + (9. 

1 -1 
r4 r> 

, 
YY Ay2 

Differencing, as above, yields a set of nonlinear algebraic equations which must 
be solved by iteration. In the course of iteration, one can specify either CL 
and iterate to find the angle of attack (u), or specify u and iterate to 
find C . In the former case, ~1 
at the &railing edge equals r. 

must be updated until the jump in potential 
This is done using 

.N+ 1 
=c1 N - X[$T(X*e,o) - P(x,,,O) - r] (7) 

where A is a relaxation factor (usually equal to one). 

3. SOR METHOD OF SOLUTION. For the SOR scheme, the potential of each 
iteration is updated using 

N 

N 

N N 
M-i-1 RM 

$. l,j 
= 4fj - w + 

Lj 
(9) 

where i,* KM 
i 

is the residual that is defined by eq. (5), with all terms grouped 
on the rig t-hand side. Dij is the sum of the diagonal elements of the 
residual: 

2EiCi (1 - EJ 

'i 
2 A B 

D. 
l,j =-+ Ax2 ---i-z- Ay2 AxAt (i0) 

The relaxation factor w is less than 1 in supersonic regions and between 1 
and 2 for subsonic regions. 

In order to start the problem, the first two time steps are assumed to be 
quasi.-steady (A and B are set equal to zero). This procedure causes no problems 
as long as the starting Mach number is subcritical. 



4. DOUGLAS-GUNN ADI METHOD OF SOLUTION. With this method, it has been 
found necessary to include an artificial $--like term in eq. (5) for stability 
purposes. We now have the modified differehce equation 

N+1 N+l N-i-1 N-l-1 N+l 

'xx+ 
M-!-l +(1-E: (11) 

We have not determined the optimal value of F. However, F = 4OB seems to work 
well for most uses. For convenience, eq. (11) is rewritten in an operator nota- 
tion as N-l-l 

(KI + n&x + Sl+S,>$"+" + $" T#N-a = gN+-' (12) 

where N+l 
N-l-1 F M 

g =- 
/It 9 

I = identify operator 

F A 
K = nt: + at2 

M = iteration index 

N = time index 

Sl = spatial operator in the x-direction = 

N-+1 N+l N+l N-l-1 
M+l 

- cybl (1 - E 
N+l 

S2 = spatial operator in the y-direction = -Avv$ M+l 

BN+l 
,I 

T - 211 
o--s- -6 axnt x 

A Tl = - 
At2 

6 
X 

= $ .- $Jivl 

BN+l 

' = AxAt 

The Douglas-Gunn scheme (ref. 2) is employed to generate the ADI routine because 
it is generalizable to any number of dimensions. Note that the term 
(KI + nu + S1 + S2) contains all the unknowns. 
does notXinclude the 6, 

The original Douglas-Gunn scheme 
operator because they did not consider equations that 
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had mixed spatial-time derivatives. The general Douglas-Gunn recursion rel;l- 
tion for generating AD1 schemes for any number of dimensions is 

N41 I, 
(KI + n6x + (13) 

wlacrt! f4 i:; the ni.lmhcr 01 dimensions, which is 2 for our case, and Cp* is 
some extrapolation from previous time steps. Generally, we have let $* equal 
the previous iterant. The first step of the two-dimensional case is as follows: 

1 
(KX + n&x + S,)i f SF+* + c T,$N-" = gNfl 

R=O 
04) 

The coefficient of i, having both central and backward differences, gives rise 
to either a central or lower tridiagonal matrix. This matrix is solved by a 
combination of the Thomas algorithm and direct elimination. Substituting in 
eq, (13) for the second step (q = 2), we get 

(15) 

Subtracting eq. (14) from eq. (15), yields a simplified step 2, which is as 
follows: 

N+l 

(16) 

KI and S2 generate a tridiagonal matrix. However, n6 adds a term which is 
on a previous column. This column must be solved beforeXwe can move to the 
next column. This imposes a necessary order on the process and the tridiagonal 
inversions march across the grid from left to right. To get started, we let 
the first two time steps be quasi-steady by setting the time index (n) equal to 
the iteration index (m). 

5. RESULTS. Numerous cases were run by both the SOR and AD1 methods, 
using various Mach number and lift variations. The greatest difference between 
these calculations and the results of ref. 1 is the inclusion of lift. It was 
noted in ref. 1 that upstream wave propagation necessitated placing the 
upstream boundary at least 10 chords upstream. With lift, however, this situ- 
ation becomes much more acute, and it was necessary to place the boundaries 
20 chords away (upstream and downstream) in order to obtain stable solutions. 
The ADI method was generally more reliable, as the SOR method often failed to 
converge at higher values of lift and Mach number. However, when the SOR 
method did converge, it agreed almost exactly with the AD1 method. In these 
situations, however, the AD1 method appeared to be about twice as fast as the 
SOR. 

A case, from which identical results were obtained from both methods, is 
shown in fig. 1. In this case, we specify a si.nusoidal CL and find the 
angle of attack. The rotor in the center of fig. 1 indicates the various 
azimuth angles for the CR plots. 
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Unsteadiness is indicated by the effect of flow history on th.' f'low. 
For example, at 111~ rotor posi t inns A and I, the Mirc11 number, ;~ngl.c oI ;Itt;lclc 
and lift <are the same. Also, the solutions obtained are so identical that they 
are plotted on top of each other. Clearly, the flow history plays no role at 
these points and the flows are essentially steady. At blade position D, the 
lift is specified to be zero, and the solution obtained has identical flows on 
the top and bottom surfaces. This is what one expects from steady flows. How- 
ever, one would also expect a zero angle of attack from a steady solution 
instead of the slightly negative angle that was actually obtained. The nega- 
tive angle implies that the flow, up to this point, is unsteady but only 
slightly so. 

In the subsequent blade locations, the flow is decelerating and the lift 
is again increasing. The shock is seen to move forward but does not'diminish 
much in strength. In fact, on the bottom surface, the shock does not go to 
zero strength at all. Instead, it appears at position G to be on the verge 
of popping off the leading edge and proceeding out into space. This effect 
was First noted in ref. 1 for nonlifting cases and is seen with great clarity 
in ref. 3, which uses an AD1 technique very similar to this one. On the top 
surface, the increasing lift allows for the sustenance of the supersonic 
region, and there is no shock popping. However, the shocks are substantially 
stronger than at their corresponding azimuths in the accelerating flow region. 
For example, position H is the mirror image of position B, but the CP dis- 
tributions for the upper surface are quite different. 

Clearly, the effect of unsteadiness is large in a decelerating transonic 
flow. In addition, where there is lift, the difference in unsteadiness can 
be quite different on the top and bottom surfaces. 

6. CONCLUDING REMARKS. The modified Douglas-Gunn ADI is &bout twice as 
fast as SOR and generally more reliable. Present computing times are about 
20 minutes on a CDC 7600 for a two-dimensional lifting problem. This can be 
greatly improved with more efficient programming, a less rigid convergence cri- 
terion, and the use of a variable time step. An interesting approach is taken 
in ref. 3, where the nonlifting two-dimensional problem is treated, using a 
Douglas-Gunn scheme. In this approach, the difference equation is linearized 
in time, thus eliminating the iterations, but requiring a smaller time step. 
It appears that with a combination of the above approaches, unsteady three- 
dimensional calculations would be a practical proposition. We are now working 
toward this end. 

It appears that the inclusion of unsteadiness in transonic flow predic- 
tion is at least as important (and likely more important) than the effect of 
three dimensionality. Decelerating flows are altogether different from their 
quasi-steady counterparts. Also, lift raises the possibility of very unusual 
loads in the second rotor quadrant. 
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CALCULATED TWO-DIMENSIONAL PRESSURE DISTRIBUTIONS ON A ROTOR 
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UTILIZING REAL-TIME TEST DATA ANALYSIS IN 
SYSTEM MONITORING AND CHECKOUT 
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ABSTRACT. For the proper utilization of equipment needed for test 
data on-line acquisition, display, and comparative analysis, some 
novel data management techniques are in the process of development. 

For on-line analysis of test display data, the recognition of 
changing values in the inherent uncontrolled design parameters and 
system output variables must be basic. Also, the display technique 
must accommodate a reasonable number of sets of operating and envi- 
ronmental conditions. 

We must be able to identify shifts in the values of the parameters 
and variables as well as shifts in the weighted contributions of each 
parameter to the output system variable value. Each contribution is the 
product of the quantified parameter value under a given condition set 
and the corresponding influence coefficient. This coefficient reflects 
the sensitivity of the output variable to a nominal change in the pa- 
rameter when measured at the given condition set. In addition, we must 
identify any changes in the gains of the functional equipment components 
and variations in the transmission characteristics of the test data trans- 
port and management system. An observation matrix of the coefficients, 
parameter values, or contributions provides the display vehicle. 

The study adopts a model consisting of seven parameters and five 
sets of conditions. Variations of all quantities are demonstrated and 
companion computations made to show the significance of the variations 
and their identification. 
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I. INTRODUCTION. 

One of the significant developments in process to be applied to 
the test analysis and evaluation of Army materiel systems is the real 
time use of the computer for the: 

1. On-line acquisition and analysis of data. 

2. Display of the test data while the system is under test. 

3. Making comparisons of this test data with stored data from 
a developed reservoir of historical data about similar and current 
systems. Knowledge of the testing subsystem equipment should be 
available for ready reference (see Figure 1). 

One such testing system is in the design and planning stage and called 
project ADAPT (Automatic Data Acquisition and Processing Technology). 
This program is under the direction of the Materiel Testing Directorate 
of the Aberdeen Proving Ground. 

A practical technique for on-the-spot analysis of test display data 
is needed. For such on-line analysis, not only central or “expected” 
values for the parameters must be displayed at the centralized control 
and display area. We must identify shifts in the values of the uncon- 
trolled parameters of the system under test and the testing and instru- 
mentation system. In addition, we must identify any changes in the gains 
of the functional components of equipment and the variations in the trans- 
mission characteristics of the data transport and management system. 

To assist in the understanding of utility and potential application 
for such a system, a study is described where the data display is eval- 
uated as a means for both real time system monitoring and confidence 
status or checkout. A display model for the test item and the testing 
equipment will be applied to a planned group of activities. These 
activities are defined as the set of subtests planned and executed as 
a part of the Test Plan and defined by a Test Directive. One approach 
to this model is the adoption of a Data Observation Matrix as the display 
vehicle. This model has found use wherever one applied techniques such 
as systems modeling by functions (see Reference 1) on parameter-sensitivity 
coefficients (see Reference 2). Figure 2 describes a general form for such 
an observation matrix. 
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It will be our purpose to illustrate the application of analysis 
techniques for a matrix model of seven parameters and five condition 
sets of grouped activities. The complete study of this model involves 
the display for the time variations in the participating parameters and 
their dimensionalized contributions and changes in the parametric 
sensitivities. 

II. DISCUSSION. 

A. Mathematical Background. 

Utility of Observation Matrix for Data Display: 

One evaluation criterion for usefulness for any method of 
information identification and cataloging is that the variationals of all 
system parameters be recognizable, definable, and predictable. We 
have suggested that the mathematical and informational system model for 
a given influence level be described by the coefficients array for the ap- 
plicable engineering equipment and physical. constraints. 

The influence level is defined by the operating subsystem or 
data system gross functions, g or mission phase, the data functional model 
subfunction or component, activity and agency, etc. The (pi) are the 
measured values for the XJ parameters or the set of values found as the set 
to maximize or minimize the criterion - our measure of adequacy/excellence. 

Two cases are of immediate interest. For a change in system 
time of magnitude (At) : 

(1) A shift occurs in the system parameter measurable values 
(polarity included). 

(2) The shift occurs in the influence coefficients, which 
represent either the compatibility potentials or sensitivity potentials of 
the equipment. Transfer or data transmittal characteristics are the inter- 
dependency factors for the variables and the system conditions. 

In both cases, the display integrated parameters and contributions to the 
system objective functions are changed in magnitude. A dependable tech- 
nique must be established for determining whether the shift is made up 
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of type (11, (2), or some combination of these. Variation with system 
condition/configuration (J) should be identifiable. 

A numerical example with seven parameters and five conditions 
or configurations which define the Interdependence relationships will be 
used to Illustrate both cases (1) and (2). The example will also show a 
variation with (J) for one of the seven parameters. We will study these 
for a system time, t = tl , and a time change A tl I a second time t2 and 
time change A t2. The data are available for a consideration of the 
variations consistent with the time interval (t2 - tl), as well as those 
mentioned. 

For Case (1) , where the shift occurs in the parameter values, 
the supporting analysis follows: 

The change in objective criterion equals -- 

C” - c =B1 (XT- Xl) + m a a + Bn (Xn* - Xn) (. 01) 

The corresponding change in subsystem capacity potential or integrated 
parameter is 

wilt - WKi = alfli (Xl* - Xl) + . . . a,Ki (lx: - x,) 

C” .“c= c 

i t 
Wl;i - WKi 

) 

m n 
T=c c 1 aiKJ (Xy - XJ) = 

i J 
c “J (x; - XJ) J 

m n 
E c c 

i=l Jz1 
(aiKJ) (6PJ) = 

(. 02) 

(  l 03) 

t.041 

t.051 
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(Note: The starred quantities (previous page) are values for variables 
at (t1 f A t) and unstarred those at tl .J 

A check test is performed in which all the stimuli parameters 
XJ are set at a fixed constant value (normalized,this is equivalent to 
unity, 11. If this will give a zero change in the objective function 
c = cs I the valid conclusion is that there have been no changes in the 

influence coefficients 
( k %KJ * Superscript (1) identifies check values. 

If both ( c * - c ) and c (B:K - BJK) have a value which is 

J J J 
non-zero for the test of fixed constant values for the parameters, then 
the variations are in the (?iiKJ) . Mathematically, for the change in the 

coefficients, we state tha 

2*-f $2 

J J 

t: 
“~JK - “iJK (.OS:l 

= ‘; - ‘<J ‘0 < ; XJ = p; = p 
J 

= 1 C.07) 

J 

For a shift in the parameter values, we 9ta)te that: 

At 

for X; # X3’ = PJ = 1 

The time sensitivity potential for the parameter XJ is found 
by dividing the expression and value for A XJ for the time shift At 
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by the time interval A t. This sensitivity is identical to the time rate 
of change of the variable XI. 

axJ = 
I 3-c t,K 

change 

" (Ad 

(q X,=J, t 
K 

(. 09) 

I.111 

When the change is in the influence coefficients and not in 
the XT parameters, we must answer the selection question regarding 
equipment deterioration. “Do we need to determine the individual 
change A(aiTK) or the resultant effect?” Let us consider the mathe- 
matical forms needed to answer this question. 

*(; "iJ2J jK,F *( pJxJ ), = 

A c 
a. 

Aw = I.J~J 
Ki J 

* c, -(c”-qK 
For the particular case where XJ = 1, 

for AaiJK = 0 

C.12) 

i’ 22 c I A qpD$ i. 13) 
J 

for AX,= 0 

(.14) 

(. 15) 

(. 16) 
if AaiSK # 0 
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The individual ( AaiJ~j are needed in order to determine or 
verify the change in the subsystem output variable to be derivable from 
the summed weighted influence of the parameters (see Equation 13). 
Fortunately, our matrix technique displays all these quantities and they 
are recognizable. 

For our Case (2), where the shift is in the coefficients and 
not the parameters, we know these facts: 

I*- 1 = C ( 'ii - WKi ) (. 17) 
i i 

"CJK - ai,rK (. 18) 

( h aiJKK) 

= c ( xJ 6; - eJ 
d ) K 

(. 19) 

= c XJ (A& . 
J 

Since our variations with A t are in aiJK, we set XJ equal to plus one, 
then we find: 

= 2 z(a?JK-aiJK )K 
,J i 

= 2 7 (Aai,JK) . 
J i 

(. 21) 
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A priority ranking can be found from this ratio: 

(A%-)xJ = , 
xz 

(Afq,+,) )XJ = 1 (. 22) 

B. Illustration of Technique. 

We will study a system whose model consists of seven 
parameters subjected to five constraints. These constraints describe 
the system parameter interrelationships under five sets of conditions. 

Our five system conditions or constraint inequalities form 
the rows for our Influence Matrix. Seven dominant parameters, which 
are interdependent, form the headings for the columns in the array. 
Nine tables are attached which illustrate the application of our technique 
for identification of the changes in status for the operating equipment. 
Let us consider one system situation which could be represented by the 
coefficient array of Figure 2. The integrated subsystems may be described 
by the seven dominant and critical parameters whose measured values are 
available and accessible as the outputs of the several position references, 
inputs to the circuits for the power controller, and inputs to the path con- 
trol circuits. The five system conditions might define the several constraints 
for a land vehicle during the conduct of a particular set of maneuvers. 

Table 1 has cell values of aiJK at the system operating time tl. 
These coefficients are the interdependence transfer admittances or com- 
patibility potentials. The CKi are the integrated display parameters for 
the several system conditions and represent the limitation on the seven 
term sum of the product of the interdependence coefficients and the appro- 
priate stimuli or dominant parameters (for the specialized case of unity 
value for each of these dominant parameters). The bJ are the corresponding 
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SENSITIVITY - fNFLUENCE TABLE FUR SHIFT IN PARAMETERVALUES WITH (At) 

J-r 

'4 
Xl X2 

Al 853 450 

A2 804 450 

A3 960 675 

A4 450 450 

A5 720 450 

bJ tl at 3797 2475 - 
;=: PJ It21 1.903 0.641 

PJ (tz +dtz) 2.135 0.898 

APJ (Atz) 0.230 0.257 
Aq [. t2 + ttz - tlq 

0.128 0.311 

‘J tq> 2.007 0.587 

bJ P, at tl 7592 1452 

x4 

130 445 

130 445 

155 525 

104 195 

86 455 

605 2075 

1 I 000 0.738 

0.593 0.896 

0.407 0.158 

0.385 0.014 

0.208 0,882 

126 7829 

X5 x6 x7 CKi(PJ’r> 

180 

180 

180 

72 

151 

771 

0.406 

0.056 

0.350 

550 190 2808 

95 190 2124 

120 200 2623 

50 100 1385 

100 

915 

180 1925 

940 c, bj j(PJ = I) 1(= It574 =zCKi 

0.166 0.095 

-0.695 - 0.420 

-0.365 

0.421 

322 

- 0.682 + 0.428 

0.848 0,523 , _ 

776 491 = 12588 
Kat tl 

TABLE 1 



capacity potentials for the unity measured parameter values. This table 
gives the parameter values for three system times-- (tl), (t2), and 
(t2 + At2). 

Table 2 gives the array of cell values at system time (t2) and 
each is the contribution at the corresponding I_ system condition to the 
display parameter. In addition, an optimization study was performed 
for the given array to find the set of weighting coefficients or optimal 
set (pJ*) for amaximization-minimization of the criterion. This set has 
significance for an overall performance evaluation of the operating 
subsystem rather than a status or diagnosis study. 

Table 3 provides the array of display contributions at time tl . 
These values present rather obvious changes in cell values from those 
shown in Table 2. 

Table 4 portrays the contributions at system time (t2 + A t2) 
in contrast with those identified asa part of Table 2 at (t2). 

An optimization study was also performed at this system time 
to find the set (p J) * . 

Table 5 gives the variations in the display contributions for the 
time change of ( A tl) . This array is used to illustrate our Case (1) where 
the shift occurs in the parameter measured values with no changes in 
bi JK) - The change in the integrated display parameter wKi is given for 
each i system condition. The percentage change in the parameter value 
measured at tl is also determined. This set of values shows the sig- 
nificant dominance of XJ for J = 1, 2, and 4. 

Table 6 gives the variations in the display contributions for 
the time change of ( A t2). 
fixed. The change in 

The pJ corresponding to the XJ are considered 
CiA wIci is a positive quantity 282. H-owever, 

the summation 1 (AB,) is the negative quantity (-561). 
J 

Table 7 is a companion array to Table 6, but givinq the changes 
in aiv rather than 6 [aiK(pJ)l,the variation,or (pJ) 6 [aiK ] . The sum- 
mation of the variations in aiJK first with respect to i, and then J is a 
negative quantity (-540). This array is numerically identical with the test 
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TABLE OF CONTRIBUTIONS Ia iK PJ) AT t = t2 

i J -, 
5 

Xl x2 x3 

Al 1644 289 130 

A2 1531 289 130 

A3 1826 433 155 

4 857 287 104 

A5 1371 289 86 

$J 7231 1589 405 

I, 346 0.650 1.312 - bJ1* 

’ (6~ pi)* 9732 1032 794 

x4 x5 X6 

328 73 473 

336 73 82 

387 77 103 

144 31 43 

336 61 86 

1531 316 787 

0.738 0.612 0.880 

1129 193 692 

Individual contribution to w 

* 

x7 

98 

98 

103 

52 

93 

444 

0.490 

WKi fKi 
3035 3322 

2539 2832 

3084 3418 

1618 1666 

232 2 2553 

‘J = 12’ 03 J 125 OO= 
c WKi 

218 f Ki 

i 

( PJ) are optimum values of parameters for the matrix array having individudl cell 

designations “iK ‘J tt2) - The result from an interative , convergent 

process maximizing-minimizing the criterion xi fKi =s[ ST PJ )* 

TABLE 2 



T-+ Xl x2 

‘t Al 1724 264 

A2 lb06 264 

A3 1920 396 

4 900 264 

A5 1440 264 

K III 7592 1452 

5 
2 (agK PJ>** at t = tl = K III 
i=l 

VALUES OF ( aiw pJ)** AT (t = tl) 

x3 x4 

27 392 

27 401 

32 463 

22 172 

18 401 

124 1829 

x5 X6 x7 IWKiJk 

76 466 99 3050 

76 81 99 2554 

76 102 105 3094 

30 42 94 1524 

64 85 94 2366 

322 776 491 
c IWKi)k = 12588 

TABLE 3 



J-, 
‘+ Al 

A2 
A3 

Aq 

A5 

bJ* 

=: BJ*pJ*** 
PJ 

*** 

1 2 

1042 405 

1716 405 

2048 607 

960 405 

1546 405 

8102 2227 

9641 2062 217 903 4 93 121 

I. 1899 

TABLE OF CONTRlBUTJONS AT + m t2 + At2 

Values at t n t2 + At2 

3 4 5 6 7 wlti 

77 398 10 91 17 2840 

77 408 10 16 17 2649 

92 470 10 20 18 3265 

62 175 4 8 9 1620 

51 408 8 17 16 2441 

359 1859 42 152 84 
c 

J ( B*J& = 12815 =xi WK~ 

0.926 0.605 0.486 0.0846 0.613 I.437 

Individual contribution to WKi is I 1 "iE k PJ ***(t2+At2 1 

$?i 

2911 

2720 

3349 

1672 

2481 

c *** i F~jz 13027, Bi q 

to F& is ( "iJK PJ & \ + AQ)} q*** 

*** I pJ I = the parameter value set resulting from optimizing 1 FKi = g; q*‘), 
i 

TABLE 4 



VARIATION IN DISPLAY PARAMETERS 

c i 
AI 
A2 

A3 

A4 

A5 

Element is +m Pr) Q aiJK APJ 
t 1 

for &I 

J4 *I *2 *3 x4 *5 *6 *7 (&ki ) 

116 141 50 6 -66 -375 -82 -210 

110 141 50 7 -66 -65 -82 + 95 

128 211 60 7 -66 -82 -87 +I71 

60 141 40 3 -26 -34 -78 +106 

96 141 33 7 -56 -68 -78 -75 
* \? 

(AK)- (KJ-KJ) 510 775 233 30 -280 -624 -407 z P 237 

bJ 3797 2475 605 2075 767 915 940 

iii (&P, ) =(P; - P,) 0.128 0.311 0.385 0.014 -0.682 0.428 -.033 

cc * WKi 
i J 

No change assumed in aiK from tr to kl +&I) 

Data obtained as differences in Tables 3 and 4 

0.53 1.85 0.016 -0.87 -0.804 +O. 82 

53% 185% 1.6% -87% -80.4% +82% 

TA3LE 5 



VARIATIONS IN EQUIPMENT INFLUENCE COEFFICIENTS. Element is 

Change for (&2) from Tables 2 and 4 . 

= (‘2 + A t2) - t2 

J-F 

i4 Al 

Xl x2 x3 x4 x5 % x7 

198 116 -53 70 -63 -382 -81 

A2 185 116 -53 72 -63 -66 -81 

A3 220 174 -63 83 -67 -83 -85 

A4 103 116 -42 31 -27 -35 -77 

2 A5 165 116 -35 72 -53 -69 -77 

K; -“J =&K (&) 871 638 -246 328 -273 -635 -401 

pJ (tz to t,+&) 
I.905 0.641 I.000 0.738 0.406 0.861 0.515 

Assume that total shift during (At21 is due to changes in a_ip 

(AK), 457 995 -246 430 -672 

PJ 

-737 -778 

nwi 
llWKi 

PJ It2 ) 

-195 -428 

+110 - 66 

+179 -61 

+ 69 +47 

+119 - 31 

c JAM =281.= c( nwKi ] 
i 

1 
A WKi = - 555 

‘J lt2 1 

c A “J = -5621 1 PJ J 

TABLE 6 



i J+ Xl 
t 4 104 

*2 97 

A3 115 

Aq 54 

A5 86 

K; - KJ 1 = ( & JJ 871 

(piJK) = *aKJ 456 

s 
i 

PJ lt2 I 
1.905 

TABLE OF EQUIPMENT VARIATIONS 

pJ fixedj changes in zaF Period = at2) 

x2 x3 x4 X5 X6- x7 

181 -53 95 -155 -44,3 -157 

181 -53 98 -155 -77 -157 

271 -63 42 -164 - 97 -165 

181 -42 111 - 66 - 41 -150 

181 -35 98 -131 -80 -150 

638 -246 328 -273 -635 -401 

995 -246 444 -672 -738 -779 

0.641 1.000 0.738 0.406 0.861 0.515 

Values of Table 6 contributions changes divided by pJ to form 
( 6aiJK ) 

Priority 5 1 7 6 4 3 2 
Ranking of 
Deterioration 

c 6 aiJK A WKi 
J -428 -195 -66 +l 10 

- 61 +1t9 

147 +(59 

- 31 +119 

UE 6 aiJK 
J i 

1-540 

Equals (By - B$ 
/ 

($+I - B,J++I) 

nWKi 

El 1 6 aijX 
0.45 

-1.66 

-2.93 

+1.47 

-3.84 

TABLE 7 



condition of setting all of the parameter measured values to the zame 
constant -- unity. The criterion value (-540) is then the zs(BJ - BJ). 
A priority rankin% can be found from the ratio of each (B; - BJ) to the 
next parameter BJ + 1 - BJ + 1. 

Table 8 gives the data of Table 7 now with the cell value as 
the percentage change which has occurred in { aiJK ) for the time change 

nt2. These are the shifts or deterioration in the operating characteristics 
of the equipment defined for their influence corresponding to XJ. 

Table 9 records the array of aiK i b coefficients for their values 
after the A t2 shift has occurred. .These are the total deteriorated values 
for each interdependence cell. Of some significance are the % change in 
the display parameters (for PJ = 1). These cover a percentage change from 
-18% to + 3.3%. The corresponding changes in the true display parameters 
with PJ(t$ actual values show a range of -6 e 8% to +5.5%. The change in 
criterion value z J bJ for PJ = 1, t = t2 is from 11,574 to 10,326. The data 
indicates a consrant percentage change in equipment transfer characteristics 
with varying system conditions, except for the one case of (J = 4). This 
latter variation would provide a basis for forecasting a nonlinear type of 
deterioration with system operating conditions. Such a variation does not 
lend itself easily to malfunction isolation, identification, and corrective 
action. 

111. CONCLUSIONS. 

The study is a first cut at enlarging our knowledge concerning the 
applicability and limitations of the Observation Matrix Technique for Data 
System Cataloging. What we have learned from this study: 

1. The matrix technique will permit the identification of variations 
in display integrated parameters (system quantities WKi) and the individual 
contributions due to each selected dominant equipment or software parameter. 
These parameters may be functional in origin -- hence an activity or action. 

2. It will permit the separation of the variations into changes in 
values of the influence or interdependence (interface) coefficients or po- 
tentials or changes in the measured values of the parameters. The 
parameters can also be equipment signals inputs or stimuli. 
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J-t 

; 4 

A2 

A3 

A4 

A5 

(&‘bJ 

XI 

967 631 

901 631 

1075 946 

504 631 

806 631 

456 

3797 

12% 

995 

2475 

40.2% 

INFLUENCE MATRIX FOR %fi@Q I 

X3 x4 X5 

77 540 25 

77 543 25 

92 567 16 

62 306 6 

51 553 20 

-246 444 -672 

605 2075 771 

-40.6% +21.4% -87% 

% x7 cKi 
AcKi A Wi -- 

PJ = 1 cKi WKi 

107 33 2380 -18% -6.8% 

18 33 2058 -3.2% +4.1% 

23 35 2562 -2.4% +5.5% 

9 30 1432 +3.% +4.2% 

20 30 1894 -1.6% +4.9% 

1 bJ(t2) q 10,326 
J PJ=l 

-738 -779 - -540 

915 940 

-81% -83% 

= ZT GSJK 

J i 

TABLE 9 



3. The test in which the parameters are replaced by a constant 
value (normalized to unity) does prove of value in identifying the source 
of deterioration (equipment operating characteristics aiJK -- or parameter 
value). 

4. It permits an analysis of the variation as percentage change in 
aiJK OI” parameter Values PJ for XJ. 

5. A variation in the equipment characteristic with system condition -- 
such as gain, impedance, etc. , is identified with stimulus, parameter, and 
condition. 

6. The matrix technique is directly applicable to an optimization 
analysis which gives a set of parameter stimuli values for comparison 
with actual measured values. This optimized set ( PJ) is the desired 
parameter set for the several system conditions or configurations. This 
optimized set may be the desired weighting for display parameter contribu- 
tions consistent with the integrated display values wKi and { 6 J XJJ , 

7. Item 6 proposes the utility of the matrix and optimization tech- 
nique as an in-process design and on-line data analysis tool for selection 
of the distribution of display contributions for each equipment or data 
parameter and, hence, selection of the array of signal levels for parameter 
central values, 

Iv, RECOMMENDATIONS. 

1. The observation matrix technique for test data display and 
analysis be subjected to additional study as a basis for on-line operator 
decision making. 

2. The matrices be stored in the same form as used for real-time 
data display as a part of a historical data bank. 

3. Additional design and utility studies be directed to the suggested 
techniques as a basis for ADAPT and competitive DMS. 
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LETHALITY OF A SPECTRlM OF SHAPED CHARGE PROJECTILE 
ANTI-TANK FIREPOWER-KILL EFFECTS EVALUATED BY 

THE AWAM-1 COMPUTER MODEL 

Donald F. Haskell 
OS Army Ballistic Research Laboratories 

Aberdeen Proving Gxound, Maryland 21005 

ABSTRACT. This papes describes an anti-tank lethality study pex- 
formed by the use of AVVAM-1, the first version of a new armored vehicle 
vulnerability analysis computer model developed at the Ballistic Research 
Laboratories. In this study the vulnerability of a Russian T55 tank to 
a spectrum of anti-tank shaped charge projectile terminal ballistic effects 
is calculated and analyzed. This is done to illuminate the behind-armor 
effects characteristics and their combinations that axe most lethal. The 
measure of lethality employed in this study is the probability of achieving 
a firepower kill given a hit on a specific point on the tank. 

Lethality of the various projectile effects is calculated for direct 
frontal attack of the tank. It is assumed that there is an equal proba- 
bil,i.ty of hitting any point on the vehicle attack aspect. In this manner 
the individual projectile effects may be separated from weapons systems 
hit probability. Typical shaped charge projectile spatial distributions 
are employed for the mass, speed and numbers of fragments produced behind 
the armor. The end product of the study is a ranking of the damage p.ro- 
ducing effects of the various projectile types according to their lethality 
in causing a firepower kill. This was obtained by a sensitivity study of 
the effects of the various parameters. The conclusions of the study are: 

1. Over the range of the variables (noxmalized to the standard 
HRL 3.3 inch cone diameter precision shaped charge) from 0.6 to 1.2, 
firepower-kill lethality of the shaped charge jet projectile in direct 
frontal attack of the Russian 1'55 tank is most sensitive to changes 
in cone diameter and the number and speed of behind-the-axmor fxag- 
ments (given in decreasing order of influence on lethality of the 
seven variables studied in this investigation). 

2. Over the range of the standard charge noxmalized variables 
between 1.2 and 1.8, lethality is most sensitive to changes in jet 
velocity, cone diameter and the number of behind-the-armor fragments 
(given in decreasing order of influence). Here again, 1ethaIity is 
least sensitive to jet breakup time. 

3. On the other hand, jet breakup time exerts the highest effect 
on lethality over the standard charge normalized variable range from 
1.8 to 2.0. This is followed by jet velocity and cone diameter. Mass 
of the behind-the-armor fragments has the least influence on shaped 
charge lethality over this range. 
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4. A marked functional dependence of P 
K/H 

upon the behind-the- 

armor fragment spray total kinetic energy was found. This informa- 
tion should be very useful in the design of new shaped-charge anti- 
tank projectiles. it should also provide guidance in the vulnerability 
reduction of tanks. 

1. INTRODUCTION. The object of this investigation was to determine 
which of seven selected shaped charge munition parameters exert the most 
influence on the probability of achieving a firepower kill of the Russian 
T55 tank given a random hit on the tank in a direct frontal attack. The 
seven parameters are: the liner cone base diameter, munition standoff 
distance from the target, jet velocity, and jet break-up time as well as 
the number, mass and speed of the fragments generated behind the tank 
armor by the jet. Each parameter was varied independently over a pre- 
selected range of values to assess its effect on the firepower capability 
of the tank. In addition, the effects on kill probability caused by varia- 
tion of combinations of these parameters was also studied. 

AVVAM-ll was used to perform the study, AVVAM-1 (Armored Vehicle 
Vulnerability Analysis Model, first version) is a conceptual model and 
associated digital computer code developed at BRL to analytically assess 
the vulnerability of armored vehicles. AVVAM-1 can be employed to per- 
form both armored vehicle vulnerability and anti-armor weapons design and 
analysis studies. This first version of AVVAM treats components and per- 
sonnel subjected to penetration and/or perforation damage mechanisms. 
The attacking munition may be a shaped charge or kinetic energy projec- 
tile, or a shaped charge or Misznay-Schardin land mine. With additional 
effort the present model may be extended to include other damage mechan- 
isms. Although originally developed for armored vehicles, the code is 
not restricted to armored vehicles - it may be employed to assess the 
vulnerability of any structure. 

AWAM-1 is an outgrowth of an exjsting digital computer code devel- 
oped by H. Ege of the Surface Targets Branch, Vulnerability Laboratory, 
BRL. Ege’s code is based on relations between the characteristics of 
certain weapons and vehicle damage observed from the res-ults of antitank 
tests conducted under the auspices of the UK, Canada and the IJS in Canada 
during 1959.2 

1 D. F. Haskell and M. J. Reisinger, “Armored Vehicle Vulnerability Analysis 
Model - First Version,” US Army Ballistic Research Laboratories Interim 
Memorandum Report No. 85, February 1973. 

2 Canadian Armament Research and Development Establishment Report Q-21, 
“Tripartite Anti-Tank Trials and Lethality Evaluation (U) ,‘I-Final Report 
Part I, November 19S9, (SECRET). 
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AWAM-1 is based on analytical evaluations of the damage inflicted 
on individual critical components and the aggregate effect of these 
damaged components on compartment and overall vehicle vulnerability. 
To do this, AWAM-1 accounts for not only the damage inflicted on com- 
ponents in the direct line of fire, or shotline, of the attacking muni- 
tion but also the damage inflicted by armor spa11 and/or munition fragment 
sprays on components located away from the munition shotline. In addi- 
tion, AWAM-1 accounts for the degrading (or possible enhancing) effects 
on the spa11 and/or fragment sprays caused by components positioned 
between the armor and the critical components. Thus, the potential pro- 
tection afforded critical components by intervening components is included 
in the AWAM-1 calculational procedure. 

2. DESCRIPTION OF AWAM-1. AVVAM-1 is composed of two major computer 
codes. One of these characterizes the target. The other code characterizes 
the munition-target interaction and pesforms the vulnerability evaluation. 
The target characterization code describes the target and identifies, 
locates and determines the presented area of critical components. It also 
provides information concerning components that are located between the 
vehicle armor and the critical components. 

To generate the target description information, AWAM-I employs the 
GIFT (Geometric Information for a Target) code.3 The GIFT code is an 
improved version of the existing MAGIC code.4 The identification, loca- 
tion and presented area determinations of critical components and the 
intervening component information is generated by a subcode within the 
GIFT code called RIP (Rays Initiated at a Point). 

The second major code employed in AVVAM-1 encompasses the terminal 
ballistics of the attacking munition and the post-plate-perforation 
characteristics of plate spa11 OY munition fragment sprays. In addition, 
this second code calculates the vulnerability of selected components 
within the vehicle as well as compartment vulnerability and overall 

vehicle vulnerability. Because of its functions, it is called the P3 and 

C3PKH (Post-Plate-Perforation and Component, Compartment and Combat 
Vehicle Probability of a Kill given a Hit) code. 

In operation, AVVAM-1 selects critical components within the target 
and then evaluates the extent of damage and kill probability for each 
selected munition aim point in a given view of the target. It does this 

‘Lawrence W. Bain, Jr., and Mathew J. Reisinger, “The GIFT Code User 
Manual, Volume I Introduction and Input Requirements,” BRL Report No. 
1802, July 1975. 

