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FOREWORD

The first in this series of conferences had as its host the Office
of Ordnance Research (now the Army Research Office). It was held in
Durham, North Carolina, in late 1962, and was entitled the "ARO Working
Group on Computers." It retained this title for only two meetings; then
the name was changed to the "Army Numerical Analysis Conference." Re-
cently the name received a modification., The title is now the "Army
Numerical Analysis and Computers Conference." This new designation
emphasizes both phases of these meetings. _

The host for the initial conference also served as host for the
present conference--the thirteenth in this series of meetings. The
Army Mathematics Steering Committee (AMSC) continues to be their spon-
sor. Members of this committee would like to thank Dr. Paul Boggs for
serving as Chairman on Local Arrangements. He did an outstanding job in
carrying out the many tasks associated with conducting a conference of
this size.

"The Impact of Mini-Computers and Micro-Processors on Scientific
Computation in Army Research and Development" was the theme of the 1976
conference, A Panel Discussion in this area was one of the outstanding
features of this meeting. It was chaired by Professor David J, Farber
of the University of California at Irvine. The four members of his
panel were Dr. E. David Crockett, Hewlett-Packard's Data Systems Division,
Professor E. J. Desautels, University of Wisconsin, Dr. Ivan Sutherland,
Rand Corporation and Mr. Eric Wolf, Bolt Beraneck Newman.

The keynote address was delivered by Dr. E, David Crockett. He
titled his talk "Is the Mini-Computer the Next Dinosaur?" Another
address which was also closely related to the theme of the conference
had as jts title the "Evolution of ilicro-Computer Technology." It
was. delivered by Dr. Evan Sutherland. Two other featured speakers were

Dr. Achi Brandt, IBM Thomas J. Watson Research Center, and Professor
Gene H. Golub, Stanford University. The respective titles for their .
addresses were "Multi-Level Adaptive Techniques (MLAT) for Discretizing
and Solving Partial Differential Boundary Value Problems" and "Least
. Square and Robust Regression," Members of the AMSC would Tike to extend
their thanks to the above-mentioned panelists and invited speakers for
sharing with members of the audience their knowledge about new numerical
analysis techniques and new developments in the computer field. Also,
they wish to thank those scientists presenting the thirty-three con-
tributed papers. Without their input to this meeting it could not have
fulfilled its full significance as an Army conference.

The responsibility for organizing these symposia rests in the hands
of the AMSC Subcommittee on Numerical Analysis and Computers. Its chair-
‘man, Dbr. Ronald P, Uhliq, held an open meeting of this subcommittee on
the Jast day of thic symposium. Among the topics brought up for discussion
was the theme for the 1977 conference, After considerable interplay of
ideas and many suggestions, the theme receiving the strongest indorse-
ments was entitled "Humerical Techniques for Solutions of Nonlinear
Partial Differential Equations." We are pleased to be able to announce
that the Mathematics Research Center, University of Wisconsin at Madison,
Wisconsin, will serve as the host of this coming conference,
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AGENDA
1976 ARMY NUMERICAL ANALYSIS AND COMPUTERS CONFERENCE

US Army Research Office
Research Triangle Park, North Carolina

A1l sessions will be held in the Ramada Inn-Downtown, 600 Willard Street,
Durham, North Carolina.

Wednesday Morning, 11 February 1976

0800-0830 REGISTRATION - Triangle Ballroom
0830-0845 OPENING OF CONFERENCE - Triangle Ballroom

WELCOMING REMARKS - COL Lothrop Mittenthal, Commander,
US Army Research O0ffice, Research Triangle Park, North Carolina

LOCAL ARRANGEMENTS - Paul Boggs, US Army Research Office,
Research Triangle Park, North Carolina

0845-0945 KEYNOTE ADDRESS - Triangle Ballroom

CHAIRMAN - Ronald Uhlig, Hgs., US Army Materiel Command,
Alexandria, Virginia

SPEAKER - E. David Crockett, Hewlett-Packard, Data Systems,
Cupertino, California

TITLE - Is the Mini-Computer the Next Dinosaur?

0945-1000 BREAK
1000-1215 TECHNICAL SESSION I - Central Carolina Room

CHAIRMAN- Thomas Dames, Management Information Systems
Office, US Army Electronics Command, Ft. Monmouth, MNew Jersey

A LARGE CAPACITY CIRCUIT ANALYSIS CODE PROGRAMMED ON
PDP~11/40
J. C. Ingram, Harry Diamond Laboratories, Adelphi,
Maryland

MINI-COMPUTER EXPERIENCE OF A STUDY AGENCY

Michael E. Gilbertson, Engineer Studies Group, Washington,
DC
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USE OF MICROPROCESSORS AND MINI-COMPUTERS FOR TARGET
LOCATION
Alan Weinberger and Raymond Coakley, USA Mobility
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DISTRIBUTED COMPUTER RING NETWORK

Edward Goldstein, USA Test and Evaluation Command, Aberdeen
Proving Ground, Maryland

1000-1215 TECHNICAL SESSION II - Duke Room

CHAIRMAN - William S. Agee, National Range Operations
Directorate, US Army White Sands Missile Range, White
Sands Missile Range, New Mexico

LINEARIZED LEAST SQUARES
Larry M. Sturdivan and John W. Jameson, Biomedical Laboratory,
Edgewood Arsenal, Aberdeen Proving Ground, Maryland

NONLINEAR SPLINE REGRESSION ON MINICOMPUTERS
Philip W. Smith, Texas A&M University, College of Science,
College Station, Texas
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Charles E. Gray, Aeronutronic Ford Corporation, Palo Alto,
California
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D. C. Adams and Gary Vander Roest, US Army Air Mobility
R&D Laboratory, Ames Directorate, Moffett Field, California
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CHAIRMAN - David Grobstein, Management Information Systems
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IMPROVED MISSILE SIMULATION DEVELOPMENT USING A HIGHER LEVEL
SIMULATION LANGUAGE
Willard M. Holmes, US Army Missile Command, G&C Directorate,
Redstone Arsenal, Alabama
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AND CHECKOUT
E. H. Gamble, US Army Test and Evaluation Command,
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Aberdeen Proving Ground, Maryland

DEVELOPMENT AND OPTIMIZATION OF SIGNAL PROCESSING UTILIZED
IN A MINE DETECTION SYSTEM

Abram Leff, US Army Mobility Equipment R&D Center,

Ft. Belvoir, Virginia

TRANSIENT THERMAL ANALYSIS OF TRANSCALENT POWER SEMICON-
DUCTING DEVICES
Russell Eaton, US Army Mobility Equipment R&D Center,
Ft. Belvoir, Virginia

1315-1530 TECHNICAL SESSION IV - Duke Room

CHAIRMAN - Sylvan H. Eisman, US Army Frankford Arsenal,
Philadelphia, Pennsylvania

FLAT: A FOURIER TRANSFORM
. Alfred C. Brandstein, Harry Diamond Laboratories, Adelphi,
Maryland

AUTOMATED CONTROL, DATA ACQUISITION AND ANALYSES AND
HYDRAULIC MODELS OF TIDAL INLETS
Don L. Durham and Robert W. Whalin, US Army Engineer
Waterways Experiment Station, Vicksburg, Mississippi
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OPTIMAL INSTRUMENTATION PLANNING USING LDLT FACTORIZATION
William S. Agee, National Range Operations Directorate, US
Army White Sands Missile Range, White Sands Missile Range,
New Mexico

A COMPUTER SOLUTION TO THE BUCKINGHAM Pi THEOREM USING
SYMBOLANG, A SYMBOLIC MANIPULATION LANGUAGE
Morton A. Hirschberg, US Army Ballistic Research
Laboratories, Aberdeen Proving Ground, Maryland

PIPS - AN INTERACTIVE GRAPHIC PROGRAM FOR DETERMINATION

OF MASS PROPERTIES OF IRREGULARLY SHAPED PLANAR SOLIDS
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TESTING ALGORITHMS FOR A MINI COMPUTER ON A MAXI
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TITLE - Multi-Level Adaptive Techniques (MLAT) for Discretizing
and Solving Partial Differential Boundary Value Problems

Wednesday Evening, 11 February 1976

1930-2130 PANEL SESSION ON THEME OF MEETING - Triangle Ballroom

PANEL MODERATOR - David J. Farber, Information and Computer
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ADDENDUM

An invited general lecture entitled,
"Evolution of Micro-Computer Technology"
will be delivered by Dr. Ivan Sutherland
of the Rand Corporation, Santa Monica,
California at 1930 on Wednesday evening.
This talk will be followed by the panel

session as announced,
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A CASE HISTORY EXPLORING THE TRANSPORTABILITY OF A MATHEMATICAL
ALGORITHM FROM A LARGE-SCALE COMPUTER TO A MICRCCOMPUTER

8. Kravitz and J.A. Hauser

Aeronutronic Ford Corporation
Western Development Laboratories Division
Palo Alto, California

Abstract

Problem-solving techniques as adapted to microcomputers compare
in varying degrees with those used with large~scale computers and
minicomputers. The latest hardware téchnology has re-exposed some
of the same numerical and programming problems that were
attendant upon the introduction of minicomputers in replacement of
-‘large-scale computers. A case histor_{r of a typical microprocessor
-application is presented, with emphasis on algorithm transport-
ability and microprocessor restrictions and capabilities. The
illustrative example is a Graphics Plotter controlled by an Intel-8080
microprocessor. Recommendations for future studies in algorithm
standardization are presented,

A. INTRODUCTION

Technological developments in the field of microprocessors within the past few years have
revolutionized the electronics industry. Microprocessor prices have been drastically
reduced recently, making it virtually impossible to ignore them as cost-effective alterna-

tives to minicomputers and, in some applications, large-scale computers.

Use of a digital computer for problem solving is typically divided into the formulation,
algorithm development, and programming phases. Problem solving can be viewed as a
team effort involving a numerical analyst, programmer, and electronic engineer, Micro-
proceésor-based applications generally involve some electronic fabrication which includes

circuit design and integration of input/output sensors.



‘The computer architecture must be taken into account in each development stage. Micro-
processor applications differ from large-scale or minicomputer applications in the areas
of limited arithmetic capability, lack of adequate support software, and in the require-
ments of solving real-time data acquisition problems,

The use of large-scale computers for microprocessor software development is an

accepted technique. Proofing and simulating algorithms before developing them for the
more difficult microprocessor environment is made possible through the use of cross soft-
ware, such as compilers, assemblers and simulators, which operate on a host computer,
'However, transporting these algorithms, or those already in use on Iarge—scaie computers,
still presents numerical and software-language difficulties.

The present day use of large computers to solve engineering problems in general is im-
plemented in high-level languages such as FORTRAN. The use of a high-level language
has certain drawbacks, not the least of which is an abstraction (or transparency effect)
which masks the nature of the actual computer arithmetic operations. In using micro-
computers, however, the practitioner must be keenly aware of the hardware implementa-
tion of the arithmetic operations and the numerical problems attendant on small word
sizes. '

A typical microprocessor system generally consists of the following system components:

CPU - The Central Processing Unit controls the communications between
memory and the input/output, keeps track of the program, and operates on
instructions via the ALU (Arithmetic Logic Unit),

MCU - The Memory Control Unit controls which memory chip is accessed
by the CPU. A decoder is often used for this purpose.

DCU - The Device Control Unit selects the input/output accessed by the CPU,
In general, these are the selected port addresses.

Memory ~ Most microprocessors employ both ROM (Reé.d Only Memory) and
RAM (Random Access Memory).

System Clock - Although some micros now have on-chip clocks, many still
require an external clock chip for system timing.
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Interface Chip ~ The interface chip is a register (either programmable or not),
controlled by the CPU, and is used to interface to the outside world.

Microprocessor applications fall into the following general categories: controllers,
terminals, communication equipment, and consumer products. Specifically, micro-
processors are being used in point-of-sale terminals, onboard vehicle control, banking,
recreational games, industrial controls, time-sharing, remote batch, and mmerocus other
applications. |

B. ALGORITHM TRANSPORTABILITY CONCEPTS

. B.1 Algorithm Development

For this discussion, algorithms are those numerical methods which are used to solve
problems on digital computers, By definition, they are completely unambiguous, and
should include an error analysis. The error analysis includes accuracy requirements,
estimation of round-off and discretization error, step-size and iteration counts, and
non-convergence allowances, For the context of this paper, algorithms include pro-
gramming considerations which are necessary for software implementation.

A much-sought-after objective in scientific computer applications is transportability of
algorithms, Transporting an algorithm involves conversion and translation of the computer-
dependent features so that the algorithm can be implemented in software on a different
computer, Computer algorithms have been developed during the last two decades at great
cost and unfortunately, with duplication of effort in conversion to newer and different hard-
ware. Some earlier large computers used for technical problem solving had 36-bit word
architecture (with some exceptions, notably the Philco 2000 series, 48~bit word); 32-bit
and 60-bit word machines were adapted later. Minicomputers, arriving somewhat later on
the scientific-applications scene generally used 16-bit words, although this also varied.
More recently, microcomputers became popular. These include 2, 4, 8, 12, and 16-bit
architectures. In gemeral, the use of floating-point arithmetic hardware has been confined
to large-scale computers and some minicomputers.

With a diversity in number representation, arithmetic capability, and software languages,
it is no wonder that the goal of algorithmic transportability seems no closer in the micro-
computer era than it did in the minicomputer era. The practical development of a numerical

algorithm involves an analysis which considers not only computer word size and =rithmetic;
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but also vagaries of software languages, software library functions, and, in the case of
microcomputers, the pecularities of real-time data acquisition - notably digitization,

The use of numerical analysis techniques for real-time microcomputer usage differs in
some respects from that used in defining a large-scale computer algorithm. Memory and
speed constraints restrict the use of extended-word arithmetic and floating-point software.
The trade-offs are not always simple nor are the alternatives clearly defined.

" The extensive algorithmic and software literature 1,2,3) represents a treasure house of
ingenious techniques developed with great effort and expense. The future usefulness of
microc.omputers to solve problems heretofore reserved for larger and more expensive
machines, depends upon the conversion techniques adopted. They also depend on the
software aids developed to emulate, if necessary, the larger-word machines for which
the algorithms were originally developed.

B. 2 Software Development

The general acceptance of FORTRAN as the standard in technical software development
has been aided by the efforts of the X3J3 FORTRAN committee ), Unfortunately for
users of mathematical algorithms, standardization is én objective still to be attained. The
differences in machine architecture must be taken into accouht in defining an algorithm,
This is especially true in the use of microprocessors. The relative newness of this
technology and its application in general problem solving indicates that little in the way of
- software support tools are available. The first-time user is cautioned against assuming
the existence of any extensive mathematical library supplied by the manufacturer.

A purchaser of a microcomputer system can obtain a manufacturer-supplied operating
‘system, assembler programs, and, in some cases, higher—level—language compilers.
Unlike the minicomputer environment, suppliers generally do not furnish a compre-
hensive mathematical library which is fully tested and warranted. However, user

groups are being formed, and programs are being exchanged on an informal basis. Faced
with the task of implementing an algorithm on a microprocessor, the development team
must plan to convert, or transport and implement, existing é.lgorithms (sin, cos, etc.)
from larger machines,

High-level-language compilers have been developed as an alternative to machine language.
Programs take less time and are easier to write than their assembly language courterparts.
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The Intel PL/M cross COmpiler(s) is an early example. Other support programs are
being announced in technical publications; (6) however, there appears to be little in the
way of standardization. |

Figure 1 illustrates a typical microprocessor software development cycle. The develop-
ment team of numerical analyst, programmer, and electronic engineer must interface .
throughout the cycle to ensure a valid and verifiable implementation.

Develop
Algorithm

Formulate

Program Specification

Program Algorithm in Assembly
Code or Higher Level

Language
HOST i RESIDENT
COMPUTER COMPUTER
9
Assemble Via Cross Alternately Agsemble Via
Anemb_ler aor Cross Resident Assembler
Compiler
Checkout Via Checkout Vis
Microprocessor Development
Simplator System
Program ROM Chips From Load program into ROM
Assembled or Compiled memory by physically
Code 'burning’ in chip
Program is executed on
Microprocessor hardware
External Prototype
B ————
Inputs Microcomputer Results are displayed
System a) on console

b) via ASR terminal

Display

Resulcs

Figure 1. Microprocessor Software Development-Cycle
5



C. MICROPROCESSOR RESTRICTIONS AND IMPLICATIONS FOR ALGORITHM DEVELOPMENT

C.1 Hardware Restrictions

Unlike the large scale computer, the microprocessor is restricted in its operation by
various inherent parameters. Although nomenclature differences exist between micros,

minis and large-scale units, a2 meaningful comparison can be made.

Word size - The standard microprocessor word lengths vary from 2 bits to 16 bits. However,
8 bits seems to have become the industry standard. Compared to 32-hit or 36-bit words

used in many large-scale computers, the limitations are clear. Although multiword
definitions increase microprocessor software capability and accuracy, coding, memory,

and speed restrictions limit their use.

Speed - The instruction time of microprocessor commands depends primarily on the
technology of the unit. Whereas the more popular microprocessors, such as the Intel 8080
and Motorola M6800, use NMOS technology and, therefore, have slow instruction times
(approximately 2 us), bipolar microprocessors are becoming more popular and less
expensive. These units offer much faster instruction times (approximately 10 to 100 times)
at the expense of more power and a larger mumber of chips per system.

Memory restrictions ~ The amount of memory a microcomputer system can handle is

restricted by the amount of addressing available, Many micros use a 16-bit address bus,

enabling a micro to have a capacity of 65K memory, In addition to memory restriction,
semiconductor memory access~time restrictions can become important in real-time
applications, '

Digital to Analog Converter - The restrictions due to Digital-to-Analog Converters (DAC's)

are mentioned here because of their implications in the design example. DAC's are specified
by resolution (number of bits being converted) as well as type of technology. The higher the

resolution the smaller the increment of output voltage each bit represents,

. ,o-D
vout—(z Vref)

where n represents the resolution in bits for unipolar operation.



The design must also take into account the settling time of the DAC, This is the time re-
quired for the output function to settle within 1/2 LSB for a given digital input stimulus.
Various other specifications are important in the determinationv of the accuracy of the
converted number,

C.2 Software Restrictions

Microprocessor software can be subdivided into two major categories: microprogramming,
and fixed instruction set programming. Nearly all bipolar microprocessors are micro-
programmable (a2 user-defined instruction set, utilized at the fundamental register transfer
level). Most MOS microprocessors are not microprogrammable and have a fixed instruction
set. The more populai' Intel 8080 and Motorola M6800 fall into this later category. Due to
general size and speed constraints, microprocessor instruction sets are not as extensive

as their large-scale computer counterparts.

Many microprocessor vendors are now making available a higher level language. The more
popular ones are PL/M and FORTRAN, with newer ones such as MPL (Motorola) soon to

be released. Although these languages alleviate some of the problems of assembly language
programming, they create a lot of their own. Some of the problems of assembly language
and higher level language are as follows:

Multiply/Divide - Most fixed instruction microprocessors do not have a multiply or divide

instruction. Some newer microprocessors consider this problem and either have such
instructions, or have a hardware multiply/divide circuit; however, many algorithms have
been written to compensate for this oversight.

Fixed Point Arithmetic - Several higher level languages such as PL/M do not incorporate
floating~point arithmetic. Although floating~point subroutines have been written and can

be called as part of the program, a definite disadvantage both in flexibility and time is
recognized.

Unsigned Arithmetic - An annoyance one must keep track of in PL./M is the minus sign in

comparisons. In the case of an A>B check, a negative A which has an absolute value greater
than B would appear to be greater than B, whereas it is really less than B.

In real-time data acquisition, the special purpose data gathering hardware is usually
‘designed and constructed simultaneously with the algorithm development. Thus,
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leu]atiou tools must be used to verify the algo "ithms. Especially useful are simulation
programs that run on large-scale computers an | that allow software to be checked oui
before final checkout on the candidate hardware Testing on the candidate hardware will
then verify that sensors and conversion devices are correct and adequate. The Intel
Intellec microcomputer system permits input/o:itput through a straightforward PL/M
command that directly connects the application .,rogram to a designated hardware input
port. To output a specific value, the following command is used:

QUTPUT (PORT NUMBER) = OUTPUT VALUE

D. ILLUSTRATIVE EXAMPLE

The development of a microprocessor-controlled plotter to draw two~dimensional ellipses,
although simple, is illustrative of some of the problem areas in algorithm transportability.

D.1 Problem Statement

Given the major, minor axis lengths (a,b), draw a smooth ellipse using a microprocessor-
controlled analog plotter, This problem is trivial given a modern computer and supporting
software, However, as will be shown, the microcomputer solution is not trivial, certainly

not for a first-time microprocessor user who has become accustomed to large machine
support. )

Figure 2 is an artist's rendition of the final objective, a portable microprocessor based,
plotting system. '

D.2 System Design

Figure 3 illustrates the system solution to the ellipse plotter problem. The interactions
between algorithm, software, hardware, and human factors, influenced the design,

D.3 Hardware
The hardware required for the Graphics Plotter can be divided into two sections: (1) the

development hardware, and (2) the prototype hardware. The development hardware consists

of a system such as the Intel Intellec 8/Mod 80 with the I/O connected to two 10-bit DAC's



and, subsequently through appropriate amplification, to the X and Y inputs of ap X-Y
pecorder, Data entry is handled through a teletype.

The portable prototype system employs an Intel 8080A microprocessor connected to
several 256 X 8 ROM'S and 256 X 4 RAM's. In addition, a programmable /O interface
chip handles the input and output, a clock generator and crystal handle the system timing,
a 1-of-8 decoder does the device control selection, and a USART is used for data
communications through a current loop or RS232 type interface. A system-controller chip
handles the proper timing signals to the rest of the system.

The prototype system also employs a keyboard for data entry and an alpbanumeric display
for information verification and data interchange.

Figure 2. Portable Microprocessor-Based Plotting System
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Figure 3. Microprocessor—-Confrolled Graphics Plotter-Systems Block Diagram

D.4 Algorithm

The following discussion traces the algorithm development in solving the equation of the

ellipse on a microprocessor.

Cartesian Approach

Solve for x and y, givena and b

2.21/2

Y"@zﬂ_%J

a

[

where x ranges from -b to +b in steps of 0. 01 inches

alternatively y= b ~bx) /2 b + bx) 1/2
a a
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Parametric Approach

X=8cos8 0 Eq. D4~3
y=bsin 0

where 9 ranges from 0 to 27 in steps of 0, 01 radians.

The cosine function M was initially approximated by the three-term economized Chebyshev
~ series
_ 2 4
cos(X)= 1+ a,x" +2a 4 Eq. D4-4
where a,= ~0.49670
a,= 0. 03705

The series was rewritten, replacing the decimal representation with

2
1000 -(497_—75),_& LK Eq. D4-5
) = 5/ & 51
cos 1000
where K=x+100

A more accurate six-term seriem currently being implemented is

cosx) = 1+x% { a5 + x2 [a4 + xz(a6 + x2 [a8 +ayg xz])] } Eq. D4-6
where a, = ~0. 4999999963
a, = 0. 0416666418
ag = -0, 0013888397
ag = 0. 0000247609
a9 = -0. 0000002605

The number of multiplications was reduced by factoring,and the decimal constants will be
replaced by their reciprocal integer counterparts,
11



D.5 Error Analysis

The round-off error(s)in solving the equation of the ellipse is represented by the function E,
< |E | + |E .
IEl < [E,| + |E| Eq. D5-1

where
E_ is the error due to the finite machine representation of

real mumbers; it includes the propagation error due to the arithmetic operations.
Eg represents the generated error, introduced as a result of imperfect machine
arithmetic operations.

An example of generated error is the truncation caused by integer division. In the micro-
computer environment, E will depend upon the range of the parameters, the accuracy of
the function approximations, word size, scaling, and the fixed or floating-point mathema-
tical operations. Although not shown, a statistical approach can be used to estimate E.

Propagated error may be approximated by Taylor's theorem:

. * % % * F *
a w = 39 - F . " @ * ::"a-F':' ‘"a_ -
F(u,v,w, t) - Flu,v, w, ) =gy @) ¥ 25 (v-v )
oF * aF *
+"5#W(W"W)+- --+ﬁ {t-t7) Eq. D5-2
where
U, Vv, :v,. . «t are the true values of the function parameters
* * *
w,v,w,...t are machine approximations
or
aF 8F 5F SF .
= = == - v =3 -
Ep AF 6uEpu+a,vEpv+ 6WEpw+"' atEpt Eq. D5-3
where -
Epu = u -u*
| Epv =Y - v
Epw = w- w¥
E = - %
Ept t-t 12



For the Cartesian approach, where

1/2
_ [p2 . A2
F(x, a, b) = {b" - Eq. D5-4
)
' 2 b2x> (b _B_I;\
‘ b x x~ a
% afee=X{E _ + + \— . D5~
Epy (az ¥) ex T T3y Epa vy Ew Eq. D5-5

)1 4 Epa and pr are assumed to be zero, the Cartesian error may be expressed as:

E 23!;
py \p2/) = E x | Eq. D5-6

For the parametric approach, where
F(a, §) =2a cosd - Eq. D5-7

F(b, §) =b sin g - | } Eq. D5-8

E _and Epy’ the parametric error terms are evaluated as

b E i e . -

are assumed to be zero, the parai:netrlc error may be expressed as:

Where Epa and pr
E_ (-2%y\=E «x Eq. D5-11
Py —Y-bz DX -

13



The Cartesian error, Eg, is evaluated in functional form as:

., = ’ ’ E L] E » E ’ E ’ E » 05~
Bg = 11 B g2 Py Fgu By o Fgr) £q. D512
where
E g1 = Error introduced by squaring a
E g2 = Error introduced by squaring b
Egs = Error introduced by squaring x
E g4 = Error introduced by dividing b2 by 22
. 2
_ E85 = Error introduced by multiplying 12.2. by x2
a
- b2x2 2
Egs = Error introduced by subtracting C from b
a
Eg'! -Error introduced by the square root function

The parametric generated error E-g is evaluated in functional form as

- where
E'gl = Error introduced by sin or cos series approximation
E g2 = FError introduced by a or b multiplication

" The Intel microcomputer implementation of the Cartesian formulation was made difficult
by the following factors:

a. The limited integer range of 0 to 255 for single-length words and 0 to
65025 for double-length words caused overflow in multiplication, re-
quiring scaling.

b. Truncation caused by integer division required scaling.

‘¢, Truncation caused by the integer square root algorithm required scaling.

14



Extended arithmetic or floating-point arithmetic could have been used to alleviate the
above difficulty, This approach is being pursued.

In a simflar manper, implementation of the parametric formulation was made difficult by
the requirements for an accurate trigonometric approximation and by the scaling required
to represent the individual factors and the product of their multiplication,

D.8 Software

The PL/M language was utilized to implement the ellipse soluﬁon(s). The Intel cross-
compiler was used on a large scale Honeywell 6060 computer to produce a loadable

object paper tape. The simulator program was run later to verify the proper operation

of the object program. Using a high level language reduced training and program develop-
ment time, although the resulting program used more memory resources than anticipated.
A flow chart of the program code is shown in Figure 4.

D.7 Problem Areas

When implemented in PL/M code the Cartesian approach revealed the following problems:

a. A lack of supplied mathematical library routines. The original square-root
function did not satisfy the accuracy requirements,

b. Division and multiplication worked properly on positive (unsigned) numbers only.
c¢. Integer division truncated the results, making accuracy difficult.
d. Single and double precision word arithmetic was not sufficient to avoid overflow.

e. The resulting error in the x,y coordinates was too large to present visually
smooth ellipses. ‘

The parametric approach solved some of the above problems and the resulting graph was

smoother than the Cartesian results. However, a new series expansion for the
trigonometric sine function had to be derived.

15
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Figure 4, PL/M Program Flowchart for Ellipse

Some of the system and hardware problems were:

a2, The original design used an 8-bit DAC, which was expanded to 10 bits when it was
realized that more precision was required.

b. The classic problem of deciding whether a problem was hardware or software
was approached by using the Intellec development system to steb through the
software as well as by probing the hardware circuitry.
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‘E. CONCLUSIONS

Problem solving with microcomputers is likely to increase in the near future. In some cases,
microcomputers will replace minicomputers because of price, size, and low power require-
ments. To expedite development and reduce redundancy, the following recommendations are

made:

a. Use a development team for microprocessor applications. Include a numerical
analyst, programmer, and electronic engineer.

b. Encourage the development of mathematical libraries, and obtain access to
manufacturers' libraries.

¢. Encourage language standardization.
d. Use host software to check and simula’'¢ codes.

e. Anticipate requirements for multiword and floating-point arithmetic through a
thorough error analysis before algorithm implementation.

f. Debug hardware and software on a development candidate unit such as an Intel
MCS or MDS, or a Motorola EXORciser,

g. Consider the accuracy of the hardware (DAC's, A/D's, etc) before determining
software accuracy. There is no need for software to be more accurate than the

hardware,

h. Employ scaling techniques that are appropriate for the individual application.

F. IMPLICATIONS FOR ARMY RESEARCH AND DEVELOPMENT
The acceptance and use of microcomputers by the military will pace usage in the

commercial world, High reliability and qualification testing are proceeding, and some
acceptance is assumed during 1976.
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-Microcomputers are viewed not only as a direct replacehxent for minicomputers but, be-
cause of their small size and lower power requirements, as new devices for various
tactical applications, The use of minicomputers in radar and fire control systems is
already well established. In the future, micros will likely be found on board tanks
(automatic turret positioning and fire control, computer-aided fuel injection systems,
vehicle communication and display); in guided missiles; in electronie surveillance
systems; in navigation aids; and in field-portable communication, process control, and
logistics systems. In any instance where digital circuitry is applicable, the use of a
microcomputer is suggested, based on lower design costs as well as increased capacity
considerations.

The cost factors in using microcomputers are weighed heavily in the man-time costs
necessary to prepare software. In a recent article(g), the adoption of standardized
processor algorithms to solve problems in electronic warfare is recommended. The

~ author relates the high life cycle costs of custom-designed software as compared to

the lower costs incurred by using proven building block xznodules. Such an approach
could result in libraries of algorithms stored on the disks of large-scale computers with
support software that would allow the burning in of read-only-memories with those
programs of interest. In this style, microcomputer software applications would involve
integrating proven modules and preparing only the necessary high-level executive
;irogram and if necessary, problem~dependent algoritﬁma&.

For future Army application of microprocessors, a study of useful common algorithms

and preparation of guidelines for language standardization may be cost-effective in
reducing software development and redundancy costs.
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HIGH SPEED, QUALITY COMPUTING ON A MINICOMPUTELR

Edouard J. Desautels
Computer Sciences Department
University of Wisconsin
Madison, Wisconsin 53706

ABSTRACT. Factors which should allow the current generation of mini-
computers to run large scale scientific computations cost-effectively
in comparison to current large systems are discussed. The obstacles

to Tower-cost software conversion from large systems will decrease

due to the advent of minicomputers with large physical memories and
large address spaces. Initiation of the development of a numerical
analysis problem solving system on a dedicated minicomputer is proposed
as a means of exploiting recent hardware and software advances,

1. INTRODUCTION. The title for this paper may be interpreted by

some as a statement of the obvious. It is intended to raise the
following questions. To what extent can one today conveniently solve
large scientific problems quickly and as reliably on minicomputers as
on large shared systems such as the CDC 6000, IBM 370/158+ and UNIVAC
1110 series computers? What are the obstacles in reaping the full
potential of minicomputers in the mathematical software area? This
paper attempts to address these and related questions.

As a preliminary, let us agree that minicomputers for our purposes
are general-purpose computer systems deemed sufficiently inexpensive
to avoid the need for concurrent sharing via a multiprogramming
operating system. Thus a minicomputer would either be dedicated to
a single job or it would run a simple batch system, or it would be
turned over to single users for hands-on use, etc. Using this defini-
tion, what might be considered a minicomputer at one site (e.g. a
$100,000 PDP-11/45) might be used as a shared central facility at another
site.

As we proceed with our discussion, the characteristics of mini-
computers will also be assumed to change with time. We have to be
thinking of the potential uses of minicomputers as they may be 3 to
5 years from now, and what efforts have to be undertaken now in order
to be able to fully exploit them as the new generation of minicomputers
becomes available.
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2. HIGH SPEED. The measures of speed we have in mind are the raw
speed usually measured in millions of instructions executed per
second (MIPS), sometimes refined as a Gibson mix index (the sum of
the products of instruction speeds and instruction frequencies for
an assumed characteristic instruction mix). We are also concerned
with the perceived speeds as measured by turnaround times under
actual operating conditions.

Considering this second aspect first, many times we have heard
undocumented allegations as to the overhead associated with large
operating systems. Schneck in [9] discusses the factors which can
lead to a multiprogramming system consuming an excessive fraction of a
system's resources. He advocates monoprogramming as a method of
achieving high performance which yields advantages in turnaround time,
efficiency and equipment configuration.

Returning to the raw hardware speed, in spite of the small word
size of most minicomputers (e.g. 16 bits), single-precision floating
point hardware, for 32 bit operands, is now available on many systems
for $5,000 - $10,000. Many minicomputers have memory cycle times
of one microsecond or less. Thus when dealing with memory reference
instructions, a rate of 0.5 MIPS or better is attained. Since some
minicomputers are equipped with cache memories (a user-transparent
high-speed program and data buffer), rates of 1 to 2.5 MIPS are
achievable.

In a mathematical problem solving situation, one may wish to
distinguish the speeds for two distinct phases of problem-solving. The
first phase involves experimentation, program development and trial and
error until a suitable approach is found. Interractive computing is
the natural mode of computing in this phase. When a suitable approach
is found, one enters phase two, the production phase (sometimes
called number-crunching).

One can sometimes rather easily cost-justify using a minicomputer
for the production phase. For instance, suppose one has access
to a shared facility charging $200 per CPU hour, which typically pro-
vides its users with only one tenth of its effective power {because
it multiprograms 10 - 15 programs simultaneously to maximize resource
utilization). One can imagine a $100,000 minicomptuer system with
a speed equivalent to the perceived speed of the large system (a 1
MIPS minicomputer vs a 10 MIPS Targe computer). The breakeven point
for hardware purchase occurs after 500 hours. Since a minicomputer
system entails other costs, supporting costs equal to the initial
capital investment bring the breakeven point to 1,000 hours (25
weeks at 40 hours/week). Schaefer [8] reports on the use of a mini-
computer (a Datacraft 6024/4) for computations in theoretical chemistry
as a realistic alternative to machines such as the CDC 7600 or IBM
360/195. He reports that the cost of operating and capitalizing a
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minicomputer system can be significantly lower than the cost of
operating a very large system which has already been amortized, on
the basis of computations per dollar., He concludes that as a
theoretical chemist he was able to get three times more computing

per dollar using a 1973 vintage minicomputer, and that the technology
forecasts point to the price-performance bias towards minicomputers
increasing.

Justification for a dedicated minicomputer used for the inter-
active phase may be more difficult., If one amortizes the equipment
over 4 years, then the $25,000 per year may be eguivalent to the cost
of a scientific programmer with his overhead. On this basis, the
justification may not be so difficult, especially if the system is
also used for the production phase, as would be expected. The inter-
active phase is labor intensive, and any convenient interactive
capability suffices, provided it is somehow Tinked to and software
compatible with the production system.

3. QUALITY. Quality mathematical software is being produced by
projects such as the the National Activity to Text Software (NATS) [11],
and organizations such as the International Mathematical and
Statistical Library (IMSL) [3], in addition to efforts put forth by
computer equipment manufacturers. As might be expected, these

products run on large computers (e.g. CDC 6000/7000 series, UNIVAC

1100 series, IBM 370/360 series, etc.).

Assuming one has access to a high quality library of mathematical
software, it is more likely than not written in Fortran, and one
has the initial problem of selecting the appropriate subroutines,
then mastering the calling sequences and providing for the data
handling requirements. This work can be simplified by providing a
framework or a coherent working environment for the user,

In attempts to do so, a number of experimental systems were
developed in the mid and Tate 1960's, as described in the Klerer and
Reinfelds book [4]. One in particular focussed on providing the user
with a means of having a natural notation for problem definition (e.qg.
mathematical notation), providing for selection of appropriate
algorithms (e.g. using polyalgorithms), and using a natural representa-
tion of results (e.g. graphical). This was the Numerical Analysis
Problem Solving System (NAPSS). The paper by Rice [7] is a
retrospective view of the problems and prospects of NAPSS-1ike systems.
Co-existing with the multiprogrammed operating system of a large
scale machine was a non-trivial difficulty in the implementation of
NAPSS.,

NAPSS-Tike systems do not seem to be available for the current
generation of minicomputers. This may in part be due to the fact
that it was difficuit to fit NAPSS into a system as large as a
CDC6500. What efforts might be undertaken at this time?

23



4.  APPROACHES. One can imagine using a minicomputer as a program
generator (PG). One would present to the minicomputer a description
of a problem in a suitable problem-description-language (PDL)

which presumably has the appealing aspects of NAPSS-like Tanguages.
The PDL interpreter checks the description for consistency and a
lTimited notion of "correctness". After a dialogue with the

problem originator, it generates a series of calls on a mathematical
software library, and transmits this collection to a large system,
as a remotely-submitted batch job,

The program generator approach is attractive, but it probably is
the Teast effective use of a dedicated minicomputer system. It is
an attractive application for a minicomputer-based timesharing
system, but it may be equally cost-effective on a Targe-scale system,

The second approach we will discuss assumes that, if it is almost
cost-effective to perform both phases of problem solving on a mini-
computer today, it will be more so within three to five years. The
second approach involves dedicating a minicomputer to the support of
a NAPSS-Tike system, Instead of having to co-exist with a general
purpose multiprogram operating system, we can assume the operating
system will be designed to meet the needs of its one and only user.
Thus it does not suffer the depletion of resources which seems to
characterize multiprogram resource sharing systems, it does not have
to contend with protection problems either for security or as protection
against unreliable concurrent users. Nor does it need expend much time
in detailed cost accounting for resource utilization.

Of course we realize that some protection services are useful as
debugging and program checkout tools, and that some accounting
information can be used to identify performance bottlenecks. However,
instead of supporting services for the primary benefit of the sytem
(e.g. protection, accounting), we would prefer supporting services
of direct benefit to the user (e.g. debugging, performance measurements).

5.  CURRENT LIMITATIONS. With a few exceptions, most current mini-
computers are restricted to directly addressing 64KB (8 bit bytes).

In a mathematical software context, this would provide for a maximum

of 16K floating point 32 bit words, or a square matrix of 126 by 126.

In most systems this would exhaust all of memory. In some, another

32KW (16 bits) would be available for program storage. In a few systems,
one could have perhaps 1MB of physical memory, while still being
restricted to the small address space described above. The report by
Poppendieck and Desautels [6] describes the range of memories and
restrictions available on current minicomputers, and their implications.
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As mentioned previously, floating point arithmetic of suitable
speed and precision is now avaiiable on many minicomputers. The
availability of sufficient mass storage (e.g. disk) used to be a
problem with minicomputers. Fortunately relatively inexpensive
drives (80 MB) are available for under $20,000.

One additional consequence of operating a dedicated system is the
possibility of exploiting the microprogramming option which is
available on some minicomputers. It is very difficult to support
user microprogramming on a shared system, and it is simpler on a
dedicated system. In some cases this can yield a performance
increase of a factor of 2-5 or better.

6. A POSSIBLE APPROACH. The mathematical software written for large
computers might be adapted for use on the current generation of
minicomputers. Much of this software is written in Fortran, and
adaption might appear to be straightforward. However since most current
minicomputers have difficulty handling even 16K floating point operands,
much of the code would have to be rewritten to implement in software

the virtual memory hardware support for large direct addressing found

on some large computers, Even after an expensive adaption process,
performance would leave much to be desired.

Recognizing that some minicomputers now support direct addressing
spaces comparable to current large computers, and assuming that
technological forecasts indicating the cost of logic and memory decreasing
by a factor of two every two to three years, we would propose to initiate
development of a NAPSS-1ike system on a dedicated minicomputer with
a direct addressing capability of at least 1 MB (20 bits). This is
equivalent to a floating point word capacity of 256 KW (32 bit words)
which exceeds the direct addressing capability of large systems such
as the CDC 6000 series and UNIVAC 1100 series (restricted to 65KW
each). By the time efforts to convert large machine code into
16-bit minicomputers might begin to bear fruit, minicomputer technology
is 1ikely to have advanced to the point where Targe memories and
large direct addresses would have invalidated most of the conversion
effort, The recent interview on the design of the PDP-11 is
illuminating in this respect [10].

One can argue that the benefits of improved technology apply to
large and small systems equally, yet it appears to be the case that
the smaller systems increase in capability while decreasing in price
much more rapidly than the large systems.

A very attractive development approach would involve beginning
software development on a minicomputer which has the appearance
from the programming viewpoint of having a 32 bit word., The Interdata
7/32 has the logical characteristics of a 32 bit-word computer, but it
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provides this at a low cost by using 16 bit internal data paths.
Having developed software on this "slow" system, one can then upgrade
into a faster system, the Interdata 8/32, which is upward compatible
with the 7/32. The 8/32 provides 32 bit data paths and other
enhancements such as an instruction cache, so that its performance

is claimed to equal that of an IBM 370/158.

A computer such as the 8/32 is attractive in that it also
supports a writeable-control store, with which one can write micro-
code tunéd to support the current application. This can provide
performance increases and opportunities for monitoring arithmetic
errors.

Further performance increases can be obtained through the addition
of outboard arithmetic units such as the one manufactured by Floating
Point Systems [2]. In principle it is capable of a maximum of 12
million floating point instructions per second, on 38 bit operands.

The problem of course is how to keep it busy [5].

7. PRACTICAL CONSIDERATIONS. Developing software is an expensive
activity, and it is not Tikely to decrease in cost. The prospects for
transporting software ("software portability") with Tittie effort are
not too promising for mathematical software, because of the consequences
of minute differences in arithmetic, as well as the usual difficulties.

Since the cost of nain storage continues to decrease, it would
seem foolish to expend much software conversion effort to adaptation of
quality mathematical software developed for large machines so that
it can run on minicomputers with minute direct addressing capabilities,

8. _CONCLUSIONS AND RECOMMENDATIONS. Current minicomputers are in
some instances as cost-effective for scientific computations as

large scale systems. Within the next few vears, minicomputers are
Tikely to be much more cost-effective, provided one funds a way to
minimize the cost of adapting quality mathematical software which has
been developed for large scale systems,

Such adaptations should be performed for the newer generation of
minicomputers with larger direct addressing capabilities (1 MB or
greater), so that conversion costs remain reasonable.
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Edward Goldstein
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ABSTRACT.

Most present day real-time data systems at test ranges have been implemented
using large scale computers such as the UNIVAC 1108's at White Sands Missile
Range. In selecting g new real-time system for Yuma Proving Ground (YPG), the
US Army Test and Evaluation Command is applying a new approach - Think Small!
With the increasing sophistication and capability of minicomputers rapidly
approaching those of large scale computers, it is possible, by separating the
various processing elements used in a real~time system and substituting inter-
connected minicomputers, to do the same job for much less cost. This is the
Distributed Computing System approach.

Several distributed computer configurations now in existence are examined in

this presentation as well as the YPG proposed system. Included are the Carnegie-
Mellon Multi-Processor (C.mmp) System, the Bell Labs Distributed Network and

the University of California at Irvine (UCI) System.

INTRODUCTION,

The paper I am to deliver covers in part a subject on which one of the
acknowledged experts is present. However 1t is not a treatise on the subject
but an information brief concerning Yuma Proving Ground and how Yuma
intends to implement a distributed computer network. This paper, originally
a briefing prepared for the DoD Research & Engineering Directorate (DDRE),
contrasts some of the known current distributed computer systems with the type
which Yuma intends to install. We tried to show the practicality, desirability,
and feasibility of a ring type distributed network for Yuma without getting too
bogged down in technical details, since those briefed were management oriented
rather than ADPE technically oriented. Nothwithstanding, these DDRE managers
are at a policy making level influencing the entire scope of ADPE within the
DoD. Prior to this briefing their ADPE orientation was towards large stand
alone computers, which is diametrically opposed to the ring concept planned
for YPG. This is the briefing paper substantially as it was presented. The
purpose was to sell a concept and it succeeded in that objective.
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At TECOM we have a diversity of weapon systems to be tested. Formost among
these are the Army's big five developments.

*Mechanizeéd Infantry Combat Vehicle (MICV)
*Advanced Attack Helicopter (AAH)

- *%Utility Tactical Transport Aircraft System (UTTS)
*Surface—-to-Air Missile Development (SAM-D)

*XMI Tank

Both instrumentation and ADPE must be able to react to the testing requirements
of these items as well as all other Army materiel in a timely and economical
manner.

At YPG for example, these requirements are prompted by testing application
ranging from ground vehicles, such as MICV & the XMl Battle Tank, to Artillery
such as the XM204 Howitzer; to Aircraft-Armament; and most recently the Global
Positioning System, A Tri-Service Responsibility of the Air Force.

Figure 1 depicts the Global Positioning System (GPS) concept. When complete,
GPS will provide time and positioning data for any recelving unit at any location
on earth, The initial Yuma testing will constist of: (1) A simulated or inverted
range, & (2) Testing with up to nine satellites which will be within the reception
area of YPG approximately four hours per day.

During both the Aircraft Armament tests and the Global Positioning System
tests, large amounts of data will be collected within short time frames. It
is essential to do as much processing in real time as possible, in order to
speed the analysis of the data collected and to prepare reports in the shortest
possible time frame.

Recognizing that a large increase in ADPE workload would result from these
testing requirements, TECOM initiated action to review all ADPE at YPG. As a
result several alternatives were identified which were then studied, in full
recognition of the following dynamic technological thrusts which impdet ADP
today:

1. Hardware costs are decreasing by a factor of 100 each ten years, with
every indication of continuation for the next ten years.

2. Software costs are decreasing by a factor of 10 each ten years, w1th
every indication of continuation for the next ten years,

3. Data communication costs are decreasing by a factor of 10 each ten
years, with reasonable expectations of continuation for the next ten years.

4. Personnel costs are essentially stable, after accounting for inflatiom.
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The consequences are that overall - personnel costs are looming larger relative
to all other costs, with hardware diminishing as a cost factor.

But most present-day real time data systems have been implemented using
large scale computer systems such as at White Sands Missile Range where large
UNIVAC 1108's are used in the real time tracking of missiles. These systems
effectively control input, output and processing of all data for real time
systems. (Fig 2) As you are aware, the cost of these large scale computers
is always high, usually several millions of dollars or more.

On the other hand the ever increasing sophistication and capabilities of
minicomputers, are rapidly approaching those of large scale computers. This
is accomplished by separating the various processing elements used in a real
time system and substituting interconnected minicomputers for each. The result~
ing multi-processor system, using a number of minicomputers, can do the same
real time job as a large scale system and for much less cost.

As a result, the thrust of our current thinking is more in terms of small
minicomputers. (Fig 3) For this reason new practical and cost effective
solutions for meeting the future ADPE requirements of YPG were considered along
with the traditional approach.

With the most recent availability of low-cost minicomputers a computer trend
toward localized computing at the site of the user is developing in industry and
in Government as well. For example, here in TECOM the computer has become an
integral part of instrumentation, test chambers, and data acquisition and control
systems. This requires that at least part of the computing facility be at the
application site. The minicomputer has been ideally suited to such real-time
applications. This leads us to a concept of integrating a number of mini-
computers into a computing system. (Fig 4)

In effect this is an information utility made up of a number of minis
rather than one or two maxi-~computers, This concept is known as a distributed
computing system. The goal of distributed computing is an integrated hardware
system which provides reliable service at low cost.

There are several different kinds of distributed mini-computer networks
in existence today - all of which are in various stages of development. Rep-
resentative of these are:

*The Carnegie-Mellon Multi-Mini Processor
%#The Bell Labs Spider Network
#The University of California at Irvine Ring Network

Figure 5 is a schematic of the ADPE contained in the Carnegie~Mellon Multi-

Mini-Processor or C.mmp. This system will contain up to sixteen mini-processors,
five of which are shown. These are connected through a switch to memory boxes.
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The switch allows any processor to access any of the memory boxes.

The processors are not permanently attached to a memory box, rather each
time a processor wishes to access a particular memory a connection is established
through the switch for that access, sixteen separate processor-memory connections
will be possible simultaneously.

Peripheral devices are comnected to buses associated with each processor
and gain access through these buses to the shared memory. Each processor can
intercept each of the other processors at several priority levels and can start
and stop other processors. This enables one processor to task another to
perform an operation for a program rumning on the first processor. Thus user
programs are not restricted to execute on any particular processor.

Figure 6 illustrates the techniques used to keep the highest priority jobs
in processing. If a new user program enters the queue and 1s a higher priority
than the job in "A" then the priority will be compared with the priority of the job
in processor "10". If the new job is a higher priority it will take the place of
the job in processor "10" and that job will be returned to the waiting queue as
the highest priority in the queue,.

An algorithm stored in the memory controls the matching of priority jobs and
processors, and insures that those jobs with the highest priority are processed
first.

There are several benefits to the C.mmp - (1) by having multiple processor
units, the failure of any one will not crash the total system. Removal of one
processor from the system will affect the system so little that 1t may hardly be
noticed.

(2) Minicomputers are produced in large quantities at low cost, and as it
turns out the C.mmp system costs less than one half of what a single machine of
similar power would cost.

(3) Interconnected minis allow user organizations to gtart at a level
using only the number of minis needed and, as requirements and usage grows,
expansion can be achieved by adding processors as required, This technique is
much more cost effective than replacing a large processor.

(4) In the C.mmp configuration, if required all the processors may
cooperate to solve a single problem or each processor may be dedicated to a
different user or any combination in between.

The C.mmp is not a geographically distributed network. All processors are
in the same room. It is however, an alternative to a large maxi-computer.

Figure 7 shows a Bell Labs type Distributed Network. This network

has a central control known as "Spider". All communication must first go to Spider
for messages to be routed to the appropriate network member. This creates a

32



central decision point facilitating workload distribution and resource sharing.
Depicted are different configuration sets consigting of three mini's each. (The Bell
Lab system actually links eleven mini-computers of five different types.) Each
machine connects to Spider through a terminal interface unit (TIU). The basic

idea for this system involves the transmission of data between minicomputer
terminals in packets, or bursts, rather than a uniform stream. Each mini-

computer terminal is associated with a buffer, Each buffer is large enough to

hold at least one data packet, This method provides the time periods needed for
making effective routine decisions by Spider which operates as a data switch.

Spider is the central component of the system and switches data between the
various minicomputers. Each of the minicomputer terminals sends out data bursts
in response to encoded control signals generated by a Spider controlled interface
technique. Data transmitted from a mini terminal 1s picked out by a multiplixer
at intervals determined by the encoded interface control signals.

In doing this, the multiplixer assembles the data into the proper packet
format prior to sending it to Spider on one of the network transmission lines.
Packets of data are transmitted by placing messages into an open time slot on a
conveyor belt-like channel. Input messages are received similarly.

The advantages of the Spider Network are the same as for the C.mmp.
However, this system is distributed over a larger area, being specifically
designed to support different laboratories conducting experiments and research.

One potential shortcoming of the system is the switch communication computer,
the Spider, thru which all traffic flows. Failure of this component causes a
failure in the total network.

Figure 8 depicts the University of California (UCI) type system, which has a
number of minis connected to a single transmission line in a ring configuration.
Each mini interfaces with the line via a device called a ring interface, or RI,
Each of the RI units 1s programmed to impart outgoing and incoming computer
information.

Each RI recognizes information on the line addressed to its associated mini
and passes it on to that mini while rejecting information not so addressed. The
transmission line is designed so that all information flows in one direction.
Since all RI's continually reject or accept information from the line, they can
spot available time slots in which outgoing information can be inserted without
interfering with other data.

Thus, control of data flow and destination is time distributed around the
ring. If one or more of the minis or RI's breaks down, the rest of the system
continues to function.
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The RI's are equipped with self-monitoring circuits that detect any
malfunctioning of normal operations. Since RI or mini failure could cause
road blocking of the transmission line, the self-monitoring circuit acts as a
circuit breaker to take the RI and its mini off the line if appropriate.

The only store-and forward message switching technique required in the
system is that between each mini and its RI. Besides greatly reducing trans-
mission time, this simplifies the RI design, thus the RI's can be built for
much less than any other type of communications processor — less than five
hundred dollars. This further enhances cost effectiveness when the ring is
expanded by hooking up an additional RI to the line and connecting it to a mini.

Each RI contains a multi address code. When a message from another RI
passes it ‘on the line, the destination code is compared to the stored addresses.
If a match results, the message is accepted and the information transferred to
the minicomputer. If the minicomputer cannot accept the message because it is
occupied, the message is transmitted to the next appropriate computer in the
ring.

Figure 9 depicts the completed UCI ring network including its associated
peripherals, (i.e., printers, plotters, & disks). Low cost is achieved here in
several ways. FEach of the component computers of the network is relatively small
and inexpensive., The system software is a modest programming effort, existing
other software can be integrated readily, and finally standardized interfaces
to the communication ring are available at low cost as previously indicated.

The same benefits apply here as in the previous networks. However it is
even more reliable because no central control computer is required as in the
Bell Lab's system. Also the ring concept has the advantage of allowing for
greater geographical dispersion than the C.mmp.

Having examined 3 examples of minicomputer distributed networks, let us
turn now to TECOM.

Profiting from the R&D efforts of others, TECOM at Yuma Proving Ground
is moving into this new technology with the expansion of the real-time data
acquisition network on the Aircraft Armament Range. This will be the first
non-laboratory application of the ring concept. The ADPE (some now in operation)
to be included in this distributed network will range from programmable
calculatots, to minicomputers, to a large-scale central real-time and batch
processing system.

Shown schematically in Figure 10 is the existing instrumentation/ADPE for
the Aircraft Armament Range for Yuma's Cibola Range.

Two computers (an EMR 6130 and an IBM 7044/7094 Direct Coupled System)
comprise the main computer site. A real-time cinethedolite data system (CINE),
located at three separate sites tracks a target and transmits position data to
the main computer site in real-time. A precision aircraft tracking system(PATS),
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which is a Laser Tracker, also tracks and transmits position data to the
central site. The data flow illustrated occurs five times/sec. Total
computation time for all processors in the central computer takes under one
hundred eighty milliseconds.

Figure 11 is a schematic of how the range will look with the ADPE
instrumentation system now in procurement. The two additional laser trackers
(PATS 2 & 3) each have a minicomputer for control, data logging, and formatting.
The position locating system at site 7 (PLS) also contains a minicomputer. All
data from these data collection systems will be transmitted to the main computer
site for real-time data reduction with output then being sent back to the test
site for analysis and control by the test officer. The output displays (DISP)
also contain minicomputers.

In addition to the instrumentation and ADPE currently in procurement; the
central real-time computers at YPG are also expected to be replaced. The re-
placement will take the form as shown in Figure 12 and represents the new
technology in software and hardware which we referred to earlier as a distributed
computer network. The net will incorporate key minicomputers at the test sites
for data reduction and processing. In this net execution of programs both real-
time and batch, will automatically be performed on the optimum system available.

Benefits which are expected to accrue from the YPG distributed computing
network are: a higher level of performance; increased reliability and availability
because of the redundant nature of the network; and since the net is fundamentally
a complex of minicomputers - expandability. In the case of YPG, the capital
investment for the basic mini-ring network is much less than it would be for a
new stand alone-system. That alone would make it worthwhile. Additionally, by
taking advantage of some minis currently at YPG the capital cost of this network
will be even less, while operating expense for this system will be approximately
seventy-eight thousand dollars per year less than the current systems.

Since the new equipment will cost three hundred thirty thousand dollars
it will pay for itself in a little over four years, primarily from the savings
in maintenance cost.

In conclusion, a real challenge we face at TECOM is the increasing
sophistication of DoD materiel and the demand this places on testing technology.
The YPG distributed computer system is but one example of what we are doing in
TECOM to enhance our testing capability in a cost effective manner.
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GPS CONCEPT
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LINEARIZED LEAST SQUARES

Larry M. Sturdivan and John W. Jameson
Biomedical Laboratory
Edgewood Arsenal
Aberdeen Proving Ground, Maryland 21010

ABSTRACT. The paper discusses iterative methods for fitting linear-
izable functions by weighted least squares. Starting values of the
coefficients are derived from data. The method is adaptable for some desk
top programmable calculators. The effect of various weighting schemes on
the residual sum of squares is discussed. Two methods are presented for
making the residuals in the dependent variable sum to zero.

1. INTRODUCTION. Since the early 19th century the method of
least squares has been the most widely used mathematical tool for determining
the values of constant parameters in linear functions (linear with respect to
the parameters to be determined). The general, nonlinear least squares
problem, by contrast, remains a largely unsolved problem. There is,
however, a class of nonlinear functions, which some authors call "intrinsically
linear", for which good estimates of the least square values of the fitted
parameters may be easily and reliably obtained.

2. STATEMENT OF PROBLEM. Let us assume that we have a dependent
variable y which may be expressed as an explicit function of a set of
independent variables and constant parameters whose values are to be
estimated. :

j.e. y=F (Xi’ bj) s i=1, ...,n 33i=1, ... m (1)
'y = dependent variable
x:= set of n indep. variables

1

bj= set of m constant parameters

The following algorithm may be used to determine the b; if F may
be made 1inear with respect to the bj by suitable mathematical transformation,
i.e. if there is some function h(y) Such that
m

h(y) = jE] by g (x;)5 1 =1, ..oun (2)

and dh(y)/dy is defined
The functions F and gg may involve known constants which are not members

of bi; e.g. the fourth of the following examples of intrinsically linear
func%ions:
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y = In (bx)
~y = arctan (bx)
y = '.]'n xibi
i=]
y = Ko

Ky + aexp (bix;) Ky» Ky Known

Of course conventional least squares could be used directly on equation 2.
The result, however, is the minimization of squared errors in h, not y.

3. THE ALGORITHM. We designate the difference between the actual
and predicted value of y for the kth data point as:

1, «evs P

n

and
by = h(y ) = hlyy - ay, ) = hly) - h(F(by, x4, ))

Expanding h(y - Ay) in a Taylor series with a remainder term, we get

hU~Aw=hU)—MWW)+MZg%ﬂ+~~+(ﬂw%mhﬂ
! q!

where h(Q)(y) is_the qth derivative of h(y) with respect to y, evaluated
at y, and where y is in the interval between y and y + Ay. let q = 1, then

Ah -
iy © h'(y)

Now we want to minimize

P 2 P 2
Lo (ay )" =z (ahy) (3)
[h‘(yk)]

This is equivalent to weighted least squares on equation 2 with weights

wl = D/ G5 k=1, ., p (4)

Initially we do not know the value of the Ayy, much Tess the position
of y, in the interval, so we use the data points Y to approximate the

Uyx, We may then use the Ayk from the first pass to calculate improved

weights and make a second, etc., continuing the iteration until stability
is reached. Several methods of obtaining improved estimates of the Uy of

equation 4 have been tried. Some authors have used regression line values
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for y, in equation 4; in effect using the opposite end of the interval
from the data point. This method improves the fit (degreases the sum

of deviations in equation 3) most of the time, but if y, is closer to

the data point than the regression value the fit thus ogtained is actually
worse than the results of the first iteration. Other methods tried
include: '

a) The first g terms of the Taylor expansion about the data values.

b) The first q terms of the Taylor expansion about the regression
values. ' :

2 1 1
c) u S =( ) ) tri f d
k i ' geometric mean of data
h (yk) h (yk * Ayk) and regression values)

2

d) Uk2 = (by,/sh )® (a's from previous iteration)

Methods a and b have the serious drawback of requiring the first g
derivatives of h, almost always an unpleasant task whatever the form

of h. It is wasted labor in most cases, as well, for method d usually
gives results as good as, or better than any other. In fact, intuitively
one might think that method d would Tead to convergence on "the" least
squares answer. However, we must remember that we are determining m weights
and n b's from just m data points, an underdetermined system. Thus as long
as the weights are determined from the data, as they must be, one cannot
guarantee convergence on the global minimum. Indeed, we have observed
intermediate iterations in which the sum of squared deviations in y was
slightly smaller than the “converged" value.

Unlike the Tinear least squares case, the above algorithm does not
produce a zero sum of deviations in y: _

i.e. LAy = TuAh # o

Although, Zu2

Ah =0
If one has an overriding reason for desiring a zero sum of deviations:
in y, it may be obtained by minimizing

Zu(Ah)2 = TAyAh | (5)

which, of course does not minimize the sum of squared deviations in y.
In many cases the increase in squared deviations is tolerably gma]] with
minimization of equation 5 (i.e. using weights u rather than u¢) if zero
sum of deviations is desired. A second method of obtaining a zero sum
of deviations is to force the fitted 1ine to pass through the weighted
mean h*, xﬁ*. i.e. fit the model

51



m-1

h - h* :.g bj gj (x,i - Xi*) i=1, ...,n
j=1
where h* = Tuh
U
v k=
and X; Zuxi
Xu

using weights u2. The summation running to m-1 indicates the absence

of an intercept; i.e. one of the b's, say b,, for which gg = 1.
Both methods of obtaining ZAy = o work best when the u's are calculated
by method (d) above.