4 Armament Systems, Incorporated and Propulsion Development Department, 
“MAGIC Computer Simulation,” Volumes I and II, Naval Weapons Center 
Technical Note 4565-X-71, Volume I and Volume II, May 1971. 
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by determining the armor thickness in the direction of the shotline of 
the attacking munition and the number of intervening components between 
the vehicle armor and critical component. It then utilizes the behind- 
the-plate characterization of a specific munition to calculate kill 
probabilities given a hit for all or selected critical components within 
the vehicle, This whole process is accomplished by firing a large number 
of parallel rays at a given attack angle and azimuth into the target. 
Each individual parallel ray then spawns new rays that are initiated at 
the munition exit point on the armor interior surface. These new rays 
are used to search out the critical components, define their position, 
shielding, and presented area. Then the post-plate,-perforation subcode 
converts terminal ballistics input data into an expected number of hits 

into each of the critical components and finally the C’PKH subcode 
determines the probability of a kill of these components for the expected 
number of hits. The kill probabilities for all the critical components 
within a given compartment may be combined into compartment mobility (M), 
firepower (F), and complete or catastrophic (K) kills. Values for M, F, 
and K kills of the whole vehicle may also be determined. 

A flow chart summarizing the operations of AVVAM-1 is presented by 
Figure 1. In this figure Box 1 represents the target input, Box 2 is 

the RIP-section of the GIFT code, Box 3 is the P3 section and Box 4 is 

the C3PKH section. The C3PK11 section provides the output in terms of 
probability of a kill given a hit. Also indicated in the figure- is Box 
5 which indicates an iteration scheme that may be employed for multiple 
views. Since the sections represented by Boxes 1, 2, 3, and 4 provide the 
PK/H output for a single view, results for multiple views may be obtained 
by iterating through Boxes 2, 3, and 4 fox each view desired. 

The code operates as follows: The particular target description is 
input through Box 1 on cards and the specific munition is input by cards 

through Box 3. Information for the P3 section is handled by card input. 
After the target is described and the critical components identified, 
for a single vehicle view, RTP selects a starting point on the vehicle, 
fires a main ray at the starting point, and essentially determines the 
position, shielding, and presented area of all the critical components 

in the vehicle in relation to the shotline of the main ray. The C3PKH 
code calls on the Post-Plate-Perforation code to supply the behind the 
plate spa11 data and main munition shotline information to include number 
of fragments, size, and speed of fragments. Next, it calculates the 
expected number of fragments to hit a given critical component, and then 
the probability of killing that component given a hit. It does this for 
each critical component identified by the RIP code for the particular 
shotline selected. All the critical components axe evaluated for the 
first shotline. The RIP code then moves to a new shotline (or shotpoint) 
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and the probabilities of a kill given a hit are calculated for all the 
components in the view of the new shotline. This process is continued 
until the whole view of the vehicle is completed. At this point the out- 
put of the AWAM code is the following: Probability of a kill for each 
critical component in the vehicle, a set of compartment M, F, and K kill 
probabilities and overall vehicle view probability of M, F, and K kill 

values. During these calculations the C3PKH code in conjunction with the 

I’ 3 code account fox the mass and velocity attrition of the shotline and 
spa11 fragments as they perforate intervening components between the exit 
point on the armor and the specific critical component under evaluation 
at that time. 

3. STUDY CONDITIONS. As described previously, the object of this 
investigation was to determine which of the following parameters has the 
most effect on the firepower kill lethality of a shaped charge projectile 
used in a direct frontal attack of the TSS tank: liner cone base diameter, 
standoff distance, jet velocity, jet breakup time, and the number, mass 
and speed of the behind-the-armor fragments produced by the jet. Each of 
these parameters was varied independently over a selected range of values 
and AWAM-1 was used to calculate and follow the attendant variation in 
firepower kill probability given a hit on the tank (PK,H). The effect on 

‘K/H of certain combinations of parameters was also calculated. To do this, 

equal variations in each of the parameters in the combination were employed. 

Those parameters used to characterize the shaped charge jet itself 
were varied over the following range of values: 

. Liner cone base diameter = 0.0508 m -0.2032 m 

. Munition-target standoff distance = 0.08382 m -2.0955 m 

. Jet velocity = 2,000 m/set -20,000 m/set 

. Jet break-up time = 25 microsecs -200 microsecs 

The behind-the-armor fragment characteristics produced by the above range 
of conditions were automatically calculated internally by AWAM-1. In 
addition, other calculations were made in which the behind-the-armor 
fragment characteristics (number of fragments, fragment mass and fragment 
speed) were varied independently of the normally expected values that 
would otherwise be governed by the jet parameters. In these cases, the 
number of fragments, their mass and speed were made proportional to those 
produced by a standard shaped charge and were varied over the range from 
0.01 to 10 times the particular standard charge behind-the-armor charac- 
teristic value. That is, the numbex of fragments-to-number of fragments 
from the standard charge ratio, fragment mass-to-standard charge fragment 
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mass ratio, and the fragment speed-to-standard charge fragment speed 
ratio were varied from 0.01 to 10. 

The standard shaped charge5 is a 42', apex angle, copper cone loaded 
with octal explosive in a light confining wall of aluminum. A diagram of 
this charge is shown in Figure 2. All linear dimensions in the diagram 
axe in inch units. It will be referred to as the "standard charge." The 
nominal liner wall thickness is .081 inch 1.206 mm) and the outside 
diameter at the base of the cone is 3.3 inches (84 mm), The total liner 
weight is .61 lb C.277 kg), the explosive weight is 1.93 lbs (.875 kg), 
and the aluminum body weight is 1.14 lbs (.517 kg). The standard cone 
diameter and standoff as well as the jet constants of this standard charge 
obtained experimentally from flash radiographs are as follows: 

Cone diameter = 0.0832 m 
Standoff = 0.16764 m 
Jet velocity = 8,300 m/set 
Break-up time = 103 microseconds 

The 4'55 tank was assumed to be Sully combat loaded and directly 
attacked in the front (zero azimuth and elevation) by the shaped charge 
projectile. A planar gridwork of GO.96 cm square cells was erected over 
the front of the tank normal to the attack direction. A shotline, to 
simulate a projectile flight path, was fired in the attack direction at 
a random point within each cell. 
measured by the firepower P 

In this manner the projectile lethality, 

K/H' was evaluated for strike points over the 
whole front of the tank. Then these individual cell (or shotline) PK,llts 
were averaged together to obtain a single firepower kill P K/H' represen- 
tative of the particular set of parameter values being evaluated. 

The GIFT description of the T5S tank consisted of approximately 6.70 
components. Of this total about 400 were considered critical components. 
About half of these were considered critical to the tank's firepower. 
In this AVVAM-1 analysis, 5 rays to simulate behind-the-armor fragments 
were fired at each of these 200 firepower critical components. 

4. RESULTS AND DISCUSSION. The study results obtained by use of 
AVVAM-1 are illustrated in Figures 3 through 14 and Tables I and II. 
Figures 3 through 6 show the effects on average firepower kill P K/H Of 
independent variations in the basic shaped charge projectile jet charac- 
terization parameters. In these figures the ordinate corresponds to P K/H 
and the abscissa corresponds to the jet parameter. The jet parameters are 

5 R. DiPersio, J. Simon and A. B. Merendino, "Penetration of Shaped-Charge 
Jets Into Metallic Targets," BRL Report No. 1296, September 1965, pp. 16-17. 

192 



displayed as a ratio of the actual parameter value-to-the value of that 
parameter exhibited by the “‘standard charge.” For example, in Figure 3, 
at the abscissa value equal to 2, the cone diameter under investigation 
is twice the size of the standard charge cone diameter, ox .0168 m 
(6.6 in.). Each parameter was varied while the remaining parameters were 
kept constant at the value exhibited by the standard charge. In the cone 
diameter case the standoff was maintained equal to that of the standard 
charge i..e., equal to two cone diameters. 

As to be expected, the figures show that average P 
K/H 

increases with 

increasing cone diameter, jet velocity and breakup time and that P 
K/H 

decreases as standoff is increased. The ‘K/H and its slope vary contin- 

uously with cone diameter. On the othex hand, both P 
K/H 

and its slope 

vary irregularly (almost discontinuously) with jet velocity and bxeak- 
up time. Figure 5 depicts a plateau in PK,H over the jet velocity-to- 

standard charge jet velocity ratio from 0.6 to 1.3. A wider plateau exists 
in the relationship between P 

K/H 
and breakup time as shown by Figure 6. 

In this case the plateau extends from breakup time-to-standard charge 
breakup time ratio equal to 0.4 to approximately 1.6. 

The relationship between PK,H and standoff illustrated in Figure 4 

is interesting. As to be expected, P 
K/H 

decreases with standoff over the 

range studi ed. However, this decrease is less than would be expected- 
the functional dependence of P 

K/H 
on standoff is quite weak. It is much 

less than it is wi.th the other jet parameters. The jet lethality is not 
significantly degraded at standoffs much greater than standard. 

Figure 7 illustrates the effect on P 
K/H 

of simultaneous and equal 

variation of the jet parameters. As before, the abscissa represents the 
value of the parameter relative to its value exhibited by the standard 
charge. Although here it represents the value of all four jet parameters 
relative to the standard charge case. For example, at the parameter 
value-to-parameter value of standard charge ratio equal to 0.5, the P K/H 
computation was performed with the cone diameter, standoff, jet velocity 
and jet breakup time all set equal to one-half the parameter values cor- 
responding to the standard charge, As indicated by the figure, PK,H is a 

smooth, increasing function of the four jet parameters. Its rate of 
increase with these four parameters is higher, as to be expected, than 
its variati.on with change in the parameters individually, although the 
combined effect is not the sum of the effects of the individual parameters. 
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Figure 8 SIIOWS the effect of individual and combined change in the 
behind-the-armor fragment parameters on PK,H. The functional relation- 

ship between P 
K/H 

and the fragment parameters is similar for all three: 

number of fragments, fragment mass and speed. PK,H increases rapidly as 

the fragment parameter-to-standard charge parameter value ratio increases 
from zero to 1 ox 2. Beyond this region, the PK.,” rise levels off. As 

indicated, equal variation of all three fragment parameters at the same 
time yields higher P 

K/H 
than individual variation of these parameters. 

However, the combined effects do not show as high an increase over the 
individual fragment parameter variations as may be expected beforehand. 

The slopes of the curves from Figures 3 to 6 and 8 in which the jet and 
fragment parameters axe varied independently are plotted in Figures 9 and 
10. Figures 9 and 10 exhibit the P 

K/H 
sensitivity to the various para- 

meters over a range of these parameters. As indicated, there is no single 
parameter that has the most influence on P K/H over the range of independ- 

ent parameters shown. Between normalized variable from 0.6 to about 1.2, 

pK/H is most sensitive to cone diameter. Above 1.2 and below about 1.8 

jet velocity has the most effect on P 
K/H * 

Between normalized variable 

equal to 1.8 and 2.0, the jet velocity displays the highest influence on 

pK/H. 
The effect of standoff, as described earlier, is minimal- over the 

whole range. In regard to the fragment effects, the number and speed of 
the fragments show ahout the same influence on P 

K/H 
which, over most of 

parameter range shown, is considerably higher than the fragment mass 
influence. 

The slopes of the curves in Figures 9 and 10 over the range of para- 
meter-to-standard charge ratio from 0.6 to 2.0 at discrete points within 
this range axe listed in Table I. The slopes are normalized to that of 
the cone diameter. In this manner those parameters that have higher, or 
lower, inf luencc on P 

K/H 
than the cone diameter axe easily distinguished, 

Table II lists the parameters according to their decreasing order of 
influence on PK,H over the variable value normalized to standard charge 

range from .6 to 2. As indicated, cone diameter, jet velocity and jet 
breakup time exhibit the highest influence on PK,H over the range of 

variables shown. 

Figures 11 to 14 are log-log plots of P 
K/H 

versus behind-the-armor 

fragment total kinetic energy. These figures axe included hexe to illus- 
trate the relationship between behind-the-armor fragment kinetic energy 
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and average kill probability. Figures 11, 12 and 13 show the calculation 
results for i,ndependent variations in the fragment parameters. In 
Figure 11 the total fragment kinetic energy was increased by increasing 
the number of fragments with their mass and speed held constant and equal 
to the mass and speed exhibited by the standard charge. In Figure 12 
the mass of the fragments was varied while the number and speed were main- 
tained equal to those characteristic of the standard charge. The fragment 
speed was varied in Figure 13, and in Figure I4 all three parameters were 
varied simultaneously and equally. The lines in these figures were drawn 
in by “eye.” These figures indicate that there appears to be a definite 
relationship between behind-the-armos fragment total kinetic energy and 
resultant l’K/He In each figure, PK,H increases with total fragment 

kinetic energy, Furthermore, there axe two distinct regions of fragment 

influence, with kinetic energy of the osdar of lo4 to 105 joules as the 
demarcation zone between these two regions. Fragment kinetic energy has 
a much larger effect on PK,H in the lower kinetic energy region than in 

the higher region. 

5 .:.. - CONCLUSIONS. 

1. Over the range of the variables (normalized to the standard 
BRI. 3.3 inch cone diameter preci.sion shaped charge) from 0.6 to 1.2, 
firepower-kill lethality of the shaped charge jet projectile in direct 
fxontal attack of the Russian T5.5 tank is most sensitive to changes in 
cone diameter and the number and speed of behind-the-armor fragments 
(given in decreasing order of influence). Over this same range, jet 
breakup time exerts the least influence on lethaIi.ty of the seven vaxi- 
ables studied in this investigation. 

2. Over the range of the standard cha,rge normalized variables 
between 1.2 and 1.8, lethality is most sensitive to changes in jet veloc- 
ity, cone diameter and the number of behind-the-armor fragments (given 
in decreasing order of influence). Ilero again, lethality is least sen- 
sitive to jet breakup time. 

3. On the other hand, jet breakup time exerts the highest effect 
on lethality over the standard charge normalized variable range from 1.8 
to 2.0. This is followed by jet velocity and cone diameter. Mass of 
the behind-the-armor fragments has the least influence on shaped charge 
lethality over this range. 

4. A marked functional dependence of P 
K/H 

upon the behind-the- 

armor fragment spray total kinetic energy was found. 
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Table T. 
pK/Il Sensitivities Relative to Cone Diameter 

VAHIAHl,E VAHIAHl,E -6 -6 .8 .8 1 1 1.2 1.2 1.4 1.4 1.6 1.6 1.8 1.8 2.0 2.0 

CONE DIA. CONE DIA. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

STANDOFF STANDOFF .OOS .OOS -,008 -,008 -.024 -.024 -.057 -.057 -.079 -.079 -.I74 -.I74 -.203 -.203 -.217 -.217 

JET VELOCITY JET VELOCITY .172 .172 0 0 0 0 0 0 6,263 6,263 2,333 2,333 1,855 1,855 1.681 1.681 

BREAKUP TIME BREAKUP TIME 0 0 0 0 0 0 0 0 0 0 0 0 2.203 2.203 14.493 14.493 

NUMBER OF FRAGS. NUMBER OF FRAGS. .211 .211 .236 .236 ,246 ,246 .359 .359 .351 .351 .435 .435 .319 .319 .304 .304 

t4ASS OF FRAGS. t4ASS OF FRAGS. .072 .072 ,098 ,098 ,114 ,114 .156 .156 .316 .316 .261 .261 .145 .145 .058 .058 

FRAGMENT SPEED FRAGMENT SPEED .187 .187 .226 .226 .237 .237 .286 .286 ,202 ,202 .319 .319 .261 .261 ,116 ,116 
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Table II. PK,H Sensitivities in Descending Order of Influence 

INFLUENCE r 
HIGHEST 

LOWEST 

NOTE: 

CD: 
VJET : 

Tl: 
s: 

NF: 
SF: 
MF: 

.6 

CD 

NF 

SF 
--- 

VJET 

MF 

S 
--I 

Tl 

VARIABLE VALUE NORMALIZED TO STANDARD CHARGE 

MF MF MF MF 

S s S S 

VJET VJET VJET VJET 
--------- --- 

Tl Tl Tl Tl 

Cone diameter 
Jet velocity 
Jet breakup time 
Shaped charge standoff distance 
Number of behind-the-armor fragments 
Speed of behind-the-armor fragments 
Mass of behind-the-armor fragments 
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DEVELOPMENT AND OPTIMIZATION OF SIGNAL PROCESSING 
UTILIZED IN A MINE DETECTION SYSTEM 

Abram Leff 
U.S. Army Mobility Equipment R&D Command 

Fort Belvoir, Virginia 22060 

ABSTRACT. Based upon an extensive R&D program a broadband microwave 
technique has evolved which can be utilized to rapidly scan roads and reliably 
detect both metallic/non-metallic cased AT mines. In order to optimize 
mine detection capability and minimize false alarms, processing algorithms 
had to be developed and evaluated. field data was initially recorded on 
analog tape for off-site processing. This data was utilized to develop 
potential processing algorithms. 

To permit the evaluation of algorithms in real-world conditions, a 
mobile real-time feasibility system was designed and fabricated. This 
system incorporated a CDC 469 minicomputer which allowed storage in 
memory of up to six algorithms, as well as the control programs for the 
system. Flexibility incorporated in the design and the addition of a 
keyboard unit provided the capability to utilize any one of the six 
algorithms or vary most test parameters in the field, by simply changing 
an address in the System Control Unit or CPU. 

This paper will discuss utilization of a minicomputer in the development 
of an optimized processing algorithm for mine detection. 

1. INTRODUCTION. Considerable data processing and analysis effort has 
been expended with the objective of developing target discrimination techniques 
for detecting road mine responses in the presence of normal background 
responses. The goal of this effort was the development of field-operable 
software that optimizes the probability of detecting AT/AV mines under 
field conditions while concurrently minimizing the false alarm rate. 

The inherent nature of the data analysis problem dictates a tradeoff 
between the probability of target detection vs. the false alarm rate. 
This relationship in a specific situation depends upon the particular 
field conditions encountered; therefore, large amounts of test data had to be 
gathered from a considerable variety of test site conditions in order to 
optimize detection vs. false alarms. 

Initially, field data was recorded on a four channel analog tape recorder 
and was off-line converted to digital data format and recorded on IBM-compatible 
magnetic tape which then could be played back in various ways to produce plots 
of the desired data parameters. This digitized data also formed the basis 
for the development of the processing algorithms by means of computer 
analysis. 
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2. STATEMENT OF PROBLEM. To attack the basic data analysis problem, 
which was to develop a field-operable software system maximizing target 
detection while minimizing false alarms, a methodical investigation was 
initiated to (a) define the general target responses, (b) select the most 
favorable processing methods, (c) find the best way to represent the data, 
(d) identify the decision rules for discrimination between mine signature 
and background data, and (e) minimize the computational complexity needed to 
perform the task. 

Based upon the results of the various analysis and processing schemes 
which were applied to test data, it was concluded that two initial processes 
were essential: (a) calculation of a background estimate based on preceding 
data inputs, and (b) normalization of the input data with respect to 
the background estimate. The latter is required because of the large 
differences in absolute amplitude levels in the various frequency channels 
caused by frequency roll-off of the antennas, and because of different 
attenuation levels in the soil. 

3. ALGORITHM DEVELOPMENT. The first useful algorithm developed was 
named Target Amplitude Descriptor, or TAD, where for each channel and at 
each consecutive position the ratio between the input data and the background 
estimate was established, after which these ratios were averaged for all 
channels of a particular antenna pair. 

Logarithmic TAD plots were made from the recorded test data using 
the amplitude information Rij ( ratio between receive and transmit signal 
levels in dB as measured at position i and frequency j) in the following 
manner: 

j=n 

Log TADi =201Og {~ z: Aij/Bij 1 (in dB) 
j=l 

where: A,. = 
‘J linear value of Rij (by using: Aij z.10 Rij'20) 

n = number of frequency channels 

B ij = linear value of background estimate at position i and 
frequency j, determined as follows: 

B ij = (1 * ~1 1 xB~-1 ,j + ~1 x Ai- ,j 

where c1 is a constant chosen such that the background estimate relates to a 
selected distance: 
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-2AXj 

a= 1 _ e-Dziiy 

where AXi = position increment in meters 

"Decay" can be defined also as the trailing distance where the relative 
weight of the background contribution is equal to 13,5%. This process 
is known as exponential smoothing (i.e. gives greater weight to most 
recent data), with the decay analogous to two time constants in an R-C 
filter network. Expressed in terms of ~1: 

2AXj 
Decay = - ln (1-o) 

Initially all mines responses were differentiated on TAD plots because 
the target data was not excluded from the background estimate, in essence 
reducing the target responses. To correct this, a threshold condition 
was initially inserted in the determination of the weighting factor ~1. 
In test areas with large background fluctuations, however, the background 
peaks would also be excluded from the background estimate when the 
threshold was exceeded. 

Average (ASUM) although originally developed as a modifier for the 
weighting factor to dynamically exclude target responses from the background 
estimate, the process designated ASUM proved to be a most successful 
algorithm. ASUM is defined as follows: 

n 
1 

ASUMi = n C Anij 
j=l 

where: 

n = number of frequency channels 

Anij = the normalized data at position i and frequency j 

Aij - B ij 
Anij ' 

uij 

and 

A.. = 
13 

linear value of amplitude data for position i and frequency j 
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B** 13 = exponentially smoothed background estimate for position i and 
frequency j. 

oij = standard deviation, obtained from the exponentially smoothed 
estimate of the variance. 

Bij and oij are determined by: 

B** 1J =B i-1,j (lwa) + +-l ,j 

oij 
2 2 = ui-l,j (1-a) + a(Ai-l,j - Bi-l,j)2 

where the weighting factor a was initially: 

= , 
7 - 

,-ZAXildecay 

where 

AXi = position increment between samples at i and i-l 

Decay = the distance prior to position i where the relative weight of 
the contribution to the background estimate is down to 13%. 

The weighting factor was later modified to: 

a2= { 
~11; if ASUMi IO.9 

0; otherwise 

and finally to: 

“3 = al/(1 + ASDMi4) 

The weighting factor was modified in order to compensate for the 
effects of varying background levels as a function of soil conditions and 
moisture conditions. 

Many more attempts were made to further improve target discrimination 
by evaluating statistical methods and methods using magnitude and/or 
duration of target responses. As a result, six algorithms were developed 
for evaluation in real-time, real-world field tests with the feasibility 
model. 
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4. FEASIBILITY MODEL. To provide real-time test results and 
flexibility in the selection of test parameters (position and frequency 
sample intervals, frequency range, etc.), a mine detection feasibility 
model incorporating advanced discrimination techniques was designed 
and fabricated. (See block diagram, Figure 4-l). A programmable 
minicomputer (CDC Model 649) was incorporated into the system to 
increase the data processing capabilities, an X-Y recorder was added 
to provide real-time plots of test results, and a four-channel analog 
instrumentation recorder was employed to record the test data for off-site 
processing and analysis. 

This feasibility s 
tractor (G.E. Model E-15 J 

stem was installed on an electrically powered 
as shown in Figure 4-2. Field tests were 

conducted (and continue to be conducted) at various field sites, with 
the purpose of evaluating the real-time discrimination techniques 
that were previously developed utilizing an off-line system. 

The electronic components of the feasibility model consist 
primarily of a transmitter, a receiver, a System Control Unit (SCU) and 
the data processing subsystem (CDC 469). As described in the 
subparagraphs that follow, the receiver compares the phase and amplitude 
of received signals to the transmitted signal. The resulting phase 
and amplitude data are examined by the data processing subsystem for 
indications of the presence of a mine under the detector heads. 

4.1 FEASIBILITY SYSTEM OPERATION. The major system 
components -- transmitter, receiver, system control unit, processor 
and power supplies -- are housed in an equipment enclosure which mounts 
to the front of the tractor. The antenna switches mount near the 
search head at the end of the frame, and the shaft encoder that 
correlates mine detector data to search head position and operating 
speed is driven by a rear wheel on the tractor. 

The System Control Unit (SCU) responds to synchronizing pulses 
from the position encoder and control commands generated via the 
keyboard unit, producing sweep control signals for use by the 
transmitter. The transmitter signal originates in a voltage-controlled 
oscillator (VCO) whose output frequency is proportional to input 
sweep voltage. The VCO output is power-amplified to approximately 
1 watt and supplied via a directional coupler and solid-state 
switch to the transmit antennas, with a -20 dB output of the coupler 
supplied as a reference to the receiver. 

The receive antennas connect via another solid-state switch to 
the receiver. The SCU synchronously controls the two antennas switches, 
providing the scanning sequence that selects each transmit-receive 
antenna pair in turn. The receiver contains a synchronous detector 
that yields an amplitude output and a phase detector that yields the 
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phase data signal. Receiver outputs are digitized and processed by the 
SCU and CPU. 

4.1.1 SYSTEM CONTROL UNIT. In addition to generating scan 
sequence commands in response to position encoder pulses, and generating 
sweep control voltages and antenna switching commands, the SCU processes 
amplitude data supplied by the receiver, detects target responses in the 
processed data, and activates the target alarm and identifies the position 
of a detected target. In particular, the SCU produces control signals 
for system operation. 

Various computer operational commands and any one of the processing 
algorithms stored in the computer memory can be addressed via the SCU 
by means of appropriate keyboard entries. The keyboard is also employed 
to set up the SCU control circuits which establish the test parameters 
for a particular operation, as follows: 

(1) Frequency Increment - Amplitude data supplied by the receiver is 
sampled at intervals as the frequency range is swept, and the frequency 
change during a sample is defined as the frequency increment. The 
frequency increment is selectable over a range from 10 MHz to 150 MHz in 
mu.ltiples of 10 MHz. 

(2) Start Frequency - The start frequency is defined as the frequency 
chosen for the low end of the swept frequency range, and is selectable in 
multiples of 10 MHz from 300 to 990 MHz. 

(3) Sample Interval - The sample interval is a measure of the 
duration between each frequency sample, and is selectable over a range 
from 0.1 ins to 1.5 ms in multiples of 0.1 ms. 

(4) Number of Sample Intervals - The number of sample intervals per 
sweep (up or down) is selectable over a range from 1 to 15 intervals per 
sweep. 

(5) Transition Time - When a sweep reaches the end frequency (either 
high or low), it dwells at this frequency for a selected time period to 
allow the antenna switches to select the next antenna pair. This transition 
time is selectable from 0.1 to 1.5 ms in multiples of 0.1 ms. 

(6) Number of Sweeps - The number of sweeps per scan normally 
corresponds to the number of antenna pairs in the search head array, thus 
allowing one sweep per pair. The number of sweeps per scan is selectable 
over a range from 1 to 16. 

(7) Scan Rate - The scan rate is the number of complete scans 
(sweeping all antenna pairs) per unit of travel, The selectable rates are 
25, 50, 100 and 200 scans/meter. 
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4.1.2 CENTRAL PROCESSOR UNIT (CPU). The processor employed in the 
feasibility model is a CDC Model 469 minicomputer with 8K words of plated 
wire memory. Word length is 16 bits, and the cycle time is 1 vs. There 
are 42 instructions, and the CPU responds to direct, indexed direct and 
indirect addressing modes. 

The function of the processor is to analyze the digitized data 
supplied by the SCU and determine, with a high degree of certainty, whether 
a received response is caused by a mine or some other anomaly in the ground. 
If the presence of a mine is indicated, an output signal is generated 
far use in sounding an alarm. 

The 8K memory in the processor stores and protects all the processing 
algorithms, and also contains the operational programs for the SCU. 
Thus, by means of the control keyboard, any of the various algorithms can 
be selected, and parameter changes to both processing algorithms and 
SCU programs can be entered at any time, as desired. 

Through use of the computer peripherals, the contents of the memory 
can be changed as desired by connecting the system to the programmer's 
console. Changes can then be entered using magnetic tape, paper type, or 
via the teleprinter. A monitor oscilloscope is available for displaying 
the contents of the memory. 

5. CONCLUSIONS. Utilizing the feasibility model, a test program 
was performed in order to evaluate the developed algorithms as well as 
several detector head configurations. Six algorithms were stored in 
memory in the CDC 469 minicomputer and could be selected with the keyboard, 
for operation in the system. Nominal default values were included for the 
variable test parameters such as decay and position increment as well as 
for threshold values or conditions applicable to certain algorithms. All 
these could be changed by addressing a defined location in the CPU by 
means of the keyboard. In addition, two versions of ASUM were included 
to establish accuracy requirements: one in floating point and one in 
6-place fixed point. The latter provided insufficient accuracy and was 
later dropped. 

From the start it was apparent that performance of any algorithm using 
one or more thresholds hinged on the margin over which these threshold 
values could be used at any location and with any soil composition or 
moisture content. Obviously, under operational conditions, it would not 
be feasible to obtain a specific threshold value for the encountered soil 
conditions. One could hardly be expected to operate over a road to 
establish the required threshold value, then go back over it to detect 
any possible mines. 

After a lengthy, time consuming series of tests at several test sites, 
it was found that threshold values varied widely with different soil conditions. 
With the need for a priori knowledge of soil conditions established, the 
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further use of threshold dependent algorithms were abandoned for the 
practical reasons stated above. 

Real Time field evaluation of the TAD and ASUM algorithms indicated 
that best performance could be achieved with ASUM (floating-point version). 
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AUTOMATED CONTROL, DATA ACQUISITION, AND ANALYSES 
FOR HYDRAULIC MODELS OF TIDAL INLETS 

D. L. Durham; H. C. Greer, III; and R. W. Whalin 
U. S. Army Engineer Waterways Experiment Station 

P. 0. Box 631, Vicksburg, Miss. 39180 

ABSTRACT. An Automated Data Acquisition and Control System (ADACS), 
which was developed (Durham and Greer, 1975) at the Waterways Experiment 

Station (WES) during the past two years, has been expanded to provide 
automated control, data acquisition and analyses for hydraulic models 

of tidal inlets. ADACS configuration consists of a minicomputer with 
32K 16-bit words of memory, an interval timer (1 psec), an analog to 
digital 12-bit converter with 64 analog inputs (+ 10 volts) and 45 kHz 

multiplexer, 96 sense/control lines, a magnetic tape controller with 

two g-track tape drives, a moving head disk controller with one dual 
disc drive (removable and non-removable platters), one matrix electro- 

static printer/plotter, and an ASR 33 teletype unit. 
ADACS controls the hydraulic generation of the tide in the tidal 

inlet model by providing a programmable analog voltage to the hydraulic 

tide generator. The programmable tide controller can simulate a tide 
composed of one to N tidal constituents for as many tidal cycles as 

required. Model tidal elevations are recorded by ADACS using a bubbler 

system which measures small hydrostatic pressure changes associated with 
changes in tidal elevations in the model. The bubbler system consists 

of a high precision pressure transducer, a scanivalve device for sequencing 
input ports, and 48 pressure inputs. The pressure transducer can be 
calibrated prior to and at selected time intervals during each tidal 

test to provide accurate, updated calibration data for scaling voltage 
(pressure) data to tidal elevations. In addition to collecting tidal 
elevation data, tide velocities at specific model locations are monitored 
by using miniature, electromagnetic current meters. Besides controlling 

the tide generator during a tidal test, ADACS acquires the above tidal 
data (elevations and velocities) including calibration information and 
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test parameters and records these data on magnetic tape for future 

analyses and permanent storage. 
Data analyses include scaling and editing of original data, least 

squares harmonic analyses of tidal data (elevation and velocity) for 
amplitude and phase of various tidal constituents, plots of original 

data and superimposed harmonic constituents, and analyses of residual 

variances. Verification of hydraulic tidal inlet models, which are 
geometrically distorted models scaled on the Froude model law, requires 

artificially simulating in the model the frictional effects associated 

with prototype roughness of bottom and sides of channels and ovexbank 

and marsh land roughness. The relative phase lags of major tidal constituents 
from one specific location to another in the prototype and the measurement 

of these phase lags in the model provide a means for estimating the 
amount of roughness and specific model areas requiring artificial roughness 

in order to achieve model verification. 

These procedures for spatial definition of roughness, full. model 
verification, and model testing using ADACS and associated automation 

procedures have been successfully applied in hydraulically modeling 

Muxxells Inlet, South Carolina. The required time for model verification 
and testing, as well as data analyses, has been significantly reduced. 

In addition, the quality,and quantity of model data has increased with 
minimal cost increases. Thus, better information can be made available 

on which to make sound engineering decisions regarding the planning and 

design of proposed engineering changes in tidal inlets. 
1. Introduction. Over the past decade, automated processing techno- 

logy has evolved from large, expensive computers to minicomputers and 

microprocessors. With this evolution, the physical size and cost of 

automated processing systems have greatly decreased with a minimal 
decrease in system capabilities. Cost reductions for such systems have 
resulted in economic justification of the use of minicomputer and micro- 

processors to a specific task or group of specific operations; whereas, 

large computers can be justified economically only for multiple operations 
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and tasks. The automation of physical, hydraulic modeling techniques 
has lagged automation efforts in many othe? fields mainly because of 

cost justification and the requirements of highly specialized instrumentation 

(e-g. sensors), However, needs for such automation have existed for many 
years. These needs are the result of requirements for (1) real-time model 
control decisions, (2) quasi real-time data analyses, and (3) mOre 

accurate and reliable model data for engineering and environmental 

interest studies. 
One mission of the Hydraulics Laboratory of the U. S. Army Engineer 

Waterways Experiment Station is the physical modeling of hydraulic prob- 

lems associated with the activities of the Corps of Engineers, as well as 

other government and private agencies. Hydraulic problems associated 
with wave phenomena and the effects of these phenomena in harbors, tidal 

inlets, and along the open coast are the primary modeling interests of 

the Wave Dynamics Division (WDD) of Hydraulics Laboratory. Over the 
last three years, WDD has been very successful in automating 132 the major 

aspects of its physical models for wave and tidal inlet studies. Major 

automation efforts were devoted to (1) model control, (2) model data 

acquisition, and (3) model data reduction and analyses. The subject of 
this paper is a description of the automated system, which has been given 

the name "Automated Data Acquisition and Control System" (whose acronym is 

ADACS), for wave and tidal models and its general application to tidal 

inlet model studies. 
2. SYSTEM CONFIGURATION. The automated system for wave and tidal 

inlet models has two primary functions: (1) automated acquisition of 

wave and tide data in a format (magnetic tape or disc) compatible for 
digital reduction and analyses and (2) automated control of model sensor 

calibration and of the wave and tide generators. The design, development, 

and configuration of automated systems to perform these functions with 
particular applications to wave models were presented in Reference 1. 

System configuration (Fig. 1) of ADACS consists basically of the following 

four subsystems: 
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a. Digital data recording and controls. 

b. Analog recorders and channel selection circuits. 

c. Wave/tide sensors and interfacing equipment. 
d. Wave/tide generators and control equipment. 

The first subsystem is basically a 32 K, l&bit word minicomputer 

with I/O and storage devices, analog/digital packages, and a timing 
package. Details of this subsystem were presented by Durham and Gxeer 

(1975). The analog recording subsystem is (1) a backup for the digital 

data recording subsystem and (2) a visual display fox operator in- 

spection of analog signals from model sensors. This subsystem has manual/ 

automated selection and control of five, 12-channel oscillographs and a 

test point center fox manually monitoring a selected channel as to system 

setup, calibration, and signal condition. 
The model sensor subsystem includes instrumentation for both wave 

and tide sensors. Details of the wave sensor subsystem and calibration 

procedures were presented in Reference 1. The wave sensor subsystem 
consists basically of the following four components: 

a. Wave height sensoxs and stands. 

b. Power supplies and signal conditioning equipment. 

C. Manual and automatic calibration equipment. 

The sensox subsystem for tidal heights includes the following major 

components: 

a. Bubble tubes, stands, and high pressure supply. 

b. Scanivalve with manual and automated controls. 

C. Precision pressure transducer. 

d. Power supplies and signal conditioning equipment. 

The last subsystem includes controls for both wave and tide generators. 

Controls for both mechanical and electxohydraulic wave generators can 

be provided by ADACS. Start/stop commands axe available for mechanically 
gear-driven wave generators; however, controls for wave period and 
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amplitude must be supplied manually. For the electrohydraulic wave 

generator, ADACS provides a programmable analog voltage as a command 

signal to the servocontroller of the electrohydxaulic actuators. The 

wave period and amplitude for these wave generators are controlled by 

ADACS. 

The command signal to the tide generator is a programmable analog 

voltage which is supplied by ADACS through one channel of the digital to 

analog converter. The tide generator has the option of receiving this 

command signal from ADACS or accepting an analog voltage from a pro- 

grammable cam and reference potentiometer arrangement. This Latter 

control scheme is used as a back-up ox alternate control to the ADACS 

control and until recently has been the primary control of the tide 

generator prior to installation of ADACS. In addition to the command 

signal, the tide generator has four other major components which are 

(a) differential amplifier and power supply, (b) bubble tube positioner, 

(c) hydraulic-pneumatic amplifier, and (d) hydraulic cyclinder and flow- 

control gate assembly. 