4. AN APPLICATION. An example of an intrinsica]]y linear function
is the Logistic (probability distribution) function

1
Y Y /b

The linearized form is

™~

h(y) = In(y/1-y) = Tna + byIn x = ¥ b,g;(x)
i1

where 9; = Tnx

o
1
—
=
3]

Also
] 1

u=h'(y) = y(i-y)

The following table shows how much improvement in the root mean square
error was gained by using the iterative algorithm on the Logistic function
over an unweighted fit. As expected, the fit is perfect when the data all
1ie right on the fitted line, whether the least square fit is weighted or
not. As the data get more scattered (i.e. with a correlation coefficient
significantly less than 1.00) the reduction in root mean square error is
marked (Case III).

Correl. Root Mean Sq. Error %

Case Coeff. Unweighted Weighted Improvement
I 1.00 0 0 0
II .98 0.0496 0.0488 _ 2
I1I .94 - 0.0419 0.0368 12
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NONLINEAR SPLINE REGRESSION ON MINI~COMPUTERS
Philip W. Smith*
Appendix
Stanley Hrncir and Philip W. Smith®
Department of Mathematics

Texas A&M University
College Station, Texas

1. Introduction., In this paper we will present our experiences in
attempting to solve certain nonlinear regression problems on a mini-computer.
More specifically, we used spline curves of a specified order and treated
the knots as nonlinear parameters.,

Section 2 contains the relevant notation and theory. In section 3 we
make some final remarks. At the end is an appendix with a listing of the
programs and an abbreviated description of their use with examples. The
reader who is unfamiliar withsplines should first glance through the exampies
in the appendix.

2. Description of Numerical Solution. Throughout this section and the
next the following notation will be used. Let k be a positive integer and
£ be a knot vector satisfying

nrr

:=a2tlﬂ.|q=tk<tk+lionu_n n+l'-

whero t1+k > tj. Given a k and a knot vector t one forms the normalized

B-splines Nj,k by [lj,

-t )]t

k-l
Ny k(&) = (e ™ 8y TCG-1) ’

FERERTLIVEY

where. [tj,...,t ] denotes the k-th divided difference operator. A

J+k
spline of order k with knot vector t 1is any function of the form

s(§,4,1) = X (£, ).

179,k

*This author supported by the U.S. Army Research Office under Grant Number
DAHC 04-75-G-0186.

o1

. (s—v)k-l if s > v and is zero otherwise.

Note: (s=v
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Given data {(xi’yi)}?=l one can attempt to find t* and é* so that

L
| 2
min ﬁ [s(L,8,x)) - yi]2 =) [s(Ehatx) -y 00

tyA i=1 i1=1
It is in general impossible to find E* and hence é*; however, given a
knot vector t and linear parameters A one can attempt to decrease the
error sum of squares by some sort of descent algorithm.

The method of descent which we use is essentially that of deBoor and
Rice [2]. '

Algorithm: Given t and j =k + 1

Step 1: Find A which minimizes
L 2
Yo Is(ta,x) - y,]
i=1

Step 2: With A fixed, move tj between tj__1 and tj+l so as to de-
creagse the error sum of squares, Call this new knot sequence t,

.

Step 3: If j <n set j =3+ 1, otherwise set j = k + 1,

Step 4: Go to 1.

This algorithm is described in more detail in the appendix, We remark
that Step 1 consists of solving a linear system and that in Step 2 we use
a quadratic interpolation to obtain an approximation to the minimum.

We originally had a Fortran version of the above algorxithm and "trans-
cribed" this program into Basic when implementing it on an HP 9830A. Some
of the characteristics of the HP 9830A are detailed in the appendix. Oper-
ating time on the HP 9830A was quite long. A typical problem with 20 data
points and k = 4 with 2 interior knots might easily take thirty minutes.

We discovered that most of the time was being spent in evaluating the
error sum of squares,
L 2
L Is(t,bex)) - v,17
i=1

This term must be evaluated quite often during Step 2 of the algorithm.
Additional time was belng spent filling out the matrix to solve for the
linear parameters. The two routines which were being used to evaluate the
spline or fill out the matrix had the following form:
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Given t, ST < t

620
630
640
650
660
670
680
690
700
710
720
730

i 3+’

N[1,1] = 1

FOR § =1 To K -1

P[S] = T[I+8] - T

M[S] = T - T[I+1-8]

N[1,8+1] = O

FORR=1T0 S

Z9 = N[R,S)/(P[R] + M[S+1-R]}
N[R,S+1] = N[R,S+1] + P[R} * Z9
N[R+1,S+1] = M[S+1-R] * Z9
NEXT R

NEXT S

RETURN

This computes simultaneously the values of all the non-zero norma%ized B-
splines at the point T, for the matrix computations.

880
890
500
910
920
930
940
950
960
970
980

FOR R =1 TO K

P[R] = T[I+R] - T
M[R] = T - T[I-K+R]
D[R,1] = A[I-K+R]
NEXT R

FOR § =1 TOK -1
FORR =8+ 1 TOK

D[R,S+1] = (M[R] * D[R,S] + P[R-S] * D[R~1,S])/(M[R] + P[R=S])
NEXT R
NEXT S
RETURN

This computes s(f,A,T) for the error sum of squares.

The parameter K 1s set at the first of the program and determines

the order of the spline, Since K does not change throughout the program
we decided to rewrite these routines in such a way that no loops were
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involved, This simple expediant reduced the running time by a factor of
two or threc. We list below the corresponding changes in the k = 2
(linear spline) program and the k = 4 (cubic spline) program., Given

ti < T « Li+1 ’

For k = 2

1892 P1 = T{I+l] - T
1894 ML = T - T[1]
1896 Z9 = 1/(P1 + M1)
1897 81 = Pl * Z9
1898 82 = M1 * 29

This computes simultaneously the values of all the ronzero normalized B-
splines at the point T and stores them in Sl and 82,

2788 Pl = T{I+l] - T
2792 M2 =T - T[I]
2802 €1 = (M2 * A[{I] + Pl * A[I-1])/(M2 + P1)

*

This computes s(t,A,T) for the error sum of squares. For k = 4 we have

1730 Pl = T{I+1] - T
1740 P2 = T{I+2] - T
1745 p3 = T{1+3] - T
1750 M1 = T - T[I]
1760 M2 = T - T[I-2]
1770 29 = 1/(PL4ML)
1780 S1 = Pi * 79

1790 82 = ML * 29

1810 79 = S1/(P1 + M2)
1820 s1 = PL % 79

1830 €2 = MZ * Z9
1840 79 = $2/(P2 + ML)
1850 $2 = C2 + P2 * Z9
1860 83 = M1 * 29
1861M 29 = 51/(P1 + M3)
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1862 S1 = PL * 29

1863 C2 = M3 * 29

1864 79 = §2/(P2 + M2)

1865 S2 = C2 -+ P2 * 29

1866 C3 = M2 * 79

1867 29 = S3/(P3 + M)

1868 §3 = C3 + P3 * 29

1869 S4 = ML * 29 ]

This computes simultaneously the values of all the nonzero normalized B-
splines at the point T and stores them in S1 through 54,
2490 Pl = T{I+l] - T

2500 P2 = T{I+2] - T

2505 P3 = T{I+3] - T

2510 M2 = T - T{I~2]

2520 M3 = T - T{I-1] v
2530 M4 = T ~ T[1]

2540 €1 = (M2 * A[I-2] + Pl * A[I-3])/(M2 + P1)

2550 C2 = (M3 #*A[I-1] + P2 * A[I-2])/(M3 + P2)

2560 €3 = (M4 * A{I] + P3 * A[I-1])/ (M4 + P3)

2562 €1 = {M3 % C2 + P1 * C1)/(M3 + P1)

2564 C2 = (M4 * C3 + P2 * C2)/ (M4 + P2)

2566 CL = (M4 * C2 + PL * Cl)/ (M4 + P1)

2570 RETURN '

This computes s(t,A,T) for the error sum of squares,

1t is easily seen that,as K increases the length of these new routines
increases by a factor of K7,

3. CONCLUDING REMARKS, When writing programs on mini-computers one
has to be extremely careful not to write the programs in full generality,
at least for this generation of mini-computers, due to their slow execution
time. For our particular problem we found it necessary to write a special
program for each order. Initially this takes more time, but in the long
run much time is saved,
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Concerning our specific problem we found that most of the computer time
was spent in the spline evaluation routine. This occurred quite often
during the computation of the error sum of squares. Now, originally the
spline evaluation was accomplished in two nested do-loops where the.outer
parameter was K - 1 where K 1s the order of the spline, Since in our
applications K was fixed throughaut the entire program, it made sense to
rewrite the program for a fixed K, thus eliminating the loops and lineariz-
ing the execution. The details are in Section 2.
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I. Man/Machine Interface

A. The program presented in this paper was written in the BASIC
computer language for the Hewlett Packard Model 9830A digiral com-
puter. The BASIC language is very similar to FORTRAN,
1. 1In using the HP9830, the user is provided with a man/machine
interface capability. With this interface capability, the pro-
gram pauses at various points in its execution to allow the user
to exercise different options such as plotting the apline, plot-
ting the data points, calculating the derivative, etc,
B. Cassette Storage Capability.
1, The HP9830A has secondary storage capability in the form of
cassette magnetic tapes, Progrims as well as data peints can be
maintained on these tapes. Having this peripheral capability is
a tremendous asset especially when dealing with large programs
and/or large volumes of data.
Currently, there are three seperate versions of the Spline
Logsram being maintained on three seperate files. The user can
avleet from any of these depending on which degree Splinhe pro-
gram he wishes to run (Linear, Quadratic, or Cubic).

I1, Main Program. The main routine is used only for initialization of
input data and knot placement,

A. Input Data. The user is provided the option of inputting data
through the keyboard or having the program read previously stored
data from a cassette tape. With either option, the user must pro-
vide the program with two file numbers, If the data is being iuput
through the kevboard, the program will build two new files on the
caggette tape.
1. After the program is loaded and running, the program will
request the user to input the number of data points, The request
will be displayed on the display panel and the user simply types
in the number and then hits the execute switch.
2. The next program request is for the means by which the data
is to be input-—either keyboard or cassettc tape. The program
will display the message: 'WANT TO LOAD DATA FROM TAPL?"., The
user’'s response is either "Y" or "N" for yes or no. If no, the
program will expect the data to he loaded through the keyboard,
and if yes, from files on the cassette tape.
3. With either option in 2 above, the program will next reguest
two tape file numbers--where the data is to be found or where to
store the data, The first number gives the file location where
the variable X is (will be) stored and the second number
gives the file location where the dependent variable Y is
(will be) stored.
4. The next program request will be displayed as: 'NUMBER OF
EQUATIONS?",. The value of this variable (called N) depends on
the number of internal knots the user proposes to use in his
run plus the order of the Spline (degree + 1) he is using. Tor
example, if the user is running the Cubic Spline Program with 1IC
internal knots, then the value of N would be 14,
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5. The next program request is for input of the knots. All kno:cs
are input in order from 1 through N + K, where K is the Spline
order, The program requires that K knots be stacked at each end
of the interval over which the Spline is being fit,
B. As soon as the knots have all been input, the program immediately
calls subroutine EQUATE to find the unique Spline function that mini-
mizes the error or difference between the input data and the Spline
curve calculated for the knot sequence as initialized. The program
next calls a subroutine to calculate the error and this error value
is printed when returned to the main routine., At this point, the pro-
gram pauses for 3 seconds to allow the user to halt the program if
he wishes to branch to some special subroutine. If the user fails to
halt the program at this point, control is given to the knot moving
routine which starts the optimization process of moving knots to re-
duce the error,
C. The program will remain in the knot moving routine until the user
halts the program. The knot moving routine will pause periodically
to allow the user to branch to another subroutine if he wishes. This
pause will occur at the end of each cycle through the knot moving rou-
tine, i.e., after all interior knots have been considered as candidates
for moving. '
D. Program Limitations. The program is currently set up to handle a
maximum of 50 data points and a max value of 30 for N (humber of
equations as described in IT,A.4.)., This restriction is a program
limitation where array lengths are currently set at 50 and 30 respec-
tively. By increasing the dimension of certain arrays, the user can
increase the max number of data points and value of N--machine ldimit
for dimension size is 256. However, the program run time on this

machine, for large values of N and large data sets is tremendous.
The program assumes the values stored in the independent variable
array X and the knot sequence T are in increasing order.

[REN—

ITI. Subroutine Descriptions,

A. EQUATE. For all three versions of the Spline program, the sub-
routine EQUATE can be found starting at instruction number 550 in the
program listings, The structure for the routine was taken from the
technical report by C. deBoor, [3].
1. In order to decrease the program run time, a number of
changes were made to the subroutine as presented by deBoor (page
38 of [3]). The major changes include the following:
a. The number of DO loops was reduced.
b. Cholesky's decomposition method was added to solve the
system of equations.
c. Linear arrays are used to store the diagonal elements of
the band matrix instead of two dimensional arrays as done by
deBoor.
d. Since the matrix being generated is symmetric, only the
main and upper diagonals are generated and stored.
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2. For all three versions of the program, the main diagonal and
first off-diagonal vector of the coefficient matrix are stored in
arrays C and P respectively, The constant vector is stored
in array B for the system, The second off-diagonal vector is
stored in M for the quadratic and Cubic versions and the third
off-diagonal vector 1is stored in array Q €for the Cubic, The
system of equations in matrix notation has the following form:
(for Quadratic only)

c, P, M \ xl\ B

\
Pl C2 P2 M2 | X2 | B2
I“[1 Pz\ C3\ P:?\ M3 X3 B3
AN
A
\ | \\\ =
\\ . ' K\\ ‘ . .
: ' \\. “ -
. \\l . :‘IM " * L
'\ .\‘_ m=2 :l
) ‘ . .
Pm—l/ \
by b e
%ﬁ!%ﬂ.qn | X / B

or simply, Ax = B,

Since the matrix A is real, symmetric and positive definite,
then it is possible to factor A as LL* where L is a real
lower-triangular matrix. Then Ax = B becomes LLYx = B,

Letting y = LTx, then we can solve for y in Ly = B by for-
ward substitutign and finally we can solve for x in LIx =y

by back substitution. This scheme is known as Cholesky's Decom=~

position method and is programmed directly into the EQUATE sub-
routine,

Plotting Routines., The plotting routines are seperate subrou-

tines and are not called by the main program or any other routine.
However, they do require that the spline coefficients be generated
before being called. Also, before they can be used, the plotter
must be brought on-line and properly adjusted.

1. Spline Graph. This routine provides the user with a graph
of the spline function based on the spline coefficients that
are curtrently in memory. The user will be asked to specify the
scaling to use for the graph and step size (distance between

- calculated points--the smaller the step size the smoother the
graph).
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a. The first program request reads; "4 SCALE VALUES?". The
user inputs 4 values: First two are the limits on the x-axis
of the graph and the second two are the limits on the y-axis
of the graph. For example, if we know that our input data for
the x-axils spans values from 0 to 100 and we expect our spline
function to not vary outside the limits of -10 to + 10, we
might input the following values: 0, 100, -10, 10.

b. The second program request reads: "2 VALUES X~CROSS AND
XTIC?". The user inputs the point he wants the x-axis to
cross the y-axis and the spacing for the Tic marks on the
x-axis. An input, for the example given above, might be:

0, 10.

¢. The next program request reads: "2 VAILUES FOR Y-CROSS
AND YTIC?", The user inputs the point he wants the y-axis

to cross the x-axis and the spacing of the Tic marks on the
y-axis, For the example given above, an input might be:

0, 1. With the example inputs given in a, b, and ¢ above,

the program would sketch the x and y axis as follows:

B P U S .

]
d. After having the axis plotted, the program will next ask
for the step size (Quadratic and Cubic version only). The
display simply reads: "STEP = ?". If the user requires a
smooth curve, the step size should be small compared to the
overall length of the curve. Usually 100 to 200 points pro-
vides a very smooth graph. For the example given above, a
step size of one would provide 100 graph points of the spline
function comnected by straight lines which should provide
the appearance of a fairly smooth curve, For the linear spliane
program, a step size is not required because the program sim-—
ply joins the knots with straight lines,

e. After the spline graph is completed, the program will next
automatically sketch in the locations of all interior knots,

2, Data Point Plot, To plot the data points is an option that

is usually exercised after the Spline Graph has been completed.

This plot provides an '"overlay" of where the input data lie with

respect to the Spline graph, The routine simply steps through

each data point and plots a small "x" at the coordinates of the
point,

3. Error: Plot, This routine provides a graphical representation

of the error at each data point., The error is the difference be-

tween the input data point value and Spline Function value for

the same point. The routine does its own scaling based on input

data and on the square root of the sum of squares of the error

taken over all data points. Tic marks are provided for each axis
and the value of each is printed on the printer.
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C. Knot Moving Routine. Once the Main routine transfers control
to the knot moving routine, this routine will stay in an endless
loop constantly trying to reduce the error. The only way the pro=-
gram will stop is by operator intervention. The program allows
such intervention at the end of each cyecle through the knot sequence,
i.e., after all knots have been considered as candidates for moving.
At the end of each cycle, the program pauses for three seconds dis-
playing the message "PLOT", 1If the user fails to stop the program
at this point, the routine branches to the beginning and starts the
cycle all over again in moving knots.
1. Logic of Knot Moving Routine. This routine considers each
knot, in order, as a possible candidate for moving. The routine
will not change the position of a knot unless the new position
decreases the overall sum of squares of the errors.
a. The routine starts at tie current position of the
knot and steps in the direction of decreasing error. The
step size El is determined by the variable H8 which is
set to 128 by default (user can adjust this value if he
wishes—-set in instruction 120 of all versions of the pro-
gram). El is initially set to 1/H8 of the distance between
candidate knot X5 and adjacent knot. Call the interval Z.
b. The candidate knot's new position, X4, is determined by
‘X4 = X5 + E1. ELl can be positive or negative depending on
which interval--left or right of current knot--is considered.
¢, TIf position X4 yields an improved error value over X5,
then E1 is doubled and a third candidate position X3 is
examined (X3 = X4 + El1).
d. If position X3 gives a smaller error value, we then con-
tinue stepping through the interval Z toward the adjacent
knot until we either step outside Z or until a candidate
position X3 produces an error greater than the error at
position X4. If this hanpens, graphically, we have the
following condition: .

Ay TR
A R Lo
) BI ‘\_,-,"K‘
A
Erro <
r AL -
X X,

X
3 Positioé 3
We know that we are in the vicinity of a minimum. We can
approximate the position of that minimum by simply fitting
a quadratic through the points (X5,A5), (X4,Ad4), (X3,A3)
and solving for the minimum.
e. After having found a new location for a knot, we call
EQUATE, calculate the new sum of squares for the errors,
and lcop on next knot.
D. Derivative Routine, This routine calculates and prints the
zeroth through the second derivative of the Spline Function for 60
equally spaced points along the x-axis for the entire span of data.
The value 60 is set by default in the program and the user may
change the value if he wishes (instruction 9050 of all versions of
the program). This routine is based onthe formulae in [1].
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Examples of Output from the Program. Output from two seperate ruas
are presented.

A. The first run uses the Quadratic version of the Spline program.
Twenty data points are used and two internal knots. The spline was
graphed before any knots were moved and again after three cycles
through the knot moving routine., The error plot routine was also
run after the knots were moved. Figure 1 shows output to the printer.
1. When the Quadratic version of the program was executed, the
first two messages printed were:
"QUADRATIC SPLINE PROGRAM"
"K EQUALS 3"
2. The program next requested the number of data points. The
number 20 was input and the program printed:
".9 EQUALS 20",
(1.9 is a program variable used for storing data point count).
3. The data was loaded via cassette tape and printed.
4. The next request was for the number of equations; the numbper
5 was input and "N = 5" was printed.
5. The program next requested the input of knots and each was
printed by the program when input.
6. After all knots were input, the program calculated the ini=
tial sum of squares of the error and printed the message: "SUM
OF SQUARES = 10.24179658". At this point, the program was
halted and control transferred to the Spline Graph Routine. The
first graph (labeled Plot 1 in fig. 2.a) was accomplished. The
Data Point Plot was also accomplished at this point.
7. Control was then given to the knot moving routine. As each
knot was moved, the new location ‘and the new sum of sguares of
the error weré printed. As can be seen in figure 1, the two
internal knots were moved from 2.1 and 7.0, as input, to
3.213337131 and 6.893706417 with a 10 fold reduction in the error.,
Three cycles through the knot moving routine were required to
accomplish this reduction.
8. The program was halted at this polnt and control transferred
to the Spline Graph routine again. The new Spline Graph (Plot
2 of fig. 2.a) was accomplished and the results show a much bet-
ter fit to the input data.
9. After the Spline Graph was completed, an error plot was done
(fig. 2.b). The scaling was done automatically and the message:
"XTIC = 0,855 YTIC = 0.458175936" provides the user
with the value of the X and Y tic marks.
B. The second example used the same data set but was run using the
Linear Spline program and six internal knots.
1. The output from the printer is shown in figure 3 and the
plotted output in figure 4.
2. The program was again allowed to cycle three times through
the knot moving sequence. The plots were made after the third
cycle.

C. Figure 5 provides an example of output for the derivative rou-
tine. The routine calculates and prints the zeroth, first, and
second derivative for twenty equally'spaced points along the Quad-
ratic Spline curve generated for example 1 above.
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Figure 1:

PRINTZR OUTPUT FOR EXAMPLE 1

QUADRATIC SPLINI PROGRAM
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SUM OF SQUARES = 10.24179658

2.705905130
7.023652237

%.026696625
6.964153151

3.213337131
6.893706417

XTIC =

0.855

5.776486574
3.765599501

1.836770835

1.763237007
1.055100397

© 0.951943319

YRIC =

0.532832779
1.135824019
1.634336624
1.8503%10499
1.653405543
1.004342719
~0.,021648662
-1.239057241
-2.385288895
-3.176972882
-3.37736%166
-2.859228 04
-1.64757377
0.069777687
1.968942823
3.650872173
4,724967051
4.897943545
4.04801103
2.266651669

0.109083874
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Figure 2a: Example 1 SPLINE PLOT 1, SPLINE PLOT ®, and DATA POINT PLOT
: .

PLOT 1

Figure 2b: BRROR _PLOT FOR DATA POINT VS SPLINE 2 VALUE
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XTIC= 0.855
YTIC= 0.109083874
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Figure 3:

PRINTBUR OUTPUT FOR EXAMPLE 2

LINBSAR SPLINE PROGRAM

K EQUALS 2
19 EQUALS 20
N= 8

P(I)= O
eI
Tglgz 2.%
(I)= 3.3
T(I;= 4,5
T(I = 505
TEIg= 7.5
T(I)= 8.5
TgI;m 9.3
T(I)= 9,3

SUM OF SQUARES = 0,508496390

12506664

2.3
3.3
4,530897%45
5.514309408
7.508981167
8.468580843

2.312506664
3.3

4,562157505
5.524269999
7.508981167
8.429467487

2.312506664
343
4.590545267
5.532607619
7.508981167
8.41376275

=20 DTN =0l —

O

0.5078%6829
0.507836829
0.494072159
0.487454070
0.484908316
0.450663854

0.450663854
0.450663854
0.437636837
0.434330461
0.434330461
0.408240592

0.408240592
0.,408240592
0.398339792
0.395976608
0.395976608

0.3778665422
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Figure 4a: Example 2 LINEAR SPLINE PLOT AND DATA POINT PLOT
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XTIC= 0.855
YTIC= 0.068726398
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Figure 5:

X-VALUE

0
0.465%
0.93
1.395
1.86
2.325
2.79
3.255
3.72
4.185
4.65
5.115
5.58
6.045
6.51
6.975
T.44
7.905
8.37
8.835
9.3

SPLINE
VALUE

-1.276456667
0.272212206
1.336361559
1.915991394
2.011101709
1.621692505
0.74776378%

-0,610305%260

-1.934006303

-2.758%26289

-3.08326522

-2.908823095

~2.234999914

~1.061795678
0.610789615
2.75918079%
4.389483645
4.976479164
4.520167350
3.020548203
0.477621723

EXAMPLE OF OUTPUT FROM DERIVATIVE
20 EVENLY SPACED POINTS

FIRST
DERIVATIVE

5.851459424
2.809481963
1.767504503%
0,725527043
-0.316450417
-1-358427878
~-2.400405338
-5.383637786
-2,309700031
-1.235762277
-0.161824522
0.912113232
1.986050987
3.05998874
4.133926495
4,62786348
2.384191797
0.140520113
-2.103151571
~4.346823%255
-6.590494939

70

ROUTINE FOR

SECOND
DERIVATIVE

~2,240811742
-2.240811742
-2.240811742
-2,240811742
-2.240811742
-2.240811742
-2.240811742
2.309543558
2.209543558
2,3%09543558
2.309543558
2.309543558
2.309543558
2.309543558
2.309543558
~-4,825100395
~4.825100395
-4.825100395
-4.825100395
~4,825100395
-4.825100395



10 REM o **x% TINBAR SPLINE PROGRAM **%¥¥
50 UM **%%  SUBROUTINE JUMP ADDRESSES — *¥XXX¥H KKK KKK KX RHHEKHHKK XXX XK KX XK

20 oM §1§ SPLINE GRAVH =mmecmcmcec e mee 7000
40 RN 2) BRROK GRATH ~—memmcmm—c e eme s 7380
50 RiM '7) DATA TOINT PLOT =m~aeomee——————— 7290
60 RiSM (4) RETURN TO KNOT MOVING ROUTINE -~~ 7640
70 REM (58 DERIVATIVE ROUTINE ===c==—=-- -——- 9000
80 DIM B{BO] ©{ 30] K[EO] G[50] H$[1]

90 DIM N[ 6,61, {307, P(30),M[30],D(6,61,A[30],C[30],5[6]

100 K=2
410 REM **** H8 USED IN KNOT MOVING ROUTINE ***
120 HB8=128
130 PRINT "LINEAR S LINE PROG:AM"
140 PRINT "K BQUALS"K
150 DISFP "NUMBER OF DATA PTS";
160 INIUT L9
170 PRINT "L9 EQUALS"LY
180 DISP "WANT TO LOAD DATA FROM TAPE";
190 INPUT Hj
200 IF H3="Y" THEN 300
210 DISP "2 FILE #S WHERE DATA GOES";
220 INFUT A8,A9
230 FOR T=1 TO 19
40 DISP "INPUT X,Y"I; :
250 INPUT X[T1,G[I] .
260 NBXT I _
270 STORE DATA A8,X
280 5TORW DATA A9,G
290 GOTO 370
300 DISP "2 FILE #S WHERE DATA IS";
310 INPUT A8,A9
220 LOAD DATA A8,X
330 LOAD DATA A9,G
340 DISP "DPRINT DATA";
350 INPUT H$
360 IF H3#"Y" THEN 400
370 FOR I=1 TO L9
380 PRINT I,X[I],G[I]
390 NEAT I
400 DIST "NUMBER OF EQUATIONS=2?";
410 INFUT N
£20 N1=N-1
430 FRINT "N="N
440 YO I=1 TO N+K
450 DIsL "KNOT IN T(I)=2?"I;
460 INyUT T[I)
A70 PRINT "M(I)="7[I],I
480 NBLT I
90 GOSUB 550
500 GOSUB 8070
510 PRINT "GUM OF SQUARES ="S1
520 DISF "PLOT?";
530 AIT 3000
510 GOTO 7640

1-1
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550 UKM % ¥%*% %% % %% %X SUBROUTINE EQUATER M3 I3 M5 KK 33533 20 330K 53K K X

570 FOR I1=1 TQ N

580 B{I1]=C[I1]=P[I1]=0
610 NEAT T9

620 I-K

630 11=0

640 FOR L=1 TO L9

650 IF I=N THEN 700

660 IF X[L]<T[I+1] THEN 700
670 I=1+1

680 I1=I-K

690 GOTO 650

700 T=X[L]

710 P1=T[I+1]~T

720 M1=T-T[1

730 29=1/(P1+M1)

740 31=P1%2Z9

750 52=M1*7Z9

760 G1=G[L]

770 I2=11+1

780 B[I2]=S1*G1+B[I2
790 C[I2]=S1*S1+C[I2
800 P{I2]=51%32+P[I2
810 I2=12+1

820 IZ]:SZ*G1+B 12]
830 ¢[I2]=52*s2+C[12
840 NEXT L

850 REM EE e LS L T ETE LT EL L B_ANDDD M_ATRIX ROUTINE EREEE ST ST ETI LT LT L LT LT LT
860 REM SOLVES SYSTEM USING CHOLESKY'S DECOMPOSITION METHOD

870 FOR J=1 TO N1

880 J1=J+1

890 ﬁJl =D=SQR(C[J])

Otﬁkﬂﬂflw

900 P{J1=D1=P[J]/D

910 C[{J1]=C[J1]~D1*D1

920 NEXT J

930 E[N}zSQRﬁc[N]%

940 c[11=B[1]/E[1

950 FOR J=2 TO N

960 J1=J-1

970 ¢[J]=(B[J]=P[J1]*C[J1])/E[J)]
980 NEXT J

990 A[N]= C[N]/E[N]

1000 FOR J=N1 TO 1 STEP -1

1010 J1=J+1

1020 A[J]= (C[J]-P[J]*A[J1])/L[J]
1030 NEXT J

1040 RETURN

1=2
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TG00

7010 D

7020
7070
T040
7050
7060
7070
7080
7090
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7720

7230

7240
7250
7260
7270
7280
7290
7300
7310
7%20
7330
7350
7360
7370
7380
7390
7400
7410 X
7420
7430
7440
7450
7460
7470
7480
7490
7495
7500
7510
7520

ROMX XXX XXX KRS PLTNT GRATHH KK KK 39 293 39K 36 3 39353202 3330 305K 330K K 333K 36 3% K33 ¥

IToD "4 SCALE VALUESY;

INFUT Q9,08,Q07,Q6

SCALE Q9.Q8,Q7,Q6

PDISYE "2 VALUES X~CROSS AND XTIC";
INPUT Q7,Q6

XALIS Q7,Q6

DISP "2 VALUES FOR Y-CROSS AND YTIC";
INYUT Q7,Q6

1=K

FOR J=2 TO N+1

rrl_,,f"l[J]

GOSUB 8930

GOSUB 7550

JLorT 7,1

NwxT™ J

L=k

FOR Q6=K+1 TO N

o
! }‘Jl\T

T="[Q6 ]
GOSUB 8930
GOSUB 7550
FLOT T,C1

CPLOT =0.%,-0.3

LABEL (*)ro"

NEXT Q6 :

STOP

RiM *%%¥%x%¥ DATA POINT PLOT HHHHHIH K KRN I KK HIHK R KK X HN R AKX KA K NH KK

FOR I1=1 TO L9
PLOT X[I1],G[11]
CPLOT =0.3,~0.3

LABEL (*)nyn
PEN
NEXT T4
STOF
REM #¥%%%x  TRROR PLOT ROUTINE  %%3%%3k %%% %KX K 3% 3K I K 3 K%K % 5 3% 53 % % %%
Y=3%3 QRES1/L9)
oCAL‘ x[1],x[19],-Y,Y
115 0, (x[197=x[ 179 /10

¥AxIS x11],1/6
PRINT "XTIC ="(X[19]-x[1])/10"YTIC="Y/6
I=%

FOR J=1 TO L9

T=X[J]

GO3UB 8930

GOSUB 7550

ILOT T,G[J]-C1

TLOT T, 0

}:’ I N

NEXT J

STOP
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7530 REM ******X CALCULATE SPLINE VALUE FROM SPLINZ COEFFICIENTS *¥¥x*xx
7550 F1=T(IE1]-T
7570 M2=T-T7{1
7200 c1:(m2foI]+P1*A[I-1])/(M2+P1)
7630 RETURN
7640 RiT ‘1-)()()(*-)(**-)(***«)(***1(1\]’0'1‘ MOVING SUBROUTINE***************************-
7650 FOR 15=3 TO N
7660 31=(T[15+1]-T[15])/H8
7670 AR=351
7680 {5=T[15]
7690 T[IBH‘\4 T[15]+E1
7700 GOSUB 8070
7710 1IF S1<AS5 THEN 7770
7720 B1=(T[15-1]-X5)/H8
7730 T[I5]=X4=X5+E1
7740 GOSUB 8070
7750 IF S1<A5 THEN 7770
7760 GOTO 7990
- 770 A4 51
7780 Li=E1+11
7790 T[15]=X3= X4+E1
7800 IF (X3<T[I5-1] OR x3>m[15+1]) THEN 7990
7810 GOJUB 8070
7820 A3=51
7830 IF (A3>A4) THEN 7890
7840 A5=A4 -
7850 X5=X4
7860 A4=A3
7870 4=X73
7880 GOTO 7780
7890 X6=X3*X3
7900 XT=X4%X4
7910 X8=X5%X5
7920 R1 A5*(X6-X7)+A4*(X8—X6)+A3*(X7~X8)
7930 R2=(A5* (X3~X4)+A4% (X5-X3) +A3% (X4-X5) )*2
7940 T[15]=R1/R2
7950 GOSUB 8070
7960 IF (S1<A4) THEN 8000
7970 T[I5]=44
7980 GOT 8000
7990 T[15]=T[15]~E1
8090 GOSUER 550
8010 GO5UB 8070
8020 PRINT T[I5],31
80%0 NBXT I5
8040 DISP "PLOT?";
8050 WAIT 3000
8060 GOTO 7650

1-4
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8070 Rl‘)M***********COMPUTES SUM OF SQUARES************************
8080 31=0

8090 I=K

8100 FOR I=1 TO I9

8110 T=X[L]

8120 IF T[I+1] >= T THEN 8170

8130 I=I+1

8140 IF I <= N+{1 THEN 8120

8150 PRINT "RANGE"

8160 STOP

8170 P1=T[I+1]-T

8190 M2=T=-T[I

8220 C1=(M2*A[T]+P1*A[I-1])/(M2+P1)
8250 S=C1=G[L

5260 $1=51+5%S

8270 NEXT L

8280 RETURN

8930 RiIM*** FIN.S I SUCH THAT T(I)<=T<T(I+1) USING FORWARD SEARCH ONLY**
8940 IF T[I+1] >= T THEN 8990

8950 I=I+1 _

8960 IF I <= N+1 THEN 8940

8970 PRINT "RANGE";

8980 STOP

8990 RETURN

1-5
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9000
9010
9020
9030
9040
9050
9060
9070
9080
9090
9100
9110
9120
9130
9140
9150
9160
9170
9180
9190
9200
9210
9220
9230
9240
9250
9260

9270

9280
9290
9300
9310
9320
9330
9340
9350
9360
9370
9380
9390
9400
9500
9510
9520
9530
9540
9550
9560

RITM ** %% %% %k %% %% DERIVATIVESH ¥HH KX K KR KKK KX £ XK X ¥ ¥

RLM THIS ROUTINE CALCULATES THE ZEROTH THROUGH D1 DERIVATIVES OF
REM AND PLACES THEM IN P(1) THROUGH p(D1+1) RESP. PN
REM THE DERIVATIVES ARE AT T

D1=3
H1=(T[N+1]-T[K]E/60
FOR T=T[K] TO T{N+1] STEP H1

1=K

GOSUB 8930

REM*****************H*** CALCU‘LATES N(I’K) AT T*****************-
N[1,1])=1

FOR S=1 TO K~1

P s}=m[1+s]-w

M S]=T=T[I+1=5]

N[1,541]=0

FOR R=1 TO S

Z9rN[R,S]/EP[R]+M[S+1~R])

N[R,S+1]=N R, S+1]+P[R]*29

N[R+1,5+1]=M| 5+1-R]*29

NEXT R

NEXT S

FOR R=S TO K
D[R, 8]=(D[R=1,5=1]-D[R, 8~1])/(T[I+K~R+1]-T[I-R+S]) °
NEXT R

NEXT S

M1=1

FOR I=1 TO D1+1

31=0

FOR J=1 TO K«I+1

S1=S1+D[K+1=-J,I)*N[J,K+1-1]

NEXT J

P[I]=S1%M1

M1=M1*(K=~I)

NEXT I

PRINT T,P[1],P[2],P[3]

NEXT T

STOP

REM **% SPLINE FUNCTION ENS(T) %% %%HKHEHIHEHHAERIHEKE KRR XREH KKK, XK
DEF FNS(T)

I=K

GOSUB 8930

GOSUB 7550

RETURN C1

END

1-6
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1C nbmx*xxxx QUADRATIC SPLINE DPROGRAM *% %%

WM *%X%¥%  SUBROUTINE JUMP ADDRESSES aaa s e ey R S R

20 RiM
O R 1517 (1 g PLINE GR_APH ------------------- 7000

10 REM (2) ERROR GRAPH —mwmem—eeammcmm e 7380
50 REM (3) DATA POINT PLOT =emeecmeme—————— 7290
60 R M %4) RETURN TO KNOT MOVING ROUTINE ==~ 7640

70 RiSM 5. DERIVATIVE ROUTINE =m==-m—m—————— 9000

30 DIM BFBO] E[ 30] x[so] G[50] H¢E ]

90 DIM N[6 6], T[Boj 30], M[BOj 6,6),A[30],c[30],5[6)
100 }\—— 2

110 REM*** H8 USED IN KNOT MOVING ROUTINE *%x

170 H8=128

130 PRINT "QUADRATIC SPLINE PROGRAM"

140 PRINT "K EQUALS K

150 DISF "NUMBER OF DATA PTS";

160 INTUT 19

17 TRINT "L9 EQUALS"LY

180 DIST "WANT TO LOAD DATA FROM TAPE";

190 INYUT H$

200 IF Hs="Y" THEN 300

210
220
230

DISH "2 FILE #5 WHERE DATA GOES";
INTUT A8,A9
FOR I=1 TO L9 -

40 250 " NPUT X,Y"I;

250
260
270
280
250
500
310
320
330
340
350
360
370
580
290
400
A10
A20
425
430
440
450
460
470
480
490
530
510
5720
530
540

INyUT x[17,6[1)

NEiT I

STORE  DATA A8,X

STURES  DATA A9,G

GOTO 370

DISE "2 FILE #S WHERE DATA IS";

INPUT A8,A9

LOAD DATA A8,X

LOAD DATA A9,G

DISY "DPRINT DATA";

INPUT He

IF Ha#"Y" THEN 400

FOR I=1 TO 19

PRINT I,X%X[1],6[1]

NEXT I

DIST "NUMBER OF EQUATIONS=?";

INPUD N

N1 N—1

N2=H-7

PRINT "N="N

FOR T=1 TO N+K

DISP "KNOT IN T(I)=?"I1;

INUT T[I]

PRINT "P(I)="7[I],I

NEXT 1

GO3UB 550

GOSUB 8070

PRINT "SUM OF SQUARES ="31

DIST "PLOT?M;

WATT 3000

GOTO 7640 ,
2=1 79



550
560
570
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750

760 S1

770
780
790 |
800
8 0
820
830
840
850
860
870
880
890
900
910
920 B
930 C
940 |
950
960
970
980

A

FOR 11=1 TO N
B[I1]=C[11])=P[I1]=M[11]=0
NBXT 11

I=K

11=0

FOR L=1 T0 19

I I=N THEN 700
IF x[L)<T{I+1] THEN 700
I=T+1
I1=I-K
GOTO 650
T=X[L]
P1=TEI+1 =T
P2=T{I+2 |~T
M1=T-T[I“
M2=T-T[I-1]
79=1/(P1+M1)
=P1%79
C2=M1*79
S52=C2
79=51/(P1+4M2)
S1=P1%2Z9 |
C2=M2*49
79=52/(P24M1)
52=02+P2%79
33=M1*29
G1=G[ L]
I2=11+1
B[I2]=51*G1+B[I2]
C I2] 51*#S1+C[ I2
P[I2]=51*S2+P[I2]
M[12]=51*S3+M[ 12]
I12=12+1
B[ 12 ]=82%G1+B[I2]
cl12]=82%s2+¢C[12]
[12=52%s3+P[12]
12 I2+1 )
B IZ}mSB*G1+B_IQ]
cl12]=53*s3+C[12
NEXT L

2=2

RieM *************SUBROUTINE T QUATER® XK KK KKK HH K HH KK I KKK KKK KKK
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GO0 R ¥¥XXXXXXXXX%%%% BANDED MATRIX ROUT NI 3 ¥ %KMK K KKK HH MK K M3 2% K
1000 REBM SOLVES SYSTEM USING CHOLESKY'S DECOMPOSITION METHOD
1010 FOR J=1 TO N2

1020 J1=J+1
1030 J2=J+

1040 B[J}=D=5QR(C[JT])

1050 P[J |=D1= PE }/D

1060 M{J]=D2=M{J|/D

1070 C[J1]=Cc{J1]-D1*D1

1080 P[J1]=P[J1]-D1*D2

1090 clgz2l=c[Jd2)~-D2*D2

1100 WGXT J

1110 2 N11 D:SQR(C5N1])

1120 P[N1 :D1=P[N1 /D

1130 @ N7=SQR§C N 1-D1*D1)

1140 C 1}=B[1 /E[1]

1150 c¢[2]=(B[2]-Cc[1]*P[1]) /B[ 2]

1160 FOR J=3 TO N

1170 J1=J=-1

1180 J2=J-2

1190 ¢[(J]= (B[J]-M[JZ]*C[JE]—P[J1]*C[J1])/L[J]
1700 NEXT J

1210 [N] cE B/EE ]

1220 A[N1]=(c[N1]-P[N1]1*A[N1)/E[N1]

1230 FOR J=N2 TO 1 STEP -1

1240 J1=J+1

1250 J2=J+2 *
1260 A[J)=(C[J)-P[I]*A[J1]-M[T]*A[J2]))/E[J]
1270 NEXT J

1280 RETURN
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7000
7010
7020
7030
7040
7050
7060
7070

7080

7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7510
7320
7330
7350
7360
7370
7580
7390
7400
7410
7420
1450
7440
7450
7460
1470
74830
7490
1495
7500
7510
7520

RENA XX %%X XXX SPT,INR GRAPH**************************************%****
DIST "4 SCALE VALUES";

INTUT Q9,Q08,Q7,Q6

SCALE Q9,08,Q7,Q6

DISP "2 VALUES X-CROSS AND XTIC";
INPUT Q7,Q6

YAXIS Q7,Q6

DISP "2 VALUES FOR Y-CROSS AND YTIC";
INPUT Q7,Q6

YAXIS Q7,Q6

DISP "STEP =";

INPUT Q5

1=K

FOR T=Q9 TO Q8 STEP Q5

GOSUB 8930

GOSUB 7550

TLOT T,C1

NBXT T

I=K

FOR Q6=K+1 TO N

BN

T=T[ Q6]

GOSUB 8930

GOSUB 7550

PLOT T,C1

CrLOT -0,%,-0,3 ’
LABEL (*)no"

NEXT Q6

STOP .
REM EE R L3 DATA POINT PLOT ****************************************
FOR I1=1 T0 L9 :

PLOT X[11],G6{I1]

CYLOT -0.3%,-0.3

LABEL (*)nx"

PEN

NEXT 11

3T0P

REM ¥¥%#¥¥% ERROR PLOT ROUTINE **************************‘**********
Y=3*SQRES1/L9)

5CALE X[1),%x{19],-Y,Y

wax1s o, (x[19]-kf 113 /10

vax1is x{17,Y/6

PRINT "YTIC ="(X[L9]-X[1])/10"YTICc="Y/6
1=K

FOR J=1 T0 L9

T=3[J]

GOSUB 89730

GOSUB 7550

PLOT T,G[J]-C1

PLOT 7,0

[N

NESD J

5TOP

2-4
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7530 REM **¥**%%% CALCULATE SFLINE VALUE FROM SPLINE COEFFICIENTS *¥* XX
7550 P1=TII+1}-T
7560 T2=T[1+2]-T

7570 MZ:T-T{I-1]

7580 M3=T=-T{1I

7590 CZ:A[I-T

7600 C1=(M2*C2+P1*A[I~2])/(M2+P1)

7610 C2=(M3*A[I1+P2*C2)/(M3+P2)

7620 C1=(M3*C2+P1%C1)/(M3+P1)

7650 ARTURN

7640 RJ‘)M*‘X‘*************KNOT MOV’ING SUBROUTIN’E*****************************
7650 FOR I5=4 TO N

7660 1B1=(T[I5+1]-T[I5]))/H8

7670 A5=51
7680 X5=TEIS]
7690 T{15)=X4=T[15]+E1

7700 GOSUB 8070

7710 IT S1<A% THEN 7770

7720 ©1=(T[15-1]-X5)/H8

7730 T[15]=X4=X5+E1

7740 GOSUB 8070

7750 IF S1<A5 THEN 7770

7760 GOTO 7990

7770 A4=51

7780 31=E1+E1

7790 T[I5]=X3=X4+E1

7800 IF (X3<T[I5=-1] OR X3>T[I5+1]) THEN 7990
7810 GO3UB 8070

7820 A3=S1

7830 1F (A3>A4) THEN 7890

T840 AS=A4

7850 5= .4

7860 Ad4=A%

7870 X4=X3

7880 GOTO 7780

7890 X6=X73%X3

7900 K7=£4*X4

7910 18=X5%X5

7920 1= 5% (X6=XT)+A4*(X8-X6)+A%* (XT~X8)
7930 R2=(AS5*(X3=X4)+A4* (X5=X3)+A3*% (X4=X5))*2
7940 T[I5]=R1/R2

7950 GOSU3 8070

7960 IF (351<A4) THEN 8000

7970 T[I5]=X4

7980 GOTO 8000

7990 T[I5]=T[I5]-F1

8000 GOSUB 550

3010 GOSUB 8070

8020 PRINT T[15],S1

8030 NEXT IS

8040 DISY "PLOT?";

8050 WAIT 3000

8060 GOTO 7650

25
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53070 REM***********COMPUTES SUM OF SQUAR_ES*******************%****
8080 $1=0
8090 I=K
8100 FOR L=1 TO L9
110 T=X[L]
8120 IF T[I+1] > T THEN 8170
8130 I=I+1
8140 IF I <= N+1 THEN 8120
8150 PRINT "OUT OF RANGE";
8160 STOF
8170 P1=TEI+1]-T
8180 P2=T[I+2]-T
8190 Mzzm—m{1-1]
8200 M3=T-T[1I
8210 C2=A[I-1
8220 C1=§M2*CZ+P1*A[I-2])/(M2+P1)
8230 C2=(M3*A[I]+P2*C2)/(M3+P2)
8240 C1=(M3*C2+P1*C1)/(M3+P1)
8250 3=C1-G[L]
8260 31=51+45S*S
8270 NSXT L
8280 RETUAN
8930 REM** FINDS I SUCH THAT T(I)<=T<T(I+1) USING FORWARD SEARCH ONLY **
8940 IF T{I+1] >= T THEN 8990
8950 T=I+1
8960 IF I <= N+1 THEN 8940
8970 PRINT "RANGE"; ’
8980 3T0F
8990 RETURN

2=-6
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9000
3010
9020
9030
9040
9050
9060
9070
3080
9090
9100
9110
9120
9130
9140
9150
9160
9170
9180
9190
9200
9210
9220
9230
9240
9250
9260
9270
9280
9290
9300
9310
9520
9330
9340
9350
9360
9370
9380
4390
9400
9500
9510
9520
9530
9540
9550
9560

RIM ¥ XX XXX XXX %% DERTVATIVESH ¥ 356X K K K%K K% %% 3K %

M THIS ROUTINE CATCULATZS THE ZEROTH THROUGH D1 DERIVATIVES OF SPLT
RiM AND PLACES THEM IN P(1) THROUGH p(D1+1) RESP.

REM THE DERIVATIVES ARE AT T

D1=3
H1:(T[N+1}-T[K]E/6O
FOR T=T[X] TO T{N+1] STEP H1

1=K

GOSUB 8930

FRIDDIH % K3 23 X9 36 30 263663600 36 % 3 CALCULATES N(I,K) AT TR KKK K 4K 392 %%
N{1,1]=1

FOR S=1 TO K~1

P[3]=T[1+S]-T

M S j=T=T[I+1=5]

N{1,5+1]=0

FOR R=1 TO S

Z9:N[R,S]/EP[R]+M[S+1-R])

N[R,3+1]=N[R,S+1]+P[R]*Z9

N[R+1,5+1]=M[ S+1-R %23

NEZT R

NEAT 3

FOR 5=1 TO X

D(S,1]=A[I-5+1]

NEXT S

FOR $=2 TO K

FOR R1=S TO K

D[R, 3]=(D[R-1,5-1]-D[R,5-1])/(P[I+K~R+1]~-T[I-R+S])

NEXT R

N:XT 3

M1=1

FOR I=1 TO D1+1

31=0

FOR J=1 TO K=I+1

51=514D[K+1=J, T J*N[J,K+1-1 ]

BXT J

P[1]=S1%M1

M1=M1% (K=-I)

NEXT I _

FRINT T,P[1],P(2],P[3]

NZXT 7

STOF

R¥M *x* SPLINE FUNCTION FNS(T) MK, KM KKK KK KN HHH K KM KKK KN K K
DEF FNS(T) '
I=K

GOSUB 8930

GOSUB 7550

RETURN C1

END

2-7
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10 REM**%%%%X CUBIC SPLINE PROGRAM *x¥**
20 RisM **%* SUBROUTINE JUMP ADDRISSES %X HHXHHHHHK KKK KKK HHKH KKK KK

30 REM %1% SPLINE GRAPH ==--weeree————— - 7000
40 REM ?2) ERROR GRAPH ~emmemccceccccccccam~u- 7%80
50 Rilll 3) DATA POINT PLOT —~=c—meeceec——e——— 7290
60 REM E4§ RETURN T0 KNOT MOVING ROUTINE --~ 7640
70 RIM (5) DERIVATIVE ROUTINE =reeemcereccaece- 9000
80 DIM B{}O] E[30],X[50],G[50] H$E1], [30]

90 DIM N[6,61,T(30],P[30],m(30],D[6,6],A[30],c[30],5(6]
100 K=4

110 REM**% H8 USED IN KNOT MOVING ROUTINE ***

120 HB=128

130 PRINT "CUBIC SPLINE PROGRAM"
140 PRINT "K BQUALS"K

150 DIST "NUMBER OF DATA PTS";
160 INTUT 19 |

170 PRINT "I19 EQUALS"LY

180 NIST "WANT TO LOAD DATA FROM TAPE";
190 INYUT HJ

200 IF H§="Y" THEN 300

210 DISY "2 FILE #S WHERE DATA GOES";
220 INFUT 48,A9

230 FOR I=1 TO L9

240 DISY "INPUT X,Y"I;

250 INPUT X[I],G[1]

260 NEXT I

270 STORE DATA A8,X '
280 5TOREZ DATA A9,G

290 GOTO 370

300 DIST "2 FILE #S WHERE DATA IS";
310 INPUT A8,A9

320 LOAD DATA A8,X

%30 LOAD DATA A9,G

340 DISP "PRINT DATA";

350 INPUT Hy

360 IF H3#"Y" THEN 400

370 FOR I=1 TO 19

380 PRINT I1,X[1],G[I]

390 NEXT I

400 DIST "NUMBER OF EQUATIONS=?";
410 INPUT N

420 N1=N-1

425 N2=N=2

430 PRINT "N="N

440 FOR I=1 TO N+K

450 DISP "KNOT IN T(I)=2?"I1;

460 INPUT T[1]

470 PRINT "D(I)="7[I],I

480 NEXT I

490 GOSUB 550

500 GOSUB 8100

510 PRINT "SUM OF SQUARES ="S1
520 DISP "PLOT?";

530 WAIT 3000

540 GOTO 7640
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L‘)SO \L}\f *************SUBROUTINE EQUATE*****************************-&%******
560 FOR I1=1 TO

570 B[I1]=C[I1]= P[I1]—M[I1] Q[11]=0

620 NEXT I

630 I=K

640 I1=0

650 FOR L=1 T0 L9

660 IR I=N THEN 710

670 IF X[L]<T[I+1] THEN 710

680 I=I41

690 I1=I-X

700 GOTO 660

710 T=X[L]

720 P1=T,I+1}-T

730 P2=T[I+2]|-T

740 T3=T[I+3]-T

750 M1=T-T[1

760 M2=T-T 1-1]

770 M3=T-T7[I=~2

780 79=1/(P1+M1)

790 $1=P1%79

800 S82=M1*79

810 Z9=51/(P1+4M2)

820 31=P1%29

830 C2=M2%729

840 79=52/(T2+M1)

850 32=02+DP2%79

860 33=M1*;9 ’
870 729=51/(P1+M3)

880 31=P1%49

890 (2=M3*2Z9

900 79=52/(P2+M2)

910 32=C2+FP2%Z9

920 C3=M2%29

930 Z9=8%/(DP3+M1)

940 33=03+13%%9

950 34=M1*%29

960 G1=G[L]

970 I2=I1+1

980 [121 S1*G1+B 12

990 C 12]-01*s1+c 12

1000 P[I2]=81%82+P[12
1010 N 12 1=831%3534M[I2
1020 Q|12 1=51*54+Q[ 12
1030 12=12+1

1040 B[I2]=52*%G1+B[1I
1050 C[ 12 1=52%3824C
1060 P[I2]=82%33+P[I
1070 M[I2 1=52*S4+M[ I
1080 L? 12+1
1090 B =53*G1+B[I2
1100 c —S3x53+C[ T2
1110 =33%84+P[I2
1120 12 12+1
1130 B£12]-o4*01+3{12
1140 C[I2])=54%S4+C[I2
1150 NZXT L

L
0
|
1



1160 LM K KUK XXX HXXXX% BANDED MATRIX ROUTINE I K I WK KA KR KK
1170 RiM SOLVES SYSTEM USING CHOLESKY'S DECOMPOSITION METHOD

1180 POR J=1 TO N-3

1190 J1=J+1

1200 J2=J+2

1210 J3%=J+3

1220 [ J.=D=SQR(C[J1)

1220 P[J)=D1=P[J}/D
1240 M J]=D2=M{J |/D
1250 Q[J]1=D3=Q{J}/D
1260 C{J1]=C[J1]-D1*D1
1270 P{J1]=P[J1}-D1*D2
1280 M[J1]=M[J1]-D1*D3
1290 ¢[J2]=C[J2]-D2*D2
1300 P[J2]=P[J2)-D2%D3
1310 C[J3|=C[J3]~D3*D3
1320 NEXT J

[N U SO SN SO | I

QG =

1340 D=u[N2]=SQR(C[N2])

1350 P[N2]=D1=P[N2]/D

1360 M[N2 |=D2=M[N2|/D

1370 C[N1 =CEN1 ~D1*D1

1380 P[N1]=P[N1]=D1*D2

1390 C[N]=C[N]=-D2*D2

1400 2 N1}~D SQR(05N1])

1410 P[N1]=D1=P[N1]/D

1420 B[N]=SQR(C| N]-D1*D1) '
1430 C[1]=B[1

1440 ¢f2 =§B 2} c } [ ]) B[ 2]

1450 C[3]=(B[3]=-M[1 -P[2)*c[2]) /B[ 3]
1460 FOR J=4 TO N

1470 J1=J~-1

1480 J2=J=2

1490 J3=J=3

1500 ¢[J]= (B[J]-M[JE]*C[JQ]—P[J1]*C[J1] Q[JB]*c[JB])/E[J]
1220 A[N]=0[N)/B[N]
1530 A[N1} E FN1§ P[N1}*A[N]%/EEN1]

N2 [*A[N] )/F[NZ]

1540 A (C{N2]-P[N2 [*A{N1]-M
1550 FOR J=N~3 TO 1 STEFP =1
1560 J1=J+1

1570 J2=J+2

1580 J3=J+3

1590 A[J ] (CEJ] P{J1*A[J1])-M[3*A[J2]-Q[T I*A[JT3]) /B[]
1600 NEXT J
1610 RETURN
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T000

7010

7020
7030
7040
7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180
7190
7200
7210
7220
7230
7240
7250
7260
7270
7280
7290
7300
7310
7520
7330
7350
7260
7370
7380

7390 Y=

REM*********SPLINE GRAPH**********************************************

DISP "4 SCALE VALUES";

INPUT Q9,Q8,Q7,Q6

SCALE Q9,Q8,Q7,Q6 S0
DISP "2 VALUES X-CROSS AND XTIC";

INPUT Q7,Q6

XAXIS Q7,Q6

DISP "2 VALUES FOR Y~CROSS AND YTIC";

TNPUT Q7,Q6

YAXIS Q7,Q6

DISP "STEP =

INPUT Q5

1=K

FOR T=Q9 TO Q8 STEP Q5

GOSUB 8930

GOSUB 7540

PLOT T,C1

NEXT T

1=K

FOR Q6=K+1 TO N

PEN

T=T[Q6)

GOSUB 8930

GOSUB 7540

PLOT T,C1

CPLOT =0,3,-0.3

LABEL (*)"O"

NEXT Q6

STOP

REM *%¥%¥% DATA POINT PLOT ****************************************
FOR I1=1 TO 19

PLOT X[I1],G[I1]

CPLOT -0.3,-0.3

LABEL (*)"X"

PEN

NEXT I1

5TOP |
REM ¥ KK KK ERROR PLOT ROUTINE A I I I I I HIE I e A I H A I I N K

Z%*SQR(S1/19)

400 SCALE x[12 ,X[L9],-Y,Y

7410
7420
7430
7440
7450
7460
7470
7480
7490
7495
7500
7510
7520

XAXIS O X[L9]—X[1j)/10
YAXIS X[1],Y/6

PRINT "XTIC ="(X[19]=x[1])/10"YTIC="Y/6
I=K

FOR J=1 TO L9

T=X[J)

GOSUB 8930

GOSUB 7540

PLOT T,G[J]-C1

PLOT.T,0

PEN

NEXT J

STOP



7530 REM ***%*x%%* CALCULATE SPLINE VALUE FROM SPLINE COEFFICIENTS ##*d#x%#%
7540 P1:T{I+1}-T
7550 P2=T[I+2]=T
7560 P3=T{I+3]-T
7570 M2=T=T 1-2}
7580 M3=T-T{I~1
7590 M4=T=-T{T
7600 C1=(M2*A I-21+P1*A[I-3};/§M2+P1g
7610 C2=(M3*A[I-1]+P2*A[I-2])/(M3+P2
615 C3=(M4*A[I]+P3*A[I~1])/(M4+P3)
7620 C1=(M3*C2+P1*C1)/(M3+P1
7625 (2=(M4*C3+P2%C2)/(M4+P2
7630 C1=(M4*C2+P1*C1)/(M4+P1
7635 RETURN
7 6 4_0 _ REM* P HH e W K KK *KNQT MOVING SU’BROUTINE** e FH I6 T W I H eI I W I I W K
7680 FOR I5=5 TQ N
7690 E1=(T[I5+1]-7[I5])/H8
7700 A5=S1
7710 X5=T515] |
7720 T[15])=X4=T[15]+E1
7730 GOSUB 8100
7740 IF S1<A5 THEN 7800
7750 BE1=(T[15-1]-X5) /H8
7760 T[I5]=X4=X5+E1
7770 GOSUB 8100
7780 IF S1<AS5 THEN 7800
7790 GOTO 8020
7800 A4=51
7810 E1=E1+E1
7820 T[I5])=X3=X4+E1
7830 IF (X3<T{I5=-1] OR X3>T[I5+1]) THEN 8020
7840 GOSUB 8100
7850 A3=51
7860 IF (A3>A4) THEN 7920
7870 ! 5=A4
7880 X5=X4
7890 A4=A3%
7900 X4=X3
7910 GOTO 7810
7920 X6=X3*X3
7930 XT7=X4%X4
7940 X8=X5%X5
7950 R1=A5% (X6-XT7)+A4% (X8~X6)+A3*(X7~X8)
7960 R2=(A5% (X3=X4)+A4*(X5=X3)+A3*(X4=X5))*2
7970 T[I5]=R1/R2
7980 GOSUB 8100
7990 IF (S1<A4) THEN 80730 .
8000 T[I5]=Xx4
8010 GOTO 8030
8020 T[15]=T[15]-E1
8030 GOSUB 550
8040 GOSUB 8100
8050 PRINT T[I5],S1
8060 NEXT I5
8070 DISP "PLOT?";

8080 WAIT 3000
anan oanmn 7TARA0




8100 REM***********COMPUTES SUM OF SQUA_RESH**********************
8110 S1=0

8120 I=K

8130 FOR L=%1 TO L9

8140 T=X[L)

8150 IF T[I+1] >= T THEN 8200
8160 I=I+1

8170 IF I <= N+1 THEN 81%0
8180 PRINT "RANGE"

8190 STOP

8200 GOSUB 7530

8210 S5=C1-G[L]

8220 S1=814+S*S

8230 NEXT L

8240 RETURN

8930 REM** FINDS I SUCH THAT T(I)<=T<T(I+1) USING FORWARD SEARCH ONTLY %
8940 IF T[I+1] >= T THEN 8990
8950 I=I+1

8960 IF I <= N+1 THEN 8940
8970 PRINT "RANGE";

8980 STOP

8990 RETURN
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G000 REM #%%%3%%%H% % %% DERIVATIVES*********************

9010 REM THIS ROUTINE CALCULATES THE ZEROTH THROUGH D1 DERIVATIVES OF
9020 REM AND PLACES THEM IN P(1) THROUGH p(D1+1) RESP. SPLIN
9030 REM THE DERIVATIVES ARE AT T

9040 D1=3

9050 H1m(T[N+1}-T[K]E/6O »
9060 FOR T=T[K] TO T[N+1] STEP H1

9070 I=K

9080 GOSUB 8930

9090 REM********************** CALCULATES N(I,K) FUBLE 22 22222 22 21 8
9100 N[1,1]=1

9110 POR S=1 TO K-1 ¢
9120 P S}:T[I+S]-T

9130 M[S]=T=T[I+1-S]

9140 N{1,3+1]=0

9150 FOR R=1 TO S

9160 Z9=N[R,S]/EP[R]+M[S+1-R])

9170 N[R,S+1}=N R,S+1]+P[R]*Z9

3180 N[R+1,5+1]=M|S+1-R]*29

9190 NEXT R |

9200 NEXT S
9210 FOR S=1
9220 D[s,1]=
9230 NEXT S
9240 FOR S=
9250 FOR R=
9260 D[R,S]
9270 NEXT R
9280 NEXT S
9290 M1=1
9300 FOR I=1 TO D1+1

9310 $1=0

9320 FOR J=1 TO K-I+1

9330 S1=S1+D[K+1~J,I]*N[J,K+1-I]

9340 NEXT J

9350 P[I]=51*M1

9360 M1=M1* (K-I)

9370 NEXT I

9380 PRINT T,P[1],P[2],P[3]

9390 NEXT T |

9500 REM %**% SPLINE FUNCTION FNS(T)- T 3 T K K K I AW HHe WK B Fe eI KK K S
9510 DEF FNS(T) - : | ¢
9520 I=K

9530 GOSUB 8930

9540 GOSUB 7540

9550 RETURN C1

9560 END

—
=
]

1,s-1]-D[R,s-1])/(T[I+K-R+1]-T[I-ﬁ+s])



SOMIT NOVEL ROQTWINDING MEIHODS

Charles E.Gray

Aeronutronic Ford Corporation

Palo Alto,California

ABSTRACT

This paper develops some methods for computing the real roots of
a real valued function in a finite interval; This classical problem is
treated by metliods that are novel in the following respects: the con-
vergence does not depend on the customary 'initial guess;' one can con-
cludé that the function has no roots, if that be the case; if that is
" not the case, one can compute all real roots of the function in the in-
terval to within a preassigned accuracy. It is assumed that the func-
tion is Lipschitz and that a value for the Lipschitz constant is known.
These assumptions arc mild enough so that methods are applicable to a
variety of problems, notably in optimal control. From the basic method
two other algorithms are derived: ome computes the maximum of a func-
tion on an interval; the other computes the roots of a function, but
with improved speed of convergence similar to that of Newton's method.
Numerical results are presented which illustrate the properties dis-

cussed above.
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Introduction

A classical problem in numerical analysis is that of finding in a
glven interval (which we assume Lo be closed and finite) a real root
of a continuous, real-valued function. Many algorithms have been proposed
to solve this problem ({1],[2],[3],!4],[5],[6]).

In one way or another, they all require an initial guess at the value
of the root; it is hoped that this guess is improved by an iterative
_application of the algorithm. This hope may be disappointed for a number
of reasons. It may happen that an initial guess appropriate to the algo-
rithm does not exist, even though a root exists. Or, if an initfal guess
and a root both exist, the algorithm may nevertheless fail to converge,
because the initial guess ig not close enough to the root. Of course, if
there are no roots, no convergence is possible. Unfortunately, it is not
possible to determine whether lack of convergence is due to the first or the
second of these alternatives. The only recourse then is: if at first you

don't converge, pick a new initial guess and try, try again,

By contragt, the method which we present be'low (first proposed in [4)
does not require an initial guess at the value of the root. If there is'no
root of the function in the given interval, Ehe algorithm reveals this fact.
Otherwise, the algorithm computes all roots of the function in the interval,

To illustrate the problems that can beset classical methods, we consider
two of them: the bisection method and Newton's method. We denote the func~
tion whose roots are sought by f£(x) and the interval of interest by [a,b].

The problem then is to find an x € Bhb] such that

£(x) = 0
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The Bisecticn Meothod

In the bisection method it is assumed that we know two numbers Uof {a,b]
and vof[a,b],such that £ (u ) and £ (v ) are of opposite sign.
Since f (x) 1is continuous, there is at least one x¢€ [uo,vo] such that
£ (x) =0, (See Figure 1.) The bisection me thod will compute one root,

as follows:

M ‘ 7 < . Set i= 0
Step 0 Guess UV, such that f ( uo) £ ( vo) 0
Step 1 set x, = 1/2 (u; +v))
S f (xi) « £ (ui)<0 set Vit 5
Go to Step 2

- If £ (xi) f (ui) =0 Stop; X; is the solution,
- 1f £ £ >0 t

L (x,) (ui) Set u, o e—x;
Go to Step 2

Step 2 Set i<—i+1 and go to Step 1

However, it may happen that there are nou and v 3} in the example
_ o o
of Figure 2, £ (x)20 V x ¢ [a,b] hence f (uo) f y2 0
o

Vuof [a,b] ’ vot' [a,b,]

Newton's Method

In Newton's method, it is assumed that an initial guess X, is given.

This guess is then updated according to the formula
£
1 TN ffx')
(x)
Like the little girl, who had a little cgrl, right in the middle of
her forehead, when Newton's method is good, it ié very, very good, but when

it is bad it is horrid (See Figures 4, 5, 6).
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A New Root Finding Method.

Concept
Suppose that f (x) 1is Lipschitz on [a,b] . Thus for some M';
¥
Eep) £ G | < fx mx) Vox, x, € [ab]

Assume that M' is known and consider the following algorithm;

Algorithm

Step 0  Set i+—0, x

-~ a,

1
Step 1 Compute £ (x4 ).

Go to Step 2.
!f(xi)| _

Step 2 Set x, + -> X4

i M'
Go to Step 3
Step 3 If X, > b, stop.

Otherwise set i+—i+l and go to Step 1.

The geometric interpretation of the algorithm is the following (cf,
Figure 7):

To obtain x,

(417 araw from the point with coordinates (xi, f(xi» the

line L whose slope is M' in magnitude and which intersects the x-axis to the

right of X3 the point of intersection is X4

ke o e e ey

The algorithm generates a monotonically increasing sequence {xi . If

this sequence is finite, then the algorithm stops in Step 3 with X, > b,

If the sequence is infinite {xif 1;8 then it hag a limit in [a,b] ,
say x* (because {xi 520 is a sequence bounded from above by b).
Then:
lim Xiq = lim x, = <
i—»r o {— o
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Because f (x) 1is Lipschitz, it is continuous so that

.
= lf (x)

1lim ' £ (x,)
1
j ——y,.}

From Step 2 of the algorithm we conclude

* * 1 =
x =x + 'ET" ‘ ? (x)

Hence: %
f(x) =20
Thus the algorithm either converges te a root in an infinite number
of steps gor it reaches the end of the interval ( x> b) in a finite
number of steps without computing a root. Note that this conclusion holds
for any positive value of ym',
But M' is a Lipschitz constant. This key fact allows us to strengthen

our conclusions, which we now state in the form of a theorem,

Theorem

Let f (x) be a real valued function on [a,b] such thact

£ (x) - f (xz)l < ML xRy lv Xy, X, € [a,b]

?

Consider a sequencez.‘cq i?o generated by applying Algorithm 1 to £ (x).
! =

Then either

(1) The sequence is finite, in which case £ (x) has no roots in [a,b]
or

(2) The sequence is infinite, in which case 1t converges to the

smallest x € [a,b] such that £ (x) = 0.

Geometrical Sketch of Proof

Refer to Figure 7. Since M' is a Lipschitz constant, it is greater

than the magnitude of the slepe of £ (x) anywhere on [a,b] . Hence the
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line L, so to speak, goes to zero faster than the function. Consequently
if £ (xi) > 0, then £ (x)> 0 v x € [xi’xiﬂ]

Therefore if f (a) » 0 then £ (X)>0 V% € [a,xi] for every 1 =1, 2,.....

* %
If the sequence xi "jams up" at x € [a,b] then f (x) 0 while

A

f(x)> 0V x € [a,x*) . Otherwise, f (x)> 0V x¢ [a,b] as in Flgure 8,

For a formal proof see the appendix.

Realization
Introduction

Algorithm 1 allows us to determine the first root of £ (x) to

%* .
the right of x = a, say % 3 by applying Algorithm 1 again we can

*
compute the first root to the right of x =, say xiﬁ i.e., the second root

to the right of x = a and so on until all the roots of £ (X) in [a,b]
have been computed.
Note that, as stated,Algorithm 1 requires in general an infinite
number of steps to compute xl*, and therefore will not be able to compute
*

Xy s in finite time, In o6rder to complete the c¢omputation in finite time,

we must modify Algorithm 1; the result is Algorithm 2, which we call ROOT-

FINDER.

Algorithm 2 is obtained by relaxing the requirement that we com-
pute the set SO= {XG[a,b] l f(x) = 0 } to the requirement that we
compute some set S of the form S, = {xe[a,b] ,lf(x)l < f} where €

is a preassigned number. Clearly SG contains Sqg Also, as €— 0,

Sf — S0 so that S€ is an approximation to the set of roots of £ (x),

So; the closeness of the approximation €, can be preassigned, (See Figure 11),
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Algerithm 2:
Step 0
Step 1
Step 2

Step 9

Step 10

Step 11

Step 12
Step 13

ROQTE INDEKR

Set N..._l,viq—-O, N=—0, X7 4, jel.let €>0 be given
Compute f (xi)

If lf (xi)l < C go to Step 3

Otherwisec go to Step b,

If Ne =1 go to Step &4 ;

Otherwise go to step 5,

Set 5j4;mxi, go to Step 5 .

Set Nt_‘—o, b “ﬁ‘.‘" s NR* -1

Go to Step 9,

1f N, =1, go to Step §;

€
Otherwise go to Step 7.
Set 77j4 xi"l’ j“_‘"—‘]"']

Go to Step 8.,

Set NE .,._1’ - l_leL)_.]. .
1]

M
Go to Steb 9.
Set X1t X + h

i«-- 1 +1

If xi<'b go to Step 1;
Otherwise go to utep 11.
1f Né =1 go to Step 13;
Otherwise go to “tep 12.
Set b—s !'[J i+l —j, go to Stop 13,
1f NR = 0, report "There are nc roots" and stop. Otherwise,

J "
set j~1-—+J, repo:-t:"Roo:s lic ir the intervals [SIU nk ]k
-~ _—_1

and stop,
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Digrussion

Referring to the flow chart ol Figure 9 we see that Xy is updated

in one of two ways:

1) 1If £ (xi) > € then
X = x. + ‘-_f_(-X_i..)J
141 ° %y v

as in Algorithm 1. The step size X=Xy is variable, being

proportional to f(xi) i.
D TG SE e
€
B £ B v

In this‘case the step size X 417% i3 constant,

The flag Ne takes on the value 0 if at the previous S ,f (xi)l < €
and takes on the value 1 otherwise,

To understand algorithm 2 refer ro Figure 10 which depicts the function
f (x) {in the vicinity of a . zero crossing. The path followed through the
algorithm is analyzed in Table 1.

The key points are the following:

1) 1f Ne = 1 then, because of the property of the variable step size

of Algorithm 1 the function does not vanish in [xiwl’ x. ]

2) If NG =0, x is incremented bv the constant step size which is

i
chosen small enough so that in one step ' £(x) 'cannot exceed € (due
to the bound on tha slope of l f(x)' ).

3) 1f Ne = 1 ‘and l £ (x) | < € the algorithm enters an interval

fe,j’ nj ] where by 2) above l f (x)l does not exceed € .

> € che algorithm leaves an interval

4) If N, = 0 andlf(x)

(f j? ﬂj_] where l ? (x), does noi exceed €
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In summary, Algorithm 2 computes a set of €-intervals ;( sj’ Uj ]2
in which l f (%) I does not exceed € and outside of which (as shown in’the
discussion of Algorithm 1) l £ (x)[ does not vanish (See Figure 11). The
flag NR is initialized at 0; it is set to 1 when the first €-~interval
1s entered (i.e., when x = 51). If when the algorithm stops NR is 0O,
then at no point in [a,b] is lf (x)l < € , so that £(x) has no roots in

| [a,b] .

In terms of the discussion in the introduction we have

Se = Y[&;274]

Remark:

Considering the simplicity of the concept underlying ROOTFINDER and
GNEWTON, it seems remarkable that these algorithms have remained undis-
covered until now, yet such seems to be the case. This is not to say there
haven't been some near misses. -

Thus, for example, Milne Eﬂ discusses algurithms of the form

- 1
e A G2

Various choices for m are considered but the choice of a Lipschitz con-

stant is not ameng them. Also, the use of the absolute value of the second

term on the right hand side is not considered; this would ensure that the

search always proceeds to the right, as in ROOTFINDER.
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Application

Introduction

Algorithm 2 can be modified to find approximately the maximum of the
function £(x) on [a,b]. The idea is to find the zeros of f(x)-c,
where ¢ 1is a constant; then, by some search procedure, increase ¢ until
the algorithm indicates that f(x)-c is non-positive but not strictly neg-
ative on [a,b] .

Algorithm 3 which we call MAXFINDER described below, computes a
‘ value ¢ + € which exceeds the maximum of f£(x) on [a,b] by no more than
"€ (where € is a preassigned number) together with intervals [fj ’ le]

where f£(x) lies in the band <¢=€, c+€ {(See Figure 12).
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Algorithm 3:

Step 1

Step 2

Step 3

Step &4

Step 5
Step 6

Step 7

Step &

Step 9

Step 10

Step 11

Step 12

Step 13
Step 14

Step 15

MAXFINDER
Set 02 N, 1-¥N, . 0

go to Step 1.
Compute f (xi).
If N
1
Otherwise go to Step 4.

=0 go to Step 3.

Set f (xi) A c 1 -

If f (xf) ccteE

Otherwise, go to Step 5.

"

Set £ (x.) = ¢
i

Set x, - éj.

Set € - h,

M

If £ (x)) > ¢ -¢
1

]

Otherwise, go to Step 10.

If N = 0

¢ , go to Step 7.

Otherwise go to Step 6.
If Ng

= 0, gb to Step 1l.

Otherwise go to Step 12,

N1 .

1~ j.

0 = NG-

Go to Step 2.

Go to Step 4,

Go to Step 8.

- Go to Step 6.

Go to Step 7.

Go to Step 13.

go to Step 9.

Set 1 -» N, . X D 13, jtl = j
Go to Step 12. .
Set ¢ - f -y h. Go to Step 13.
M’ ’
Set x5 +h o X, i+1 - 1i Go *o Step 1l4.

+ 1

3

If x; > b, goto Step 15.

If Nge =0, go to Step 16.
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Otherwise go to Step 1.

Otherwise go to Step 17.



Step 16

Step 17

Report:

Set b o T)j:

Set

.y .
-1 = J.

c ~€ < Max £ (x) <
¢ € < f(x)LC e +e
Stop.
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Go to Step 17,

c4 £

in intervals

f
{

[&k, nk]
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Discussion
Algorithm 3 can be understood by referring to the flow chart of Figure 14 and
to Figure 15, which represents a sample f(x) to be maximized.

As long as f(x) increases the algorithm steps along in steps of __§IT s

updating ¢ to f(xi) whenever f(xi) exceeds the previous ¢ by more than
€ ; at the same time & ., is updated to Xy When f(xi) starts to decrease,
J

the value of x, at which the decrease is noted, i.e., the X, previous te the cne

such that f (xi) ~c<& =-¢ , 1is retained as nj. The current approximation
to the maximum is then the current c while the location of the maximum is
approximated by [ E ., n, J.
a1 J.
when £(x) decreases, the algorithm steps along in variable steps pro~
ﬁortional to ¢ = £(x) in the manner of Algorithm 1.

. . . 2
In Figure 15, successive approximations tc the maximum are ¢, ¢ ,....

c6. After c6 the function starts to decrease so c6 is taken to be ¢, the
approximation to the maximum. Likewise, 516 is'taken to be the approximation
to the left hand end of the €- interval around the maximum. When f(xi) <

c - €, xi_is taken to be T)ﬂ and the algorithm starts stepping in vari-

able steps proportional to c¢~f(x) in the manner of Algorithm 1. The pro-

cedure may be likened to plotting f£(x) on the side of an aquarium, then
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£illing the aquarium with water until the maximum of the curve f£(x) just
touches the surface of the water. ﬁatice that this is a direct search,
which yields the global maximum. This is in contrast to the method of
searching for the set of roots of the derivative of f(x), which may or

may not contain the global maximum (See Figure 13).

Acceleration of Convergence

Introduction

—_ e T S

One of the virtues of Newton's method is that it exhibits very rapid
convergence when "close enough"uto a root of £(x). It is possible to com-
bine Algorithm 2 and Algorithm 3 to give a new algorithm, Algorithm &, which
we call GNEWTON, which has the convergence properties of Newton's method in
the vicinity of a root but, in the manner of Algorithm 2, computes all roots
of f£(x) in the iInterval [a,b] (or indicates that there are nbne) without

requiring an initial guess. This, Newton's method cannot do.

Algorithm 4 is based on two ideas: the first iz to introduce an
iteration on €: the interval [é,b] is scanned by ROOTFINDER with a coarse
value of €, ROOTFINDER computes €-intervals [ X1s ¥q Joeeeans| Xes Yy ] -
Then € is refined so that say new € = €' <old €., As we saw above
£(x) # 0 outside of [xl, yl]...[xk, ¥, ] » S0 on the next pass ROOTFINDER

need only scan [xl, yl] y euu s [xk, yk] . The algorithm then computes € -

intervals [x{, yi] y sane [xé, yé ]. Again ¢ 1is refined, the ¢ inter~
vals are scanned and so on until € is less than some preaséigned é*.
Significant improvements in compugational efficiency result when this idea
is combined with the following one: prior to scanning an €-interval

[xk, yk],with ROQTFINDER, MAXFINDER is used to estimate the maximum value

of the slope of £(x) on [ X yk] . The result is then used as M' in

ROOTF INDER.,
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Step 0 Set a—ex, b-—sy, Choose €% and € > €*. Set l—sK—sk,

Step 1 Apply MAXFINDER to the function f'(x) on the interval[x,yJ
to compute M'.

Step 2 Using M' computed .in Step 1, apply ROOTFINDER to £(x) on
the interval [x,y}
Stofe the resulting €=-intervals { [Ej’ nj]l in Stack B
(Number these sequentially as they are computed).

Step 3 If k< K go to Step 6, Otherwise go to Step 4.

Step &4 1If € £ €% Report results.
Otherwise go to Step 5.

Step 5 Refine €,
Note K, the total number of €-intervals just computed
Transfer {[Ek, Uk]} the € -intervals just computed, from
Stack B to Stack A, which contains the intervals to be scanned
on the next pass; label them [gl,yﬂ y ase [XK’yK} .
Clear Stack B. -
Set l—k
Go to Step 7.

Step 6 Set k +1—+k., Go to Step 7.

Step 7 Set x, ——ex Yy —= Y-

Go to Step 1,

Digcussion
Algorithm 4 can be understood by referring to the flowchart of Figure 16
and the discussion in the introduction. Some further discussion of the entries

in Stack B is appropriate: the intervals [$j, Uj] are numbered sequentially

in the order in which they are computed. TFor example, suppose that in scanning
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Eﬂf yl] three intervals are computed; these are numbered 1, 2, 3 from left
to right. Then in scanning [kz, yz] s, two more intervals are computed; these

would then be numbered & and 5; and so on. An example is given in Figure 17.

As mentioned before, when close enough to a root, Newton's method ex=
hibits very rapid convergence. To see why this is so, let us consider
' *
Newton's iteration formula in the vicinity of a simple root x .

- £ (%)

X = X - i
i1 i e
£ (Xi)

Using Taylor's expansion around % for f(xi) and f'(xi) there follows:

. [} . , 2
* * £ (X*) + £ (X"’)( Xi"'X“)'!" o ((xi~xv:) )]

£'(x*) +o (xi-x*)

where © (+) denotes any function such that:

lim o)
a—+0 a < @

Noting that f£(x*) = o and f£'(x*) % 0 (because x* is a simple root) there
follows:

x =0 ((x;=x0)%)

—x%

1+7*

Hence the speed of convergence [7 ] of the method is at least quadratic.
Notice that the same result would be obtained with any iteration scheme

of the form:

s LA
i+l t é(x,)

provided only that:

¢(xi) = £ (x%) + o (%, =x%)

106




In fact, CNEWTON appears to be just such an iteration scheme. This
is suggested by the following argument. Consider (for
simplicity) the case of a single, simple root x* of f(x). Denote by
[éi,ﬂf]the successive €~intervals around it computed by GNEWION and by

M! (fi,nl) the corresponding value of M' computed by MAXFINDER. Then:

Max £' (%) ~€ < ™' (;‘i,ni) < Max f'(x) + €

If the sequence € converges to 0, we obtain

M’ (fi,f?i) = lf' (x*)l t oo (¢ . x*)

It then seems plausible to assert that, for small ! 51 -y l the

iteration scheme is of the form:

. . . : =
e g, lr_(_sf_d_ = g _E(8)
Mt( » L i

, 7 £1(x) + o (&1

which, by what was said above, assures Newton convergence, This con~

jecture is supported by the numerical behavior of GNEWTON, as will be

discussed below.

b A 40 e

Comparison of assumptions

Let us compar: first the assumptions made in using bisection and in
using ROOTFINDER. In both cases f(x) 1s assumed to be continuous. 1In
addition, ROOTFINDER assumes that the slope of £(x) is bounded and that a
bound M ' is known, while the bisection mcthod assumes that f(x) changes
sign on [a,b] .

Among the questions that we might .sk at this point are the following.
Are these assumptions unduly restrictive? Are they easy to verify? These

are rather vague questions, so the answevrs will likewise be somewhat vague.
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In many applications the functions of interest are continuous. The
class of band limited functions, for example, are not only continuous but
have bounded slope and the maximum value of the slope can be predicted on
the basis of the bandwidth. Tn other cases, the assumptions can be verified
by inspection of the analytical expression for £(x) together with a few
rough numerical calculations.

It is worth noting that the assumptions underlying ROOTFINDER buy some-
what more than those underlying bisection, since ROOTFINDER provides informa-
tion about all the roots of £(x), including none if there are nomne.

If we now compare CGNEWION and NEWTON, we find that both assume

that f(x) 1is continuously differentiable. In addition GNEWION assumes

that the slope of f'(x), is bounded and that a bound M" is known. This
additional assumption buys, as above, information about all the roots of f(x).

Since these assumptions are stronger than those made for ROOTFINDER or
bisection, the class of functions to which GNEWTON or NEWION can be appliled
is more restricted. This clasg is by no means empty, as the following non-
trivial example will show.

In solving a certain linear optimal control problem ( [7] ,[9] ) it is

necessary to find the roots in Ea,b] of a function £(x) of the form
f(x) =¢x -8
where 8 is a constant and ¢ (x) 1is a given function of the form:

2 Ax
¢ (x) = T a o 1 (A; Teal, $0)

i

i=l
Thus, the derivative @' (x) 1is given by:
n A. X
¢'(x) =< a e *

1 A
1=1

i
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The upper bound M'" on the slope of @ 'can be crudely estimated from

"
the second derivative by (x):

n
1 - < 2 A.ix
¢ (X) — a.L I\i e
i=1
Such an estimate igs: a
. AL e A
" n 2 e if ML 0
M = X la. ‘ Ay % (Note that
g VEVTE Ad o ie A oS0 a<h )
e

This problem must be solved for a sequence of values of B, so that it
is important to have the fastest convergence possible. It is also important
to compute all the roots of f(x) in [a,b], Thus, GNEWTON appears to be

made to order for this application.

Comparison of Numervical Performance

Newton's method, GNEWTON and ROOTFINDER were applied to the problem of

finding the roots of £(x) on [a,b] for the particular case where:

(%)
[a,b]

k+ sn 27x

[0, 1]

The constant % was chosen successively to ke 0, 1 and 2, thus illus-
trating the case vhere £(x) has several simple roots, one double root and no
roots at all (See Figure 18).

The termination criterion was

[ £oo < e

Three values of € were used, 10-2, 10“4, 10“6.

Also, to illustrate the effect of overesﬁimating M' (for ROOTFINDER) or

M" (for GNEWTON) three values were considered:
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M'=M"=5M

[T}
M M 10 Mo

Here M is the optimum value of the Lipschitz constant M' or M",
The measure of efficiency of a method was taken to be the total number
of function evaluations of £(x) and £'(x) required to meet the termination

criterion.

To compare {wo methods, the relative efficiency was computed by divid-
ing the number of function evaluationsfor one method by the number of func-
tion evaluations for the other. If one method could not converge (as for
example, when the bisection method was applied to a non-negative function)
the number of steps was taken to be infinite.

The results are presented in Tables ITT, IV, V, VI, and VII. The data
on which they are based is presented in Table IT.

Table IIT compares the pérformance of GNEWTON and ROCTFINDER. Because
of the overhead involved in evaluating the.slope GNEWTON is less efficient
than ROOTFINDER when M' is equal to the value of the élope of f(x) at the
rob; (M' =27 £(x) =sin2mwrx i.e. k =0).

As M' increases ROOTFINDER takes smailer and smaller steps and its ef~
ficiency decreases. As M" increases the efficiency of the slope estimations
in GNEWTON decreases because of the smaller steps; howevzr, the improved slope
estimates accelerate the zero searching phase of GNEWION so that overall, its
efficiency relative to ROOTFINDER increases.

Likewise, in the case (M' = 2m, f(x) = 1 + sin 27x, 1. e, k=1) the

value of M' is much greater than the value of the slope at the root (which
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is 0). Thus ROOTFINDER must take small steps to avold overstepping the
root, while GNEWTQN can adapt its step size. The result is that GNEWTON
becomes significantly more efficient.

Tables IV and V show the degradation in efficiency of the algorithms as a
function of M' or M" relative to their own performance when M' or M" are
chosen optimally (M' = M" = 27). The degradation of GNEWTON is slight,
while RQOOTFINDER degrades by an order of mugnitude when M' is overestimated
by an order of magnitude,

Table VI  compares ROOTFINDER to NEWTON. When M' is well chosen (M' = 27)
and the slope of the function near the root is close to M' (k = Q) ROOTFINDER
is only slightly less efficient than NEWION. As these conditions are departed
from, its efficiency decreases. (The table illustrates only the result of varying k),
However, for k1 NEWTON does not converge while ROOTFINDER doés, so its
relative efficiency is infinite,

Table VI also compares ROOTFINDER to BISKECTION, It shnawe that ROOTFINDER,.is
uniformly more efficient (i,e, for every k and € , when M' = 2m),

Table VII similarly compares GNEWTON to NE'/TON and BISECTION.

The method is somewhat less efficient than either of these methods except
in the cases where they fail to converge (k‘= 1, 2 for BISECTION, k = 2 for
NEUWTON) .

Finally Table VIII summarizes these results by tabulating the cfficiencies
of GNEWTON, NEWTON and BISECTION relative to that of ROOTFINDER for M' = 2w
which was chosen because it converges in every case).

It is to be noted that these comparisons are overly favorable to NEWTON
and EISECTION as they do not take into account the computational effort neces-

sary to obtain an initial guess, which necessarily degrades the efficiency.
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Advantages and limitations of GNEWTON and ROQTFINDER

The distinguishing feature of GNEWTON and ROOTFINDER is that their
convergence does not depend on an"initial guess'. This is especially im=
portant if they are to be used as a subalgorithm within a larger program,
where human supervision of a trial and error search is impractical.

The logic of ROOTFINDER is simple enough that it can be programmed on
a commercially available 8 register, 49 program step pocket calculator with 1§
steps and 4 registers left for programming the function whose roots are
sought., This is sufficient to solve non-trivial problems, On the other
~hand it can, in some cases, be prohibitively inefficient, This shortcoming
is overcome to a degree by GNEWTON at the cost of a somewhat more limited

applicability and more algorithm complexity.

A second shortecoming of these methods is that it is difficult to extend
them.to several dimensions. Indeed, in order to preserve the feature that
all roots are computed, the computational effort must increase at least ex=
ponentially with the dimension of the space. For the same reason it is dif-

ficult to extend MAXFINDER to many dimensions.,

Conclusions

We have developed some wmethods for computing the real roots of a real
valued function in a finite interval. These methods are novel in that their
convergence does not depend on the customary "initial guess'; ome can conclude
that the function has no roots, if that be the case; and if it is not, one can
compute all the roots of the function in the interval, On the opposite side
of the coin, these methods appear to be substantially less efficient than the

notably efficient but erratic method of Newton. This penalty in efficiency may
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be a reasonable price to pay for the definitive nature of the results obtained.
This is particularly true if these algorithms are to be used as subalgorithms
within a larger program, in which case human supervision of a trial and errer

search would not be practical.
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APPENDIX

Proof of Theorem

Suppose first that £(a) = 0, Then from Step 2 of Algorithm 1:

i} =’ 25 2 a, ....2

I

Suppose now that f(a)>»0 (to fix ideas). For any

r
xpp 1€ £(x) >0, then £(X)>0 ¥ x€ |x, xi+1],
Indeed from Step 2 of Algorithm 1:
' - =]

M (xi+1 xi) £ (xi)>0

From the Lipschitz condition
- - M - - - ;

(1) £(x) = £(x) > =~ M' (x = x)Z S M (x,°K) ¥x e[&i,xi_ﬂ]

Hence: ' .
. f(x) >0 ¥ x e[xi, xi+1] i=0,1, 2,04s.

Thus the sequence {xi} is strictly monotonically increasing. TIf it is

finite, it must be true that for some k, X > b since only this condition

leads to a stop command in the algorithm, 1In this case:
£(x) >0 ¥ x¢€[a, xk]

Since [a, xk];;[a,b],f(x) has no roots in [a,b ].
Conversely, if the sequence is infinite, then for every 1 :

x, €b

i
Hence the sequence has a least upper bound x*Sb. Since the sequence is

monotonic, it converges to x*, Therefore, as was shown above,
f(x*) =0
On the other hand from (1) there follows:

£(x) >0 ¥ xe€{a,x%)

Hence x* 1is the smallest x* in [a,b] such that f£(x*) =0,
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CONDITIONS PATH REMARKS !
_ THROUGH ALGORITHM
Ne lf(x)I
1 2€ 1-2-6-8-9-10-1 Ne initialized to 1 ;
1 >€ 1-2-6-8-9-10-1 N, computed as 1
1 < € 1-2-3<4-5-9-10~1 Transition of |£f(x} | from ;
2e€ o <€ E
5j is left hand end of interval
where | £(x) ' < €, There is
at .ieast one such interval, hence |
NR is seti_‘t_omg. _
0 < € 1-2-3-5-9-10-1 lf(x) remains < € f
0 2 € 1-2-6-7-8-9-10-1 Transition of | £f{x) | from E
<€ to Ef :
’73 is Right hand end of interval :
wheref f < €, 5et value of }
to 1 + 1 as index of next such ;
interval. '




TABLE IIX

Algorithm k ¢ =10 -2 c—10 ¥ €=10 -6 Remarks

1] 7.7 12.3 17 (*) (See below)
ROOTPINDER(2 7 ) 1 56 565 5656

2 4 4 4

0 42 72.7 103.3 (*) (See below)
ROOTFINDER(1O mm ) 1 283 2825 28280

2 19 19 19

0 84 145.3‘ 206.7 (*) (See below)
ROOTFINDER (20 ) 1 566 5650 56560

2 37 37 37

0 18.7 25.7 33.3 (*) (See below)
GNEWTON(2 57 ) 1 46 92 161

2 7 7 7

0 22.3 30 37 (*) (See below)
GNEWTON(10 7+ ) 1 95 153 211 |

2 15 15 15

0 24.7 33 40 1 (*) 3 roots To get

| total function eval-
GNEWTON (20 ) 1 115 218 325 uations multiply
‘ entry by 3.

2 18 18 18

0 10 17 23
BISECTION 1 - * * BISECTION cannot

converge

2 e * = ’

0 5 7 7
NEWTON 1 7 13 21

2 ] ! o 0 NEWION cannot

converge

Average Number of function evaluations per roat for various algorithms.
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TABLE III

Lipschitz .2 -4 -6
Constant k € =10 € =10 €= 10 REMARKS
27 0 41 48 .51 Optimum Lipshcitz

1 1.22 6.14 35.13 Constant
2 .57 .57 .57

10 0 1.88 2.42 2.79 3x degraded
1 2.98 18.46 134.03 Lipschitz Constant
2 1.27 1.27 1.27

20 - 0 3.4 4.4 5.17 10 x degraded
1 4.92 25.92 174.03 Lipschitz constant
2 2.06 2.06 2.06

Efficiency of GNEWTON relative to ROOTFINDER as a function of Lipschitz constant

M', M), accuracy ( € ) and function (flc(x) =k 4+ Sin 27x ).
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TABLE 1V

-
Lipschitz ’ -2 ~6
Constant i k €=10 €=10 €=10 Remarks
0 1 1 1 Optimum value
of Lipschitz
2T 1 1 1 1 constant
2 1 1 1
0 .84 .86 .90
10 . 1 .48 .60 .76
2 47 47 .47
0 .76 .78 .83
PO 1 .40 42 .50
2 .39 .39 .39

Efficiency of ROOIFINDER (M') relative to ROOTFINDER (21 )
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TABLE V

.
Lipschitz -2 -4 . =6
Cons tant R € =10 € =10 €= 10 Remarks
o 1 1 1
2 m - 1 1 1 1 Optimum value
: of Lipschitz
2 1 1 1 constant
0 .18 .17 .16
10 1 .20 .20 .20
2 .21 .21 .21
0 09 .08 08
20 1 .10 .10 .10
2 .11 .11 Jd1

EBfficiency of GNEWION (M") relative to GNEWION (2 7 )
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TABLE VI ' ’

ROOTFINDER = WA -6
Compared to € =10 €=10 € =10 Remarks
BISECTION 1-3 1.38 1.35 Optimum LipSChitZ
constant used. for
ROOTFINDER
® o * Bisectlon cannot
ey o converge
.65 .57 41 Optimum Lipschitz
constant used for
ROOTFINDER
INEWTON .13 .02 .004
el =© ) Newton cannot
converge

Efficiency of ROOTFINDER relative to BISECTION and NEWTON.
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TABLE VII

GNEWTON : . '
-2 -4 -6
Couwrared to k € =10 € =10 € =10 Remarks
0 .54 .56 .69 Optimum Lipschitz
constant used for
GNEWTON
_ [+ o]
BISECTION 1 0 0 BISFCTION cannot
converge
2 @ © €0
0 .26 .27 .21 Optimum Lipschitz
Constant used Zfor
GNEWTON '
NEWTON 1 .15 14 .13
2 * = « NEWION cannot
converge

Efficiency of GNEWTON relative to BISECTION and NEWTON
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TABLE VIII

Algorithm Compared

to ROOTFINDER (27 ) k= k =1 k=2 Remarks

ROOTFINDER (2 7 ) 1 1 1 ROOTFINDER's perfor-
mance degrades by 2

ROOTFINDER (20 7 ) .09 .10 .11 factor of 10

GNEWTON (2 7 ) 4l 1,22 w57

CNEWTON (20 7 ) .31 .49 .22 GNEWTON's perfor-
mance degrades by &
factor less than 2

BISECTION 77 0 0 BISECTION cannot
converge for k 2 1

NEWTON 1.53 8 0 NEWTION cannot

[ ) converge for k = 2

Efficiency of vargaus algorithms relative to the optimum ROOTFINDER algo-

rithm for

€ =10
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f(uo) >0

-

Roots

"Figure 1. The bisection method works

' F_‘Clot,

Figure 2. The bisection method fails
(there do not exist u, » ¥, € [a,b] such that f(u,) fv )< 0)

a b

Figure 3. The bisection method fails
- (there is no root)
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Figure 4. Newton’s method is very, very good

I

Figure 5. Newton’s method is horrid
(because of an inflection point near the root)

Figure 6. Newtons’s method is horrid
(because there is no root)
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Figure 14,  Flow chart of Algorithm 3
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Figure 16. Flow chart of Algorithm 4:GNEWTON
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Figure 19.  Effect of M on step size of ROOTFINDER
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AN IMPROVED ITERATIVE METHOD FOR OPTIMIZING
SYMMETRIC SUCCESSIVE QVERRELAXATION

Vitalius Benokraitis
Applied Mathematics and Sciences Laboratory
U.S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

ABSTRACT. An algorithm is proposed to determine the optimum relaxation
parameter w, as well as the spectral radius of the iteration matrix Sw
0
corresponding to the symmetric successive overrelaxation method. The
algorithm is based on the work of Evans and Forrington and Young. Computa-
tional results indicate that the improved algorithm converges to the
optimum parameter even when the scheme of Evans and Forrington fails.

1. INTRODUCTION. Consider the linear system

(M . Au = b

where A is a real, symmetric, positive definite matrix of order N. The
real n-vector b is given and the N-vector u is to be determined.

Systems of the form (1) arise in the finite difference solution of
boundary value problems involving elliptic partial differential equations.
In particular, we shall be concerned with the generalized Dirichlet problem
involving the differential equation

NP TANE T P A U
(2) Ll = 32 (Aax)+ay (c)rru=r

where* A = A(x,y) > 0, C = C{x,y) > 0, and F = F(x,y) < 0 in Ru S, Here

R is a bounded connected plane region and S is its boundary. Given a
function g(x,y) continuous on S, we seek a function u(x,y) twice continuously
differentiable in R and continuous on S such that L{u] = TinRandu=g

on S. :

In order to apply the method of finite differences, we superimpose over
the region R a grid consisting of a network of horizontal and vertical lines
spaced at intervals of h = ax = Ay units apart. For simplicity, we assume the
spacing to be uniform, although this is not a necessary requirement.

Now for some hy and some (xO, ¥g) in R, we consider the set 2

0
which contains all points of the form (x, + ihy, yg + jhg) for integers i
and j. Following Young [1974], we assumg that for any point of QhO which

1ies in R, the four adjacent points 1ie in R or on S. Furthermore, this
property is assumed to hold for all h such that hO/h is an integer. More-
over, we define R, = @, n R and Sp = gy 0 S,

*The coefficient A = A(x,y) should not be confused with the matrix A of the
system (1).
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At any point (x,y) of R n R, the differential equation given by
(2) is replaced by the symme%r1c ifference equation

(3) L, [ul = -]7 {A(x t 5 ) [u(x+h,y)~-u(x,y)]

1

1
= =

X - 12‘ y) [u(x, y) =u (x - h, y)]
)[u (%, ¥+ h) - u (xs ¥)]

C

(
ey
(

St N S T o

)[u (x, y) - u (x, y - h)]}

Xy Y =

+F (x, y) u(x,y) =T (x, y).

Thus we have transformed the continuous problem to a discrete generalized
Dirichlet problem. That is, we now seek to determine a function u defined
on Ry U S, such that Lh[u] = T{X, y) on Rp and u = g on Sy

Multiplying (3) by -h2 and bringing the known boundary values to the
right-hand side yields a system of the form (1) where the order of the
matrix A, assumed to be N, is the number of mesh points in R,. Besides
being positive definite the matrix A can be shown to have Property A. Also
it can be verified that the matrix A is an L-matrix, irreducible, and weakly
diagonally dominant (Young [1971]).

Another property of the matrix A, which naturally (but not exclusively)
points to iterative techn1ques as a mode of sg]ution for the system (1) is
that A is large (the order is about 103 to 10°) and sparse (i.e., the number
of nonzero elements is small compared to the total number of elements in A),

The iterative scheme on which we shall focus our attention is the
symmetric successive overrelaxation (SSOR) method. In particular, we shall
be interested in obtaining certain parameters of an accelerated SSOR method.

2. THE SSOR METHOD. In order to define the SSOR method it is con-
venient rewrite (1) in the form

(4) u=Bu+c
where -1

B=I-D A=L+U
(5) A

C=D"b

and where D = diag (A) and L and U are strictly lower and upper triangular
matrices, respectively.
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The SSOR method is defined as follows (Sheldon [1955]). Let u(o)
be an arbitrary initial approximatjon to_the ion of the system
Au = b, and define the sequence UE%?, u 15, u?g}gs, ulZ svees by

R N (o P13 D IV (v
n=20,1, 2,..
Eliminating u(n+%) we get
(7) JMD g )y
(Y] [}
where
S =U L
w W o w

(T-a) WL+ (1 -w) 1) (I- ol)™! (WU + (1 - )I)

k w(2 - w) (I - wU)_] (I - wL)-] o

W

One of our goals will be to determine the relaxation parameter so that the
rate of convergence of our method is optimized in some sense.

Let us Took at the SSOR method a little closer. Anyone familiar with SOR,
will recognize that each SSOR iteration is composed of two SOR half iterations.
The first half iteration is just a "normal" SOR iteration. The second half
iteration is another SOR iteration but taking the equations in reverse order.

Even though one SSOR iteration is composed of two SOR iterations, there
1s a way to reduce the work required for each SSOR iteration by providing
storage space for an extra N-vector. How this is accomplished can be seen by
explicitly exhibiting two full SSOR iterations and noting that certain vectors
are repeated in a pair of half-iterations.

a2y o)
save Lu(n*)
a2 () g (D)) ()

save Uu(n+1)

o (n+3/2) _ w(Lu(n+3/2) ¢ o) ) + (1 - ) ul™D

save Lu(n+3/2)
,(n*2) . w(Lu(n+3/2) + n2) )+ (1 - w) 4 (n+3/2)

save Uu

135



This scheme is due to Niethammer [1964]}. The work required per iteration us1ng
this technique is approximately the same as with the SOR method.

We noted that the SSOR method can be written as

1) g )y

with 5 and k appropr1ate1y def1ned

Evidently, SSOR is a stationary iterative method of first degree. It
is stationary because S T? k, are fixed from iteration to 1terat1o? It is
of first degree since uTn depends only on one preceding iterate u
It is well known (Young [1971]) that we must have S(S_ ) <lin order to guarantee
convergence. Here S(S,) denotes the spectral radius of S, . This conditions holds
if 0 <w<2and A is positive definite. Also, if we define the error

(n) . ¢

[ = U u

H

where u is the exact solution of Au = b, we have approximately (in some
appropriate norm)

1M

i

sy ]|

and

LX3

M) = 1ses)1" 1Oy

To reduce ||e(n)|| to a fraction, say ¢, of l]a(o)|l we must have

and we must iterate n times, where

+ -lo
"= Tog Sisw5
We define_R(Sw) = «]0g S(Sm) as the rate of convergence of the SSOR method.

As indicated, we suspect that the rate of convergence of the SSOR method

R(S,) = -log S(S,)

4]

depends on . Not evident from our notation, the rate of convergence is also
governed by the ordering of the equations. Given an order1ng, the opt1mum w
will be considered to be the w which minimizes S(S,) or maximizes R(S

Assuming the "natural ordering", for a certain "good" choice of y = which
depends on upper bounds of S(B) and S(LU), Young [1974] has shown thal the
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number of iterations necessar¥ to solve the discrete generalized Dirichlet
problem is proportional to h™'. This is the same order of magnitude required
by the SOR method with optimum w.

Thus, even if Niethammer's work-saving techniques are emp]oyed, there
seems to be little justification to choose SSOR over SOR.

However, what is nice about the SSOR method is that the eigenvalues of
the iteration matrix S, are real and nonnegative (Young,[1971]). Under these
conditions, it is possible to accelerate SSOR by an order of magnitude by means
of semi-iteration. (This is not possible for the SOR method, since many of
the eigenvalues of its iteration matrix L, are complex for the optimal w.)

3. SS0R SEMI-ITERATION. Semi-iteration was studied by Varga (1957) and
Golub and Varga (1961). The optimum semi-iterative method based on SSOR,
denoted by SSOR-SI, is defined by

u(n+1) = pn+'| { ;(Sw U(n) + kw) i (" -p U(n)]’ + ('I - pn+'|) U(n--l)

Here

—— 2

L 2-5(5)

oy =1

o, = (1 - o2/2)7!

czpn -1

pn+']=(.|—_[1m) s n_2935
where S(Sw)

° TS

We see that in order to apply SSOR-SI, we must estimate the parameter
S(S,) along with w. Using estimates derived, again, by Young [1974], the
required number of iterations is proportional to h-%, an order of magnitude
better than SOR.

4. OPTIMAL PARAMETERS. The parameters y and S(S,) determined by Young
are not optimal. Habetler and Wachspress (1961) determined what they pre-
sumed were the optimum parameters:

- 2
w. =

O 1+ A%t
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where
o = %v, DBv)
v, Dv
g = ;v, DLUV)
v, Dv

and where v is a vector such that Sw v = S(Sm }v. However, these formulas are
0 0
not usable directly, since these are implicit relationships. Thus we are unable
to determine w, and S(Sw ) from the formulas since the formulas imply that we
0
know the eigenvector v (and therefore S(S_) and wg )
0
Evans and Forrington [1963] used an iterative technique based on these
formulas to determine the optimum w and corresponding S{S ). Starting
with an initial guess of w, the power method on the matrix S 6 was used to
determine an approximation to the eigenvector associated with S(S,). Then,
via o and 8, » and S(S,) were updated by the formulas, and the procedure was
repeated until w and stw) settled down.

This procedure worked quite well for Laplace's equation. However, our
numerical results indicate that for certain cases where S(LU) < %, the
Habetler-Wachspress formulas do not hold, and in turn, the Evans-Forrington
procedure fails. It was found that the optimum parameters seem to be

Wy = S
1+/T-48
5(s ) = 1-/1T-748
% 1+ /T-48

Incorporating these formulas into the Evans-Forrington scheme we have a
new method for determining the optimum parameters w, and S(S ) for the SSOR-SI
method., The algorithm follows “o

1. Choose convergence tolerances €1 and ey and initial values of w and
v # 0,

2. Iterate with the power method to obtain S(Sw) and a vector v such that

Swv = S(Sw)v
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3. Compute

a= (v._DBv)/(v. Ov)
8 = (v, DLUV)/{v, Dv)

4, Compute
2 ifac<ds
: 1+/T -2+ 4g
w'=
2 ifa>48
]"‘v‘I-IB
1. —t-oa (]4._..__‘._'..9.‘___ if o < 48
V'-Ea*zﬁ v|—2a+la
.s L

1-/T<4%

LA N, [} ifa>4s

1+ T4

5. Terminate process if

|w - w'] < €
IS(SM) - 8! I < Ez

and choose

w, = w'
= 1)
S(s”o) S

Otherwise set w = w' and go to Step 2.
5. NUMERICAL EXAMPLE. We now apply the algorithm to a specific discrete
generalized DirichTet problem of the form (3). In particular, let

A(x,y) = C(x,y) = e10(x+y)

F(x,y) = T(x,y) = 0

and let the region be the unit square with zero boundary values except unity on
side y = 0. Initially, a "good" w (Young [1974]) was chosen. The tolerances
€] =eo= 104 were specified. Results are given in Table 1.
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TABLE 1
OPTIMUM PARAMETERS w, AND S(Sw ) OBTAINED BY ALGORITHM

0
-1 Number of

h “o S(Smo) Iterations S(LU)
20 1.5866 .5866 5 .2329
40 1.7653 .7653 15 .2455
80 ' 1.8742 .8742 35 .2489

The Evans-Forrington algorithms did not converge in this case. For a more detailed
discussion of this example and a number of other problems, see Benokraitis [1974].
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VP ~ SPLINES, AN EXTENTION OF TWICE DIFFERENTIABLE INTERPOLATION

Royce W. Soanes Jr.
Watervliet Arsenal, Watervliet, New York

1. Introduction. Since the cubic spline is a special case
of the Variable Power - splines presented here, the latter may be
regarded as a generalization of the former. This generalization
does not take place in the direction of obtaining higher degrees
of differentiability, however, but rather in the more practical
direction of obtaining greater flexibility and better local be-
havior while retaining two orders of differentiability. The
cubic spline has the optimal property of being the interpolater
of smallest quadratic mean second derivative; this is a global
property, however, and as such may conflict with the curve
fitter's desire for certain local behavior. Specifically, the
cubic spline has a tendency to misrepresent the behavior of a
function which passes from a region of low curvature through a
region of high curvature. The cubic may underestimate the high
curvature and overestimate the low. This tendency may be mani-
fested in the cubic interpolater by the presence of inflection
points where none are desired. VP - splines make it possible to
develop a more aesthetically pleasing functional curve from a
given set of data by eliminating or at least diminishing undesir-

able local behavior when it is encountered.
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NOMENCLATURE

X1<Xp<...<xy 1is a sequence of nodes over an interval on which

we desire to interpolate the function y.

£i = Xj41-Xi = length of the jth subinterval.

yi = known function value at the jth node.

t t . 4
yi,y£ = unknown first and second derivatives at the ;th node.

yi(x),y;(x),y;(x) = interpolating function, derivative and

second derivative at any point in the ;th subinterval.

5]
I

= (X'Xi)/ﬁi
4 = gy ¥id /2

2. The Basic Form. Consider the following interpolatory
function defined on the jth subinterval,

0y

m:
1
(1) klyl(x) = ai+biri+ciri +di(1—ri)

The parameters mj and nj are positive real numbers and kj = mj
+nji-min;. To insure a bounded second derivative, mi and ny
should both be greater than 2. The functions y;(x) and y;(x)
can be evaluated at xj; and xj.] fo obtain aj,bj,ci and di in

1] ]
terms of y;,¥341,Y3 and yi4q-

] ¥
(2) a3 = kiyi*2imiqi-mi-1)y;i-Yi41)
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il

i t
(33 by = &3 (-mynjq;+m;y;i+0i¥ie))

) = 25 (niQi-Yi- (0i-1)yi+1)

¢ ]
[
!

vt
(5) 4y = 2;(-myq;+(my-1)y;3+Y441)

The interpolater is only once differentiable at this juncture,
so we enforce continuity of its second derivative at the jth node

by setting y;(xi) = y;_l(xi) and obtaining Eq. (6).
\J
(6)  [&mi_1kj(1-ki_1)+25-1niki-1(1-ki)]yy

1
= Rykymg g (mg 3-1)(ng_195.1-Y4-1)*

]
'Q'i-'lkl—lni (ni—l) (mlql—yl+l)

Once m; and nj are set for each subinterval, we may solve
the linear system represented by Eq. (6) (plus end conditions)
and obtain the nodal derivatives which insure the continuity of
the second derivative of the interpolater. Setting mj = ni'= 3
on each subinterval would give us the cubic spline formula.

3. Effect of Large m's and n's. Some insight into the
effect of increasing the m's and n's may be obtained from the
consideration of a special case. Equation (7) may be obtained

from Eq. (6) by setting mj = nj = m on each subinterval.

1 ] t
(7  (m-1)(23+23-1)¥5 = Y (mq;_y-¥i.1)+85.1(mas-yi41)
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It is apparent from Eq. (7) that the corresponding linear system
will become increasingly more diagonally dominant as m becomes
large, and in the limit as m approaches infinity, y; will be
given by Eq. (8).
‘ '
(&) vy = (4495 144 1930/ @)
At the same time, Equations (1) through (5) show thai yi (x)
approaches y;+r;i2;qj (the linear interpolater) as m approaches
infinity. This example indicates that we should obtain a well
conditioned set of linear equations as we judiciously increase
the m's and n's to obtain the flattening effect which will pro-
duce desirable local behavior in the VP interpolater,

4, FElimination of Improper Inflection Points. When the
cubic spline is used for interpolation, the curve fitter may
be faced with the undesirable situation of having yzy2+l<0
while (qi—y;)(qi—y;+1)<0. These conditions indicate the presence
of an inflection point in the interior of the ;th subinterval

j+1- This is an aesthetically dis-

when Q; is between y; and y

pleasing situation created by the average curvature diminishing

pfoperty of the cubic spline. The cubic is trying to deny the

existence of a point of high curvature in the function. In

order to eliminate the undesirable inflection point, of which

there can be at most one per subinterval, we must insure that
"nn

YiYi+120- This is equivalent to having c;d;>0. We therefore

want to enforce condition (9) in the event that gy is between
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Yi and Yis1-
1 1 1] 1 1] 1
(9) [nl (ql")’1+1) "Yi+)’i+1] [ml (ylnqi) “)’1"‘)'1_‘_1]10

But since (qi—y;)(qi-y£+1)<0, condition (9) can obviously be
enforced by insuring that m; and n; obey conditions (10) and

(11),
(10)  my>(y44q-Yi)/ (a5-¥5)
(A1) 0320754071/ 051795)

IConditions (10} and (11) must naturally be enforced in an itera-
tive manner if two orders of differentiability are desired, since
m; and n; must be set before yi and yi+1 are obtained.

5. A Local Consideration. A local VP - spline over the
restricted node set [xi—l'xi’xi+1] will be found useful in the

initial setting of the m's and n's. If we set yg(xi+1) =0 =

y;_l(xi_l), we obtain the following end conditions.

1]
12y (-1yz,q = 1395775
d3) Gy y-1yjq = w95

Equations (12} and (13) can then be used to eliminate yi+1 and

y;_y from Eq. (6) to yield Eq. (14).
1
14)  yi = (a3m519i1*5 1930/ G ymy_g+Ry_ny)
Equation (14) can now be solved for the ratio of n; tom_y.
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(15) Ry =n;/m; ;= (43/25 )5 3y)/(vi-q5)

1f we now set y' at each node according to some preferred local
i
formula, we may set the m's and n's according to the following

rule,

Hn

(16) m,_ , = L and n; = LR, if R;>]

1

]

Rule (16) sets a lower bound of L on the m's and n's and assumes
that R, is positive and finite. If Eq. (15) and Rule (16), are
used to initialize the m's and n's, Conditions (10) and (11) can
be used in conjunction with Eq. (6) to iteratively eliminate any

unwanted inflection points.

A simple local formula which has been found effective in practice

for initial setting of the nodal derivatives is given by Eq. (17).

i

a7) Y{ (l“wi) Q-1 WY

1]

where w;

;= UL+ /I + ¢P)/Q + 2 1)

This derivative is obtained from the slope of the line through
(xi, yi) which makes equal angles with the left and right chords.
When this formula is used, it is usually unnecessary to increase the

m's and n's gradually in order to enforce conditions (10) and (11).
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6. A Simple Computational Procedure. An abbreviated procedure

which can be followed in most cases is:

I.

11,

III.

Iv.

Set L equal to a value between 2 and 3. Values
greater than 3 may flatten the curve too much
between the nodes. Values closer to 2 will produce
more roundedness in the interpolater.

Compute the initial nodal derivatives acéording to
Eq. (17) for 2 <i <N - 1.

Set n, = L = mN_1 and calculate Ri for 2 <i<N-1
using Eq. (15).

Compute the rest of the m's and n's using Rule (16).
Solve the tridiagonal set of equations represented

by Equations (6), (12) and (13) for the final nodal

derivatives.

7. Examples. The following drawings, which were produced on

a graphic display CRT, illustrate the more stable behavior of the

VP-spline as compared with the oscillatory behavior of the cubic

spline. Each of the VP-spline curves was computed using the

abbreviated procedure previously outlined [not making use of

conditions (10) and (11)].
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ITERATIVE SOLUTION OF THE TRANSONIC POTENTIAL EQUATION

D, C. Adams and Gary Vander Roest
U.S. Army Air Mobility R&D Laboratory
Ames Directorate

Moffett Field, California 94035

ABSTRACT. The unsteady, transonic small-disturbance equation is a suit-
able model for the flow on advancing rotor tips. This paper discusses the rela-
tive efficiency of two implicit iterative techniques used in the solution of
this nonlinear equation; namely, the point SOR technique and the Douglas—-Gunn
ADI technique. While the two~dimensional calculations of both methods demon-—
strate the effect of varying 1ift and incident Mach number on a high-speed heli-
copter rotor, the ADI technique proved to be the more efficient method.

1. INTRODUCTION. The advancing blade of a helicopter in high-speed for-
ward flight often enters the transonic flow regime, This type of flow is
marked by the presence of local pockets of supersonic flow which are usually
terminated by a shock. A feature of transonic flow which is beginning to be
considered is that these flows are intrinsically unsteady. This is especially
important for the helicopter in forward flight, since the rotor sees a con-
gstantly varying incident Mach number and angle of attack.

. The first treatment of this problem was the paper of Caradonna and Isom
(ref. 1) where nonlifting three-dimensional flows were considered. It was
shown that the Mach number variation alone is a considerable source of unsteadi-
ness. This treatment used a point SOR scheme to solve the set of nonlinear
difference equations derived from a mixed differencing of the small-disturbance
potential equation. However, SOR is often not the fastest technique at our
disposal. 1In this paper, an iterative ADI scheme to solve the nonlinear system
of difference equations is devised and then compared with the SOR method.

2, STATEMENT OF PROBLEM. The second-order nonlinear partial differential
equation to be solved is

A(btt + B¢xt = C¢xx + ¢yy =
where
A = M2/ (26275 )
= [2M3/(AR52/)] (L + u sin y)
1 - Mﬁ(l + p sin )2 )
C = — (L + )M + p sin ¥)¢
(§2/3 M-R X
¢ = disturbance potential
t = time
% = chordwise coordinate
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normal coordinate

<
1l

X = X/c

y = (5/e)§1/3

MR = aspect ratio = r/c

¢ = blade chord

MR = blade incident Mach number due to rotation
r = blade radius

X,y = physical coordinates

Yy = specific heat ratio
§ = thickness ratio
u = ratio of forward flight speed to rotationmal speed, V _/wr

P = blade azimuth angle (measured from the downwind direction)
The linearized body boundary conditions are given by
N
6,G6,0%) = 4o Ly, ¢ (69)] (2)

where fu’l(x,y), the equation for the upper and lower airfoil surface, is
given by

f ul T ( +E

u,? g u, 2 x) (S] (3

where Tu’z is the thickness distribution and o is the blade angle of
attack.

The far-field boundary conditions axre given by

CL A -2
N7 2) s ® et yRee (4)

= - —————
‘b(XsY) 41T62/3 an 61/3 %
where

_ lift per unit length
L ra/2)ev?le

and where

!

v = total velocity of the roror

[

o) air density
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The right-hand side of eq.
subsonic (Mp < 1) and hyperbolic when flow is supersonic My > 1).

Equation (1) is differenced as follows:

N+1 N+1 N+1 N+1 N+1 N+1 N+1
X M+1 N+ M+q M M+1 M < M+1 M+1
§ + B § = 4 - ¢
A tt¢ xt¢ EiCi éxx¢ a Fi—l)cimléxx¢ + ny¢
where
N = time level
M = jteration level
N-+1
M1 1 N+1 N N-1\M+1
(S = — -
F+1
MEL 1 [N+l N N+1 N \Mtl
O T AxAt (pi Ty Tt i‘l)j
N+1 N+1
Ml 1 M+1
Gxx¢ - Ax2 qt)i+1 2¢i + ¢i—1 .
]
N+1 N+1
= M+1 1 M+1
éxx¢ = —“E'¢. - 2¢, .+ ¢
Ax 1 1i-1 i-2
N+1 N+1
M+1 1
Sog® = raley 204+ 0y
vy Ay2\'] N+1 N+1
N+1 M M
1- MR(l + u sin )2 . ¢, - ¢,
Moo= - (1 + MR 4y sin 2 Cat
1 52/ 3 MR 28%
El = l, Ei—l =1 for ML <1
e, = 0, €i~1 =0 for My > 1
e, = 0, €., < 1 for Mp = 1
e, =1, €, =0 for shock point
i i-1

The epsilon notation denotes that backward and central differences in the
The use
Also, this notation indicates

x-direction are used in supersonic and subsonic regions, respectively.
of mixed differences is required for stability.

(1) is of mixed type, being elliptic when flow is

(5)

that the sum of the central and backward operators are used at a shock point.
This is necessary in order to satisfy the equations in the global sense and

insure proper shock jump conditions,
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The differencing of ¢yy ig modified on the body as follows:

-2 - -
byy Tz (i, T b,y T Y8y (6)

For the lifting problem, the potential must be discontinuous in the wake
of the rotor. The difference in potential at this discontinuity is equal to the
circulation, I'. In order to difference across this discontinuity, ¢ dif-
ferencing is modified as follows: vy

¢i - ¢iig B} 2¢;l; + (¢i,-1 £

where

Differencing, as above, yields a set of nonlinear algebraic equations which must
be solved by iteration. In the course of iteration, one can specify either C
and iterate to find the angle of attack (o), or specify o and iterate to
find C.. In the former case, o must be updated until the jump in potential
at the trailing edge equals TI. This is done using

L

LN a0 - P00 - 7] @)

where A 1is a relaxation factor (usually equal to one).

3, SOR METHOD OF SOLUIION. For the SOR scheme, the potential of each
iteration is updated using

N
N N rM
M+1 M i
RS R T § (9)
1,] 1,3 Di j
N 1

where Ry is the residual that is defined by eq. (5), with all terms grouped
on the rig%t—hand side. Dy ig the sum of the diagonal elements of the
residual:
b - 28,04 N (1 -e; o) c .2 _ A B
i,j  Ax? Ax2 i  Ay2 ~ At2  AxAt

(19)

The relaxation factor w 1is less than 1 in supersonic regions and between 1
and 2 for subsonic regions.