Basically, the tide in a physical model is generated from cyclic 

exchanging by controlled flow a predetermined volume of water between 

the physical model and a tidal reservoir (sump). Figure 2 is a schematic 

of the tide generator and controls. The programmed command signal causes 

a change in the vertical position of the bubble tube relative to the 

water level in the model. This position change perturbs the equilibrium 

position of the pneumatic-hydraulic amplifier and results in a differential 

hydraulic pressure applied to the hydraulic cyclinder activating the 

flow-control gate. The movement of the flow-control gate is in a direction 

to correct the perturbed equilibrium condition of the pneumatic-hydraulic 

amplifier by changing the water-surface elevation in the tide model. A 

feedback circuit from the hydraulic cyclindex to the differential 

amplifier/bubble tube positioner provides a “damping effect” to prevent 

gate overshoot and unstable oscillations. Thus, any tidal constituent or 

progressive tide can be used as the forcing function for the tide 
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model by progxamming ADACS to produce a command signal harmonically 

representing the appropriate forcing function. 
3. TIDAL HEIGHT SENSORS. Data, which are acquired by ADACS from 

tidal inlet models, consist of time histories of water surface variations 

relative to some reference water level. For specified tide conditions 

at the generator, tidal elevations are collected at selected locations 

within the tidal model. These data are used to calculate mean tide 
levels, tidal ranges, arrival times of high and low water, and the phases 

and amplitudes of specific tidal constituents. Al though various types 

of tidal height sensors are used by the Hydraulics Laboratory, a tide 
sensor system developed and implemented within the last year for use 

in tidal inlet models is presented in this paper. For lack of a better 

name, this sensor subsystem has been labeled the “bubbler system.” This 

system measures small hydrostatic pressure changes associated with changes 
in tidal elevations in the model and consists of a high precision, pressure 

transducer, a scanivalve device for sequencing input ports, and 48 pressure 

inputs . 
To employ the bubbler system (Fig. 33, a small plastic tube is 

inserted some small distance into the water. The outside diameter of 

this bubble tube is required to be small to minimize blockage of tidal 

flow, etc. The tube is connected through a throttling valve to a 
regulated pressure supply. This valve or restriction serves to regulate 

air‘flow and isolate the bubble tube from other bubble tubes and the 
supply pressure. Each bubble tube is connected to a common pressure 

transducer, which is parallel with the throttling valve and high pressure 

source, of suitable pressure range to accurately detect the tube’s 
internal pressure changes associated with changes of water surface elevation. 

To allow many bubble tubes to share a common pressure transducer, a 

multiplexing device, which is called a scanivalve, is used. This device 

multiplexes sequentially many pressure inputs’to a common output port. 

A high precision pressure transducer is included as an integral part of 
the output port. A controller is used to advance the unidirectional 
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stepping motor which increments the scanivalve. By contact clsoures or 

commands from ADACS, the valve can be advanced sequentially to any input 

port or to a Ithornet (reference) position without intermediate stops. 

The system presently used by the Wave Dynamics Division is capable of 

accepting up to 48 pressure inputs and includes a +0.25 psid pressure 

transducer with a nonlinearity and hystexsis (best straight line) of 

0.05 percent full scale. The pressure transducer output is an analog 

voltage of +10 volts full scale. The pressure cell is interfaced through 

appropriate signal conditioning equipment to the analog multiplexer of 

the digital. recording subsystem. The valve accepts both home and step 

commands from the ADACS and has a BCD position feedback to the ADACS. The 

system can be complete1 y controlled by either ADACS or manual controls. 

To install the bubbler system in the rrrodel, the water level in the 

tidal model is raised to mean higher high water (MHHW). At this still 

water level, the orifice of the bubbler is inserted into the watex to a 

depth which is slightly greater than the maximum expected tidal range 

(hydrostatic head) . At this elevation, the pressure supply must be set 

high enough to cause the emission of air bubbles from the tube. Fox 

these conditions, the tube’s internal pressure is equal to the hydrostatic 

pressure of the water column above the orifice of the bubble tube. The 

tube orifice is cut diagonally to aid in the bubble’s escape. It is 

important that the system bubble freely at this depth because the tube’s 

internal pressure ceases to be equal to the hydrostatic head with bubble 

cessation. At this point, the bubble tubes should be observed over 

several tidal cycles to be certain there is a continuous stream of 

bubbles. 

The bubbler system with the arrangement of bubble tubes, scanivalve, 

and a high precision pressure transducer provides a very economical system 

of obtaining precise measurements of water surface elevations at a large 

number of locations in a tidal model. Tidal elevation measurements by 

this system are accurate to 0.001 feet. The sampling sequence of the 

scanivalve is rated at a maximum of 10 samples per second. This method 

of detecting changes of water surface elevation is limited only by the 
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three constant pressure values over the tidal range. These values are 

obtained by setting a bubble tube at each of the following three tide 

levels: mean lower low water, mean tide level, and mean higher high 
water. The three bubble tubes are positioned to these levels in a 
stilling basin which is connected to the tidal model by a cut-off 

valve. Prior to each tidal test, the water level in the model and 

stilling basin are raised to mean higher high water. The stilling basin 

is then isolated from the model by closing the cut-off valve. Finally, the 
three bubble tubes are adjusted to their appropriate water depth. 

Throughout the tidal test these bubble tubes are monitored at every 
scan to provide update calibration data. During data analysis, cali- 

bration information can be updated by calculating calibration coefficients 

for each scan or any multiple of scans. 

A limited number of channels of tidal velocity can be measured 
by miniature, electromagnetic current meters which are monitored by 

ADACS. The collection of tidal velocities using ADACS has not been 
fully implemented at this time and is pending the completion of trans- 

ducer evaluation which should be completed within the next year. Until 

such time, the majority of tidal velocity measurements are obtained 

manually by using a modified version of the miniature Price meters. 
In addition to tide data, many tidal inlet studies require wave 

information as well. The generation of waves and collection of wave 
data at specific tidal phases (normally high, low, and mean tide levels) 

are provided by ADACS. While controlling the tide generator and collecting 

tidal data, ADACS uses in-core timers to determine the occurrence of specified 

tidal phases at which times (1) the wave generators are turned on, 

(2) wave data at a specified sampling rate for a predetermined number of 
wave periods are collected at various locations in the model, (3) the 

completion of wave test for that tidal phase is detected, (4) the wave 

generators are turned off, and (5) in-core timers initialized to determine 

the next specified tidal phase for wave tests. These wave tests are 

performed normally during the middle cycle of a three-cycle tidal test. 

The instrumentation and procedure for collecting wave data are the same 

as described in Reference 1. 

234 



frequency response of the system and the accuracy of the pressure trans- 
ducer. Application of this system to tidal models has resulted in large 

dollar savings when 5 or more locations in a model are instrumented. 
4. DATA ACQUISITION. During the acquisition mode, tidal data for 

a programmed tidal condition at the generator are collected from a 
specified number of tide sensors, digitized, and recorded on magnetic 

tape or disc for further analyses. The sampling scheme is flexible 

and can be tailored for different applications with maximum thru-put 

rates theoretically limited by the multiplexing rate of the scanivalve. 
The present sampling scheme is to (a) increment the scanivalve to the 

first data channel, (b) delay a specified time interval (normally 0.5 

set) to allow input pressure to stabilize, (c) collect a specified 
number (normally 10) of samples, (d) average these voltage samples, 

(e) store the discrete sample in memory, (f) increment to the next 
channel, (g) repeat the above procedure, and (h) continue sequentially 
through remaining channels. For each tide sensor, 100 discrete voltage 

samples are collected at equally spaced intervals over each tidal cycle 

for a predetermined number of cycles (normally 3 to 5), The minicom- 
puter calculates from input parameters (1) the required timing interval 

between multiplexing scans of the scanivalve to provide the correct 

sampling rate, (2) the delay interval at each channel, and (33 the 
number of voltage samples to be digitized and averaged and initializes 

counters for determining completion of tidal tests. In addition, it 

provides an analog command signal through the digital to analog con- 
verter to the tide generator and lags the beginning of data acquisition 

by a specified number of tide cycles after starting the generator. 

Due to thermal effects (zero drift) on the transducer output over a 
tidal test of 2 to 3 hours duration, the pressure transducer is cali- 
brated prior to and at selected time intervals during each tidal test to 

provide accurate, update calibration data for scaling voltage (pressure) 

to tidal elevations. The calibration data are obtained by monitoring 
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At completion of the acquisition mode, the calibration, wave, and 

tide data have been recorded in binary form on magnetic tape or disc. 

These data with a header for test identification and pertinent param- 

eters are available from disc or magnetic tape for analyses. 

5. DATA ANALYSES. Analyses of the elevation and velocity data 

from tidal model are performed by either the minicomputer subsystem or 

a Honeywell G635 of the Automated Data Processing Center at WES. 

Schematically, the automated procedures for analyzing tidal data are 

as follow: 

I. Program Initialization 

(1) Input test parameters and option flags. 

(2) Read and decode data tape or disc file. 

(3) Demultiplex data files and scale data. 

II. Tidal Data Analyses 

(1) Harmonic analysis using Least Squares techniques. 

(a) Amplitude and phases of tidal constituents. 

(b) Relative phases between gages. 

(2) Analyses of residual variances. 

(a) Original versus Least Square estimate. 

(b) Prototype tide versus model tide. 

(c) Model base test versus model plans. 

(3) Graphic output of above results. 

In addition to the above automated procedures, manual and photo- 

graphic techniques are employed in tidal models to study general patterns 

of tidal, circulation and to define qualitatively littoral transport 

and deposition patterns. 

The analyses of data from wave models are presented by Durham and 

Greer (1975) and are basically auto-spectral and cross-spectral analyses, 

statistical analyses for wave heights and periods of wave signals at 

selected locations throughout the model, and computation of response 

functions or amplification factors from wave energy within the harbor 

or tidal inlet relative to incoming wave energy. In addition to 
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analyzing data from wave models, these procedures axe used also in 

analyzing wave data which are generated and acquired (refer to previous 

section) at selected tidal phases and/or tidal ranges during specific 

tide/wave tests in the tidal model. 

6. MODEL APPLICATION. The hydraulic tidal model is used as an 

engineering tool in predicting the effects of proposed engineering changes 

(channel dredging, inlet geometry changes, and construction of coastal 

structures) and in planning and designing the proposed changes in a 

cost effective and environmentally compatible manner. For physical 

models of tidal inlets to be most effective as a predictive tool, 

verification of such models is desirable. Verification of hydraul ic 

tidal inlet models requixes the hydraulic model to reproduce observed 

prototype conditions of tidal elevations, tidal phases, and average 

mass distributions at specified locations and/or cross sections in 

the model. Hydraulic tidal inlet models are scaled on the Fxoude model 

law and are usually geometrically distorted models in which the hori- 

zontal length scale is not the same as the vertical length scale. Such 

modeling procedures require artifically simulating in the model- the 

frictional effects associated with prototype roughness of bottom and 

sides of channels and overbank and marshland roughness. 

Various procedures are available fox inducing artifically the frictional 

effects 3’4 in the hydraulic tidal model. One such procedure is the use 

of roughness (drag) elements which are small strips of metal that are 

attached vertically to the model bottom. The practice of using such 

roughness strips for simulating frictional effects in tidal inlet models 

is a standard and accepted procedure in physical modeling. The 

successful application (required number and horizontal distribution of 

roughness strips) of this procedure most frequently depends upon the 

modeling experience of the hydraulic engineer and requires lengthy 

testing programs. A means of estimating theoretically and/or empirically 

the required number of roughness elements and their horizontal distribution 
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is a needed capability in physical modeling. One method of estimating 

the uniform horizontal distribution (number of elements per square foot) 

of roughness elements in a distorted hydraulic model has been proposed 

by Multer. 
5 

Although this procedure is based on one-dimensional tidal 

flow, it warrants additional laboratory investigation and study. One 

desirable refinement is to be able to define the variation in the horizontal 

distribution of roughness elements from an idealized uniform horizontal 

distribution. The relative phase of the tide at different locations 

along a tidal channel relative to a reference location in the channel 

can be used as one parameter to estimate the horizontal distribution 

of roughness elements. Having placed a uniform horizontal distribution 

of roughness elements in a tidal hydraulic model, comparison of the 

model and prototype relative phases of a dominant tidal constituent 

between two locations along a specific channel can provide information 

as to the change in the amount of model roughness required to reproduce 

correctly the prototype tidal phase along the specific reach of channel 

between the two chosen points. Thus, the relative phase lags or leads 

of major tidal constituents between selected locations throughout the 

tidal inlet can provide similar information for the various channel 

reaches in the model. If sufficient prototype data (amplitudes and phases 

of various tidal constituents) are available, much information and 

guidance as to the horizontal distribution of roughness elements in 

the tidal hydraulic model can be obtained from the above procedure. 

These procedures fox defining the horizontal distribution of model 

roughness, full model verification, and model testing using ADACS and 

associated automation procedures were successfully applied in hydraulically 

modeling-Muxrells Inlet, South Carolina. A fixed-bed tidal model study 

was conducted to estimate the effects of proposed engineering changes 

in the mouth of the inlet on the tide and wave regime in the inlet. 

The prototype area of interest was approximately 1.5 miles inland and 

6.5 miles along shore. A distorted physical model with an area of 

approximately 21,800 sq ft was scaled at 1 to 60 vertically and 

1 to LOO horizontally and constructed with molded topography reproduced 
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to -25 Et offshore and +lO ft on land- Good prototype data was available 

from National Ocean Survey of NOAA for 8 tide gages within the tidal 

inlet. Figure 4 is a schematic of the model and the locations of the 

various tide gages. The tidal regime of this inlet is dominated by 

the principal lunar semidiurnal constituent, M2 , whose variance repre- 

sents over 85 percent of the tidal variance in the inlet. 

In the verification of Murrells Inlet model, the major tidal con- 
stituent, M 2 , and its overtides, M4 , M6 , and M8 were used in the 

initial verification tests. After estimating and placing a quasi- 

uniform distribution of roughness strips in the model, the tide generated 

in the model was composed of the M2 , M4 , M6 , and MS tidal con- 
stituents. The tidal coefficients (amplitudes and phases) for these and 
20 other tidal constituents were calculated by National Ocean Survey 

from prototype data collected at the 7 tidal gages within Murrells Inlet 

and one tide gage just outside the mouth of the inlet. The instantaneous 

height (elevation) of the prototype tide at a specific location in the 

inlet can be represented by the following equation. 
TIDAL HEIGHT: 

N 
h(t) = 'Ho + c fiHi cos [ait + (V, + uIi - Ki ] 

i=l 

WHERE 
h = Tidal height at time ti . 

Ho = Mean height above reference datum. 

Hi = Mean amplitude of i th constituent. 

fi = Factor to reduce mean amplitude to year of prediction 
a. = Angular speed of i th constituent. 1 

t = Time reckoned from some initial epoch. 
(Vo+u)i = Equilibrium argument of ith constituent for t=O. 

th 
K. 

1 
= Local epoch of i constituent. 

N = Total number of constituents. 

Harmonic analysis performed by National Ocean Survey on prototype data 
provide Ho , H., and Q for each tidal gage. 

1 
The other coefficients, 
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f. , a. I 1' 
and (Vo+uji , can be obtained from appropriate tables. ' The 

preceeding equation can be rewritten in the following form: 

N 
h(t) =uo+ 1 

i=l 
Ai COS (wit i- &) 

WHERE 

h = Tidal height at time t. 

*cl = Mean height above reference datum 

Ai = fiHi .tll = Amplitude of 1 constituent. 

$i = (Vo+u). - K. = Phase of ith 1 constituent. I 

This form of the instantaneous tidal height is used in model control 

and data analyses of the hydraulic tidal model, For Murrells Inlet, 
the harmonic function composed of the M2 , M4 , M6, and M8 tidal 

(constituents at Gage 8 was used as a command signal to the tide 

generator in producing the model tide forcing function for the initial 

verification tests. 
At each of the gage locations, the instantaneous tidal heights were 

recorded simultaneously for several tidal cycles. The instantaneous 

tidal height, hM(t), at each gage location in the model can be represented 
as follows: 

hM(t) = G(t) + E[t) I ao + 
N 
C [ai COS(u,t) + bi SIN (wit)] + ~[t) 

i=l 

where j;,(t) is the calculated tidal height, which is represented by 
a harmonic series of known frequencies, and a[t) is noise associated 
with the transfer function of the hydraulic model, etc. in the tidal 

record. With an undetermined noise level in the tidal height record, 

the principal of least squares can be used to solve for the unknown 

coefficients (amplitudes and phases) for the M2 , M4 , M6 , and Mg 

tidal constituents by minimizing the variance or the sum of the squared 

differences between the measured model tidal height and the assumed 

form of the model tidal height. The application of the principal of 
least squares is as follows: 
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E z - 
r 
J T c2 (t)dt = I T bMW - iM(t)] ‘dt + MINIMAL 

T = RECORD LENGTH 

REQUIRES 

aE 0. aE aE 
TIT0 = ' zi 

= O’ AND =i 
= 0 

Thus, have 2N+l normal equations for ao, ai, and bi where i=l, . . . , N 

[‘A [Al = [Fl 

C = Real, symmetric matrix of sine and cosine products 

A = Vector of coefficients 

I: = Vector of products of observed signal and sine or cosine terms 

N = Total number of constituents 

The above set of equations can be solved by routine procedures of 

matrix inversion. With the model data in digital form from ADACS, this 

method of analysis is very easily performed by ADACS. 

Having obtained the harmonic coefficients for the model tidal 

height at each tide gage, the relative phases of the tidal constituents 

at each gage relative to the tidal gage (Gage #8) at the inlet mouth 

and the differences in these relative phases in the model and the proto- 

type can be determined. Tables 1 and 2 give the amplitudes and model 

to prototype differences in relative phases of the M2 tidal constituent 

for model tests #I, #36, and #73. In addition, the relative phases between 

any two tidal gages can be obtained, and the difference of these relative 

phases in prototype and model can be calculated. Table 3 gives the 

model to prototype differences of the relative phases of the M2 tidal 

constituent fox appropriate gages for model tests #l, #36, and 873. 

In model test #l, quasi-uniform horizontal distribution of roughness 

elements was placed in the hydraulic model of Murrells Inlet. From 

Tables 2 and 3, the channel reaches (model area between two gages) 

requiring more or less roughness elements can be determined by considering 

the magnitude and sign of the model to prototype differences in relative 
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Table 1 

Y2 CONSTITUENT TIDAL AMPLITUDES (FT) 

RUNNO. RUN NO. 36 RUN NO. 73 

STATION PROTOTWE YODEL DIFFERENCE MODEL DIFFERENCE MODEL DIFFERENCE 

1 1,786 2.150 t 0.362 1,804 t 0.016 1.716 -0,072 

2 1.834 2,140 t 0.306 1.922 t 0.088 1.789 - 0.045 
3 1.866 2.070 t 0.204 1,916 + 0.050 1.797 -0.069 

4 1,919 2,260 + 0,341 1,974 + 0,055 1,878 - O.OQI 

5 l,BB5 2,220 to,335 1.957 + 0.072 1.838 -0.047 

6 1,936 2,270 + 0,334 1,986 -c 0.050 1.872 -0.064 
7 I.865 1,950 t 0.085 1.885 t 0.020 1.819 -0.066 

8 2.402 2.430 t 0.028 2,412 + 0.010 2.396 - 0.006 

Table 2 

1112 CONSTITUENT PHASE DIFFERENCES (DEG+) 

STATION 
TO 

STATION 

8-1 
8-2 

8-3 
8-4 

8-5 
B-6 

8-7 

PROTOTYPE 

48,23 

33All 
19.52 
20.69 

32.66 
33.23 

47J9 

RUN ND. 1 

MODEL DIFFERENCE 

3030 - 17.73 
26.50 - 6.90 

13,M - 5.72 
13.80 - 6.89 

23.90 - 0.76 
21.20 - 12.03 

41m - 6109 

RUN ND. 36 

MODEL DIFFERENCE 

45.14 -3,09 

32.20 - 1.20 
19,m -0.32 
21AO to.71 

32.30 -0.36 
32.00 -1.23 

44,46 - 2.63 

RUN NO. 13 

YODEL DIFFERENCE 

49,24 + LO1 

34.20 tam 
20.20 t 0.68 

2iLM -039 
33.10 t 0.44 

32.5u -iI, 
46.80 -a.29 

l 1 DEGREE = 2.07 MINUTES OF PROTOTYPE TIME 
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Table 3 

M2 CONSTITUENT PHASE DIFFERENCES (DEG.) 

STATION 

STiflON 

2-l 
3-l 

3-2 
4-5 

4-6 

4-l 

5-6 
6-7 

PROTOTYPE 

14.83 
26.71 

13.88 

11.98 
12.54 

26.38 
0.57 

13.84 

RUN NO. 1 RUN NO. 36 

MODEL DIFFERENCE MODEL DIFFERENCE 

4.60 - 10.23 12.94 - 1.89 
17JO - 11.41 25.94 - 2877 
12.70 - 1.18 13.00 -0.88 
lo.10 - 1.88 10.90 - 1.08 
7.40 - 5.14 10.60 -1.94 

27.20 t 0.82 23.06 -3.32 
-2.70 - 3.27 -0.30 -0.87 
19.70 t 5.86 u46 - 1.38 

* 1 DEGREE = 2.07 MINUTES OF PROTOTYPE TIME 

Table 4 

M2 CONSTITUENT MEAN TIDE LEVELS 
(FEET ABOVE MLW) 

STATION PROTOTYPE 

1 2.668 

2 2.674 
3 2.696 

4 2.715 

5 2.696 
6 2.680 

1 2.676 

0 2.344 

RUN NO. 1 
MODEL DIFFERENCE 

2.833 t 0.165 

2.831 (0.157 
2.632 - 0.062 

2.733 t 0.018 

2.794 fO.098 

2,755 t 0.075 

3.012 to.336 

2.557 + 0.213 

RUN NO. 36 
MODEL DIFFERENCE 

2.499 -0.169 

2.427 -0.247 

2.249 -0.447 

2.380 -0.335 
2.423 -0.273 

2.381 -0.293 

2.523 -0.153 

2.128 -0.216 

RUN NO. 73 

MODEL DIFFERENCE 

15.04 + 0.21 

29,04 + 0,33 

14.00 to.12 

12.80 + 0.82 

12.20 -0.34 

26.50 t 0.12 

-0.60 -1.17 

14.30 t 0.46 

RUN NO. 73 
MODEL DIFFERENCE 

2.734 + 0.046 

2.695 + 0.020 
2.546 -0.150 

2.663 - 0.052 

2.682 -0.014 

2.655 - 0.025 

2.762 + 0.086 
2.365 t 0.021 
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phases between specific gages. In addition to relative phase differences, 

the tidal amplitudes (Table 1) and mean tide levels (Table 4) must be 

considered in adjusting the model forci.ng function and the model rough- 

ness during verification. After model test #73, the hydraulic model is 

considered verified fox the M2 tidal constituent and its overtides. 

Tidal amplitudes and mean tidal levels in the model agree to within 

0.1 feet of prototype measurements and relative phase differences have 

been reduced to one degree or less. gigures 5 and 6 show plots of 

model and prototype M2 tidal heights before and after model verification 

at Gages 8 and 2, respectively. These plots show that corrections for 

mean tide levels, tidal ranges, and tidal phases were performed during 

verification in getting the hydraulic tidal model to reproduce prototype 

conditions, 

The above verification procedure is repeated using a progressive 

tide as the model tidal forcing function. Since the M2 tidal constituent 

represents more than 85 percent of the tidal variance in Murrells Inlet, 

minimum adjustments to the model roughness are required for model veri- 

fication using a progressive tide. The harmonic analyses of a progressive 

tide requires a much longer tide record (approximately 15 days) than 

the harmonic analyses of the M2 tidal constituent and its overt ides. 

Thus, verifying initially with the M2 tide (dominant tidal constituent) 

reduces the total time required fox model verification. In addit ion, 

using the relative phase differences to isolate model areas requiring 

changes in roughness elements has decreased the total time required to 

verify a hydraulic tidal model. 

Velocity verification can be performed in the hydrtiulic model using 

the same procedure as presented above for the tidal heights. Frequently, 

insufficient data exist for the tidal velocity regime to be analyzed 

for the various tidal constituents. In most cases, twenty-four hours 

of tidal velocity data exist for appropriate cross sections in the various 

channels of the tidal inlet e For such cases, a progressive tide can be 

generated in the model after tidal height verification. This progressive 
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BEFORE VERIFICATION 
MURRELLS INLET RUN NWEER 1 GRGE NUMBER ~-88 

0.00 5.00 IQ.00 15.80 20.80 TIME PROTOTYP&OiRS )30’80 35.00 w.4ro 

AFTER VERIFICATION 
NURRELLS 1NLET RUN NUMBER 73 GRGE NUMBER H-08 

:t7 
0.00 5.00 18.W 15.00 

TIME PR:OT.&P:5’?iRS ?- 
35.80 w.!m 

Figure 5. M2 Tidal Elevation Near Mouth of Murrells Inlet. 

245 



BEFORE VERIFICATION 
MURRELLS INLET RUN NUMBER I FRGE NUMSEI: M-02 

-8.00 5.00 10.08 15.09 20.80 25.00 38.00 35.00 ' 
TIME PROTOTYPE (HRS) 

AFTER VERIFICATION 
MURRELLS INLET RUN NUMBER 73 GRGE NUflBER M-02 

. . . . . . . . . . ..l.j.......l....~ .j............ i ...........i.......... T i ~ i T . . . . . . . . . . . . . . . . . . . . . . . . . ;... 

j ; i / ; ; / i / i j i / j 

i 
: : : 
i 4  i . . . . . . . . . . . . j 

: : 
. . . . . i . . . . . . . . . . . . . j . . . . . . / ......... i ........,,. i,,. 

Pa 5.00 10.0B 15.00 20.00 25.00 30.00 35.00 
TIME PROTOTYPE (FIRS) 

Figure 6. M2 Tidal Elevation in Back Reach of Estuary. 
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tide can be made to correspond to the appropriate progressive tide for 

the particular twenty-four hours of interest. Then, tidal velocity 

measurements and required model adjustments can be performed to obtain 
model reproduction of prototype tidal velocity. 

The first application of the verification procedure, which is 
presented in this paper, to a hydraulic tide model of Murrells Inlet, 

South Carolina, was quite successful and demonstrated that a reduction 

of required time fox tidal model verification can be obtained by quali- 
tative procedures of defining required model roughness and model areas 

requiring such roughness. The present procedure with its complex method 
of analyses requires the services of an ADACS for practical application 

within the time frame of typical hydraulic model studies. Although 

the methodology presented in this paper has shown much promise, additional 
model applications and laboratory experiments are needed to refine 

the appiication of the technique and to provide improved procedures 
for quantitative estimates of the horizontal distribution of model 

roughness in distorted, hydraulic tidal models. 

7. SUMMARY. Application of ADACS to physical modeling techniques 

fox tidal inlet studies has (1) reduced the required time for model 

verification and testing with a related cost reduction in model studies, 
(2) increased the quality and quantity of model data, and (3) allowed 

more sophisticated procedures for model control and data analyses with 

an improvement in information from model tests on which can be based 

engineering decisions regarding the planning and design of proposed 
channel dredging, inlet geometry changes, and the height, length, 

alignment, and orientation of coastal structures (e.g., jetties' and 

breakwaters). Initial efforts in attempting to quantify the artificial 
simulation of prototype frictional effects in geometrically distorted 

hydraulic tidal models have shown much promise in the first application 

of the relative phase difference procedure, reported in this paper, to 

the tidal model of Murrells Inlet, South Carolina. Additional refine- 

ments to this procedure are required, and future model applications and/or 

247 



laboratory studies are desirable to define such improvements. The 

automation efforts, described in this paper, of physical hydraulic models 

for wave and tidal inlet studies has been highly successful in improving 

modeling techniques, enhancing modeling capabilities, and increasing 

the efficiency of such procedures through time and cost savings. 

Proposed future efforts in model automation at WES include improved 
sensors, spectral wave generation, and an expansion of these automated 

capabilities to other model facilities. 
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OPTIMAL INSTRUMENTATION PLANNING USING AN LDLT FACTORIZATION 

N 
c = 1 w;trcov(xi) c: >o 

i.=.l 
i-- 
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The r~umber of surveyed ~.rJ:~tr!lrIW~l~ sites for each of the instrumentation 
systems is appror,irnately: (a) raddr - 3.5, (b) dovap - 650, and (c) cinctheo- 
dolite - 230. It is obvious tha.L the spl.cction of F siyes frc~~ the large 
number of avaiLable sites would ~~;m-illy be cornpu-tationally prollihitive if a 
procedure of enumeration and exiimination of al.1 possible combinations of E 
sites is used to achieve a global minimum o? C. Rather than pursuing a global 
minimum, we have satisfied oursolves wi,th ob-Laining a Local minimum of C 
through the u:;e of an i.nstrumentaCion plan improvement algorithm. 

Instrumentation Plan Improvement Algori~thm -- 

a. Given an arsbitrary ini.tid IP having E instruments construct a 
modified IP having F+l instruments by addinf2 f the instrument site from those 
available in an instrumentation pl.anning pool (IF?) which results in tht: great- 
est decrease of C. 

b. Delete the instrument site from the modified LP which results in 
tha smallest increase of C. 

c. Repeat the exchange procedure between the IPP and the IP given 
i.n steps a. and b. until no far-ther i.mproverncnt is possible. 

The minimum achieved by the II? improvement algorithm is local in the 
sense that i-t is dependent on the initial 11' with which the algorithm started. 

The IPP is a set oE instrument sites considered feasible to use for the 
geometry of the! given r'l.ight path. 'The IPP is obtained from the se-t of a11 
existing sites by placing some basic constrai.n-l‘s on site selection. The con- 
siderations which go into these basic constrarints me: 

(1) Dovap: 

(a> Reference signal streng.th available at the receiver sites. 

(b) Antenna nulls at low and high elevation angles. 

(2) Kadar: Ground clut-ter at Low elevation angles. 

(3) Cinetheodolite: 

(a) Ninimum irrqe size read&l<: on film. 

(b) Faicimum tracking rates. 

(c) Sun angle. 

(d) Plight safety cvacuat-ion areaS 
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The effect of- -(:!I!- ad~li-:ion and deletion of instrument ~itr!s on tile 
ubjccti*Jc: lunctibi! f; p6:qLli.i'c.d i.n step:: ;1. and l>, of The IP im~rovemcnt alp,o- 
rithm rcqui.rc:; il ;:xmc2;lt deal of- COIII;!U~.~?:~OII evr:n though the number of :<ii.es to 
be cons.idrred li;is l,c:cn rcduccc-1 through the USC: 01' basic constraints in forming 
TT.1'. Cach time a :; tci tion .is adt1L.d 011 dcl.eted the entire 311"3N 11' covariance 
matrix must be up4;1 ~:r;d. In a Pr'eviOULi ripproach to updating the IP covariance 
mat-ri x a direct upc;~-l-e wds used. The USC of this direct update required ex- 
ccr.5i.W cornpu~taticin kiTne . Al.:;o, scvcrc numerical instabili-ty was encountered 
when using this updat:? for' radar site selection. Because of these probl.etns 
the dir,ecl: update was discardci-1 in favor of a method which updates the IP 
inCou9ilC3.tion ma-crix e Zn all. cases -the IP information matrix has a special, 
spar::c structure tiisr‘ci'ore requiring muc:h less computation for an update. The 
numerica.l instabilities WC also elimjnated using irhis update procedure. 

The remaindnr of the paper is devoted .to describing the implementation of 
the iF' improvement algori-tllm using the information matrix update. Fir4s.t 
measurement models for the .instrumenta-Lion system:; wi13. be described. &ow- 
ing this , the batch processors used to estimate the trajectory and their 
information and covariancc matrices will be briefly described. Finally, the 
numerl.cal procedures for upclati.ng the information matrices will be given. 

2. MEASLllXMYWT !X)DI:l,S . 
--.---'-" Each dovap receiver measmes a loop range change 

be-t:ween suc&ri,ve trajectory points. Thus, the measurement function for the 
cttl' receiver is a function o1 the posiTion vector Xi and Xi.+1 to the trajectory. 
Denote tile measurement function by g&xi ,Gi+l). The dovap observation, for the 
ith trajectory intervaIL, denoted by %u(ti,ti+l) is 

(J-1 

where n,(ti+l) is a zero mean measurement noise term having variance R,(~.+L). 

jet ga(Gi) be a p-vector of measurement funcrions for the .th radar or 
tine site at the ith trajectory point. Then the p-vector of radar or cinu 
observations at the ith trajec-t-01-y time is 

za(ti> ,= g,(xi) + ba f n,(ti) (2) 

whore b, :is p-vector of zero-set measurement biases for the .th site and 
na(t;) is a, zero-mean mcasurcmcr1.t noise vector having diagonal covarianc,e 
Ra(i.). for cirie measurcmenl;s pz2 and the components of ga(*) are azimuth and 
elevation angles. FOP r;ldar p=3 and the comp0neni.s of pa(.) are range, azimuth, 
and elevation. 

The information matrix of Zrhis ba-tch processor is a 3Nx314 block tridi‘1guna.L 
matilix 
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‘*r;-l,N *N 

(4) 

where the Ai's and A"' 13 s are 
vectors, 

3x3 and are functions of the trajectory pos:tion 
the measurement noise variance:;, and the partial derivative vectors, 

cal(xi)=ae~(xi,~i+l>/axi Zdld ca2(xi+l)"~sa(~i,xi+l)/aPi+l. 
matrix A is factored as A=LDLT where L k 

The information 

onal. The special structure of A allows L 
unit lower triangular and II is diag- 

to be chosen as 

(5) L= 
\ 

L32 \ 

0 
\ 1 \ ’ 

L’ ‘L 
N,N-1 h 11 

where the Li are 3x3 unit lower triangular and the Lij are 3x3. The matrix IJ 
is partitioned into 3x3 diagonal blocks Di. The Li, 
from 

Lij, and Di are computed 

LIDLL; q AL (6a) 

LiDiL; = Ai - L i , 1 (6b) 

LiDiL;+l i = Ai i+L 
I 3 

Adding or deleting the Bth receiver site during the Kth observation inter- 
val yields the information matrix update equation 

A, = A +_ JB(i$1 x,<) J% - 
, p K-1’“K) (7) 

where A +I is the information mal:rix after adding a measurement (+) or dekting 
a measurement C-1. J~CXK-~,XK) is a BN-vector of the form 
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J&&) = [O 0 - - - OCB1(~E-l) G&1()0 - - - 01 \ (8) 
(K-l)“t Kth 
block block 

J;(~K-1,"~) is partitioned into 3-vectors with the only nonzero entries being 
in the (k-l)st and kth positions. If A? is factored as L'DkLST then 

(9) 

Equating block elements on both sides of the last equation gives the update 
equa-tions for Li, Lij, arid Di as 

(lOa) Li = Li 

I); = Ri i-X-1 (lob) 

L4 i+l,i =L itl,i (1oc) 

LS $ L&T T T - 
K-l K-l K-L = LK-lDK-lLK-l j" G&,&,(x,*,) (11) 

(12) 

T T L+ 
LKDKLK + '~K,K-lDK-lLK,K-1 - 

$ $T 
Li,K-l K-l K&-l 

(13) 

LfD4LtT 
i i i+l,i = LiDiL;+l i K<icN-1 

I -- (14) 

L;D>tT = LiDiLt t L T 
i,i-lDi-lLi,i-l K<i<N - 

(15) 

Some manipulation of the above equations reduces (13) and (15) to a rank one 
modification form SO that the update equations become 

L; = L. 1 

Dk = 
i 

D 
i i-x-1 

L+ ,i+l,i =L i+l,i 1 
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with 

4. 
l-l 

= x i-l(Li-lDi-lLT-l)-lXT_l 

(11) 

(12) 

(16) 

(17) 

(18) 

(19) 

(20) 

(22) 

Equations (ll), (161, and (20) me solved for the updated factors using 
methods cl and c2 of Gill, Golub, Furray, and Sanders [l]. Method cl. is used 
for addjtion (+> because there arc many more adds than deletes and cl is the 
most computationally efficient of the update methods. Method c7 is used fur 
delete (-> since sttibility can be a problem in this case. 
(10) are sol.vtd for the rows of Lki+, i. 

Equations (12) and 

, 
After applying the above update equations sequentially to add or delete 

the @h ~ecciver from all observation intervals, the effect of the Bth receiver 
on the objcct.ive function C must be computed. The new objective func-tion C is 
easily computed by obtaining the new values of cov(xi) from the available L and 
D fact-ors of the information matrix. 

(23) 

(24) 
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(25) 

where b is the composite bias vector 

bT = [blb2---$3 I 
(26) 

and 

Sab = b a (27) 

The information mayrix of this batch processor is a (BN+pF)x(BNi-pF) bordered 
block diagonal matrix 

A= 

jT AT T 
1,Ntl 2 ,N+l.- - - -'%,lj+lAg-l 

(28) 

The Ai. jzI,N ape 3x3, A)J+i is pWpE and the A<,N+~ are 3xpM. These matrices are 
functions- of the trajectory position vectors, the mizasurement noise variances 
and .the par$tial derivative matrices aea(G<>/axi=G,(xi), A is factored as 
A=LULT where L i:; unit lower triangular and D is Gagon& The simple :;-tructure 
of A allows L to be chosen as 
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L= (29) 

1 L Ntl,l LN+1,2 lJN+l ,N LN+& 

The Li are 3x3 unit lover triangular, LN+l,i are pW3, and LN+~ is pPpF unit 
lower triangular. The matrix D is partitioned into N 3x3 diagonal blocks Di 
and one pKxpM diagonal block DN+~. The Li, LN+l,i, and Di are computed from 

LiDiLT = Ai i=I,N (30a) 

LiDiL;,.l i = *i Ntl (30b) 
, , 

L T 
N+lDN+lLN+L = AN+l - i=l ! $+l iDiLi+l i , , 

(3Oc) 

Adding or deleting the 8th instrument site at the Kth time point yields 
the information matrix update equation 

Ak = A+ J&$J;f$) (31) 

where A? is the information, matrix after adding a measurement (+) or deleting 
a measurement (-). Jg(x~) is a (3NtpM)xp matrix which is partitioned as 

J&) = [O --- OGB(xK) 0 --~- CI Sg] (32) 

Kth (Ntl)st 
block block 

If A& is factored as L%4L'CT 

I,fD+LfT = L DLT t J&+ J&) (33) 

Equating block elements on both sides of the last equation gives the updaTe 
equa-tions for Li, L N+l , i. ' and D 

i 
as 

256 



L 
i 

I 
i#K 

L!: 
NtL,i = I"N+l i , I 

-t, 3- +T 
LKDKLK = 

I *&‘T T 
‘IK K N+1,K = LK"KLN+l, K 

(34a) 

(34b) 

(34c) 

(35) 

(36) 

(37) 

The above update equat?'ons are solved by reducing (35) and (37) to a sequence 

of p rank one modificatjons. 
t~ie j '~11 co~urnn of ST a 

Let Cz*(GK) be the jth column of I$(+) and SJj 

B 
Then (35)-(373 reduce to 

with XT 
5 

q = Ggj(XK)(LKDKL~)-'~~j(xK) 

(40) 

(4-l") 

(42) 

In i-he above LK+Li, DK+$, 
modifica-tion. 

IJI.~+I,K~+L,K, LN+~~-~J~+~ after the jth rank one 

factors. 
Ikthods ~1 and ~2 of C11 are again used to solve for the updated 

After applying the above update tzquations sequentially to add or delete 
the pi:h i.nstrumcntr site at all trajectory time points, tile effect of the fit11 
jnstrument on the objcctivc funciion c il~ust: be computed. The new objc!ctive 
fuUCi.i.011 c is CaS'i~y C0K1putCd by obtainj.ng the ne7.q valUes of cov(xj-) fro]?) the 

av;liLhlc L and D factor:; of the information matri>:. 
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i-1,N (43) 

1. Gill, P. c., G. II. Ccluh, W. krray, and I+?. A, Sanders; "flethods for 
Modifying Matrix Pactorizations"; Math of Cornp, VO1 28, No. 126, p 505-535, 
April 1.9'74. 
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A COMPUTER SOLUTION OF THE BUCKINGHAM PI THEOREM 
USING SYMBOLANG, A SYMBOLIC MANIPULATION LANGUAGE* 

Morton A. Hirschberg 
US Army Ballistic Research Laboratories 
Aberdeen Proving Ground, Maryland 21005 

ABSTRACT 

Among the theories of similitude, application of the Buckingham Pi 
Theorem allows one to find meaningful relationships among variables, check 
the formulation of a system of equations , and allow prediction from scaled 
parameters. Simply stated, the Pi Theorem asserts that if there are n 
variables involving N fundamental units, these may be combined to form n-N 
dimensionless parameters each containing N+l variables. 

SYMBOLANG is a FORTRAN-based symbol manipulator using a list structure. 
Symbol manipulators operate on strings of symbols rather than numbers. As 
an example, a symbol manipulator allows multiplication of N+l by N-l to 
obtain N2-1. A list structure allows data to be stored and manipulated by 
relationships rather than sequentially or by some other scheme. 

Th,e solution of the Pi Theorem involves forming Pi Terms. This is done 
by the investigator ordering the equations of the system in order of impor- 
tance. The equations are then exponentiated and multiplied together in 
groups depending upon the sizes of n and N. Once a Pi Term is formed, the 
dimensionless set is solved for by setting the exponents of the parameters 
to zero and using any routine which will solve a linear set of equations. 
The numeric solution is then paired wjth the parameter to which it belongs. 

Planned extensions of this work involve tabling well known dimension- 
less numbers andchecking generated solutions against the tabled set. 
Furthermore, data for the parameters can be input and full numeric answers 
obtained.' In addition, the computer can generate a large number of solu- 
tions by permutting the equations. Permutted solutions can be factor- 
analyzed and a regression fit made to determine a "best-solution." 

*This article appeared as BRL Report No, 1824. 
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The method of dimensions is somewhat dangerous but when used 
with proper care, it is unquestionably of great powar and 
value. 1 

I. INTRODUCTION 

The theory of dimensions has a long history of development 
dating back to the ancient Greeksq2 Galileo, Newton, Fourier, Lord 
Rayleigh, Vaschy, Buckingham, and Bridgeman are a few of the men 
instrumental in the development of dimensional analysis. 

The theory of dimensions is important when we wish to compare 
results for two arbitrarily selected systems of units. It is useful 
in areas where knowledge is developing through an intermediate stage, 
when basic laws are already known but problem solutions are lacking. 
Its application may yield interesting conclusions based upon general 
physical assumptions which are themselves uninterestinga 

The theory of dimensions has three important applications4: 

1. It supplies one with useful checks against errors made in 
calculations. 

2. It suggests forms of physical laws. 

3. It allows the prediction of behavior of a full-scale system 
from the behavior of a model. 

The rest of this paper will deal with all three applications: 
however, the very nature of the method employed guarantees the first 
application, and planned extensions of the model will form the basis 
for a future report of the third application. 

‘Strutt, J.W., Baron Rayleigh, The Theory of Sound, Vol. I, New York, 
Dover Publications, 1945. 

2 
Macagno, E.O., Historico-Critical Review of Dimensional Analysis, 
Journal of the Franklin Institute, 292, 391-402, 1971. 

3 
Sedov, L.I., Similarity and Dimensional Methods in Mechac, New 
York, Academic Press, 1959. 

4Synge, J.L ,, 6 Griffith, B.A., Principles of Mechanics, New York, 
McGraw-Hill, 1942. 
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II. THE BUCKINGHAM PI THEOREM 

In dealing with the equations of physical phenomena, one often 
multiplies and divides various quantities and/or parameters. The 
rules of combination are essentially inherent in the parameters at 
hand. If two physical quantities possess the same dimensionality, 
we say their quotient is dimensionless ox non-dimensional. Pi terms 
axe the names given to such non-dimensional products ox quotients of 
the original pararrleters.5 

As a general rule; it takes N+l variables to form a dimension- 
less term with N fundamental units. This leads one to a simple 
statement of the Pi Theorem: 

If there are n variables involving N fundamental units, they 
can be combined to form n-N dimensionless parameters, each contain- 
ing N*l variables." 

The Pi Theorem was first proved by Buckingham and is often 
referred to as the Buckingham Pi Theorem, 

As an example, all the quantities in mechanics can be expressed 
using three fundamental units, e.g. force (F), length (I,), and time 
CT) . All quantities in mechanics can be expressed in the form 

Pa LB Ty where a, B, and y are positive, zero, ox negative powers 
which are not necessarily integers. The following is a list of a 
few of the dimensions which can be formed: 

'Baker, W.E., Westine,P.S., 6 Dodge, F.T., Similarity Methods in' 
Engineering Dynamics: Theory and Practice of Scale Modeling, New 
Jersey, Spartan Books, 1973. 

6 Housnex, C.W., & Hudson, D.E., Applied Mechanics Dynamics, New York, 
van Nostrand, 1950. 

7 Buckingham, E., On Physically Similar Systems: Illustrations of the 
Use of Dimensional Equations, Physical Review, 2, 345-376, 1914. 
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[Velocity] = LT-’ 

[Acceleration] = LTS2 

[Force] = F 

[Moment of a Force] = FL 

[Linear momentum] = FT 

[Angular momentum] = FLT 

[Density] = FT2 Lm4 

[Power] = FLT-1 

[Pressure] = FLe2 

[viscosity] = FL-2T 

where the “=” is a true equality. 

The solution of a dimensional set of equations involves forming 
Pi Terms and solving the system of equations formed by the resulting 
coefficients of Pi Terms. That is, one solves equations of the form 

Gil + ci2cL + CifB + ci4y = 0 i = 1,2,3 

where each equation is the coefficient of L, F, and T respectively, 
One solution is formed for each possible Pi Term. 

A computer program, described in a later section, has been 
developed to form the Pi Terms and solve the resulting equations 
which render the system dimensionless, 

III. FORMULA MANIPULATION 

Formula manipulation (or symbolic manipulation) is primarily 
processin 

fl 
of non-numeric data. Several languages exist for such 

purposes. Basically, a formula manipulator is written as a specific 
list processing language, or language which processes strings of 
symbols. 

‘Sammet, J.L., Survey of Formula Manipulation, Communications of the 
Association for Computing Machinery, 2, 555-569, 1966. 
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The language selected to form Pi Terms and solve the system of 
coefficient equations was SYMBOLANG. g*lo SYMBOLANG is written almost 
completely in FORTRAN and is itself an extension of SLlP,11’12,13 a 
list-processing language also written in FORTRAN. 

The combined SYMBOLANG-SLIP system comprises nearly 180 sub- 
programs and allows for arithmetic operations (addition, subtraction, 
multiplication, division), exponentiations, substitutions, evaluations, 
and differentiations. 

Lists may be created, manipulated, and destroyed, with storage 
of destroyed lists being reusable. In addition, recursive or 
repetitive processing is permitted in a limited sense (using the 
computed GO TO statement). In toto, the SYMBOLANG-SLIP system is 
powerful and easily extendable. No new language is required to use 
the system. One need be familiar with FORTRAN and acquainted with 
the subprograms comprising SYMBOLANG and SLIP. 

IV, METHOD OF SOLUTION 

The number of parameters and the parameters of the system are 
input and’ displayed. This is done for completeness. Next, the 
number of equations, n, and the equations of the system are input. 
The latter are input as SYMBOLANG lists and are assumed to be 
ordered with those equations deemed most important first. That is, 
earlier entered equations are more likely to produce fruitful 
results. The equations are displayed. The number of fundamental 
units, N, is also an input. From n and N, the number of Pi Terms 
to be produced is calculated. 

The equations are then partitioned into new SYMBOLANG lists 
(herein called factors) containing the portion to the right of the 
equal sign. Similarly, the portion to the left of the equation is 
also retained (this will now be referred to as a variable). Factors 
involve fundamental units of the system. 

9 Finder, N.V., Pfaltz, J.L., f, Bernstein, H.J., Pour High-Level 
Extensions of FORTRAN IV: SLIP, AMPPL-II, TREETRAN, SYMBOLANG; 
New York, Spartan Books, 305-387, 1972. 

“Hirschberg, M.A., SYMBOLANG-A SLIP Extension for Albegraic Manipu- 
lation, Ballistic Research Laboratories Report No. 1749, Nov 1974. 

, 1 (AD #AOO3190) 
“Weizenbaum, J., Symmetric List Processor, Communications of the 

Association fox Computing Machinery, 6, 524-544, 1963. 

12 Reference 9, pp 1-82. 

13 Hirschberg, M.A., SLIP for the BRLESC II COMPUTER, Ballistic Research 
Laboratories Report No. 1731, July 1974. (AD #A000653j 
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Pi Terms are formed by systematically raising each newly created 
factor to a power (powers are expressed as variables for solution, 
that is A, B, C, etc.) and then multiplying the exponentiated factors 
together. 

There is always one factor in each Pi Term that has as its 
exponent 1. That is, it is not raised to a power, but is used as 
is, while all the other factors are exponentiated. This selection 
of primary factors is made systematically. 

Once the product term has been formed (all exponentiated factors 
multiplied together), the product is displayed. It is of the form 

FACTORlo’ FACTOR2o* FACTOR3a3 . ..FACTORnan 

whereui=Cl 
i 

+C2 A+C3 
i i 

B+C4 C... 
i 

and C.. 1 f & etc. 31 is a signed integer 0, 1, 2, 3, 

The equations are solved by setting the ai’s to zero and then 
evaluating the resulting set of simultaneous linear equations (this 
can be done using any matrix inversion routine where the solution 
vector is calculated). 

The solutions of the simultaneous set of equations are then 
paired with their proper variable. This completes both the symbolic 
and numerical portions of the solution of the Pi Theorem. 

Appendix I contains the computer listings for solving the 
Buckingham Pi Theorem. 

V. A SAMPLE PROBLEM 

The following problem is adapted from Housner and Hudson. Let 
us consider the drag force F acting upon a body moving through a 
fluid. Let us assume a constant velocity v through a fluid of 
density P and viscosity p. The analysis is to apply to bodies of 
a specified shape, so the cross-sectional area A may be used as a 
measure of the body’s size. The following variables and fundamental 
units enter into the problem: 
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Variable Fundamental Unit 

F = F 

v = FL-2 T 

A = L2 

P = FL-’ T2 

v = LT-’ 

Two Pi Terms can be formed from this set. Using Force and 
Viscosity as the unique variables for solution, we arrive at 

% 
= F AA pB vc and II2 = I.IA~ pB vc. 

Expanding these equations in terms of the fundamental units and 
solving the exponential equations, we arrive at the following 
solution: 

F n, = - 
A PI’* 

and n* = -.l-- * 
wP2p 

Table I shows the computer inputs and outputs for the problem 
above. Each Pi Term is developed and displayed. Following the Pi 
Term is the numerical solution of the exponents giving rise to the 
dimensionless set, 

VI. DISCUSSION 

The presented computer solution of the Buckingham Pi Theorem 
provides one solution for a ph sical system. It is not necessarily 
an optimum or “best” solution. y4$15 Similarly the computer solution 

14Blau, G.E., Optimization of Models Derived by Dimensional Analysis 
Using Generalized Polynomial Programming, Journal of the Franklin 
Institute, 292, 519-526, 1971. 

15 
Chen, W.K., Algebraic Theory of Dimensional Analysis, Journal of the 
Franklin Institute, 292 403-422, 1971. -’ 
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TABLE I 
INPUTS AND OUTPUTS FOR THE 

COMPUTER SOLUTION OF THE BUCKINGHAM PI THEOREM 

pR1 MI T I VES f’lblLY LlSEn FOR CDMPLETENESS 
FnRCElrS 
VrRCnSftY~ 
ARFASl 
IIFNSITYS INPUTS 
VFLOCITY~ 

FrlQCE% 
LENGTHS 

TIHFS 

THERF ARE H FnRMIJLAS ?NVnLVING 3 VARIARI F* 

I INPUTS 

THFRF ARF 3 PI TERMS 
LTV * FlrRCF,**f 1 + R)*LENfiTH**f2*A 

l TIrlF**17*i? - C) 
s 
smn flF EXPH~QSInN 

soL~lT!nN FOR Pf TFRn 
FORCFn l * . innnnnanL 01 
AREA l * -. 1 nnonnonE ni 
DENSITY ** -.innnonnftE 171 
VELnClTY l * -,2nnnnannE 01 

L,ty l FnRCF**ll + 9)*l,FNGTH**f-2 
*R + c)*TlME**(l + 2*0 

5 
SEND f!F FXPRFSSIn”r 

L 4*9 + r: 
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might need to have a transformation applied to it to put it in a 
form where it proves more usable (i.e. cubing the terms of one of 
the Pi Terms, etc.]. 

If the user’s insight was good, the numerical solution (results 
obtained by using values for the parameters) one would obtain would 
be the same as those for an optimum or “best” solution. 

The planned extension of this work is to provide data for the 
variables and calculate a Buckingham Pi Theorem solution, Next 
apply numerical values and save the results. Next calculate a new 
Buckingham Pi Theorem solution and again apply numerical values to 
this, saving the results. The computer can be programmed to do 
this for a great many of the total possible Pi solutions. The 
numerical results can then be factor-analyzed and a regression fit 
made. The numerical data can then be fed back through each Pi 
solution and solutions closest to the regression can be saved for 
later analysis. In this manner, a quasi-empirical best solution 
can be obtained for further study and use in later analysis of the 
system under consideration. 

Furthermore, common non-dimensional numbers16 may be tabled 
and as computed solutions are formed, these may be compared to the 
tabled values. If a match is found this can be noted, as it is 
of considerable use to know if a computed Pi Term is one of the 
common dimensionless numbers. 

16 Land, N.S., A Compilation of Non-dimensional Numbers, Washington, 
D.C.) U.S. Government Printing Office, NASA SP-274, 1972. 
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APPENDIX I 

Computer Listing of the Buckingham Pi Theorem Solution 
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PRORRAH RUCKY 
[: 
C THIS IS TYE PI THPoREH SOLVER 
C WRITTEN BY MA HtRQCHBERG 
c OcTnRER 1974 
C 

r: nFF I NE’ FXPONFYTS A-7rA1-71,92372 
nATA IZFF/lHA, lHMr lHC, iHnr lHF, lHF,jHQ, !HH, jNl,!UJ, IHY, lH(., IIY, l-jq, 

1 lcln,IHP,IH~,1HR,lHS,lHT,lH~I,1HV,1~N,~HX,lHY,~H7, 
23~A1,2~~1,2~C112H01,2HE!,ZYf1,2HGi,2YHl,2~tt,2~.~t,~~~l,~~l.t,?H~~~, 
~~H~~~~~H~~,~HP~,~HQ~,~HR~,~H~~,~HT~,~HI~~,~H~~,~H~~,?HX~,?NY~,~~~~, 
42HA7,?HR7,2YC3,2Hn2r 2HE3,2HF7,3HB2,2HY2, PWl2,3YJ2,?M~3, PHl.2e?HV~r 

Fi?HN7, ?nfl?r 7HP3,2H~2,2HR?,?HS?, 2Hf2,3H112,2HV2,2H~‘7,7HXi?, ?HY3,3HT3/ 
c 
C SFTUP wnRK!NG STnHABE 

CALL INlTASISP,l~i-!On~ 
C REAn NUHHER nF PRtHITIvEs 

UEAn (5,ln) YPRHS 
in FPRHAT (IS) 

WRITE (6,12\ NPRMS 
13 FnH~AfflHl,~!SX,I8Y PI THEOREM $flLVER/ 

1 2lH ‘JUHHER nF PRIMITfVF~,4X,IS~ 
WRITE l&,14) 

14 FORMAT (~RH~PRIHITIvES nNLY I,tSEn Ftlu CnNPLFTFUFRSI 
C REA~I PRIMITIVFS 

00 i?fl I+l,tlPRHS 
LPRIMSIl~~tNLl$T~LPH~NS~l~,5~lNP~]~,999~ 

2n cnNT t YuF 
C OllTPUT PRIHITIVFA 
C PO 30 f=l,NPRHS 

: 
CALL LS~pNT~~pRIHs~I~,l~HPRIM~TIVEg,999~~,TE~p~. 

3n CnNTINlJF 

: REAn NIIHRER OF FnRMllLAS 
REAn (5,101 NFRMS 

C REAn NlrHBEf? OF INnEPEYDENT vARIARLES 
REAlI (5,111) lVAf?S 
WRITE (6,32) NfHMS,IVARd 

33 FnRHAJ (1nHnTHERE ARE,lX,l5,lX,RHFf’IRMI)LASI 
1 1%,9~1NVOLVING,IX,IS,~X,9HVARlA~L~~~ 

C READ FnRHuLAs 
no 40 IM~,NFHMS 
CALL INI” f$TfLFORNS( I),SHlNPUT,3HVAL,TFYPI 

411 CONTINUF 
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: CALCULATE THE NlJMflER OF PI TERYS 
IPIrNFRMS-IVARS 
WRlTF (6,421 IPI 

47 FORMAT IlnHntHERE ARE,~~,Is,Ix,RHPI TFRMS;) 

C I-IUTPIIT FORHULAS 
C nn ‘SKI t=l,NFvHS 
C CAL.1 LSfjpNTfLFORMSf I ),RHFnRnllLAS,99c).rTEHPl 

C 5n CONTfWllF 
C 
c STRIP EOIJALS nFF A~11 StTUP NEW SYMRnLArrG LISTS 

1XllTlKl 
no 2nn I-l,NFPnS 

C 
C SET UP READFR FnR FflRHULAS 

LRn=LRURnVfI FnHMSll) I 
C 
C StRlP FIRST PART OF FoRHULA 

nn fin rt=t,d 
~ATllH=A~VSFR(LHD,FLAG~ 
IF fII.NF.31 GO f0 h0 
IXnTmtXDt*l 

C 
C SAVF: VARIAR1.F NAME IN FnHMlJ1.A FnR LATER USE f9~l.ilS yrltl 1 

FFnRn( IXIIT)~~ATIJH 
6n CONT I NUF 

I-wan 

C ADVANCF TnRnUr.,r LlST 
nAflJM=AFVSFA(LRn,FLA~) 

IF (FLAR.NF.0.) Go Tfl 70 
C 
C JET IIP TFMPnRARV LIST AND CnllbT FLFnENTS 

1C*IC+l 
CALL NEWROT ( nATllH, LW, TEMP 1 
Grl TO 65 

7n CONTINUF 

.C 
C SET C[IIINT AND FORM NEW NEW SYWRnl ANG LjqT 

LNEW( I)*11 
LFIFW( I )mLIST(LNEw( I) 1 
LRn-LRDRnv(LW) 
LTEMPt I )mL.tST(Y) 
CALL ~EWR~T~LTEHp~~~,LYEw~I~~TF~Pl 
L,CmIC*2 
IF ~LC.LE.O) GO Tn 2nnn 
no 80 J=l,LC 
IIATIJH~AnVSER( I.RD,FLAG) 
CALL ~EWROT~~ATlJH,LTEMPfI)rtFHP~ 

an CflNfIYUF 

: ERASF TFbPORARV LIST ANI) PRINT NEW LIST 
CALL IRALSTfLWl 

C CALL LSOPNTfLNEWf~),IHLNE~,~99.,T~~~P) 
2Iln CONTINUF 

KmNFRMS-1 
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I’n 710 l=l,K 
C 
C SFfllP EXPnNFNtR 

~,.~xP~~)+~~~Q~~~~LSY~Y~~~.,~~E~~~),~~)) 

21n CONTINUE 
c 
C SETUP PI TERMS 

LFRMS-LSoMNlcLSoHNi(l.)) 
nn 36ll I=t,lPI 
~fV=LsQYNi~LS~HNl~l.)~ 
KK=n 

C Cyr:),F THROUGH FnRMoLAS HDST IHpflRTANt ANn SKIP F~RHIILAS $0 A9 
c Tn INCLIJDF ONLY THE 1HPnRTAUT FORHIILAQ nYE AT 4 TIlrlF 

no 345 .I=l,UFRYS 

c 
C RAlSE POWFR 

LPnwER(KK)=lSnRA~(LNEwo,LEXplKK)) 
I..TII=LSDMFX f I.fvt LPO*EA( KK 1 ) 
CAI.1.. LSQnF$(Ltv,fEHP) 
fLGn=sEi)unRfLfu) 
L TVmLSuCPY I TLGli) 
CALL 1 S~~IE$~LTUITE~‘P) 
GO TO 245 

215 CON’TINUE 
CALL LSUlrESI LTV, TEHp) 
L..TV=LSObiFX (ILFRHS, LNFlJ t J I ) 

246 C(lhlT I YUF 
CAL.L LSOPNT(LTV,3HLTV1999.,TFMP) 

C CAL... PRL~TSfLTV~4) 
C 
c S(7l.VF FRLIPT~~LIS 

CALL SUCKSVILTV,IZ~E,SOLT~,lC~lJ~T) 
CA).1 LSODF$fLTV,TEMp) 
lln 751-I .f=i,vK 
CALL LSO~fS~LPnwER(J),TFHP) 

25n CON1 I YLIF 

C 

C PRINT SnLllTInY FOR P1 TERM 
WHITE 16,351) 

25t FDRYAff 2lHfISnLUTtON FIlR PI TERY) 
KK=r) 
Dt-I 25H J=l,NFPMS 
IF tJ.EQ,t) WRITE f(ir2531 FFbRM(fl,OYf 

253 FORMAT (1H , A~o,IX~~H*~,~X,~~~.RI 
IF (J+IVARQ.LE.NFRHS) t31-1 1f1 258 

KK=KK+I 
WRITE (6,253) FFORh(J),!3nLTNfKK) 

25R CONTINUE 
2m CON1 1 NUF 

CALL EXIT 
201-1n CONY I UIIE 

WRlTE fh,2nlo) 
2010 FORMAT (7H YQ Nfl 1 

CALL EXlT 
END 
SURROUTINJE RUCKSVtLIST, ZEE,SnLtY,ICOUNT) 

C 
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C THIS SIIHROUTI~~F SETS UP THE SDLUTIDN FOR TMF PI TwEnb?Fr 
C wRlTTEN RY HA HIRSCHBERG 
C JANIIARY 197!5 
C 

DIYENSInFl 7EEf78) 
nIttENSION Si3LTN(241 
nIMENSInN AHAT(24,24) 
DIHENSII-JN AwnRrbt31 

. 
L 
C CL,FAH STORARF 

II0 5 falr24 
SOLTNltl=n.fl 
Da 4 Jm1,34 
AHATt1,J)rfl.D 

4 Cl”lNTIqUF: 
5 CON1 1 YIIF 

c 
C SFT UP RE40FR FnR LIST 

LR=LRDROV(LlST) 
c 3ET FLAGS 

LFvEL=n 
1 CnUNTal 
IFlrlnrn 
I wnf?n-n 
1 no-0 

.f E N 0 = 1 
in CnNTlYUE 

lGn”IGO+l 
JGn=Il 

C AnVANCF THHnllRH LlST 
x=AnvswRfLw,ul 
IF IK) iDn,?n,100 

2n IF (LEVFI,-LCNTH(LR)) irin,lrn,7n 
3n IF INAHTST1X)) bO,rln,dfl 
4n IF ILISTMT~X~~ 50,1n,50 

C WE HIT A SuRLfQT 
Sn CON1 I rJIIE 

LEVEL=LEVFI +1 
vEND*n 
1 WnRlJ*O 
Go Tn in 

c WE HIT A nATllM FLEHENY 
8t-t CtINTlNUF 

IENn-0 
IF (IGO.LE.31 60 Tn 10 
VF f JGO.FO.1 1 ICOuNT-lCnirNt+l 
IF fJG0,FO.f) GO TO 10 
IwnRo=rwnaD*i 

C SToRE IIATIJH 
AwnRDtIwnRn)=x 
no to In 

C WE HIT AN END OF SIJBLIST 
7fI CONTlNUE 

LEVFLILEVFL -1 
fENll~IEND+l 
IF fIEHn,Lt,2) Go TO 7s 
JOO= 1 
a0 To 213 

7’5 CONT 1 NLIE 
tF (IWORU,f?T,ib GD TO 8ll 
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IF (1~ORD.LF.n) So Tn 20 
c sTnf?E NIIMERICAL CnEFFlClFNT fCnNSTANT TERM) 

Sf’ILTN( ICOIIYT)m*4~ORll( 1) 
IwnRb-0 
80 TQ 20 

Rn CCIMT~NUE 
C STI)RF MATRIX COFFFICIEkT 

nn 90 I*1078 
1F (AWOHn(3).NE. EEElII) Rll Tn 90 
A~AT~ICntl~lf,I~-~~fl~D(I) 
1 lunRn=n 
60 To (Pn,lfinI, JEhn 

Pn Cnfi:T I NUE 
95 CONTINUF 

CA1.L QLPFRR I InH RlJCKSV ) 
inn IF (LEVFL-lC~TR(LH)I i!5n,l2n,llo 
110 Cf~rJTIYUE 

l.EVFL=LFVEL-I 
En fn Ino 

12n C~NfINUt: 
l:l.L RCFlLtI R) 

1Cin CnNTtVUF 
Jw-2 
Gil TI> Sn 

ldn CflMTIY(lF 
C 
c INVFRT MATRIX Tn FINn NllMERtCAL $n/l,TIf)u 

273 





- PIPS - 

AN INTERACTIVE GRAPHICS PROGRAM 
FOR OETERMlNATlON OF MASS 

PROPERTIES OF IRREGULAR PLANAR SOLIDS 

R. I, ISAKOWER 
AND 

F. R. TEPPER 

PICATINNY ARSENAL, DOVER, N.J. 

ABSTRACT 

PIPS is an interactive computer graphics program 
for the calculation of the mass properties of irregular 
planar solids. This program utilizes the graphics 
terminal to determine the mass, center of gravity, mass 
moments of inertia, products of inertia, principal axes 
and center of percussion of assemblies of irregularly 
shaped parts (not necessarily touching nor in the same 
plane) with respect to arbitarily selected 3-axis coordi- 
nate systems. The solids may either be drawn at the 
graphics screen, or described and read in on punched cards, 
or generated by attaching (and modifying) an existing file 
of parts. The inputted solids may be accumulated with 
other solids and their combined properties calculated. 

This paper describes the techniques used in, and 
operation of, the PIPS program along with examples of the 
successful application of PIPS to provide engineering 
support to the design analysis of problems associated with 
hardware components and assemblies. 
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PROPERTIES OF IRREGULAR PLANAR SOLIDS 
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THE PROBLEM 

A. Background 

PIPS is an interactive computer graphics program for 
the calculation of the mass properties of generalized shaped 
planar solids. The applications of this program at Picatinny 
support the dynamic evaluations of fuze components and 
assemblies and missile and shell warhead sections. The need 
for this program illustrates the fact that even theoretically 
basic and familiar engineering calculations are at times, 
not only difficult, but nearly impossible to accurately and 
expeditiously accomplish in a design room environment. 
Calculations for mass, CG, and inertial terms are familiar 
to engineers, designers, and students, but since actual 
design components perversely do not conform to "nice" 
uniform shapes, determining these properties of munition 
parts is a difficult and imposing job. This program offers 
a considerable savings in development time (and expense) 
and permits the analyst to "stay on top" of the changing 
design, thus optimizing final hardware performance. 

There are no restrictions to the contours, materials, 
assemblies of the planar solids, and combinations of com- 
plicated convoluted shapes and materials that are routinely 
handled by the PIPS program. 

Any discussion of a computer program should rightfully 
include a description of the computer system upon which- 
it operates. There are two graphics systems in use at 
Picatinny Arsenal: a Control Data Corporation 274/1700/6500 
refresh graphics facility (fig.2) and a network of Tektronix 
4014 storage tube graphics stations (fig.4). 

PIPS was originally written for the Control Data Corpora- 
tion (CDC) facility operating under Scope 3.4.1, IGS Version 
2, employing 30 overlays and 46K octal of 60 bit words of 
storage. The program was later rewritten for the Tektronix 
Terminal Control System (TCS) package, and required 13 over- 
lays and 56K octal storage. The CDC 274 refresh graphics 
terminal is a twenty inch diameter screen with a light pen 
and alphanumeric and function keyboards. It is driven by a 
mini-computer, a CDC 1700, which is a satellite to the main 
or host computer, the CDC 6500, which "houses" the problem 
programs. The problem programs are those programs (stress 
analysis, circuit design, etc.. ) to which graphical techniques 
are being implemented. 

The Arsenal's network of Low Cost Graphics Terminals 
(LCGT) are Tektronix 4014 storage tubes driven directly by 
the CDC 6000, They feature a nineteen inch diagonal screen, 
a thumb wheel controlled cross-hair cursor, and an alpha- 
numeric keyboard. Work at the tube is supported by 30"x40" 
data tablets for digitizing input and "quick look" electro- 
static copying devices, 
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PRESENT LARGE SCALE IG SYSTEM 

CDC 274/1700/6500 FACI LlTY 

l 274 DIGIGRAPHICS CRT CONSOLE 

l 20 INCH DIAMETER SCREEN (REFRESH) 

l 4096 UNITS OVER 20 INCHES 

l LIGHT PEN 

l ALPHANUMERIC KEYBOARD 

l FUNCTION KEYBOARD 

@ 1700 DIGITAL COMPUTER 

l SATELLITE 

l ITEM IDENTI FfCATION HANDLER 

a GRAPHIC DRIVERS 

@ CARD READER, LINE PRINTER, CARD PCH 

e 6500 (HOST) DIGITAL COMPUTER 

@ PROBLEM PROGRAM 

FlGURE 1. 











PIPS’ SLICE METHOD 

FfGURE 5. 



add nothing to engineering understanding of the problem - 
and add tremendously to programming complexity. Thus, four 
displacement vectors (three linear and one angular) are 
permitted for the User Reference System out of a possible six. 

It is convenient to initially confine the discussion of 
the PIPS' algorithm to two-dimensional (plane) polygons and 
later, by adding thickness to the polygons, extend the ex- 
planation to solid bodies. 

The outer and inner contours of any shape input to PIPS 
may be described as contiguous straight line and circular 
arc segments. The program drops perpendiculars from the end 
points of the line segments to a base line below. The area 
enclosed by the line segment, the two perpendiculars, and 
the base line is automatically partitioned into right 
triangles, rectangles, and circular segments. The section 
properties of these well known BASIC SHAPES (fig.6) are 
in the literature. 

All contour lines are developed: that is, drawn from 
initial paint to end point, PIPS establishes the X (hori- 
zontal) development of the first line segment as what is 
called the "ADD" direction. The section properties of the 
areas under all line segments developed in that direction 
are added together. The section properties of areas under 
all line segments developed in the opposite or "SUBTRACT" 
direction are subtracted from this total. The summation of 
all this addition and subtraction produces the section 
properties of the anclosed area of the plane polygon. This 
is illustrated in the figure entitled SUMMING CONVENTION. 
(fig.7), To ensure positive values for axea and section prop- 
erties the code uses the absolute values of the summation re- 
suits. (This over simplified explanation does not, of course, 
hold for product of inertia calculations, Mare detailed com- 
puter logic is employed to produce the properly signed result). 
Needless to say, all the bookkeeping of adding, subtracting, 
re-adding, etc of section properties poses no.strain to the 
user as it is transparently, automatically performed for him 
by the code. 

When thickness of the areas is introduced, the line 
segments become edges. The areas under the line segments 
are extrapolated from triangles, rectangles, and circular 
segments to wedges, rectangular parallelopipeds (boxes), 
and cylindrical segments. The mass properties of these basic 
solids are also available in the literature or may be 
derived, and it is these equations that are coded into the 
PIPS algorithm (fig-14). 
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WEDGE (B) 

P= MASS DENSITY 

M= MASS= f Pxyz 

C.G. ;2!L 
3 

,=t 
2 

MASS MOMENTS OF INERTIA ABOUT AXES THROUGH C.G. 

I xx = f M fy2 + 2z2) 

GY = GM (x2.2z2) 

I 
22 

= &M (x2+y2) 

PRODUCTS OF INERTIA A30UT PLANES CONTAINING C.G. 

I XV = $ Px2y22= $Mxy 

IV2 = 0.0 

I 
X2 

= 0.0 

FIGURE IO. 



BOX 

z 
FIGURE 11. 

P = MASS DENSITY 

M=MAiS= pxyz 

CENTER OF GRAVITY: X=x/2 

v = y/2 

7 = 212 

MOMENTS OF INERTIA ABOUT AXES THROUGH C.G. 

lxx= AM (z2+y2) 

1 YY = &M (x2+z2) 

‘zz = &M Ix2 + y21 

PRODUCTS OF tNERTIA WITH RESPECT TO THE PLANES CONTAtNfNG 
THE C.G. 

f xy = 0.0 

‘YZ = 0.0 

Ixz = 0.0 



Y CYLINDER 

P = MASS DENSITY 

M= MASS = Prrr2z 

C.G. % = CENTER OF CIRCLE 

7 = CENTER OF CIRCLE 

I= Z/2 

MOMENTS OF INERTIA ABOUT AXES THROUGH C.G. 

I xx = $M (3 r2 + z2) 

IYY - 12 - LM (3 r2 + z2) 

I zz = +M (6 r2) 

PRODUCTS OF INERTIA ABOUT PLANES CONTAlNlNG C.G. 

I xy = 0.0 

IYZ = 0.0 

I 
I xz = 0.0 

FIGURE 12. 



SEGMENT 
CYLINDER 

v = 0. 

7 = =/2 

P = MASS DENSITY 

FIGURE 13. M= MASS = pz r2 Ia -SINaCOSa) 

2/3 r SIN3 a 
‘C.G. = a - StNa COSa 

MASS MOMENTS OF THE tNERTtA ABOUT AXES THROUGH C.G. OF THE CYLINDER 
CONTAINING THE SEGMENT 

I,,= +(a-COSaSINa) + ‘$ ( a-sINacosa-2/3SIN3a COSa) 

IYY = 
P r223 4 Pr z 

12 Ia-CosaSlNa )+ 4 ! CY- StNa COSa +2SIN3a cosa 1 

Pr 2 4 
Izz = 2 

(a-SINacOSa + 2/3SlN3a COSa ) 

PRODUCTS OF LNERTIA ABOUT PLANES THROUGH C.G. OF THE CYLINDER 
THAT CONTAINS THE SEGMENT 

I I xy= xz= 92 = 0.0 















The solid arrows are the X and a__ ~~ Y axes or the User Reference Sys- 
tem. The two pair of dashed vec- 
tors are the priticipal axes drawn 
through the CG of the piece and 
through the User Reference Origin. 

FIGURE 20. CLOSE-UP OF SINGLE SLICE RESULTS 



The effect of any change (con- 
tour, material, thickness, etc.) 
to the piece may be immediately 
seen. Here the User Reference 
Origin is "attached" with the 
light pen and, towed (translated) 
to another location. All prop- 
erties are recalculated. 



Here, the User Reference Sys- 
tem is rotated about the 2 axis 
to a new orientation. The coor- 
dinate system can be relocated 
(and reorientated) with the 
light pen or via the keyboard. 
Again, the displayed results are 
newly calculated. 

FIGURE 22. ROTATION OF USER REFERENCE SYSTEM 



The User Reference System can 
even be repositioned off the 
screen - 
desired. 

out of the building, if 

scales 
PIPS automatically re- 

the picture to fit within 
the boundaries of the CRT. 
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The slices are not necessarily 
in the same plane. 

FIGURE 26. SIDE VIEW OF ASSEMBLY 





It is possible at any time to return to the electronic 
drafting board portion of PIPS to redesign a piece or create 
an entirely new item. As an example, the contour of the 
recently examined piece is used as the inner contour of an 
irregular hole in a newly designed circular disk, The four 
holes in the original piece are now small circular disks of 
different diameters located within the irregularly shaped 
inner contour. The new configuration is now a cluster of 
five solids with all of the PIPS graphics and calculation 
capabilities (change of contour , material and reference 
axes, automatic scaling, etc..) available - a cluster can be 
handled as if it were a single entity. 