In order to start the problem, the first two time steps are assumed to be

quasi~steady (A and B are set equal to zero). This procedure causes no problems
as long as the starting Mach number is subcritical.
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4, DOUGLAS-GUNN ADI METHOD OF SOLUTION. With this method, it has been
found necessary to include an artificial ¢ —~like term in eq. (5) for stability
purposes. We now have the modified difference equation

N+1 N+1 N+1 N+1
F [ M+1 M M+1 N+1 M+1
— - +
At ¢ .. Aétt(b tB 6xt¢
1,3
N+1 N+1 N-+1 N-+1 N+1
M M+1 M - MH M+1
= + —
Cici SXX¢ (1 Ei—l)ci—ldxx¢ + 6yy¢ (11)

We have not determined the optimal value of F. However, ¥ = 40B seems to work
well for most uses. For convenience, eq. (ll) is rewritten in an operator nota-
tion as

N+1
T,
-1 N-2 N+1
(KT + né_ + 814800+ + 3 T ¢ " =g (12)
X = L
where N+l
N+1 F M
g = ®
I = identify operator
R .
t At?‘
M = iteration index
N = time index
S8y = spatial operator in the x-direction =
N+1 N+1 N+1 N-+1
M+ M N M+
—C¥ £.8 o L_¢b @-e, )5 _ 4
i i xx i-1 i-1" %X N+1
.1 . A M+1
So = gpatial operator in the y-direction = —6yy¢
Too._2a BV
0 A2 AxAt x
At
6x - ¢i ) ¢1-1
pNt+1
"7 axAt

The Douglas-Gunn scheme (ref. 2) is employed to generate the ADI routine because
it is generalizable to any number of dimensions. Note that the term

(KT + no_ + S; + Sp) contains all the unknowns. The original Douglas-Gunn scheme
does not” include the &, operator because they did not consider equations that
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had mixed spatial-time derivatives. The general Douglas-Gunn recursion rela=-
tion for generating ADI schemes for any number of dimensions is

N+1 N+1 N-2 N+1
(KT + nS§_ + S8,)¢, + E: S.¢,  + E S.¢* + E T, ¢ =g (13)
X i"71 h 3] .= - L
= j=i+ §=0
where ¢ is the number of dimensions, which is 2 for our case, and ¢% is

some extrapolation from previous time steps. Generally, we have let ¢* equal
the previous iterant. The first step of the two~dimensional case is as follows:

1
~ N-2 N+1
(KT + n§_ + 8104 + Sp¢* + ZE) T4 =g (14)

The coefficient of ¢, having both central and backward differences, gives rise
to either a central or lower tridiagonal matrix. This matrix is solved by a
combination of the Thomas algorithm and direct elimination. Substituting in
eq. (13) for the second step (q = 2), we get

N+1 1
(KT + ns_ + 52)<:>M+l + 8510+ 2 T2¢N"1 = 't (15)
4=0

Subtracting eq. (14) from eq. (15), yields a simplified step 2, which is as
follows:

N1
(KT + ns_ + s o (kT + n8 )% - Sp0% = 0 (16)

KI and S, generate a tridiagonal matrix. However, nGx adds a term which is
on a previous column. This column must be solved before we can move to the
next column. This imposes a necessary order on the process and the tridiagonal
inversions march across the grid from left to right. To get started, we let
the first two time steps be quasi~steady by setting the time index (n) equal to
the iteration index (m).

5. RESULTS. Numerous cases were run by both the SOR and ADI methods,
using various Mach number and lift variations. The greatest difference between
these calculations and the results of ref. 1 is the inclusion of 1ift. It was
noted in ref. 1 that upstream wave propagation necessitated placing the
upstream boundary at least 10 chords upstream. With 1ift, however, this situ-
ation becomes much more acute, and it was necessary to place the boundaries
20 chords away (upstream and downstream) in order to obtain stable solutions.
The ADI method was generally more reliable, as the SOR method often failed to
converge at higher values of 1lift and Mach number. However, when the SOR
method did converge, it agreed almost exactly with the ADI method. 1In these
situations, however, the ADI method appeared to be about twice as fast as the
SOR.

A case, from which identical results were obtained from both methods, is
shown in fig. 1. 1In this case, we specify a sinusoidal C; and find the
angle of attack. The rotor in the center of fig. 1 indicates the various
azimuth angles for the Cp plots.
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Unsteadiness is indicated by the effect of flow history on the flow.
For example, at the rotor positions A and I, the Mach number, angle of attack
and lift arve the same, Also, the solutions obtained are so ldentical that they
are plotted on top of each other. Clearly, the flow history plays no role at
these points and the flows are essentially steady. At blade position D, the
lift is specified to be zerco, and the solution obtained has identical flows on
the top and bottom surfaces. This is what one expects from steady flows. How-
ever, one would also expect a zero angle of attack from a steady solution
instead of the slightly negative angle that was actually obtained. The nega-
tive angle implies that the flow, up to thils point, is unsteady but only
slightly so.

In the subsequent blade locations, the flow is decelerating and the 1lift
is again increasing. The shock is seen to move forward but does not 'diminish
much in strength. 1In fact, on the bottom surface, the shock does not go to
zero strength at all. Instead, it appears at position G to be on the verge
of popping off the leading edge and proceeding out into space. This effect
was first noted in ref. 1 for nonlifting cases and is seen with great clarity
in ref. 3, which uses an ADI technique very similar to this one. On the top
surface, the increasing lift allows for the sustenance of the supersonic
region, and there is no shock popping. However, the shocks are substantially
stronger than at their corresponding azimuths in the accelerating flow regiom.
For example, position H 1is the mirror image of position B, but the Cp dis-
tributions for the upper surface are quite different.

Clearly, the effect of unsteadiness is large in a decelerating transonic
flow. In addition, where there is lift, the difference in unsteadiness can
be quite different on the top and bottom surfaces.

6. CONCLUDING REMARKS. The modified Douglas-Gunn ADI is about twice as
fast as SOR and generally more reliable. Present computing times are about
20 minutes on a CDC 7600 for a two-dimensiéonal 1ifting problem. This can be
greatly improved with more efficient programming, a less rigid convergence cri-
terion, and the use of a variable time step. An interesting approach is taken
in ref. 3, where the nonlifting two-dimensional problem is treated, using a
Douglas-Gunn scheme. In this approach, the difference equation is linearized
in time, thus eliminating the iterations, but requiring a smaller time step.
It appears that with a combination of the above approaches, unsteady three-
dimensional calculations would be a practical proposition. We are now working
toward this end.

It appears that the inclusion of unsteadiness in transonic flow predic-
tion is at least as important (and likely more important) than the effect of
three - dimensionality. Decelerating flows are altogether different from their
quasi-steady counterparts. Also, lift raises the possibility of very umnusual
loads in the second rotor quadrant.
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CALCULATED TWQO-DIMENSIONAL PRESSURE DISTRIBUTIONS ON A ROTOR
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UTILIZING REAL-TIME TEST DATA ANALYSIS IN
SYSTEM MONITORING AND CHECKQUT

E. H, Gamble
U. 8. Army Test and Evaluation Command
Deputy to the CG for Analysis
Aberdeen Proving Ground, Maryland 21005

ABSTRACT. For the proper utilization of equipment needed for test
data on-line acquisition, display, and comparative analysis, some
novel data management techniques are in the process of development.

For on~line analysis of test display data, the recognition of
changing values in the inherent uncontrolled design parameters and
system output variables must be basic. Also, the display technique
must accommodate a reasonable number of sets of operating and envi~
ronmental conditions,

We must be able to identify shifts in the values of the parameters
and variables as well as shifts in the weighted contributions of each
parameter to the output system variable value. Each contribution is the
product of the quantified parameter value under a given condition set
and the corresponding influence coefficient. This coefficient reflects
the sensitivity of the ocutput variable to a nominal change in the pa-
rameter when measured at the given condition set. In addition, we must
identify any changes in the gains of the functional equipment components
and variations in the transmission characteristics of the test data trans-
port and management system, An observation matrix of the coefficients,
parameter values, or contributions provides the display vehicle.

The study adopts a model consisting of seven parameters and five
sets of conditions. Variations of all quantities are demonstrated and
companion computations made to show the significance of the variations
and their identification.
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I. INTRODUCTION.

One of the significant developments in process to be applied to
the test analysis and evaluation of Army materiel systems is the real
time use of the computer for the:

1. On-line acquisition and analysis of data.
2. Display of the test data while the system is under test.

3. Making comparisons of this test data with stored data from
a developed reservoir of historical data about similar and current
systems. Knowledge of the testing subsystem equipment should be
available for ready reference (see Figure 1).

"One such testing system is in the design and planning stage and called
project ADAPT (Automatic Data Acquisition and Processing Technology).
This program is under the direction of the Materiel Testing Directorate
of the Aberdeen Proving Ground.

A practical technique for on~the-spot analysis of test display data
is needed. For such on-line analysis, not only central or "expected”
values for the parameters must be displayed at the centralized control
and display area. We must identify shifts in the values of the uncon-
trolled parameters of the system under test and the testing and instru-
mentation system. In addition, we must identify any changes in the gains
of the functional components of equipment and the variations in the trans-
mission characteristics of the data transport and management system,

To assist in the understanding of utility and potential application
for such a system, a study is described where the data display is eval-
uated as a means for both real time system monitoring and confidence
status or checkout., A display model for the test item and the testing
equipment will be applied to a planned group of activities. These
activities are defined as the set of subtests planned and executed as
a part of the Test Plan and defined by a Test Directive. One approach
to this model is the adoption of a Data Observation Matrix as the display
vehicle. This model has found use wherever one applied techniques such
as systems modeling by functions (see Reference 1) on parameter-sensitivity
coefficients (see Reference 2). Figure 2 describes a general form for such
an observation matrix.
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It will be our purpose to illustrate the application of analysis
techniques for a matrix model of seven parameters and five condition
sets of grouped activities. The complete study of this model involves
the digplay for the time variations in the participating parameters and
their dimensionalized contributions and changes in the parametric
sensitivities.

I, DISCUSSION.

A. Mathematical Background.

Utility of Observation Matrix for Data Display:

One evaluation criterion for usefulness for any method of
information identification and cataloging is that the variationals of all
system parameters be recognizable, definable, and predictable, We
have suggested that the mathematical and informational system model for
a given influence level be described by the coefficients array for the ap-
plicable engineering equipment and physical constraints,

The influence level is defined by the operating subsystem or
data system gross functions, K or mission phase, the data functional model
subfunction or component, activity and agency, etc. The (py) are the -
measured values for the Xy parameters or the set of values found as the set
to maximize or minimize the criterion - our measure of adequacy/excellence,

Two cases are of immediate interest. For a change in system
time of magnitude (At):

(1) A shift occurs in the system parameter measurable values
(polarity included).

(2) The shift occurs in the influence coefficients, which
represent either the compatibility potentials or sensitivity potentials of
the equipment. Transfer or data transmittal characteristics are the inter~
dependency factors for the variables and the system conditions.

In both cases, the display integrated parameters and contributions to the

system objective functions are changed in magnitude. A dependable tech-
nique must be established for determining whether the shift is made up
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of type (1), (2), or some combination of these. Variation with system
condition/configuration (J) should be identifiable.

A numerical example with seven parameters and five conditions
or configurations which define the interdependence relationships will be
used to illustrate both cases (1) and (2). The example will also show a
variation with (J) for one of the seven parameters. We will study these
for a system time, t = ty, and a time change At), a second time t and
time change A ty. The data are available for a consideration of the
variations consistent with the time interval (t3 - t1), as well as those
mentioned.

Por Case (1), where the shift occurs in the parameter values,
the supporting analysis follows:

The change in objective criterion equals —-

*
I¥ - T =By (kg - Xp) + ...+ By O - xp) (.01)

The corresponding change in subsystem capacity potential or integrated
parameter is .

lei - WKi T A)Ki (Xl* - X))+ ... apki (x; - Xp) (.02)
Bher= b (WEi -Wm) (.03)
1 ;
m n * *
= I ¢ a (x7 - x7) = x (%7 = %) .04
R S § By (X1 - Xy (.04)
m n
= I I (ayrr) (spp = = 8 .05
21 Je1 iKJ Py p (3]') ( DI) ( )
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(Note: The starred quantities (previous page) are values for variables
at (t; + At) and unstarred those at t1.)

A check test is performed in which all the stimuli parameters
X] are set at a fixed constant value (normalized,this is equivalent to
unity, 1). If this will give a zero change in the objective function
I = I¥ , the valid conclusion is that there have been no changes in the

influence coefficients v(aﬂq)» « Superscript (1) identifies check values.

If both (Z* - Z) and Z (B - B;¢) have a value which is
J J J

non-zero for the test of fixed constant values for the parameters, then

the variations are in the (aiKT) . Mathematically, for the change in the
coefficients, we state that:

(1 (1) 1 o)

Z*_Z :'Z Z( afyg ~ *10K )z 0 (.06)

> - - -
= ( Bj;—BJ)<O; X; =P =P =1 (.07)
For a shift in the parameter values, we state that$

eace )\ (B, )
[ I J] ( J) ( 8,1 (( Bl ) (-08)
K K K
At

'J.’or?(;r £ Xp=Pp=1

The time sensitivity potential for the parameter X; is found
by dividing the expression and value for A XJ- for the time shift At

169



by the time interval A t, This sensitivity is identical to the time rate
of change of the variable XT’

bX _ Xy (.09)
e I
At change 1 \
£ (o)
= (1). (1) .
—B*_B_j BXB, X} - By "By )( 10)
( Jd (x.=1) K
J
K
A -].
=B e gy e - (.11)

When the change is in the influence coefficients and not in
the X7 parameters, we must answer the selection question regarding
equipment deterioration. "Do we need to determine the individual
change A(am() or the resultant effect?” Let us consider the mathe~
matical forms needed to answer this question.

A Z & gkt - A( brta ) = Xy (885) (12
i K,K .
b = A Z aiJKXJ = ZlAai}K)XI {.13)
J
for AXI= 0

3 A(T-T) e

For the particular case where XT =1,

*
Z_Z = 0 for ba; e =0
K

§ 0 if AaiJKf 0

(.15)

(.16)
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The individual ( Aajjg) are needed in order to determine or
verify the change in the subsystem output variable to be derivable from
the summed weighted influence of the parameters (see Equation 13).
Fortunately, our matrix technique displays all these quantities and they
are recognizable,

For our Case (2), where the shift is in the coefficients and
not the parameters, we know these facts:

Z*“Z =Z( ki T ki ) (.17)
i i i
= Z Xy Z ( afx Bk ) (.18)

J L

X]. Z (AaﬂK)

1

Il
— M

_‘:Z XJ( 53—%) (.19)
J -

X

J

Since our variations with At are in ajJg, we set XI equal to plus one,
then we find:

m @)

Z*._ Z = value = ZJ: B',(Iel) _ Bl(jl) - '2;] (88) 2 0 (.20)
K
= Z Z ( 217K ~ i )K

7 i

= Z]: 2 (Aai.JK) . {.21)
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A priority ranking can be found from this ratio:

(1)
(B’(J+l) = Bl )K

A% -

(AB(J+1))XI: 1 (.22)

B. IMNlustration of Technique.

We will study a system whose model consists of seven
parameters subjected to five constraints. These constraints describe
the system parameter interrelationships under five sets of conditions.

Our five system conditions or constraint inequalities form
the rows for our Influence Matrix. Seven dominant parameters, which
are interdependent, form the headings for the columns in the array.
Nine tables are attached which illustrate the application of our technique
for identification of the changes in status for the operating equipment.
Let us consider one system situation which could be represented by the
coefficient array of Figure 2. The integrated subsystems may be described
by the seven dominant and critical parameters whose measured values are
available and accessible as the outputs of the several position references,
inputs to the circuits for the power controller, and inputs to the path con-
trol circuits. The five system conditions might define the several constraints
for a land vehicle during the conduct of a particular set of maneuvers.

Table 1 has cell values of ayjx at the system operating time tj.
These coefficients are the interdependence transfer admittances or com-
patibility potentials. The Cg; are the integrated display parameters for
the several system conditions and represent the limitation on the seven
term sum of the product of the interdependence coefficients and the appro-
priate stimuli or dominant parameters (for the specialized case of unity
value for each of these dominant parameters). The bI are the corresponding
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€Ll

SENSITIVITY - INFLUENCE TABLE FOR SHIFT IN PARAMETER VALUES WITH (At)

N X Xy X3 X4 Xs X X7 Ck;(Py=1)

A 83 450 130 445 180 550 190 2808

Aq 804 450 130 445 180 95 190 2124

Az 960 675 155 525 180 120 200 2623

Ag 450 450 104 195 72 50 100 1385

As 720 450 86 455 151 100 180 1925

by att; 3797 2475 605 2075 771 915 940 (EJ by | (P, = 1))k = 11574 =ZCKE

py (1)) 1.903  0.641 1,000 0.738 0.406  0.861 0.515 !
Py{tz+4atg) 2,135 0.898  0.593 0.896 0.056  0.166  0.095
APp(At2) 0,230 0.257  0.407 0.158 0.350 -0.695 - 0,420

AP} oty + (t2 - 1]

0.128 0.311  0.385 0.014 -0.365 -0.682 + 0.428

Pyop 20007 o0.587 0.208 0,882  0.421 0.848 0,52

by Pyatt; 7592 1452 126 1829 322 776 491 beJ) = 12588
I Katt,

TABLE 1



capacity potentials for the unity measured parameter values. This table
gives the parameter values for three system times-- (t;), (tp), and
(ty + Aty).

Table 2 gives the array of cell values at system time (tz) and
each is the contribution at the corresponding i system condition to the
display parameter. In addition, an optimization study was performed
for the given array to find the set of weighting coefficients or optimal
set (p]*) for amaximization~minimization of the criterion. This set has
significance for an overall performance evaluation of the operating
subsystem rather than a status or diagnosis study.

Table 3 provides the array of display contributions at time t;.
These values present rather obvious changes in cell values from those
shown in Table 2.

. Table 4 portrays the contributions at system time (t2 + A t2)
in contrast with those identified asa part of Table 2 at (t,).

An optimization study was also performed at this system time
to find the set (pI)*.

Table 5 gives the variations in the display contributions for the
time change of ( Aty). This array is used to illustrate our Case (1) where
the shift occurs in the parameter measured values with no changes in
(aiIK) . The change in the integrated display parameter wgj is given for
each i system condition. The percentage change in the parameter value
measured at t) is also determined. This set of values shows the sig-
nificant dominance of XT for7=1, 2, and 4.

Table 6 gives the variations in the display contributions for
the time change of ( 4 ty). The py corresponding to the X; are considered
fixed. The change in I;A wgy is a positive quantity 262. However,

the summation z(A8.) is the negative quantity (~561).
PR

Table 7 is a companion array to Table 6, but giving the changes
in ajjg rather than é[ai]-K(pI)]‘the variation, or (pI) 8 [aiIK] . The sum-
mation of the variations in 4K first with respect to i, and then J is a
negative quantity (-540). This array is numerically identical with the test
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TA

TABLE OF CONTRIBUTIONS (ayyg Py) AT t = t,

i;J"' X X2 X3 X4 X5 Xg X7 wig fes
Al 1644 289 130 328 73 473 98 3035 3322
Ay 1531 289 130 33 73 82 98 2539 2832
Ay 182 433 155 387 77 103 103 3084 3418
Aq 857 267 104 144 31 43 52 1518 1666
As 1371 289 86 33% 61 8 93 2322 2553
B 7231 1589 605 1531 36 787 444 Z B) = 12503 4 12500=) wy:
() 134  0.650 1312 0.738  0.612 0.880  0.490
(B pp* 9732 1032 794  1® 193 e92 218 2 £, =12790 =2( 6 P, )"

i J K

Individual contribution to wy, is (ale) py (t2)
¥ F P yx
o £y 8 ( &K H(fz)) J
*
( Py} are optimum values of parameters for the matrix array having individudl cell

designations 27K Py (t2) .  The result from an inferative, convergent
: *
process maximizing=minimizing the criterionzi Ty -Z( BI ’PT )

TABLE 2



9.1

] - X|
Ay 1726
Ay 1606
As 1920
Ag 900
As 1440
K Nl 7592

264
264
396
264
264
1452

5
2 (al]‘K P]’)** att= tl =K ITI
j=

X3
27
27
32
22
18
126

VALUES OF

X4
392
401
463
172
401
1829

TABLE 3

(34K p))** AT & =ty)

X5
76
76
76
30
64
322

X6
466
8l
102
42
85
776

X7
99
99
105
94
94
491

{wg;)
3050

k

2554
3094
1524
2366

S (wi) = 12588




R ]
i
oA 1842
Ay 1716
A3 2048
A4 960
As 1546
*

8 8102
'3 B;*p]*** 9641
py** [.1899

Individual contribution to WKi is {aiﬂ( ]

* % X -
{P] }= the parameter value set resulting from optimizing 2 Fi;

405
405
607
405
405
2227

2062

0.926

TABLE OF CONTRIBUTIONS AT t = tp+ A2

Valuesat t = t5 + Aty

3
77
77
92
62
51
359

217

0.605

4 5
398 10
408 10
470 10
175 4
408 8

1859 42
903 4
0.486 0.0846

k

6 7
21 17
16 17
20 18
8 |
17 16
152 84
93 121
0.613 1.437

P},***(t2+At2 j

to Fg; s {a.HK Py (ty + Atz)}PT***

TABLE 4

1

Wi
2840
2649
3265

1620

Fui
211
2720
3349
1672

2481

2441
*
z_; (8J), = 12815=zE Wi

zi FK£= 13027-2 B-}r PI***

* E(B; Py

I

***)
k



VARIATION IN DISPLAY PARAMETERS

Element is 5(31}]( Pr ) 2% A1TK (AP])
‘ i J =+ Xy X X3 X4 X5
Al 116 141 50 6 -66
A2 10 141 50 7 -66
A3 128 21 60 7 -66
A4 60 141 40 3 -26
As 96 141 33 7 -56
(AK) = (K)-K)) 510 775 233 30 =280
b, 3797 2475 605 2075 767
3 (Ar, ) =(F} - Pj) 0128 0.31 0.385 0.04  -0.682

2 (e - by -7
i T T

No change assumed in ajjx

for At

Xe X7 (Awii )
=375 -82 -210

65 82 +95

82 87 71

34 -78 +106

-68  -78 -75
624 -407 z = 237

915

940 Z‘bl J = 11574

0.428 -.033 ]

Z(K; - K )y

from t, to (tl +At1)

Data obtained as differences in Tables 3 and 4

.064 0.53 1.85 0.0i6 -0.87

6.4% 53% 185%  1.6% =-87%

TABLE S

-0.804 +0.82
-80.4% +82%




6L1

VARIATIONS IN EQUIPMENT INFLUENCE COEFFICIENTS. Element is -S(QHK Py )

Change for {/Atp) from Tables 2 and 4.

={tp+ At} -t

A Avwyy
Wi s
: ng X| X2 X3 X4 X5 X6 X7 K Pyt )
4 Al 198 116 -53 70 -63 ~-382 -81 -195 ~-428
Ar 185 116 -53 72 -63 -66 -81 +110 - 66
A3 220 174 =63 83 -67 -83 -85 +179 - 61
Ay 103 116 -42 31 -7 -35 =77 + 69 +47
Ag 165 116 -35 72 -53 -69 ~77 +119 - 31
* : A
_v. = AK 871 638 -244 328 273 -535 =401 Z AK =282 ZZ'( Wies
K=K =AK (At) ] A |
: [.905 0.641 1.000 0.738 0,406 0.861 0.515 !
Py (tz ° t2+Atz) ZAWKi = -555
Assume that total shift during (/Ato) is due to changes in 947K Pr (tE )
K - - _ _ AK
(A ), 457 995 246 430 672 -737  -778 z ?I_ = Z As; = =561
Py - J ]

TABLE 6



TABLE OF EQUIPMENT VARIATIONS

Py fixed: changes in a4 Period = (/\t,)
AN

Aj 104 181 -53 95 -155 -4&3 -157 J -428 -195 0.45
A2 97 181 -53 98 =155 -77 -157 - 66 +110 -1.66
A3 115 271 -63 42 -164 - 97 -165 - 6] +178 -2.93
Ayg 54 181 -42 IRR - 66 - 41 -150 147 + 49 +1,47
Asg 856 181 -35 98 =131 -80 -150 -3 +119 -3.84

(K; - X ) QoK ) e 638 -246 328 -273 =635  -401

(ZéalJK = dagy 45 95 =246 444 672 =738 -779 Z ( z Sagg | =-540

i P, (t;) 1.905 0,641 1,000 0,738  0.406 0.861 0.5I5 oo

Values of Table 6 contributions changes divided by p, fo form ( s ayyg )
Priority 5 1 7 é 4 3 2 Equals (B}r - B]-}/(B;_'_l - B.]'-l—l}
Ranking of

Deterioration

TABLE 7



condition of setting all of the parameter measured values to the game
constant =- unity. The criterion value (-540) is then the ZT(BI - BI)'

<

A priority ranking can be found from the ratio of each (B? - BI) to the
next parameter BI"' 1" B] + 1

Table 8 gives the data of Table 7 now with the cell value as
the percentage change which has occurred in {am() for the time change
Atg. These are the shifts or deterioration in the operating characteristics
of the equipment defined for their influence corresponding to XI'

Table 9 records the array of {ai } coefficients for their values
after the A t, shift has occurred. These are the total deteriorated values
for each interdependence cell. Of some significance are the % change in
the display parameters (for p; = 1). These cover a percentage change from
-18% to + 3.3%. The corresponding changes in the true display parameters
with PI(tZ) actual values show a range of ~6,8% to +5.5%. The change in

criterion value ZI bI for PI =]1,t= tz is from 11,574 to 10,326. The data
indicates a constant percentage change in equipment transfer characteristics
with varying system conditions, except for the one case of (J = 4). This
latter variation would provide a basis for forecasting a nonlinear type of
deterioration with system operating conditions. Such a variation does not
lend itself easily to malfunction isolation, identification, and corrective
action.

IIT. CONCLUSIONS.

The study is a first cut at enlarging our knowledge concerning the
applicability and limitations of the Observation Matrix Technique for Data
System Cataloging. What we have learned from this study:

1. The matrix technique will permit the identification of variations
in display integrated parameters (system quantities wg;) and the individual
contributions due to each selected dominant equipment or software parameter.
These parameters may be functional in origin -- hence an activity or action.

2. Tt will permit the separation of the variations into changes in
values of the influence or interdependence (interface) coefficients or po-
tentials or changes in the measured values of the parameters. The
parameters can also be equipment signals inputs or stimuli.
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£31

INFLUENCE MATRIX FOR ik @17 , [Aty) shift

_ Acki  Awg;
J > X XZ X3 X4 X5 Xé X7 Cki c
i ' Pp=1 Ki Wxi
+ A 967 631 77 540 25 107 33 2380 -18%  -6.8%
A2 901 631 77 543 25 18 33 2058 -3.2% +4.1%
A3 1075 946 92 567 16 23 35 2562 -2.4%  +5.5%
Ag 504 631 62 306 6 9 30 1432 +3,3%  +4.2%
As 806 631 51 553 20 20 30 1894 -1.6%  +4,9%
> oflty)  =10,32%
I P}' =1
(1) Zéam{ 456 995 -246 - 444 -672 -738 =779 - -540
J N Z Z
by 3797 2475 605 2075 771 915 940 834K
o1
(1)/b; 12%  40.2% ~40.6% +21.4%  -87% -81%  -83% '-540 5. 2%
- Z Z Sayk
]

2

J

TABLE S



3. The test in which the parameters are replaced by a constant
value (normalized to unity) does prove of value in identifying the source
of deterioration (equipment operating characteristics ajjK —= Or parameter
value).

4, It permits an analysis of the variation as percentage change in
ayjK or parameter values Py for Xj.

5. A variation in the equipment characteristic with system condition --
such as gain, impedance, etc., is identified with stimulus, parameter, and
condition,

6. The matrix technique is directly applicable to an optimization
analysis which gives a set of parameter stimuli values for comparison
with actual measured values. This optimized set {Pr} is the desired
parameter set for the several system conditions or configurations. This
optimized set may be the desired weighting for display parameter contribu-
tions consistent with the integrated display values wy, and {BI XT} .

7. Ttem 6 proposes the utility of the matrix and optimization tech~
nique as an in-process design and on-line data analysis tool for selection
of the distribution of display contributions for each equipment or data
parameter and, hence, selection of the array of signal levels for parameter
central values,

IV. RECOMMENDATIONS.

1. The observation matrix technique for test data display and
analysis be subjected to additional study as a basis for on-line operator
decision making.

2. The mairices be stored in the same form as used for real-time
data display as a part of a historical data bank.

3. Additional design and utility studies be directed to the suggested
techniques as a basis for ADAPT and competitive DMS.
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LETHALITY OF A SPECTRUM OF SHAPED CHARGE PROJECTILE
ANTI-TANK FIREPOWER-KILL EFFECTS EVALUATED BY
THE AVVAM-1 COMPUTER MODEL

Donald F. Haskell
US Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

ABSTRACT. This paper describes an anti-tank lethality study per-
formed by the use of AVVAM-1, the first version of a new armored vehicle
vulnerability analysis computer model developed at the Ballistic Research
Laboratories. In this study the vulnerability of a Russian T55 tank to
a spectrum of anti-tank shaped charge projectile terminal ballistic effects
is calculated and analyzed. This is done to illuminate the behind-armor
effects characteristics and their combinations that are most lethal. The
measure of lethality employed in this study is the probability of achieving
a firepower kill given a hit on a specific point on the tank.

Lethality of the various projectile effects is calculated for direct
frontal attack of the tank. It is assumed that there is an equal proba-
bility of hitting any point on the vehicle attack aspect. In this manner
the individual projectile effects may be separated from weapons systems
hit probability. Typical shaped charge projectile spatial distributions
are employed for the mass, speed and numbers of fragments produced behind
the armor. The end product of the study is a ranking of the damage pro-
ducing effects of the various projectile types according to their lethality
in causing a firepower kill. This was obtained by a sensitivity study of
the effects of the various parameters. The conclusions of the study are:

1. Over the range of the variables (normalized to the standard
BRL 3.3 inch cone diameter precision shaped charge) from 0.6 to 1.2,
firepower-kill lethality of the shaped charge jet projectile in direct
frontal attack of the Russian T55 tank is most sensitive to changes
in cone diameter and the number and speed of behind-the-armor frag-
ments (given in decreasing order of influence on lethality of the
seven variables studied in this investigation). .

2. Over the range of the standard charge normalized variables
between 1,2 and 1.8, lethality is most sensitive to changes in jet
velocity, cone diameter and the number of behind-the-armor fragments
(given in decreasing order of influence). Here again, lethality is
least sensitive to jet breakup time.

3. On the other hand, jet breakup time exerts the highest effect
on lethality over the standard charge normalized variable range from
1.8 to 2,0, This is followed by jet velocity and cone diameter. Mass
of the behind-the-armor fragments has the least influence on shaped
charge lethality over this range,
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4. A marked functional dependence of PK/H upon the behind-the-

armor fragment spray total kinetic energy was found. This informa-
tion should be very useful in the design of new shaped-charge anti-
tank projectiles. It should also provide guidance in the vulnerability
reduction of tanks.

1. INTRODUCTION. The object of this investigation was to determine
which of seven selected shaped charge munition parameters exert the most
influence on the probability of achieving a firepower kill of the Russian
T55 tank given a random hit on the tank in a direct frontal attack. The
seven parameters are: the liner cone base diameter, munition standoff
distance from the target, jet velocity, and jet break-up time as well as
the number, mass and speed of the fragments generated behind the tank
armor by the jet. Each parameter was varied independently over a pre-
selected range of values to assess its effect on the firepower capability
of the tank. In addition, the effects on kill probability caused by varia-
tion of combinations of these parameters was also studied.

AVVAM-1! was used to perform the study. AVVAM-1 (Armored Vehicle
Vulnerability Analysis Model, first version) is a conceptual model and
associated digital computer code developed at BRL to analytically assess
the vulnerability of armored vehicles. AVVAM-1 can be employed to per-
form both armored vehicle vulnerability and anti-armor weapons design and
analysis studies. This first version of AVVAM treats components and per-
sonnel subjected to penetration and/or perforation damage mechanisms.

The attacking munition may be a shaped charge or kinetic energy projec-
tile, or a shaped charge or Misznay-Schardin land mine. With additional
effort the present model may be extended to include other damage mechan-
isms. Although originally developed for armored vehicles, the code is
not restricted to armored vehicles - it may be employed to assess the
vulnerability of any structure,

AVVAM-1 is an outgrowth of an existing digital computer code devel-
oped by H. Ege of the Surface Targets Branch, Vulnerability Laboratory,
BRL, Ege's code is based on relations between the characteristics of
certain weapons and vehicle damage observed from the results of antitank
tests conducted under the auspices of the UK, Canada and the US in Canada
during 1959.2

1D. F. Haskell and M. J. Reisinger, "Armored Vehicle Vulnerability Analysis
Model - First Version," US Army Ballistic Research laboratories Interim
Memorandum Report No. 85, February 1973.

2Canadian Armament Research and Development Establishment Report Q-21,
"Tripartite Anti-Tank Trials and Lethality Evaluation (U),'" Final Report
Part I, November 1959, (SECRET).
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AVVAM-1 is based on analytical evaluations of the damage inflicted
on individual critical components and the aggregate effect of these
damaged components on compartment and overall vehicle vulnerability.
To do this, AVVAM-1 accounts for not only the damage inflicted on com-
ponents in the direct line of fire, or shotline, of the attacking muni-
tion but also the damage inflicted by armor spall and/or munition fragment
sprays on components located away from the munition shotline., In addi-
tion, AVVAM-1 accounts for the degrading (or possible enhancing) effects
on the spall and/or fragment sprays caused by components positioned
between the armor and the critical components. Thus, the potential pro-
tection afforded critical components by intervening components is included
in the AVVAM-1 calculational procedure.

2. DESCRIPTION OF AVVAM-1. AVVAM-1 is composed of two major computer
codes. One of these characterizes the target. The other code characterizes
the munition-target interaction and performs the vulnerability evaluation.
The target characterization code describes the target and identifies,
locates and determines the presented area of critical components. It also
provides information concerning components that are located between the
vehicle armor and the critical components.

To generate the target description information, AVVAM-1 employs the
GIFT (Geometric Information for a Target) code.3 The GIFT code is an
improved version of the existing MAGIC code.“ The identification, loca-
tion and presented area determinations of critical components and the
intervening component information is generated by a subcode within the
GIFT code called RTP (Rays Initiated at a Point).

The second major code employed in AVVAM-1 encompasses the terminal
ballistics of the attacking munition and the post-plate-perforation
characteristics of plate spall or munition fragment sprays. In addition,
this second code calculates the vulnerability of selected components
within the vehicle as well as compartment vulnerability and overall

vehicle vulnerability. Because of its functions, it is called the P3 and

CSPKH (Post-~Plate-Perforation and Component, Compartment and Combat

Vehicle Probability of a Kill given a Hit) code.

In operation, AVVAM-1 selects critical components within the target
and then evaluates the extent of damage and kill probability for each
selected munition aim point in a given view of the target. It does this

3Lawrence W. Bain, Jr., and Mathew J. Reisinger, "The GIFT Code User
Manual, Volume I Introduction and Input Requirements," BRL Report No.
1802, July 1975,

4Armament Systems, Incorporated and Propulsion Development Department,
"MAGIC Computer Simulation," Volumes I and II, Naval Weapons Center
Technical Note 4565-3-71, Volume I and Volume II, May 1971.
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by determining the armor thickness in the direction of the shotline of
the attacking munition and the number of intervening components between
the vehicle armor and critical component. It then utilizes the behind-
the-plate characterization of a specific munition to calculate kill
probabilities given a hit for all or selected critical components within
the vehicle, This whole process is accomplished by firing a large number
of parallel rays at a given attack angle and azimuth into the target,
Each individual parallel ray then spawns new rays that are initiated at
the munition exit point on the armor interior surface. These new rays
are used to search out the critical components, define their position,
shielding, and presented area. Then the post-plate-perforation subcode
converts terminal ballistics input data into an expected number of hits

into each of the critical components and finally the C3PKH subcode
determines the probability of a kill of these components for the expected
number of hits. The kill probabilities for all the critical components
within a given compartment may be combined into compartment mobility (M),
firepower (F), and complete or catastrophic (K) kills. Values for M, F,
and K kills of the whole vehicle may also be determined.

A flow chart summarizing the operations of AVVAM-1 is presented by
Figure 1. In this figure Box 1 represents the target input. Box 2 is

the RIP.section of the GIFT code, Box 3 is the P3 section and Box 4 is

the CSPKH section. The CSPKH section provides the output in terms of
probability of a kiil given a hit. Also indicated in the figure is Box

5 which indicates an iteration scheme that may be employed for multiple
views. Since the sections represented by Boxes 1, 2, 3, and 4 provide the
PK/H output for a single view, results for multiple views may be obtained
by iterating through Boxes 2, 3, and 4 for each view desired.

The code operates as follows: The particular target description is
input through Box 1 on cards and the specific munition is input by cards

through Box 3. Information for the P3 section is handled by card input.
After the target is described and the critical components identified,
for a single vehicle view, RIP selects a starting point.on the vehicle,
fires a main ray at the starting point, and essentially determines the
position, shielding, and presented area of all the critical components

in the vehicle in relation to the shotline of the main ray. The CSPKH
code calls on the Post-Plate-Perforation code to supply the behind the
plate spall data and main munition shotline information to include number
of fragments, size, and speed of fragments. Next, it calculates the
expected number of fragments to hit a given critical component, and then
the probability of killing that component given a hit., It does this for
each critical component identified by the RIP code for the particular
shotline selected. All the critical components are evaluated for the
first shotline. The RIP code then moves to a new shotline (or shotpoint)

190




and the probabilities of a kill given a hit are calculated for all the
components in the view of the new shotline. This process is continued
until the whole view of the vehicle is completed. At this point the out-
put of the AVVAM code is the following: Probability of a kill for each
critical component in the vehicle, a set of compartment M, F, and K kill
probabilities and overall vehicle view probability of M, F, and K kill

values. During these calculations the C3PKH code in conjunction with the

3 : . - .
P” code account for the mass and velocity attrition of the shotline and

spall fragments as they perforate intervening components between the exit
point on the armor and the specific critical component under evaluation
at that time.

3. STUDY CONDITIONS. As described previously, the object of this
investigation was to determine which of the following parameters has the
most effect on the firepower kill lethality of a shaped charge projectile
used in a direct frontal attack of the T55 tank: liner cone base diameter,
standoff distance, jet velocity, jet breakup time, and the number, mass
and speed of the behind-the-armor fragments produced by the jet. Each of
these parameters was varied independently over a selected range of values
and AVVAM-1 was used to calculate and follow the attendant variation in
firepower kill probability given a hit on the tank (PK/H). The effect on

PK/H of certain combinations of parameters was also calculated. To do this,

equal variations in each of the parameters in the combination were employed.

Those parameters used to characterize the shaped charge jet itself
were varied over the following range of values:

. Liner cone base diameter = 0.0508 m ~0.2032 m

. Munition-target standoff distance = 0.08382 m -2.0955 m
Jet velocity = 2,000 m/sec -20,000 m/sec
Jet break-up time = 25 microsecs -200 microsecs

The behind-the-armor fragment characteristics produced by the above range
of conditions were automatically calculated internally by AVVAM-1. 1In
addition, other calculations were made in which the behind-the-armor
fragment characteristics (number of fragments, fragment mass and fragment
speed) were varied independently of the normally expected values that
would otherwise be governed by the jet parameters. In these cases, the
number of fragments, their mass and speed were made proportional to those
produced by a standard shaped charge and were varied over the range from
0.01 to 10 times the particular standard charge behind-the-armor charac-
teristic value. That is, the number of fragments-to-number of fragments
from the standard charge ratio, fragment mass-to-standard charge fragment
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mass ratio, and the fragment speed-to-standard charge fragment speed
ratio were varied from 0.01 to 10.

The standard shaped charge® is a 42°, apex angle, copper cone loaded
with octol explosive in a light confining wall of aluminum. A diagram of
this charge is shown in Figure 2. All linear dimensions in the diagram
are in inch units. It will be referred to as the ''standard charge." The
nominal liner wall thickness is .081 inch (.206 mm) and the outside
diameter at the base of the cone is 3.3 inches (84 mm). The total liner
weight is .61 1b (.277 kg), the explosive weight is 1.93 1bs (.875 kg),
and the aluminum body weight is 1.14 1lbs (.517 kg). The standard cone
diameter and standoff as well as the jet constants of this standard charge
obtained experimentally from flash radiographs are as follows:

0.0832 m

0.16764 m

8,300 m/sec

103 microseconds

It

Cone diameter
Standoff

Jet velocity
Break-up time

nH

]

The T55 tank was assumed to be fully combat loaded and directly
attacked in the front (zero azimuth and elevation) by the shaped charge
projectile. A planar gridwork of 60.96 cm square cells was erected over
the front of the tank normal to the attack direction. A shotline, to
simulate a projectile flight path, was fired in the attack direction at
a random point within each cell. 1In this manner the projectile lethality,
measured by the firepower PK/H’ was evaluated for strike points over the

whole front of the tank. Then_these individual cell (or shotline) P s

'
K/H

were averaged together to obtain a single firepower kill P represen-

K/H*
tative of the particular set of parameter values being evaluated.

The GIFT description of the T55 tank consisted of approximately 630
components. Of this total about 400 were considered critical components,
About half of these were considered critical to the tank's firepower.

In this AVVAM-1 analysis, 5 rays to simulate behind-the-armor fragments
were fired at each of these 200 firepower critical components.

4. RESULTS AND DISCUSSION. The study results obtained by use of
AVVAM-1 are illustrated in Figures 3 through 14 and Tables T and II.
Figures 3 through 6 show the effects on average firepower kill pK/H of

independent variations in the basic shaped charge projectile jet charac-
terization parameters. 1In these figures the ordinate corresponds to pK/H

and the abscissa corresponds to the jet parameter. The jet parameters are

5R. DiPersio, J. Simon and A. B. Merendino, "Penetration of Shaped-Charge
Jets Into Metallic Targets,' BRL Report No. 1296, September 1965, pp. 16-17.
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displayed as a ratio of the actual parameter value-to-the value of that
parameter exhibited by the 'standard charge.' For example, in Figure 3,
at the abscissa value equal to 2, the cone diameter under investigation
is twice the size of the standard charge cone diameter, or .0168 m

(6.6 in.). Each parameter was varied while the remaining parameters were
kept constant at the value exhibited by the standard charge. In the cone
diameter case the standoff was maintained equal to that of the standard
charge i.e., equal to two cone diameters, ’

As to be expected, the figures show that average PK/H increases with
increasing cone diameter, jet velocity and breakup time and that pK/H
decreases as standoff is increased. The PK/H and its slope vary contin-
uously with cone diameter. On the other hand, both PK/H and its slope

vary irregulariy (almost discontinuously) with jet velocity and break-
up time. Figure 5 depicts a plateau in PK/H over the jet velocity-to-

standard charge jet velocity ratio from 0.6 to 1.3. A wider plateau exists
in the relationship between PK/H and breakup time as shown by Figure 6.

In this case the plateau extends from breakup time-to-standard charge
breakup time ratio equal to 0.4 to approximately 1.6,

The relationship between P and standoff illustrated in Figure 4

K/H

is interesting. As to be expected, P decreases with standoff over the

K/H
range studied. However, this decrease is less than would be expected-
the functional dependence of pK/H on standoff is quite weak. It is much

less than it is with the other jet parameters. The jet lethality is not
significantly degraded at standoffs much greater than standard.

Figure 7 illustrates the effect on PK/ of simultaneous and equal

H
variation of the jet parameters. As before, the abscissa represents the
value of the parameter relative to its value exhibited by the standard
charge. Although here it represents the value of all four jet parameters
relative to the standard charge case. For example, at the parameter
value-to-parameter value of standard charge ratio equal to 0.5, the pK/H

computation was performed with the cone diameter, standoff, jet velocity
and jet breakup time all set equal to one-half the parameter values cor-
responding to the standard charge., As indicated by the figure, PK/H is a

smooth, increasing function of the four jet parameters. Its rate of
increase with these four parameters is higher, as to be expected, than

its variation with change in the parameters individually, although the
combined effect is not the sum of the effects of the individual parameters.
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Figure 8 shows the effect of individual and combined change in the
behind-the-armor fragment parameters on pK/H' The functional relation-

ship between P and the fragment parameters is similar for all three:

K/H
number of fragments, fragment mass and speed. PK/H increases rapidly as

the fragment parameter-to-standard charge parameter value ratio intreases
from zero to 1 or 2. Beyond this region, the PK/H rise levels off. As

indicated, equal variation of all three fragment parameters at the same
time yields higher pK/H than individual variation of these parameters.

However, the combined effects do not show as high an increase over the
individual fragment parameter variations as may be expected beforehand.

The slopes of the curves from Figures 3 to 6 and 8 in which the jet and
fragment parameters are varied independently are plotted in Figures 9 and
10. Figures 9 and 10 exhibit the PK/H sensitivity to the various para-

meters over a range of these parameters. As indicated, there is no single
parameter that has the most influence on PK/H over the range of independ-

ent parameters shown. Between normalized variable from 0.6 to about 1.2,
pK/H is most sensitive to cone diameter. Above 1.2 and below about 1.8

jet velocity has the most effect on P Between normalized variable

K/H®
equal to 1,8 and 2.0, the jet velocity displays the highest influence on
PK/H' The effect of standoff, as described earlier, is minimal over the

whole range. In regard to the fragment effects, the number and speed of
the fragments show abhout the same influence on PK/H which, over most of

parameter range shown, is considerably higher than the fragment mass
influence.

The slopes of the curves in Figures 9 and 10 over the range of para-
meter-to-standard charge ratio from 0.6 to 2.0 at discrete points within
this range are listed in Table I. The slopes are normalized to that of
the cone diameter. In this manner those parameters that have higher, or
lower, influence on PK/H than the cone diameter are easily distinguished.

Table II lists the parameters according to their decreasing order of
influence on pK/H over the variable value normalized to standard charge

range from .6 to 2. As indicated, cone diameter, jet velocity and jet
breakup time exhibit the highest influence on PK/H over the range of

variables shown.

Figures 11 to 14 are log-log plots of pK/H versus behind-the-armor

fragment total kinetic energy. These figures are included here to illus-
trate the relationship between behind-the-armor fragment kinetic energy
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and average kill probability. Figures 11, 12 and 13 show the calculation
results for independent variations in the fragment parameters. In

Figure 11 the total fragment kinetic energy was increased by increasing
the number of fragments with their mass and speed held constant and equal
to the mass and speed exhibited by the standard charge. In Figure 12 ‘
the mass of the fragments was varied while the number and speed were main-
tained equal to those characteristic of the standard charge. The fragment
speed was varied in Figure 13, and in Figure 14 all three parameters were
varied simultaneously and equally. The lines in these figures were drawn
in by "eye." These figures indicate that there appears to be a definite
relationship between behind-the-armor fragment total kinetic energy and
resultant PK/H‘ In each figure, pK/H increases with total fragment

kinetic energy. Furthermore, there are two distinct regions of fragment

influence, with kinetic energy of the order of 104 to 105 joules as the
demarcation zone between these two regions, Fragment kinetic energy has
a much larger effect on PK/H in the lower kinetic energy region than in

the higher region.

5. CONCLUSIONS.

1.. Over the range of the variables (normalized to the standard
BRL. 3.3 inch cone diameter precision shaped charge) from 0.6 to 1.2,
firepower-kill lethality of the shaped charge jet projectile in direct
frontal attack of the Russian T55 tank is most sensitive to changes in
cone diameter and the number and speed of behind-the-armor fragments
(given in decreasing order of influence). Over this same range, jet
breakup time exerts the least influence on lethality of the seven vari-
ables studied in this investigation.

2. Over the range of the standard charge normalized variables
between 1.2 and 1.8, lethality is most sensitive to changes in jet veloc-
ity, cone diameter and the number of behind-the-armor fragments (given
in decreasing order of influence). Here again, lethality is least sen-
sitive to jet breakup time.

3. On the other hand, jet breakup time exerts the highest effect
on lethality over the standard charge normalized variable range from 1.8
to 2.0. This is followed by jet velocity and cone diameter. Mass of
the behind-the-armor fragments has the least influence on shaped charge
lethality over this range.

4. A marked functional dependence of P upon the behind-the-

K/H
armor fragment spray total kinetic energy was found.
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Figure 14, pK/H Variation with Total Fragment Kinetic Energy for

Simultaneous and Equal Variations in Fragment Number,
Mass and Speed
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Table T.

PK/H Sensitivities

Relative to Cone Diameter

VARTABLE .6 .8 1.2 1.4 1.6 1.8 2.0
CONE DIA. 1 1 1 1 1 1
STANDOFF .005 ) -.008 .024 | -,057 1 -.079 | -.174 | -.203 | -.217
JET VELOCITY 17240 0 6,263 | 2,333 11.855 | 1.681
BREAKUP TIME 0 0 0 0 2.203 |14.493
NUMBER OF FRAGS.| .211 .2361 .246 | .359 .351 .435 .319 .304
MASS OF FRAGS. L0721 .098}7 .114 ] .156 316 | .261 .145 .058
FRAGMENT SPEED 87 | 226 .237 | .286 | 202 L3191 .261 116
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Table II. PK/H Sensitivities in Descending Order of Influence
INFLUENCE VARIABLE VALUE NORMALIZED TO STANDARD CHARGE
.6 .8 1 1.2 1.4 1.6 1.8 2
HIGHEST CD ch cD CD VJET VJET T1 Tl
NF NF NF NF ch cb VJET VJET
SF SF SF SF NF NF CcD CD
______ I S — b — - —]
VJET MF MF MF MF SF NF NF
MF 5 S 5 SF MF SF 5
S VJET VJET VJET | S é B 5 SF
LOWEST ““;;‘““ T1 T1 Tl T1 T1 MF MF
NOTE:

CD: Cone diameter
VJET: Jet velocity
T1: Jet breakup time
S: Shaped charge standoff distance
NF: Number of behind-the-armor fragments
SF: Speed of behind-the-armor fragments
MF: Mass of behind-the-armor fragments
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DEVELOPMENT AND OPTIMIZATION OF SIGNAL PROCESSING
UTILIZED IN A MINE DETECTION SYSTEM

Abram Leff
U.S. Army Mobility Equipment R&D Command
Fort Belvoir, Virginia 22060

ABSTRACT. Based upon an extensive R&D program a broadband microwave
technique has evolved which can be utilized to rapidly scan roads and reliably
detect both metallic/non-metallic cased AT mines. In order to optimize
mine detection capability and minimize false alarms, processing algorithms
had to be developed and evaluated. Field data was initially recorded on
analog tape for off-site processing. This data was utilized to develop
potential processing algorithms.

To permit the evaluation of algorithms in real-world conditions, a
mobile real-time feasibility system was designed and fabricated. This
system incorporated a CDC 469 minicomputer which allowed storage in
memory .of up to six algorithms, as well as the control programs for the
system. Flexibility incorporated in the design and the addition of a
keyboard unit provided the capability to utilize any one of the six
algorithms or vary most test parameters in the field, by simply changing
an address in the System Control Unit or CPU.

This paper will discuss utilization of a minicomputer in the development
of an optimized processing algorithm for mine detection.

1. INTRODUCTION. Considerable data processing and analysis effort has
been expended with the objective of developing target discrimination techniques
for detecting road mine responses in the presence of normal background
responses. The goal of this effort was the development of field-operable
software that optimizes the probability of detecting AT/AV mines under
field conditions while concurrently minimizing the false alarm rate.

The inherent nature of the data analysis problem dictates a tradeoff
between the probability of target detection vs. the false alarm rate.
This relationship in a specific situation depends upon the particular
field conditions encountered; therefore, large amounts of test data had to be
gathered from a considerable variety of test site conditions in order to
optimize detection vs. false alarms.

Initially, field data was recorded on a four channel analog tape recorder
and was off-line converted to digital data format and recorded on IBM-compatible
magnetic tape which then could be played back in various ways to produce plots
of the desired data parameters. This digitized data also formed the basis
for the development of the processing algorithms by means of computer
analysis.
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2. STATEMENT OF PROBLEM. To attack the basic data analysis problem,
which was to develop a field-operable software system maximizing target
detection while minimizing false alarms, a methodical investigation was
initiated to (a) define the general target responses, (b) select the most
favorable processing methods, (c¢) find the best way to represent the data,
(d) identify the decision rules for discrimination between mine signature
and background data, and (e) minimize the computational complexity needed to
perform the task.

Based upon the results of the various analysis and processing schemes
which were applied to test data, it was concluded that two initial processes
were essential: (a) calculation of a background estimate based on preceding
data inputs, and (b) normalization of the input data with respect to
the background estimate. The latter is required because of the large
differences in absolute amplitude levels in the various frequency channels
caused by frequency roll-off of the antennas, and because of different
attenuation levels in the soil.

3. ALGORITHM DEVELOPMENT. The first useful algorithm developed was
named Target Amplitude Descriptor, or TAD, where for each channel and at
each consecutive position the ratio between the input data and the background
estimate was established, after which these ratios were averaged for all
channels of a particular antenna pair,

Logarithmic TAD plots were made from the recorded test data using
the amplitude information Rjj (ratio between receive and transmit signal
levels in dB as measured at position i and frequency j) in the following
manner:

j=n
A

Log TAD; = 20 log { %
1

oo~

J ij/Bij } (in dB)

_ Rj4/20
i] ij -~ 10 ™1 )

n = number of frequency channels

where: A.. = linear value of Rij (by using: A;

Bij = linear value of background estimate at position i and
frequency j, determined as follows:

Bij = (1-0a)xBjq,j+a x Ay,

where o is a constant chosen such that the background estimate relates to a
selected distance:
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-2AX5

a =1~ e veCAY
where AX; = position increment in meters

"Decay" can be defined also as the trailing distance where the relative
weight of the background contribution is equal to 13.5%. This process
is known as exponential smoothing (i.e. gives greater weight to most
recent data), with the decay analogous to two time constants in an R-C
filter network. Expressed in terms of a:

24X
Decay = = 1n (1-a)
Initially all mines responses were differentiated on TAD plots because
the target data was not excluded from the background estimate, in essence
reducing the target responses. To correct this, a threshold condition
was initially inserted in the determination of the weighting factor a.
In test areas with large background fluctuations, however, the background

peaks would also be excluded from the background estimate when the
threshold was exceeded.

Average (ASUM) although originally developed as a modifier for the
weighting factor to dynamically exclude target responses from the background
estimate, the process designated ASUM proved to be a most successful
algorithm. ASUM is defined as follows:

n
1
ASUM1 =n L Al'l-i\-J
=1

where:

n = number of frequency channels

Anij = the normalized data at position i and frequency j

Ayy — Bij
Anij = oij
and
Aij = linear value of amplitude data for position i and frequency j
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[w=s
—
1]

jj = exponentially smoothed background estimate for position i and
frequency j.

035 = standard deviation, obtained from the exponentially smoothed
estimate of the variance.
Bij and 055 are determined by:
Bij = Biy,g (1rad + oAy 5
2 _ 2 2
% = %,y (o) +olhig 5 - By 5)

where the weighting factor o was initially:

- H a
- l-e 20X/ decay

where
AX; = position increment between samples at i and i-1

Decay = the distance prior to position i where the relative weight of
the contribution to the background estimate is down to 13%.

The weighting factor was later modified to:
ap; i ASUM; £ 0.9

a = { 0, otherwise

and finally to:

]

4
The weighting factor was modified in order to compensate for the
effects of varying background Tevels as a function of soil conditions and
moisture conditions.

Many more attempts were made to further improve target discrimination
by evaluating statistical methods and methods using magnitude and/or
duration of target responses. As a result, six algorithms were developed
for evaluation in real-time, real-world field tests with the feasibility
model.
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4. FEASIBILITY MODEL. To provide real-time test results and
flexibility in the selection of test parameters (position and frequency
sample intervals, frequency range, etc.), a mine detection feasibility
model incorporating advanced discrimination techniques was designed
and fabricated. (See block diagram, Figure 4-1). A programmable
minicomputer (CDC Model 649) was incorporated into the system to
increase the data processing capabilities, an X-Y recorder was added
to provide real-time plots of test results, and a four-channel analog
instrumentation recorder was employed to record the test data for off-site
processing and analysis.

This feasibility system was installed on an electrically powered
tractor (G.E. Model E-15) as shown in Figure 4-2. Field tests were
conducted (and continue to be conducted) at various field sites, with
the purpose of evaluating the real-time discrimination techniques
that were previously developed utilizing an off-line system.

The electronic components of the feasibility model consist
primarily of a transmitter, a receiver, a System Control Unit (SCU) and
the data processing subsystem (CDC 469). As described in the
subparagraphs that follow, the receiver compares the phase and amplitude
of received signals to the transmitted signal. The resulting phase
and amplitude data are examined by the data processing subsystem for
indications of the presence of a mine under the detector heads.

4.1 FEASIBILITY SYSTEM OPERATION. The major system
components -- transmitter, receiver, system control unit, processor
and power supplies -- are housed in an equipment enclosure which mounts
to the front of the tractor. The antenna switches mount near the
search head at the end of the frame, and the shaft encoder that
correlates mine detector data to search head position and operating
speed is driven by a rear wheel on the tractor.

The System Control Unit (SCU) responds to synchronizing pulses
from the position encoder and control commands generated via the
keyboard unit, producing sweep control signals for use by the
transmitter. The transmitter signal originates in a voltage-controlled
oscillator (VCO) whose output frequency is proportional to input
sweep voltage. The VCO output is power-amplified to approximately
1 watt and supplied via a directional coupler and solid-state
switch to the transmit antennas, with a -20 dB output of the coupler
supplied as a reference to the receiver.

The receive antennas connect via another solid-state switch to
the receiver. The SCU synchronously controls the two antennas switches,
providing the scanning sequence that selects each transmit-receive
antenna pair in turn. The receiver contains a synchronous detector
that yields an amplitude output and a phase detector that yields the
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phase data signal. ‘Receiver outputs are digitized and processed by the
SCU and CPU.

4.1.1 SYSTEM CONTROL UNIT. 1In addition to generating scan
sequence commands in response to position encoder pulses, and generating
sweep control voltages and antenna switching commands, the SCU processes
amplitude data supplied by the receiver, detects target responses in the
processed data, and activates the target alarm and identifies the position
of a detected target. In particular, the SCU produces control signals
for system operation.

Various computer operational commands and any one of the processing
algorithms stored in the computer memory can be addressed via the SCU
by means of appropriate keyboard entries. The keyboard is also employed
to set up the SCU control circuits which establish the test parameters
for a particular operation, as follows:

(1) Frequency Increment - Amplitude data supplied by the receiver is
sampled at intervals as the frequency range is swept, and the frequency
change during a sample is defined as the frequency increment. The
frequency increment is selectable over a range from 10 MHz to 150 MHz in
multiples of 10 MHz.

(2) Start Frequency - The start frequency is defined as the frequency
chosen for the Tow end of the swept frequency range, and is selectable in
multiples of 10 MHz from 300 to 990 MHz.

(3) Sample Interval - The sample interval is a measure of the
duration between each frequency sample, and is selectable over a range
from 0.1 ms to 1.5 ms in multiples of 0.1 ms.

(4) Number of Sample Intervals - The number of sample intervals per
sweep (up or down) is selectable over a range from 1 to 15 intervals per
sweep.

(5) Transition Time - When a sweep reaches the end frequency (either
high or low), it dwells at this frequency for a selected time period to
allow the antenna switches to select the next antenna pair. This transition
time is selectable from 0.1 to 1.5 ms in multiples of 0.1 ms.

(6) Number of Sweeps - The number of sweeps per scan normally
corresponds to the number of antenna pairs in the search head array, thus
allowing one sweep per pair. The number of sweeps per scan is selectable
over a range from 1 to 16.

(7) Scan Rate - The scan rate is the number of complete scans
(sweeping all antenna pairs) per unit of travel. The selectable rates are
25, 50, 100 and 200 scans/meter.
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4.1.2 CENTRAL PROCESSOR UNIT (CPU). The processor employed in the
feasibility model is a CDC Model 469 minicomputer with 8K words of plated
wire memory. Word length is 16 bits, and the cycle time is 1 us. There
are 42 instructions, and the CPU responds to direct, indexed direct and
indirect addressing modes.

The function of the processor is to analyze the digitized data
supplied by the SCU and determine, with a high degree of certainty, whether
a received response is caused by a mine or some other anomaly in the ground.
If the presence of a mine is indicated, an output signal is generated
for use in sounding an alarm.

The 8K memory in the processor stores and protects all the processing
algorithms, and also contains the operational programs for the SCU.
Thus, by means of the control keyboard, any of the various algorithms can
be selected, and parameter changes to both processing algorithms and
SCU programs can be entered at any time, as desired.

Through use of the computer peripherals, the contents of the memory
can be changed as desired by connecting the system to the programmer's
console. Changes can then be entered using magnetic tape, paper type, or
via the teleprinter. A monitor oscilloscope is available for displaying
the contents of the memory.