Finally, a file of any display of a piece or assembly 
of pieces may be catalogued for use by a plotter program to 
produce a hard copy of what appears on the screen. (Slide 
and Poloroid cameras also provide reproductions of the 
screen contents but their proper utilization require addi- 
tional skills). 
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Hard copy of one page of the 
FIGURE 32. 

library of slices. Selections 
are made by locating the CRT's 
cross-hairs over any portion of 
the item desired. 
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EQUATION OF MOTION OF FIRST LEAF 

OF SAFING AND ARMING MECHANISM 
OF M509 FUZE 
. 

Ipl et = Ml r,.l ii COS(c3 + 01) + PIVOT FRICTION TORQUE 

+ SPRING TORQUE + FRtCTfON TORQUE DUE TO SPRING 

+ TORQUE DUE TO FORCE FROM LEAF 2 EXERTED 
ON LEAF 1 (INCLUDING FRICTION) 

FIGURE 35. 



(2) Proposed Safing and Arming Mechanism of TOW Missile 

(a) Description of System 

This mechanism is similar to the previous device 
with the exception that only two leaves are currently 
used. 

(b) Problem 

A study was undertaken to evaluate the possibility 
of replacing the present system with a single leaf. A 
drawing of one of the three proposed leaves is depicted 
in Fig. 36. 

(c) Application of PIPS 

A relationship was derived expressing the "g" level 
required to initiate motion of the leaf as a function 
of the leaf geometry and mass properties, leaf and rotor 
spring torques,forces due to leaf and rotor interaction, 
and friction. The expression for this g-level is given 
in Fig. 37. The nomenclature for this equation is as 
follows: 

FR = force exerted by the rotor on the leaf 

MR,M~ = spring torques on the rotor and leaf, 
respectively 

W = weight of leaf (determined by PIPS) 

x3 = location of e.g. (determined by PIPS) 

P = coefficient of friction 

The other parameters are geometric constants which are 
defined in Fig. 38. (Note: x,=o for this contour.) 

The PIPS program was utilized to locate the position 
of the c.g. for each of the three candidate designs. 
It is estimated that approximately one week of engineer- 
ing time was saved by applying PIPS. 

With the help of PIPS, the mathematical simulation 
was able to demonstrate the feasibility of the single 
leaf design. 
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SINGLE LEAF CONFIGURATION FOR 
SAFING AND ARMING MECHANISM 

FOR TOW MISSILE 

35030’ 

/ r 
.370 R 

FIGURE 36. 
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Timing Mechanism of M577 Fuze 

(a) Description of System 

Two views of the timer of the MS77 fuze are 
shown in Figs. 39a and 39b. Fig. 40 is a schematic 
diagram of the functioning sequence of this mechanism. 
In the safe position, the setback pin, which is spring 
loaded, blocks the path of motion of the spin detent, 
which is also spring loaded (spring not shown in Fig.40). 
The spin detent engages the balance wheel of the timer, 
thus preventing it from operating. Under the influence 
of the acceleration of the projectile in the gun tube, 
the setback pin retracts against the setback spring, 
releasing the spin detent. As the projectile progresses 
through the gun bore, rotation causes the spin detent 
to move radially outward against its spring until stopped 
by the fuze body. This movement frees the balance wheel 
and sets the timer mechanism into motion, eventually 
arming the fuze. 

(b) Problem 

An unacceptable dud rate was experienced during lot 
acceptance testing of the fuze, It was hypothesized that 
the setback pin had returned to its original position be- 
fore the spin detent had released the balance wheel, which, 
of course, would result in a dud. Such an event is possible 
since, due to friction torques induced by the projectile 
acceleration, the spin detent does not move for a con- 
siderable portion of the acceleration pulse. It is only 
when the acceleration level has decayed sufficiently that 
the spin detent can move and disengage the balance wheel. 
By that time, the force exerted on the setback pin by 
the setback spring may be greater than that due to the 
acceleration, This makes it possible for the setback pin 
to return and obstruct the path of motionof the spin de- 
tent. 
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FUNCTIONING SEQUENCE 
SETBACK PIN SETBACK PIN 

POSITION 1 
BALANCE IS LOCKED 

8=0 

POSITION 2 
WALL REACHED 

8 =er 

OF M577 FUZE TIMING MECHANlSM 

(A) 
SAFE POSlTfON 

SETBACK 
SPA ING 

POSITION 1 
REST POSITION AGAINST DETENT 

(RI 
ARMED POSITfON 

POSfTlON 2 
FULLY RETRACTED 

FIGURE 40. 



(cl PIPS Application 

In order to verify or disprove this hypothesis, a 
mathematical model of the behavior of this system was 
developed. The differential equation given in Fig. 41 
was derived to describe the motion of the spin detent 
(see Pig. 42) q In that equation: 

I = moment of inertia of detent (determined 
by PIPS) 

If, = additional effective moment of inertia 
due to frictional effects 

8, 6, e = angular displacement, velocity and 
acceleration of detent, respectively 

Md = mass of detent (determined by PIPS and 
verified by weighing) 

L = distance from projectile spin axis to 
pivot of spin detent 

k = location of c.g. of detent with respect 
to pivot (determined by PIPS) 

. 
w*w = angular velocity and acceleration of 

projectile 

Q = initial angular orientation of spin 
detent 

The use of the PIPS program to compute the mass, 
moment of inertia and c.g. location of the detent resulted 
in a savings of approximately three days of engineering 
time. (To verify the validity of the calculated values, 
the spin detent was weighed, and the measured mass 
differed only negligibly from the calculated mass.) 

The analysis showed that the motion of the spin detent 
is very sensitive to friction: a dud is quite likely 
to occur whenever the coefficient of friction is of the 
order of .35. The dud problem was eventually alleviated 
when the setback pin/setback spring system was modified. 
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E. Development Plans and Conclusions 

There are other programs, batch and graphics, that 
perform similar calculations on different shapes: solids 
of revolution and asymmetrical systems of bodies (with 
major axes at skew angles). It is intended to incorporate 
the special features and strengths of these other programs 
into the next version of the PIPS code along with the 
coding to use the tablet as a digitizing device to permit 
rapid input of contours directly from drawings or lofting 
templates. 

As a final reflection - the development of batch pro- 
cessing computer programs to solve problems of this type 
has proved inadequate to satisfy the analysis needs of 
the designers who must use them. The perceptual augmenta- 
tion that graphics provides has proved to be an essential 
ingredient in the design - analysis process, and to insure 
maximum usefullness, a substantial amount of human engineer- 
ing must go into the development of the graphics procedures. 
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DEVELOPMENT PLANS 

COM8lNE CAPABILITIES: 
% Q l PtPS” (PLANAR SOLIDS) 

l PROMS: PHASOR: WEtGHT (AXISYMMETR tCAL SHAPES) 

l SOS, MOMENTS (ASYMMETRICAL SYSTEM Of BOOtES) 

* GRAPHtCS PROGRAMS 

FIGURE 43. 







TESTING ALGORITHMS FOR A MINI-COMPUTER ON A MAXI 

F. D. Crary 
The Mathematics Research Center 

The University of Wisconsin-Madison 

ABSTRACT. A common problem in the development or testing of algorithms 
to be run on minicomputers is the lack of access to the eventual target 
machine. In such cases, development is done on other equipment. Occasionally 
the success (or failure) of the development effort may directly influence the 
choice of minicomputer to be used in the application. 

An obvious approach to this problem is to simulate the target minicomputer 
on available large scale equipment, This approach poses certain difficulties. 
Even if a package of subroutines to simulate the minicomputer arithmetic is 
accessible from a high-level language, the programming problems are difficult. 
Since calling upon such subroutines usually amounts to coding in assembly 
language disguised in the syntax of a high-level language, nearly all of the 
problems of assembly language coding face the programmer: the programming 
time is excessive, the programs are difficult to comprehend and correct, etc, 

A solution to these difficulties is the use of an appropriate preprocessor. 
The input to the preprocessor is the desired program expressed in a high-level 
programming language. The output of the preprocessor is the same program 
expressed in terms of references to the subroutines simulating the minicomputer. 
Thus the preprocessor has done the “dirty work” of preparing the disguised 
assembly language version of the program. 

A desirable capability of such a preprocessor is to be able to accept a 
description of the supporting subroutine package and produce a program accord- 
ing to that description. This can be useful if a number of different simulations 
must be made--neither the input program nor the preprocessor need be changed, 
only the description. 

Such a preprocessor to extend Fortran (called AUGMENT) is available 
from the Mathematics Research Center. The input language is Fortran extended 
by user-defined data types, operators, and functions. AUGMENT’s output is 
an ANSI Standard Fortran program with nonstandard operations replaced by 
calls to appropriate subroutines + The language extension capabilities of 
AUGMENT make it suitable for an application needing nonstandard arithmetics. 
Some other applications are mentioned in the text. 

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 
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1. INTRODUCTION. The initial problem that we address is the develop- 
ment of software for minicomputer applications on large scale computers. This 
development may be required for a number of reasons: 

Algorithms may be destined for a number of different 
computers, more than can conveniently be 
made available to the developer. 

Algorithms may be of varying sophistication for 
different applications. 

The requirements of the algorithm may determine the 
minicomputer to be used in the application; 
that is, the algorithm development must precede 
acquisition of the minicomputer. 

The file storage and editing capabilities of the large 
system may offer an attractive development 
environment. 

Any number of these reasons (and possibly others) may combine to make 
software development and/or maintenance on large scale equipment desirable 
or necessary. 

An obvious means of performing such development begins with the 
development or acquisition of a package of subroutines that allows the 
simulation of the essential aspects of the arithmetic on the minicomputer 
to be used for the application. The proposed algorithms are then tested 
in the large machine by coding references to the routines in the simulation 
package. 

This approach to development has several difficulties. First, consider 
the kind of code that must be written. In Fig. I (a), we have a well-known 
algebraic expression. We assume that a straightforward evaluation of this 
expression is desired (the proper choice of numerical method is a very 
important subject, but we do not concern ourselves with it in this paper). 
If we were to evaluate this expression by references to a collection of three 
argument subroutines, we would obtain code of the form shown in Fig. l(b) e 
If the simulating routines supported a simulated accumulator, Fig. l(c) 
could result + Finally, simulating routines implemented as functions could 
yield Fig. l(d). 
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r 
x= 

-b t b - 4ac 
2a 

(a) original expression 

CALL MUL (B, B, TMP(l)) 
CALL MUL (FOUR, A, TMP(Z)) 
CALL MUL (TMP(~), c, TMP(P)) 
CALL su6 (TMP(~), TMP 2), TMP(~)) 
CALL RT2 (TMP(2), TMP 2)) I 
CALL SUB (TMP(P), B, TMP(2)) 
CALL ADD (A, A, TMP(l)) 
CALL DIV (TMP(2), TMP(l), X) 

(b) subroutine package 

CALL LOAD (FOUR) 

&: M":: It,' 
CALL STORE (TMP(~)) 
CALL LOAD (B) 
;;:: ;;; (B) 

(TMP(l)) 
CALL RT2 

(c) simulated accumulator 

x = QUIT (DIFF (RT~ (DIFF (PROD (B, B), PROD 
(FOUR, PROD (A, Cl))), B), SUM (A, A)) 

( d) functions 

Figure 1. 

Code generated by calling on 
simulating packages 
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The point of Fig. 1 is that the resulting code to be used to test the 
algorithm is essentially assembly language code. The use of a high-level 
language and compiler serve only to disguise that fact, and not very well 
since more code might be written than would be required by a true assembly 
language program. Programs written in this form suffer from almost all the 
faults of assembly language programs: 

programming time and effort are excessive 
programs are difficult to comprehend and maintain 
debugging is more difficult 
algorithm testing is more difficult because it is harder 

to make changes 

An additional difficulty can occur if more than one machine is to be 
simulated in this fashion. If the simulating packages for the various 
machines are obtained from different sources, they may have different 
calling conventions b Thus several different versions of the same program 
may need to be written, debugged, and maintained during the development 
process. 

2. AUGMENT. The Mathematics Research Center has developed the 
AUGMENT precompiler to solve problems of the sort discussed above. 
AUGMENT is a flexible preprocessor that extends the Fortran language to 
include nonstandard data types, operators, and functions. Its operation is 
summarized in Figure 2. The input to AUGMENT is a source program written 
in the extension to Fortran, accompanied by a Description Deck. 

The Description Deck contains information about the extension to the 
Fortran language and how the extension is implemented by the simulating 
package, A portion of a Description Deck with an explanation of its contents 
is contained in the Appendix. 

To test an algorithm for a minicomputer using AUGMENT, one would 
need a simulating package that supported the minicomputer data types to be 
used in the algorithm (INTEGER, REAL, and perhaps DOUBLE PRECISION), 
and a Description Deck for the package. Then the algorithm is written in 
Fortran with the various quantities declared as nonstandard data types as 
specified by the Description Deck. A pass through AUGMENT generates a 
Fortran program which makes calls on the simulating package (see Fig. 3). 
From that point, compilation, linking/loading, and testing proceed as usual. 

AUGMENT eliminates the need to program in disguised assembly 
language by creating that form automatically. AUGMENT also eliminates the 
need for several versions of the same algorithm if more than one machine is 
to be simulated. In this case, only the Description Deck need be changed to 
change simulated machine and adapt to different calling conventions. 
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Figure 2. 

Summary of AUGMENT use 
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3. OTHER APPLICATIONS. AUGMENT can be applied in any application 
where nonstandard data types or operations are needed. Some of these 
applications are: 

-instruction counts. To obtain an estimate of the amount of work 
performed by a subroutine, one can prepare a simulating 
package which performs the usual machine arithmetic opera- 
tions with the side effect of counting the number of opera- 
tions that are performed. This may, of course, be combined 
with a minicomputer simulation. 

-multiple precision arithmetic. On those occasions when one requires 
greater accuracy than is provided by the machine, a software 
multiple precision may be easily employed with the aid of 
AUGMENT. 

-interval arithmetic. Interval arithmetic is a tool for obtaining valid 
results in spite of the inherent inaccuracies of machine 
computation * The method computes with closed intervals 
rather than single numbers. See [ 31 for more information. 

-Taylor series. In a package under development, a truncated Taylor 
series is maintained for each variable. When an operation 
is performed, the Taylor series for the result iS computed. 

AUGMENT input: 

X = (-B + SQRT (B*B - 4.*A*C)) / (2.*A) 

AUGMENT output: 

CALL NEG (B, TMP(l)) 
CALL MUL (B, B, TMPIP)) 
CALL CNV (4., TMP(3)) 
CALL MUL (TMP(S), A, TMP(3)) 
CALL MUL (TMP(3), C, TMP(3)) 
CALL SUB (TMP(2), TMP(3), TMP 
CALL RT2 (TMP(3), TMP(3)) 
CALL ADD (TMP(l), TMP(3), TMP 
CALL CNV (Z., TMP(l)) 
CALL MUL (TMP(~), A, TMP(~)) 
CALL DIV (TMP(3), TMP(l), X) 

(3)) 

(3)) 

Figure 3. 

Sample of AUGMENT translation 
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4. AVAILABILITY. AUGMENT is currently (March 1976) available 
for the following systems: 

UNIVAC 1100 
IBM 370 
CDC 7600 
Honeywell 6 3 5 

Copies of AUGMENT have been supplied to persons intending to implement 
it on the following systems: 

MULTICS 
DEC PDP-IO 

Portability of AUGMENT has been found to be very good (in one week, 
both the IBM and CDC versions were brought up). The precompiler is 
written in ANSI Standard Fortran except for 

(1) eight machine dependent primitive routines which require about 
150 lines (total) to implement, and 

(2) some minor oversights which are documented in [ 21. 

5. CONCLUSION. The AUGMENT precompiler is a tool which simplifies 
the programming process when nonstandard arithmetics and data types are 
required. The applications for AUGMENT include simulation of minicomputers, 
word length sensitivity analysis, multiple precision arithmetic, operation 
counting, and interval arithmetic. 

AUGMENT will not cure all world’s programming problems, but can 
be of great assistance in dealing with some problems. One user of AUGMENT 
put it this way: “AUGMENT isn’t a program that you need all the time--but 
when you need it, you really need it. ‘I 
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References [ 1 ] and [ 21 are updated as changes are made to AUGMENT. Current 
versions are available on COM microfiche from the author. 
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APPENDIX 

This Appendix presents a portion of a Description Deck for AUGMENT 
with a brief explanation of its contents. A portion of a Description Deck 
for a double precision complex data type is presented in Figure 4. The line 
numbers in the Figure are added for easy reference from the text. The 
explanation below is by line number. 

Line 1. The first line of the description of a data type specifies the 
name of the type. A program translated under this description may use the 
data type name DBLCOMPLEX in the same way that INTEGER, REAL, etc. are 
used in a standard Fortran program. In the lines following, the character 
“$” is an abbreviation for “DBLCOMPLEX”. This abbreviation is built into 
AUGMENT to reduce the size of the Description Deck. 

1. 
2. 

43: 
5. 
6. 

;: 

*DESCRIBE DBLCOMPLEX 
DECLARE DOUBLE PRECISION (2), KIND SAFE SUBROUTINE, 

PREFIX DPC 
OPERATOR - (NEG, UNARY, PREVIOUS, $) 
OPERATOR -c (, NULL UNARY, PREVIOUS, $) 
OPERATOR + (ADD, BINARY 1, PREVIOUS, $), - (SUB), 

* (MUL(SUBR~UTINE)), / (DIV(SUB)) 
OPERATOR .EQ. (EQ, BINARY 2, PREVIOUS, $, LOGICAL), 

.NE. (NE) 
FUNCTION CLOG (LN, ($), $), LN () 
CONVERSION CTDC (CFI, INTEGER, $, UPWARD), CTDC (CFR, REAL) 

Figure 4. 

Portion of Description Deck for 
Double Precision Complex Arithmetic 

(Line numbers are not part of the 
Description Deck + ) 
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Line 2. The second line gives the general information about the data 
type and its supporting package of subprograms. The first clause (DECLARE 
DOUBLE PRECISION (2)) specifies the way in variables of type DBLCOMPLEX 
are to be represented in the translated program. A declaration of the form 

DBLCOMPLEX A, B( 10) 

would be translated to the form 

DOUBLE PRECISION A(Z), B( 2,lO) 

The second clause indicates the nature of the supporting routines. Three 
choices are available: function, subroutine (three argument), and simulated 
accumulator. The clause SAFE SUBROUTINE specifies that the routines are 
three argument subroutines and that it is safe to allow the output argument 
to be one of the operand arguments. This specification may be overridden 
for specific routines (see Line 5). The last clause (PREFIX DPC) specifies 
the manner in which the routines are named. Unless overridden, all routine 
names will begin with the letters “DPC” as will the names of all temporary 
locations generated by AUGMENT. 

Line 3. Beginning with Line 3, we describe the operators that may 
have DBLCOMPLEX operands. Line 3 describes the unary minus (negation) 
operator. It is implemented by the subroutine DPCNEG (the “DPC”. is not 
written since it is the prefix--AUGMENT adds it). The remaining information 
in the line specifies that the operator is unary, that its position in the 
operator hierarchy is previously defined (the hierarchy position is attached 
to the symbol used in the source program), and that this description of the 
operator is for operands of type DBLCOMPLEX (the result is also of type 
DBLCOMPLEX since unary operators do not change type). 

Line 4 describes the unary + operator. Since the description contains 
the phrase “NULL UNARY”, AUGMENT will discard all unary + operators with 
an operand of type DBLCOMPLEX. Since it is to be discarded, no routine 
name need be specified. 

Line 5. Next come the arithmetic operators. The notation “BINARY 1 ‘I 
specifies that the operator being described is binary (has two operands) and 
that both operands and the result for this description have the same type 
(DBLCOMPLEX). This line also indicates the “drop out” rules allowed by 
AUGMENT. The subtraction operator has exactly the same description as the 
addition operator except for subroutine name, hence only the subroutine 
name need be specified. For the multiplication and division operators, the 
routines are such that it is not safe for the result argument to be one of the 
operand arguments, Hence the “SAFE SUBROUTINE” specification of Line 2 
is overridden by the specification ttSUBROUTINEtt which may be abbreviated 
“SUB”. 
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Line 6. The relational operators . EQ. and .NE. are also meaningful 
for complex types. The “BINARY 2” specification means that the description 
will contain two data type names: the first is the type of the operands; and 
the second, the type of the result. Since none of the other relational 
operators are defined for DBLCOMPLEX operands, their use will cause 
AUGMENT to diagnose an error. 

Line 7. Next we describe two of the functions which may operate on 
DBLCOMPLEX operands. Functions for AUGMENT are generic. The 
logarithm function is described as being implemented by the routine DPCLN 
when it appears with the argument list ‘I( $) I’, (that is, when it appears with 
a single argument of type DBLCOMPLEX), and yields a result of type 
DBLCOMPLEX. This function may also be called by the name LN with the 
same description. 

Line 8 describes two conversion functions. Conversion functions are 
applied automatically in certain cases of mixed mode operands or may be 
coded in the program. The function CTDC (Convert To DblComplex) is 
defined for INTEGER and REAL arguments with DBLCOMPLEX results. In 
each case, the conversion is “upward” meaning that DBLCOMPLEX is the 
preferred type if automatic conversion is applied. That is, the expression 
“I+D” is equivalent to “CTDC(I)fD” if I is INTEGER and D is DBLCOMPLEX. 
“Downward” conversion functions are applied automatically only across the 
replacement operator. 

Other features and options are available which are not illustrated 
by this example. The user documentation [ 1 ] describes these cases. 
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USE OF A MINI-COMPUTER FOR ON-LINE REAL-TIME 

PROCESSING OF' MASS SPECTRAL DATA FROM MULTIPLE MflSS SPECTROMETERS 

D,H, Robertson and C, Merritt, Jr, 

U,S, Army Natick Research and Development Command 

Natick, Massachusetts 01760 

I 

ABSTIQV,T 
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The primary function of the computer system in the Analytical Chemistry 

Laboratories at the Natick B&D Command, has been to automate the instrumen- 

tation used to perform chemical analyses. The most challenging aspects 

of automation are presented by on-line real-time acquisition, reduction 

and interpretation of mass spectrometer output. In the area of interpre- 

tation, several mathematical data treatments, in succession, have been 

developed which have been used in sequence as the size of the data base 

has increased. The hardware and software specifications of our system 

are described herein followed by a review of the mathematical treatments 

and presentation of some applications of the overall system, 

The basic system is a PDP15/76, manufactured by Digital Equipment 

Corporation. It is equipped with 48K of core memory in the central 

processor configuration and 2 PDPll memories respectively, controlling 

the UNIBUS access to the 15 memory and the I/O operations for the GT40, a 

graphic display system. The 15 memory directly controls a fixed head disc 

with a 250,000 word capacity i.e, 218 (262,144); a cartridge disc system 

operates through the peripheral processor, which allows the 15 memory to 

access the 11 memory associated with the unibus. 

Figure 1 depicts the basic units of our system as well as some of the 

experiments which are interfaced with the system. The slave computer is 

a HP 2116B which was the original venture into computer technology in the 

Analytical Chemistry Laboratories. Simply because the acquisition and 

reduction routines were fully developed for this disc-oriented system, 

it has been kept in the link, handling output from a medium resolution 

mass spectrometer, the output of which is digitized directly with a PAD 

(pulse amplifier discriminator). 
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The TOF Mass Spectrometer is equipped with a CSI 260 high speed 

digitizer as a front end prior to direct data transmission to the 15/76 

system. The high resolution mass spectrometer is simularly front-,ended 

with a high speed digitizer unit custom built for the Laboratories by 

Adage. 

It is possible to effect compound identification from first principles, 

an approach whereby the structure of each unknown is assigned as a function 

of characteristic mass peaks in a spectrum which refer directly to the 

presence of specific bonding and/or chemical functionality. As such, 

a library is not necessary. 

In most cases, however, the identification of an unknown compound 

from its mass spectrum by automatic data processing assumes the existence 

of a file of data for a large number of known compounds and the capability 

for searching that file in a manner which will provide component identi- 

fication. The conventional approach uses tables of mass vs, intensity 

values that constitute digitized mass spectra. By comparing the unknown 

to each known spectrum in the library, it is possible to achieve identifi- 

cation from the best match of the unknown to a known spectrum in the 

library file. 

Because of the large number of spectra to be searched in a typical 

application, that of combined gc/ms operation for instance, the computer 

configuration required for identification of unknown based on use of 

all their mass and intensity data i.e., the complete spectrum, is normally 
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quite large and counter to the best interests of efficient on-l+lne 

real-time handling of mass spectral data. In particular, there is a 

need in the average analytical laboratory for searches on small, 

relatively inexpensive computers which remain inexpensive only if their 

peripheral units are confined to modest size and capability. 

Historically, three methods were developed for encoding spectra as 

compressed data: 

1. Calculation of entropy function 

2. Calculation of divergence 

3. Selected binary encoding 

The first two approaches to the classification of mass spectral 

data, namely the calculation of the Khjnchine entropy function and of the 

divergence function, are derived from set theory and are based on the 

statistical distribution of peaks in a mass spectrum, These as well as 

the selected binary encoding which is described below, have in common the 

reduction of the mass spectrum to a single-valued number which is diagnostic 

within some range for the compound with which it is associated. ( Fig. 2.) 

The entropy function is calculated by summing the products of 

individual ion abundances p and their respective logarithms, 1, I, p 

thus represents the ion abundance in terms of the percent of total ioni-< 

zation of the molecule in question or in another sense, more germane 

here, the probability of occurrence of that ion fragment in the spectrum. 

Mass spectra are thus converted to a single valued number and in this 

way a data file can be constructed consisting of these numbers. An 

example is shown in Table 1. These compounds have been selected to show 

the typical variation in the "entropy" value which is expected for the 
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variation in the degree of unsaturation in the molecule, In searching a 

file of precalculated Khinchine values, a matching index is used to 

establish correspondence of the value for an unknown with the library 

value. In the early work with Khinchine values, the construction of the 

reference file was limited to a few hundred compounds which are normally 

encountered in the analysis of the volatile components of natural products, 

most especially of foodstuffs. 
. 

When applied to large libraries, in the order of 7000 compounds, the 

range of values of the Khinchine function was not sufficiently unique. 

An example of this situation is shown in Table 2. 

To provide differentiation between two compounds, the Khinchine 

functions of which are too nearly alike to be diagnostic, the second 

function on our list; namely, the divergence calculation was invoked, 

The formula for this calculation appears jn Figure 3: here N, and N 
2 

represent, respectively the total number of ions in each of the 2 compounds 

being compared and "p" has the same meaning as in the Khinchine function 

calculation* In practice it has been found convenient to refer the 

calculation of divergence of a given compound in the aliphatic hydrocarbon 

series for instance, to the normal straight- chained alkane of the same 

carbon number. In Table 3 arelisted the divergence values for 

several C6 hydrocarbons referred to N-hexane. For example, in the case 

of two compounds such as hexene and methylpentene, the divergence values 

are markedly different. 
7 

Considering the fact that the final format in which data are handled 

in a digital computer is in the binary world we were led to develop an 
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approach which we call selected binary coding. This code allows compresv 

sion of the library file through selective binary coding of characteristic 

peaks and use of variable length logical records, 

The coding procedure is illustrated in Figure 4.. A hypothetical 

mass spectrum is shown with a representation of a 16 bit computer word 

at the top. Selective binary coding is accomplished by dividing the mass 

range of interest into multiple groups of seven. The number corresponding 

to the peak in the spectrum in each group which has the highest intensity 

is then coded as a three bit binary number. In this example the fourth 

position is encoded in the first grouping, the seventh in the second 

and so on; zero is used to denote the absence of a peak within the group- 

ing, thereby giving a total of eight possible values, hence the term 

octal coding by which we have designated this scheme, 

Representation of an octal number within the computer requires 

three bits; thus, in a 16-bit machine such as the HP 2116B used in setting 

up this system, five octal characters can be stored in each computer word 

with one bit left over. A single computer word is capable of storing 

information which spans a range of 35 amu. Compounds with a greater 

mass range require additional computer words. As many as needed are used; 

the last word is designated by setting a flag in the 16th bit. A further 

illustration of this system of encoding is shown in Table 4. 

Since 15 bit positions allow 215 or 32768 unique representations, it 

is possible to encode that many compounds in a unique manner. 

The octal code for a mass spectrum may be easily obtained from 

digitized mass and intensity data acquired on-line and stored for subsequent 
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processing. A flow chart of the procedure is shown in Figure 4, A 

normal sequence of data processing involves the following on-line 

operations. 

1. Conversion of analog output to digital i,e,, mass and intensity 

data. 

2. Condensation of the data to octal format utilizing the routine 

in this slide, thus providing the binary equivalent of the "spectrum" 

for which the library is being searched. 

3. When binary "1" is sensed in the 16th bit, the number of words 

to encode the "spectrum" is known, then it is not necessary to search 

the entire library but only the subset or sub-library collection which 

requires that number of words for coding. 

The subdivision into subfiles of variable record length and creation 

of a name file were designed to make maximum use of random access mass 

storage devices. 

For each unknown compound being searched, a matching index is cal- 

culated; the five best matches are printed out, thereby anticipating 

the possibility for identical or nearly identical matching indices. 

The usefulness of selective binary coding for search and retrieval from 

large data files has been well illustrated in the literature and for this 

purpose it actually matters little what size window one uses. If, 

however, one is to make use of the diagnostic information which is 

contained in a mass spectrum, the size of the window and the starting 

masses for each window become vitally important. Consider Table 5. 

The vertical column at the left refers to the number of the window under 
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consideration and the horizontal sequence across the top of the table 

consists of the octal digits below each of which appear the masses 

corresponding to the octal code. The first window,for example,will 

contain the masses coded octally from 23 to 29. A series of masses 

corresponding to a series of ions such as 29, 43, 57 and 71 etc, 

represents alkyl fragments and will each be encoded as the 7th digit 

in an odd-numbered window. 

A pattern of codes is seen in Table 6 which demonstrates the recur- 

ring octal digit pattern for various series of ions which correspond to 

several common functional groups. The hydrocarbon fragments will always 

be coded in odd-numbered windows, and when the skeletal structure is a 

saturated aliphatic hydrocarbon, one would expect the most abundant peaks 

to be a series of alkyl fragments which would be coded as octal 7. 

If the compound is unsaturated, the octal code would be a 5. Moreover, 

ions which are still more unsaturated, such as the alkynyl series having 

the formula CnH2nF3 and consisting of the series 39, 53, 67 etc,, 

will be represented by octal digit 3 in odd-numbered windows. It should 

be noted that oxygen containing peaks such as those arising from ketones 

and aldehydes are isometric with the alkyl ion fragments and will be 

coded n octal 7 in odd-numbered windows. The code pattern, which 

occurs in the even-numbered windows and produces the series of ions 

which i s characteristic for alcohols etc., is seen in the bottom left 

row of the table. 

Additional octal code patterns which are characteristic of functional 

group type compounds are seen in the right hand column. Thus, the 



appearance of a particular digit as a series in an even-numbered window 

may be correlated with a particular structural feature. Generally 

speaking, octal patterns from the odd-numbered windows are less specific, 

whereas the patterns for ions encoded in even-numbered windows are more 

closely related to functionality. In order to achieve the accurate 

identification for an unknown spectrum as created on-line from a GS/MS run, 

it is necessary to use a combination of odd and even numbered windows. 

Some examples taken from real data coded from compounds selected 

at random from a file of mass spectral data are seen in Table 7. The 

top left shows some patterns for alcohols. Compounds A-Dcorrespond 

to ethanol, isopropanol, n-propanol and 2-ethyl-1-butanol. The first 

column of digits corresponds to the first odd-numbered window contain9 

masses 23-29. The successive odd-numbered windows contain, for all the 

compounds, digits representing hydrocarbon series of fragment ions. The 

corresponding even-numbered windows all contain the octal digit 2 which is 

characteristic of rearrangement ions for alcohols and other oxygenated 

species. In the case of the isopropanol and ethylbutanol the octal digit 5, 

rather than 7, appears, suggesting the possibility of branching. The 6 

which appears in the 3rd window for compound C is an error in coding; 

normally a 7 would be expected to appear. 

At the top right patterns for various esters are shown. As with 

alcohols the octally encoded digit in the odd-numbered windows is a 7 

which corresponds to the series of alkyl fragment ions. In the even- 

numbered windows the 2s appear, representing oxygenated species. In this 

case the pattern at the end of the code is found to be diagnostic for esters. 
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Most important in the overall is the success of this technique of 

coding when used with real data as obtained on-line and in real-time 

from a standard GC/MS system. Moreover, experience with the technique 

adds further support to the choice of coding one mass in 7 as opposed 

to one mass in every 14 amu. This choice provides greater success in 

identification of functional group character when the compound for which 

one is searching is not in the library. 

The most demanding aspect of the operat ions within the Analyt ical 

Chemistry Group is associated with monitoring the volatile components 

in irradiated-preserved foods. A study has already been completed to 

indicate that there are no toxic substances produced during this preserva- 

tion process; the current study of volatile components is being conducted 

in conjunction with an animal feeding study to determine the alteration 

in nature, if any, of the nutritional quality of the food stuff. As 

such, large numbers of samples are produced from the rapid scanning mass 

spectrometric monitoring of the eluent from a gas chromatograph, by 

means of which the volatile components are separated subsequent to vacuum 

distillation into rough fractions based on b.p. of component. 

The pattern for aldehydes is similar. Again, sevens occur in odd- 

numbered windows representing alkyl fragments. In this case there is a 

contribution to these ions from the isometric ion containing CO. Compounds 

C and II are actually 2 different spectra for 3-methylbutanal. These 

again suggest the possibility for detecting branching by the appearance 

of 5 in one of the odd-numbered windows. The succession of Is is found 

to be characteristic for both aldehydes and ketones. 
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There are two aspects of computer applications to thjs work. The 

first is the automatic acquisition, reduction and interpretation of 

mass spectrometric data based on the principles of octal codification which 

have been presented earlier. The repetitive nature of this application 

allows high accuracy in identification insomuch as one is looking for 

differences among samples which relate to nutritional value. 

The second aspect of this deals with statistical analysis of the 

quantitative data which are produced from the studies, i.e., a study of 

the variation in quantitative values for the various components determined 

as a function of sample treatment, method used for irradiation and storage 

time. It is customary to plot time of storage after irradiation vs. 

concentration of component(s) for the various procurements or lots of 

meat, thereby indicating scatter of the data. Included in this plot 

are usually the ji and 2 sigma lines for each collection of data. The 

previously described investigations have been conducted on output from 

low resolution mass spectrometers. At the time of this writing the 

addition of high resolution capability is nearing completion; it is based 

on electrical processing of the signal from a CEC 21-110 high resolution 

mass spectrometer operating via a high speed digitizing unit which was 

custom built for these laboratories by Adage. The Adage device inter- 

faces through traditional links, directly with the computer where the data 

are processed with standard routines to provide exact mass values. 

Although in-house requirements have not yet dictated the interface 

of our standalone gas chromatographs to the system, the multi-programming 

aspects of the PDP 15/76 system will readily allow the addition of many 

slow devices such as these, liquid-liquid chromatographs and standard 

spectroscopic devices, viz I.R., U.V. and visible spectrophotometry. 
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_ComppI+ 

n-butane 

P-methylpropene 

t-2-butene 

3-methyl-1,2-butadiene 

l$,5-hexatriene 

1,5phexadiyne 

3-heptyne 

TABLE ‘i 

Khinchine Function 

0.926614 

0.812125 

l"O41750 

1.215960 

1.339620 

1,605300 

1.379110 

TABLE 2 

Use of Divergence to Resolve Non-unique Khlnchine Functions 

Compound E?tW?py 

2,4-hexadiene 0.473 

3-methyl-1,3-pentadiene 0.474 

P-ethyl-1,3Fbutadiene 0.497 

1,3-hexadiene 0,498 

Divergence I, . .."T.._ 

IO,97 

26.19 

7,79 

9.17 
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TABLE 3 

Reference Compound for the Series is Hexane 

Comparison Compound Divergence(J) 

n-hex-1-ene 4.2269 

2-methylpent-2-ene 7.7805 

cyclohexane 10.0238 

3-hexyne 11,8302 

2-methylpentene 12.5054 

l-hexyne 18.7163 

2-hexyne 25.8092 

TABLE 4 

Example of Octal Coding 

Positlon 
m/e to be of m/e in Binary Octal 

Mass ranges encoded octet- Code Code 

23-29 24 2 010 2 

30-36 32 3 011 3 

37-43 43 7 111 7 

44-50 0 0 000 0 
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Grow 
Numb&- 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE 5 

Array of Masses According to Position In Spectrum Grouping* 

Position in Group** 

1 2 3 4 5 

23 24 25 26 27 

30 0 31 32 33 34 

37 38 39 40 41 

44 0 45 46 47 48 

51 52 53 54 55 

58 0 59‘ 60 61 62 

65 66 67 68 69 

72 0 73 74 75 76 

79 80 81 82 83 

86 0 87 88 89 90 

93 94 95 96 97 

6 

28 

35 

42 

49 

56 

63 

70 

77 

84 

91 

98 

7 

0 29 

36 

43 

50 

0 57 

64 

0 71 

78 

0 85 

92 

99 

*Circled masses indicate characteristic ion series, 

**See Figure 6. 
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c 
V 1:ifc 31 45 f,!l 7.7 etc. 

i l code 1 1 1 

e 
v dc 33 l! 7 Cl 7i; etc. 
c 
11 code 4 (1 4 4 
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TABLE 7 

PATTERN FOR ALCOHOLS 

Compd, 

A 7272 

E 5272 7262 02 72 
D 7272 52 

PATTERN FOR ALDEHYDES 

Compd, 

A 7131 
c" 7251 7271 

:071 
71717 

D 7051 71707 

PATTERN FOR ESTERS 

Compd, 

A 7202 03 
B 7271 0203 
C 7272 04620 
D 7272 04620 3" 

1 
1 
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Recursive Digital Filtering Applied to a Mini-Computer 
Data Acquisition System Proposed for Army Wind Tunnels 

R. P. Reklis 
U.S. Army Ballistic Research Laboratories 

Aberdeen Proving Ground, Maryland 

A recursive digital filtering scheme designed for use with wind 

tunnel data will be discussed. The filter has been designed in such 

a fashion that it will not distort low order polynomial data. This 

filter is to be used in a proposed mini-computer based data acquisition 

system. This system will automate several functions required in wind 

tunnel data taking and will gather and display data graphically. Its 

design will be discussed briefly. 
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INTRODUCTION 

Wind tunnel data are composed of a series of data sets. Each set is made 

up of several runs. A run is composed of data taken while a spinning model 

slows down or while a model is swept through angle of attack. Data are often 

linear with spin rate or angle of attack and are generally fit with a low 

order polynomial. At the end of a run calibration is checked and another run 

is made at an altered angle bf attack or roll position. A data set is ended 

when it is necessary to stop the flow of air in the tunnel in order to make 

further alterations in the test. 

A data system has been proposed that will automate all of the action 

which takes place during a set of runs. When the set is complete data will 

be plotted for use by the test engineer. Data will be processed in the 

following manner. A tape will be made of digitized data in nearly the form 

they are produced by the analog to digital converter. This tape will be made 

on line for future analysis on the main BRL computer and for possible playback 

through the data acquisition system. Data will be simultaneously filtered 

digitally and stored in core buffers. At the end of each run data will be 

taken from these core buffers and written on disc. At the end of a series of 

runs data will be plotted. The system will allow data‘from any run in the 

entire series to be plotted. It will be possible to overlay graphs and to 

alter the scale of plots from the keyboard. The hardware for this mini- 

computer system is diagramned in Figure 1. It consists of a Harris 6024/5 CPU 

which is currently owned together with various peripherals.. The Astrodata 

seen in Figure 1 refers to the data acquisition system currently in use. 

It is a hard wired system that writes data on magnetic tape, The fifty 

instrumentation amplifiers, multiplexer wiring, and A/D converter contained 
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in this system will be carried over. The tunnel control subsystem sets 

switches which control tunnel operation. Al 1 other peripherals are standard. 

The Astrodata amplifiers described above include switch selectable 

Butterworth filters. It is desirable to increase the variety of filtering 

available and to allow the selection of filtering after test data are 

collected. This last feature in particular suggests digital filtering. 

The scheme selected must use a minimum amount of both memory and time. 

A recursive scheme seems best suited. It is in addition necessary that the 

filter not distort data that may be fit with a low order polynomial. 

This paper begins with a review of some background material. Digital 

filtering is developed on this background that fits the needs described 

above. Random noise effects, start up effects, numerical accuracy, and 

deviation from the limiting continuous behavior are then discussed. Further 

background material is available from several references. Reference 1 

contains reprints of important papers and provides a good review of the 

subject. The paper by C. M. Rader and B. Gold* is of particular interest. 

A related discussion of polynomial smoothing is given by Blackman3. 
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SOME USEFUL CONCEPTS 

Filtering Properties of Derivatives 

It is, of course, obvious that the derivative of a jittery function is 

likely to be even more jittery. It should not be surprising, therefore, 

that the analysis of many filters leads to differential equations in which 

the derivatives are taken of the filter output, which is to be smoothed to 

obtain the filter input, which is rough. For example, the differential 

equation that describes the common resistor-capacitor filter is, 

Such an equation descr ibes a method by which the filter input may be obta ined 

from the output. Clearly it is desirable to invert this equation to a form 

that gives the filter output from the filter input. Such an inversion leads 

to the Green's function and to the transfer function of the problem. 

C d Vout/dt + Vout/R = Vin/R . 

.Transfer Function and Green's Function 

The differential equations that describe many filters have the form 

N 

' an 
d"V 
dt" 

V 
n=O out= in' (1) 

where the an's are constants and the zeroth derivative is taken to be one. 

The operator in Eq. (1) applied to Vout is linear and for this reason 

solution pairs Vout, Vin have the property that Vout 
1 

+ V,,t , Vin + Vin 
2 1 

is a solution pair if Vout , Vin ) and Vout , Vin are. Thus, Eq. (1) caf 
11 2 2 

be rewritten by expressing Vout and Vin in terms of some complete set 

of functions and solving for each component. This is usually done by 
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expressing Vout and V. 
In as Fourier transforms since this procedure 

diagonalizes the problem, that is, 

N 
,iwt = 

N 
C a d" 

n=O "dt" I 
c 

n=O 
an (iw)n 1 ,idz 

N 
in which c an (iw)n is the eigenvalue for the cigen function e iwt 

n=O 
. 

The expression, 

l/ z 
n=O 

an.(iw)" , 

is known as the transfer function since if a signal eiwt is input to the 

filter the output will be, 

eiwt/ ,R an (iw)n , 
= 

and, thus, Eq. (1) has been inverted in frequency space. 

A return from frequency to time space can be made by carrying through 

the inverse Fourier transforms. Defining the Fourier transform pair as: 

F (t) = l/G p f (w) eiwt dw 
-m .I 

m 

f (w) = l/K 
J 

F (t' ) ,-id' dt 

-m 
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gives, 

V out (t) = (ll2n) j dt' Vi,., 
. -0D 

(.t;' ) { 7 dw [ eiw(t-t'-) 1.1, an (iti)n]} . 
-m 

This expression is of the form 

V out (t) = J de’ Vin w 1 9 (t - t’> , 
,m 

where the Green's function g (t - t' ) is given by 

Cl (t - t’ ) = (l/h) 7, dti[eiw(t-t' )/ ! 
3(P n=O 

a, (i.)"] . 

The integral in Eq. (4) can be readily evaluated by use of the‘ residue 

thereon if the zeros of the polynomial, 

N 
PN = nfo an Xn , 

are known. 

(4) 

(5) 

For a physic-ally realizable filter the Green's function must be zero 

for t c t' as the filter cannot exhibit a response to events in the future. 

It is worthwhile noting that this will only be the case if the polynomial in 

Eq. (5) has no zeros in the right half plane. 

The Aliasing Problem 

A digital filtering scheme acts on a finite number of discretely spaced 

data points to which the continuous analysis developed above does not 
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directly apply and it is necessary to carry over the various equations to the 

discrete case. Equation (1) for example can be rewritten in terms of finite 

differences or, in general, as, 

N 
c 

m=D 
am H (n - m) = 0 (n), 

where H is the output of the filter, D is the data set and the am's are 

constants. Such an equation is linear and Fourier analysis applies. The 

transform pair becomes, 

M 
D (n) = (l/m) c ‘d (k) exp [2Trikn/(2Mtl)] , 

k=-M 

(6) 

(7) 

M 
d (k) = (l/m) c D (n') exp [-2~ikn'/(211+1)] , 03) 

n' Z-M 

for 2M+l data points. 

This form should be very familiar to anyone with solid state experience; 

a crystal lattice is a discrete space and simildr forms are used. Just as 

the finite nature of the lattice folds momentum space in upon itself giving 

rise to the Brillouin zone, frequency space is folded in the digital filter 

problem. For example, there is no way to distinguish sixty Hz noise from a 

D.C. signal if data are sampled at sixty Hz (see Figure 2) as sixty Hz is 

folded into DC at this sample rate. This phenomenon is known as aliasing 

and implies that a data rate must be selected with care. 

The relationship between the continuous and discrete Fourier transforms 

is obtained by sampling a continuous function whose transform is known and 
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calculating the discrete transform Eq. (9) , by combining Eq, (2) with 

Eq. (8). 

d(k) = (l/m C n~-M{[(l/dZQ f f(w) eiwnr dw] exp I2Ttikn/(2!4+1)} , (9) 
-0D 

where ;r is the sampling period. This equation simplifies to: 

m 

d(k) = (l//m)) 
J { 

dw f(w) sin [(2M+l)(wT - 
-a 

2-M(2M+l> > /21/ 

(10) 

sin [(UT - Zak/(ZM+l)/Z] . 

The implications of Eq.'(lO) are that the discrete coefficient samples 

the continuous coefficients in a window of half width 2~/(2Fl+l) about 

w = 2mk/T(2M+l). A word of caution is urged in this interpretation, however. 

A noisy signal with components at frequencies much higher than the data 

sampling rate will p.roduce an essentially random data component. Clearly, if 

the 0 (n) in Eq, (8) are random the Fourier components d (k) will also 

be random. The problem of obtaining useful numerical frequency spectra is 

discussed in reference 4, As long as the Green's function is broad enough to 

include many data points and as long as the band pass is much wider than 

2n/(2M+l) statistical effects will average out. This is demonstrated below. 

Linearity 

These filters are designed for use with data that approximates a low 

order polynomial in addition noise at particular frequencies may be present 

as well as a random variation in the data points. Finally, the solution to 

the equations that describe these filters is an initial value problem and 
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the response depends on starting conditions. Fortunately, these equations 

are linear and the rrisponse to each of those signal components may be 

treated separately. 

SHIFT FILTERS 

The result of applying the operator 0, 

! .(a"/,,!) d"/dt" , 
n=O 1 

to a polynomial in t of order N is to shift the polynomial, without 

distortion, by an amount a along the t axis; that is, . 

0 [ .!, Cm t”] 3 .!, Cm (t + alrn , 

whore a and the cm are constants. 

The transfer function for this operator is, 

A N 
1 C (ia,)"/n!) , 

n=O 1 (12) 

which for small aw is just e -iUW , and has magnitude one. The band pass for 

a filter described by Eq. (11) will, therefore, be flat for small U. For 

large u only the last term in the polynomial in Eq. 12 need be kept and the 

filter will cut out high frequency as N!/(W)'. A filter described by this 

operator will have the desirable property of a flat band pass and will shift 

without distortion a data signal that approximates a low-order polynomial. 

Unfortunately, only filters N = 1, 4 are realizable as the polynomial, 

N 
p/.&x) = c X"/n! , (13) 

n=O 

has zeros in the right half plane for N > 4. 
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in Fi 

have 

The band pass curves of the first four filters in this series are shown 

gure 3. These have been adjusted, by proper choice of ~1, so that they 

the same 3 db. cut off frequency. The relationship between u and the 

3 db. cut off frequency is given in Table I. 

The Green's functions of the first four filters can be obtained from 

the residue theorem and Eq. 4 as stated above and can be shown to be, 

9 (t - r ),=I 
~ - (N!/a) ! exp [Z_ (t - I! )/al /Z/ ,tar; 

(14) 
rt<r, 

where the Zn 's are the zeros of the polynomia 

plotted in F igure 4. 

> Eq. 13. These zeros are 

Note should be made that the fjlters for N = 1 and 2 are Buttemlorth 

filters; however, the filters for N = 3 and 4 are not. 

NUMERICAL SIMULATION 

The desirable i'eature of this series of filters is that low order 

polynomial data is not distorted. This is the feature that led to the 

development of the operator in Eq. 11 and it can be used to simulate the 

operator numerically. Rearranging Eq. 6 to solve for.the last output of 

the filter H(n) in terms of the previous outputs and the current datum 

point D(n) gives, 

N 
H(n) = A0 D(n) + c A, H(n-m) . 

m=l 
(15) 
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This is the useful form of the filter algorithm and gives the current 

filter output in terms of past filter outputs and current data. The A's 

can be solved for by insisting that, 

when 

D(n) = H(n+a) , (16) 

N 
H(n) =, C aa nR . 

!L=O 
(17) 

Equations 16 and 17 imply that the filter algorithm given by Eq. 15 will 

have the appropriate shifting property for polynomial data. Applying 

Eq. 16 and Eq. 17 to Eq. 15 leads to the set of equations, 

1 = A0 (l*a)& + mtl A~ (1-m)' , 
t 

1, . . . . N, 

which can be solved for the Am 's giving, 

(18) 

A0 = N!/[(l+a)(Z+a)...(N+a)] , (19) 

Am = - [a/(m+a)] (-1')" N!/[m!. (N-m) !].. (20) 

The connection between the discrete operator, Eq. 15, and the continuous 

operator, Eq. 11, can be seen by writing Eq. 15 with the coefficients given 

in Eq. 19 and Eq. 20 in terms of difference operators as, 

N 
D(n) = H(n-N) + c [(N+a)(N-l+a)...(N-c+l+a)/a!3 vk H(n-N+a), 

a=1 
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where 

Va H(n) = 
a 
c (") (-l)k H(n-k). 

k=O .k 

For large a this becomes, 

D(n) = ,!, [(a-r)L/n!) vR H(n-N+a)/T' . 

Let H sample the function F(t) at increments of T and fix aT = a a constant, 

then by definition the right hand side of the above equation becomes, 

N 
C (a'/&!) ‘d' F(t)/di? , 

J!=O 

as T approaches zero. 

Thus, the discrete filter given in Eq. 15 with coefficients given by 

Eq. 19 and Eq. 20 is equivalent to the continuous operator given in Eq. 11 

in the limit of small sampling period with u = aT. 

Such equivalence is often shown by fitting the discrete data points 

with a continuous function of some specific form that eases the translation 

from continuous to discrete equations maintaining the band pass characteristics 

of the fi1ter5. This was not done in translating the shift filter, since the 

property that remains constant in this translation is the shift property 

and not the band pass. 

RANDOM NOISE 

The average response, IH(n), of the filter given in Eq, 15 to random 

data of distribution, 
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,-(D/d* /u J;; , ‘. 

is zero. The average squared response gives a measure of the randomness of 

the filtered data and is given by, 

- - 
H(n)2 = D(n)2 1 9* (n-d , 

a=0 1 
where g (n-e) is the discrete Green's function, i.e. the response H(n) to 

D(n-e) = 1 and D otherwise zero. The random noise attenuation factor, 

c g2 (4 I a=0 

can be calculated in the large a limit from the continuous Green's functions 

and becomes, 

- (W2/a ,4, kLz, [l/Z: zFk (zk [ 1 + 'kk) ] . 

The value of these factors are given in Table II while Figure 5 shows a plot 

for small a. 

(21) 

of the attenuation factors 

START UP 

As mentioned previously the filter output depends on starting conditions. 

As may be seen in Eq. 14 the magnitude of the Green's functions >damps out 

exponentially and consequently starting conditions may be ignored after a 

certain startup time that goes as u divided by the real part-of the zero of 

the polynomial in Eq. 13 that is closest to the imaginary axis. These 

damping factors are given in Table III. Clearly, some improvement may be 
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made if some sT*heme can be used to start the filter algorithm by assigning 

H(l-m), M = 1, -2...N some appropriate values. This may be,done by setting 

all H(l-m) equal to D(1) or by curve fitting the first few data points and 

extrapolating backwards, etc. 

NUMERICAL ACCURACY 

The response of the digital shift filters to a signal D(n) = 1 may be 

calculated from Eq. 15 as, 

H(n) = Ao.+ 'd A,,, , 
m=l 

(22) 

which, by Eq. 18, is H(n) = 1. Clearly, the sum in Eq. 22 represents the 

D.C. gain of the filter. It can be shown that the values, 

G,,k = A0 aaWk f m!l. (-m)R-k Am a!/k! (a-k)! , k Q II , 

give a measure of the distortion in the form of an nk term present in the 

filter output when nR is input. Note that the G, R's reduce to the gain 
* 

calculated from Eq. 22. The calculation of these distortion terms gives a 

measure of the numerical accuracy to be expected from 'the algorithm. 

SMALL SHIFT BEHAVIOR 

Due to the aliasing problem the band passes of digital filters are 

periodic in w with period ~s/T. It is, therefore, necessary to use them 

in conjunction with some electronic filtering to insure that signal 

components of frequency w > n/r are minimal. The data acquisition system 
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used with the wind tunnel application uses a second order Butter-worth filter 

with a cut off frequency set at w = T/T. A choice of a > 1 will then 

insure that final filter output is predominantly controlled by the digital 

filter. The question then arises as to whether the large a approximation 

is appropriate for a > 1. The random noise attenuation factor being the 

integral of the square of the Green's function serves as a good single 

parameter for a study of the,closeness to which the behavior of the filter 

is approximated by the large a formulas. As can be seen from Figure 5 

differences can be expected and the small a band passes and Green's functions 

must be calculated. 

The band pass may be obtained from the numerical transfer function, 

N 
l- C A, exp (-i,,m) /A0 , 

m=l 1 
w = 2 IT i k/-r (ZMtl), k = -m,...m 

The attenuation curves are plotted in Figure 6 for a = 1 and in Figure, 

iplied by a to show the approach to the large a limit. 

7 for a = 5. 

W; it is mult 

The smal 

to the filter 

when applying 

Figure 8 shows the 3 db. roll off frequency as a function of 

1 a Green's functions are easily obtained by applying a pulse 

, i.e. D(1) = 1, D(n) = 0, n # 1. The variable of interest 

the filters is the width of this Green's function‘since this 

determines the time necessary for errors in the initial conditions to damp 

out. These widths are plotted in Figure 9. The criterion used in calculating 

them is that integral of the square of the Green's function has reached 

ninty percent of its limiting value. For practical purposes the width of 
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the Green's function is about twice the value calculated by this criterion, 

the factor of two arising from the fact that the Green's function was 

-squared. 

The 3 db. roll off frequency and random noise factors for small a are 

given in Tables IV and V. 

CONCLUSION 

The filter algorithms discussed in this paper have been linear in 

nature. That is the action of the filters on various data components 

may be analyzed separately. As has been shown the main data signal will 

be preserved without distortion if it is in the form of a small order 

polynomial. The attenuation of noise at particular frequencies has been 

discussed. In general, the band pass becomes wider with increasing filter 

order and a particularly noticeable spike or resonance is observed in the 

fourth order filter which may pose a problem if noise is present at this 

frequency. The fourth order filter will also pass more random noise than 

the others, and it is also true that the fourth order filter will require 

a greater amount of time to damp out starting effects or noise spikes. 

All four filter types are useful if consideration is taken of the 

peculiarities found in order four, however. Figure 10 shows the effects of 

all -four orders on a sample of wind tunnel data containing a large 60 Hz 

noise component. Note that this component appears at 20 Hz due to the 

40 Hz sampling rate and is eliminated by the filtering. 
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Table I 

Attenuation factors and 3 db. Cut Off Frequencies for Shift Filters 

Order Attenuation Factor 3 db, Frequency (HZ) 

1 1/n + (Ua)* f3 
= .276/a 

2 l/J1 f (wa)4/4 ,296/a 

5 

3 l/J1 - (~a)~/12 + (wc&36 .390/a 

4 l/n - (wa)6/72 + (~a)~/576 .499/a 

Table II 

Random Noise Attenuation Factors for Large a Filters 

Filter Order 

1 

2 

3 

4 

Attenuation Factor 

.5 /a 

.5 /a 

.75/a 

1.5 /a 

Table III 

Green's Function Damping Factor 

!! Factor 

1 -1 

2 -1 

3 - 1.42 

4 - 3.69 
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Table IV 

Band Edge Frequencies (Hz) for Small a Filters (3 db) 

Data Rate = 40 Hz for(120 Hz multiply by 3) 

Filter Order 

a 
1 

2 

3 

4 
5 

6 

8 

10 
12 

14 

16 
18 

20 

8.40 
4.62 

3.23 

2.48 

2.02 
1.71 

1.31 1.32 1.66 2.01 

1.05 1.08 1.36 1.67. 
0.89 0.91 1.16 1.43 
0.76 0.79 1.01 1.25 

0.67 0.70 0.89 1.11 

0.60 0.63 9.80 1.00 

0.54 0.56 0.73 0.91 

2. 3 -- 

6.68 7.07 
4.14 4.71 

3.03 3.59 

2.40 2.90 
2.00 2.43 

1.71 2.10 

4 
7.64 

5.35 

4.18 

3.42 

2.92 

2.54 
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Table V 

Random Noise Attenuation for Small a Filters 

Filter Order 

a 1 z 3 4 
1 .33 .29 .33 .47 

2 .2D .18 l 22 .36 

3 .14 "13 .17 .29 

4 .ll .lO .14 .24 

5 -091 -087 .12 .21 

6 .077 0072 .lO .19 

8 .059 ., .056 .079 .15 

10 .048 .046 .066 .12 
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4. J. W. Cooley, A. W. Lewis, and P. 0, Welch, The Fast Fourier Transform 

Algorithm and Its Applications, (IBM, Yorktown Heights, N.Y., 1967). 
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Figure 2. A Sine Wave of Frequency l/r Sampled at I/r. Note that 
the result may be interpreted as a D.C. signal. 
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AME Dcpnrtment 
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ABSTRACT. Two numerical models for simulating the tidal hydrodynamics 

of an inlet, bay or harbor are compared. An implicit finite difference 

solution to the basic equations of hydrodynamic flow has been developed 

at the Waterways Experiment Station. This implicit model is compared with 

an explicit formulation as applied by Masch, 1973. Both models calculate 

depth avcragcd velocity components and ti.dal elevations as a function of 

position and time during a specified tidal cycle. In addition to the 

actual bathymetry, the two models include variable bottom roughness, non- 

linear advcctive terms in the momentum equations, treatment of regions 

which are inundated during a portion of the tidal cycle, exposed anb 

submerged barriers, wind stress, and other physical features of the region 

to be modeled. A discussion of the mathematical formulation and associated 

finite difference approximations is included. The comparison consists in 

applying both models to Masonboro Inlet, North Carolina, with identical 

b:lthymctric data, boundary conditions, and spatial step size. The hydro- 

dynamic solutions obtained are compared as well as the economics associated 

with the two models. Wh i 1 c , in general, the solutions obtained from the 

two schemes arc comparable, the explicit solution has a considerably more 

stringent stabi 1 j ty criterion 1imi.ting the time step. Remedial actions 

rcqui reel t,o ovc~‘como stability problems inherent in imp1 icit schemes arc 

di.scusscd, 

1 NTIux"I~JpTON. 1 * Most numerical simul:ltions of tidal hydro- 

dyn:lmics associated with inlets and bays have been performed using 
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finite diffcrcncc schcmrs ha~cd upon an cxpl icit formulation. A 

code employing such a schcmc was dcvclopcd by Reid 6 Bodine (1968) 

and used cxtcnsivcly in treating problems which include possible flooding 

of low-lying a.rcas and subgrid topographic Eeaturcs. An extension of 

this work was carried out by Masch, Brandes, and Reagan (1973) for 

the U. S. Army Coastal Engineering Research Center to help evaluate 

the degree to which mathematical models can be used to predict the tidal 

hydrodynamics (exclusive of sediment transport) of an inlet system. 

The Wave Dynamics Division, WES Hydraulics Laboratory, has applied 

implicit finite difference schemes to a variety of problems such as 

tsunami propagation, simplified tidal models, landslide generated water 

waves and storm surge calculations (Butler and Durham, 1975). Implicit 

schemes have been appl.ied successfully by Leendertse (1970, 1971) to 

regions which include areas that are inundated only during a portion 

.of the tidal cycle. The present work is an extension of the ideas 

expressed by Leendertse but differs in that the basic equations are 

written in terms of vertically integrated flows per unit of width 

rather than velocity, and subgrid features, such as exposed,submerged, 

and overtopping barriers, are treated. 

The principal reason for using the implicit formulation is 

economic. Explicit schemes are generally hampered by a stringent 

restriction on the time step used in the computational procedure. For 

large regions simulation may be infeasible. Normally, implicit schemes 

do not have such restrictions and, therefore, can be applied using 

a significantly larger time step. 

The method of comparison consists in applying both implicit 

and explicit codes to a seven and one half square mile arca at 

Masonboro Inlet, North Carolina. Comparisons of surface elevations 

and depth averaged flows with prototype data are made for each scheme. 

394 

. 



2. 'I'tlc!ory--liclu;lC iorls of I:luid I:IOw. --,------ l’hc hydrodynamic equations 

used in this work are dcrivcd from the standard three-dimensional 

Nzvicr-Stokes equ:ltions. By assuming the vertical accclcrations are 

snw 11 and the fluid is well mixed, and integrating the flow from 

the sea bottom to the wntcr surface, the usual two-dimcnsionnl depth- 

avcrngcd form of the equations of momentum and continuity are obtained: 

MOMENTUM 

u au 
:+7x 

v au a, 
+dTy -fV+gd$g - 

$ (U2 + V2)'/2 t F, 

34 u av v av a, 
,,+,,+,qfUtgdy 

$ (U* f V2J1/* t Fy 

CONTINUITY 

12) 

(33 

U,V: FLOW/UNITWlOTH 
n: SURFACE ELEVATION 

In these equations, U and V are the vertically integrated flows per unit 

of width at time t in the x and y directions, respcctivolyt n is the wntcr 

surface elevation with respect to the given datum; d is the w:ltcr 

depth at (x,y, t) ; other terms are defined in the table of notations. 

As evident in the equations of motion, advcction, coriolis force, bottom 

friction, rainfall, and wind forces arc included. Two forms of finite 

diffcrcncc solutions to equations (I), (2), and (3) arc considcrcd: an 

explicit and implicit fOrmul:ltion. ‘l’hc computational grid used in both 
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formulations is idciitiuill. A roctl incar mesh is placed over the study 

axca, and within each gri.d ccl1 the followjng assumptions are made: 

(1) the value of n is consjdcrcd to be an average over a grid ccl1 ’ 

CCntCrCd at x = IdAx and y = N Ay and at time: kAt; (2) the value of 

U N , M is given at the center of the lower cell face; and (3 ) the value 

of VN M is given at the center of t;~c right-hand cell face (Figure 1) a 
, 

I 
-- d M -- 

L&A 
-Y 

I 

c 
x 

N 

II - FLOW/UNIT WIDTH IN 
X * OIRECTION (U) 

A - FLOW/UNIT WIDTH IN 
Y *DIRECTION (‘4, 

o - SURFACE ELEVATION (,,)I 
WATER DEPTH (d), 
FRICTIONAL COEFFICIENT (C or II) 

Figure 1. Cell definition 

In addition, the water depth d and Chezy frictional coefficient C are 

also defined at the center of grid cells. 

Explicit Solution Scheme. The explicit solution method used by 

Reid is a time-centered difference scheme involving a procedure of the 

“leap frog” t ype for computation of flow and water levels. The follow- 

ing notation will be used: k = kAt; angle brackets, 
( iox I ), ’ to 

indicate that terms maintained in differential form arc evaluated with 

centered difference expressions over one or two grid cells, respectively. 

Quantities which are not specified at a given spatial location are 

replaced by averaged values indicated by a bar, such as vN b,+!,.q Using 
.? 

these notations, applying centered differences in time and’space, and 
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MOMENTUM 

- &d*($ + &!]/C,x Af (N, M t l/Z) 

+ n t$-‘12. 

- A tgd* (2);” + AV;]/ C,, AT (N t K!,M) 

WHERE 

d’=Fk-F; 

CONTINUITY 

14) 

(5) 

(i)) 

(11) 

AT (N, M) 

The calculati.ons for each time step ar’c Jividcd into two halves; 

the flows nrc computed during the first h:llf of the time st.cp, and the 

results arc used in the continuity cqunt ion to calculate the surface 

el cvat ions during the second h:il f. 
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Implicit Solution S~hcmc. -___-_ --I ‘I’0 Sol vc tho governing equations 

implicitly, the same sp:tcr:-staggcrcd schcmc is used. The implicit 

code employs an alternating-direction tcchniquc whose calculations 

arc divided into two parts. The first step, or !i-cycle, consists in 

solving for n and U implicitly; the second &cycle computes n and V 

implicitly. The omitted transport in each $-cycle is assumed constant 

for that step. Employing a centered difference operator to the 

momentum equation (1) and the continuity equation (3) along a grid 

line parallel to the x-axis, results in a system of linear algebraic 

equations whose coefficient matrix is tridiagonal. The form of the 

equations for the first $-cycle is given by: 

MOMENTUM 
au k-1/2 

0 ax* 

AT (N, M + l/2) 

CONTINUITY 

AT N Ml 
WHERE d* = yk - ii (14) 

Notations used in equations (7) and (8) arc the some as those given 

in the dcscri.ption of the explicit formulation, The oquntions for the 

second %-cycle arc similar to the above and 31-c not prcscnted. 

I~oundary Conditions. Various types of hounda.ry conditions are 

permissible in the prcscnt system of cornput:ltion for both explicit and 
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impli.cit co&s. In t~otll COJCS, IIOLJI~I~~ conditions at the tide computa- 

tion boundary (open bound:Iry conditions) are nccomplishcd by setting the 

water lcvcls, rlN b,, as prcscribcd by input tables. Flow rates may be 

specified instc;Gl of water lcvcls. Al 1 additional boundary conditions 

rclatc the normal component of flow at the boundary to the state of the 

water level at the boundary. 

Water-hand Yound:~ries. Such boundaries are prescribed along 

ccl 1 faces, hence this condition is handled by specifying U = 0 or 

V = 0 for those cells where impermeable boundaries exist. In estuarine 

systems with large areas of low-lying terrain and a significant tidal 

range, many areas alternately dry and flood with each tidal cycle. 

Thj.s behavior is simulated by making the location of the land-water 

boundary a function of the current. value of the total water depth. 

By checking the water level in adjacent cells relative to the ground 

elevation, a determination is made as to the possibility of inundation. 

If flooding is possible, the boundary face is treated as open and compu- 

tations for n, U, and V are made for that cell. The drying of cells 

is simply the inverse process. 

Subgrid Barriers. Subgrid barriers are defined along cell faces 

and are of three types: exposed, submerged, and overtopping. One 

characteristic of such barriers is that the surface elevation is 

computed at the center of cells on either side of the barrier. The 

treatment of these barriers in the explicit code can be found in 

Masch (1973). The following discussion is limited to the way in which 

these conditions are simulated in the implicit code. Exposed barriers 

are handled by simply specifying a no-flow condition across the cell 

face. This type of barrier is used to describe dykes, jetties, and 

similar features which are impermeable and usually of width much less than 

!2 the spatial grid step. Submerged barriers are used to simulate flows 

across such barriers as submcrgcd reefs, spoil banks, pipe lines, etc. 

The water level on each side of a submerged barrier must always exceed 

the b:irricr crest clcvation. The flow over a submcrgcd barrier can be 

controlled in n rn:lwwx- similar to that used by Masch, but cxpericnce 
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has shown that by dc~l’ining a special Chczy cocfficicnt for tbc barri.er 

f:Icc, the El.ow over the barrier can bc simulated without introduci.ng 

unwanted transients due to the USC of the submerged weir equation. 

Overtopping bnrrics is a terminology used to distinguish a 

bayricr which can bc submerged during one portion of the tidal cycle 

and totally exposed in another. blasch used a broad-crested weir 

formula to describe the overtopping nature of the flow and then the 

submerged weir formula when appropriate. Since a larger time step 

is used in the implicit code and the duration time of overtopping 

is short, a Chezy formulation is again used to simulate the flow 

across the barrier. When the barrier is exposed a very small Chezy 

coefficient (high friction) is used to “stop” the flow. When overtopping 

occuxs, the coefficient is increased to a specified maximum as a function 

of the water-level over the barrier. As the water level decreases at a 

later ti.me, the coefficient is decreased accordingly. 

Numerical Stability. Fox an explicit solution scheme, the grid 

size and computation’al time step are related through a stability 

criterion. The criterion associated with the explicit scheme presented 

here is given by the relation 

where As is the mesh si.zc and d ~~~ is the maximum water depth used 

in the model. This approximate condition was derived from expressions 

obtained by linearizing the problem. When the non-li.near terms are in- 

cluded, it can be cxpcctcd that the time step will require further reduction. 

Considering the linearized implicit equations, it can be shown that 

the difference scheme is uncondi.tionaIly stable. In other words the 

space and time steps may be chosen to meet required accuracy in 

rcprcscnting topogr:iphic features and cxtcrnal forcing functions. The 

inclusion of the non-linear advcctivc terms (of the form U 2, V z) 
ay 
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into t,iic imp1 icit r;chomc rchsults i 11 i nhcrcnt install i 1 it i cs, All derivatives 

in tlic lxtsic equation:; arc approximated with ccntcrcd Jiffcrcnccs over 

a single grid Sl>ilCC with the exception of the advectivc terms, which 

arc computed over two grid ccl 1s. Oscillations of the water lcvcl at 

a grid point (period 4At) may occur and grow unbounded. 

A scheme which proved capable of eliminating these instabilities 

was the USC of a recursive digital filter of the form 

nk+l = an(c) k+l + bqk t cqk-l (16) 

where n(‘) rcprescnts the computed water level and T\, the water level 

value used in further computations; coefficients a,b,c are chosen to 

filter out oscillations of period 4At (corresponds to 4 the Nyquist 

frequency) and smaller, while permitting the longer period wave motion 

to remain undisturbed. The coefficients of the digital filter must 

also be chosen in such a way as to maintain stability of the filter. 

By applying the linearized system with and without a filter it was 

demonstrated that filtering does not affect the results. For applica- 

tions presented jn thi.s paper, values of a = 0.6, b = 0.3, and c = 0.1 

were selcctcd. 

An additional instability, which is termed a “secondary flow” 

phenomena, may also occur. A discussion of this problem was presented 

by Vreugdenhil (1973). The scheme normally employed to eliminate 

this instability is the inclusion of terms in the momentum equations of 

the form - 

Such a form is referred to as an eddy-viscosity term and is generally 

tahcn as 3 rcprcscntntion of thu effective-stress in vertical plants. 

l’hcs~ terms arc usually ncglcct cd hut are very important when the 

flow has a strong tcndcnry to converge or diverge at various locations 

within the system. 
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7 . . /yyl i~;l1ioll to M:l!anlmro Inlet North --__---A.-- Carolirl~i--Conlputntional 

Grid. --- A 111;l~) of the M:Isorll,oro Inlet sy5ttum is shown in Fig. 2. A grid 

size of 300 I‘cct was adapted resulting in a mesh of dimensions 41 X 57. 

‘I’hc computational water points arc 1721 in number. Tidal elevations 

obtained from prototype data taken in a survey on 32 September 1969 

arc imposed at boundary lines donoted by circled numbers. The bathemctry 

at Masonboro Inlet for this period of time was also surveyed; available 

boat sheets were digitized for the computational arca. The frictional 

coefficients are dcfincd by assigning number codes to the various 

types of terrain and applying known values of Manning’s n and the 

relationship: 
c = 1.49 d1/6 

n (181 
Since the prototype data was taken on a calm day, no wind stress was 

applied in the numerical model. 

The jetty system protruding from the outer barrier island is 

composed of a weir section, elevation 2’ above datum and 1000’ in 

length, extending from the outer island to near the bend in the jetty. 

The remainder of the structure is impermeable. Exposed barriers were 

used to represent very narrow strips of high land in the marsh area 

behind the barrier islands. The outer model boundaries are set at 

a distance of 10,000 feet from the inlet throat to minimize effects 

from inherent problems in handling all the terms in the equations 

at the input boundaries. 

Comparison of Results. -“_ Although excellent results were obtained 

by both codes at gages located throughout the system, for brevity, 

only results at the three locations depicted in Fig. 2 will be presented 

for comparison. Figure 3 shows the degree to which the numerical codes 

simulate the prot.otypc tides. The computations were begun at 1330 EST 

and 3 fold-over occurred at 2000 EST, equating data at this hour with 

that taken at 0730 13T. This proccdurc may cause some discrepancy in 

the results but is rcquircd since the models must spin up from rest 

at low tide. Roth ndcls Jcscribc the tides equally well. The 

di.scrcpncy at gage 2 in the obb phase may have resulted from two 
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~‘l’“l,lcnl!~ : tllc ~)rr)~otyl~c t i JC gage W;IS loc:l.tcd within 3. tn;lriIln t)chind 

1 tic riorthcrw Ix-rricr island :~nd thcrc was soac question as to the phasing 

of the t.idal input specified ut bounrlary 2. 

~igurc 4 shows the tidal voloci,tics calculated in the numerical 

models rclntivc to prototype velocity mensurcments taken at three depths: 

SUl+f:ICC, mid-depth and bottom. Recalling that the models produce a depth 

averaged flow rate, velocities arc obtained by dividing the flow by 

the local water depth. Again, good agreement is obtained in both models. 

Figures 5-6 display sample circulation patterns at flood stage 

(5 Hrs = 1830 EST) and ebb stage (10 Hrs = 1100 EST), The arrowheads 

indicate direction of flow and their length is proportional to the 

magnitude of the flow rate. 

4. Comparison Statistics and Conclusions. 

the computer run time requixcd for the Masonboro 

numerical models . 

Table 1 below relates 

simulation for both 

TABLE 1. COMPARISON STATISTICS 

GRID 

NUMBER OF WATER POINTS 1721 

SPATlAL STEPSIZE (FT) 300 

SOLUTION 

RUN* 

At TIME 

(SEC) (MIN) - - 
EXPLICIT 3 60 

IMPLICIT 90 4 

* BASl:D ON 18 PROTOTYPE IIOUR 
SlClULATION ON A Cl)C 7600. 