5. CONCLUSIONS. Utilizing the feasibility model, a test program
was performed in order to evaluate the developed algorithms as well as -
several detector head configurations. Six algorithms were stored in
memory in the CDC 469 minicomputer and could be selected with the keyboard,
for operation in the system. Nominal default values were included for the
variable test parameters such as decay and position increment as well as
for threshold values or conditions applicable to certain algorithms. A1l
these could be changed by addressing a defined location in the CPU by
means of the keyboard. In addition, two versions of ASUM were included
to establish accuracy requirements: one in floating point and one in
6-place fixed point. The latter provided insufficient accuracy and was
later dropped.

From the start it was apparent that performance of any algorithm using
one or more thresholds hinged on the margin over which these threshold
values could be used at any location and with any soil composition or
moisture content. Obviously, under operational conditions, it would not
be feasible to obtain a specific threshold value for the encountered soil
conditions. One could hardly be expected to operate over a road to
establish the required threshold value, then go back over it to detect
any possible mines.

After a lengthy, time consuming series of tests at several test sites,

it was found that threshold values varied widely with different soil conditions.
With the need for a priori knowledge of soil conditions established, the
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further use of threshold dependent algorithms were abandoned for the
practical reasons stated above.

Real Time field evaluation of the TAD and ASUM algorithms indicated
that best performance could be achieved with ASUM (floating-point version).
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AUTOMATED CONTROL, DATA ACQUISITION, AND ANALYSES
FOR HYDRAULIC MODELS OF TIDAL INLETS

D. L. burham; H. C. Greer, III; and R. W. Whalin
U. S. Army Engineer Waterways Experiment Station
P. 0. Box 631, Vicksburg, Miss. 39180

ABSTRACT. An Automated Data Acquisition and Control System (ADACS),
which was developed (Durham and Greer, 1975) at the Waterways Experiment
Station (WES) during the past two years, has been expanded to provide
automated control, data acquisition and analyses for hydraulic models
of tidal inlets. ADACS configuration consists of a minicomputer with
32K 16-bit words of memory, an interval timer (1 usec), an analog to
digital 12-bit converter with 64 analog inputs (+ 10 volts) and 45 kHz
multiplexer, 96 sense/control lines, a magnetic tape controller with
two 9-track tape drives, a moving head disk controller with one dual
disc drive (removable and non-removable platters), one matrix electro-
static printer/plotter, and an ASR 33 teletype unit.

ADACS controls the hydraulic generation of the tide in the tidal
inlet model by providing a programmable analog voltage to the hydraulic
tide generator. The programmable tide controller can simulate a tide
composed of one to N tidal constituents for as many tidal cycles as
required. Model tidal elevations are recorded by ADACS using a bubbler
system which measures small hydrostatic pressure changes associated with
changes in tidal elevations in the model. The bubbler system consists
of a high precision pressure transducer, a scanivalve device for sequencing
input ports, and 48 pressure inputs. The pressure transducer can be
calibrated prior to and at selected time intervals during each tidal
test to provide accurate, updated calibration data for scaling voltage
(pressure) data to tidal elevations. In addition to collecting tidal
elevation data, tide velocities at specific model locations are monitored
by using miniature, electromagnetic current meters. Besides controlling
the tide generator during a tidal test, ADACS acquires the above tidal

data (elevations and velocities) including calibration information and
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test parameters and records these data on magnetic tape for future
analyses and permanent storage.

Data analyses include 5caling‘and editing of original data, least
squares harmonic analyses of tidal data (elevation and velocity) for
amplitude and phase of various tidal constituents, plots of original
data and superimposed harmonic constituents, and analyses of residual
variances. Verification of hydraulic tidal inlet models, which are
geometrically distorted models scaled on the Froude model law, requires
artificially simulating in the model the frictional effects associated
with prototype roughness of bottom and sides of channels and overbank
and marsh land roughness. The relative phase lags of major tidal constituents
from one specific location to another in the prototype and the measurement
of these phase lags in the model provide a means for estimating the
amount of roughness and specific model areas requiring artificial roughness

“in order to achieve model verification.

These procedures for spatial definition of roughness, full model

verification, and model testing using ADACS and associated automation
procedures have been successfully applied in hydraulically modeling
Murrells Inlet, South Carclina. The required time for model verification
and testing, as well as data analyses, has been significantly reduced.
In addition, the quality.and quantity of model data has increased with
minimal cost increases. Thus, better information can be made available
on which to make sound engineering decisions regarding the planning and
design of proposed engineering changes in tidal inlets.

1. Introduction. Over the past decade, automated processing techno-
logy has evolved from large, expensive computers to miﬁicomputers and
microprocessors. With this evolution, the physical size and cost of
automated processing systems have greatly decreased with a minimal
decrease in system capabilities. Cost reductions for such systems have
resulted in economic justification of the use of minicomputer and micro-
processors to a specific task or group of specific operations; whereas,

large computers can be justified economically only for multiple operations
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and tasks, The automation of physical, hydraulic modeling techniques

has lagged automation efforts in many other fields mainly because of

cost justification and the requirements of highly specialized instrumentation
(e.g. sensors). However, needs for such automation have existed for many
years. These needs are the result of requirements for (1) real-time model
control decisions, {2) quasi real-time data analyses, and (3) more

accurate and reliable model data for engineering and environmental

interest studies.

One mission of the Hydraulics Laboratory of the U. S. Army Engineer
Waterways Experiment Station is the physical modeling of hydraulic prob-
lems associated with the activities of the Corps of Engineers, as well as
other government and private agencies. Hydraulic problems associated
with wave phenomena and the effects of these phenomena in hafbors, tidal
inlets, and along the open coast are the primary modeling interests of
the Wave Dynamics Division (WDD) of Hydraulics Laboratory. Over the
last three years, WDD has been very successful in automatingl’2 the major
aspects of its physical models for wave and tidal inlet studies. Major
automation efforts were devoted to (1) model control, (2) model data
acquisition, and (3) model data reduction and analyses. The subject of
this paper is a description of the automated system, which has been given
the name "Automated Data Acquisition and Control System' (whose acronym is
ADACS), for wave and tidal models and its general application to tidal
inlet model studies.

2, SYSTEM CONFIGURATION. The automated system for wave and tidal

inlet models has two primary functions: (1) automated acquisition of

wave and tide data in a format (magnetic tape or disc) compatible for
digital reduction and analyses and (2) automated control of model sensor
calibration and of the wave and tide generators. The design, development,
and configuration of automated systems to perform these fumctions with
particular applications to wave models were presented in Reference 1.
System configuration (Fig. 1) of ADACS consists basically of the following

four subsystems:
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a. Digital data recording and controls.
b. Analog recorders and channel selection circuits,
c. Wave/tide sensors and interfacing equipment.

d. Wave/tide generators and control equipment.

The first subsystem is basically a 32 K, 16-bit word minicomputer
with I/0 and storage devices, analog/digital packages, and a timing
package. Details of this subsystem were presented by Durham and Greer
(1975). The analog recording subsystem is (1) a backup for the digital
data recording subsystem and (2) a visual display for operator in-
spection of analog signals from model sensors. This subsystem has manual/
automated selection and control of five, 12-channel oscillographs and a
test point center for manually monitoring a selected channel as to system
setup, calibration, and signal condition.

The model sensor subsystem includes instrumentation for both wave
and tide sensors. Details of the wave sensor subsystem and calibration
procedures were presented in Reference 1. The wave sensor subsystem

consists basically of the following four components:

Wave height sensors and stands.
b, Power supplies and signal conditioning equipment.

c. Manual and automatic calibration equipment.

The sensor subsystem for tidal heights includes the following major

components:

Bubble tubes, stands, and high pressure supply.
Scanivalve with manual and automated controls.
¢. Precision pressure transducer.

d. Power supplies and signal conditioning equipment.

The last subsystem includes controls for both wave and tide generators.
Controls for both mechanical and electrohydraulic wave generators can
be provided by ADACS. Start/stop commands are available for mechanically

gear-driven wave generators; however, controls for wave period and
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amplitude must be supplied manually. For the electrohydraulic wave
generator, ADACS provides a programmable analog voltage as a command
signal to the servocontroller of the electrohydraulic actuators. The
wave period and amplitude for these wave generators are controlled by
ADACS.

The command signal to the tide generator is a programmable analog
voltage which is supplied by ADACS through one channel of the digital to
analog converter. The tide generator has the option of receiving this
command signal from ADACS or accepting an analog voltage from a pro-
grammable cam and reference potentiometer arrangement. This latter
control scheme is used as a back-up or alternate control to the ADACS
control and until recently has been the primary control of the tide
generator prior to installation of ADACS. In addition to the command
‘signal, the tide generator has four other major components which are
(a) differential amplifier and power supply, (b) bubble tube positioner,
(¢) hydraulic-pneumatic amplifier, and (d) hydraulic cyclinder and flow-
control gate assembly.

Basically, the tide in a physical model is genmerated from cyclic
exchanging by controlled flow a predetermined volume of water between
the physical model and a tidal reservoir (sump). Figure 2 is a schematic
of the tide generator and controls. The programmed command signal causes
a change in the vertical position of the bubble tube relative to the
water level in the model. This position change perturbs the equilibrium
position of the pneumatiec-hydraulic amplifier and results in a differential
hydraulic pressure applied to the hydraulic cyclinder activating the
flow-control gate. The movement of the flow-control géte is in a direction
to correct the perturbed equilibrium condition of the pneumatic-hydraulic
amplifier by changing the water-surface elevation in the tide model. A
feedback circuit from the hydraulic cyclinder to the differential
amplifier/bubble tube positioner provides a "damping effect" to prevent
gate overshoot and unstable oscillations., Thus, any tidal constituent or

progressive tide can be used as the forcing function for the tide
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model by programming ADACS to produce a command signal harmonically
representing the appropriate forcing function.
3. TIDAL HEIGHT SENSORS. Data, which are acquired by ADACS from

tidal inlet models, consist of time histories of water surface variations
relative to some reference water level, For specified tide conditions
at the generator, tidal elevations are collected at selected locations
within the tidal model. These data are used to calculate mean tide
levels, tidal ranges, arrival times of high and low water, and the phases
and amplitudes of specific tidal constituents. Although various types
of tidal height sensors are used by the Hydraulics Laboratory, a tide
sensor system developed and implemented within the last year for use
in tidal inlet models is presented in this paper. For lack of a better
name, this sensor subsystem has been labeled the "bubbler system." This
_system measures small hydrostatic pressure changes associated with changes
in tidal elevations in the model and consists of a high precision, pressure
transducer, a scanivalve device for sequencing input ports, and 48 pressure
inputs.
To employ the bubbler system (Fig. 3), a small plastic tube is
inserted some small distance into the water. The outside diameter of
this bubble tube is required to be small to minimize blockage of tidal
flow, etc. The tube is connected through a throttling valve to a
regulated pressure supply. This valve or restriction serves to regulate
air flow and isolate the bubble tube from other bubble tubes and the
supply pressure, Each bubble tube is connected to a common pressure
trénsducer, which is parallel with the throttling valve and high pressure
source, of suitable pressure range to accurately detect the tube's
internal pressure changes associated with changes of water surface elevation.
To allow many bubble tubes to share a common pressure transducer, a
multiplexing device, which is called a scanivalve, is used. This device
miltiplexes sequentially many pressure inputs to a common output port.
A high precision pressure transducer is included as an integral part of
the output port. A controller is used to advance the unidirectional
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stepping motor which increments the scanivalve. By contact clsoures or
commands from ADACS, the valve can be advanced sequentially to any input
port or to a "home'" (reference) position without intermediate stops.

The system presently used by the Wave Dynamics Division is capable of
accepting up to 48 pressure inputs and includes a +0.25 psid pressure
transducer with a nonlinearity and hystersis (best straight line) of
0.05 percent full scale. The pressure transducer output is an analog
voltage of +10 volts full scale. The pressure cell is interfaced through
appropriate signal conditioning equipment to the analog multiplexer of
the digital recording subsystem. The valve accepts both home and step
commands from the ADACS and has a BCD position feedback to the ADACS. The
system can be completely controlled by either ADACS or manual controls.

To install the bubbler system in the model, the water level in the
tidal model is raised to mean higher high water (MHHW). At this still
Qater level, the orifice of the bubbler is inserted into the water to a
depth which is slightly greater than the maximum expected tidal range
(hydrostatic head). At this elevation, the pressure supply must be set
high enough to cause the emission of air bubbles from the tube. For
these conditions, the tube's internal pressure is equal to the hydrostatic
pressure of the water column above the orifice of the bubble tube. The
tube orifice is cut diagonally to aid in the bubble's escape. It is
important that the system bubble freely at this depth because the tube's
internal pressure ceases to be equal to the hydrostatic head with bubble
cessation. At this point, the bubble tubes should be observed over
several tidal cycles to be certain there is a continuous stream of
bubbles. -

'The bubbler system with the arrangement of bubble tubes, scanivaIVe,
and a high precision pressure transducer provides a very economical system
of obtaining precise measurements of water surface elevations at a large
number of locations in a tidal model. Tidal elevation measurements by
this system are accurate to 0.001 feet. The sampling sequence of the
scanivalve is rated at a maximum of 10 samples per second. This method

of detecting changes of water surface elevation is limited only by the
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three constant pressure values over the tidal range. These values are
obtained by setting a bubble tube at each of the following three tide
levels: mean lower low water, mean tide level, and mean higher high
water. The three bubble tubes are positioned to these levels in a
stilling basin which is connected to the tidal model by a cut-off
valve. Prior to each tidal test, the water level in the model and
stilling basin are raised to mean higher high water. The stilling basin
is then isolated from the model by closing the cut-off valve. Finally, the
three bubble tubes are adjusted to their appropriate water depth.
Throughout the tidal test these bubble tubes are monitored at every
scan to provide update calibration data. During data analysis, cali-
bration information can be updated by calculating calibration coefficients
for each scan or any multiple of scans.

- A limited number of channels of tidal velocity can be measured
by miniature, electromagnetic current meters which are monitored by
ADACS. The collection of tidal velocities using ADACS has not been
fully implemented at this time and is pending the completion of trans-
ducer evaluation which should be completed within the next year. Until
such time, the majority of tidal velocity measurements are obtained
manually by using a modified version of the miniature Price meters.

In addition to tide data, many tidal inlet studies require wave

information as well. The generation of waves and collection of wave
data at specific tidal phases (normally high, low, and mean tide levels)
are provided by ADACS. While controlling the tide generator and collecting
tidal data, ADACS uses in-core timers to determine the occurrence of specified
tidal phases at which times (1) the wave generators are turned on,
(2) wave data at a specified sampling rate for a predetermined number of
wave periods are collected at various locations in the model, (3) the
completion of wave test for that tidal phase is detected, (4) the wave
generators are turned off, and (5) in-core timers initialized to determine
the next specified tidal phase for wave tests. These wave tests are
performed normally during the middle cycle of a three-cycle tidal test.
The instrumentation and procedure for collecting wave data are the same
as described in Reference 1.
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frequency response of the system and the accuracy of the pressure trans-
ducer. Application of this system to tidal models has resulted in large
dollar savings when 5 or more locations in a model are instrumented.

4. DATA ACQUISITION. During the acquisition mode, tidal data for

a programmed tidal condition at the generator are collected from a
specified number of tide sensors, digitized, and recorded on magnetic
tape or. disc for further analyses, The sampling scheme is flexible

and can be tailored for different applications with maximum thru-put
rates theoretically limited by the multiplexing rate of the scanivalve.
The present sampling scheme is to (a) increment the scanivalve to the
first data channel, (b) delay a specified time interval (normally 0.5
sec) to allow input pressure to stabilize, (c) collect a specified
number (normally 10) of samples, (d) average these voltage samples,

(e) store the discrete sample in memory, (f) increment to the next
channél, (g) repeat the above procedure, and (h) continue sequentially
through remaining channels. For each tide sensor, 100 discrete voltage
samples are collected at equally spaced intervals over each tidal cycle
for a predetermined number of cycles (normally 3 to 5). The minicom-
puter calculates from input parameters (1) the required timing interval
between multiplexing scans of the scanivalve to provide the correct
sampling rate, (2) the delay interval at each channel, and (3) the
number of voltage samples to be digitized and averaged and initializes
counters for determining completion of tidal tests. In additiom, it
provides an analog command signal through the digital to analog con-
“verter to the tide generator and lags the beginning of data acquisition
by a specified number of tide cycles after starting the genefator.

Due to thermal effects (zero drift) on the transducer output over a
tidal test of 2 to 3 hours duration, the pressure transducer is cali-
brated prior to and at selected time intervals during each tidal test to
provide accurate, update calibration data for scaling voltage (pressure)

to tidal elevations. The calibration data are obtained by monitoring
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At completion of the acquisition mode, the calibration, wave, and
tide data have been recorded in binary form on magnetic tape or disc.
These data with a header for test identification and pertinent param-
eters are available from disc or magnetic tape for anaiyses.

5. DATA ANALYSES. Analyses of the elevation and velocity data

from tidal model are performed by either the minicomputer subsystem or
a Honeywell G635 of the Automated Data Processing Center at WES.
Schematically, the automated procedures for analyzing tidal data are
as follow:

I. Program Initialization
(1) Input test parameters and option flags.
(2) Read and decode data tape or disc file,
(3) Demultiplex data files and scale data.

II. Tidal Data Analyses

(1) Harmonic analysis using Least Squares techniques.
(a) Amplitude and phases of tidal constituents.
(b) Relative phases between gages.

(2) Analyses of residual variances.
(a) Original versus Least Square estimate,.
(b) Prototype tide versus model tide.
(¢) Model base test versus model plans.

(3) Graphic output of above results.

In addition to the above automated procedures, manual and photo-
graphic techniques are employed in tidal models to study general patterns
of tidal circulation and to define qualitatively littoral transport
and deposition patterns.

The analyses of data from wave models are presented by Durham and
Greer (1975) and are basically auto-spectral and cross-spectral amalyses,
statistical analyses for wave heights and periods of wave signals at
selected locations throughout the model, and computation of response
functions or amplification factors from wave energy within the harbor

or tidal inlet relative to incoming wave energy. In addition to
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analyzing data from wave models, these procedures are used also in
analyzing wave data which are generated and acquired (refer to previous
section) at selected tidal phases and/or tidal ranges during specific

tide/wave tests in the tidal model.

6. MODEL APPLICATION. The hydraulic tidal model is used as an

engineering tool in predicting the effects of proposed engineering changes
(channel dredging, inlet geometry changes, and construction of coastal
structures) and in planning and designing the proposed changes in a

cost effective and environmentally compatible manner. For physical

models of tidal inlets to be most effective as a predictive tool,
verification of such models is desirable, Verification of hydraulic

tidal inlet models requires the hydraulic model to reproduce observed
prototype conditions of tidal elevations, tidal phases, and average
"mass distributions at specified locations and/or cross sections in

the model. Hydraulic tidal inlet models are scaled on the Froude model
law and are usually geometrically distorted models in which the hori-
zontal length scale is not the same as the vertical length scale. Such
modeling procedures require artifically simulating in the model the
frictional effects associated with prototype roughness of bottom and

sides of channels and overbank and marshland roughness.

Various procedures are available for inducing artifically the frictional

effects 3,4

in the hydraulic tidal model. One such procedure is the use
of roughness (drag) elements which are small strips of metal that are
attached vertically to the model bottom. The practice of using such
roughness strips for simulating frictional effects in tidal inlet models
is a standard and accepted procedure in physical modeling. The
successful application (required number and horizontal distribution of
roughness strips) of this procedure most frequently depends upon the
modeling experience of the hydraulic engineer and requires lengthy
testing programs. A means of estimating theoretically and/or empirically

the required number of roughness elements and their horizontal distribution
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is a needed capability in physical modeling. One method of estimating
the uniform horizontal distribution (number of elements per square foot)
of roughness elements in a distorted hydraulic model has been proposed
by Multer.S Although this procedure is based on one-dimensional tidal
flow, it warrants additional laboratory investigation and study. One
desirable refinement is to be able to define the variation in the horizontal
distribution of roughness elements from an idealized uniform horizontal
distribution. The relative phase of the tide at different locations
along a tidal channel relative to a reference location in the channel
can be used as one parameter to estimate the horizontal distribution
of roughness elements. Having placed a uniform horizontal distribution
of roughness elements in a tidal hydraulic model, comparison of the
model and prototype relative phases of a dominant tidal constituent
between two locations along a specific channel can provide information
as to the change in the amount of model roughness required to reproduce
correctly the prototype tidal phase along the specific reach of channel
between the two chosen points. Thus, the relative phase lags or leads
of major tidal constituents between selected locations throughout the
tidal inlet can provide similar information for the various channel
reaches in the model. If sufficient prototype data (amplitudes and phases
of various tidal constituents) are available, much information and
guidance as to the horizontal distribution of roughness elements in
the tidal hydraulic model can be obtained from the above procedure.
These procedures for defining the horizontal distribution of model
roughness, full model verification, and model testing using ADACS and
associated automation procedures were successfully applied in hydraulically
modeling Murrells Inlet, South Carolina. A fixed-bed tidal model study
was conducted to estimate the effects of proposed engineering changes
in the mouth of the inlet on the tide and wave regime in the inlet.
The prototype area of interest was approximately 1.5 miles inland and
6.5 miles along shore. A distorted physical model with an area of
approximately 21,800 sq ft was scaled at 1 to 60 vertically and
1 to 100 horizontally and constructed with molded topography reproduced
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to -25 ft offshore and +10 ft on land. Good prototype data was available
from National Ocean Survey of NOAA for 8 tide gages within the tidal
inlet. Figure 4 is a schematic of the model and the locations of the
various tide gages. The tidal regime of this inlet is dominated by
the principal lunar semidiurnal constituent, M2 , whose variance repre-
sents over 85 percent of the tidal variance in the inlet.

In the verification of Murrells Inlet model, the major tidal con-
5 s 6 ° and M8 were used in the
initial verification tests. After estimating and placing a quasi-

stituent, M and its overtides, M4 , M
uniform distribution of roughness strips in the model, the tide generated
in the model was composed of the M2 s M4 s M6 , and M8 tidal con-
stituents. The tidal coefficients (amplitudes and phases) for these and
20 other tidal constituents were calculated by National Ocean Survey
from prototype data collected at the 7 tidal gages within Murrells Inlet
and one tide gage just outside the mouth of the inlet. The instantaneous
height (elevation) of the prototype tide at a specific location in the
inlet can be répresented by the following equation.

TIDAL HEIGHT:

N
h(t) ='HO + 151 fiHi Cos [ait + (Vo + u)i - Ky ]

WHERE

h = Tidal height at time t, .

H0 = Mean height above reference datum.

Hi = Mean amplitude of ith constituent.
-fi = Factor to reduce mean amplitude to year of prediction
a, = Angular speed of ith constituent.

t = Time reckoned from some initial epoch.
(Vo+u)i = Equilibrium argument of ith constituent for t=0,
k. = Local epoch of ith constituent.

N = Total number of constituents.
Harmonic analysis performed by National Ocean Survey on prototype data

provide H  , H,, and k, for each tidal gage. The other coefficients,
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fi > 35 and (Vo+u)i , can be obtained from appropriate tables.’ The

preceeding equation can be rewritten in the following form:

N
h(t) =H_ + _Z A; €05 (wit + ¢5)
i=1
WHERE
h = Tidal height at time t.

H0 = Mean height above reference datum
A; = £.H, = Amplitude of 30 constituent.
_ _ . th .
¢i = (Vo+u)i - Ky Phase of 1~ constituent.

This form of the instantaneous tidal height is used in model control
and data analyses of the hydraulic tidal model. For Murrells Inlet,
the harmonic function composed of the M2 , M4 , M6’ and M8 tidal
«constituents at Gage 8 was used as a command signal to the tide
generator in producing the model tide forcing function for the initial
verification tests,

At each of the gage locations, the instantaneous tidal heights were
recorded simultaneously for several tidal cycles. The instantaneous
tidal height, hM(tJ, at each gage location in the model can be represented
as follows:

N

a + iEl[ai COS(wit) + bi SIN (mit)] + e(t)

LI

hy(£) = hy(t) + e(t)

where ﬂM(t) is the calculated tidal height, which is represented by
a harmonic series of known frequencies, and =(t) 1s noise associated
with the transfer function of the hydraulic model, etc. in the tidal
record. With an undetermined noise level in the tidal height record,
the principal of least squares can be used to solve for the unknown
coefficients (amplitudes and phases) for the M, , M4 s M6 , and M8
tidal constituents by minimizing the variance or the sum of the squared
differences between the measured model tidal height and the assumed
form of the model tidal height. The application of the principal of
least squares is as follows:
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4

r ~
E =y e?(t)dt = JT [hy,(t) - hy, (t)1%dt > MINIMAL

T = RECORD LENGTH

REQUIRES

3 _ .. 3E _ . E
a = 0; 3a. = 0; AND . - 0
0 1 1

Thus, have 2N+1 normal equations for 2, a, and bi where i=1, ...,N

[C] [A] = [F]

Real, symmetric matrix of sine and cosine products

il

Vector of coefficients

Vector of products of observed signal and sine or cosine terms

Z = > 0
1]

Total number of constituents

i1

The above set of equations can be solved by routine procedures of
matrix inversion., With the model data in digital form from ADACS, this
method of analysis is very easily performed by ADACS.

Having obtained the harmonic coefficients for the model tidal
height at each tide gage, the relative phases of the tidal constituents
at each gage relative to the tidal gage (Gage #8) at the inlet mouth
and the differences in these relative phases in the model and the proto-
type can be determined. Tables 1 and 2 give the amplitudes and model
to prototype differences in relative phases of the M2 tidal constituent
for model tests #1, #36, and #73. 1In addition, the relative phases between
any two tidal gages can be obtained, and the difference of these relative
phases in prototype and model can be calculated. Table 3 gives the
model to prototype differences of the relative phases of the M2 tidal
constituent for appropriate gages for model tests #1, #36, and #73.
In model test #1, quasi-uniform horizontal distribution of roughness
elements was placed in the hydraulic model of Murrells Inlet. From
Tables 2 and 3, the channel reaches (model area between two gages)
requiring more or less roughness elements can be determined by considering

the magnitude and sign of the model to prototype differences in relative
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Table 1

M2 CONSTITUENT TIDAL AMPLITUDES (FT)

RUN NO. 1 RUN NO. 36 RUN NO. 73
STATION PROTOTYPE MODEL DIFFERENCE  MODEL DIFFERENCE  MODEL DIFFERENCE
1 1.788 2.150 +0.362 1.804 +0,016 L716 ~0.072
2 1.834 2,140 +0.306 1522 +0.088 1.789 -0.045
3 1.866 2,070 +0,204 1916 +0.050 1.797 -0.069
4 1.91% 2.260 +0.341 1.974 +0.055 1,878 -0.041
5 1,885 .20 +0.335 1.957 +0.072 1.838 -0.047
6 1,936 2210 +0,334 1.986 +0.050 1.8712 -0.064
7 1.865 1.950 +0.085 1.885 +0.020 1.819 -0.066
8 2.402 2430 +0.028 2412 +0.010 2,396 -0.006
Table 2
M2 CONSTITUENT PHASE DIFFERENCES (DEG*)
STI_\r'(I;ION RUN NO. 1 RUN NO. 36 RUN NO. 73
STATION PROTOTYPE  MODEL DIFFERENCE  MODEL DIFFERENCE  MODEL DIFFERENCE
8-1 8.2 30.50 -11.13 15.14 -3.09 9.2 +1,01
B-2 33.40 26.50 - 6.90 k(] -L2 KW ] +0.80
8-3 19.52 13.80 - 812 19.2 -0.32 2.2 +0.68
8-4 20.69 13.80 - 6.89 1.4 +Q71 . 0.3 -0,39
8-5 3z66 3.9 - B.76 32,30 -0.36 33.10 +0.44
B-6 3.3 .20 -12.03 32.00 -2 2.5 -0.13
8-7 47.09 41,60 - 609 44.4 -2.63 46.80 -0.59

* 1 DEGREE ~ 2.07 MINUTES OF PROTOTYPE TIME
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Table 3

M2 CONSTITUENT PHASE DIFFERENCES (DEG*)

ST‘}B'ON RUN NO. 1 RUN NO. 36 RUN NO. 73
STATION PROTOTYPE MODEL DIFFERENCE  MODEL DIFFERENCE  MODEL DIFFERENGE
2-1 14.83 4,60 -10.23 12.94 -1.89 15.04 +0.21
3-1 A1 17,30 -1141 25,94 -2.17 .04 +0,33
3-2 13.88 1270 - 118 13.00 -0.88 14.00 +0.12
4-5 11.98 10,10 - 1.88 10.90 -1.08 12.80 +0.82
4-6 12.54 1.40 - 514 10,60 -1.94 122 -0,34
4-7 2%.38 7.0 + 0,82 23.06 -3.32 26.5 +0.12
5.6 0.57 -2.70 -3 -0.30 -0.87 -0.60 -1
§-7 13,84 19.70 + 5.86 124 -1.38 14,30 +0.46

* 1 DEGREE = 2,07 MINUTES OF PROTOTYPE TIME

Table 4

M2 CONSTITUENT MEAN TIDE LEVELS

(FEET ABOVE MLW)
RUN NO. 1 RUN NO. 36 RUN N0, 73

STATION PROTOTYPE  MODEL DIFFERENCE  MODEL DIFFERENCE  MODEL DIFFERENCE
1 2,668 283 +0.165 249 -0.169 21 004
2 2674 2831 10,157 a7 0.4 2695  +0.02
3 2,69 2632 -0.062 228 -0.447 256 -0.150
4 2115 2133 0,018 230 -0.3% 2663 -0.052
5 2.6% 219 10,098 2423 -0.713 2682 -0.014
6 2,680 a1 +0.075 237 -0.23 2655 -0.0%5
7 2676 3012 +0.3% 252 -0.153 27162 +0.086
8 2384 2557 40,213 218 -0.216 2365 +0.021
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phases between specific gages. In addition to relative phase differences,
the tidal amplitudes (Table 1) and mean tide levels (Table 4) must be
considered in adjusting the model forcing function and the model rough-

. ness during verification. After model test #73, the hydraulic model is
considered verified for the M, tidal constituent and its overtides.
Tidal amplitudes and mean tidal levels in the model agree to within

0.1 feet of prototype measurements and relative phase differences have
been reduced to one degree or less. Figures 5 and 6 show plots of

model and prototype M, tidal heights before and after model verification

at Gages 8 and 2, respzctively. These plots show that corrections for
mean tide levels, tidal ranges, and tidal phases were performed during
verification in getting the hydraulic tidal model to reproduce prototype
conditions,

The abbve verification procedure is vrepeated using a progressive
tide as the model tidal forcing function. Since the M2 tidal constituent
represents more than 85 percent of the tidal variance in Murrells Inlet,
minimum adjustments to the model roughness are required for model veri-
fication using a progressive tide. The harmonic analyses of a progressive
tide requires a much longer tide record (approximately 15 days) than

the harmonic analyses of the M, tidal constituent and its overtides.

2

Thus, verifying initially with the M, tide (dominant tidal constituent)

reduces the total time required for mgdel verification., In addition,

using the relative phase differences to isolate model areas requiring

changes in roughness elements has decreased the total time required to
verify a hydraulic tidal model,

Velocity verification can be performed in the hydraulic model using
the same procedure as presented above for the tidal heights. Frequently,
insufficient data exist for the tidal velocity regime to be analyzed
for the various tidal constituents. In most cases, twenty-four hours
of tidal velocity data exist for appropriate cross sections in the various

channels of the tidal inlet. For such cases, a progressive tide can be

generated in the model after tidal height verification. This progressive
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tide can be made to correspond to the appropriate progressive tide for
the particular twenty-four hours of intefest. Then, tidal velocity
measurements and required model adjustments can be performed to obtain
model reproduction of prototype tidal velocity.

The first application of the verification procedure, which is
presented in this paper, to a hydraulic tide model of Murrells Inlet,
South Carolina, was quite successful and demonstrated that a reduction
of required time for tidal model verification can be obtained by quali-
tative procedures of defining required model roughness and model areas
requiring such roughness. The present procedure with its complex method
of analyses requires the services of an ADACS for practical application
within the time frame of typical hydraulic model studies. Although
the methodology presented in this paper has shown much promise, additional
model applications and laboratory experiments are needed to refine
the application of the technique and to provide improved procedures
for quantitative estimates of the horizontal distribution of model
roughness in distorted, hydraulic tidal models.

7. SUMMARY. Application of ADACS to physical modeling techniques
for tidal inlet studies has (1) reduced the required time for model ‘
verification and testing with a related cost reduction in model studies,
(2) increased the quality and quantity of model data, and (3) allowed
more sophisticated procedures for model control and data analyses with
an improvement in information from model tests on which can be based
engineering decisions regarding the planning and design of proposed
channel dredging, inlet geometry changes, and the height, length,
alignment, and orientation of coastal structures (e.g., jetties and
breakwaters). Initial efforts in attempting to quantify the artificial
simulation of prototype frictional effects in geometrically distorted
hydraulic tidal models have shown much promise in the first application
of the relative phase difference procedure, reported in this paper, to
the tidal model of Murrells Inlet, South Carolina. Additional refine-

ments to this procedure are required, and future model applications and/or
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laboratory studies are desirable to define such improvements. The
automation efforts, described in this paper, of physical hydraulic models
for wave and tidal inlet studies has been highly successful in improving
modeling techniques, enhancing modeling capabilities, and increasing

the efficiency of such procedures through time and cost savings.

Proposed future efforts in model automation at WES include improved
sensors, spectral wave generation, and an expansion of these automated

capabilities to other model facilities.
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OPTIMAL INSTRUMENTATION PLANNING USING AN LDLT FACTORIZATION

William 8. Agee, Robert H. Turner, and Jerry L. Mever
Analysis and Computation Division
National Range Operztions Directorate
US Army White Sands Missile Range
White Sands Misslle Range, MM §200%

ABGTRACT. Optimal inatrumentation pianning procedures have been develop-
ed at White Sands Mimsile Range (WSMR) for dovap, radar, and cinetheodolite
instrumentation systems. These procadures use an Iustrumentation Plan (Iv)
improvement algorithm. The 1P improvenent algorithi was originally based on
an update procedura for the IP covariance matrix. The large number of avail-
able instrumentation sites require a great amount of CPU time and storage
using this update procedure, 1n addition, numerical Instabilities are some-
times cnecountered. Recently, we have redPV“)opmd the IP improvement algorithm
based on updating the [P information matrix. The speeiul svructurs of tle
infornation watrix and use of an LLLY factorization of the information metrix
have reduced the CPU time by a factor of three, greatly reduced the storege
requirements and eliminated the numerical instabilities.

1. INTRODUCTION. Trajectory estimation ig a fundamentzl vart of the
mission at White Sands Missile Range. In order to do a good job of trajcotovy
estimation, it iz absolutely essential to have a good instrumentation plan (IP).
The primary instrumentaticn systems at WSMR are »adar, dovap, and cinetheodo-
litc.  For each of these systems the instrumentation planning problem can be
stated informally as: given a nominal trajectory of flight path select the
instyument sitcs from among those available for the instrumentation system so
-as to meet the range users data requirements. The range users dave require-
ments are usually stated in terms of the precision or accuracy of the tvaise-
tory estimates. In the past this inatrumentation planning problem hes bean
handled by the use of varicus ad hoc techniques. The resuliing instrumertation
blans were usually adequats to meet the range users requiremsnis, but thay were
often wasteful in the sense that an equally good instrumentation plan could
have becn developed using fewer instrument sites.

’

Recently we have devoWOped some techniques which formalize the instrumen-
tation planning prcblem for the three primary ins 11umen1ut10n systems. Our
techniques solve the followimy problem. Given a set of tim2 points t:
entircly covering the nominal flight path and the uorrespond.'y position
vectors =i, i=l, N to the flipht path select a set of M ipnstrument sites which
minimize

N
C = jgl witrcov(gi) wiip

The quantity C may be Interpreted as the weighted sum of ersor estimites which
would resulc 1f measuroments from the nominal £light ralh wers processed. The
wi are a zet of vaights used to attach more importance to some trajectory
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points than to others. cov(xj) is the 3¥3 covariance matrixz of the errors in
the estimate of the trajectory position vector xj.

The pumber of surveyed instrument sites for each of the instrumentation
systems is approximately: (a) radar - 15, (L) dovap - €650, and (¢) cinetheo-
dolite - 230, Tt is obvious that the selection of M sites from the large
number of available sites would usually be computationally prohibitive if a
procedure of enumeration and examination of all possible combinations of M
sites is used to achieve a global minimum of C. Rather than pursuing a global
minimum, we have satisfied ourseclves with obtaining a local minimum of C
through the use of an instrumentation plan improvement algorithm.

Instrumentation Plan Improvement Algorithm

a. Given an arbitrary initial 1IP having M instruments construct a
modified IP having M+l instruments by adding the instrument site from those
available in an instrumentation planining pool (IPP) which results in the great-
est decrease of C.

b. Delete the instrumsnt site from the modified IP which results in
the smallest increase of C.

¢. Repeat the exchange procedure between the IPP and the IP given
in steps a. and b. until no farther improvement is possible.

The minimum achieved by the IP improvement algorithm is local in the
sense that it is dependent on the initial IP with which the algorithm started.

The IPP is a set of instrument sites considered feasible to use for the
geometry of the given flight path. The IPP is obtained from the set of all
existing sites by placing some basic constrainis on site selection. The con-
siderations which go into these basic constraints are:

(1) Dovap:
(a) Reference signal strength available at the receiver sites.
(b} Antenna nulls at low and high elevation angles.
(2) Radar: Ground clutter at low elevation angles.
(3) Cinetheodolite:
(a) Minimum image size readable on film.
(b) Maximum tracking rates.

(¢} Sun angle.

(d) Flight safety evacuation area.
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The effect of the addition and deletion of instrument sites on the
objective functicn € requirced in steps a. and b. of the IP improvement algo-
rithm requires a greqnt deal of computation even though the number of sites to
be considered has been reduced through the use of basic constraints in forming-
IIl'. Dach time a station is added or deleted the entire 3NX3N IP covariance
matrix must be uvpdated. In a previous approach to updating the IP covariance
matrix a direct update was used. The use of this direct updete required ex-
censive computation time. Also, severe numerical instability was encountered
when vsing this update for radar site selection. Because of these problems
the direct update was discarded in favor of a method which updates the IP
information matrix. In all cases the IP information matrix has a special,
sparse structure thervefore requiring much less computation for an update. The
numerical instabilities are also eliminated using this update procedure.

The remainder of the paper is devoted to describing the implementation of
the TP improvement algerithm using the information matrix update. First,
measurement models for the instrumentation systems will be described. Follow-
ing this, the batch processors used to estimate the trajectory and their
information and covariance matrices will be briefly described. Finally, the
numerical procedures for updating the information matrices will be given.

2. - MEASUREMENT MODELSG. Each dovap receiver measures a loop range change
between successive trajectory points. Thus, the measurement function for the
ath receiver is a function of the position vecltor Xi and xi4+1 to the trajectory.
Denote the measurement function by gqg(xi,Xi+1). The dovap observation, for the
ith trajectory interval, denoted by Zu(ti,ti+1l) is

Zoltiotyn) = 8 (xyoxgyg) + 0 (ty,) - ()

where ng(tiy;) is a zZero mean measurement noise term having variance Ry(i+l).

Let ga(Qi) be a p-vector of measurement functions for the ath radar or
cine site at the ith trajectory point. Then the p-vector of radar or cine
observations at the ith trajectory time is

() 7 g () + b+ (t) | (2)

where by is p-vector of zero-set measurement biases for the oth site and

ng{t;) is a zero-mean measuremcnt noise vector having diagonal covariance

Rg(i). Tor cine measurements p=2 and the components of ga(-) are azimuth and
elevation angles. Tor radar p=2 and the components of gy(-) are range, azimuth,
and elevation.

3. DOVAP BATCH PROCISSOR AND INFORMATION.MATRIX UFDATE. The dovap batch
processor minimizes

- - - e, - -2
QR 5,0t axy) = izz azl ROy Galio®y) - gla ) @)

The information matrix of this batch processor is a 3NX3N block tridiagonal
matrix
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where

] -
Ay Ap
T
Ao By Ay (::i:)
T .
A = A A ~ (4)
23 s o
N S S,
~ A
o e N-1,N
~ T
Sy A

the Ai's and Aij’

s are 3X3 and are functions of the trajectory position

vectors, the measurement noise variances, and the partial derivative vectors,

Gal (2i)=0gal(xi,®i+1)/0xi and Gu2(Ri+1)=3ga(Ri,Ri41)/0%1i+1.

The information

matrix A is factored as A=LDLT where L is unit lower triangular and D is diag-
The special structure of A allows L to be chosen as

onal.

where the Li are 3X3 unit lower triangular and the Li{ are 3%3.

b

Loy By <::::>
\ .

L = Lao N\ (5)
NN
O O
N\ AN
i Lyn-1 By

The matrix D

is partitioned into 3%3 diagonal blocks Di. The Li, Liy, and Di are computed
from
LD LT = A (6a)
1171 1
T T
LiDsby = Ay - By 5905l o1 (6b)
L.DLL . =a (6¢)
iYii41,1 T Ll ¢

Adding or deleting the Rh peceiver

site during the Kth observation inter-

val yields the informaztion matrix update equation

X

T, -
x-1, %) Igtx

Ay= AT J.(x 5

B K-1°

§K)

(7)

where Ay is the information matrix after adding a measurement (+) or deleting
a measurement (~). Jg(xk-1,xg) is a 3N-vector of the form
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T - - -
JB(XK_l,AK) =[00--- 06 (xK 1, 2(§ﬁ9° - - -0] (8)
(K-1)~ K
block block

J (xK l,Xy) is partitioned into 3-vectors with the only nonzero entries being
1n the (k-1)3%t and kth positions. If At 1s factored as LED*LET then

# k&7 T -
L'DL™" = LDL + Jp0xy ) 5% )JB(XK %) (9)

Equating block elements on both sides of the last equation gives the update
equations for Li, Lij, and Dj as

+

Li = Li (10a)
+

D, = D. i<K-1 (10b)
L 1

Lt = L (
i+l,i T Tisl,i 10¢)
+ & 4T T, T - -

L-1Pk-1Pk-1 ™ PreaPreafi-n * pn Ry )8gq () (11)
+ & 2T T .

beoaPoali k-1 = BenProali ke ® GBl( k=182 (¥y) (12)
+ 4 AT T T £ & et

IPrl = B Bike1Prealrok-1 T Bk k-2Pk-1BK k-1

(13)
(x )GBQ(XK)

£ 4 4T T . : '

L1D1L1+l g7 byDiliyy p KieN-l (1)
+ % 4T T T + + AT )

MRl = DBl * by iaPials i1 7 BiLiaPia by g Kedy

(15)

Some manipulation of the above equations reduces (13) and (15) to a rank one
modification form so that the update equations become

+

LY = L.
i i
x .
D. = D, i<K-~1
1. 1
ha
L -—

41,1 - Vien,i
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2 opt T oo p 1f o rel (G e G ) (11)

K=1Pk- 1M1 T PreaPr-1Pren ® Cpn o181 g
4+ A7 - T . R -
Ly 1Pkl k-1 © DieaPrealik-1 T Cra(on 780 () (12)
£ & +T T T '
LDl = LDl * %% (16)
with
T . -1 - 5
Xy = (GBQ(XK) LK,K—lLK—lGBl(XKFl))/(ltq}(.—l) (17)
- T -1.T ,-
U1 Gy Oy e qPenBeq) "8y Gy ) (18)
£k AT T o _
LiDiLiyy g = DyDyli,y 5 Kedsiel (19)
pifiT = 1o T & xTx, Keien (20)
l 11 1 1 1 1 1 -_
with
x: = L 1T g, )E (21)
i i,i-171-1%1-1/ 0
- T -1 T
Ay = %5 9By 30y gLe ) TR (22)

Equations (11), (16), and (20) are solved for the updated factors using
methods cl and c2 of Gill, Golub, Murray, and Sanders [1]. Method ¢l is used
for addition (+) because there are many more adds than deletes and cl is the
most computationally efficient of the update methods. Method ¢? is used for
delete (-) since stability can be+a problem in this case. Equations (12) and
(19) are solved for the rows of Lhi+l,i'

After applying the above update equations sequentially to add or delete
the Bth receiver from all observation intervals, the effect of the gth receiver
on the objective function C must be computed. The new objective function C is
easily computed by obtaining the new values of cov(xj) from the available I and
D factors of the information matrix.

cov(x,) = L&TDglLﬁl (23)
. T T - R B
: COV(Xi—l) = Li~l(Li,i~lC°V(ki)Li,iml+Di~l)Li-l i=2,N (24)
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L, E.AI‘)/\R AND CINE BATCH PROCESSCE AND INTORMATION MATRIX UPDATE. The
radar and cine batoh V' Tocesaors min.Lm oe

o B N oM _ T -1
QR Sxy,eesiy) = ) ) (Z,(t;)-g, (x)-8 b) R “(1)

izl o=l
- (25)
(Zu(ti)—ga(xi)msab)
where b is the composite bias vector
R (26)
172 M ’
and
Sb=2>5% . (27)

The information matrix of this batch processor is a (3N+pM)%(3N+pM) bordered
block diagonal matrix

Ay Ay w1
A2 (::::) Ao w1
. l
. .
N |
A = (::::) N ( (28)
AN .
Ay o Ay
T T T
A w2 N1 Al

The Aj i=1,N are 3X3, Ay+1 is pMXpM and the Aj N+1 are 3%pM. These matrices are
functions of the trajectory position vectors, the measurement noise variances
and the partial derivative matrices dgy(x:)/3%i=G,(x3), A is factored as

A=LDLT where L is unit lower triangular and D is diagonal. The simple structure
of A allows L to be chosen as
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Ll
N
Lo, AN
N
N
L = N (29)
AN
~
AN
Ly
_LN+1,1 LN+J.,2 LN+1,N LN+1

The Lj are 3X3 unit lower triangular, Ly+l,i are pMx3, and Ly+1 is pM¥pM unit
lower triangular. The matrix D is partitioned into N 3¥3 diagonal blocks Dj
and one pMXplM diagonal block Dyy1. The Li, Ly+1,i, and Dj are computed from

L.D.L. = A, i=1,N (30a)
L 11 a1 .
LD Ly = A (30b)

i iLN+l,i T PioN+L

N
T _ T
LyrPyralner = Ay izl Pgn,iPilien i - (30c)

Adding or deleting the Bth instrument site at the Xth time point yields
the information matrix update equation

A, = Az JB(QK)JE(QK) (31)

where A+ is the information matrix after adding a measurement (+) or deleting
a measurement (-). Jgl{xk) is a (3N+pM)¥p matrix which is partitioned as

e ) _
JB(XK) = [0 - OGB(XK) 0 === 0 sBJ (32)
kth (N+1)st
block block

. + _+ 4T
If Ay is factored as L'D'L

+ + +T T - T,-
4 = LD { :
I.D L LDL™ + JB(XK) JSQXK) ’ (33)

Equating block elements on both sides of the last equation gives the update
equations for Li’ LW+1 i and Di as
N+l,i
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+ -

Li = Li . (34a)
ot - L4k \ l

RN i # (34b)
i .

Nl,i 7 MNel,i ) : (3ke)
E ok 2T T, WT/= va (= i
LKDKLK = LKDKLK + cB(xK)GB(xK) | (35)

L T T, - ’

4 = +

BPePen,k T Pl kT (xS, (36)
2ot 2T oo po T D LY

ML+ Nl T e Per e T B ikPlne Lk
(37)
+ 4 4T T
- DL T 5ot
e, kP, i S8
The above update equations are solved by reducing (35) and (37) to a sequence
of p rank one modifications. Let GEs(xx) be the jth column of GE(QK) and S%j

the §th colum of SE. Then (35)-(37) reduce to
t + 4T T YT | )

LDl = LDl # Gﬂj(XK)GBj(XK) _ (38)
+ & 4T T T - i
LPilen, k= IPlwen,x * By OndSgy (39)

T Y I T T .
PrerPsalier © Pealpalien * *5%5 1=1,p (%0)
with T _ ,.T “1T - I
., = S..-L 9 . + -
Ky = (S5 Iy b Cay (R))/ (140) (41)
. - T.-1.T ,-
q GBj(xK)(LKDKLK) GBj(XK) J (42)

t & * +
In the above Ly<Lk, Dg*Dg, Ly+1 ,k¢LW+1,K, Lyy1¢li;1 after the jth rank one
modification. Methods cl and ¢2 of {1] are again used to solve for the updated
Tactors.

After applying the above update equations sequentially to add or delete
the Bth instrument site at all trajectory time points, the effect of the gth
instrument on the objective function ¢ must be computed. The new objective
function € is easily computed by obtaining the new values of cov(x; ) from the
available L and D factors of the information matrisx.
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MerPi T Beer,s (42)

S L JIS NS T
‘ (Di +PiDN+11i)Li- i=1,N (43)
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A COMPUTER SOLUTION OF THE BUCKINGHAM PI THEOREM
USING SYMBOLANG, A SYMBOLIC MANIPULATION LANGUAGE*

Morton A. Hirschberg
US Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

ABSTRACT

Among the theories of similitude, application of the Buckingham Pi
Theorem allows one to find meaningful relationships among variables, check
the formulation of a system of equations, and allow prediction from scaled
parameters., Simply stated, the Pi Theorem asserts that if there are n
variables involving N fundamental units, these may be combined to form n-N
dimensionless parameters each containing N+1 variables,

SYMBOLANG is a FORTRAN-based symbol manipulator using a 1ist structure,.
Symbol manipulators operate on strings of symbols rather than numbers., As
an example, a symbol manipulator allows multiplication of N+1 by N-1 to
obtain N2-1. A list structure allows data to be stored and man1pu1ated by
relationships rather than sequentially or by some other scheme.

The solution of the Pi Theorem involves forming Pi Terms. This is done
by the investigator ordering the equations of the system in order of impor-
tance, The equations are then exponentiated and multiplied together in
groups depending upon the sizes of n and N. Once a Pi Term is formed, the
dimensionless set is solved for by setting the exponents of the parameters
"to zero and using any routine which will solve a linear set of equations,
The numeric solution is then paired with the parameter to which it belongs,

Planned extensions of this work involve tabling well known dimension-
less numbers and. checking generated solutions against the tabled set.
Furthermore, data for the parameters can be input and full numeric answers
obtained. In addition, the computer can generate a large number of solu-
tions by permutting the equat1ons Permutted solutions can be factor-
analyzed and a regression fit made to determine a "best-solution."

*This article appeared as BRL Report No., 1824,
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The method of dimensions is somewhat dangerous but when used
with proper care, it is unquestionably of great power and
value. !

I. INTRODUCTION

The theory of dimensions has a long history of development
dating back to the ancient Greeks.? Galileo, Newton, Fourier, Lord
Rayleigh, Vaschy, Buckingham, and Bridgeman are a few of the men
instrumental in the development of dimensional analysis.

The theory of dimensions is important when we wish to compare
results for two arbitrarily selected systems of units, It is useful
in areas where knowledge is developing through an intermediate stage,
when basic laws are already known but problem solutions are lacking.
Its application may yield interesting conclusions based upon general
physical assumptions which are themselves uninteresting.

The theory of dimensions has three important applications®:

1. It supplies one with useful checks against errors made in
calculations. _

2. It suggests forms of physical laws.

3. Tt allows the prediction of behavior of a full-scale system
from the behavior of a model.

The rest of this paper will deal with all three applications;
however, the very nature of the method employed guarantees the first
application, and planned extensions of the model will form the basis
for a future report of the third application.

1
Strutt, J.W., Baron Rayleigh, The Theory of Sound, Vol. I, New York,
Dover Publications, 1945.

2
Macagno, E.O0., Historico-Critical Review of Dimensional Analysis,
Journal of the Franklin Institute, 292, 391-402, 1971.

3 .. . . . . .
Sedov, L.I., Similarity and Dimensional Methods in Mechanics, New
York, Academic Press, 1959.

4 . pps o s .
Synge, J.L., & Griffith, B.A., Principles of Mechanics, New York,
MeGraw-Hill, 1942,
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IT. THE BUCKINGHAM PI THEOREM

In dealing with the equations of physical phenomena, one often
multiplies and divides various quantities and/or parameters. The
rules of combination are essentially inherent in the parameters at
hand. 1f two physical quantities possess the same dimensionality,
we say their quotient is dimensionless or non-dimemnsional. Pi terms
are the names given to such non-dimensional products or quotients of
the original parameters.®

As a general rule; it takes N+1 variables to form a dimension-
less term with N fundamental units. This leads one to a simple
statement of the Pi Theorem:

If there are n variables involving N fundamental units, they
can be combined to form n-N dimensionless parameters, each contain-
ing N+1 variables.®

The Pi Theorem was first proved by Buckingham’ and is often
referred to as the Buckingham Pi Theorem.

As an example, all the quantities in mechanics can be expressed
using three fundamental units, e.g. force (F), length (L), and time
(T). All quantities in mechanics can be expressed in the form

F® LB TV where a, B, and y are positive, zero, or negative powers
which are not necessarily integers. The following is a list of a
few of the dimensions which can be formed:

5Baker, W.E., Westine, P.S., § Dodge, F.T., Similarity Methods in-
Engineering Dynamics: Theory and Practice of Scale Modeling, New
Jersey, Spartan Books, 1973,

6Housner, C.W., & Hudson, D.E., Applied Mechanics Dynamics, New York,
van Nostrand, 1950.

7Buckingham, E., On Physically Similar Systems: TIllustrations of the
Use of Dimensional Equations, Physical Review, 2, 345-376, 1914,
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[Velocity] = LT-!
[Acceleration] = LT"?
[Force] = F

[Moment of a Force] = FL
[Linear momentum] = FT
{Angular momentum] = FLT
[Density] = FT2 L-*
[Power] = FLT™!
[Pressure] = FL*?
[Viscosity] = FL=2T

where the ''='" is a true equality.

The solution of a dimensional set of equations involves forming
Pi Terms and solving the system of equations formed by the resulting
coefficients of Pi Terms. That is, one solves equations of the form

Ci1 + Cizu + C133 + C14Y =0 i= 1,2,3“

where each equation is the coefficient of L, F, and T respectively.
One solution is formed for each possible Pi Term.

A computer program, described in a later section, has been
developed to form the Pi Terms and solve the resulting equations
which render the system dimensionless,

I1T. FORMULA MANIPULATION

Formula manipulation (or symbolic manipulation) is primarily
processing of non~-numeric data, Several languages exist for such
purposes. Basically, a formula manipulator is written as a specific
list processing language, or language which processes strings of
-symbols.

8Sammet, J.L., Survey of Formula Manipulation, Communications of the
Association for Computing Machinery, 9, 555-569, 1966.
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The language selected to form Pi Terms and solve the system of
coefficient equations was SYMBOLANG.?»10 SYMBOLANG is written almost
completely in FORTRAN and is itself an extension of SLIP,11:12,13 5
list-processing language also written in FORTRAN,

The combined SYMBOLANG-SLIP system comprises nearly 180 sub-
programs and allows for arithmetic operations (addition, subtraction,
multiplication, division), exponentiations, substitutions, evaluations,
and differentiations,

Lists may be created, manipulated, and destroyed, with storage
of destroyed lists being reusable. In addition, recursive or
repetitive processing is permitted in a limited sense (using the
computed GO TO statement). In toto, the SYMBOLANG-SLIP system is
powerful and easily extendable. No new language is required to use
the system, One need be familiar with FORTRAN and acquainted with
the subprograms comprising SYMBOLANG and SLIP.

IV, METHOD OF SOLUTION

The number of parameters and the parameters of the system are
input and displayed. This is done for completeness. Next, the
number of equations, n, and the equations of the system are input.
The latter are input as SYMBOLANG lists and are assumed to be
ordered with those equations deemed most important first. That is,
earlier entered equations are more likely to produce fruitful
results. The equations are displayed. The number of fundamental
units, N, is also an input. From n and N, the number of Pi Terms
to be produced is calculated.

The equations are then partitioned into new SYMBOLANG lists
(herein called factors) containing the portion to the right of the
equal sign. Similarly, the portion to the left of the equation is
also retained (this will now be referred to as a variable). Factors
involve fundamental units of the system.

9Finder, N.v., Pfaltz, J.L., & Bernstein, H.J., Four High-Level
Extensions of FORTRAN IV: SLIP, AMPPL-II, TREETRAN, SYMBOLANG,
New York, Spartan Books, 305-387, 1972,

0uirschberg, M.A., SYMBOLANG-A SLIP Extension for Albegraic Manipu-

lation, Ballistic Research Laboratories Report No. 1749, Nov 1974,
(AD #A003190) '

Weizenbaum, J., Symmetric List Processor, Communications of the
Association for Computing Machinery, 6, 524-544, 1963.

11

1zReference 9, pp 1-82.

Al

lSHirschberg, M.A., SLIP for the BRLESC I1 COMPUTER, Ballistic Research
Laboratories Report No. 1731, July 1974. (AD #A000653)
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Pi Terms are formed by systematically raising each newly created
factor to a power (powers are expressed as variables for solution,
that is A, B, C, etc.) and then multiplying the exponentiated factors
together.

There is always one factor in each Pi Term that has as its
exponent 1. That is, it is not raised to a power, but is used as
is, while all the other factors are exponentiated. This selection
of primary factors is made systematically.

Once the product term has been formed (all exponentiated factors
" multiplied together), the product is displayed. It is of the form

FACTORlul FACTORZ“

2 FACT0R3“3 ...FACTORnan

where ai = Cl. + Cz. A+ C3' B + C4' C...
1 1 1 1

and Cji is a signed integer 0, £ 1, * 2, £ 3, etc.

The equations are solved by setting the oi's to zero and then
evaluating the resulting set of simultaneous linear equations (this
can be done using any matrix inversion routine where the solution
vector is calculated).

The solutions of the simultaneous set of equations are then
paired with their proper variable. This completes both the symbolic
and numerical portions of the solution of the Pi Theorem.

Appendix I contains the computer listings for solving the
Buckingham Pi Theorem.

V. A SAMPLE PROBLEM

The following problem is adapted from Housner and Hudson. Let
us consider the drag force F acting upon a body moving through a
fluid. Let us assume a constant velocity v through a fluid of
density p and viscosity u. The analysis is to apply to bodies of
a specified shape, so the cross-sectional area A may be used as a
measure of the body's size. The following variables and fundamental
units enter into the problem:
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Variable Fundamental Unit

F = F
u = FL™2 T
A = 12

p = FL™% T2
v = Lrot

Two Pi Terms can be formed from this set. Using Force and
Viscosity as the unique variables for solution, we arrive at

= F AA pB vC and I, = yA" p- V.

n 2

1

Expanding. these equations in terms of the fundamental units and
solving the exponential equations, we arrive at the following
solution:

2
Apv vA~ “p

Table I shows the computer inputs and outputs for the problem
above. Each Pi Term is developed and displayed. Following the Pi
Term is the numerical solution of the exponents giving rise to the
dimensionless set.

VI. DISCUSSION
The presented computer solution of the Buckingham Pi Theorem

provides one. solution for a ph{Sical system. It is not necessarily
an optimum or "best" solution,'“s!% Similarly the computer solution

14Blau, G.E., Optimization of Models Derived by Dimensional Analysis

Using Generalized Polynomial Programming, Journal of the Franklin
Institute, 292, 519-526, 1971.

15Chen, W.K., Algebraic Theory of Dimensional Analysis, Journal of the

Franklin Institute, 292, 403-422, 1971,

265



TABLE I

INPUTS AND QUTPUTS FOR THE
COMPUTER SOLUTION OF THE BUCKINGHAM PI THEOREM

NUMRER DF PRIMITIVES ) P1 THENREM shVvER

PRIMITIVES OMLY USEN FOR COMPLETENESS
FARCEDNS h
VISCOSITYS
ARFAS
NENSTITYS
VELOCITYS

FORCES
LENGTHS
TIMES J

% INPUTS

THERF ARE 5 FARMULAS INVNOLVING 3 VARTAR| p%
' FARCEN®FORCESS
VISCNSITYRFORCEZTIME/(ENGTHw w288

ARFAR|LFNOATH*w2SS ' INPUTS
DENSITYRFORCERTIME®# 2/ ENGTHex4%S

VELOCITY®| FNGTH/TIMESRS

THERF ARF 2 P TERMS
LTV = FORCEwn (]} + BY#LENGRTHwa (2w A - 4%8
*TIMFaw(DuR - c)
s
SEND NOF EXPRESSINN

SOLUTION FOR P| TFRM

FORCFD wr o L 1NOADOONE O1f
AREA «* = {nonononE ot
DENSITY we = 1A0NOONNE DY

VELDCTTY o= 2000N000N0E 01
LTy = FORCFww{} + BINLFENGTHAw (=2 + . P=A
*R + CIeTIMEww(§ + 2«8 - G}
‘ .
SEND NDF FXPRFSSINN

SOLUTTION FOR Pt TFRM

VISCOSITY ww  ,100ANONONE o
AREA *x a KAOADDNKE DO
DENSITY "o =, 1NNODOUNE N}
VELOCTTY *% =, 1NANOONNE 01
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might need to have a transformation applied to it to put it in a
form where it proves more usable (i.e. cubing the terms of one of
the Pi Terms, etc.).