The stability criterion :lssoci.atcd with the explicit schcmc predicts a 

5.2 second time step is necessary for the xangc of water depths appearing 

in the system. tlowcvor, time steps of 5 see and 4 see were tried and 
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Figure 4. Comparison of velocity agreement with prototype 
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jnstabi 1 itics rosul tctl. A ?;tcpsiL~ of’ 3 sw was found to be stable 

for the: cnt ire simul:~tion, ‘I’hc impI i c it schcmc was run for time stops 

of 45, 90, nntl 180 seconds. Results for the two smaller time steps 

wore pract i c;rl ly i.dcnt. i cnl . I<csult,s for At = 180 compared favorably 

wi.th the prototype but some discrepancies in phasing were noted. 

I<cr;ults for At = 90 seconds have been prcsentcd. Note that At for 

the imp1ici.t scheme is the time for a complete cycle, that i.s, U and V 

are computed once and 11, twice. In the exp1ici.t scheme, U, V and rl 

arc computccl once in a time step of 3 seconds. The speed of the implicit 

sc]lemc CZLII bc cxprcsscd by the relationship 

I= 3% 
*% (19) 

where Ati and Ate are the time steps of the implicit and explicit schemes, 

respectively, and I is the execution speed of the implicit model relative 

to the explicit model. In this application a 15:1i ratio in execution time 

was noted. 

The results of this study demonstrate that the implicit schem,c 

presented herein can reliably simulate the ti.dal hydrodynamics of 

a complicated inlet system. The W13S implicit model is considerably 

more economical to apply and should prove to be most beneficial in 

applications to estuarine systems as well as other problems which 

require simulation of long period wave motion. 
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A MODEL FOR LANDSLIDE GENERATED WATER WAVES 
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AME Department 
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ABSTRACT. A numerical model is developed for simulating 
the development and propagation of landslide generated water 
waves in reservoirs. The numerical model is based upon a 
finite difference representation of the depth averaged hydro- 
dynamic equations. The landslide is formulated as a moving 
boundary condition, propagating into the reservoir and 
accelerating the fluid due to physical displacement and 
viscous drag. Arbitrary reservoir geometry and landslide 
parameters can be considered. The numerical model results 
are compared with experimental results obtained on a 1:120 
undistorted scale physical model of Libby Dam and Lake 
Koocanusa in Montana. Landslides were considered reflecting 
a wide range of landslide volumes and velocities. The wave 
heights predicted by the numerical model are in good agree- 
ment with the wave heights observed in the physical model. 

1. INTRODUCTION. There are many serious problems 
associated with rockfalls or landslides into bays, lakes, 
reservoirs, fjords and rivers. These problems are becoming 
increasingly important due to expanded use of these bodies 
for recreational purposes and the increased industrial and 
residential development along the shores. Some areas of 
concern created by potential slide areas are: loss of life, 
damage to shoreside structures and boats, overtopping of 
dams by surge or waves with resulting damage to the dam 
and spillways, failure of dams with resulting large scale 
flooding, upstream flooding due to river blockage and loss 
of usage of the water body due to restrictions imposed by 
the final position of the slide material, Examples of the 
occurence of each of these can be found in the literature 
and vividly indicate the extent of the potential problem. 

2. BACKGROUND REVIEW. Some attention has previously 
been directed toward obtaining a qualitative and quantitative 
understanding of the probability of occurrence and the 
characteristics of water waves generated by rockfalls or 
landslides into reservoirs. Most laboratory and theoretical 
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investigations, however, have been two dimensional studies 
in an attempt to determine the fundamental relationships 
between the geometry and speed of a rockfall or landslide 
and the characteristics of the water waves generated by 
this mechanism (5, 7, 8). 

In 1972 the Hydraulics Laboratory at the U. S. Army 
Corps of Engineers Waterways Experiment Station (WES) 
constructed a 1:120 undistorted model of Libby Dam and Lake 
Koocanusa and conducted tests to determine generated wave 
heights and characteristics resulting from the sliding of 
individual rock ribs into the reservoir (1). Libby Dam, 
a 420 ft. (128 m) high concrete gravity structure on the 
Kootenai River in western Montana, is flanked by high rock 
slopes extending several thousand feet upstream from the 
structure. The rock is predominately bedded and jointed. 
Several prominent rock ribs form possible rock slide zones. 

The present study was directed toward developing 
numerical methods for predicting the effects of landslide 
generated water waves in reservoirs. The previous physical 
model tests were used to provide comparative data. 

3 THE NUMERICAL MODEL. 
which iossesses 

A two dimensional approach 
a pseudo three dimensional effect was utilized 

in the numerical investigation. The vertical component of 
velocity is neglected and the governing hydrodynamic equations 
are integrated over the water depth. An average two dimen- 
sional flow field is obtained but three dimensional geometry 
can be considered. This basic approach has been used by 
several authors such as Hansen (2), Leendertse (4) and 
Platzman (6). 

The rectangular coordinate system used is located in 
the plane of the undisturbed water surface as shown in 
Figure 1. The equations of motion and the equation of 
continuity are written as follows: 

au+ua!+v~ an 
at ay + 63 E = Rx * 'X 

&x+&fvav.gari= 
aY aY 

Rx + L 
Y 

and 
an 2 
at - at -t & [(h srl) u] +g[(h +-rl ) v]= 0. 

(1) 

In these equations u and v are velocity components, rl is the 
water level displacement relative to the initial reservoir 
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Figure 1. Coordinate system for problem formulation 
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0 WATER DEPTH, h 
X WATER LEVEL DISPLACEMENT TJ: BOTTOM DISPLACEMENT, s 
0 VELOCITY IN THE X DIRECTION, u 
V VELOCITY IN THE Y DIRECTION, V 

Figure 2. Grid system and variable definttion location 
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surface, h is the undisturbed reservoir depth, <is the vertical 
bottom deformation created by the landslide material, R is 
the bottom friction and L is a direct acceleration effect of 
the landslide on the fluid. Additional terms, Coriolis effect, 
horizontal diffusion, and wind stress could be considered in 
the equations of motion; however, these terms were neglected 
in this investigation. The continuity equation has been 
obtained by integrating across the water depth and applying 
kinematic and dynamic boundary conditions at the surface and 
bottom of the reservoir. The bottom friction terms are 
represented using a modification of the normal formulation 
of friction in terms of the Chezy coefficient. This formula- 
tion is necessary to properly account for the bottom friction 
where the moving landslid represents the bottom boundary. 

Rx = 
g (Vx - u)[(Vx - u12 -t (V - v12j2 

C2(h +rl) 

R = 
g(V - v)[(Vx - uJ2 -t (v - v,*$ 

Y C2(h -I- n> 

(4) 

The velocity components Vx 
landslide velocity. 

and Vy are the components of the 

To solve the governing equations a finite difference 
approximation of the equations and an implicit-explicit 
alternating direction technique is employed. A space stag- 
gered scheme is used in which velocities, water level dis- 
placement, bottom displacement, and water depth are described 
at different locations within a grid cell as shown in Figure 
2. A double-time-step operation is used in such a manner that 
the terms containing space derivatives are generally taken as 
alternating forward and backward, The first step in the 
calculation consists of computing u and rl implicitly and v 
explicity, advancing from time n At to (n f 3) At. The 
second step computes n and v implicitly and u explicitly, 
advancing from time (n -t 3) At to (n + 1) At. Central 
differences are used for evaluating all derivatives in the 
governing equations. This method of solution has been dis- 
cussed in detail by Leendertse (4). 

Three types of boundaries are involved in the calcula- 
tions. These are the solid boundaries at fixed coastlines, 
the fictitious open boundaries arising from the need to 
truncate the region of computation and the time dependent 
boundary between the landslide surface and the water in the 
reservoir. 
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A condition of complete reflection is adopted at solid 
boundaries. The condition can be written as 

7 . n=o 

at solid boundaries, where the n denotes a unit vector normal 
to the boundary. 

The applicable condition at fictitious open boundaries 
is more difficult to specify. The total transmission of 
the wave is the physical requirement at this boundary: how- 
ever, this cannot be rigorously achieved without computation 
beyond the boundary. As an approximation to the desired 
physical requirement, the wave profile is simply assumed to 
travel without change of form across the last interior grid 
cell. 

The landslide is represented by a time dependent 
vertical deformation of the bottom of the reservoir plus 
additional terms to represent the effect of the landslide 
due to viscous and inertia forces. The bottom deformation 
propagates into specified regions of the reservoir at the 
average speed of the landslide with the deformation at any 
particular location increasing from zero to a maximum value 
according to a specified time-displacement relationship. 
For those portions of the bottom of the reservoir through 
which the landslide passes but which do not experience a 
net change in ground elevation, the deformation is allowed 
to return to zero at a specified rate. The handling of the 
landslide condition is illustrated in Figure 3. The direc- 
tion, extent, and magnitude of the bottom deformation is 
,determined by knowledge of assumptions concerning the path 
and final disposition of the particular landslide. The 
water in the reservoir experiences an acceleration due to 
the force exerted by the landslide at the time dependent 
boundary between the water and landslide. This force per 
unit mass consists of a component due to the vertical 
displacement of the water by the slide, a component due to 
the bottom friction between the landslide and the water, 
and.a pressure drag exerted on the water by the front of the 
moving landslide. The pressure drag at the leading edge 
of the slide can be represented by 

(Fp) x = CD (& )(Vx - u>[(V 
X 

- u)~ f (Vy - v)~]+ A Z (7) 

where CD is a pressure drag coefficient and A, is an 
effective vertical cross-sectional area of the slide. The 
force per unit mass can then be considered as: 
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(*P)x 9 (CD AZ )(vx - u)[(vx - u12 + (v - v12]+ 
iiixss-= *c h 

where Ac is the grid cell area and h is the water depth. 
The pressure drag contribution per unit mass can then be 
considered as: 

Lx = p (vx - u)[(vx - u12 -I- NY - d21Q 

23’ = p (vy - v>[(v 
X 

- u)2 - (Vy - v)q$ 

'I) *Z where B = z (g) (10) 

A representation of the landslide is allowed to propagate 
into the numerical representation of the reservoir, acceler- 
ating the fluid due to physical displacement, viscous effects, 
and pressure drag effects. The resulting waves propagate 
across the reservoir in accordance with the governing 
equations. The wave height and velocity components are 
calculated for each grid cell at the end of each one half 
time step. 

4. BRIEF DISCUSSION OF PHYSICAL MODEL TESTS. The num- 
erical results were compared with experimental data from a 
physical model of Libby Dam and Lake Koocanusa (1). A site 
map in Figure 4 shows the topography of the steep rock 
slopes upstream of Libby Dam. Potential landslide zones 
upstream of the left abutment are denoted as rock ribs 909, 
914, 923, 927 with reference to the stationing along Montana 
State Highway 37. The area covered by the hydraulic model 
study is shown by heavy dotted lines. The locations of two 
prehistoric landslides denoted as 925 slide and 930 slide are 
also shown in Figure 4. The Libby Dam hydraulic model was 
constructed to a linear scale of 1:120, model to prototype. 
An undistorted scale was used to insure accurate reproduction 
of wave heights, wave period and runup. The dimensions of the 
model were 57 ft (17.4 m) long, 40 ft (12.2 m) wide and about 
5 ft (1.5 m) deep. The maximum elevation reproduced in the 
model was 2700 ft (823 m) msl with an adjustable mechanical 
inclined plane to support the landslide material above this 
elevation. A range of possible landslide velocities was con- 
sidered at each potential slide location, These velocities 
;z;;ed between 37 fps (11.3 m/set) and 192 ft/sec (58.5 m/ 

. 
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Figure 4. Site map 
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Wave heights at selected locations in the model were 
measured using direct contact electrical wave-height gages. 
The gage locations are shown in Figure 5. The runup dis- 
tances on the sides of the model were observed and the water 
overtopping the dam was collected and measured. 

Figure 6 shows the physical model ready for a test 
run. The landslide material used in the model tests was 
l/18 cu. ft. (0.028 cu m) bags filled with lead and iron 
ore. Photographs showing the final position of the slide 
were taken and the approximate final contours of the 
reservoir were determined after each test. A typical set 
of these data are shown in Figures 7 and 8 for Run 87. 

5 THE NUMERICAL CALCULATIONS. The numerical model 
requir;?d that a rectangular grid of mesh cells be established 
as well as the computational boundaries be established, and 
appropriate information be defined at discrete points in the 
reservoir. The grid size is selected to obtain the desired 
spatial resolution. Initial data include defining the reser- 
voir depth and a Chezy coefficient at each grid line. The 
time step is chosen using as a general requirement: 

Ax At < - 
(gh)" 

(11) 

This relation restricts movement of the water wave to 'less 
than one grid space per time step. 

Defining the landslide characteristics is the most 
critical aspect of the model. It is necessary to know or 
assume the volume of the slide material, the average 
velocity at which it moves, its path through the water, 
the general shape of its leading face, a time-vertical 
displacement relationship for the slide and the final dis- 
position of the slide in the reservoir. In a general 
investigation the use of this model would require a para- 
metric study. Available for this study were experimental 
data from a physical model study so that these parameters 
were known or could be approximated to a reasonable degree 
of accuracy. This study then reflects the degree to which 
the mathematical model can represent the reservoir conditions 
if the slide characteristics are reasonably well defined. 

A time step of 1 set and a spatial grid size of 80 ft 
(24.2 m) were used in the calculations. The pressure drag 
parameter 13 was varied between 0.005 and 0.0005 ft-1. 
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knowledge concerning prototype conditions or how to model 
certain phenomena. The results indicate that the numerical 
model is capable of modeling landslide generated water waves 
sufficiently accurate to allow overall engineering decisions 
to be made concerning the possible effects of a potential 
landslide. 

For small landslide velocities the viscous drag and 
pressure drag contributions to wave heights and velocities 
are small and the physical displacement of the water by the 
landslide is the predominate factor. The water waves pro- 
duced by the slide will generally be propagating faster than 
the slide is moving and thus the initial phase of the land- 
slide must be accurately defined if good numerical results 
are to be obtained. 

For large landslide velocities significant contribu- 
tions to wave heights and propagation velocities are pro- 
duced by the viscous drag and pressure drag. Viscous drag 
and pressure drag contributions to wave heights and velocities 
are focused in the direction of the landslide to a greater 
degree than the contributions from the physical displacement 
of water. If the landslide is moving faster than the normal 
propagation velocity for the water waves it produces, the 
entire path and time history of the landslide becomes of 
importance in obtaining an accurate prediction of the first 
wave crest. 

Additional experimental work is needed in which the 
landslide parameters, 
numerical program, 

which are required as input to the 

detail. 
are observed and measured in greater 

The initial physical model study of Libby Dam and 
Lake Koocanusa was an end in itself and not designed to pro- 
vide information to verify a numerical model. Fortunately, 
most of the required information was observed but not in 
the detail that would be desirable for use in detailed veri- 
fication of a numerical model. 
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Gage Location 

1 
2 

TABLE 1 

RUN 87 - RIB 92’7 

MAXIMUM SLIDE VELOCITY = 84 fps (25.6 m/see) 

First Wave Crest, Ft (m> Arrival Time of First Crest, sec. 
Physical Model Numerical Model Physical Model Numerical Model 

16.9 
10.7 
11.6 
15.3 
18.0 
10.7 
25.1 
11.1 
11.6 

5.7 
19.2 

8.3 
10.1 
---- 
---- 

;z 
35:5 38.5 
41.0 

42.5 36.0 32.0 
30.0 
20.0 
23*5 
18.0 

21.5 ---- 
m-m- 

Average difference in wave 
heights between numerical 
and experimental values 23% 

Average difference in time 
of arrival between numerical 
and experimental values 6.2% 
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NOTATION 

*c = grid cell area 

AZ = cross-sectional area of landslide 

C = Chezy coefficient 

cD = pre::sure drag coefficient 

$7 = acceleration of gravity 

h = depth of the undisturbed water surface 

Lx' Ly = x and y component of the acceleration effect of 
the landslide on the water 

. 
Jl k = indices for finite difference grid locations 

n = indices indicating multiples of the time step 

n = unit vector normal to boundary 

Rx' Ry = x and y component of the bottom roughness effect 

t 

U 

= time 

= depth-averaged water velocity component in the 
x direction 

V 

‘;: 

5 

vY 
W 

XI Y 

B 

tl 

D = density of water 

= depth-averaged water velocity component in the 
y direction 

= velocity vector with components u and v 

= x component of the landslide velocity 

= y component of the landslide velocity 

= water velocity in the z direction 

= rectangular coordinate variables 

= pressure drag parameter 

= water level displacement with respect to still 
water elevation 

vertical bottom deformation created by landslide 
material 
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AUTOMATIC EULER-MACLAURIN INTEGRATION 

Julia H. Gray 

and 

I,. B. Rall 

Mathematics Research Center 
University of Wisconsin-Madison 

Madison, Wisconsin 53706 

ABSTRACT. The Euler-Maclaurln formula for numerical integration is 

b Zk-1 h”B 

s f(x)dx = Tn - 2 +[f(m*l)(b) - f(m-l)(a)] - 
a m=2 

hZk 
-(Zk)! 

(b - a) B2k f(2k)(c) , 

where T n is the trapezoidal rule 

n-l 
Tn = z [f(a) f f(b)] t h c f(a t ih) , 

i=l 

h = (b - a)/n, B2, B3, . . . , BZk are Bernoulli numbers, and a< 5 < b m The 
application of this formula can be automated by using software developed at 
MRC for analytic differentiation and interval analysis. The use of interval 
techniques permits rigorous bounding of the error due to roun off, and also 
the truncation error by calculating an interval containing f (2e)(5) . By use 
of observed values of the time required for evaluation of the integrand and 
experimental results on differentiation time, optimal values for n, k are 
calculated to give a required accuracy in minimum time, or an estimate of 
the ultimate accuracy of the Euler-Maclaurin integration method may be com- 
puted. The theory is illustrated by results obtained using a UNIVAC 1108/1110 
program. 

AMS (MOS) Classifications (1970): 65D30, 65G05. 

Key Words: Numerical integration, Euler-Maclaurin formulas, Automatic 
error estimation, Interval integrals. 

Research sponsored by the U. S. Army under Contract No. DAAG29-75-C-0024. 
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1. BACKGROUND. With the aid of software for interval analysis [4] and automatic 
differentiation, various methods for numerical integration with rigorous error 
estimation [I, 31 have been implemented as a program for the UNIVAC 1108/1110 [2]. 
To be more specific, the program described in [2] provides the user with the 
capability of finding intervals containing the value of the integral 

(1.1, 
b 

z = j- f(x)dx 
a 

by the use of Riemann sums, various open and closed Newton-Cotes integration 
formulas, or standard Gaussian integration formulas. The latter types of inte- 
gration formulas (Newton-Cotes and Gaussian) are of the form 

(1. 2, 2 = r(f) + e(f) , 

where the rule r(f) of numerical integration is a linear combination 

(1. 3) r(f) = E, f(xi)wi 
i=l 

of values of the integrand at the nodes x19 X2’ - * * , xn7 with weights w w 1’ -p***47-p 
and the (truncation) error (or remainder) term 

(1.4) e(f) = c,(a, b) 
f(k)(f) 

k! ’ a<E<b , 

is a multiple of the kth Taylor coefficient of f, evaluated at some point 5 in the 
open interval (a, b) . In (l-4), the constant c (a, b) is independent of f . A 
numerical integration formula of this type will brie said to be of order n and degree 
k, and is valid for integrands which are sufficiently smooth. As a typical example, 
one has the (extended) trapezoidal formula [5, p. 1701 

(1. 5) Ibf(x)dx = 
a 

3f”o -,y. 2, , a<g<b, 

which is of order n f 1, n a positive integer, and degree two. 

As the program has facilities for analytic differentiation, it is also possible 
to implement formulas for numerical integration in which the rule involves values of 
derivatives (or, equivalently, Taylor coefficients) of the integrand. A class of 
formulas of this type may be obtained from the Euler-Maclaurin formula for numerical 
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integration, in which the order (> 2) and (even) degree may be specified by the 
user. This formula and its implezentation for automatic computation are described 
in the following sections. 

As in [Z], the present program is applicable only to integrands f(x) which 
may be written in ordinary FORTRAN notation. In addition to the variable of 
integration, the integrand may contain one or more parameters to be specified by 
the user. 

2. THE EULER-MACLAURIN FORMULA. Using the fact that the Bernoulli numbers 
B ,B B ..e of odd order > 3 all vanish (5, p. 2181, the Euler-Maclaurin 
ir?teg?~ti~~ formula of order n’+ 1 and degree 2k may be written in terms of 
values of the integrand and its Taylor coefficients as 

(29 1) 
b 

f(a)+f(b) 
n-l 

s f(x)dx = h 2 + 2 f(a+ih) - 
a i=l 3 

k-l hZmB 

-r 
2m 

mil 2m 

- hZk(b-a)BZk a<c<b, 

where 

It should be noted that the values of 5 for which formula (2.1) holds depend in 
general on a, b, f, k, and n; however, this dependence is suppressed for simplicity 
of notation, and will be inconsequential in the interval version of the formula. 

For practical reasons, the computer program is limited to calculation of 
Taylor coefficients of orders less than twenty, hence the maximum degree of the 
integration formula (2.1) permitted without modification of the program is 2k = 18 . 
The even-order Bernoulli numbers B2, B4, . . . , Bl8 are given in Table 2.1 [5, 
p. 2181. 
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B4 = - $ , B6 = 
1 

42j 

B12 = 
691 

-27’ 

TABLE 2.1. THE BERNOULLI NUMBERS 

B2, B4, - - - , B18 . 

The first term of (2. l), 

(2. 3) tn = t,(f) = h f(atih) 
3 

is simply the trapezoidal rule from the integration formula (1. 5). Hence, the use 
in the second term of (2.1) of values of the Taylor coefficients of f(x) at the 
endpoints a, b can be viewed as a method for increasing the order of accuracy of 
the trapezoidal integration formula. 

3. THE INTERVAL VERSION OF THE EULER-MACLAURIN FORMULA. In order to 
make use of the integration formula (2.1) and take into account the effects of 
round-off error, uncertainties in the coefficients of f(x) and perhaps the limits 
of integration, and the unknown value of 6, an interval extension of the right- 
hand side of (2.1) is calculated by the program. As defined in [Z], an interval 
extension of a set of numbers is any interval containing that set. (Of course, 
the set being extended could consist of a single number. ) Interval extensions of 
numbers and functions will generally be denoted by the corresponding capital 
letters, exceptions being small integers and the Bernoulli numbers. Taking 

(3.1) X 3 [a, b] 

and 

(3.2) H=B-A 
n ’ 
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one computes the interval version 

[ 

n-l 
(3, 3) In k = H E(A); E(B) t c F(A + iH) - 

, i=l 3 

k-l H 
2m 

B 

-2 
2m 

m=l 2m [ 
F(2m-1)(B) I F WWtA) 
(2m-1) ! 1 (Zm-l)! * 

(2k) 
- H2k(B-A)B2k w 

of the Euler-Maclaurin integration formula. 

For 

(3.4) 
b 

z= I f(xW , 
a 

one has that 

(3. 5) ZE I 
n, k 

for all positive integers k, n . If In k = [c, d], then one may take the midpoint 
, 

(3.6) 
* 

z = p[In 
9 

J = F 

as an approximation to z, with absolute error 

(3.7) Iz - zy 2 E =; 6[1,, k] =q . 

If the minimum bound for the relative (or percentage) error is desired instead, 
then, provided 0 $ In k, the corresponding estimate for z is the harmonic 
point 

, 

(3. 8) 
*;* 

z = q&v, kl = $f , 
, 
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with relative error 

(3.9) 

The percentage error is, of course, bounded by 100~ . The 2 posteriori error 
bounds (3.7) and (3. 9) are rigorous, as follows from the theory of interval 
analysis [3,4]. 

4. THE INTERSECTION PRINCIPLE. As the computer program calculates Taylor 
coefficients recursively (21, the values of In 1, In 2, . . . , In k 1 can be 
obtained in the course of the computation of 
effort . 

in 
, 

k &th very little additional 
For 

(4.1) 
k 

1=n I 
j=l n? j ’ 

it follows from (3. 5) that 

(4.2) 
b 

Z= I f(x) E I . 
a 

The estimates 

(4. 3) z ‘k = p[I], + WI , 

or, if 0 $ I , 

** 
(4.4) z = dI1, p = 2 p[I] I I iILL 

’ 

are at lgast as good as those obtained from (3.6)-(3.9), and are the ones actually 
calculated by the program. This is a simple application of the intersection principle 
of interval analysis; which states that results belonging to several intervals are 
contained in their intersection. 

For example, for 
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(4. 5) 
1 -1 

s 
sinx+tan x 

.Z= dx f 
0 ln(2 + eX) 

one has 

(4.6) z c r1 
7 

1 = [o. 43180767, l-08392931 , 

the interval form of the trapezoidal formula, and 

(4.7) ZE I 1 
? 

2 = [0.41804086, 0. 813632831 , 

and thus 

(4.8) zEI=I IlI 
I,1 1,2 

= [0.43180767, 0.813632831 , 

which gives a more accurate result. 

5. OPTIMIZATION. If the values of n and k are given by the user of the 
Euler-Maclaurin integration program, then the results given by (4. 3) or (4.4) are 
obtained directly. On the other hand, one or both of these parameters may be 
determined by the program in order to achieve a prescribed or maximum possible 
accuracy with the use of the minimal amount of computational effort. This type 
of optimization of performance of the program makes use of an extension of the 
strategy outlined previously for k fixed and n arbitrary [Z, pp. 12-163 to the 
case that both the order and degree of the integration rule may vary. 

First of all, for n fixed, it has been found expedient simply to compute 

(5.1) 

until 

(5.2) 

,(j) =A Ini 
i=l ’ 
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or j = 9 . Once the optimal value j = j* is determined, one sets 

and obtains approximate values for the integral and error estimates from (4. 3) 
or (4.4). For example, for the integral (4. 5), 

(5.4) I(‘) = rO.43180767, 0. 813632831 

is optimum for n = 1, while 

(5. 5) I(3) = [O. 65189380, 0.66617152] 

is optimum for n = 2, and 

(s-6) I(@ = [O. 6 5887 366, 0.658907181 

is the optimal value for n = 4 . 

In the second case of fixed k and arbitrary n, the procedure is similar 
to optimization of integration rules of degree k done previously [Z, pp. 12-161. 
In order to discuss the analysis, write 

(5.7) 

where 

(5.8) 

I 
“3 k 

=Tn+S 
n, k 

fRnk , 
9 

c n-l 
Tn=H =+=-+c F(A+iH) , 

i=l 1 
the interval version of the trapezoidal rule, 

(5.9) 
k-l HZmB 

S 
zrn 

n,k=- c c 

F(2m-1)(Q F(zm-‘)(A) 

m=l 2m 3 (Zm-1) I - (2m-l)! ’ 

the correction term, and 
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(5.10) R 
2k F(2k’(X) 

n, k = -H (B-A)B2k (2k)! , 

the interval remainder term. The error bound 

(5.11) n, k] = ; 6[T,l + ; s[sn , k] f ; s[R n , k] 

will thus depend on the way in which the widths of the intervals (5.8)-(5.10) 
vary with n, or, more conveniently, as functions of 

(5.12) h=6[Xl. 
n 

The quantity 6[T ] turns out to be essentially constant as a function of n, as 
T is the averagE of interval evaluations of the integrand f(x), the widths of 
thnese intervals depending on round-off and imprecision in the data involved in 
the definition of f(x) . Thus, 

(5.13) r = 6[Tl] 

is computed, and is taken as a measure of the potential accuracy of the numerical 
integration procedure. If an error bound E is prescribed such that 

1 E< -r , = 2 

this accuracy will be considered to be unattainable, and the program will print 
an error message (2, p. 551. If an error bound E is not specified in advance, 
then the value of r is used to obtain an estimate of the maximum number p of 
decimal places of accuracy that can be guaranteed for the approximate value of 
the integral. One takes p to be the largest positive integer such that 

(5.15) 10-p > r , 

and sets 

(5.16) E = 5 . 10-+-l 

as the desired error bound [2, p. 15). In the program, (5.16) is computed if the 
input value EPS = 0 is specified. 

439 



Define 

’ 
m = 1,2,, . . , k-l , 

and 

(5.18) t = 6 
c 

(B-A)B2k 

One has 

(5.19) 6 [I, k] <= p(h) = r + rlh’ + . . . f rk 1 h2k-2 f thZk , 
, 

and thus 

(5.20) ; ‘[In kl< ’ , 

if n is chosen large enough so that 

(5.21) p(h) < 2~ . 

In order to conserve computer time, the optimal solution is taken to be the smallest 
positive integer n for which (5.21) is satisfied. This value is determined by a 
simple iteration, taking into account the fact that 
ordinarily much larger than the values of r, rl, . . 
initial approximation the least positive integer n 

the coefficient t in (5.19) is 
One uses as an 

(5.22) 

and, if necessary, increases n by one until (5.19) is satisfied by the correspond- 
ing value of h . 
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In the final case, the values of both n and k are to be determined in 
order to satisfy the error bound E with minimal computational effort. To do 
this, some assumptions are made concerning the dependence upon k of the 
width 

(5.23) t 
k 

of the kth interval Taylor coefficient of the integrand f(x), and the time 

(5.24) 

required for its computation. Knowing these relationships, one could determine 
if a given accuracy is best obtained by increasing n or k . 

A heuristic argument indicates that the values of t 
of an arithmetic progression, while the 0 are obtained ‘r 

are given by the sums 
n the same way from a 

geometric progression. These observationks are borne out experimentally, as 
illustrated in Table 5.1 for 

(5.25) f(x) = sinx t tan-lx 

ln(2 + eX) 
, x = [o, l] l 

The program computes 

(5.26) e. = OIT1] = 8 [,(A,:WYj , 

from which the estimate 

(5.27) 

is obtained for E$Tn] . Similarly, the values of e[Lie] and b[*] are 

obtained initially for k = 0,1,2 , Suppose that nk denotes the least value of 
n satisfying inequality (5. 22). The corresponding estimate for @I 
taken to be nkY 

kl is 
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k ed.g [: .I 
0 0. 130 sec. 

1 0.259 11 

2 0. 397 I’ 

3 0. 546 ” 

4 0.701 ” 

5 0. 865 ” 

6 1. 038 ” 

7 1.220 ” 

8 1.409 ” 

9 1.609 ” 

10 1. 817 ” 

11 2.034 ” 

12 2.261 ” 

13 2.498 ” 

14 2.745 ” 

15 3. 000 ” 

16 3.266 ” 

17 3. 541 ” 

18 3. 828 ” 

19 4. 124 ” 

+l [ .I 
1.4809 

2.0949 

3.9133 

6.5944 

1. 1868 x 10 

2. 1230 x 10 

3.8380 x 10 

7.0895 X 10 

2.6012 x 10’ 

2.6012 x 10’ 

5. 1869 X lo2 

1.0605 x lo3 

2.2173 X lo3 

4.7251 X 103 

1.0231 x lo4 

2.2448 X lo4 

4.977 1 x lo4 

1.1131 x lo5 

2.5068 x lo5 

5,678O X lo5 

TABLE 5. 1. COMPUTATION TIMES AND WIDTHS 

OF INTERVAL TAYLOR COEFFICIENTS OF (5.25). 
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(5.28) 8 = 
nk, k Oo ’ 

for the additional time to compute T 
nk 

. Using the numbers 

(5.29) 

where 

(5. 30) 

t = B2k+2 ‘;k6k-1 ’ 

an estimate L k+l for nk+l 
can also be obtained by using the value of t’ 

in (5.22) in place of t . Similarly, one estimates 

(5. 31) 

Now, if 

(5. 32) 

the program computes 

(5.33) 

8 
nk? k 

2k 
I= n I 

j=l nk9j 
; 

otherwise, the above process is continued with k replaced by k t 1 
until (5. 32) is satisfied or k = 9 , 
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ABSTRACT 

The fact that a calculating machine can usually hold only an 

approximation to the number that one is concerned with leads to 

cancellation errors and rounding errors. These concepts are defined 
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CANCELLATION AND ROUNDING ERRORS 

J. Barklcy Rosser and J. Michael Yohe 

1. Definition of terms. We assume that all real numbers 

with which we will be dealing are represented on the calculating 

machine in floating point positional notation with a fixed radix. If 

two such numbers are nearly equal, then the calculated difference 

between them will have more leading zeros than either of the original 

numbers. This will usually cause no trouble if it happens that the 

numbers are exactly representable on the calculating machine, though 

even in this case imperfections in machine architecture can result in 

a botched answer. However, in the usual case, when both numbers are 

only approximated on the calculating machine, this phenomenon will 

commonly cause appreciable relative error in the answer. 

As most real numbers can only be approximated on a calculating machine, 

this danger is always present, and steps should be taken to minimize 

the effect. 

Suppose we are given two real numbers a and b and a binary 

operation 0 , and suppose also that we have a machine M with the 

corresponding binary operation 0 M’ Suppose further that we have a 

rounding operation p from the real numbers to the set of machine 

numbers; we shall assume that p rounds a real number to its closest 

approximation on the machine. 

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024. 
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We are interested in how well the machine answer, 

p(a) oM p(b), will approximate the true answer, a 0 b: that is, 

we wish information on the value of 

(1.1) Ip(a)o Mp(b) - sob t . 

There are actually three different considerations involved in 

this expression; we shall call them machine error (or error due to 

architectural deficiencies in the machine), accumulated error 

(which is due to performing arithmetic operations on approximate 

numbers), and rounding error (which results only from the fact that 

most real numbers must be approximated). We shall now define these 

types of error precisely. 

Machine error is the amount by which the machine result 

fails to be the best possible result derivable from the rounded numbers 

being given, including the fact that the result must be rounded; i.e., 

machine error is defined to be 

(1. 2) Ip(a)o, p(b) - p(p(a)op(b)) 1 . 

In a well-designed machine, (1. 2) can be made to vanish: see [ 9) for 

details. Thus this type of error is completely avoidable. Unfortunately, 

it is often not avoided; we have even seen a calculating machine on 

which, for a large class of real numbers, a, we have a Xhn. 1 - a X 1 + 0 

in spite of the fact that p(a) = a for this class! 
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Accumulated error is the amount by which the rounded result 

of performing the real operation using rounded operands differs from 

the rounded result using the original operands: i.e., 

(1. 3) Ip(p(aPpW - p(a”b) 1 . 

In general, accumulated error can not be avoided, but it can be 

controlled to a certain extent by selecting computational formulas 

judiciously, as we shall see in the sequel. 

Roundinq error is simply the amount by which the rounded 

result differs from the true result, i. e. , 

(1.41 (p(aOb) - sob 1 . 

Rounding error must be regarded as totally unavoidable in the context 

in which we are working. 

We observe that 

IP (a) OM p(b) - sob 12 

lp (a) oM p(b) - p(p(a)“p(b)) 1 + 
(1.51 

+ Ip(pWp(b)) - p(aob1 1 + 

t lp(aob) - aobl . 
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Hence, by (1. 2) - (l-4), the t t 1 b 1 t o a a so u e error is not greater than 

the sum of machine error, accumulated error, and rounding error. 

Since machine error is avoidable, we shall not treat it here, 

even though it will be exhibited in some of our discussions: we shall 

concentrate on accumulated error and rounding error. These can be 

lumped together and called “error of approximation”; a fuller 

discussion of approximation generally can be found in Yohe 

[lo, p. 101. However, since rounding error is totally unavoidable, 

the major thrust of this paper will be in dealing with accumulated 

error. 

In most cases the relative error associated with an instance 

of accumulated error behaves rather predictably. That is, the relative 

error of a result in a case of accumulated error is related in a rather 

straightforward manner to the relative errors in the operands. In one 

case, however, the relative error can grow catastrophically: the 

subtraction of two nearly equal quantities can cause the relative 

error to grow by many orders of magnitude, This particular instance 

of accumulated error is so serious that we give it a special name: 

cancellation error. 

As an example, consider 

(1.6) 

We have 
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22 
;;I M 3.142857142857 

T = 3.141592653590 

22 - - rr 2 0.00126448926735, 
7 

However, suppose the calculation is done on the g-place decimal 

machine belonging to one of the authors. We enter the approximations 

(1.7) y s 3.1428571 

(1.8) T = 3.1415927. 

Subtracting these gives 

(1.9) 22 - n 2 0 0012644 , 
7 

. 

The value of (1.6) is calculated by the machine to only five 

significant decimals, of which the last is incorrectly rounded. Thus 

we have lost at least three decimal places of accuracy. 

The cause of cancellation error is the fact that when the 

calculating machine is called upon to subtract two nearly equal 

numbers, the early digits cancel, and fewer significant digits will result, 

as shown. 

Rounding error usually occurs as soon as a number is 

entered into the calculating machine. Thus, in (1.7)) the value given 

is too small, though it is the best possible on an 8 -place machine. In 

(1.8 1, the value given is too large, though it is the best possible on an 

8 -place machine. When one performs arithmetic operations on such 
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- A  * approximate numbers, the errors already present can accumulate. 

Thus, in (1.9), not only arc we giving only five significant digits (due 

to cancellation error), but we are not even giving the five best digits, 

A more accurate five digit value would be 

; 

22 - TV GZ o 0012645 m 
7 . 

The additional discrepancy (getting 0.0012644 instead of 0.00 12645) 

was due to accumulation of rounding errors. 

Although we will not discuss it in this report, we should 

recognize yet one other source of error in using a calculating machine, 

This is numerical instability, which arises when the method of computation 

is such that the percent error at one step is multiplied by a constant greater 

than unity in making the next step. 

If one can use double or triple precision arithmetic, so that one 

has a superfluity of digits, losing a few digits by cancellation errors or 

rounding errors will likely do no harm. However, one should give thought 

to the details of the calculation, since occasions can arise in which 

double precision (or even triple precision ! ) will not suffice to avoid 

serious errors, or even complete nonsense. 