If the user's insight was good, the numerical solution (results
obtained by using values for the parameters) one would obtain would
be the same as those for an optimum or "best" solution.

The planned extension of this work is to provide data for the
variables and calculate a Buckingham Pi Theorem solution. Next
apply numerical values and save the results. Next calculate a new
Buckingham Pi Theorem solution and again apply numerical values to
this, saving the results. The computer can be programmed to do
this for a great many of the total possible Pi solutions. The
numerical results can then be factor-analyzed and a regression fit
made. The numerical data can then be fed back through each Pi
solution and solutions closest to the regression can be saved for
later analysis. 1In this manner, a quasi-empirical best solution
can be obtained for further study and use in later analysis of the
system under consideration.

Furthermore, common non-dimensional numbers!® may be tabled
and as computed solutions are formed, these may be compared to the
tabled values. If a match is found this can be noted, as it is
of considerable use to know if a computed Pi Term is one of the
common dimensionless numbers.

16Land, N.S., A Compilation of Non-dimensional Numbers, Washington,

D.C., U.S. Government Printing Office, NASA SP-274, 1972,
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APPENDIX I

Computer Listing of the Buckingham Pi Theorem Solution
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00000

OO0 0D

O

PROGRAM RUCKY

THIS IS THE P! THFOREM SpLVER
WRITTEN BY MA HYRSCHBERG
NCTNBER 1974

SET UP SLIP STNRAGE
COMMON AVSL,X (100}
DIMFENSION SP(10G00NO)
SET (P PRNGRAM STORAGE
NIMENSIOM LNEW(L00)},LTEMP(100),LPOWFR(LIONO)
DIMENSION LPRIMSUL100),LFORMS(100)
NIMENSION SALTN(24)
NIMENSINN T7EE(78R)
NIMENSION FFORMILIND)
NIMENSION LEXP({78)
NATA OME/1,/
DFFINE FXPONEMTS AwFohle?),ARuZ2
"DMATA TZEF/AHA ) LHE, ARG, {HND AHE ) LHF, JHB YHH, IHT, SH T, AHK, 1H, 14AM, 14N,
1 1HNIHP , IHO, THR RS T T, L HU L HY L HW, T X, tHY , 1 H7,
20HAL ,2HR1,2HC1, 2HDT ,2HEY ,2HF |, 2HG1 , 2HH 1, 2HT |, 2H T, 2K, 2HL L, 2H L,
Z2HM1, 2HN 1, 2HP 1) 2HQL» 2HR 1, 2HS1 , 2HT {1 2HUL, 2HV 1, 2HWL , PHX L, PNHY 1, 2471,
A2HA2y PHR2,2MC292HN2» 2HED2 ) 2HF 2, 2HB 2, 2HH2, 2M 12, 2H.T2, PHK D, 2H(. 2/, PHN?,
BAHND, 2HN2, 2HPD, 2HA2) 2HRD, PHS 2, 2HT 2, 2HI12, 2HY 2, 2HW2, 2HX 2, PHY 2, PHT 2/

SETUP WARKING STORAGE
CALL INITAS(SP,10000)
READ N{UMHER OF PRIMITIVES
READ (5,10) NPRMS
10 FORMAT (1%)
CHRITE (6,32) NPRMS
12 FORMAT({H]1,%55X,184 Pl THEOREM SOLVER/
{ 21H NUMRER OF PRIMITIVFS,4%X,15)
WRITE (A,14)
14 FORMAT (3AHPPRIMITIVES ONLY USED FOR £OMPLETFMESS)
READ PRIMITIVES
DO 20 =1 ,MPRMS
LPRIMSIT)®INLYISTILRRIMS{1),SHINPYT,999)
20 CONTINUF
OUTPUT PRIMITIVFS
N0 3N Jmt,NPRMS
CALL LSAPNT(LPRIMS{I1), INHPRIMITIVES,900,,TEMP)
30 CONTINUE

READN NIUIMARER NE FNRMIILAS
READ (R,10) NFRMS

REAND NUMBER OF INDEPENDENT VARIARLES
READ (5,10) IVARS
WRITE (6,32) NFRMS,IVARS

32 FORMAT (INHNTHERE ARE,I1X,15,1X, AHFORMIULAS,

1 I, 9HINVOLVYING,SX, 15, 1X,9HVARIABLES)

READ FORMULAS

DO 40 =y ,NFRMS
CALL TMLYIST(LFORMS(T),SHINPUT,3HVAL,TEMP)

40 CONTINUE
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C CALCULATE THE NUMRER OF P] TERMS
IPI®=NFRMS=]VARS
WRITE (6,42) IPI
42 FORMAT (IAHNTHERE ARE,1X,15,1X,ANPT TFRMS)

c
C OUTPUT FORMULAS
] PN S0 I=1,NFRMS
c CALL LSOPNT(LFORMS(D)},AHFORMUILAS,9Q9,,TEYP)
C =N CONYINUF .
¢
C STRIP FERUALS nFF AND SETUP NEW SYMBOLAMG LISTS
1XNT=mD
no 200 Iw=i,NFRMS
C
C SET UP READFR FDR FORMULAS
LRNDELRDROV (I FORMS(1))
c
C STRIP FIRSY PART oF FORMULA
o A0 lImy, A
NATUM=ADNYSER(LRD,FLAG)
IF (T1.NF.3) GO YO &0
IXDTuIXNT+¢
c

C SAVE VAR[ARLF NAMF [N FORMULA FnR LATER USE {Sal.iivynn)
FFARMUIXDT ) =DATIIM
A0 COMTINUFE
Lw=n
Lwsl IS8Tl w)
IC=0
&% CONTINUE

C ADVANCF THRoUGH LTST
NATUMBADVSFEFR(LRN,FLAG)

IF (FLAGJNF,0,) GO TN 70

c
C SET UP TEMPNRARY LIST AND CnUNT FLEMENTS
JCwTC#+Y
CALL NEWAOT(NATUM,LW,TEMP)
GND TO 6%
70 CONTINUE
¢
"€ SET CHUNT AND FARM NEW NEW SYMRA| ANMG L 8T

LNEW(!)un

LMEWL D )m ISY(LNEW(I))
LRNSLRPRAV (| W)

LTEMP({]1)m| 18T (9)

CALL NEWROT(LTEMP(1)},LNEW(Y),TEMP)
LC=IC=2

IF (LC,LE,0) GO TN 2n0p

ne 8p J=q,|C
DATHMSADVSER{ILRD,FLAG)

CALL NEWROT(DATUM,LTEMP(]),TFMpP)
B8N CONTINUE

c
C ERASF TEMPORARY L1ST AND PRINT NEW LIST
CALL TRALST(LW)
c CALL LSOPNTI(LMEW(]),AH| NEW,0009,,TEMP)
200 CONTINUF
KeNFRMS w1
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o0

o000

po 210 J=1,K

SETUP EXPONFNTS
LEXP(T) =L SAMNL(LSOMNI (1, TZEE(T),1,))

21N CONTINUE

SETUP P1 TERMS

LFRMS=LSAMNTI(LSGMNL (1 ,))

ng 260 Jei, 1Pl

LTvmL SOMNY (LSAMNL(1,.))

KK=0
CYRLE THROPGH FNARMULAS MOST TMPORTANT ANR SKIP FORM{ILAG SN AR
TO INCLUDFE ONLY THE IMPORTANT FNORMIILAS NNE AT A TIMF

no 245 Jm{,NFRMS§

TF (JLER,T)Y GN Ta 218

IF (J+IVARS LEJNFRMS) 6N T0 245
KKmKK+]

RATSE POWFR
LPNWER(KK)®L SARAZ(LNEW (1) ) LEXP(KK))
LTUSLSOMEX(L.TY,LPOWERIKK))
CALL LSANES(LTV,TEMP)
TLGN=SEURNRILTU)
LTVeLSUCPY{TLRN)
CALL LSANES(LTU,TEMP)
GO TH 245

21% CONTINUE
CALL LSQPES(LTV,TEMP)
LTYySLSOMEX(LFRMS, LNEW(J))

24% CONTINUE
CALL LSQPNT(LTV,3HLTV,999,,TFMP)
CALL PRLSTS(LTV,4)

Snl.VE FOUATIQNS
CALL QSUBKSVILYY,I7EE,SOLTN,ICOUNT)
CALL LSANMES(LTY,TEMP)
Do 250 Jmi, KK
CALL LSAPES(LPOWER(J),TEMP)
250 CONTINUF '

PRINT SoLUTINN FOR P] TERM
WRITF (/,251)
2%1 FORMAT( 21HNSALUTION FOR Pl TERM)
KK=an
no 258 Jmi , NFRMS
IF (JLEQ,1) WRITE (6,253) FFORM(]),ONF
253 FORMAYT (1H ,A1Q,1X,2Hwe,I1X,Fl4.8)
IF (J+I1VARS. LE.NFRMS) 60 TD 258
KKmKK+]
WRITE (/,2%3) FFORM(J),SNLTN(KK)
2%8 CONTINUE
260 CONTINUF
CALL EXIY
2000 CONTINUE
WRITE (K,2010)
2010 FORMAT (7H NO NO )
CALL EXTT
END
SURROUTINE RUCKSVILIST, ZEE,SNLTN,ICOUNT)
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o0 o0oOD

oo

THTS SURRDUTINE SETS UP THE SOLUTION FOR THF PT THENRFEM

WRITTEN AY MA HIRSCHHBERG
JANUARY 1975

DIMENSINM T7EE(78)
NIMENSION SNOLTN(24)
DIMENSINM AMAT (24,24)
NIMENSINON AWNRD(3)

CLFAR SYONRAGF
No %5 i=my,24
SOLTN(I)=D N
no- 4 Jwy, 24
AMAT(I,J1=n,0
4 CONTINUF
% CONTINUE

SFT UP READER FnR LIST
LR=L.ROROVI(LIST)
SEY FLAGS
LEVEL=N
TCNUNT =
[FNDmD
ITWORN=Q
IG0O=0
JEND={
10 CANTIMUE
IGN=1G0+1
JGN=N
ADVANCF THROUGH LISTY
X=ANVSAR(LR,K)
IF (K) 100,20,100
2n [F (LEVE| «LCNTRILR)) 150,30,7n
IN IF (NAMTSTIX)) BO,40,60
an 1F (LISTMT(X)) 50,10,50
WE HIT A SyRLIST
&0 COMTINUE
LEVEL=LEVFL +1
TEND®N
TWAR QO
GO TH 1n
WE HIT A DATUM FLEMENTY
&0 CONTINUE
TEND=D
IF (1G0,.LF,%) 60 TO 10
1F (JBOEN, 1) ICOUNT=ICAUNT 41
IF (JGO,FR.1) GO Y0 (o
IWORD=IWNRD+]
STORE DATUM
AWORD(IWNRD ) =Y
G0 TO 10
WE HIT AN END OF SuUBLIST
70 CONTINUE
LEVEL=LEVFL =1
TENDETEND+
1F (IEND,LT,2) GD TO 75
JG0o=|
GO TO 20
7% CONTINUE
tF (I1WORD,.GBT,1) BD TO Bn
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IF ([+pRD.LF.n) GO TN 2n
C STARE NIIMERICAL COEFFICJENTY (CONSTANT TERM)
SOLTN(ICOUNT )meANORND( 1)
TWNRDh=(
GO0 TO 2n
&0 COMTINUE
C STORE MATRIX COFFFICIENT
Ny 9p I=y,78
TF (AWORD(2) NE, ZEE(D)) B0 TO On
AMAT (1CAUMT, 1) =AWORD (1)
IWNRN=D
G0 YD (20,1A0), JEND
9n° CONTINUE
9% CONTINUE
CALLL SLPERRI(INH AUCKSYV )
100 IF (LEVFL=ICNTR(LR}) 180,120,110
110 CONTINUE
LEVEL®| FVEL=1
0 TO gon
120 CONTINUE
CALL RCELL(LR)Y
160 CONTINUE
JEND=2
GO YO AN
160 CONTINUF
c
C INVERT MATRIX Tn FIND NUMERICAL SalLltipwn
CALL MATINVIAMAT,ICOUNT,S0L.TN,24,1,NET)
IF {DET FA N} GO Tn 9%
RETURN
FND
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- PIPS -

AN INTERACTIVE GRAPHICS PROGRAM
FOR DETERMINATION OF MASS
PROPERTIES OF IRREGULAR PLANAR SOLIDS

R. I. ISAKOWER
AND
F. R. TEPPER

PICATINNY ARSENAL, DOVER, N.J.

ABSTRACT

. PIPS is an interactive computer graphics program

for the calculation of the mass properties of irregular
planar solids. This program utilizes the graphics
terminal to determine the mass, center of gravity, mass
moments of inertia, products of inertia, principal axes
and center of percussion of assemblies of irregularly
shaped parts (not necessarily touching nor in the same
plane) with respect to arbitarily selected 3~axis coordi=-
nate systems., The solids may either be drawn at the
graphics screen, or described and read in on punched cards,
or generated by attaching (and modifying) an existing file
of parts. The inputted solids may be accumulated with
other solids and their combined properties calculated.

This paper describes the techniques used in, and
operation of, the PIPS program along with examples of the
successful application of PIPS to provide engineering
support to the design analysis of problems associated with
hardware components and assemblies.
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THE PROBLEM

A. Background

PIPS is an interactive computer graphics program for
the calculation of the mass properties of generalized shaped
planar solids. The applications of this program at Picatinny
support the dynamic evaluations of fuze components and
assemblies and missile and shell warhead sections. The need
for this program illustrates the fact that even theoretically
basie¢ and familiar engineering calculations are at times,
not only difficult, but nearly impossible to accurately and
expeditiously accomplish in a design room environment.
Calculations for mass, CG, and inertial terms are familiar
to engineers, designers, and students, but since actual
design components perversely do not conform to "nice"
uniform shapes, determining these properties of munition
parts is a difficult and imposing job. This program offers
a considerable savings in development time (and expense)
and permits the analyst to "stay on top" of the changing
design, thus optimizing final hardware performance.

There are no restrictions to the contours, materials,
assemblies of the planar solids, and combinations of com-
plicated convoluted shapes and materials that are routinely
handled by the PIPS program.

Any discussion of a computer program should rightfully
include a description of the computer system upon which’
it operates. There are two graphics systems in use at
Picatinny Arsenal: a Control Data Corporation 274/1700/6500
refresh graphics facility (fig.2) and a network of Tektronix
4014 storage tube graphics stations (fig.4).

PIPS was originally written for the Control Data Corpora-
tion (CDC) facility operating under Scope 3.4.1, IGS Version
2, employing 30 overlays and 46K octal of 60 bit words of
storage. The program was later rewritten for the Tektronix
Terminal Control System (TCS) package, and required 13 over-
lays and 56K octal storage. The CDC 274 refresh graphics
terminal is a twenty inch diameter screen with a light pen
and alphanumeric and function keyboards. It is driven by a
mini~-computer, a CDC 1700, which is a satellite to the main
or host computer, the CDC 6500, which "houses" the problem
programs. The problem programs are those programs (stress
analysis, circuit design, etc..) to which graphical techniques
are being implemented. '

The Arsenal's network of Low Cost Graphics Terminals
(LCGT) are Tektronix 4014 storage tubes driven directly by
the CDC 6000. They feature a nineteen inch diagonal screen,
a thumb wheel controlled cross=hair cursor, and an alpha-
numeric keyboard. Work at the tube is supported by 30"x40"
data tablets for digitizing input and "quick look" electro-
static copying devices.
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PRESENT LARGE SCALE IG SYSTEM

CDC 274/1700/6500 FACILITY
@ 274 DIGIGRAPHICS CRT CONSOLE
@ 20 INCH DIAMETER SCREEN (REFRESH)
@ 4096 UNITS OVER 20 INCHES
@ LIGHT PEN
@® ALPHANUMERIC KEYBOARD
@ FUNCTION KEYBOARD
@ 1700 DIGITAL COMPUTER
@ SATELLITE
@ ITEM IDENTIFICATION HANDLER
@ GRAPHIC DRIVERS
@ CARD READER, LINE PRINTER, CARD PCH
@ 6500 (HOST) DIGITAL COMPUTER
@ PROBLEM PROGRAM

8/2

FIGURE 1.
















PIPS’ SLICE METHOD

FIGURE 5.
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add nothing to engineering understanding of the problem -

and add tremendously to programming complexity. Thus, four
displacement vectors (three linear and one angular) are
permitted for the User Reference System out of a possible six.

It is convenient to initially confine the discussion of
the PIPS' algorithm to two-dimensional (plane) polygons and
later, by adding thickness to the polygons, extend the ex-
planation to solid bodies,

The outer and inner contours of any shape input to PIPS
may be described as contiguous straight line and circular
arc segments. The program drops perpendiculars from the end
points of the line segments toc a base line below. The area
enclosed by the line segment, the two perpendiculars, and
the base line is automatically partitioned into right
triangles, rectangles, and circular segments. The section
properties of these well known BASIC SHAPES (fig.6) are
in the literature.

All contour lines are developed; that is, drawn from
initial point to end point. PIPS establishes the X (hori-~
zontal) development of the first line segment as what is
called the "ADD" direction. The section properties of the
areas under all line segments developed in that direction
are added together. The section properties of areas under
all line segments developed in the opposite or "SUBTRACT"
direction are subtracted from this total. The summation of
all this addition and subtraction produces the section
properties of the anclosed area of the plane polygon. This
is illustrated in the figure entitled SUMMING CONVENTION.
(fig.7). To ensure positive values for area and section prop-
erties the code uses the absolute values of the summation re-
sults. (This over simplified explanation does not, of course,
hold for product of inertia calculations. More detailed com-
puter logic is employed to produce the properly signed result),
Needless- to say, all the bookkeeping of adding, subtracting,
re-adding, etc of section properties poses no strain to the
user as it is transparently, automatically performed for him
by the code.

When thickness of the areas is introduced, the line
segments become edges. The areas under the line segments
are extrapolated from triangles, rectangles, and circular
segments to wedges, rectangular parallelopipeds (boxes),
and cylindrical segments. The mass properties of these basic
solids are also available in the literature or may be
derived, and it is these equations that are coded into the
PIPS algorithm (figs. 9-~14).
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WEDGE (B)

P=MASS DENSITY C.G. X =2T"
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FIGURE 10.
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P = MASS DENSITY

M=MASS = pxyz
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CYLINDER

C.G. x =CENTER OF CIRCLE

¥y = CENTER OF CIRCLE
- _ zf
z= "2

£ = MASS DENSITY
M= MASS = prrrlz
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SEGMENTED
CYLINDER (A)

P = MASS DENSITY

FIGURE 13.
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- i e CRING CROSS A% COUMDIMATES
OF REFEMLWCE AXIS OF A PT. ON W X-ARIS

The solid arrows are the X and
Y axes of the User Reference Sys~
tem. The two pair of dashed vec-
tors are the principal axes drawn
through the CG of the piece and
through the User Reference Origin,
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FIGURE 20. CLOSE-UP OF SINGLE SLICE RESULTS
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TRACK IMB CROGE AS COUMOINATER TRACKING CROCE AR COORDINATES
OF GEERENCE AXTE OF A PT. OM TWC X-AXIS
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The effect of any change (con-
tour, material, thickness, etc.)
to the piece may be immediately
seen. Here the User Reference
Origin is "attached" with the
light pen and towed (translated)
to another location, All prop-
erties are recalculated.
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FIGURE 21. TRANSLAT!ION OF USER REFERENCE OR!GIN
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TRACKING CROSE AS CODRDINATES TRACKING CROSS AR CONRDIMATES
OF FREFTRENCE AXIS OF A PT. ON THE X-AXIS

Here, the User Reference Sys-
tem is rotated about the 7 axis
to a new orientation., The coor-
dinate system can be relocated
(and reorientated) with the
light pen or via the keyboard.
Again, the displayed results are
newly calculated.
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FIGURE 22. ROTATION OF USER REFERENCE SYSTEM
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The User Reference System can
even be repositioned off the
Screen - out of the building, if
desired. PIPS automatically re-
scales the picture to fit within
the boundaries of the CRT.
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FIGURE 27. CLOSE-UP OF FRONT VIEW
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It is possible at any time to return to the electronic
drafting board portion of PIPS to redesign a piece or create
an entirely new item. As an example, the contour of the
recently examined piece is used as the inner contour of an
irreqular hole in a newly designed circular disk. The four
holes in the original piece are now small circular disks of
different diameters located within the irregularly shaped
inner contour. The new configuration is now a cluster of
five solids with all of the PIPS graphics and calculation
capabilities (change of contour, material and reference
axes, automatic scaling, etc..) available - a cluster can be
handled as if it were a single entity.

Finally, a file of any display of a piece or assembly
of pieces may be catalogued for use by a plotter program to
produce a hard copy of what appears on the screen. (Slide
and Poloroid cameras also provide reproductions of the
screen contents but their proper utilization require addi-
tional skills).
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cLe

Hard covy of one page of the
library of slices. Selections
FIGURE 32. are made by locating the CRT's
cross-hairs over any portion of
the item desired.
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EQUATION OF MOTION OF FIRST LEAF

OF SAFING AND ARMING MECHANISM
OF M509 FUZE

Ip1 61 = Mqre1 S COS(@+ §q) + PIVOT FRICTION TORQUE
+ SPRING TORQUE + FRICTION TORQUE DUE TO SPRING

+ TORQUE DUE TO FORCE FROM LEAF 2 EXERTED
. ON LEAF 1 (INCLUDING FRICTION)

FIGURE 35.




(2)

Proposed 8S8afing and Arming Mechanism of TOW Missile

(a) Description of System

This mechanism is similar to the previous device
with the exception that only two leaves are currently
used.

(b) Problem

A study was undertaken to evaluate the possibility
of replacing the present system with a single leaf, A
drawing of one of the three proposed leaves is depicted
in Fig. 36.

(c) Application of PIPS

A relationship was derived expressing the "g" level
reguired to initiate motion of the leaf as a function
of the leaf geometry and mass properties, leaf and rotor
spring torques, forces due to leaf and rotor interaction,
and friction. The expression for this g-level is given
in Fig. 37. The nomenclature for this equation is as
follows:

FR = force exerted by the rotor on the leaf

MR, Ms = spring torques on the rotor and leaf,
respectively

W = weight of leaf (determined by PIPS)
X3 = Jocation of c.g. (determined by PIPS)
M = coefficient of friction

The other parameters are geometri¢ constants which are
defined in Fig. 38. (Note: x; =0 for this contour.)

The PIPS program was utilized to locate the position
of the c.g. for each of the three candidate designs.
It is estimated that approximately one week of engineer-
ing time was saved by applying PIPS.

With the help of PIPS, the mathematical simulation

was able to demonstrate the feasibility of the single
leaf design.
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SINGLE LEAF CONFIGURATION FOR
SAFING AND ARMING MECHANISM

FOR TOW MISSILE
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(3) Timing Mechanism of M577 PFuze

(a) Description of System

Two views of the timer of the M577 fuze are
shown in Figs, 39a and 39b. Fig. 40 is a schematic
diagram of the functioning sequence of this mechanism.
In the safe position, the setback pin, which is spring
loaded, blocks the path of motion of the spin detent,
which is also spring loaded (spring not shown in Fig.40).
The spin detent engages the balance wheel of the timer,
thus preventing it from operating. Under the influence
of the acceleration of the projectile in the gun tube,
the setback pin retracts against the setback spring,
releasing the spin detent. As the projectile progresses
through the gun bore, rotation causes the spin detent
to move radially outward against its spring until stopped
by the fuze body. This movement frees the balance wheel
and sets the timer mechanism into motion, eventually
arming the fuze.

(b) Problem

An unacceptable dud rate was experienced during lot
acceptance testing of the fuze. It was hypothesized that
the setback pin had returned to its original position be-
fore the spin detent had released the balance wheel, which,
of course, would result in a dud. Such an event is possible
since, due to friction torques induced by the projectile
acceleration, the spin detent does not move for a con~-
siderable portion of the acceleration pulse. It is only
when the acceleration level has decayed sufficiently that
the spin detent can move and disengage the balance wheel.
By that time, the force exerted on the setback pin by
the setback spring may be greater than that due to the
acceleration., This makes it possible for the setback pin
to return and obstruct the path of motion of the spin de-
tent.
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FUNCTIONING SEQUENCE OF M577 FUZE TIMING MECHANISM
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FIGURE 40.




(c) PIPS Application

In order to verify or disprove this hypothesis, a
mathematical model of the behavior of this system was
developed. The differential equation given in Fig. 41
was derived to describe the motion of the spin detent
(see Fig. 42). In that equation:

moment of inertia of detent (determined
by PIPS)

—
n

Ifr = additional effective moment of inertia
due to frictional effects

S

.‘Q'
D:
H

angular displacement, velocity and
acceleration of detent, respectively

mass of detent (determined by PIPS and
verified by weighing)

<
a
I

L = distance from projectile spin axis to
pivot of spin detent

fc = location of c.g. of detent with respect
to pivot (determined by PIPS) '
W,W = angular velocity and acceleration of
projectile
@ = initial angular orientation of spin
detent

The use of the PIPS program to compute the mass,
moment of inertia and c.g. location of the detent resulted
in a savings of approximately three days of engineering
time. (To verify the validity of the calculated values,
the spin detent was weighed, and the measured mass

differed only negligibly from the calculated mass.)

The analysis showed that the motion of the spin detent
is very sensitive to friction; a dud is quite likely
to occur whenever the coefficient of friction is of the
order of .35. The dud problem was eventually alleviated
when the setback pin/setback spring system was modified.
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E. Development Plans and Conclusions

There are other programs, batch and graphics, that
perform similar calculations on different shapes: solids
of revolution and asymmetrical systems of bodies (with
major axes at skew angles). It is intended to incorporate
the special features and strengths of these ¢ther programs
into the next version of the PIPS code along with the
coding to use the tablet as a digitizing device to permit
rapid input of contours directly from drawings or lofting
templates.

As a final reflection - the development of batch pro-
cessing computer programs to solve problems of this type
has proved inadequate to satisfy the analysis needs of
the designers who must use them. The perceptual augmenta-
tion that graphics provides has proved to be an essential
ingredient in the design - analysis process, and to insure
maximum usefullness, a substantial amount of human engineer-
ing must go into the development of the graphics procedures.
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DEVELOPMENT PLANS

COMBINE CAPABILITIES:
@ PIPS* (PLANAR SOLIDS)
@® PROMS!PHASOR*WEIGHT (AXISYMMETRICAL SHAPES)
@® SOS, MOMENTS (ASYMMETRICAL SYSTEM OF BODIES)

* GRAPHICS PROGRAMS

FIGURE 43.









TESTING ALGORITHMS FOR A MINI-COMPUTER ON A MAXI

F. D. Crary
The Mathematics Research Center
The University of Wisconsin-Madison

ABSTRACT. A common problem in the development or testing of algorithms
to be run on minicomputers is the lack of access to the eventual target
machine. In such cases, development is done on other equipment. Occasionally
the success (or failure) of the development effort may directly influence the
choice of minicomputer to be used in the application.

An obvious approach to this problem is to simulate the target minicomputer
on available large scale equipment. This approach poses certain difficulties.
Even if a package of subroutines to simulate the minicomputer arithmetic is
accessible from a high-level language, the programming problems are difficult,
Since calling upon such subroutines usually amounts to coding in assembly
language disguised in the syntax of a high-level language, nearly all of the
problems of assembly language coding face the programmer: the programming
time is excessive, the programs are difficult to comprehend and correct, etc.

A solution to these difficulties is the use of an appropriate preprocessor.
The input to the preprocessor is the desired program expressed in a high-level
programming language. The output of the preprocessor is the same program
expressed in terms of references to the subroutines simulating the minicomputer.
Thus the preprocessor has done the "dirty work! of preparing the disguised
assembly language version of the program.

A desirable capability of such a preprocessor is to be able to accept a
description of the supporting subroutine package and produce a program accord-
ing to that description. This can be useful if a number of different simulations
must be made--neither the input program nor the preprocessor need be changed,
only the description.

Such a preprocessor to extend Fortran (called AUGMENT) is available
from the Mathematics Research Center. The input language is Fortran extended
by user-defined data types, operators, and functions. AUGMENT's output is
an ANSI Standard Fortran program with nonstandard operations replaced by
calls to appropriate subroutines. The language extension capabilities of
AUGMENT make it suitable for an application needing nonstandard arithmetics.
Some other applications are mentioned in the text.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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1. INTRODUCTION. The initial problem that we address is the develop-
ment of software for minicomputer applications on large scale computers. This
development may be required for a number of reasons:

Algorithms may be destined for a number of different
computers, more than can conveniently be
made available to the developer.

Algorithms may be of varying sophistication for
different applications.

The requirements of the algorithm may determine the
minicomputer to be used in the application;
that is, the algorithm development must precede
acquisition of the minicomputer.

The file storage and editing capabilities of the large
system may offer an attractive development
environment.

Any number of these reasons (and possibly others) may combine to make
software development and/or maintenance on large scale equipment desirable
or necessary.

An obvious means of performing such development begins with the
development or acquisition of a package of subroutines that allows the
simulation of the essential aspects of the arithmetic on the minicomputer
to be used for the application. The proposed algorithms are then tested
in the large machine by coding references to the routines in the simulation
package.

This approach to development has several difficulties. First, consider
the kind of code that must be written. In Fig. 1(a), we have a well-known
algebraic expression. We assume that a straightforward evaluation of this
expression is desired (the proper choice of numerical method is a very
important subject, but we do not concern ourselves with it in this paper).

If we were to evaluate this expression by references to a collection of three
argument subroutines, we would obtain code of the form shown in Fig. 1(b).
If the simulating routines supported a simulated accumulator, Fig. 1(c)
could result. Tinally, simulating routines implemented as functions could
vield Fig. 1(d).
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CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

= QUOT (DIFF (RT2 (DIFF (PROD (B, B),

-b + Vbz - 4ac

Za

(a) original expression

MUL (B, B, TMP(1))

MUL (FOUR A, TMP(2))

MUL (TMP(2), C, TMP(2))

suB (TMP(1), TMP 2), TMP(2))

RT2 (TMP(2), TMP(2))

SuB (TMP(2), B, TMP(2))

ADD (A, A, TMP(]))

DIV (TMP(2), TMP(1), X)
(b) subroutine package

LOAD (FOUR)

MUL  (A)

MUL  (C)

STORE (TMP(1))

LOAD (B)

MUL  (B)

SUB (TMP(1))

RT2

SUB  (B)

DIV (TWO)

DIV A)

STORE (X)

(¢) simulated accumulator

PROD

(FOUR, PROD (A, C)))), B), SUM (A, A))

(d) functions
Figure 1.

Code generated by calling on
simulating packages
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The point of Fig. 1 is that the resulting code to be used to test the
algorithm is essentially assembly language code. The use of a high-level
language and compiler serve only to disguise that fact, and not very well
since more code might be written than would be required by a true assembly
language program. Programs written in this form suffer from almost all the
faults of assembly language programs:

programming time and effort are excessive

programs are difficult to comprehend and maintain

debugging is more difficult

algorithm testing is more difficult because it is harder
to make changes

An additional difficulty can occur if more than one machine is to be
simulated in this fashion. If the simulating packages for the various
machines are obtained from different sources, they may have different
calling conventions. Thus several different versions of the same program
may need to be written, debugged, and maintained during the development
process.

2. AUGMENT. The Mathematics Research Center has developed the
AUGMENT precompiler to solve problems of the sort discussed above.
AUGMENT is a flexible preprocessor that extends the Fortran language to
include nonstandard data types, operators, and functions. Its operation is
summarized in Figure 2. The input to AUGMENT is a source program written
in the extension to Fortran, accompanied by a Description Deck.

The Description Deck contains information about the extension to the
Fortran language and how the extension is implemented by the simulating
package. A portion of a Description Deck with an explanation of its contents
is contained in the Appendix.

- To test an algorithm for a minicomputer using AUGMENT, one would
need a simulating package that supported the minicomputer data types to be
used in the algorithm (INTEGER, REAL, and perhaps DOUBLE PRECISION),
and a Description Deck for the package. Then the algorithm is written in
Fortran with the various quantities declared as nonstandard data types as
specified by the Description Deck. A pass through AUGMENT generates a
Fortran program which makesg calls on the simulating package (see Fig. 3).
From that point, compilation, linking/loading, and testing proceed as usual.

AUGMENT eliminates the need to program in disguised assembly
language by creating that form automatically. AUGMENT also eliminates the
need for several versions of the same algoritiim if more than one machine is
to be simulated. In this case, only the Description Deck need be changed to
change simulated machine and adapt to different calling conventions.
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Figure 2.

Summary of AUGMENT use
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3. OTHER APPLICATIONS. AUGMENT can be applied in any application
where nonstandard data types or operations are needed. Some of these
applications are:

~instruction counts. 7o obtain an estimate of the amount of work
performed by a subroutine, one can prepare a simulating
package which performs the usual machine arithmetic opera-
tions with the side effect of counting the number of opera-
tions that are performed. This may, of course, be combined
with a minicomputer simulation.

~multiple precision arithmetic. On those occasions when one requires
greater accuracy than is provided by the machine, a software
multiple precision may be easily employed with the aid of
AUGMENT.

-interval arithmetic. Interval arithmetic is a tool for obtaining valid
results in spite of the inherent inaccuracies of machine
computation. The method computes with closed intervals
rather than single numbers. See [ 3] for more information.

-Taylor series. In a package under development, a truncated Taylor
series is maintained for each variable. When an operation
is performed, the Taylor series for the result is computed.

AUGMENT input:

X = (-B + SQRT (B*B - 4.*A*C)) / (2.*A)
AUGMENT output:

CALL NEG (B, TMP(1))

CALL MUL (B, B, TMP(2))

CALL CNV (4., TMP(3))

CALL MUL (TMP(3), A, TMP(3))

CALL MUL (TMP(3), C, TMP(3))

CALL SUB (TMP(2), TMP(3), TMP(3))

CALL RT2 (TMP(3), TMP(3))

CALL ADD (TMP(1), TMP(3), TMP(3))

CALL CNV (2., TMP(1))

CALL MUL (TMP(1), A, TMP(1))

CALL DIV (TMP(3), TMP(1), X)
Figure 3.

Sample of AUGMENT translation
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4. AVAILABILITY. AUGMENT is currently (March 1976) available
for the following systems:

UNIVAC 1100
IBM 370

CDC 7600
Honeywell 635

Copies of AUGMENT have been supplied to persons intending to implement
it on the following systems:

MULTICS
DEC PDP-10

Portability of AUGMENT has been found to be very good (in one week,
both the IBM and CDC versions were brought up). The precompiler is
written in ANSI Standard Fortran except for

(1) eight machine dependent primitive routines which require about
150 lines (total) to implement, and

(2) some minor oversights which are documented in [2].

5. CONCLUSION. The AUGMENT precompiler is a tool which simplifies
the programming process when nonstandard arithmetics and data types are
required. The applications for AUGMENT include simulation of minicomputers,
word length sensitivity analysis, multiple precision arithmetic, operation
counting, and interval arithmetic.

AUGMENT will not cure all world's programming problems, but can
be of great assistance in dealing with some problems. One user of AUGMENT
put it this way: "AUGMENT isn't a program that you need all the time--but
when you need it, you really need it. "

6. REFERENCES.

1. Crary, F. D., The Augment Precompiler, I. User Information, The
University of Wisconsin-Madison, Mathematics Research Center,
Technical Summary Report #1469, December 1974.

2. Crary, F. D., The Augment Precompiler, II. Technical Documentation,
The University of Wisconsin-Madison, Mathematics Research Center,
Technical Summary Report #1470, October 1975,

3. Moore, Ramon E., Interval Analysis, Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1966.

References [1] and [ 2] are updated as changes are made to AUGMENT. Current
versions are available on COM microfiche from the author.

339




APPENDIX

This Appendix presents a portion of a Description Deck for AUGMENT
‘'with a brief explanation of its contents. A portion of a Description Deck
for a double precision complex data type is presented in Figure 4. The line
numbers in the Figure are added for easy reference from the text. The
explanation below is by line number.

Line 1. The first line of the description of a data type specifies the
name of the type. A program translated under this description may use the
data type name DBLCOMPLEX in the same way that INTEGER, REAL, etc. are
used in a standard Fortran program. In the lines following, the character
"$'" is an abbreviation for "DBLCOMPLEX". This abbreviation is built into
AUGMENT to reduce the size of the Description Deck.

*DESCRIBE DBLCOMPLEX
DECLARE DOUBLE PRECISION (2), KIND SAFE SUBROUTINE,
PREFIX DPC
OPERATOR - (NEG, UNARY, PREVIOUS, $)
OPERATOR + (, NULL UNARY, PREVIOUS, $)
OPERATOR + (ADD, BINARY 1, PREVIOUS, $), - (SuB),
* (MUL(SUBROUTINE)), / (DIV(SUB))
OPERATOR .%Q.)(EQ, BINARY 2, PREVIOUS, $, LOGICAL),
.NE. (NE
FUNCTION CLOG (LN, ($), $), LN ()
CONVERSION CTDC (CFI, INTEGER, $, UPWARD), CTDC (CFR, REAL)

D AW N =
. . . . . .

o~
. e

Figure 4.

Portion of Description Deck for
Double Precision Complex Arithmetic
(Line numbers are not part of the
Description Deck.)
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Line 2. The second line gives the general information about the data
type and its supporting package of subprograms. The first clause (DECLARE
DOUBLE PRECISION (2)) specifies the way in variables of type DBLCOMPLEX
are to be represented in the translated program. A declaration of the form

DBLCOMPLEX A, B(10)
would be translated to the form
DOUBLE PRECISION A(2), B(2,10)

The second clause indicates the nature of the supporting routines. Three
choices are available: function, subroutine (three argument), and simulated
accumulator. The clause SAFE SUBROUTINE specifies that the routines are
three argument subroutines and that it is safe to allow the output argument
to be one of the operand arguments. This specification may be overridden
for specific routines (see Line 5). The last clause (PREFIX DPC) specifies
the manner in which the routines are named. Unless overridden, all routine
names will begin with the letters "DPC'" as will the names of all temporary
locations generated by AUGMENT.

Line 3. Beginning with Line 3, we describe the operators that may
have DBLCOMPLEX operands. Line 3 describes the unary minus (negation)
operator. It is implemented by the subroutine DPCNEG (the "DPC' is not
written since it is the prefix--AUGMENT adds it). The remaining information
in the line specifies that the operator is unary, that its position in the
operator hierarchy is previously defined (the hierarchy position is attached
to the symbol used in the source program), and that this description of the
operator is for operands of type DBLCOMPLEX (the result is also of type
DBLCOMPLEX since unary operators do not change type).

Line 4 describes the unary + operator. Since the description contains
the phrase "NULL UNARY', AUGMENT will discard all unary + operators with
an operand of type DBLCOMPLEX. Since it is to be discarded, no routine
name need be specified.

Line 5. Next come the arithmetic operators. The notation "BINARY 1"
specifies that the operator being described is binary (has two operands) and
that both operands and the result for this description have the same type
(DBLCOMPLEX). This line also indicates the "drop out'' rules allowed by
AUGMENT. The subtraction operator has exactly the same description as the
addition operator except for subroutine name, hence only the subroutine
name need be specified. For the multiplication and division operators, the
routines are such that it is not safe for the result argument to be one of the
operand arguments. Hence the "SAFE SUBRQUTINE" specification of Line 2
is overridden by the specification "SUBRQUTINE' which may be abbreviated
HSUBH.
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Line 6. The relational operators . EQ. and .NE. are also meaningful
for complex types. The "BINARY 2'" specification means that the description
will contain two data type names: the {irst is the type of the operands; and
the second, the type of the result. Since none of the other relational
operators are defined for DBRLCOMPLEX operands, their use will cause
AUGMENT to diagnose an error.

Line 7. Next we describe two of the functions which may operate on
‘"DBLCOMPLEX operands. Functions for AUGMENT are generic. The
logarithm function is described as being implemented by the routine DPCLN
when it appears with the argument list '($)'", (that is, when it appears with
a single argument of type DBLCOMPLEX), and yields a result of type
DBLCOMPLEX. This function may also be called by the name LN with the
same description.

Line 8 describes two conversion functions. Conversion functions are
applied automatically in certain cases of mixed mode operands or may be
coded in the program. The function CTDC (Convert To DblComplex) is
defined for INTEGER and REAL arguments with DBLCOMPLEX results. In
each case, the conversion is "upward" meaning that DBLCOMPLEX ig the
preferred type if automatic conversion is applied. That is, the expression
"I+D" is equivalent to "CTDC(I)+D" if I is INTEGER and D is DBLCOMPLEX.
"Downward"' conversion functions are applied automatically only across the
replacement operator.

Other featureg and options are available which are not illustrated
by this example. The user documentation [ 1] describes these cases.
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USE OF A MINI-COMPUTER FOR ON-LINE REAL-TIME
PROCESSING OF MASS SPECTRAL DATA FROM MULTIPLE MASS SPECTROMETERS

D.H, Robertson and C, Merritt, Jr,

U,S. Army Natick Research and Development Command

Natick, Massachusetts 01760

ABSTRACT

One of the greatest challenges in the area of automated data processing is
the output from a mass spectrometer; combined gas chronttography/mass
spectrometyy provides still wove strinuent denands on the duta process.ing
system.  In order to realize the goal of on-line real-time acquisition and
reduction of mass spectrodetry data from multiple instruments, speciol
neans were developed for this purpose. As an adjunct to acquisition and
reduction processes, there exists the problun of identification of the
sanple by means of library search reutines which must bhe rapid to be
cflective.

Several nethematical manivuletions were conceived and evaluated on the raw
data to f{ocilitete identidicetion; librory file structure was invesiicated

as a primary ineons cifecting this,  These approaches to identification and
the library file structure are discusscd. Typlcal of the quest ons which
must be answered in the lstter case are: What arve the feoturcs of an optiiam
library scarch algorithin and the optimem Jibrary size; and i3 it reasonable
to comhine pattern classification techniques with a library search? Also

the computer system, a DEC 15/76, legitimately in the mini-computer class,

is d@hLJlnxd; ehpoulall) as it relates to the auromation of an analytical
cheoinistry laboratory.
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The primary function of the computer system in the Analytical Chemistry
Laboratories at the Natick R&D Command, has been to automate the instrumen-
tation used to perform chemical analyses. The most challenging aspects
of automation are presented by on-line real-time acquisition, reduction
and interpretation of mass spectrometer output. In the area of interpre-
tation, several mathematical data treatments, in succession, have been
developed which have been used in sequence as the size of the data base
has increased. The hardware and software specifications of our.system
are described herein followed by a review of the mathematical treatments

and presentation of some applications of the overall system.

The basic system is a PDP15/76, manufactured by Digital Equipment
Corporation. It is equipped with 48K of core memory in the central
processor configuration and 2 PDP11 memories respectively, controlling
the UNIBUS access to the 15 memory and the I/0 operations for tﬁe GT40, a
graphic display system. The 15 memory directly controls a fixed head disc
with a 250,000 word capacity i.e, 218 (262,144); a cartridge disc system
operates through the peripheral processor, which allows the 15 memory to
access the 11 memory associated with the unibus.

Figure 1 depicts the basic units of our system as well as some of the
experiments which are interfaced with the system. The slave computer is
a HP 2116B which was the original venture into computer technology in the
Analytical Chemistry Laboratories. Simply because the acquisition and
reduction routines were fully developed for this disc-oriented system,
it has been kept in the 1ink, handling output from a medium resolution
mass spectrometer, the output of which is digitized directly with a PAD
(pulse amplifier discriminator).
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The TOF Mass Spectrometer is equipped with a CSI 260 high speed
digitizer as a front end prior to direct data transmission to the 15/76
system. The high resolution mass spectrometer is simularly front-ended
with a high speed digitizer unit custom built for the Laboratories by

Adage.

It is possible to effect compound identification from first principles,
an approach whereby the structure of each unknown is assigned as a function
of characteristic mass peaks in a spectrum which refer directly to the
presence of specific bonding and/or chemical functionality. As such,

a library is not necessary.

In most cases, however, the identification of an unknown compound
from its mass spectrum by automatic data processing assumes the existence
of a file of data for a large number of known compounds and the capability
for searching that file in a manner which will provide component identi-
fication. The conventional approach uses tables of mass vs, intensity
values that constitute digitized mass spectra. By comparing the unknown
to each known spectrum in the library, it is possible to achieve identifi-
cation from the best match of the unknown to a known spectrum in the
Tibrary file.

Because of the large number of spectra to be searched in a typical
application, that of combined gc/ms operation for instance, the computer
configuration required for identification of unknown based on use of

all their mass and intensity data i.e., the complete spectrum, is normally
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quite large and counter to the best interests of efficient on-line
real-time handling of mass spectral data. In particular, there is a
need in the average analytical laboratory for searches on small,
relatively inexpensive computers which remain inexpensive only if their
peripheral units are confined to modest size and capahility.

Historically, three methods were developed for encoding spectra as
compressed data:

1. Calculation of entropy function

2. Calculation of divergence

3. Selected binary encoding

The first two approaches to the classification of mass spectral
data, namely the calculation of the Khinchine entropy function and of the
divergence function, are derived from set theory and are based on the
statistical distribution of peaks in a mass spectrum. These as well as
the selected binary encoding which is described below, have in common the
reduction of the mass spectrum to a single-valued number which is diagnostic
within some range for the compound with which it is associated. ( Fig. 2.)

The entropy function is calculated by summing the products of
individual ion abundances p and their respective logarithms, "p"
thus represents the ion abundance in terms of the percent of total ioni- .
zation of the molecule in question or in another sense, more germane
here, the probability of occurrence of that ion fragment in the spectrum,

Mass spectra are thus converted to a single valued number and in this
way a data file can be constructed consisting of these numbers. An
example is shown in Table 1. These compounds have been selected to show

the typical variation in the "entropy" value which is expected for the
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variation in the degree of unsaturation in the molecule. In searching a
file of precalculated Khinchine values, a matching index is used to
establish correspondence of the value for an unknown with the library
value. In the early work with Khinchine values, the construction of the
reference file was limited to a few hundred compounds which are normally
encountered in the analysis of the volatile components of natural products,
most especially of foodstuffs. .

"~ When applied to large libraries, in the order of 7000 compounds, the
range of values of the Khinchine function was not sufficiently unique.
An example of this situation is shown in Table 2.

To provide differentiation between two compounds, the Khinchine
functions of which are too nearly alike to be diagnostic, the second
function on our list; namely, the divergence calculation was invoked,

The formula for this calculation appears in Figure 3, Here N1 and N2
represent, respactively the total number of ions in each of the 2 compounds
being compared and "p" has the same meaning as in the Khinchine function
calculation. In practice it has been found convenient to refer the
calculation of divergence of a given compound in the aliphatic hydrocarbon
series for instance, to the normal straight- chained a]kane of the same
carbon number. In Table 3 are listed the divergence values for
several C6 hydrocarbons referred to N-hexane. For example, in the case
of two compounds such as hexene and methylpentene, the divergence values
are markedly different.

Considering the fact that the final format in which data are handled

in a digital computer is in the binary world we were led to develop an
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approach which we call selected binary coding. This code allows compres-
sion of the library file through selective binary coding of characteristic
peaks and use of variable length logical records,

The coding procedure is illustrated in Figure 4. A hypothetical
mass spectrum is shown with a representation of a 16 bit computer word
at the top. Selective binary coding is accomplished by dividing the mass
range of interest into multiple groups of seven. The number corresponding
to the peak in the spectrum in each group which has the highest intensity
is then coded as a three bit binary number, In this example the fourth
position is encoded in the first grouping, the seventh in the second
and so on; zero is used to denote the absence of a peak within the group-
ing, thereby giving a total of eight possible values, hence the term
octal coding by which we have designated this scheme,

Representation of an cctal number within the computer requires
three bits; thus, in a 16-bit machine such as the HP 2116B used in setting
up this system, five octal characters can be stored in each computer word
with one bit left over. A single computer word is capable of storing
information which spans a range of 35 amu. Compounds with a greater
mass range require additional computer words. As many as needed are used;
the last word is designated by setting a flag in the 16th bit., A further
illustration of this system of encoding is shown in Table 4,

Since 15 bit positions allow 215 or 32768 unique representations, it
is possible to encode that many compounds in a unique manner.

The octal code for a mass spectrum may be easily obtained from

digitized mass and intensity data acquired on-Tine and stored for subsequent
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processing. A'f]ow chart of the procedure is shown in Figure 4, A
normal sequence of data processing involves the following on-Tine
operations.

1. Conversion of analog output to digital i.e., mass and intensity
data.

2. Condensation of the data to octal format utilizing the routine
in this slide, thus providing the binary equivalent of the "spectrum®
for which the 1ibrary is being searched,

3. When binary "1" is sensed in the 16th bit, the number of words
to encode the "spectrum”" is known, then it is not necessary to search
the entire library but only the subset or sub-library collection which
requires that number of words fof coding.

The subdivision into subfiles of variable record length and creation
of a name file were designed to make maximum use of random access mass
storage devices.

For each unknown compound being searched, a matching index is cal-
culated; the five best matches are printed out, thereby anticipating
the possibility for identical or nearly identical matching indices.

The usefulness of selective binary coding for search and retrieval from
large data files has been well illustrated in the literature and for this
purpose it actually matters Tlittle what size window one uses. If,
however, one is to make use of the diagnostic information which is
contained in a mass spectrum, the size of the window and the starting
masses for each window become vitally important. Consider Table 5-

The vertical column at the left refers to the number of the window under
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consideration and the horizontal sequence across the top of the table
consists of the octal digits below each of which appear the masses
corresponding to the octal code. The first window,for example will
contain the masses coded octally from 23 to 29. A series of masses
corresponding to a series of ions such as 29, 43, 57 and 71 etc,
represents alkyl fragments and will each be encoded as the 7th digit
in an odd-numbered window.

A pattern of codes is seen in Table 6 which demonstrates the recur-
ring octal digit pattern for various series of ions which correspond to
several common functional groups. The hydrocarbon fragments will always
~ be coded in odd-numbered windows, and when the skeletal structure is a
saturated aliphatic hydrocarbon, one would expect the most abundant peaks
to be a series of alkyl fragments which would be coded as octal 7.

If the compound is unsaturated, the octal cede would be a 5, Moreover,
ions which are still more unsaturated, such as fhe alkynyl series having
the formula CnHZn-3 and consisting of the series 39, 53, 67 etc,,

will be represented by octal digit 3 in odd-numbered windows. It should
be noted that oxygen containing peaks such as those arising from ketones
and aldehydes are isometric with the alkyl ion fragments and will be
coded in octal 7 in odd-numbered windows. The code pdttern, which
occurs in the even-numbered windows and produces the series of ions
which is characteristic for alcohols etc., is seen in the bottom left
row of the table.

Additional octal code patterns which are characteristic of functional

group type compounds are seen in the right hand column. Thus, the
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appearance of a particular digit as a series fn an even-numbered window
may be correlated with a particular structural feature. Generally
speaking, octal patterns from the odd-numbered windows are less specific,
whereas the patterns for ions encoded in even-numbered windows are more
closely related to functionality. In order to achieve the accurate
identification for an unknown spectrum as created on-1ine from a GS/MS run,
it is necessary to use a combination of odd and even numbered windows.

Some examplies taken from real data coded from compounds selected
at random from a file of mass spectral data are seen in Table 7. The
top left shows some patterns for alcohols. Compounds A-Dcorrespond
to ethanol, isopropanol, n-propanol and 2-ethyl-1-butanol. The first
column of digits corresponds to the first odd-numbered window containg
masses 23-29. The successive odd-numbered windows contain, for all the
compounds, digits representing hydrocarbon series of fragment ions. The
corresponding even-numbered windows all contain the octal digit 2 which is
characteristic of rearrangement ions for alcohols and other oxygenated
species. In the case of the isopropanol and ethylbutanol the octal digit 5,
rather than 7, appears, suggesting the possibility of branching. The 6
which appears in the 3rd window for compound C is an error in coding;
normally a 7 would be expected to appear.

At the top right patterns for various esters are shown. As with
alcohols the octally encoded digit in the odd-numbered windows is a 7
which corresponds to the series of alkyl fragment ions. In the even-

numbered windows the 2s appear, representing oxygenated species. In this

case the pattern at the end of the code is found to be diagnostic for esters.
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The pattern for aldehydes is similar. Again, sevens occur in odd-
numbered windows representing alkyl fragments. In this case there is a
contribution to these ions from the isometric ion containing CO. Compounds
C and D are actually 2 different spectra for 3-methylbutanal. These
again suggest the possibility for detecting branching by the appearance
of 5 in one of the odd-numbered windows. The succession of 1s is found
to be characteristic for both aldehydes and ketones.

Most important in the overall is the success of this technique of
coding when used with real data as obtained on-line and in real-time
from a standard GC/MS system. Moreover, experience with the technique
adds further support to the choice of coding one mass in 7 as opposed
to one mass in every 14 amu. This choice provides greater success in
identification of functional group character when the compound for which
one is searching is not in the library. -

The most demanding aspect of the operations within the Analytical
Chemistry Group is associated with monitoring the volatile components
in irradiated-preserved foods. A study has already been completed to
indicate that there are no toxic substances produced during this preserva-
tion process; the current study of volatile components is being conducted
in conjunction with an animal feeding study to determine the alteration
in nature, if any, of the nutritional quality of the food stuff. As
such, large numbers of samples are produced from the rapid scanning mass
spectrometric monitoring of the eluent from a gas chromatograph, by
means of which the volatile components are separated subsequent to vacuum

distillation into rough fractions based on b.p. of component.
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There are two aspects of computer applications to this work. The
first is the automatic acquisition, reduction and interpretation of
mass spectrometric data based on the principles of octal codification which
have been presented earlier. The repetitive nature of this application
allows high accuracy in identification insomuch as one is looking for
differences among samples which relate to nutritional value.

The second aspect of this deals with statistical analysis of the
guantitative data which are produced from the studies, i.e., a study of
the variation in quantitative values for the various components determined
as a function of sample treatment, method used for irradiation and storage
time. It is customary to plot time of storage after irradiation vs.
concentration of component(s) for the various procurements or lots of
meat, thereby indicating scatter of the data. Included in this plot
are usually the X and 2 sigma lines for each collection of data. The
previously described investigations have been conducted on output from
low resolution mass spectrometers. At the time of this writing the
addition of high resolution capability is nearing completion; it is based
on electrical processing of the signal from a CEC 21-110 high resolution
mass spectrometer operating via a high speed digitizing unit which was
custom built for these laboratories by Adage. The Adage device inter-
faces fhrough traditional links, directly with the computer where the data
are processed with standard routines to provide exact mass values.

Although in-house reguirements have not yet dictated the interface
of our standalone gas chromatographs to the system, the multi-programming
aspects of the PDP 15/76 system will readily allow the addition of many
slow devices such as these, liquid-liquid chromatographs and standard
spectroscopic devices, viz I.R., U.V. and visible spectrophotometry.
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TABLE 1

Compound Khinchine Function
n-butane 0,926614
2-methylpropene 0.812125
t-2-butene 1,041750
3-methyl-1,2«butadiene 1,215960
1,3,5-hexatriene 1,339620
1,5-hexadiyne 1,605300
3-heptyne 1,379110
TABLE 2

Use of Divergence to Resolve Non-unique Khinchine Functions

Compound Entropy Diygrgence
2,4-hexadiene 0.473 10,97
3-methy1-1,3-pentadiene 0.474 26,19
2-ethy1-1,3~butadiene 0.497 7,79
1,3-hexadiene 0,498 9.17
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TABLE 3

Reference Compound for the Serijes is Hexane

Comparison Compound Divergence(J)
n-hex-1-ene 4.2269
2-methylpent-2-ene 7.7805
cyclohexane 10.0238
3-hexyne 11,8302
2-methylpentene 12,5064
1-hexyne 18.7163
2-hexyne 25,8092
TABLE 4

Example of Octal Coding

Position
m/e to be of m/e 1in Binary Octal
Mass ranges _encoded octet Code Code
23-29 24 2 010 2
30-36 32 3 011 3
37-43 43 7 111 7
44-50 0 0 000 0
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TABLE 5

Array of Masses According to Position in Spectrum Grouping*

Position in Group**

Group
Number 1 2 3 4 5 6 7
1 23 24 25 26 27 28
2 30 @ 32 33 34 35 36
3 37 38 39 40 2 42 43
4 44 4 47 48 49 50
5 51 52 53 54 55 TN )
6 53 60 61 62 63 64
7 65 66 67 68 69 70 @
8 72 @ 74 75 76 77 78
9 79 80 81 82 83 84
10 86 88 89 90 O 92
1 93 94 95 96 97 98 99

*Circled masses indicate characteristic 1on serjes,

**See Figure 6.
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Table €  Octal Code Patterns Generated by Characteristic
Ion Series

ALKYL TONS Nl TGS
. c*®
o*  wie 15 29 43 57 71 etc. v n/e 30 44 cte.
u C
d code 7 7 7 7 7 i colde 1 1 1
ML & CYCLOALKYL IONS SLLEFUR OGS
e
o e 2741 5L 063 83 etc. v m/e 33 47 ¢l 75 etc.
i ¢
¢ code 5 5 5 5 5 o code 4 d 4 4

LCOREOL € DT e

v /e 31 A5 50 73 etc.

[ g%
[ ]

-3
[N

i code

*Indicates odd or even numbered groups (see Table 2).

357



TABLE 7

PATTERN FOR ALCOHOLS PATTERN FOR ESTERS
Compd, Compd,
A 7272 A 7202 03
B 5272 02 B 7271 0203
C 7262 72 C 7272 04620
D 7272 52 D 7272 04620

PATTERN FOR ALDEHYDES

Compd,
A 7131 7
B 7271 7071
C 7251 1717 1
D 7051 71707 1
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Recursive Digital Filtering Applied to a Mini-Computer
Data Acquisition System Proposed for Army Wind Tunnels

R. P. Reklis
U.S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

A recursive digital filtering scheme designed for use with wind
tunnel data will be discussed. The filter has been designed in such
a fashion that it will not distort low order polynomial data. This
filter is to be used in a proposed mini-computer based data acquisition
system, This system will automate several functions required in wind
tunnel data taking and will gather and display data graphically. Its

design will be discussed briefly,
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INTRODUCTION

Wind tunnel data are composed of a series of data sets. Each set is made
up of several runs. A run is composed of data taken while a spinning model
slows down or while a model is swept through angle of attack. Data are often
linear with spin rate or angle of attack and are generally fit with a Tow
order polyﬁomial. At the end of a run calibration is checked and another run
is made at an altered angle of attack or roll position. A data set is ended
when it is necessary to stop the flow of air in the tunnel in order to make
further alterations in the test.

A data system has been proposed that will automate all of the action
'which takes place during a set of runs, When the set is complete data will
be plotted for use by the test engineer. Data will be processed in the
following manner. A tape will be made of digitized data in nearly the form
they are produced by the analog to digital converter. This tapé will be made
on Tine for future analysis on the main BRL computer and for possible playback
througﬁ the data acquisition system. Data will be simultaneously filtered
digitally and stored in core buffers. At the énd of each run data will be
taken from these core buffers and written on disc. At the end of a series of
runs data will be plotted. The system will allow data from ény run in the
entire series to be plotted. It will be possible to overlay graphs and to
alter the scale of plots from the keyboard. The hardware for this mini-
computer system is diagrammed in Figure 1. It consists of a Harris 6024/5 CPU
which is currently owned together with various peripherals.. The Astrodata
seen in Figure 1 refers to the data acquisition system currently in use.

It is a hard wired system that writes data on magnetic tape. The fifty

instrumentation amplifiers, multiplexer wiring, and A/D converter contained
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in this system will be carried over. The tunnel control subsystem sets
switches which control tunnel operation. A1l other peripherals are standard.

The Astrodata amplifiers described above include switch selectable
Butterworth filters. It is desirable to increase the variety of filtering
available and to allow the selection of filtering after test data are
collected. .This last feature in particular suggests digital filtering.

The scheme selected must use a minimum amount of both memory and time.
A recursive scheme seems best suited. It is in addition necessary that the
filter not distort data that may be fit with a Tow order pofynomia].

This paper begins with a review of some background material. Digital
filtering is developed on this béckground that fits the needs described
above. Random noise effects, start up effects, numerical accuracy, and
deviation from the limiting continuous behavior are then discussed. Further
background material is available from several references. Reference 1
contains reprints of important papers and provides a good review of the

2

subject. The pape? by C. M. Rader and B. Gold™ is of particular interest.

A related discussion of polynomial smoothing is given by B]ackmanB.
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SOME USEFUL CONCEPTS
Filtering Properties of Derivatives
It is,.of course, obvious that the derivative of a jittery function is
likely to be even more jittery. It should ndt be surprising, therefore,
that the analysis of many filters leads to differential equations in which
the derivatives are taken of the filter output, which is to be smoothed to
obtain the filter input, which is'rough. For example, the differential

equation that describes the common resistor-capacitor filter is,

Cd Vout/dt + vout/R = Vin/R .

-Such an equation describes a method by which the filter input may be obtained
from the output. Clearly it is desirable to invert this equation to a form
that gives the filter output from the filter input. Such an inversion leads

to the Green's function and to the transfer function of the problem.