2. Cancellation errors, As noted, cancellation errors arise 

when one subtracts two nearly equal numbers. Addition, of positive numbers 

causes no appreciable cancellation errors, Likewise for addition of negative 

numbers. Also, the way most calculating machines are built, multiplying or dividing 

two numbers produces no appreciable cancellation error. 
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Many tlmcs when one has a formula involving subtraction that 

leads to cancellation errors, one can find a mathematically equivalent 

formula for which there is no cancellation error. A classic illustration 

arises in solving quadratic equations. Suppose one wishes both roots of 

(2.1) x2 - 200x-t 1 = 0. 

The formula for the roots is 

2a 

With the coefficients shown, this gives 

200 * d40000 - 4 
2 

We have 

~40000 - 4 E 199.9899997499875 . 

To get the larger root, we enter 200 into the machine, and 

the best possible eight digit approximation for the square root, namely 

199.99000. When we add and divide by 2, we get 199.99500, which is 

correct to eight digits. When we subtract and divide by 2, we get 

0.0050000000 . 

To eight places, the answer should be 

0.0050001250 . 

Here we have a cancellation error. 

452 



In this case, one can find a mathematically equivalent formula 

for the roots by multiplying both top and bottom of the quadratic formula 

F-- -b F b - 4ac . 

This gives 

Then for the small root, we have 

2 
200 f 199.99000 

e 0.0050001250 . 

As a matter of fact, the situation could have been considerably 

worse * Suppose we had tried to get the roots of 

2 
x - 100x+ 1 =o , 

This gives the roots 

100 *d-imFi 
2 

. 

We have 

di5-iEZ g 99.9799979996 . 

We enter 100 into the machine and the best possible eight digit approxima- 

tion for the square root, namely 99.979998. As the calculator is an eight 

digit machine, it must reduce these to the same number of decimals before 

adding or subtracting. It shows 100 as 100.00000; to get the other number 

to match, it truncates the final 8, so that it gives 
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100 + 99.37799 = 99 989995 
2 . . 

To eight places the larger root should be approximated by 99.989999. 

This is not a cancellation error. This is poor machine architecture, 

We should note that some very large and very expensive calculating 

machines make the same sorts of blunders. For instance, the UNIVAC 1108 

and 1110 do so. Other vagaries of calculating machines are discussed in 

Kahan [b]. A discussion of hew to improve calculating machines in 

matters of this sort is given in Yohe [ 91. 

It is fairly common that, with a little ingenuity, one can find 

for a formula that produces cancellation error another, mathematically 

equivalent, formula that does not. Thus, in Rosser [ l] , we had the 

formula numbered ( 2.44) 

C 
n+l 

= $3 n - y-J, 

which in Table 2.6 did not even give the right order of magnitude for 

51 ’ 
However, the formula turns out to be mathematically equivalent 

to the formula numbered (2.88) 

2 
C n 

C z- 
ntl 4a , 

ntt 

which clearly has no cancellation error. Or in the same report, the 

formula numbered (2.9 5) involved a difference, and gave disastrous 

results; the mathematically equivalent formula numbered (2.98) involved 
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a sum, and gave quite satisfactory results. Of course, just having an 

algebraic sum won’t guarantee avoidance of cancellation error; one 

summand could be nearly the negative of the other, However, the 

formula numbered (2.98) involved a sum of siuares, and hence could 

be relied on not to give a cancellation error. 

So, for purposes of calculation, close attention should be paid 

to trying to replace formulas that could produce cancellation errors by 

mathematically equivalent formulas which do not. Sometimes, this does 

not seem possible. Thus in the formula numbered (3.27) in Rosser and 

Papamichael [ 21, we are undertaking to compute the AN recursively 

from 

(2.2) 
Nt1 

L 
E A(2r-l ) 

r NtZ-r ’ r=2 

The Er are known, with E, P 2.4. The value (-1) 
Nf 

BODN is approximately 

1. 5. The AFi;-‘r can be calculated from A ,, ..‘I AN ’ Now the AN 

decrease in absolute value; A2O G -10 
-8 

. So obviously use of the 

formula shown will have to involve serious cancellation errors for the 

larger values of N, However, we were not able to find any other way to 

calculate that AN. By using double precision, we were able to get about 

two significant digits for AzO. To have gone appreciably further would 

have required a triple precision calculation. 
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Incidentally, this also disclosed a clearly marked case of 

numerical instability. If one works out the coefficient of AN on the 

right side of (2. 2)) it is of the order of 3, In other words, whatever 

absolute error we make in A N’ 
we are guaranteed to make an absolute 

error about 3 times as large in AN+,. 

3. Rounding errors. As we indicated, rounding errors 

originate from the fact that usually a calculator can hold only an 

approximation to a given number. When operations are performed on these 

approximate numbers, the errors tend to accumulate. A classic treatise on 

this subject is Wilkinson [ 31. 

Roughly speaking, if one multiplies or divides two numbers, the 

percent error in the product or quotient can be as large as the sum of the 

absolute percent errors in each of the participating numbers. It need not 

be that large, and often will not be. When it comes to adding or subtracting 

two numbers, the situation is much more complex. In subtracting, the 

absolute error of the difference might be expected not to be more than the 

sum of the absolute errors of the participating terms (this is not always so) 

but if there is cancellation error, the percent error could make a sensational 

jump. 

Thus, in our early example, we had an approximation for 22/7 

with about (1 B 4 X 10 
-6 

)% error and an approximation for TI with about 

(1.5 X 10S6)% error, but got an approximation for (22/7) - v with about 

(7.1 X 10 
-3 

)% error. 
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Even in addition of positive numbers, the situation is murky, 

It might seem obvious that if one has approximations a,, . . . ,aN on the 

machine, eachofwhichis not more than E percent less than the true value, 

then the sum a,ta2+. . . +aN will not be more than E percent less than the sum 

of the true values. This seems merely to be a special case of the 

distributive law of algebra. However, it is not so. See page 11 of 

Yohe [ lo]. 

Consider the divergent series 

(3.1) I+ it Lb . . . . 
3 4 

Let us propose to sum this (or parts of it) on an eight decimal digit 

calculating machine which can accept or handle numbers down to an 

underflow limit of about 10 
-100 

. Each term of the series (down to the 

underflow limit) can be entered on the calculator to within E percent 

accuracy. Suppose we do this successively, and add. With an 8-place 

decimal calculating machine, after fewer than !08 terms the terms will be 

so small that when they dre added they will make no change in the calculated 

sum, From that point on the calculated sum will remain the same, though 

the true sum will rise gradually into the hundreds until we come to terms 

so small that underflow limitations prevent us from entering them into 

the machine, and the summation is perforce terminated. 

Of course, this is a very contrived situation, but it illustrates 

why it is difficult to make any general remarks about rounding errors for 

addition, and even less for subtraction. However, in general, a group 
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of numbers to be added will not bc too disparate in size, and something 

like the distributive law can be invoked, but with caution. 

Usually, with ideal rounding, the errors from rounding are 

reasonably random. This tends to hold down the accumulation of errors. 

A rather simplistic statistical model is often invoked; see Henrici [ 41 , 

page 305, ff. Even more elaborate discussions can be found, as in 

Rademacher [ 73 . For the simplistic model, the argument is roughly 

as follows. If an error of S could occur at each operation, and if the 

error should occur in the same direction each time, then in n operations 

a total error of nS would accumulate. However, if the errors should 

fluctuate randomly between positive and negative, then in n operations 

a total error of k& S would (usually) occur. People even try to 

determine a suitable value to assign to k. However, this is hardly 

justified. 

Consider, if we have n positive summands all about the same 

size, and all too small by 6, the error after. n additions should be 

nS; the sum will also be about n times each individual term, so that 

the percent of error has not increased (the distributive law again). 

Actually, the way most calculators work, the error after n additions 

could be much more than nS for very large n. Review again the example 

with the divergent series. If n is large enough, one can reach the point 

where adding another number makes no change. Then the error increases 

much faster than by 6 at each step. However, if the addition is properly 
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arranged (see discussion below), the distributive law will be reasonably 

well approximated, and the error will indeed be about nS, to be com- 

pared with a sum about n times the individual summands, 

Suppose that, because of randomness, the error is claimed to 

be k& 6 . Suppose that a value has been assigned to k, so that with 

the given value of n the error is claimed to be only nd/lO . If the 

summands are all about the same size, the sum is about n times an 

individual term, So we claim an accuracy for the sum ten times as good 

as for the individual terms. If each summand was entered to maximum 

accuracy on an S-place calculator, then it would have the sum correct 

to 9 places, which is obviously impossible. 

However, there are many cases where the general distribution of 

errors is random enough that the predictions of the statistical theory seem 

reasonably well fulfilled. The total error (in some sense) grows at a 

rate proportional to 4; rather than to n. For additional exceptions, 

see the next section. 

In Crary and Rosser [ 51, power series coefficients for 41 functions 

were calculated to high accuracy: between 40 and 50 coefficients were 

computed for each function. In the report, these coefficients were uniformly 

rounded to considerably fewer decimals at print out than were carried in the 

calculation. Among the checks of accuracy of transcription, the sum of 

the coefficients for each function was also computed to high accuracy. 

459 



For each function, the transcribed and rounded coefficients were added 

to see how their sum compared with the true sum (see page 48 of Crary 

and Rosser [ 5] ). The results are shown in Table I. This is a reasonable 

approximation to a Gaussian distribution, 

Sum too high by Number of cases 

t4 2 

t-2 3 

+I 9 

0 12 

-1 9 

-2 2 

-3 4 

We might remark that in summing (3.1) we used the worst possible 

Table 1. 

procedure. It is standard doctrine that, in summing a series, rounding error 

will accumulate more slowly if one adds starting with the small numbers. 

The reason for this is that if one adds the large terms first, then when 

a small term is added in, one must truncate it or round it to bring it to 

the right number of decimals, and information is lost. If one adds several 

small terms together first, this information is used (in part) to form an 

accurate partial sum of a size more comparable to the large terms. Still 
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better, if the series is suitably graduated, would be to keep the partial 

sums more nearly of a size with each other. In the series (3.1), this 

could be done very nicely by adding the terms in pairs, then adding 

the pairs in pairs, etc. With this system, one could possibly get a 

sum of any part of the series (3.1) to about the full accuracy which the 

machine could accomodate. 

If one wishes to calculate the determinant of a large matrix, 

one can be subject to both cancellation and rounding errors. By definition, 

the determinant involves a large number of differences, so that there is 

great opportunity for cancellation errors, It involves a large number of 

terms, so that rounding errors can accumulate badly. Closely related is 

the problem of solving a large number of simultaneous linear equations. 

With proper techniques, one can sidestep some of the difficulties. 

However, it remains a problem in which even the best methods can 

occasionally fail disastrously. A very full discussion is given in Kahan 

PI. 

4. A particular example. Define 

(4.1) 

Then 

(4.2) 

E = 0.000013516 (octal), 

s FE 0.0000 44450 16384 (decimal) . 
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Let us enter & into a calculating machine with 9-place octal 

accuracy (floating), compute r=l- E I and then erase the value 

of E. How well can the computer recover E from r ? 

As an 8 -place decimal machine is nearly equivalent to a 9 -place 

octal machine, we will write much of our discussion as though for an8-place 

decimal machine; this machine is assumed to be designed in such a manner as 

to truncate prior to addition, so that machine error also occurs. 

The first thing is to make sure we subtract E properly from 1 , 

The machine will hold 1 as 

1.0000000, 

being an 8-place machine. To subtract E, it will truncate it to 

0.0000444 . 

Subtracting will give r g 0.9999 5560. Already, we have lost valuable 

information. 

What we do is to calculate 

r = (+ - E) t f . 

This will give 

(4.3) r E 0.99995555. 
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From this, how good a value of E can we compute ? If we 

carelessly take 

E=l -r, 

we will get the approximation 0.445 X 10 
-4 . If we remember to take 

& = (0.99999 - r) t (0.00001) 

we can get the approximation 0.4445 X IO 
-4 

. This ought to be the 

best we can do. However, note that 

(4.4) 
l-r 

N 
l-r= 

1tr+r2t .* 
N-l ’ 

. tr 

Take N large, say N = 262,144. Then, with the given value of r, we 

N -5 
have r < IO , So, if we can give an approximation for r 

N 
good to 3 

significant decimal digits, we will have the numerator good to 8 significant 

digits: that is, if we remember to take 

N 
1 -r = ($ - rN) t f . 

There is no cancellation in the denominator of (4.4). So we should 

be able to get it accurate to about 8 significant digits. So then (4.4) 

should give E good to nearly 8 significant digits ! 

Of course, one has to be smart about summing the denominator, 

as discussed near the end of the previous section. We carried out a 

number of calculations on the UNIVAC 1108, which has 9-place octal 
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accuracy (floating). In each case, just to compare results, we summed 

the denominator of (4.4) in three different ways: summing from the left, 

summing from the right, and iterated summing by pairs, 

N The first question is about the calculation of r . The analysis 

given in Wilkinson [ 3] applies perfectly to this calculation. If the 

rounding is biased, the accumulation of rounding errors could be so severe 

that we would get an approximation for r 
N 

correct to only two significant 

decimal digits. In fact, after multiplying, the UNIVAC 1108 truncates instead 

of rounding, thus introducing machine error. After 262,144 multiplications by r, 

wegot rN*8.684x10 -6 , as contrasted with the more accurate value of 

(4.5) rN = 8.696 3885 X10 
-6 

(got by a double precision calculation). However, even this poor value 

would give l-r N 
with an error of only 2 units in the 8-th decimal digit. 

However, one cannot expect the denominator of (4.4) to be very 

good, with truncation instead of rounding at each step. We got the 

results shown in Table 2. Considering the bias in the rounding, these 

are not too bad. 

Methods of summing 5 
the denominator 

& x IO 

true value 4.445 0164 
summing from the left 4.450 5777 
summing from the right 4.446 0810 
iterated summing by pairs 4.445 5325 

Table 2. 
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In Yohe [ 9] , it is shown how various sorts of rounding, including 

various types of “ideal” rounding, could be accomplished by simple 

hardware or simulated by software on most computers. We programmed 

the UNIVAC; for ordinary rounding, thus eliminating machine error as defined 

by (1 . 2). Presumably the statistical theory should have some validity in 

this case. 
N -6 

Indeed, we did far better. We got r E 8.696 3897 X IO . 

So we have full accuracy for the numerator of (4. 4). We got the results shown 

in Table 3. It appears that we have recovered 7 of the 8 digits of E, and 

are off only 3 units in the 8 -th place. 

Methods of summing 5 
the denominator E x 10 

true value 4,445 0164 
summing from the left 4.445 3544 
summing from the right 4.445 01 77 
iterated summing by pairs 4.445 0167 

Table 3. 

As long as we are looking for convenient forms for the calculation 

of E, we might note that since N = 2 
18 

, we can write 
18 

(4.6) l-r= 
1 - r2 

(l+r)(l+r2)(ltr4)(1+r8). . . (l+r2 
17 * 

) 
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This involves very few multiplications and additions, and should be 

still better. However, it is not. It gives 4.445 1465 as an approximation 

for EX,O? 

The reason for this appears if we give a little thought to the 

matter. 2 4 8 We computed r , r , r , - . . by successive squarings. If 

A = (l+.z)r 
M M 

is an approximation for r , then 

2 2M 
A2 = (1 -I- 2~ + E )r . 

Of course, in general, A2 will not be a number that can be stored in 

the machine. The result of multiplying A by A on the machine will be 

B, where 

B = (1 t &)A2 . 

So the approximation B for r 2M 
is related to r 

2M 
by 

B = (It6)(lt2E+E2)r2M . 

If 6 and E have opposite signs, B could be as good an 

approximation for r 
2M 

as A was for r 
M 

, possibly even better. 

However, with reasonable randomness of rounding errors, there will 

come a time when 6 and E have the same sign. So we will from 

time to time get a fairly large E, and eventually the 2~ term will 

become overriding. From then on, we essentially double the percent 
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error at each squaring. This is an example of numerical instability, 

which we mentioned earlier as a possible source of error, The value of 

rN as calculated by successive squaring on the UNIVAC 1108 with 

rounding was approximately 8.69 3 4141 X 10 
-4 

, This is not a whole lot 

better than the value derived by 262,144 successive multiplications by 

r with truncation at each step. 

5. Rounding error depends on the number base used in the 

calculator. But of course! However, the effect can be much greater 

than one might expect. For example, the black magic in the previous 

section, in which we were apparently recovering almost eight digits of 

E from I-E e 0.99995555, was wholly an illusion caused by the 

differences in rounding between a 9 -digit octal machine and an 8 -digit 

decimal machine. Recall that we took 

& = 0.0000 13516 (octal) 

exactly. Then 

exactly. So 

r = 0.7777 64262 (octal) 

(5.1) j-r = 0.0000 13516 0000 (Octal) 
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exactly. The formula (4.4), when applied properly, will give this 

value to nearly 9 significant octal digit accuracy. Converted to decimal, 

this means we were getting close to 

0.0000 4445 0164 

for E; the illusion was created that we were recovering nearly 8 

decimal digits of E. 

As another illustration of a startling divergence due to differences 

of rounding, recall that when we calculated r 
N 

by successive squaring, 

using octal rounding, we got 

8.693 4161X 10 
-6 

as compared with a more accurate value of 

rN E 8.696 3885x10 
-6 , 

However, if we start with the decimal equivalent of r, 

r 4 0.99995555, 

and perform successive squarings with decimal rounding, we get 

N 
f = 8.696 0578. 

If used in (4.6), this would have given 
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&E 4.445 0305x10 -5 
l 

If this paper has a moral, it is that cancellation and rounding 

errors are more serious than is generally believed, especially if one 

runs into some numerical instability. Mitigation of these effects 

due to randomness of errors is not as trustworthy as one might believe 

from the statistical theories that have been propounded. However, the 

remedy used by many people, of going to a double precision calculation 

if any suspicion of unreliability appears, will probably be entirely 

adequate in all but an extremely small minority of cases. Nonetheless, 

even with double precision, it is worthwhile giving thought to whether, 

of several mathematically equivalent forms, one has chosen the one 

least likely to produce cancellation errors, Also, if one has a sum involving 

a large number of summands, it is worthwhile, and not much trouble, to 

give thought to the best order of performing the summation. 
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APPLICATIONS OF NUMERICAL MODELING 
TO COASTAL ENGINEERING PROBLEMS 

H. Lee Butler and D. L. Durham 
Il. S. Army Engineer Waterways Experiment Station 

F. 0. Box 631, Vicksburg, Miss. 39180 

ABSTRACT. -- A review of the numerical modeling efforts within the 
Wave Dynamics Division, Hydraulic Laboratory at the Waterways Experiment 
Station is presented. Numerical modeling has progressed rapidly in the last 
several years and is now generally recognized as a useful tool capable of 
yielding valuable information on alternative solutions to many coastal 
engineering problems. Present efforts include models for application to: 
Wind-driven circulation; storm surge on a lake; tsunami generation and 
transoceanic propagation; tidal hydraulics of bays, harbors, and inlets; 
generation and propagation oE landslide generated water waves; and harbor 
oscillations, both free and forced. A discussion of the mathematical 
formulations and applications is given herein. Future efforts are dis- 
cussed which include stratified lake circulation and both deep and shallow 
water wind wave generation. 

1. INTRODUCTION. The advent of large scale computer systems has 
made itpossible to use hydrodynamic theory based upon rational physical 
approximations rather than the dictates of mathematical tractability. 
Constraints still exist due to computer limitations and lack of basic 
understanding of certain phenomena; however, numerical modeling has 
progressed rapidly in the last several years. The mathematical model is 
now generally recognized as a tool capable of yielding valuable information 
on the particular phenomenon under investigation. 

All of the models discussed in this paper are based on long wave 
theory approximations. There are many problems to which long wave theory 
can be applied and the degree of validity of each application is dependent 
on the particular approximation made and must be carefully evaluated. Long 
wave theory is a valid approximation when the ratio of water depth to wave 
length is small and the vertical component of motion does not significantly 
influence the pressure distribution which is assumed to be hydrostatic. 

A wide range of applications together with model formulations are 
presented. It is not the intent of this paper to present detailed descrip- 
tions of models, but, instead, to indicate the level of effort being 
undertaken by various members of the staff at the Waterways Experiment 
Station. The reader is asked to consult the appropriate reference to obtain 
details of the model formulations. 

This paper nas preserlted at the 1.975 Army Numeric:il Analysis and 
Computers Conference. 
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2 SCOPE OF MODELING EFFORTS. 1_-. Dynamic prediction equations based 
on the fundamental differential equations of hydrodynamics can be applied 
with minor variations to provide data on wave motion where the depth of 
water is small relative to the wave length. A linearized version of the 
model expressed in a spherical coordinate system has been used to calculate 
the propagation of tsunamis (originating from seismic disturbances in 12 
segments of the Aleutian Trench) from their source to the west coast of 
the United States. The results were used to evaluate the relative vul- 
nerability of an area along the west coast to tsunami inudation as a 
function of seismic location. 

A model based on the same fundamental equations, but cast into a 
Cartesian coordinate system, has been applied in analyzing the tidal 
hydraulics associated with harbors and inlets. Additional terms including 
non-linear inertial forces (convective forces) and bottom stress were con- 
sidered. The numerical tidal model has been used as a complementary tool 
in the operation of a physical model of the Los Angeles and Long Beach 
harbor complex. Such a numerical model can provide valuable information 
for use in the design and operation of physical models. Some of the areas 
to which the numerical model can be of assistance are documented below: 

a. Establishing appropriate boundaries during design of the physical 
model which are sufficiently removed from the influence of regions 
to be investigated. 

b. Indicating regions where data collection may be more critical or 
desirable. 

c. Indicating possible problem areas in advance of physical model 
tests. 

d. Providing assistance in the general interpretation of physical 
model results for certain phenomena. 

e. Providing a "quick look" at a number of possible configurations 
indicating the more promising plans, 

f. Providing a mechanism for investigating certain phenomena such 
as wind which cannot be easily introduced into the physical model. 

The integration of the numerical and physical wave models allows for a more 
complete and comprehensive test program. 

Under a project entitled, "General Investigation of Tidal Inlets" an 
attempt has been made to construct an idealized inlet in order to investi- 
gate the effects of inlet geometry, friction, and bay and tidal heights. 
An effort was undertaken to investigate the ability of the numerical model 
to reproduce localized velocity patterns. The results bore out the fact 
that many details of the velocity patterns seen in the physical model were 
reproduced in the numerical model. Applications to actual inlets have 
been made and comparisons with prototype elevation and velocity data 
obtained. 
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With minor variations the tidal model has been applied in the investi- 
gation of !;rndsli.de gl,eneratrd water waves. In 1971, the Hydraulics 
Laboratory at WRS constructed a l:I20 undistorted scale model of Libby 
Dam and Lake Koocanusa, Montana, and conducted tests to determine wave 
heights, runup and amount of overtopping resulting from the sliding of 
individual rock ribs into the reservoir. Subsequently a study was initi- 
ated at WES and directed toward developing numerical methods for predicting 
the effects of landslide generated water waves in reservoirs. The agree- 
ment between the physical and numerical mode1.s was very good considering 
that each set of results (f-ivc separate slides with different slide 
velocities) were subject to certain inherent l.imitations imposed by the 
model theory and otbrrs imposed by l.ack of knowledge concerning prototype 
conditions or how to model certain phenomena. 

The Lake Erie Regional Transportation Authority is conducting a 
feasibility and site selection study for a ma:jor hub airport in Lhe 
Cleveland service area. One of the possibl.e sites being evaluated is an 
offshore site near Cleveland. Ohio. As a part of the feasibility analysis 
of an offshore site, WES is conducting a model feasibility investigation 
and a part of this study is to determine the effrcts of the jetport on 
the hydrodynamics of the surrounding area. Two of the numerical models 
applied so far in chc pro.ject have been used to define the effects of the 
jetport: on the following phcnomcna: 

a. Near-field and far-field definition of the wind-driven cir- 
culatlon for constant density, well mixed lake conditions. 

b. Storm surge at the shoreline from Lorain to Fairport, Ohio. 

For many coastal engineering problems, particularly in the design of 
harbors, the capability of estimating the response of partially enclosed 
bodies of water suc:h as harbors, hays, etc., to long wave excitation can 
be a useful tool for preliminary investigations as well as a guide to 
physical model studies. The geometric shape of the harbor and the wave 
reflections nssociared with its boundariss produce amplification or 
attenuation of the incident:c? wave regi.me. This phenomenon is after refer- 
red to as harbor resonance or seiching and can excite adverse motion of 
moored ships and produce currents which may bc. hazardous to navigation. 
New harbors or modifications to existing harbors can be designed to 
minimize the effects of harbor resonance by mismatching the frequencies 
at which a harbor has t~laximum response and the frequencies of the pre- 
duminant long wave energy which is characteristic of the wave regime at 
the harbor site. 

The major problem is how to determine accurately the amplitude 
distribution function and frequencies of the resonance characteristics 
oE a harbor. One approach is the application of numerical techniques. 
Two methods have been applied at WES: 
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n . A finite element method for obtaining the two-dimensional 
amplitude distribution and frequencies of undamped, natural 
modes of oscillations. 

b. The solution of a boundary value problem for Long wave- 
induced oscillations (forced oscillations). 

These methods were applied to the harbor at Port Hueneme, California, in 
conjunction with a physical long wave model study of the harbor. An 
additional application of the free oscillation model was made to l,ake Erie 
in order to determine the effects of a jetport structure on the free 
oscillations of Lake Erie. 

7. TSUNAMI MODEL, A computational scheme rel.ating arbitrary sea- 
floor displacements and the consequent surface-wave history was developed 
by Hwang, Butler, and Divoky (1972). In order to permit more reliable 
estimates of far-field surface displacements as well as ease of including 
the effects of the earth's curvature, the problem was cast into a spherical. 
grid covering the area of interest. 

The governing equations can be written as: 

Momentum Equations 

(1) 

(2) 

aLJ -.. = _ 2% 
at re ae 
av _,“_ ,_ = _ L-3 
at resin6 a$ 

Continuity Equation 

au 
at= ((h+q)UsinB) + g ((h+rl)V)} + g 

where the spherical coordinate system is described in Figure la. 

To sol.ve these equations an alternating direction technique is 
employed similar to that of I,eendertse (1967). A space-staggered scheme 
is used in which velocities, water Level, and depth are described at 
different points within a grid cell (Fig, lb). The first half cycle of 
the calculation consists of computing U and n implicitly and V 
explicity, advancing from time nAt to (n -I- g) At. The second half cycle 
computes rl and V implicitly and U explicitly, advancing from time 
(n f $) At to (n -I- 1) At. 

By continutng these processes one can determine the values of U , 
V , and rl as functions of time. The finite difference equations 
involved in the first half cycle of the calculation are: 
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Fig. la. Spherical cnordinatc system 
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Fig. Lb. Space-staggered grid definition 
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(4) 

(5) 

n++ 
'j+&k 

11 
= 'j+$,k 

- Atg ($1: k - II;+;) 
2r,A8 ' ' 

I-,“+‘” rln j,k = j,k - 2r ,$n6 rh( ((h+n)U sinB}?$ k - {(h-J-n)IJsit~ei~!~ k) 
e j 

A, , 

-- 
+& (l(h+Wl; k++ - {(h+ri)V1;,-$} + At/, (gjn 

, 

These equations can be solved for U Il+$ and nn++ where terms noted with a 
bar are computed by averaging values of h and n to determine the barred 
quantities at the specific points. The explicit expression for Vn++ is 

(6) 
Vn-t$ = v" 

Atg _ --1,-.- 
j,k+k J.k-6 2reA[tsinBj , crl; k+l - n; k) 

I 

The difference equations for the second half cycle are similar with IJ 
and V exchanging roles. 

TWO types of boundary conditions are involved in the computations. 
These are the solid boundaries at coastlines and the open sea boundaries 
arising from the need to truncate the region of computation to minimize 
computer core and processing time requirements. A condition of-complete 
reflection is adopted at solid boundaries. No dissipative factor is 
considered in the model at present to account for loss of tsunami energy 
due to shorcl.ine interaction. This condition is accomplished by settinp 
U=O or V-O at the appropriate boundary. 

The open sea condition must simulate a total transmission of 
the wave through the boundary. This cannot be rigorously achieved without 
computation beyond the boundary and thus an artifice is adopted which assumes 
that the wave profile travels without change of form across the last 
interi.or cell of the grid at the shallow-water wave speed. This leads to 
the expression 

(7) 

where R refers to an exterior face of a boundary cell, B-l, the cor- 
responding interior face of the same cell, and AS the dimension of the cell 
normal to the boundary face. 

The derivative of the ground motion term appearing in the continuity 
equation accounts for the time dependent vertical bottom displacement 
measured from a pre-quake bottom topography. If far-field results are 
the major interest, an initial water surface deformation is assumed instead 
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of allowing the numerical code to simulate the time dependent vertical 
motion. This initial surface condition conforms to the topographic features 
of the ocl:an floor which experiences permanent vertical displ~scement 
resulting from a quake disturbance. Since the characteristic time for 
vertical ground movement is small when compared to the long periods of 
tsunami waves, it is suffiriont to assume an instantaneous uplift over 
the entire disturbance area. 

The tsunami model was verified by hindcasting the 1964 Alaskan 
Tsunami (Hwang, et al; 1972). With obsc?-rvations of genernted bottom 
di.splaccmcnts and distant wave histories available, the computed and 
observed waves compared well in amplitude and phase of the dominant lead- 
i r1g wave. 

Results of the Aleutian Trench study (Whalin, Garcia, and Butler; 
1974) indicate that the tsunami generated hy the 1964 Alaskan quake may 
not be a t-arc event at all. Further, a tsunami of equal intensity result- 
ing from a seismic disturbance located elsewhere in the Aleutian Trench 
could cause significantly higher runup at particular west coast locations. 
Figure 2 di.splays a sample plot of surface elevation contours at a time 
of 4 hours following a hypothetical disturbance in segment 7 of the 

Aleutian Trench (a source location south of Shumagin Island). 

4 TIDAL MODEL. -:....-. A numerical tidal model, based upon the original 
formulation by Leendertse (1967), has been applied at WES to analyze the 
tidal hydraulics of harbors and inlets, Again the fundamental equations 
are averaged over the vertical dimension and expressed in a Cartesian 
coordinate system to yield 

Momentum Eqrlations 

(9) 

(10) 

Continuity Equation 

where the stress terms 

Bottom stress 

{(h+rl)Ul + g {(h+n)Vj = 0 

are defined as 

(11) 

,--_-_.- 
T; = @ &+V2 

c2 
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and -“- 

(12) 
TY = BV Jt12+v2 

B c2 
Wind stress 

(13) -r 
1‘ 
w 

= c&y 

The major assumptions involved along with the consequence of each 
assumption are outlined below: 

a. Internally the fluid is inviscid (horizontal and vertical 
eddy viscosity terms are considered to be negligible). 

h. 'The fluid is incompressible (continuity equation and gravity 
term are simpliEied). 

c. The vertical component of the fluid acceleration is negligible 
(momentum equation in the vortiral. direction reduces to the 
hydrostatic pressure variation). 

d. 'The fluid 4s we.11 mixed so that the variations of flow in 
the vertical direction are small (allowing the averaging of 
flow quantities over the vertical). 

'To solve the above system of equations numerically the differential 
equaLions must be discretized and replaced by a system of finite diffcrcnce 
equations using central differences on a space-staggered grid as in the 
case with the tsunami model, Again, Leendertsc's implicit-explicit mult.i- 
operational method is employed in determining the solution for IJ , V , 
and n it s functions of time. 

The difference equations for the second half cycle are written as: 

(14) 

(15) 

V IlSl = Vtl+" gAt - 7jg~ <rly> 
d-1 

- 4rix" 
At = n+$V >n+$ 

X 

At - ---v 
4Ay 

n+lCV >r& At p 
y' -2-y at j, k+$ 

n-t-1 
rl =rl 

11+45 - $; i.(h+rl)U> 
X 

n++ _ at <(hfrl)v,yn+l 
2Ay at j, k 

‘I’hes~ equations are solved for V"+l and r)n+l along a grid line j . 
For simplicity of notation some terms have been maintained in differential 
form within angle brackets < >. Central differences are used in evaluat- 
ing these terms. The additional velocity component ~n+l can be determined 
explicitly irom the equation 



The expressions fur the forcing terms I: ant F :1rc written as x Y 

In addition the terms signified by a singl.c bar are not defined at the 
point whcrc the equation is written and are determined by averaging two 
neighboring values. The terms signified by a doubie bar require four 
neighboring values to obtain an average. 

Three types of boundaries arc+ tnvolved in the calculations: 

a. A condition of complete reflection is considered at solid 
boundaries. 

h. Tidal elevations are input data at artificial ocean boundaries. 

c. Tidal elevations or average fluid velocities are input data 
at artificial boundaries in the inlet, harbor or bay. 

Sufficient prototype data must be available to operate and/or verify 
the model. Along these lines, it should be emphasized that tidal elevations 
or average fluid velocities must he defined at all artificial boundaries 
in the inlet, harhor or boy. 

From a consideration of the assumptions involved in the development 
of the model, it is apparent that it should be most applicable for consider- 
ing long period waves in non-stratified regions where vertical accelerations 
arc small.. The model provides no indication of the vertical distribution 
of velocity. Phenomena which depend on the. detailed velocity distribution 
as a function of the depth cannot be investigated. 

As mentioned previously, applications of the model at WES include 
the Los Angeles-Long Beach Harbor area and an idealized inlet model. 
Figure 3 illustrates the tidal velocity field for a portion of the LA-LB 
harbor. The treatment of breakwaters and piers on piles are of particular 
interest in this application. The frictional coefficients were varied to 
simulate the resistance of these structures to the flow. Approximately 
1600 grid points were used in the computational grid. 

.5 - LANDSLLDE MODEL. A numerical. model for the generation and 
propagation of landslide-generated water waves in reservoirs was developed 
at WES (Raney and Butler; 1975) as part of an effort directed toward 
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Fig. 3. Illustration of a tidal velocity flow field for a portion of 
the Los Angeles-Long Beach Harbor Complex 



finding analytical and/or numerical methods for predicting the effects 
of these waves. It was decided that a promising i.nitial approach for the 
investigation involved using a depth averaged formuJ.ation of the fluid 
mechanics equations. 

The tidal model as discussed previously can be adopted with appropriate 
modifications to eval.uatc the arrival time and height of the first wave 
crest which may result from a landslide. Results from the physical model 
study conducted at WlZS (Davidson and Whalin; 1974) indicated that in most 
cases the first wave crest was the largest measured at each of the model 
gauges. The pertinent modifications to the tidal model are: 

a. A vertical bottom deformation term representing the passage 
and settling of landslide material is introduced into the 
continuity equation in a manner similar to the ground motion 
term appearing in the tsunami model. 

b . The acceleration effect of the l.andslide on the fluid with 
which it is in contact is introduced into the momentum 
equations as part of the forcing terms. 

Thus the equations can be written as: 

Momentum Equations 

(19) 

(20) av av av an T< t L& + ~~~ I- gay = Ry + Ly 

Continuity Equation 

The method of solution is identical to that used in the tidal model.. 

Boundary conditions are similar to those adopted in the tsunami model. 
The fictitious open boundaries arise from the need to truncate the region 
of computation (in order to minimize computational time requirements). 
Also considered is a time dependent boundary between the landslide surface 
and the water in the reservoir. 

The landslide is represented by a time dependent deformation of the 
bottom of the reservoir plus additional terms to represent the effect of 
the landslide on the reservoir due to viscous and inertia forces. The 
bottom deformation propagates into specified regions of the reservoir at 
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the average speed of the landslide with the deformation at any particular 
location increasing from zero to a maximum value according to a specified 
time-displac:ement relationship. For those .portions of the bottom of the 
reservoir through which the landslide passes but which do not experience 
n net change in ground elevation 3s a result of the ffnal slide deposi- 
t i 0 n I the deformation is allowed to return to zero at a specified rate. 
Th(‘ handling of the landslide condition is illustrated in Fig. 4* The 
direction, cxrent, and magnitude of the botrom deformation is .detertnincd 
by knowledge or assumptions concerning the path and f'inal disposition of 
the particular landslide. 

The water in the reservoir experiences an acceleration due to the 
rorce exerted by the landslide at the time dependent boundary between rhe 
water and the landslide. This force per unit mass is considcrcd to consist 
of a component due to the displacement oi the water hy the slide plus two 
components which act on fluid elements in contact with the landslide: 

(22) 5 = cx(V 
X 

- u>2 f D (V - u)* 
X 

(23) L = tx(V 
Y Y 

- VJ2 + a (V - ")' 
Y 

where 

vx =the x component of the landslide velocity 

V 
Y 

= the y component of the landslide velocity 

Yy = viscous drag paramtr,ter 

fi = pressure drag parameter 

The first component of L and L is related to the viscous drag 
exerted by the slide upon the fluid wYth which it is in contact. The 
second component of L and I, expresses a pressure drag exerted on the 
water by the front ofXthe slyde. The viscous drag is considered to act 
at all points of contact between the slide and the water. The pressure 
drag acts only at the leading face of the landslide. 

The landslide is thus represented numerically by a combination of 
terms whose net effect in the numerical model. should be a reasonable 
representation of the large scale physical effects produced by a landslide 
entering a reservoir. A representation of the landsl.idc propagates into 
the numerical representation of the reservoir, accelerating the fluid due 
to physical displacement, viscous effects, and pressure drag effects. The 
resulting waves propagate across the reservoir in accordance with the 
governing equations. The wave height and velocity components are calculated 
for each grid cell at the end of each time step. 
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Fig. 4. Landslide model 
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