Jransfer Function and Green's Function
The differential equations that describe many filters have the form
d"

" n=0 4 E;ﬁ' Vour = Vin > (1

o~ =

where the an's are constants and the zeroth derivative is taken to be one.
The operatdr in Eq. (1) applied to Vout is Tinear and for this reason

v +V +V

solution pairs Vout’ in have the property that V outz’ Vin1 in2

is a solution pair if V

ou t-l

V. , and V v are. Thus, Eq. (1) can

out]’ 1n] outz’ 1n2

be rewritten by expressing Vout and Vin in terms of some complete set

of functions and solving for each component. This is usually done by
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expressing Vout and V1.n as Fourier transforms since this procedure
diagonalizes the problem, that is,

N n - L N : N
[ Eoa EL?T] elut [ £ oa (iw)ﬁ] elot
dt n=0

in which g a, (i) is the eigenvalue for the eigen function elut
n=0 ' : .
The expression,

1/ z an'(im)" ,

" is known as the transfer function since if a signal et is input to the
filter the output will be,
e‘iwt/

N
z

a (im)n »
n=0 "

and, thus, Eq. (1) has been inverted in frequency spdce.
R return from frequency to time space can be made by carrying through

the inverse Fourier transforms, Defining the Fourier transform pair as:

F) =12 [ f () et g (2)
fl) =1z [F(v)eiot g (3)

-
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gives,

n=

Ve () 2 (1/2n)_:lz at vy (¥) {'Z. dw[ei“’(t‘_t") / 20 a, (iw)n]} :

This expression is of the form
Ve (8= [ @ v (e) g (b=t

where the Green's function g (t - t') is given by

o . , N
g (t-t)={1/2n) f dw[e‘“’(t‘t ) 1 a, (iw)"] . (4)
- n= i .

0

The integral in Eq. (4) can be readily evaluated by use of the residue

thereon if the zeros of the polynomial,
a_ X", , (5)

are known,

For a physically realizable filter the Green's function must be zero
for t < t' as the filter cannot exhibit a response to events in the future.
It is worthwhile noting that this will only be the case if the polynomial in

Eq. (5) has no zeros in the right half plane.
The Aliasing Problem

A digital filtering scheme acts on a finite number of discretely spaced

data points to which the continuous analysis developed above does not
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directly apply and it is necessary to carry over the various equations to the
discrete case. ECquation (1) for example can be rewritten in terms of finite
differences or, in general, as,
N
LA, H(n-m)=0D(n), (6)
m=0
where H is the output of the filter, D is the data set and the am'§ are
constants. Such an equation is linear and Fourier analysis applies. The
transform pair becomes,
(1//2M+1)

D (n) 'd (k) exp [2nikn/(2M+1)] , (7)

d (k)

(1/V2+7) D (n') exp [-2nikn' /(2141)] , ‘ (8)
n : S

~

for 2M+1 data points. _

This form should be very familiar to anyone with solid state experience;
a crystal lattice is a discrete space and similar forms are used. Just as
the finite nature of the lattice folds momentum space in upon itself giving
rise to the Brillouin zone, frequency space is folded in the digita] filter
problem. For example, there is no way to distinguish sixty Hz noise from a
D.C. signal if data are sampled at sixty Hz (see Figure 2) as sixty Hz is
folded into DC at this sample rate. This phenomenon is known as aliasing
and implies that a data rate must be selected with care,

The relationship between the continuous and discrete Fourier transforms

is obtained by sampling a continuous function whose transform is known and
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calculating the discrete transform Eq. (9) , by combining Eq. (2) with

Eq. (8).

o0

M .
d(k) = (1//2ZFT) = {[(1//2’1?) f fw) e'®"T dw] exp [21r1'kn/(2M+1)} , (9)

n::..M B -]

where 1 is the sampling period. This equation simplifies to:

d(k) = (1//2x(2M+T)) f dw{f(m) sin [(2M+1)(wr - 2wk/(2M+1)) /2]/
) (10)
sin [{wt - 21rk/(2M+1)/2]} .

The implicaticns of Eq.'(10) are that the discrete coefficient samp1és
the continuous coefficients in a window of half width 2n/(2M+1) about
w = 2nk/t(2M+1). A word of caution is urged in this interpretation, however.
A noisy signa] with components at frequencies much higher than-the data
sampling rate will produce an essentially random data component. Clearly, if
the D (n) in Eq. (8) are random the Fourier components d (k) will also
be random. The problem of obtaining useful numerical frequency spectra is
discussed in reference 4. As long as the Green's function is broad enough to
include many data points and as long as the band pass is much wider than
2n/(2M+1) statistical effects will average out. This is demonstrated below.

Linearity

These filters are designed for use with data that approximates a low
order polynomial in addition noise at particular frequencies may be present
as well as a random variation in the data points. Finally, the solution to

the equations that describe these filters is an initial value problem and
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the response depends on starting conditions. Fortunately, these equations
are linear and the response to each of these signal components may be
treated separately.

SHIFT FILTERS

The result of applying the operator O,
' N n n,,.n
0 =[ £ f{a'/n!) d"/dt ], (1)
n=0 }

to a polynomial in t of order N is to shift the polynomial, without
distortion, by an amount « along the t axis; that is,

N N m
0[ I gt ] = I c (t + a)
m=0 - m=0

where a and the ¢, are constants,

The transfer function for this operator is,

V[ng-o (iaw)n/n!)], : : (12)

which for small aw is just e"fuw; and has magnitude one. The band pass for

a filter described By Eq. (11) will, therefore, be flat for small.w. For
large w only the last term in the polynomial 1n Eq. 12 need be kept and the
filter will cut out high frequency as N'/(um) A filter described by this
operator will have the desirable property of a flat band pass and will shift
without distortion a data signal that approximétes a low order polynomial.
Unfortunately, only filters N = 1, 4 are realizable as the polynomial,

N
Py(X) = = X"/nt, (13)
n=0

has zeros in the right half plane for N > 4,
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The band pass curves of the first four filters in this series are shown
in Figure 3. These have been adjusted, by proper choice of «, so that they
have the same 3 db. cut of f frequency. The relationship between a and the
3 db. cut off frequency is given in Table I.

The Green's functions of the first four filters can be gbtained from

the residue theorem and Eq. 4 as stated above and can be shown to be,

= (N!/a) exp [Z_ (t - ' )/a] /zg te

g(t~f)-={ n=| ' (14)
0 ,t<t,

H =

where the Zn's are the zeros of the polynomial, Eq. 13. These zeros are
plotted in Figure 4.
Note should be made that the filters for N = 1 and 2 are Butterworth

filters; however, the filters for N = 3 and 4 are not.

NUMERICAL SIMULATION
The desirable feature of this series of filters is that low order
polynomial data is not distorted. This is the feature that led to the
development of the operator in Eq. 11 and it can be used to simulate the
operator numerically. Rearranging Eq. 6 to solve for the last output of
the filter H(n) in terms of the previous outputs and the current datum

point D(n) gives,

H(n) = A D{n) + = Am H(n-m) . (15)
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This is the useful form of the filter algorithm and gives the current
filter output in terms of past filter outputs and current data. The A's

can be solved for by insisting that,

D(n) = H(n+a) , (16)
when - . ; N
Hn) = & a nt . (17)

=0 ¥

Equations 16 and 17 imply that the filter a1gprithm given by Eq. 15 will
have the appropriate shifting property for polynomial data. Applying
Eq. 16 and Eq. 17 to Eq. 15 leads to the set of equations,

-—
it

L N L
R (1)t + 5 A, (1-m)" (18)

2=0,1, ..., N,
which can be solved for the Am's giving,

AD

Nt/[(1+a)(2+a)...(N+a)] , (19)

An

- [a/(m+a)] (-1)" N1/[mi (N-m) 1] . (20)

Thé connection between the discrete operator, Eq. 15, and the continuous
operator, Eq. 11, can be seen by writing Eq. 15 with the coefficients given

in Eq. 19 and Eq. 20 in terms of difference operators as,

N
B(n) = H(n-N) + z] [(N+a)(N-1+a)...(N-¢+1+a)/g!] v¥ H(n-N+g),
. =
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vihere

?* H(n) = : (5 (-1)% H(n-x).
k=0

For large a this becomes,

D(n) =
L

11 ™ =Z
<o

[(at)%/2!] v* H(n-N+2)/<" .

Let H sample the function F(t) at increments of v and fix ar = a a constant,

then by definition the right hand side of the above equation becomes,

: (a*/7e1) d* F(t)zdat* ,
2=0
as t approaches zero.

Thus, the discrete filter givén in £Eq. 15 with coefficients given by
Eq. 19 and Eq. 20 is equivalent to the continuous operator given in_Eq. 11
in the 1imit of small sampling period with a = ax.

Such equivalence is often shown by fitting the discrete data points
with a continuous function of some specific form that eases the translation
from continuous to discrete equations maintaining the band pass characteristics
of the fi]ters. This was not done in translating the shift filter, since the
property that remains constant in this translation is the shift property

and not the band pass.

- RANDOM NOISE

The average response, H(n), of the filter given in Eq. 15 to random

data of distribution,
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) .
e'(D/U) /o Jr R

is zero. The average squared response gives a measure of the randomness of

the filtered data and is given by,

H(n)? = D(n)z[

L

o ¢ (n—z)] ,

where g {n-%) is the discrete Green's function, i.e. the response H(n) to

D(n-2) = 1 and D otherwise zero. The random noise attenuation factor,

r ¢ (n2)
=0
can be calculated in the large a limit from the continuous Green's functions

and becomes,

[oma] 3 Y [y (Z, +17,,) (21)
) - - k “kk Tk kk/{

=1 kk=1 _
The value of these factors are given in Table II while Figure 5 shows a plot

of the attenuation factors for small a.

START UP
As mentioned previously the filter output depends on starting conditions.
As ﬁay be seen in Eq. 14 the magnitude of the Green's functionsjdamps out
exponentially and consequently starting conditions may be ignored aftef a
certain startup time that goes as a divided by the real part of the zero of
the polynomial in Eq. 13 that is closest to the imaginary axis. These

damping factors are given in Table III. Clearly, some improvement may be

375




made if some scheme can be used to start the filter algorithm by assigning

-
LI

H(1-m), M =1, 2...N some appropriate values. This may be done by setting
all H(1-m) equal to D(1) or by curve fitting the first few data points and

extrapolating backwards, etc.

NUMERICAL ACCURACY
The response of the digital shift filters to a signal D(n) = 1 may be

calculated from Eq. 15 as,

N .
H(n) = A0'+ z AITI ) (22)

which, by Eq. 18, is H(n) = 1. Clearly, the sum in Eq. 22 represents the

D.C. gain of the filter. It can be shown that the values,
N

- 2-k L=k
Gl,k = A0 a + mz] (-m) Am l/kt (2-k)! , k<2,

k

give a measure of the distortion in the form of an n" term present in the

filter output when n*

is input. Note that the Gu 1'5 reduce to the gain
]
calculated from Eq, 22, The calculation of these distortion terms gives a

measure of the numerical accuracy to be expected from ‘the algorithm.

SMALL SHIFT BEHAVIOR
Due to the aliasing problem the band passes of digital filters are
periodic in w with period 2n/t. It is, therefore, necessary to use them
in conjunction with some electronic filtering to insure that signal

compohents of frequency w > n/t are minimal. The data acquisition system
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used with tge wind tunnel application uses a sécond order Butterworth filter
with a cut off frequency set at w = v/1. A choice of a = 1 will then
insure that final filter output is predominantly controlled by the digital
filter. The question then arises as to whether the 1arge‘a approximation
is appropriate for a » 1. The random noise attenuation factor being the
integral of the square of the Green's function serves as a good single
parameter for a study of the c¢loseness to which the behavior of the filter
is approximated by the large a formulas. As can be seen from Figure 5
differences can be expected and the small a band passes and Green's functions
must be calculated.

The band pass may be obtained ffom the numerical transfer function,

N
[1 - mE] Am exp (~1wrm)] /A0 .

w=2nik/t (2M1), k = -m,...m

Thé attenuation curves are plotted in Figure 6 for a = 1 and in Figure
7 for a = 5. Figure 8 shows the 3 db. roll off frequency as a function of
w; it is multiplied by a to show the approach to the large a limit.

The small a Green's functions are easily obtained by applying a pulse
to the filter, i.e. D(1) =1, D(n) = 0, n# 1. The variable of interest
when applying the filters is the width of this Green's function since this
determines the time necessary for errors in the initial conditions to.damp
out. These widths are plotted in Figure 9. The criterion used in calculating
them is that integral of the square of the Green's function has reached

ninty percent of its 1imiting value. For practical purposes the width of
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the Green's function is about twice the value calculated by this criterion,
the factor of two arising from the fact that the Green's function was
" squared. '

The 3 db. roll off frequency and random noise factors for small a are

given in Tables IV and V.

CONCLUSION

The fi]ter’a1gorithms discussed in this paper have been linear in
nature. That is the action of the filters on various data components
may be analyzed separately. Aé has been shown the main data signal will
be preserved without distortion if it is in the form of a small order
polynomial. The attenuation of ﬁoise at particular frequencies has been
discussed, In general, the band pass becomes wider with increasing filter
order and a particularly noticeable spike or resonance is observed in the
fourth order filter which may pose a problem if noise is preﬁenf at this |
frequency.' The fourth order filter will also pass more random noise than
the others, and it %s also true that the fourth order filter will require
a greater amount of time to damp out starting effects or noise spikes.
A1l four filter types are useful if consideration is taken of the
peculiarities found in order four, however. Figure 10 shows the effects of
all four orders on a sample of wind tunnel data containing a large 60 Hz
noise component., Note that this component appears at 20 Hz due to the

40 Hz sampling rate and is eliminated by the filtering.
ACKNOWLEDGMENTS

The author would like to acknowledge the help of Mr. Michael Conboy

of the University of Massachusetts in finding references.

378



Table I -

Attenuation Factors and 3 db. Cut Off Frequencies for Shift Filters

Order Attenuation Factor 3 db. Frequency (Hz)
1 YA+ (wa)? fy = .276/a
2 11 + (wa)?/a .296/a
o 4 6
3 171 = (wa) /12 + (wa) /36 .390/a
: 6 8
4 /41 = (wa) /72 + (wa)~/576 .499/a
Table II

Random Noise Attenuation Factors for Large a Filters

Filter Order " Attenuation Factor

1 .5 /a

2 .5 /a

3 .75/a

4 1.5 /a
Table III

Green's Function Damping Factor

N Factor
1 -1
2 -1
3 - 1.42
4 - 3.69
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Table IV

Band Edge Frequencies (Hz) for Small a Filters (3 db)

Data Rate = 40 Hz for (120 Hz multiply by 3)

Filter Order

3 1 2 3. 4
1 8.40 6.68 7.07 7.64
2 4.62 4.14 4.71 - 5.35
3 3.23 3.03 3.59 4.18
4 2.48 2.40 2.90 3.42
5 2.02 2.00 2.43 2.92
6 1.7 1.7 2.10 2.54
8 1.31 1.32 1.66 2.0
10 1.05 1.08 -1.36 1.67
12 0.89 0.91 1.16 1.43
14 0.76 0.79 1.01 1.25
16 0.67 0.70 0.89 1.1
18 0.60 0.63 0.80 1.00
20 0.54 0.56 0.73 0.91
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Table V

Random Noise Attenuation for Small a Filters

Filter Order

a 1 2 3 4
1 .33 .29 .33 A7
2 .20 .18 o L22 .36
3 .14 .13 17 .29
4 11 .10 14 .24
5 .091 .087 12 .2
6 .077 .072 .10 .19
8 .059 - .056 .079 .15
10 .048 046 .066 .12
FOOTNOTES

1. Lawrence R. Rabiner and Charles M. Rader, Digital Signal Processing,

(IEEE Press, N.Y., 1972). _
2. Charles M. Rader and Bernard Gold, Proc. IEEE, 55, 149 (1967).

3. R. B. Blackman, Linear Data-Smoothing and Prediction in Theory and

Practice, (Addison-¥esley, Reading, Mass., 1965).

4, J. W. Cooley, A. W. Lewis, and P. D, Welch, The Fast Fourier Transform
Algorithm and Its Applications, (IBM, Yorktown Heights, N.Y., 1967).

5. K. Steiglitz, Inform. Contr. 8, 455 (1965).
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Figure 2. A Sine Wave of Frequency 1/t Sampled at 1/1. MNote that
the result may be interpreted as a D.C. signal.
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FINITE DIFFERENCE SCHEMES FOR SIMULATING FLOW IN AN INLET-WETLANDS SYSTIM

H. Lec Butler
U. §. Army Waterways Experiment Station
Hydraulics Laboratory, Wave Dynamics Division
Vicksburg, Mississippi 39180

Donald C. Raney
AME Department
University of Alabama
University, Alabama 35486

ABSTRACT. Two numerical models for simulating the tidal hydrodynamics
of an inlet, bay or harbor are compared. An implicit finite difference
solution to the basic equations of hydrodynamic flow has been developed
at the Waterways Experiment Station. This implicit model is compared with
an explicit formulation as applied by Masch, 1973, Both models calculate
depth averaged velocity components and tidal elevations as a function of
position and time during a specified tidal cycle. 1Tn addition to the
actual bathymetry, the two models include variable bottom roughness, non-
linear advective terms$ in the momentum equations, treatment of regions
which are inundated during a portion of the tidal cycle, exposed and
submerged barriers, wind stress, and other physical features of the region
to be modeled. A discussion of the mathematical formulation and associated
finite difference approximations is included. The comparison consists in
applying both models to Masonboro Inlet, North Carolina, with identical
bathymetric data, boundary conditions, and spatial step size. The hydro-
dynamic solutions obtained are compared as well as the economics associated
with the two models. While, in gencral, the solutions obtained from the
two schemes are comparable, the explicit solution has a considerably more
stringent stability criterion limiting the time step. Remedial actions
required to overcome stability problems inherent in implicit schemes are

discussed.

1. INTRODUCTION. Most numerical simulations of tidal hydro-

dynomics associated with inlets and bays have been performed using
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finite difference schemes based upon an explicit formulation., A

code employing such a scheme was developed by Reid § Bodine (1968)

and used extensively in treating problems which include possible flooding
of low-lying areas and subgrid topographic features. An extension of H
this work was carried out by Masch, Brandes, and Reagan (1973) for

the U. S. Army Coastal Engincering Research Center to help evaluate

the degree to which mathematical models can be used to predict the tidal

hydrodynamics (exclusive of sediment transport) of an inlet system.

The Wave Dynamics Division, WES Hydraulics Laboratory, has applied
implicit finite difference schemes to a variety of problems such as
tsunami propagation, simplified tidal models, landslide generated water
waves and storm surge calculations (Butler and Durham, 1975). Implicit
schemes have been applied successfully by Leendertse (1970, 1971) to
regions which include areas that are inundated only during a portion
.of the tidal cycle. The present work is an extension of the ideas
expressed by Leendertse but differs in that the basic equations are
written in terms of vertically integrated flows per unit of width
rather than velocity, and subgrid features, such as exposed,submerged,

and overtopping barriers, are treated.

The principal reason for using the implicit formulation is
economic. Explicit schemes are generally hampered by a stringent
restriction on the time step used in the computational procedure. For
large regions simulation may be infeasible. Normally, implicit schemes
do not have such restrictions and, therefore, can be applied using

a significantly larger time step.

The method of comparison consists in applying both implicit
and explicit codes to a seven and one half square mile area at
Masonboro Inlet, North Carolina. Comparisons of surface elevations

and depth averaged flows with prototype data are made for each scheme.
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2. Theory--liquations of Iluid Flow. The hydrodynamic equations

used in this work are derived from the standard three-dimensional
Navier-Stokes equations. By assuming the vertical acecelerations are
small and the fluid is well mixed, and integrating thc flow from

the seca bottom to the water surface, the usual two-dimensional depth-

averaged form of the equations of nomentum and continuity are obtained:

MOMENTUM

a0 Uau Vv 39
‘.a_t““fF‘a‘"; +?3y--fV+gd ™
:iu_ (UZ +V2)]/2 +F 1
22 X (1)
vV uav Vv

On
ST*Hax*an+f“+”ay

AP RY) '

i U VA2 4 Fy (2)
CONTINUITY

3y A av 3) -
s—t-lr'%"; +-a—y--§ (3)

U, v: FLOW/UNIT WIDTH
n: SURFACE ELEVATION

In these equations, U and V are the vertically integrated flows per unit
of width at time t in the x and y directions, respectively; n is the water
surface elevation with respect to the given datum; d is the water

depth at (x,y,t); other terms are defined in the table of notatioms.

As evident in the equations of motion, advection, coriolis force, bottom
frictien, rainfall, and wind forces arc included. 7Two forms of finite
difference solutions to equations (1), (2), and (3) arc considered: an

explicit and implicit formulation. The computational grid used in both
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formulations is identical. A rectlinear mesh is placed over the Study
arca, and within cach grid ccll the following assumptions are made:
(1) the valuc of n is considered to be an average over a grid cell
centered at x = MAx and y = N Ay and at time kAt; (2) the value of

U is given at the center of the lower cell face; and (3) the value

N,M
of Vy y is given at the center of tie right-hand cell face (Figure 1).

S
I
f
4

-d

O = FLOW/UNIT WIDTH IN
X-DIRECTION (U}

A — FLOW/UNIT WIDTH IN
Y-DIRECTION (V)

© — SURFACE ELEVATION (n),
WATER DEPTH (d),
FRICTIONAL COEFFICIENT (C or n)

Figure 1. Cell definition

In addition, the water depth d and Chezy frictional coefficient C are
also defined at the center of grid cells,
Explicit Solution Scheme. The explicit solution method used by

Reid is a time-centered difference scheme involving a procedure of the
"leap frog" type for computation of flow and water levels. The follow-
ing notation will be used: k = kAt; angle brackets,( %.or < >2, to
indicate that terms mointained in differential forwm are evaluated with
centered difference expressions over one or two grid cells, respectively.
Quantities which are not specified at a given spatial location are

replaced by averaged values indicated by a bar, such as V, Using

] N,M+s”
these notations, applying centered differences in time and space, and
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k+';  k+l,

. . i k+1 ., . o . ,
solving for U »V s N in terms of quantities at previous time

levels, explicit eoxpressions can be written as follows:

MOMENTUM
vk 1/2

k-1/2
gh1/2 [Uk 12 > . ALTE1/2

_ Atgd*<w— + AFF jl/c,, AT (N, M + 1/2)

Yz [vk-n/z At T 1/z< >" -172 . ATM2

k /
L k
- stgd <-_6—y->l + AtFy:]/ Cry AT (N + 1/2, M)

WHERE
2
SU\M x/z gn, at
Cu=l+@ <—> 4/3 W
z 2.21(d")
7 _ 2 1/2
- (Uk—l/Z) + (VK—I/Z) d*
AV k-1/2 gn At
Cq ~1-+d*< > ___—MIE W,
2.21(d*)
2 2 1/2
W, = @+ (v .
d*=5"-0
CONTINUITY
k+1/2 k+1/2
bk Ay <BU> 1\<§i_\l_> - gkjl
ax/y 3Y/,
AT (N, M)

(4)

(5)

(o)

(7)

8

(9)

(10)

(1

The calculations for cach time step are divided into two halves;

the flows are computed during the first half of the time step, and the

results are used in the continuity cquation to calculate the surface

elevations during the second half.
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Implicit Solution Scheme. To solve the governing equations

implicitly, the same space-staggered scheme is used. The implicit
code employs an altcrnating-direction technique whose calculations

are divided into two parts. The first step, or %-cycle, consists in
solving for n and U implicitly; the second %-cycle computes 1 and V
implicitly. The omitted transport in cach Y%-cycle is assumed constant
for that step. Cmploying a centered difference operator to the
momentum equation (1) and the continuity equation (3) along a grid
line parallel to the x-axis, results in a system of linear algebraic
equations whose coefficient matrix is tridiagonal. The form of the

equations for the first %-cycle is given by:

MOMENTUM

Uk+l/2 k-1/2
Uk+¥2 = gk~ V2 4 At fyk — <

an>k+1/2 a\k- V2

k Vk U k=12 d4* 9X/y + ﬁ)}_
2

gkt vz, yk-12 _ = 2\1/2 ' ,
T T2EN (@) (vt @) . 42

AT (N, M+1/2)

CONTINUITY
SRV = A_K k+1/2 <§)!,>"}+é_t £k (13)
2 dY/, 2
AT (N, M)
WHERE d* = 7% — h ' (14)

Notations used in equations (7) and (8) are the same as those given
in the description of the cxplicit formulation. The equations for the
second Y%-cycle are similar to the above and are not prcscnted;

Boundary Conditions. Various types of boundary conditions are:

permissible in the present system of computation for both explicit and
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implicit codes. In both codes, boundary conditions at the tide computa-
tion boundary (open boundary conditions) are accomplished by setting the
water levels, nN,M’ as prescribed by input tables. Flow rates may be
specified instead of water levels. All additional boundary conditions
relate the normal component of flow at the boundary to the state of the
water level at the boundary.

Water-Land Boundaries. Such boundaries are prescribed along

cell faces, hence this condition is handled by specifying U = O or

V = 0 for those cells where impermeable boundaries exist. In estuarine
systems with larpgec areas of low-lying terrain and a significant tidal
range, many areas alternately dry and flood with each tidal cycle.

This behavior is simulated by making the location of the land-water
boundary a function of the current value of the total water depth.

By checking the water level in adjacent cells relative to the ground
elevation, a determination is made as to the possibility of inundation.
If flooding is possible, the boundary face is treated as open and compu-
tations for n, U, and V are made for that cell. The drying of cells

is simply the inverse process.
Subgrid Barriers. Subgrid barriers are defined along cell faces

and are of three types: exposed, submerged, and overtopping. One
characteristic of such barriers is that the surface elevation is
computed at the center of cells on either side of the barrier. The
treatment of these barriers in the explicit code can be found in
Masch (1973). The following discussion is limited to the way in which
these conditions are simulated in the implicit code. Exposed barriers
are handled by simply specifying a no-flow condition across the cell

face. This type of barricr is used to describe dykes, jetties, and

similar features which are impermeable and usually of width much less than

I3 the spatial grid step. Submerged barriers are used to simulate flows
across such barriers as submerged reefs, spoil banks, pipe lines, etc.
The water level on each side of a submerged barrier must always exceed
the barrier crest elevation. The flow over a submerged barrier can be

controlled in a monner similur to that used by Masch, but experience
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has shown that by deflining a special Chezy coefficicent for the barrier

face, the flow over the barrier can be simulated without introducing

unwanted transients duc to the use of the submerged weir equation.
Overtopping barrier is a terminology used to distinguish a

barrier which can be submerged during one portion of the tidal cycle

and totally exposed in another. Masch used a broad-crested weir

formula to describe the overtopping nature of the flow and then the

submerged weir formula when appropriate. Since a larger time step

is used in the implicit code and the duration time of overtopping

is short, a Chezy formulation is again used to simulate the flow

across the barrier. When the barrier is exposed a very small Chezy

cocfficient (high friction) is used to '"stop" the flow. When overtopping

occurs, the coefficient is increased to a specified maximum as a function

of the water-level over the barrier, As the water level decreases at a

later time, the coefficient is decreased accordingly.

Numerical Stability. For an explicit solution scheme, the grid

size and computatioﬁal time step are related through a stability
criterion. The criterion associated with the explicit scheme presented
here is given by the relation ‘

At < __Bs (15)

— T————

¥ oy o]
v2edyax

where As is the mesh size and dMA is the maximum water depth used

X
in the model. This approximate condition was derived from expressions
obtained by linearizing the problem. When the non-linear terms are in-
cluded, it can be expected that the time step will require further reduction.
Considering the linearized implicit equations, it can be shown that

the difference scheme is unconditionally stable. In other words the

space and time steps may be chosen to meet required accuracy in

representing topographic features and external forcing functions. The
inclusion of the non-linear advective terms (of the form U %H, \ EE
X

ay
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into the implicit scheme results in inherent instabilities., All derivatives
in the basic cquations are approximated with centered differences over
a single grid space with the exception of the advective terms, which
arc computed over two grid cells. Oscillations of the water level at
a grid point (period 4At) may occur and grow unbounded.
A scheme which proved capable of eliminating these instabilities
was the use of a recursive digital filter of the form

kel K, okt

= an(c)k+1 + b + (16)

where n(c) represcents the computed water level and n, the water level
value used in further computations; coefficients a,b,c are chosen to
filter out oscillations of period 4At (corresponds to % the Nyquist
frequency) and smaller, while permitting the longer period wave motion
to remain undisturbed. The coefficients of the digital filter must
also be chosen in such a way as to maintain stability of the filter.
By applying the linearized system with and without a filter it was
demonstrated that filtcring does not affect the results. For applica-
tions presented in this paper, values of a = 0.6, b = 0.3, and ¢ = 0.1
were selccted. ‘

An additional instability, which is termed a "secondary flow"
phenomena, may also occur. A discussion of this problem was presented
by Vreugdenhil (1973). The scheme normally employed to eliminate
this instability is the inclusion of terms in the momentum equations of
the form
£ 953‘ + QfU : 17

ax“ By?

Such a form is referred to as an eddy-viscosity term and is generally
taken as a representation of the effective-stress in vertical planes.
These terms are usually neglected but are very important when the
flow has a strong tendency to converge or diverge at various locations

within the system,
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3. Application to Masonboro Inlet, North Carolina--Computational

Grid. A map of the Masonboro Inlet system is shown in Fig. 2. A grid
size of 300 feet was adapted resulting in a mesh of dimensions 41 X 57.
The computational water points arc 1721 in number. Tidal elevations
obtained tfrom prototype data taken in a survey on 12 September 1969
arc imposed at boundary lines denoted by circled numbers. The bathemetry
at Musonboro Inlet for this period of time was also surveyed; available
boat sheets were digitized for the computational arca. The frictional
coefficients are defined by assigning number codes to the yaridus
types of terrain and applying known values of Mapning's n and the
relationship:

C = 34%2- dl/6 (18)
Since the prototype data was taken on a calm day, no wind stress was
applied in the numerical modcl.

The jetty system protruding from the outer barrier island is
composed of a weir section, elevation 2' above datum and 1000' in
length, extending from the outer island to near the bend in the jetty.
The remainder of the structure is impermeable. Exposed barriers were
used to represent very narrow strips of high land in the marsh area
behind the barrier islands. The outer model boundaries are set at
a distance of 10,000 feet from the inlet throat to minimize effects
from inherent problems in handling all the terms in the equations

at the input boundaries.

Comparison of Results. Although excellent results were obtained

by both codes at gages located throughout the system, for brevity,

only results at the three locations depicted in Fig. 2 will be presented
for comparison. Figure 3 shows the degree to which the numerical codes
simulate the prototype tides. The computations were begun at 1330 EST
and a fold-over occurrcd at 2000 UST, equating data at this hour with
that taken at 0730 EST. This procedure may cause some discrepancy in
the results but is required since the models must spin up from rest

at low tide. Both models describe the tides equally well. The

discrepancy at gage 2 in the ebb phase may have resulted from two
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problems:  the prototype tide gage was located within a ﬁarina behind
the northern harrier island and there was some question as to the phasing
of the tidal input specified at boundary 2.

Figure 4 shows the tidal velocities calculated in the numerical
modcls relative to prototype velocity measurements taken at three depths:
surface, mid-depth and bottom. Recalling that the models produce a depth
averaged flow rate, velocities arc obtained by dividing the flow by
the local water depth. Again, good agreement is obtained in both models.

Figures 5-6 display sample circulation patterﬁs at flood stage
(5 Hrs = 1830 EST) and ebb stage (10 Hrs = 1100 EST). The arrowheads
indicate direction of flow and their length is proportional to the
magnitude of the flow rate.

4, Comparison Statistics and Conclusions. Table 1 below relates

the computer run time required for the Masonboro simulation for both

numerical models.

TABLE 1. COMPARISON STATISTICS

GRID
NUMBER OF WATER POINTS 1721
SPATIAL STEPSIZE (FT) 300

SOLUTION

RUN*

At TIME

(SEC) (MIN)

EXPLICIT 3 60
IMPLICIT 90 4

* BASED ON 18 PROTOTYPE HOUR
SIMULATION ON A CDC 7600,

The stability criterion associated with the explicit scheme predicts a
5.2 second time step is necessary for the range of water depths appearing

in the system. However, time steps of 5 scc and 4 sec were tried and
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instabilitices resulted. A stepsize of 3 sec was found to be stable

for the entire simulation., The jmplicit scheme was run for time steps

of 45, 90, and 180 scconds. Results for the two smaller time steps

were practicully identical. Results for At = 180 compared favorably

with the prototype but some discrepancies in phasing were noted.

Results for At = 90 seconds have been presented. Note that At for

the implicit scheme is the time for a complete cycle, that is, U and V
are computcd once and n, twice. In the explicit scheme, U, V and n

arc computed once in a time step of 3 seconds. The speed of the implicit
scheme can be cxpressed by the relationship

[ = .5 8%

‘A‘i; (19)

where Ati and Ate are the time steps of the implicit and explicit schemcs,
respectively, and I is the execution speed of the implicit model relative
to the explicit model. In this application a 15:1 ratio in execution time
was noted.

The results of this study demonstrate that the implicit scheme
presented herein can reliably simulate the tidal hydrodynamics of
a complicated inlet system., The WES implicit model is considerably
more economical to apply and should prove to be most beneficial in
applications to estuarine systems as well as other problems which

require simulation of long period wave motion.
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NOTAT LONS
C Chezy frictional coefficicnt
d Total water depth
dMAX ngimum water depth at any location and time in the system
f Coriolis parameter |
Fx’Fy External forcing functions
g Acceleration of gravity
h Land surface elcvation
k Time increment counter
M,N Indicies denoting spatial increments in the x and y direction
n Manning Frictional coefficient
nx,ny Averaged Manning's coefficient
t Time
v Integrated horizontal velocity components
X,¥Y Cartesian coordinates
€ Eddy-viscosity coefficient
n Water surface elevation with respect to given datum
£ Rainfall minus evaporation
Ax, Ay Spatail increment
As * General spatial increment
At Time increment
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A MODEIL FOR LANDSLIDE GENERATED WATER WAVES

Donald C. Raney
AME Department
University of Alabama
University, Alabama 35486

H. Lee Butler
U. S. Army Waterways Experiment Station
Hydraulics Laboratory, Wave Dynamics Division
Vicksburg, Mississippi 39180

ABSTRACT. A numerical model is developed for simulating
the development and propagation of landslide generated water
waves 1in reservoirs. The numerical model is based upon a
finite difference representation of the depth averaged hydro-
dynamic equations. The landslide is formulated as a moving
boundary condition, propagating into the reservoir and
accelerating the fluid due to physical displacement and
viscous drag. Arbitrary reservoir geometry and landslide
parameters can be considered. The numerical model results
are compared with experimental results obtained on a 1:120
. undistorted scale physical model of Libby Dam and Lake
Koocanusa in Montana. Iandslides were considered reflecting
a wide range of landslide volumes and velocities. The wave
heights predicted by the numerical model are in good agree-
ment with the wave heights observed in the physical model.

1. INTRODUCTION. There are many serious problems
associated with rockfalls or landslides into bays, lakes,
reservoirs, fjords and rivers. These problems are becoming
increasingly important due to expanded use of these bodies
for recreational purposes and the increased industrial and
residential development along the shores. Some areas of
concern created by potential slide areas are: loss of life,
damage to shoreside structures and boats, overtopping of
dams by surge or waves with resulting damage to the dam
and spillways, failure of damg with resulting large scale
flooding, upstream flooding due to river blockage and loss
of usage of the water body due to restrictions imposed by
the final pogition of the glide material. Examples of the
occurence of each of these can be found in the literature
and vividly indicate the extent of the potential problem.

2. BACKGROUND REVIEW. Some attention has previously
been directed toward obtaining a qualitative and quantitative
understanding of the probability of occurrence and the
characteristics of water waves generated by rockfalls or
landslides into reservoirs. Most laboratory and theoretical
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investigations, however, have been two dimensional studies
in an attempt to determine the fundamental relationships
between the geometry and speed of a rockfall or landslide
and the characteristics of the water waves generated by
this mechanism (5, 7, 8).

In 1971 the Hydraulics Laboratory at the U. S. Army
Corps of Engineers Waterways Experiment Station (WES)
constructed a 1:120 undistorted model of Libby Dam and Lake
Koocanusa and conducted tests to determine generated wave
heights and characteristics resulting from the sliding of
individual rock ribs into the reservoir (1). ILibby Dam,

a 420 ft. (128 m) high concrete gravity structure on the
Kootenail River in western Montana, is flanked by high rock
glopes extending several thousand feet upstream from the
structure. The rock is predominately bedded and jointed.
Several prominent rock ribs form possible rock slide zones.

The present study was directed toward developing
numerical methods for predicting the effects of landslide
generated water waves in reservoirs. The previous physical
model tests were used to provide comparative data.

3. THE NUMERICAL MODEL. A two dimensional approach
which possesses a pseudo three dimensional effect was utilized
in the numerical investigation. The vertical component of
veloclty is neglected and the governing hydrodynamic equations
are integrated over the water depth. An average two dimen-
sional flow field is obtained but three dimensional geometry
can be considered. This basic approach has been used by
several authors such as Hansen (2), Leendertse (4) and
Platzman (6).

The rectangular coordinate system used is located in
the plane of the undisturbed water surface as shown in
Figure 1. The equations of motion and the equation of
continuity are written as follows:

du ., 3w, 3w, oan _
at T U TV dy T8 3x TRy Ty (1)
av 3V ., _3v . an _
X + u X + v 3y + g 3y - Rx + Ly (2)
and
an 3 3 3 '
ﬁ”-é_'%+a_§[(h+n)u]+W[(h+n)v]:O' (3)

In these equations u and v are velocity components, n ig the
water level displacement relative to the initial reservoir
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surface, h is the undisturbed reservoir depth, ¢ is the vertical
bottom deformation created by the landslide material, R is

the bottom friction and L is a direct acceleration effect of
the landslide on the fluid. Additional terms, Coriolis effect,
horizontal diffusion, and wind stress could be considered in
the equations of motion; however, these terms were neglected
in this investigation. The continuity equation has been
obtained by integrating across the water depth and applying
kinematic and dynamic boundary conditions at the surface and
bottom of the reservoir. The bhottom friction terms are
represented using a modification of the normal formulation

of friction in terms of the Chezy coefficient. This formula-
tion is necessary to properly account for the bottom friction
where the moving landslid represents the bottom boundary.

2 2%
g (VX - u)[(VX - u)® o+ (Vy - v)<]

R. = (4)
X C2(h +7n)

2 2.1
. g(v,, - VLV, - W™ + (v, - v)“] (5)
y ¢%(h + n)

The velocity components V_ and V are the components of the
landslide velocity.

To solve the governing equations a finite difference
approximation of the equations and an implicit~-explicit
alternating direction technique is employed. A space stag-
gered scheme is used in which velocities, water level dis-
placement, bottom displacement, and water depth are described
at different locations within a grid cell as shown in Figure
2. A double-time-step operation is used in such a manner that
the terms containing space derivatives are generally taken as
alternating forward and backward. The first step in the
caleulation consists of computing u and n 1m?licitly and v
explicity, advancing from time n At to (n + %) At. The
second step computes n and v implicitly and u explicitly,
advancing from time (n + %) At to (n + 1) At. Central
differences are used for evaluating all derivatives in the
governing equations. This method of solution has been dis-
cussed in detail by Leendertse (4).

Three types of boundaries are involved in the calcula-
tions. These are the solid boundaries at fixed coastlines,
the fictitious open boundaries arising from the need to
truncate the region of computation and the time dependent
boundary between the landslide surface and the water in the
reservoir.
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A condition of complete reflection is adopted at solid
boundaries. The condition can be written as :

V-E:O (6)

at solid boundaries, where the n denotes a unit vector normal
to the boundary.

The applicable condition at fictitious open boundaries
is more difficult to specify. The total transmission of
the wave is the physical requirement at this boundary; how-
ever, thig cannot be rigorously achieved without computation
"beyond the boundary. As an approximation to the desired
prhysical requirement, the wave profile is simply assumed to
travel without change of form across the last interior grid
cell.

The landslide ig represented by a time dependent
vertical deformation of the bottom of the reservoir plus
additional terms to represent the effect of the landslide
due to viscous and inertia forces. The bottom deformation
propagates into specified regions of the regervoir at the
average speed of the landslide with the deformation at any
particular location increasing from zero to a maximum value
according to a specified time~displacement relationship.
For those portions of the bottom of the reservoir through
which the landslide passes but which do not experience a
net change in ground elevation, the deformation is allowed
to return to zero at a specified rate. The handling of the
landslide condition is illustrated in Figure 3. The direc-
tion, extent, and magnitude of the bottom deformation is
determined by knowledge of agsumptions concerning the path
and final disposition of the particular landslide. The
water in the reservoir experiences an acceleration due to
the force exerted by the landslide at the time dependent
boundary between the water and landslide. This force per
unit mass consists of a component due to the vertical
displacement of the water by the slide, a component due to
the bottom friction between the landslide and the water,
and. a pressure drag exerted on the water by the front of the
moving landslide. The pressure drag at the leading edge
of the slide can be represented by
(F) , = Cy (30 )(V. = WLV, - w2+ (v, - V2P & (7
p’ X D ‘2P X X N Z

where CD is a pressure drag coefficient and A, ig an

effective vertical cross-sectional area of the slide. The
force per unit masgs can then be considered as:
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ot

(Fp), % (Cp A, Vv, - WLV, - w2+ (v, - 7]

MASS AC h

where AC is the grid cell area and h is the water depth.

The pressure drag contribution per unit mass can then be
considered as:

L= 8 (T - WL, - w2+ (v, - v?]F (8)
L, =8 (v - WL, - w? - (v - ) (9)
C A
where B = E% (KE) (10)
c

A representation of the landslide is allowed to propagate
into the numerical representation of the reservoir, acceler-
ating the fluid due to physical displacement, viscous effects,
and pressure drag effects. The resulting waves propagate
across the reservoir in accordance with the governing
equations. The wave height and velocity components are
calculated for each grid cell at the end of each one half
time step. "

4. BRIEF DISCUSSION OF PHYSICAL MODEL TESTS. The num-
erical results were compared with experimental data from a
physical model of Libby Dam and Lake Koocanusa (1). A site
map in Figure 4 shows the topography of the steep rock
slopes upstream of Libby Dam. Potential landslide zones
upstream of the left abutment are dencted as rock ribs 909,
914, 923, 927 with reference to the stationing along Montana
State Highway 37. The area covered by the hydraulic model
study is shown by heavy dotted lines. The locations of two
prehistoric landslides denoted as 925 slide and 930 slide are
also ghown in Figure 4. The Libby Dam hydraulic model was
constructed to a linear scale of 1:120, model to prototype.
An undistorted scale was used to insure accurate reproduction
of wave heights, wave period and runup. The dimensions of the
model were 57 ft (17.4 m) long, 40 ft (12.2 m) wide and about
5 ft (1.5 m) deep. The maximum elevation reproduced in the
model was 2700 ft (823 m) msl with an adjustable mechanical
inclined plane to support the landslide material above this
elevation. A range of possible landslide velocities was con-
sidered at each potential slide location. These velocities
var%ed between 37 fps (11.3 m/sec) and 192 ft/sec (58.5 m/
gec).
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Wave heights at selected locations in the model were
measured using direct contact electrical wave-height gages.
The gage locations are shown in Figure 5. The runup dis-
tances on the sides of the model were observed and the water
overtopping the dam was collected and measured.

Figure 6 shows the physical model ready for a test
run. The landslide material used in the model tests was
1/18 cu. ft. (0.028 cu m) bags filled with lead and iron
ore. Photographs showing the final position of the glide
were taken and the approximate final contours of the
reservoir were determined after each test. A typical set
of these data are shown in Figures 7 and 8 for Run 87.

5. THE NUMERICAL CATCULATIONS. The numerical model
required that a rectangular grid of mesh cells be established
as well as the computational boundaries be established, and
appropriate information be defined at discrete points in the
reservoir. The grid size is selected to obtain the desired
spatial resolution. 1Initial data include defining the reser-
voir depth and a Chezy coefficient at each grid line. The
time step is chosen using as a general requirement:

ao< X (11)

(gh)?

Thig relation restricts movement of the water wave to less
than one grid space per time step.

Defining the landslide characteristics is the most
critical aspect of the model. It is necessary to know or
assume the volume of the slide material, the average
velocity at which it moves, its path through the water,
the general shape of 1ts leading face, a time-vertical
displacement relationship for the slide and the final dis-
position of the glide in the reservoir. 1In a general
investigation the use of this model would require a para-
metric study. Avallable for this study were experimental
data from a physical model study so that these parameters
were known or could be approximated to a reasonable degree
of accuracy. This study then reflects the degree to which
the mathematical model can represent the reservoir conditions
if the slide characteristics are reasonably well defined.

A time step of 1 sec and a spatial grid size of 80 ft

(24k.2 m) were used in the calculations. The pressure drag
parameter B was varied between 0.005 and 0.0005 ft-1,
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knowledge concerning prototype conditions or how to model
certaln phenomena. The results indicate that the numerical
model 1s capable of modeling landslide generated water waves
sufficiently accurate to allow overall engineering decisions
to be made concerning the possible effects of a potential
landslide.

For small landslide velocities the viscous drag and
pressure drag contributions to wave heights and velocities
are small and the physical displacement of the water by the
landslide is the predominate factor. The water waves pro-
duced by the slide will generally be propagating. faster than
the glide is moving and thus the initial phase of the land-
slide must be accurately defined if good numerical results
are to be obtained.

For large landslide velocities significant contribu-
tions to wave heights and propagation velocities are pro-
duced by the viscous drag and pressure drag. Viscous drag
and pressure drag contributions to wave heights and velocities
are focused in the direction of the landslide to a greater
degree than the contributions from the physical displacement
of water. If the landslide is moving faster than the normal
propagation veloclty for the water waves it produces, the
entire path and time history of the landslide becomes of
importance in obtaining an accurate prediction of the first
wave cregt.

Additional experimental work is needed in which the
landslide parameters, which are required as input to the
numerical program, are observed and measured in greater
detail. The initial physical model study of Libby Dam and
Lake Koocanusa was an end in itself and not designed to pro-
vide information to verify a numerical model. Fortunately,
most of the required information was obgerved but not in
the detail that would be desirable for uge in detailed veri-
fication of a numerical model.
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TABLE 1
RUN 87 - RIB 927
MAXIMUM SLIDE VELOCITY = 84 fps (25.6 m/sec)

First Wave Crest, Ft (m) Arrival Time of Pirst Crest, sec.

Gage Location Physical Model Numerical Model Physical Model Numerical Model
i 14 (4.27) 16.9 {5.15) 38 37.5
2 12 (3.66) 10.7 (3.26) 36 35.5
3 14 (4.27) 11.6 (3.54) 37 35.5
L 15 (4.57) 15.3 (L.66) Lo 38.5
5 24 (7.32) 18.0 (5.49) 41 1.0
6 17 (5.18) 10.7 (3.26) 39 36.0
7 25 (7.62) 25.1 (7.65) 37 42.5
8 12 (3.66) 11.1 (3.38) 32 32.0
9 17 (5.18 11.6 (3.54) 29 30.0
10 7 (2.13) 5.7 (1.74) 23 20.0
11 15 (4.57) 19.2 (5.85) 19 23.5
12 12 (3.66) 8.3 (2.53) 19 18.0
13 6 (1.83) 10.1 (3.08) 22 21.5
14 5 (1.52) -——-- 37 -—--
15 -— -——— -— ——
16 - —_—— - —_——

Average difference in wave
heights between numerical
and experimental values 23%

Average difference in time
of arrival between numerical
and experimental values 6.2%
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NOTATION

= grid cell area
= cross-sectional area of landslide

= Chezy coefficient

= precsgure drag coefficient

= acceleration of gravity
= depth of the undisturbed water surface

= X and y comporent of the acceleration effect of

Y the landslide on the water

= indices for finite difference grid locations

= indices indicating multiples of the time step

= unit vector normal to boundary

= x and y component of the bottom roughness effect
= time

= depth-averaged water velocity component in the
x direction

= depth-averaged water velocity component in the
y direction

= velocity vector with components u and v

= X component of the landslide velocity

11

y component of the landslide velocity
= water velocity in the z direction

= rectangular coordinate variables

= pressure drag parameter

= water level displacement with respect to still
water elevation

vertical bottom deformation created by tandslide
material

density of water
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AUTOMATIC EULER-MACLAURIN INTEGRATION
Julia H. Gray
and

L. B. Rall

Mathematics Research Center
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ABSTRACT. The Euler-Maclaurin formula for numerical integration is

b 2k-1 n''B mel) m-1)
[ fgax=T_- Y — [ ) - £ )] -
a m=2
02 peas, (Mg
k) !
where Tn is the trapezoidal rule
h n-1
T =5 [f(@) + f(0)] + h 121 f(a+th)

h=(-a)/n, B,B., ..., B, are Bernoulli numbers, and a< ¢ <b . The

application of this formula can be automated by using software developed at
MRC for analytic differentiation and interval analysis. The use of interval
techniques permits rigorous bounding of the error due to roundoff, and also
the truncation error by calculating an interval containing f(z ’(g) . By use
of observed values of the time required for evaluation of the integrand and
experimental results on differentiation time, optimal values for n,k are
calculated to give a required accuracy in minimum time, or an estimate of
the ultimate accuracy of the Euler-Maclaurin integration method may be com-
puted. The theory is illustrated by results obtained using a UNIVAC 1108/1110
program.

AMS (MOS) Classifications (1970); 65D30, 65G05.

Key Words: Numerical integration, Euler-Maclaurin formulas, Automatic
error estimation, Interval integrals.

Research sponsored by the U.S. Army under Contract No. DAAG29-75-C-0024.
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I, BACKGROQUND. With the ald of software for interval analysis [4] and automatic
differentiation, various methods for numerical integration with rigorous error
estimation [1, 3] have been implemented as a program for the UNIVAC 1108 /1110 [2].
To be more specific, the program described in [2] provides the user with the
capability of finding intervals containing the value of the integral

b
(1.1) z= [ f(x)dx

a

by the use of Riemann sums, various open and closed Newton-Cotes integration
formulas, or standard Gaussian integration formulas. The latter types of inte-
gration formulas (Newton-Cotes and Gaussian) are of the form

(1. 2) z = r(f) +e(f) ,
where the rule r(f) of numerical integration is a linear combination

n
(1. 3) r(f) = Z f(xi)wi

of values of the integrand at the nodes X s with weights w_ ,w \04

Xy Xy ey P Waree e

and the (truncation) error (or remainder) term

n ’

(k)
(1. 4) e(f) = c_(a,b) »——-—Q- a<t<b ,

is a multipie of the kth Taylor coefficient of f, evaluated at some point £ 1in the
open interval (a,b) . In (1.4), the constant c¢ (a b) is independent of f. A
numerical integration formula of this type will Pe said to be of order n and degree
k, and is valid for integrands which are sufficiently smooth. As a typical example,
one has the (extended) trapezoidal formula [5, p. 170]

b n-1 3
_ b-a | f(a)+f(b) y b-a, (b-a)”  f(£)
(1. 5) faf(x)dx=n [:()2( +izi1f(a+i("')]- 5~ 3, a<g<b,

6n

which is of order n+1l, n a positive integer, and degree two.

As the program has facilities for analytic differentiation, it is also possible
to implement formulas for numerical integration in which the rule involves values of
derivatives (or, equivalently, Taylor coefficients) of the integrand. A class of
formulas of this type may be obtained from the Euler-Maclaurin formula for numerical
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integration, in which the order (> 2) and (even) degree may be specified by the
user. This formula and its implementation for automatic computation are described
in the following sections.

As in [2], the present program is applicable only to integrands f(x) which
may be written in ordinary FORTRAN notation. In addition to the variable of
integration, the integrand may contain one or more parameters to be specified by
the user,

2. THE EULER-MACLAURIN FORMULA. Using the fact that the Bernoulli numbers
B,,B_, B, ... ofoddorder > 3 all vanish [5, p. 218], the Euler-Maclaurin
integration formula of order n+1 and degree 2k may be written in terms of
values of the integrand and its Taylor coefficients as

b n-1
(2.1 f f(x)dx:h[w + ) f(a+ihﬂ -
a i=1
2Zm
_kz_-\l h By [f(Zm-l)(b) ) f(Zn--l)(a):] ]
s 2m (2m-1)1 (2m-1)1!
(2k)
_th(b-a)sz (Zk)!) , a<t<b ,
where
(2.2) h = b;a

It should be noted that the values of ¢ for which formula (2.1) holds depend in
general on a,b,f k, and n; however, this dependence is suppressed for simplicity
of notation, and will be inconsequential in the interval version of the formula.

For practical reasons, the computer program is limited to calculation of
Taylor coefficients of orders less than twenty, hence the maximum degree of the
integration formula (2.1) permitted without modification of the program is 2k =18 .
The ev]en-order Bernoulli numbers BZ’ B4, ceey B18 are given in Table 2.1 [5,
p. 2181,
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1 1 1
B, = % By =° 30 By = 42 !
] s 69l
Bg =-30 Bo~ %> Blo = - 2730 °
7 3617 43867
Bla e Ble =~ 510 ° Blg® 798 -

TABLE 2.1, THE BERNOULLT NUMBERS

By By o5 Big

The first term of (2.1),

(2. 3) | (B = h[:——ei)—i—+ 2 fa+ih):]

is simply the trapezoidal rule from the integration formula (1. 5). Hence, the use
in the second term of (2.1) of values of the Taylor coefficients of f(x) at the
endpoints a,b c¢an be viewed as a method for increasing the order of accuracy of
the trapezoidal integration formula.

3. THE INTERVAL VERSIQON OF THE EULER-MACLAURIN FORMULA. In order to
make use of the integration formula (2.1) and take into account the effects of
round -off error, uncertainties in the coefficients of f(x) and perhaps the Iimits
of integration, and the unknown value of £, an interval extension of the right-
hand side of (2.1) is calculated by the program. As defined in [2], an interval
extension of a set of numbers is any interval containing that set. (Of course,
the set being extended could consist of a single number.) Interval extensions of
numbers and functions will generally be denoted by the corresponding capital
letters, exceptions being small integers and the Bernoulli numbers. Taking

(3.1) X2 [a,b]
and

B-A
(3.2) H===,
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one computes the interval version

n-1
F(A) + F(B
(3. 3) In’sz[—(lH—) + 3 F(A+1H£] -

izl

2m
kil H BZrn [F(Zm—l)(B) F(Zm‘l)(A)]

Ly 2m m-1)t 7 (2mal)1
(2k)
2k P
- B (B-A)B,y (2k) !

of the Euler-Maclaurin integration formula.

For
b
(3.4) z = f fix)dx ,
a
one has that
(3. 5) zZe In’ K
for all positive integers k, n . If In K = [c,d], then one may take the midpoint
2
_ * _cHd
(3.6) Z - PL[In, k] T2

as an approximation to z, with absolute error

B 1 d-c
(3.7) lz - 271 < e=3 81 ,1==

b

If the minimum bound for the relative (or percentage) error is desired instead,
then, provided 04 In K’ the corresponding estimate for z is the harmonic
y

point

sk 2cd

(3.8) ¢ =l J=gg
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with relative error

(3.9

The percentage error is, of course, bounded by 100p . The a posteriori error
bounds (3.7) and (3. 9) are rigorous, as follows from the theory of interval
analysis [3,4].

4. THE INTERSECTION PRINCIPLE. As the computer program calculates Taylor
coefficients recursively [2], the values of T ., I _,..., I can be
n,1> n,2 n, k-1

obtained in the course of the computation of ’I with very little additional

effort. For m, k

k
4.1 I=M1
( ) j:l n’,j »
it follows from (3. 5) that

b
(4.2) z=[ f(x)el .

a
The estimates

E 1
(4. 3) z = H[I]’ £ = 'é"' 6[1] ’
or, if 041,
. #k &f1]

(4'4) z = "][I]s p = IP-I[:I: , ’

are at least as good as those obtained from (3.6)-(3.9), and are the ones actually
calculated by the program. This is a simple application of the intersection principle

of interval analysis, which states that results belonging to several intervals are
contained in their intersection.

For example, for
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sinx + tan_lx

(4. 5) Z = = dx ,
0 In(2+e)
one has
(4.6) Ze€ I1 1= [0.43180767, 1.0839293] ,

H

the interval form of the trapezoidal formula, and

(4.7) ze I , =[0.41804086, 0.81363283] ,
2
and thus
(4. 8) zeI=1 NI _ =[0.43180767, 0.81363283] ,
LI 1,2 _

which gives a more accurate result,

5. OPTIMIZATION. If the values of n and k are given by the user of the
Euler-Maclaurin integration program, then the results given by (4. 3) or (4.4) are
obtained directly. On the other hand, one or both of these parameters may be
determined by the program in order to achieve a prescribed or maximum possible
accuracy with the use of the minimal amount of computational effort. This type
of optimization of performance of the program makes use of an extension of the
strategy outlined previously for k fixed and n arbitrary [2, pp. 12-16] to the
case that both the order and degree of the integration rule may vary.

First of all, for n fixed, it has been found expedient simply to compute

Gy}
(5.1 | O ﬁ In 1
i=1 :
until
(5.2) I(j) - I(j+1) _ I(j+2)

437




*
or j =9 . Once the optimal value j =j 1is determined, one sets
j*

(5. 3) 1=10)

and obtains approximate values for the integral and error estimates from (4. 3)
or (4.4). For example, for the integral (4. 5),

{2)

(5. 4) = [0.43180767, 0.81363283]

is optimum for n =1, while

(5. 5) 1) - [0. 65189380, 0.66617152]
is optimum for n = 2, and
(5. 6) 1®) - [0. 65887366, 0.65890718]

is the optimal value for n=4 .

In the second case of fixed k and arbitrafy n, the procedure is similar
to optimization of integration rules of degree k done previously [2, pp. 12-16].
In order to discuss the analysis, write '

(5.7) In,k=Tn+Sn,k+Rn,k ,

where

(5. 8) ~H[M +Z F(A+iH:] )
i=1

the interval version of the trapezoidal rule,

2m
k-1 H 2m-] 2m-1
(5.9) s - Bom [F( "D " )(A)]
o n, k 4 2m (2m-1) 1 (2m-1)1 ’

the correction term, and
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2
(%) %)

.2k
(5. 10) R, = -H (B-MBy —mmss

n, k
the interval remainder term. The error bound

1 . 1 1 1
(5.11) > 8[1 n, kJ =3 6[Tn] + 5 S[Sn’ k] + 2 8[R n, k]

will thus depend on the way in which the widths of the intervals (5. 8)-(5.10)
vary with n, or, more conveniently, as functions of

(5.12) h =

The quantity &[T ] turns out to be essentially constant as a function of n, as
Tn is the average of interval evaluations of the integrand f(x), the widths of
these intervals depending on round-off and imprecision in the data involved in
the definition of f(x) . Thus,

(5.13) r = 6[T,]

is computed, and is taken as a measure of the potential accuracy of the numerical
integration procedure. If an error bound & is prescribed such that

(5.14) e r

’

A
3Vl L

this accuracy will be considered to be unattainable, and the program will print
an error message [2, p. 55]. If an error bound & is not specified in advance,
then the value of r is used to obtain an estimate of the maximum number p of
decimal places of accuracy that can be guaranteed for the approximate value of
the integral. One takes p to be the largest positive integer such that

-p
(5. 15) 10 P>y,
and sets

(5. 16) e=5. 10 P!

as the desired error bound [2, p. 15]. In the program, (5.16) is computed if the
input value EPS = 0 is specified.
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Define

B, (L (2m-1) (2m-1)
[ Bam ® ™D ] )
(5. 17) rm_s[Zm{ e R } . m=12,...,k-1,

and

(5.18) t=5 [(B-A)sz i?%ﬁ!{] .
One has
(5.19) 51, (1< Py =+ S n2k-2 L w2k
and thus
(5. 20) L 1<
2 n, k

if n is chosen large enough so that
(5.21) p(h) < 2¢

In order to conserve computer time, the optimal solution is taken to be the smallest
positive integer n for which (5.21) is satisfied. This value is determined by a
simple iteration, taking into account the fact that the coefficient t in (5.19) is
ordinarily much larger than the values of r, r EE One uses as an

initial approximation the least positive integer n sucﬁ 1'!11at

6[X
2k [2e-r
t

(5.22) n >

and, if necessary, increases n by one until (5. 19) is satisfied by the correspond-
ing value of h.
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In the final case, the values of both n and k are to be determined in
order to satisfy the error bound & with minimal computational effort. To do
this, some assumptions are made concérning the dependence upon k of the
width

5.23 . {f_ﬂ]

of the kth interval Tavlor coefficient of the integrand {(x), and the time

(k)

P ix)
(5.24) 0, = e[——k—%—__]

required for its computation. Knowing these relationships, one could determine
if a given accuracy is best obtained by increasing n or k.

A heuristic argument indicates that the values of t, are given by the sums
of an arithmetic progression, while the 0, are obtained ]in the same way from a
geometric progression. These observations are borne out experimentally, as
illustrated in Table 5.1 for

-1
(5.25) flxy = SmXELAN X oy 1) .

In(2 + eX)

The program computes
(5. 26) 0, = olT,] = e[F(A ;P(B):] ’

from which the estimate

n+l
(5.27) Gn’(z )90
(k) (X) p(k) X) »
is obtained for G[Tn] . Similarly, the values of 6 T and & o are

obtained initially for k = 0,1,2 . Suppose that n_ denotes the least value of
n satisfying inequality (5.22). The corresponding estimate for G[In k] is
taken to be k?
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0 0. 130 sec. \ 1.4809

1 0.259 2,0949

2 0.397 * 3.9133

3 0.546 ™ 6.5944

4 0.701 " 1. 1868 X 10
5 0.865 " 2.1230 X 10
6 1.038 3, 8380 X 10
7 1.220 " 7.0895 X 10
8 1.409 * 2.6012 x 10°
9 1.609 2.6012 X 10°
10 1.817 5.1869 x 10°
11 2.034 " 1. 0605 X 103\
12 2.261 2.2173 X 10°
13 2.498 4.7251 X 10°
14 2,745 1.0231 x 10"
15 3.000 " 2.2448 x 10°
16 3.266 4.9771 x 10*
17 3.541 " 1. 1131 X 10°
18 3,828 v 2.5068 X 10°
19 4.124 " 5.6780 X 10°

TABLE 5. 1. COMPUTATION TIMES AND WIDTHS
OF INTERVAL TAYLOR COEFFICIENTS QF (5.25). .
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nk+1)
(5.28) Gn k=('2 60 ,

for the additional time to compute Tnk . Using the numbers

(5.29) =By 6;](/6;](-1 ,

where

(5. 30) 6, =8 [-}i%@:]

an estimafe Hk+l for n . can also be obtained by using the value of t

in (5.22) in place of t. Similarly, one estimates

3 2k) [(Zk 1)
(5. 31) 9k+1=39[(21<)|:] 20| 1)'] .

Now, if
n
- k+1
<
(5. 32) enk,k O k41 3 % >
fhe program computes
2k
(5. 33) I=MN1 ;
j=1 My

otherwise, the above process is continued with k replaced by k +1
until (5. 32) is satisfied or k=9 .
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ABSTRACT

The fact that a calculating machine can usually hold only an

approximation to the number that one is concerned with leads to
cancellation errors and rounding errors. _ These concepts are defined

precisely and examples are given. Suggestions are given for reducing

(when possible) the size of errors arising from these two effects,
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CANCELIATION AND ROUNDING ERRORS
]. Barkley Rosser and J. Michael Yohe

1. Definition of terms. We assume that all real numbers
with which we will be dealing are represented on the calculating
machine in floating point positional notation with a fixed radix. If
two such numbers are nearly equal, then the calculated difference
between them will have more leading zeros than either of the original
numbers. This will usually cause no trouble if it happens that the
numbers are exactly representable on the calculating machine, though
even in this case imperfections in machine architecture can result in
a botched answer. However, in the usual case, when both numbers are
only approximated on the calculating machine, this pheno‘menon will
commonly cause appreciable relative error in the answer.
As most real numbers can only be approximated on a calculating machine,
this danger is always present, and steps should be taken to minimize
the effect.

Suppose we are given two real numbers a and b and a binary
operation -, and suppose also that we have a machine M with the

corresponding binary operation - Suppose further that we have a

M"
rounding operation p from the real numbers to the set of machine
numbers; we shall assume that p rounds a real number to its closest

approximation on the machine.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024,
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We are interested in how well the machine answer,
p(a) DM p(b), will approximate the true answer, a-° b: thatis,

we wish information on the value of
(1.1) lo@)eypd) - achl .

There are actually three different considerations involved in

this expression; we shall call them machine error (or error due to

architectural deficiencies in the machine), accumulated error

(which is due to performing arithmetic operations on approximate

numbers), and rounding error (which results only from the fact that

most real numbers must be approximated). We shall now define these
types of error precisely.

Machine error is the amount by which the machine result

fails to be the best possible result derivable from the rounded numbers
being given, including the fact that the result must be rounded; i.e.,

machine error is defined to be
(1. 2) lpta)e o (b) - plp(a)epd) | .

In a well-designed machine, (1.2) can be made to vanish; see [9] for

| details. Thus this type of error is completely avoidable. Unfortunately,
it is c;ften not avoided; we have even seen a calculating machine on
which, for a large class of real numbers, a, we have a X, 1-ax1=20

in spite of the fact that p(a) = a for this class!
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Accumulated error is the amount by which the rounded result

of performing the real operation using rounded operands differs from

the rounded result using the original operands; i.e.,
(1. 3) lplp(a)°p(d) - p(a°b)| .

In general, accumulated error can not be avoided, but it can be
controlled to a certain extent by selecting computational formulas
judiciously, as we shall see in the sequel.

Rounding error is simply the amount by which the rounded

result differs from the true result, i.e.,
(1.4) ~ lptacb) - ab] .

Rounding error must be regarded as totally unavoidable in the context
in which we are working.

We observe that
o - [+] <
lo(a) Mp(b) asbh| <

lp(a) e, p(b) - plpla)ep(b)) | +

M
(1.5)

+ lp(p(a)ep(b)) - plash) | +

+ lp(acb) - asbl| .
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Hence, by (1.2) - (1. 4), -the total absolute'error is not greater than
the sum of machine error, accumulated error, and rounding error.

S8ince machine error is avoidable, we shall not treat it here,
even though it will be exhibited in some of our diséussions: we shall
concentrate on accumulated error and rounding error., These can be
lumped together and called "error of approximation”; a fuller
discussion of approximation generally can be found in Yohe
[10, p. 10]. However, since rounding error is totally unavoidable,
the major thrust of this paper will be in dealing with accumulated
error,

In most cases the relative error associated with an instance
of accumulated error behaves rather predictably. That is, the relative
error of a result in a case of accumulated error is related in a rather
straightforward manner to the relative errors in the operands. In one
case, however, the relative error can grow catastrophically; the
subtraction of two nearly equal quantities can cause the relative
error to grow by many orders of magnitude. This particular instance
of accumulated error is so serious that we give it a special name:

cancellation error.

As an example, consider

(1.6)

2z m
o .
We have
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22 . 3142857142857

7
T 3,141592653590
-37—2 - 0,001 264489267 35,

However, suppose the calculation is done on the 8-place decimal

machine belonging to one of the authors. We enter the approximations

(1.7) ~2—7—2-r-_~e 3.1428571
(1.8) ™2 3,1415927.

Subtracting these gives

-

12

(1.9) z 0.0012644 .

The value of (1,6) is calculated by the machine to o-nly five
significant decimals, of which the last is incorrectly rounded. Thus
we have lost at least three decimal places of accuracy.

The cause of cancellation error is the fact that when the
calculating machine is called upon to subtract two nearly equal
numbers, the early digits cancel, and fewer significant digits will result,
as shown,

Rounding error usually occurs as soon as a number is
entered into the calculating machine. Thus, in (1.7), the value given
is too small, though it is the best possible on an 8-place machine. In

(1.8), the value given is too large, though it is the best possible on an

8-place machine, When one performs arithmetic operations on such

450



approximate numbers, the errors already present can accumulate,
Thus, in {1.9), not only are we giving only five significant digits (due
to cancellation error), but we are not even giving the five best digits.

A more accurate five digit value would be

37?4 S 0.0012645 .
The additional discrepancy (getting 0.0012644 instead of 0.0012645)
was due to accumulation of rounding errors.

Although we will not discuss it in this report, we should

tecognize yet one other source of error in using a calculating machine.

This is numerical instability, which arises when the method of computation
is such that the percent error at one step is multiplied by a constant greater
than unity in making the next step.

If one can use double or triple precision arithmetic, so that one
has a superiluity of digits, losing a few digits by cancellation errors or
rounding errors will likely do no harm. However, one should give thought
to the details of the calculation, since occasions can arise in which
double precision (or even triple precision!) will not sﬁffice to avoid

serious errors, or even complete nonsense,

2. Cancellation errors, As noted, cancellation errors arise

when one subtracts two nearly equal numbers. Addition of positive numbers

causes no appreciable cancellation errors. Likewise foraddition of negative

s

numbers. Also, the way most calculating machines are built, multiplying or dividing

two numbers produces no appreciable cancellation error.
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Many times when one has a formula involving subtraction that
leads to cancellation errors, one can find a mathematically equivalent
formula for which there is no cancellation error. A classic illustration

arises in solving quadratic equations, Suppose one wishes both roots of
2
(2.1) X -200x+1=0.

The formula for the roots is

b +b%-4ac

2a

With the coefficients shown, this gives

200 * N 40000 - 4
2

We have
N 40000 - 4 = 199.9899997499875

To get the larger root, we enter 200 into the machine, and
the best possible eight digit approximation for the square root, namely
199.99000, When we add and divide by 2, we get 195.99500, which is

correctAto eight digits. When .we subtract and divide by 2, we get
0.0050000000 .

To eight places, the answer should be
0.0050001250 .

Here we have a cancellation error.
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In this case, one can find a mathematically equivalent formula
for the roots by multiplying both top and bottom of the quadratic formula

by

-b #Nb% - 4ac .

This gives

2c

-b #Vb“-4ac .

Then for the small root, we have

2
200 + 199.99000

1

0.0050001250 ,

As a matter of fact, the situation could have been considerably

worse., Suppose we had tried to get the roots of
x% - 100x+1=0.

This gives the roots

100 £ N 10000-4
2

We have
AN10000-4 = 99,9799979996 .

We enter 100 into the machine and the best possible eight digit approxima-
tion for the square root, namely 99.979998. As the calculator is an eight
digit machine, it must reduce these to the same number of decimals before
adding or subtracting. It shows 100 as 100.00000; to get the other number

to match, it truncates the final 8, so that it gives
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100 + 99,97999
2

=99.989995 .

To eight places the larger root should be approximated by 99.98%9999.
This is not a cancellation error. This is poor machine architecture,

We should note that some very large and very expensive calculating
machines make the same sorts of blunders. For instance, the UNIVAC 1108
and 1110 do so. Other vagaries of calculating machines are discussed in _
Kahan [ 6]. A discussion of how to improve calculating machines in
matters of this sort is given in Yohe [9].

It is fairly common that, with a little ingenuity, one can find
for a formula that produces cancellation error another, mathematically
equivalent, formula that does not. Thus, in Rosser [1], we had the

formula numbered (2. 44)

which in Table 2.6 did not even give the right order of magnitude for

C However, the formula turns out to be mathematically equivalent

1’
to the formula numbered (2.88)

2
c
n

c =
+1 ’
n 4::1“_H

which clearly has no cancellation error. Or in the same report, the
formula numbered (2.95) involved a difference, and gave disastrous

results: the mathematically equivalent formula numbered (2,98) involved
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a sum, and gave quite satisfactory results. Of course, just having an
algebraic sﬁm won't guarantee avoidance of cancellation error; one
summand could he nearly the negative of the other. However, the
formula numbered (2.98) involved a sum of sduares, and hence could
be relied on not to give a cancellation error.

So, for purposes of calculation, close attention should be paid
to trying to replace formulas that could produce cancellation errors by
mathematically equivalent formulas which do not. Sometimes, this does
not seem possible. Thus in the formula numbered (3.27) in Rosser and

Papamichael [ 2], we are undertaking to compute the AN recursively

from
N+
1 i ' (2r-1)

(2.2) ANt T E Z EAN+2r

1 r=2
The Er are known, with E1 & 2.4, The value (-1 )NBSDN is approximately

(2r-1)
1.5, cae .
5. The AN+2—r can be calculated from A1 , , AN Now the AN

decrease in absolute value; AZO o -10‘8 . So obviously use of the

formula shown will have to involve serious cancellation errors for the
larger values of N. However, we were not able to find any other way to

calculate that AN. By using double precision, we were able to get about

two significant digits for A To have gone appreciably further would

20°

have required a triple precision calculation.
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Incidentally, this also disclosed a clearly marked case of

numerical instability. If one works out the coefficient of AN on the
right side of (2.2), it is of the order of 3. In other words, whatever
absolute error we make in AN, we are guaranteed to make an absolute

error about 3 times as large in AN+1'

3. _Rounding errors. As we indicated, rounding errors

originate from the fact that usually a calculator canhold only an
approximation to a given number. When operations are performed on these
approximate numbers, the errors tend to accumulate. A classic treatise on
this subject is Wilkinson [ 3].

Roughly speaking, if one multiplies or divides two numbers, the
percent error in the product or quotient can be as large as the sum of the
absolute percent errors in each of the participating numbers. It need not
be that large, and often will not be. When it comes to adding or subtracting
two numbers, the situation is much more complex. In subtracting, the
absolute error of the difference might be expected not to be more than the

- sum of the absolute errors of the participating terms (this is not always so)
but if there is cancellation error, the percent error could make a sensational
jump.

Thus., in our early example, we had an approximation for 22/7
with about (1.4 X 10_6)% error and an approximation for m with about
(1.5 X 10-6)% error, but got an approximation for (22/7‘) - v with about

(7.1X% 10'3)% error,
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Even in addition of positive numbers, the situation is mn.irky.
It might seem obvious that ifone_ has approximations Ags - e ,8y ovn the
machine, each of whichis not more than e percent less than the true valuae,
then the sum a1+az+. . .+aN will not be more than & percentless than the sum
of the true values. This seems merely to be a special case of the
distributive law of algebra. However, it is not so. Sée page 11 of

Yohe [10].

Consider the divergent series
L.,Lr.,1
(3.1) 1+2+3+4+...

Let us propose to sum this (or parts of it) on an eight decimal digit
calculating machine which can accept or handle numbers down to an
underflow limit of about 10_100. Each term of the gseries {(down to the
underflow limit) can be entered on the calculator to within & percent
accuracy. Suppose we do this successively, and add. With an 8 -place
decimal calculating machine, after fewer than 108 terms the terms will be
so small that when they are added they will make no change in the calculated
sum, From that point on the calculated sum will remain the same, though
thé true sum will rise gradually into the hundreds until we come to terms
so small that underflow limitations prevent us from entering them into
the machine, and the summation is perforce terminated.

Of course, this is a very contrived situation, but it illustrates

why it is difficult to make any general remarks about rounding errors for

addition, and even less for subtraction. However, in general, a group
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of numbers to be added will not be too disparate in size, and something
like the distributive law can be invoked, but with caution.

Usually, with ideal rounding, the errors from rounding are
reasonably random. This tends to hold down the accumulation of errors.
A rather simplistic statistical model is often invoked; see Henrici [ 4],
page 305, ff. Even more elaborate discussions can be found, as in
Rademacher [ 7]. For the simplistic model, the argument is roughly
as follows. If an error of & could occur at each operation, and if the
error should occur in the same direction each time, then in n operations
a total error of né would accumulate. However, if the errors should
fluctuate randomly between positive and negative, then in n operations
a total error of kVn & would (usually) occur. People even try to
determine a suitable value to assign to k. However, this is hardly
justified,

Consider, if we have n positive summands all about the same
size, and all too small by &, the error after- n additions should be
né; the sum will also be about n times each individual term, so that
the percent of error has not increased (the distributive law again).
Actually, the way most calculators work, the error after n additions
could be much more than né for very large n. Review again the example
with the divergent series. If n is large enough, one can reach the point
~ where adding another number makes no change. Then the error increases

much faster than by 6 at each step. However, if the addition is properly
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arranged (see discussion below), the distributive law will be reasonably
well approximated, and the error will indeed be about nd, to be com-
pared with a sum about n times the individual summands.

Suppose that, because of randomness, the error is claimed to
be kVn & . Suppose that a value has been assigned to k, so that with
the given value of n the error is claimed to be only n&/10 . If the
summands are all about the same size, the sum is about n times an
individual term. So we claim an accuracy for the sum ten times as good
as for the individual terms. If each summand was entered to maximum
accuracy on an 8-place calculator, then it would have the sum correct
to 9 places, which is obviously impossible.

However, there are many cases where the general distribution of
errors is random enough that the predictions of the statistical fheory seem
reasonably well fulfilled. The total error (in some sense) grows at a
rate proportional to Nn rather than to n. For additional exceptions,
see the next section.

In Crary and Rosser [ 5], power series coefficients for 41 functions
were calculated to high accuracy; between 40 and 50 coefficients were
computed for each function. In the report, these coefficients were uniformly
roundad to considerably fewer decimals at print out than were catried in the
calculation. Among the checks of accuracy of transcription, the sum of

the coefficients for each function was also computed to high accuracy.
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For each function, the transcribed and rounded coefficients were added
to see how their sum compared with the true sum (see page 48 of Crary
and Rosser [ 5]). The results are shown in Table!. This is a reasonable

approximation to a Gaussian distribution,

Sum too high by Number of cases

+4 2
+2 3
+1 9

0 12
-1 9
-2 2
-3 4

Table 1.

We might remark that in summing (3.1) we used the worst possible
procedure. It is standard doctrine that, in summing a series, rounding error
will accumulate more slowly if one adds starting with the small numbers.
The reason for this is that if one adds the large terms first, then when
a small term is added in, one must truncate it or round it to bring it to
the right number of decimals, and information is lost. If one adds several
small terms together first, this information is used (in part) to form an

accurate partial sum of a size more comparable to the large terms. Still
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better, if the series is suitably graduated, would be to keep the partial
sums more nearly of a size with each other. In the series (3.1), this
could be done very nicely by adding the terms in pairs, then adding
the pairs in pairs, etc. With this system, one could possibly get a
sum of any part of the series (3.1) to about the full accuracy which the
machine could accomodate.

If one wishes to calculate the determinant of a large matrix,
one can be subject to both cancellation and rounding errors. By definition,
the determinant involves a large number of differences, so that theré is
great opportunity for cancellation errors., It involves a large number of
terms, so that rounding errors can accumulate badly. Closely related is
the problem of solving a large number of simultaneous linear equations.
With proper techniques, one can sidestep some of the difficulties.
However, it remains a problem in which even the best methods can

occasionally fail disastrously. A very full discussion is given in Kahan

[8].

4. A particular example. Define
(4.1) = 0.000013516 (octal).
Then
(4. 2) e = 0,0000 44450 16384 (decimal) .
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Let us enter ¢ into a calculating machine with 9-place octal
accuracy (floating), compute r =1 - ¢, and then erase the value

of &. How well can the computer recover & from r?
As an8-place decimal machine is nearly equivalent toa9-place

octal machine, we will write muchof ourdiscussionas though foran8-place
decimal machine; this machine is assumed tobe designedin such a manner as

to truncate prior to addition, so that machine error also occurs.
The first thing is to make sure we subtract ¢ properly from 1.

The machine will hold 1 as

1.0000000,
being an 8-place machine. To subtract g, it will truncate it to
0.0000444 .

Subtracting will give r = 0.99995560. Already, we have lost valuable
information,

What we do is to calculate

This will give

(4. 3) r

2

0.99995555 ,
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. From this, how good a value of & can we compute ? If we

carelessly take

we will get the approximation 0.445 X 10_4. If we remember to take

e =(0,99999 - r) + (0.00001)

-4
we can get the approximation 0,4445 X 10 . This ought to be the

best we can do. However, note that

1-rN

(4. 4) 1-r= 5 NI
t+r+r 4+ ... +r

Take N large, say N = 262,144, Then, with the given value of r, we
N -5 . . , N

have r <10 . So, if we can give an approximation for r' good to 3

significant decimal digits, we will have the numerator good to 8 significant

digits; that is, if we remember to take

There is no cancellation in the denominator of (4.4). So we should
be able to get it accurate to about 8 significant digits. So then (4.4)
should give & good to nearly 8 significant digits!

Of course, one has to be smart about summing the denominator,
as discussed near the end of the previous section. We carried out a

number of calculations on the UNIVAC 1108, which has 9-place octal
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accuracy (fleating). In each case, just to compare results, we summed
the denominator of (4.4) in three different ways: summing from the left,
summing from the right, and iterated summing by pairs,

The first question is about the calculation of rN. The analysis
given in Wilkinson [ 3] applies perfectly to this calculation. If the
rounding is biased, the éccumulation of rounding errors could be so severe
that we would get an approximation for rN correct to only two significant |
decimal digits. In fact, after multiplying, the UNIVAC 1108 truncates instead
of rounding, thus introducing machine error, After 262 144 multiplications by r,

we got rNE 8.684><1O_6 as contrasted with the more accurate value of

’

(4. 5) N 8.696 3885 X 10'6

(got by a double precision calculation). However, even this poor value
would give 1—rN with an error of only 2 units in the 8-th decimal digit.
However, one cannot expect the denominator of (4.4) to be very
good, with truncation instead of rounding at each step. We got the '
results shown in Table 2. Considering the bias in-the rounding, these

are not too bad.

Methods of summing 5

, g X 10
the denominator
true value 4.445 0164
summing from the left 4,450 5777
summing from the right 4,446 0810
iterated summing by pairs 4,445 5”325

Table 2.
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In Yohe [ 9], it is shown how various sorts of rounding, including
various types of "ideal" rounding, could be accomplished by simple
hardware or simulated by software on most computers. We programmed
the UNIVAC for ordinary rounding, thus eliminating machine error as defined
by (1.2). Presumably the statistical theory should have some validity in
this case. Indeed, we did far better. We got rN = 8.696 3897 X 10
So we have full accuracy for the numerator of (4.4). We got the results shown
in Table 3. It appears that we have recovered 7 of the 8 digits of &, and

are off only 3 units in the 8-th place,

Methods of summing v 5
the denominator & x10
true value 4,445 0164
summing from the left 4,445 3544
summing from the right 4,445 0177
iterated summing by pairs 4,445 0167

Table 3.

As long as we are looking for convenient forms for the calculation

18
of &, we might note that since N =2, we can write

] 518
-r
(4.6’) 1-r= e

A+n) (410 (1 4r ) (1 +0) L (145 )
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This involves very few multiplications and additions, and should be
still better. However, it is not. It gives 4.445 1465 as an approximation
for g X 105 .
The reason for this appears if we give a little thought to the
4 8

2 , ‘
matter. We computed r, r, r, ... by successive squarings. If

M M
A= (1+e)r is an approximation for r ', then

2,2
A2=(1+2e+e)rM

5 :
Of course, in general, A will not be a number that can be stored in
the machine. The result of multiplying A by A on the machine will be

B, where

B=(1+68)A°,

S0 the approximation B for rZM is related to rZM by

2
B = (146)(142¢e+ e )ro

If § and & have opposite signs, B could be as good an

: . ZM M
approximation for r as A wasfor r possibly even better.

b
However, with reasonable randomness of rounding errors, there will
come a time when & and e have the same sign. So we will from

time to time get a fairly large ¢, and eventually the 2e term will

become overriding. From then on, we essentially double the percent
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error at each squaring. This is an example of numerical instability,
which we mentioned earlier as a possible source of error. The value of
rN as calculated by successive squaring on the UNIVAC 1108 with
rounding was approximately 8.693 4161 X 10_6. This is not a whole lot
better than the value derived by 262,144 successive multiplications by

r with truncation at each step.

5. Rounding error depends on the number base used in the

calculator, But of course! However, the effect can be much greater
than one might expect, For example, the black magic in the previous
section, in which we were apparently recovering almost eight digits of
g from 1-g¢ = 0.99995555, was wholly an illusion caused by the
differences in rounding between a 9-digit octal machine and an 8-digit

decimal machine. Recall that we took

¢ = 0.0000 13516 (octal)
exactly. Then

r=0.7777 64262 (octal)
exactly. 5o

(5.1) 1-r = 0, 0000 13516 0000 (octal)

467




exactly. The formula (4.4), when applied properly, will give this
value to nearly 9 significant octal digit accuracy. Converted to decimal,

this means we were getting close to

0.0000 4445 0164

for e; the illusion was created that we were recovering nearly 8
decimal digits of e,

As another illustration of a startling divergence due to differences
of rounding, recall that when we calculated rN by successive squaring,

using octal rounding, we got

8.693 4161 X 10"6

as compared with a more accurate value of

N

r = 8.696 3885><1o'6.

However, if we start with the decimal equivalent of r,
r= 0.99995555,

and perform successive squarings with decimal rounding, we get
N

r = 8,696 0578,

If used in (4.6), this would have given
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e = 4,445 0305 X T

If this paper has‘a moral, it is that cancellation and rounding
errors are more serious than is generally believed, especially if one
runs into some numerical instability. Mitigation of these effeéts
due to randomness of errors is not as trustworthy as one might believe
from the statistical theories that have been prdpounded. However, the
remedy used by many people, of going to a double precision calculation
if any suspicion of unreliability appears, will probably be entirely
adequate in all but an extremely small minority of cases. Nonetheless,
even with double precision, it is worthwhiie giving thought to whether,
of several mathematically equivalent forms, one has chosen the one
least likely to produce cancellation errors, Also, if one has a sum involving
a large number of summands, it is worthwhile, and not much trouble, to

give thought to the best order of performing the summation.
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APPLICATIONS OF NUMERICAL MODELING
TO COASTAL ENGINEERING PROBLEMS

H. Lee Butler and D. L, Durham
U. S. Army Engineer Waterways Experiment Station
P. 0. Box 631, Vicksburg, Miss. 39180

ABSTRACT. A review of the numerical modeling efforts within the
Wave Dynamics Division, Hydraulic Laboratory at the Waterways Experiment
Station is presented. Numerical modeling has progressed rapidly in the last
several years and is now generally recognized as a useful tool capable of
yielding valuable information on alternative solutions to many coastal
engineering problems. Present efforts include models for application to:
Wind-driven circulation; storm surge on a lake; tsunami generation and
transoceanic propagation; tidal hydraulics of bays, harbors, and inlets;
generation and propagation of landslide generated water waves; and harbor
oscillations, both free and forced. A discussion of the mathematical
formulations and applications is given herein. Future efforts are dis-
cussed which include stratified lake circulation and both deep and shallow
water wind wave generation.

1. INTRODUCTION. The advent of large scale computer systems has
made it possible to use hydrodynamic theory based upon rational physical
approximations rather than the dictates of mathematical tractability.
Constraints still exist due to computer limitations and lack of basic
understanding of certain phenomena; however, numerical modeling has
progressed rapidly in the last several years. The mathematical model is
now generally recognized as a tool capable of yielding valuable information
on the particular phenomenon under investigation.

All of the models discussed in this paper are based on long wave
theory approximations. There are many problems to which long wave theory
can be applied and the degree of validity of each application is dependent
on the particular approximation made and must be carefully evaluated. Long
wave theory is a valid approximation when the ratio of water depth to wave
length is small and the vertical component of motion does not significantly
influence the pressure distribution which is assumed to be hydrostatic.

A wide range of applications together with model formulations are
presented. It is not the intent of this paper to present detailed descrip-
tions of models, but, instead, to indicate the level of effort being
undertaken by various members of the staff at the Waterways Experiment
Station. The reader is asked to consult the appropriate reference to obtain
details of the model formulations.

This paper was presented at the 1975 Army Numerical Analysis and
Computers Conference.
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2. SCOPE OF MODELING EFFORTS. Dynamic prediction equations based

on the fundamental differential equations of hydrodynamics can be applied
with minor variations to provide data on wave motion where the depth of
water is small relative to the wave length. A linearized version of the
model expressed in a spherical coordinate system has been used to calculate
the propagation of tsunamis (originating from seismie disturbances in 12
" segments of the Aleutian Trench) from their source to the west coast of

the United States. The results were used to evaluate the relative vul-
nerability of an area along the west coast to tsunami inudation as a
function of seismic location.

A model based on the same fundamental equations, but cast into a
Cartesian coordinate system, has been applied in analyzing the tidal
hydraulics associated with harbors and inlets. Additional terms including
non-linear inertial forces (convective forces) and bottom stress were con-
sidered. The numerical tidal model has been used as a complementary tool
in the operation of a physical model of the Los Angeles and Long Beach
harbor complex. Such a numerical model can provide valuable information
for use in the design and operation of physical models. Some of the areas
to which the numerical model can be of assistance are documented below:

a. Establishing appropriate boundaries during design of the physical
model which are sufficiently removed from the influence of regions
to be investigated.

b. Indicating regions where data collection may be more critical ovr
desirable.

c. Indicating possible problem areas in advance of physical model
tests.

d. Providing assistance in the general interpretation of physical
model results for certain phenomena.

e. Providing a "quick look" at a number of possible configurations
indicating the more promising plans.

f. Providing a mechanism for investigating certain phenomena such
as wind which cannot be eagily introduced into the physical model.

The integration of the numerical and physical wave models allows for a more
complete and comprehensive test program.

Under a project entitled, "General Investigation of Tidal Inlets" an
attempt has been made to construct an idealized inlet in order to investi-
gate the effects of inlet geometry, friction, and bay and tidal heights.
An effort was undertaken to investigate the ability of the numerical model
to reproduce localized velocity patterns. The results bore out the fact
that many details of the velocity patterns seen in the physical model were
reproduced in the numerical model. Applications to actual inlets have
been made and comparisons with prototype elevation and velocity data
obtained.
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With minor variations the tidal model has been applied in the investi-
gation of landslide generated water waves. In 1971, the Hydraulics
Laboratory at WES constructed a 1:120 undistorted scale model of Libby
Dam and Lake Koocanusa, Montana, and conducted tests to determine wave
heights, runup and amount of overtopping resulting from the sliding of
individual rock ribs into the reservoir. Subsequently a study was initi-
ated at WES and directed toward developing numerical methods for predicting
the effects of landslide generated water waves in reservoirs. The agree-
ment between the physical and numerical models was very good considering
that each set of results (five separate slides with different slide
velocities) were subject to certain inherent limitations imposed by the
model theory and others imposed by lack of knowledge concerning prototype
conditions or how to medel certain phenomena.

The Lake Erie Regional Transportation Authority is conducting a
feasibility and site selection study for a major hub airport in the
Cleveland service arveca. One of the possible sites being evaluated is an
offshore site near Cleveland, Ohio. As a part of the feasibility analysis
of an offshore site, WES is couducting a model feasibility investigation
and a part of this study is to determine the effects of the jetport on
the hydrodynamics of the surrounding area. Two of the numerical models
applied so far in the project have been used to define the effects of the
jetport on the following phenomena:

a. Near-field and far-field definition of the wind-driven cir-
culation for constant density, well mixed lake conditions,

b. Storm surge at the shoreline from Lorain to Fairport, Ohio.

For many coastal engineering problems, particularly in the design of
harbors, the capability of estimating the response of partially enclosed
bodies of water such as harbors, bays, etc., to long wave excitation can
be a useful tool for preliminary investigations as well as a guide to
physical model studies. The geometric shape of the harbor and the wave
reflections associated with its boundaries produce amplification or
attenpuation of the incidence wave regime. This phenomenon is ofter refer-
red to as harbor resonance or seiching and can excite adverse motion of
moored ships and produce currents which may be hazardous to navigation.
New harbors or modifications to existing harbors can be designed to
minimize the effects of harbor resonance by mismatching the frequencies
at which a harbor has maximum vesponse and the frequencies of the pre-
dominant long wave energy which is characteristic of the wave regime at
the harbor site.

The major problem is how to determine accurately the amplitude
distribution function and frequencies of the resonance characteristics
of a harbor. Oune approach is the application of numerical techniques,
Two methods have been applied at WES:
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a. A finite element method for obtaining the two-dimensional
amplitude distribution and frequencies of undamped, natural
modes of oscillations.

b. The solution of a boundary value problem for long wave-
induced oscillations (forced oscillations).

These methods were applied to the harbor at Port Hueneme, California, in
conjunction with a physical long wave model study of the harbor. An
additional application of the free oscillation model was made to lLake Erie
in order to determine the effects of a jetport structure on the free
oscillations of Lake Erie.

3. TSUNAMI MODEL. A computational scheme relating arbitrary sea-
floor displacements and the consequent surface-wave history was developed
by Hwang, Butler, and Divoky (1972). 1In order to permit more reliable
estimates of far-field surface displacements as well as ease of including
the effects of the earth's curvature, the problem was cast into a spherical
grid covering the area of interest.

The governing equations can be written as:

Momentum Equations

(1) U _ _ _gon
ot re 90

(2) N ___ g _8n
at resine 3¢

Continuity Equation

(3) on_ 1 .9
ot resinG 36

where the spherical coordinate system is described in Figure 1la.

((rn)Using) + 55 ()W)} + 35

To solve these equations an altermating direction technique is
employed similar to that of Leendertse (1967). A space-staggered scheme
is used in which velocities, water level, and depth are described at
different points within a grid cell (Fig. lb). The first half cycle of
the calculation consists of computing U and n dimplicitly and V
explicity, advancing from time nAt to (n + %) At. The second half cycle
computes 7N and V dimplicitly and U explicitly, advancing from time
(n+%) At to (n + 1) At.

By continuing these processes one can determine the values of U
V , and n as functions of time. The finite difference equations
involved in the first half cycle of the calculation are:
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Fig. la. Spherical coordinate system
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Fig. 1lb. Space-staggered grid definition
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(4) n+s 1t n+7
U, = [, - At (n - )
J+L§,k J+l/2,k ‘27:&55 +l k J k
+5 n
(5) N2 =y, - At o+ ,5
i,k i,k Eﬁ?ﬁ?fﬁ@"{Ae( {FE)U sing )" +h,k {(h+n)U51n9} %k )
+ 1
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These equations can be solved for U™ % and nn ? where terms noted with a

bar are computed by averaging values of h and n to determine the barred
quantities at the specific points. The explicit expression for gt ig

nts _ .n Atg n n

(6) 3, kHs g ks ffc?ﬁéinej (nj,k+l - T‘j,k)

~The difference equations for the second half cycle are similar with U
and V. exchanging roles.

Two types of boundary conditions are involved in the computations.
These are the solid boundaries at coastlines and the open sea boundaries
arising from the need to truncate the region of computation to minimize
computer core and processing time requirements. A condition of- complete
reflection is adopted at solid boundaries., No dissipative factor is
considered in the model at present to account for loss of tsunami energy
due to shoreline interaction. This condition is accomplished by setting
U=0 or V=0 at the appropriate boundary.

The open sea condition must simulate a total transmission of
the wave through the boundary. This caunnot be rigorously achieved without
computation beyond the boundary and thus an artifice 1s adopted which assumes
that the wave profile travels without change of form across the last
interior cell of the grid at the shallow-water wave speed This leads to
the expression

. n, AtVgh
(7) nB (nB 1 nB) X + Ny

where B refers to an exterior face of a boundary cell, B-1, the cor-
responding interior face of the same cell, and AS the dimension of the cell
normal to the boundary face.

The derivative of the ground motion term appearing in the continuity
equation accounts for the time dependent vertical bottom displacement
measured from a pre-quake bottem topography. If far-field results are
the major interest, an initial water surface deformation is assumed instead
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of allowing the numerical code to simulate the time
motion. This initial surface condition conforms to
of the ocean floor which experiences permanent vert
resulting from a quake disturbance. Since the char
vertical ground movement is small when compared to

tsunami waves, it is sufficient to assume an instan
the entire disturbance area.

The tsunami model was verified by hindcasting
Tsunami (Hwang, et al:; 1972). With observations of
displacements and distant wave histories available,
ohserved waves compared well in amplitude and phase

dependent vertical

the topographic features

ical displacement

acteristic time for
the long periods of
taneous uplift over

the 1964 Alaskan
generated bottom
the computed and
of the dominant lead-

ing wave,

Results of the Aleutian Trench study (Whalin, Garcia, and Butler;
1874) indicate that the tsunaml generated by the 1964 Alaskan quake may
not be a rare event at all. Further, a tsunami of equal intensity result-
ing from a seismic disturbance located elsewhere in the Aleutian Trench
could cause significantly higher runup at particular west coast locations.
Figure 2 displays a sample plot of surface elevation contours at a time
of 4 hours following a hypothetical disturbance in segment 7 of the
Aleutian Trench (a source location south of Shumagin Island).

4., TIDAL MODEL. A numerical tidal model, based upon the original
formulation by Leendertse (1967), has been applied at WES to analyze the
tidal hydraulics of harbors and inlets. Again the fundamental equations
are averaged over the vertical dimension and expressed in a Cartesian
coordinate system to yield

Momentum Equations

(8) au oy U an g Lo _py¥ 2
e tUny v Ve, ey oIV Tyt 0
(9) 3V, 8V 3V 91 L oy 2o
It + UE( + Vay + g’zg + fU + h+r1(TB Tw)
Continuity Equation
(10) an 3 S (et -
5t T oow {(n+m)wt + 5 {(k+n)V} = 0

where the stress terms are defined as

Bottom stress
T = 5% /i24+v2

(11) :
B
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and

Y _ gV g2 u0
(12) “IB 2 VUu24+y

Wind stress

(13) 2

T =cpW
w dpa a
The major assumptions involved along with the consequence of each

assumption are outlined below:

a. Internally the fluid is inviscid (horizontal and vertical
eddy viscosity terms are considered to be negligible).

b. The fluid is incompressible (continuity equation and gravity
term are simplified).

¢. The vertical component of the fluid acceleration is negligible
(momentum equation in the vertical direction reduces to the
hydrostatic pressure variation).

d. The fluid is well mixed so that the variations of flow in
the vertical direction are small (allowing the averaging of
flow quantities over the vertical).

To solve the above system of equations numerically the differential
equations must be discretized and replaced by a system of finite difference
equations using central differences on a space-staggered grid as in. the
case with the tsunami model. Again, Leendertse's implicit-explicit multi-
operational method is employed in determining the solution for U , V
and n as functions of time.

The difference equations for the second half cycle are written as:

(14) n+1 nt; _ ght ep ML At = n+l§< >n+1§
Voo 28y <"y !
A o+l nHs At L
- > - — F 3 +5
4Ayv <Vy 2 Ey at j, ks
okl oot At n+ls At — n+l i
(15) n =T - Shx .(h+n)U>X 2hy <(h+r’])’V>y at j, k

These equations are solved for yotl and N1 ajong a grid line j .
For simplicity of notation some terms have been maintained in differential
form within angle brackets < >, Central differences are used in evaluat=-
ing these terms. The additional velocity component y°*l can be determined
explicitly from the equation

ntl _ ooty ght ooty At ontl St
(16) U =T - Shy Ny AXU U

At =n+1 otk At .
- ZK;V <Uy> - _ZFX at j+k,k
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The expressions for the forcing terms Fx and Fy are written as

- b +] 1 - - -
(17) FX _ fVn+l I 1 {(Tw)n o Epnti {(Un+§)2 + (Vn+l)2}}
(nim ™ ¢
=n+l W ndds +5 . =nds 15 9.
(1) B = 07T e e ()T L gy (@7 v P
Y ()2 M =

In addition the terms signified by a single bar are not defined at the
point where the equation is written and are determined by averaging two
neighboring values. The terms signified by a double bar require four
neighboring values to obtain an average.

Three types of boundaries are involved in the calculations:

a. A condition of complete reflection is considered at solid
boundaries.

b, Tidal elevations are input data at artificial ocean boundaries.

c. Tidal elevations or average fluid velocities are input data
at artificial boundaries in the inlet, harbor or bay.

Sufficient prototype data must be available to operate and/or verify
the model. Along these lines, it should be emphasized that tidal elevations
or average fluid velocities must be defined at all artificial boundaries
in the inlet, harbor or bay.

From a consideration of the agsumptions involved In the development
of the model, it is apparent that it should be most applicable for consider-
ing long period waves in non-stratified regions where vertical accelerations
are small. The model provides no indication of the vertical distribution
of velocity. Phenomena which depend on the detailed velocity distribution
as a function of the depth cannot be investigated.

As mentioned previously, applications of the model at WES include
the Los Angeles-Long Beach Harbor area and an idealized inlet model.
Fipure 3 illustrates the tidal velocity field for a portion of the LA-LB
harbor. The treatment of breakwaters and piers on piles are of particular
interest in this application. The frictional coefficients were varied to
simulate the resistance of these structures to the flow. Approximately
1600 grid points were used in the computational grid.

5. LANDSLIDE MODEL. A numerical model for the generation and
propagation of landslide generated water waves in reservoirs was developed
at WES (Raney and Butler; 1975) as part of an effort directed toward
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finding analytical and/or numerical methods for predicting the effects

of these waves, It was decided that a promising initial approach for the
investigation involved using a depth averaged formulation of the fluid
mechanics equations.

The tidal model as discussed previously can be adopted with appropriate
modifications to evaluate the arrival time and height of the first wave
crest which may result from a landslide. Results from the physical model
study conducted at WES (Davidson and Whalin; 1974) indicated that in most
cagses the first wave crest was the largest measured at each of the model
gauges. The pertinent modifications to the tidal model are:

a. A vertical bottom deformation term representing the passage
and settling of landslide material is introduced into the
continuity equation in a manner similar to the ground motion
term appearing in the tsunami model.

b. The acceleration effect of the landslide on the fluid with
which it is in contact is introduced into the momentum
equations as part of the forecing terms.

Thus the equations can be written as:

Momentum Equations

(19) 90, AU . BU . on .
ot * Ug;-+ Vay tEgy T Ry ¥ Ly
(20) VoV Ve O

ot 9x Jy gay y v

Continuity Equation

(21) an o 9 _ 98
St oe L (DU b+ oy {(bn)V = &=

The method of solution is identical to that used in the tidal model.

Boundary conditions are similar to those adopted in the tsunami model.
The fictitious open boundaries arise from the need to truncate the region
of computation (in order to minimize computational time requirements).
Also considered is a time dependent boundary between the landslide surface
and the water in the reservoir.

The landslide is represented by a time dependent deformation of the
bottom of the reservoir plus additional terms to represent the effect of
the landslide on the reservoir due to viscous and inertia forces. The
bottom deformation propagates into specified regions of the reservoir at
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the average speed of the landslide with the deformation at any particular
location increasing from zero to a maximum value according to a specified
time-displacement relationship. For those portions of the bottom of the
reservoir through which the Jandslide passes but which do not experience
a net change in ground elevation as a result of the final slide deposi-
tion, the deformation is allowed to return to zero at a specified rate,
The handling of the landslide condition is dillustrated in Fig. 4. The
direction, extent, and magnitude of the bottom deformation is determined
by knowledge or assumptions concerning the path and final disposition of
the particular landslide.

The water in the reservoir experiences an acceleration due to the
force exerted by the landslide at the time dependent boundary between the
water and the landslide. This force per unit mass is considered to consist
of a component due to the displacement of the water by the slide plus two
components which act on fluid elements in contact with the landslide:

2

= 2

(22) L, = oc(vX - + 8B (VX -m
(23) L =av -ni+e @ - wn?
N y y y
where

Vx = the x component of the landslide velocity

Vy = the y component of the landslide velocity

® = viscous drag parameter

f = pressure drag parameter

The first component of L and L_ is related to the viscous drag
exerted by the slide upon the Iluid with which it is in contact. The
second component of L and L expresses a pressure drag exerted on the
water by the front of*the sl¥de. The viscous drag is considered to act
at all points of contact between the slide and the water. The pressure
drag acts only at the leading face of the landslide.

The landslide is thus represented numerically by a combination of
terms whose net effect in the numerical model should be a reasonable
representation of the large scale physical effects produced by a landslide
entering a reservoir. A representation of the landslide propagates into
the numerical representation of the reservoir, accelerating the fluid due
to physical displacement, viscous effects, and pressure drag effects. The
resulting waves propagate across the reservoir in accordance with the
governing equations. The wave height and velocity components are calculated
for each grid cell at the end of each time step.
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SIDE _VIEW

Fig. 4. Landslide model
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Steady-state horizontal velocity field in the Cleveland

With a jetport structure, 5 miles offshore

area




M,0=0.,W=3555H

Fig. 11. Contour plot of differences in velocity magnitudes
with and without the jetport structure
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4. A fipite element method (FEM) used to find the natural
oscillation solution for an open or closed basin, and

b. a method to estimate the two-dimensional amplitude
distribution function of wave-—induced (forced) oscil-
1ations in harbors of complex geometry as well as the
wave frequencies at which maximum harbor response occurs.

In theory, both types of oscillations can be mathematically
represented by boundary value problems formulated from the long wave

equations and appropriate boundary conditions.

The Finite Element Method

Assuming a periodic form of the solution of the linear long wave
equation for a variable depth basin, the governing differential equation
for undamped harmonic oscillations of a variable depth basin becomes

(32) 3 n(x,y) 3 4 2y Inx,y) 2 -

| o™ {hix,y) . b+ Sy fu(x,y) 3y }+ A ni(x,y) =0
where
(33) 22 wlg

The boundary condition for this problem is that the normal component of
velocity at the basin boundary be equal to zero. Since equation (32)
(special form of the Helmholtz equation) is the equation for a standing
wave, this boundary econdition can be expressed as

(34) ELIETH 2R
on
where

n = unit normal to boundary

For the open basin case the boundary along the basin opening cannot be
satisfied by the above boundary condition since this is not the physical
case. The surface elevation along such an opening is assumed to be a
nodal line. Thus, the boundary condition along the open boundarv is

(35) nix,y) = 0

Therefore, equations (32-35) are the partial differential equation and
the boundary conditions for the boundary value problem of the natural
oscillations of a body of water. It can be shown that the x and y
components of velocity (u,v) are proportionmal to the x and y com—
ponents of the horizontal gradient of surface elevation.
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Solutions to this boundary value problem for basins of complex
geometry and variable topography have been estimated numerically by Abel
(1970)% He used a calculus of variations approach and obtained an Euler-
Lagrange formulation of the boundary value problem, The variational
formulation for the boundary value problem basically consists of the
functional integral

n(x,y) 2 m(x,v) 2 22
(36) x = S/ 5{h(x,y) [——gglz—] + h(x,y) [——5§ﬁi?] - ATn"(x,y) }dxdy

which, for a stationary value of Y (maximum or minimum) with respect to
n(x,y), the Euler-Lagrange condition of the functional is identically
equal to equation (32). 1In additiom to this functional integral, the
Euler-Lagrange formulation possesses appropriate boundary conditions.
The solution n(x,y), which maximizes or minimizes equation (36), is
obtained by utilizing finite-element techniques. Details of these
techniques can be found in most finite-element texts (i.e., Desai and
Abel, 1972) and will not be pursued here. Concisely, the finite-element
technique, as utilized in this problem, is a numerical approximation pro-
cedure for evaluating the integral equation obtained from maximizing the
functional integral. The surface area of the study region, A , is
divided into N subregions, A® (elements) with e = 1, ..., n, with the
shape of the element (triangle or quadrangle) being defined by a number
of nodes (vertices) which connect the element to other elements of the
grid. The integral equation is expressed and applied at the element
level and later assembled for the total domain of interest. This procedure
produces a system of M (total number of node points) linear algebraic
equations in terms of the M wvalues of n; at the nodal points and in
which the values of Ny form the solution of equation (32). This system
of equations can be expressed in the form of an eigenvalue problem and
solved by matrix procedures for the eigenvalues (natural frequencies of
the system) and the eigenvectors (configuration of relative magnitudes
of surface displacements at each nodal point).

Forced Oscillation Method

The boundary value problem for long wave-induced oscillations in
arbitrary shaped harbors of constant depth, h , is governed by the
following differential equation

2
+ kn(x,y) = 0

2 2
(37) 3 Nn(x,y) + 0 nix,y)
2 2
ax ay

which is called the Helmholtz equation, where the wave number k 1is defined
as

(38) k = w/vgh
* WES internal Memorandum for Record.
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Lee (1969) in mathematically solving this boundary value problem
divided the area of interest into two regions, a harbor region and an
infinite ocean region, having the same constant depth, h . For each
region, the Helmholtz equation is the governing differential equation:
therefore, the problem in each region is to determine the wave function
n(x,y) which satisfies this differential equation and the appropriate
boundary conditions. In the ocean region, the solution of the wave
function is assumed to be composed of three separate parts:

a. An incident wave, ni(x,y)

b. A reflected wave, n_(x,y), from the coastline with harbor
entrance closed and

¢. A radiated wave, nB(X,y), emanating from the harbor entrance.

Physieally, the wave regime in the ocean region is composed of a steady-
state standing wave regime with a radiated wave due to the presence of
the harbor superimposed on it.

The boundary conditions for both regions are:

a. Along all solid boundaries such as the harbor boundary and
the coastline, the normal velocity component is zero or

(39) | Bn(x.y) _
an

b. Along the harbor entrance, a "continuity" or matching
condition is used such that the wave amplitude and slope of
the water surface obtained from the solution in the ocean
region must equal these quantities obtained from the solution
in the harbor region.

c. At the harbor. entrance an outwardly radiated wave is generated
by the harbor and diminishes in magnitude as the seaward
distance from the harbor's entrance increases such that at
an infinite distance from the harbor there is no effect of
the harbor on the wave regime in the ocean.

The latter condition allows some energy in the harbor to be dissipated
by radiating energy into the ocean, thus limiting the amplification of the
harbor response at resonance. This condition also governs the selection
of the mathematical form of the fundamental solution of the Helmholtz
equation in the ocean region and likewise in the harbor region. The form

of the fundamental solution chosen is the Hankel function, HO (kr)
where

(40) | r= /Kyl
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This form is chosen because it satisfies the Helmholtz equation, decays
to zero at infinity and possesses the proper type of singularity at the
origin,

Using Green's identity formula and the fundamental solution

[, ()] . .

of the two-dimensional Helmholtz equation, a solution for the
wave function, n(x,y), at any position in the domain of interest is obtained
in integral form as a function of the value of n(x,y) and 3n (x,y)

at the boundary. on

G NG == 2 0nG) = B ] 1Y ol )T as )

This form of solution for the Helmholtz equation is known as the Weber
solution, and its derivation is presented in potential theory texts such

as Baker and Copson (1950). To determine the wave function at any interior
point in the region of interest, the value of n(x,y) and the value of

éﬂé%;il, on the boundary of the region are required. Lee and Raichlen

(1972) showed that a matrix approximation of an integral equation similar

in form to e%uatlon (41) could be used to obtain n(x,y) along the boundary

in terms of 9N 3:2L along the boundary. With the boundary condition that the

normal derlvatlve of the wave function on the solid boundary is zero, the
wave function on the boundary and, in turn, the wave function at any

interior point can be obtained as a function of the unknown normal derivative
of the wave function along the entrance of the harbor. In a similar manner
as the harbor region, the wave function at any interior point of the ocean
region is obtained as a function of the unknown normal derivative of the

wave function along the harbor entrance. Therefore, by matching the

solution in each region at the harbor entrance, the unknown normal derivatives
of the wave function at the harbor entrance can be obtained. Thus, the

wave function on the boundary can be calculated and the wave function at

any position in the harbor can be determined. Then, the amplification

factor for the response of the harbor can be calculated by taking the ratio
of the wave amplitude at any position in the harbor to the incident plus
reflected wave amplitude at the coastline with the entrance closed.

Applications of Harbor Oscillation Models

During a physical long wave model study at WES of Port Hueneme in
California, a review and evaluation of existing theories of wave-induced
oscillations of harbors were conducted with some limited application to
Port Hueneme of Lee and Raichlen's numerical method as well as Abel's
numerical procedure for natural modes of oscillation. This study allowed
WES personnel an opportunity to become familiar with the limitations and
applicability of these numerical models and to establish their use as a
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included in the model. Various applications to actual inlets
will be made within calendar year 1975.

¢. In addition to the models now being applied in the Lake Erie
Jetport study, a time-dependent, rigid lid model including
non—linear convection, horizontal diffusion, variable density,
and coupling with the energy equation, will be operationalized
at WE5. Developed by Paul and Lick (1973), the model has
been used to study the flow from the Cuyahoga River into Lake
Erie under conditions such that the river water is either at
the same temperature, warmer, or cooler than lake water. The
model is presently being used by Paul and Lick to study the
thermal efflux from power plants and is also being applied
by Gedney, Molls and Paul to a study of the overall cir-
culation in Lake Erie under stratified conditions.

d. A wave information program is currently underway at WES and
its primary objective is to produce a wave climate on the
Great Lakes for application to the design of dredged material
retaining structures., Specification of the wave climate will
include: 1) probabilities of wave heights, wave periods, and
approach directions at the edge of the breaker zone; 2) estimates
of recurrence intervals for large waves; and 3) estimates of
probable errors associated with hindcasted wave heights.
Several numerical hindcast models will be tested for accuracy
against recorded wave spectra around the Great Lakes,

These models compute the entire five-dimensional energy spectrum
of waves ( f(x,y,w,g,t) ). With the numerical models, the
effects of bottom topography on wave propagation and energy
loss due to the interaction of waves with the bottom can be
computed. Also included in the models are the effects of
fetch length and width limitations and the effect of finite
wind durations. The development of the models has been
carried out primarily by groups of researchers at Scripps
Institute of Oceanography, New York University and Westing-
house Ocean Research Laboratory. For some details of the
concepts of these models, the reader is referred to Barnmett
(1966) and Inoue (1966).

10. SUMMARY. To recap, a broad spectrum of numerical models, hased
on long wave theory approximations, has been presented. These models are
all presently being used and maintained at WES. A continuing effort to
improve the models is also a major objective. WES has always played the
major role in the United States in regards to physical models of hydraulic
systems, whether they be harbors, inlets, rivers, spillways, etc. With
numerical modeling now being recognized as an important tool in the investi-
gation of hydraulic processes, it becomes imperative for WES to remain
-abreast of the state-of-the-art practices in such efforts. Throughout the
descriptions of applications of the various models, the authors have tried
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to stress the importance of using numerical models as a complementary
activity when conducting hydraulic investigations.

An important consideration to keep in mind is that both numerical
and physical models each have basic limitations and strengths. In
particular, the assumptions and constraints inherent in each model must
be cautiously considered in the application of numerical models of long-
waves and wind-driven clirculations. Both the selection of the prototype
conditions being modeled as well as the interpretation of the results
must be reasonably consistent with the model assumptions.
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NOTATIONS

A Surface area of study region

C " Frictional coefficient

Cd Drag coefficient for calculation of wind stress
E_ Eddy diffusivity coefficient

f Coriolis parameter

g Acceleration of gravity

H(l) Zero order Hankel function of the first kind
i,k Subscripts used to denote spatial coordinates
K Wind stress coefficient in boundary conditions
k. Wave number

L ,L Landslide force components

x Y
n Superscript used to denote a time instant.
n Refers to a normal line
R_,R_Components of forcing terms in Landslide Model -- excluding

X" Y forces due to slide

f Distance function
r, ' Radius of earth

o Distance

t _Time

u,v Integrated velocity components

u,v,w Three-dimensional particle velocity components
Vx’vy Components of 1andélide velocity

W Wind speed

a

x,y,z Cartesian coordinated
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NOTATTONS CONTINUED

Viscous drag parameter

Pressure drag parameter
Coefficients in stream function equation
Interval operator

Ground motion parameter

Surface elevation s
Latitudinal coordinate

Eigenvalue

Density of air

Bottom stress vector

Wind stress vector

Longitudinal coordinate
Varitional integral

Stream function

Frequency
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procedures for data collection and analysis. For example, the Los Angeles
and Long Beach Harbors model (Whalin et al, 1974) covers an area of 45,930
square feet. Considerable effort over the past several years has been
devoted to:

a., Design and development of automated systems for acquisition
of wave data and for model controls.

b. The automation of data reduction and analyses.

There are presently three automated systems for hydraulic models
in the Hydraulics Laboratory. One system, (Daggett, 1971) developed a few
years ago, is operational on the New York Harbor model in the Estuaries
Division of the Hydraulics Laboratory. The other two systems, which are
the subject of this paper, are operational on various wave models in WDD.
The need for automated model procedures and the success of the above
automated systems have led to future plans for providing model automation
to most modeling facilities of the Hydraulies Laboratory. Such plans are
basically to extend the automated capabilities of the above systems to
other facilities and/or installation of additional automated systems.

2. _SYSTEM CONFIGURATION. The automated systems for wave models
have been given the title "Automated Data Acquisition and Control System'
(whose acronym is ADACS) and have two primary functions: (1) automated
acquisition of wave data in a format (magnetic tape or disc) compatible
for computer reduction and analyses and (2) automated control of wave
sensor calibrations and of the wave generators. The system configuration
(Fig. 2) of ADACS consists of the following subsystems: ‘

a. Digital Data recording and controls.

b. Analog recorders and chanmel selection circuits.
¢. Wave sensors and interfacing equipment.

d. Wave generators and control equipment.

The digital data recording and control subsystem is basically a
minicomputer (one jisec memory cycle time) with the following characteristics
and peripheral devices:

a. 32K, 16 bit words of core memory.
b. Analog to digital pack featuring 64 analog inputs (+10 volts,
F8), 45 KHz multiplexer and 12 bit (including sign) A/D

converter.

¢. Interval timer with a one usec counter.
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be moved vertically a precise distance. The electric motor for each

wave sensor is centrolled by a control/sense line and a relay contact,
The minicomputer controls the vertical movement of each wave sensor by
actuating the control/sense line. The central processing unit (cpu)

acts as a voltage comparator by monitoring the potentiometer voltage and
comparing it to a reference yoltage which is determined from desired
displacement and potentiometer calibration. When the voltage comparison
is satisfied, the control/sense line is reactivated; the electric motor
stops; and voltage samples {rom the rods and potentiometers are acquired.
By systematically moving each wave sensor through 11 quasi-equally

spaced locations over the range of the rod length used, voltage versus
known displacements are obtained from which a calibration curve for each
sensor can be calculated and recorded on magnetic tape or disc. After
collecting the calibration data, the minicomputer analvzes these data by
least squares fitting a set of curves (linear, quadratic, ov spline) to
the data, determining the best order of fit, and comparing the maximum
deviation of the best fit to a previously acceptable value for this
maximum deviation. If the fitted curves are not acceptable, the mini-
computer flags that channel in the calibration record on the magnetic
tape or disc for further apalyses. Any malfunctioning sensors are listed
on the teletype for the operator to determine the required action (i.e.,
accept present calibration, clean bad rvods, recalibrate, etc.). Having
completed the calibration mode, the original calibration data for each
set of parallel rods and potentiometer as well as the calibration
coefficients are written into a file on magnetic tape or disc. Analytical
considerations of calibration curve fitting, accuracy of reference
potentiometers and repeatability test of calibration procedures have
demonstrated that an accuracy of +0.001 feet in wave height is obtainable.

5. DATA ACQUISITION. During the acquisition mode wave data for a
specified wave condition at the wave generator are collected from a
maximum of 50 wave sensors, recorded on analog strip charts, digitized and
recorded on magnetic tape or disc for further analyses. The sampling
scheme is quite flexible and can be tailored for different applications with
maximum thru~put rates theoretically limited by the multiplexer rate
(45KHz) and allocatable buffer size. However, for specific types of
tests the execution time of applications software and the specified number
of discrete samples per wave period degrade the about maximum thru-put
rate. The present sampling scheme used for each wave sensor is 60 discrete
voltage samples cqually spaced over each wave period for a predetermined
number of periods (normally 24). The minicomputer calculates {rom input
parameters the required timing interval between multiplexer scans to
provide the correct sampling rate and initializes counters for determining
completion of wave tests. In addition, it controls the startiog of the
wave generators, lags the beginning of data acquisition by a specified
number of wave periods after starting the generators, and provides timing
pulses for synchronizing and controlling the analog recorders. At com-
pletion of the acquisition mode, the calibration data and wave data have
been recorded in both analog and digital form. In binary form on magnetic
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tape or disc, these data with a header for test identification and
pertinent parameters are available from disc for direct analyses by the
minicomputer or on magnetic tape in a format suitable for backup analyses
on WES Honeywell G635 computer.

6. DATA ANALYSIS. The analysis of the data may be performed by
either the minicomputer ov by a Honeywell G635 of the Automated Data
Processing Center at WES., Schematically, the procedure for data analyses
is as follows:

a. Program Initialization
(1) TInput test parameters and option flags.
(2) Read and decode data tape or disc file.
(3) Demultiplex data files.
~ b, Wave Record Analyses
(1) H+ UH and T + OT.
(2) HRMS'

(3) H where =x 1is a specified percent of the highest
wave heights, normally x = .333; thus H is signi-
L i . 1/3 i
ficant wave height,

(4) Option to plot wave heights versus time.

r:

Fourier Analyses
(1) Autospectfum

(a) Amplitude~frequency

(b) Energy

(c) Spectral smoothing

(d) Plots of above parameters
(2) Cross spectrum

(a) Tnergy

(b) Coherency

(c) Phase

(d) Plots of above parameters
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The results of the data analyses can be plotted by pen plotter or CRT
plotter (microfilm and hard copy) on Honeywell G633 system and by electro-
static printer on minicomputer. For each model study, the original data
and analyzed results of all tests are permanently stored on magnetic tape
for future reference. With these analyses of wave records from various
harbor locations, the amplification factors or harbor response for various
input wave conditions are estimated. These vesults provide the hydraulic
engineers with the basic data whereby the effects of various proposed
expansions and modifications to an existing harbor can be evaluated.

7. GSUMMARY. Automated control of the calibration of wave sensors
has reduced the time required to calibrate sensors by a factor of four.
In addition, at least twice the number of model tests can be run during
a day. The cost for data anmalyses has decreased by at least a factor of
two with test results returned to the project engineer immediately after
model testing when analyzed by minicomputer subsystem and over night when
analyzed by backup mode with Honeywell G635 system. Thus, the automated
procedures described in this paper have enhanced the modeling capabilities
and increased the efficienty of modeling procedures. Future efforts
include an evaluation program for wave and tidal height sensors, velocity

meters, spectral wave generation, and an expansion of automated capabilities

'~ to other model facilities.’
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