
Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations Thesis and Dissertation Collection

1976

An evaluation and comparison of several

single variable search methods.

Wick, Daniel Brian

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/17751

Downloaded from NPS Archive: Calhoun

AN EVALUATION AND COMPARISON OF
SEVERAL SINGLE VARIABLE SEARCH METHODS

Daniel Brian Wick

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS
AN EVALUATION AND COMPARISONI OF

SEVERAL SINGLE VARIABLE SEARCH METHODS

by

Daniel Brian Wick

June 1976

Thesis Advisor: J.K. Hartman

Approved for public release; distribution unlimited.

T174986

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (*Yhen Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

An Evaluation and Comparison of
Several Single Variable Search Methods

5. TYPE OF REPORT & PERIOD COVERED

Master's Thesis;
June 1976
6. PERFORMING ORG. REPORT NUMBER

7. AUTHORf*)

Daniel Brian Wick

8. CONTRACT OR GRANT NUMBERfaj

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, California 9394

10. PROGRAM ELEMENT. PROJECT, TASK
AREA ft WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Naval Postgraduate School
Monterey, California 93940

12. REPORT DATE
June 1976

13. NUMBER OF PAGES

76
14. MONITORING AGENCY NAME A ADDRESSf// different from Controlling Office) 15. SECURITY CLASS, (of thia riport)

Unclassified

15«. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abatraet entered In Block 30, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide It neceeeary and Identity by block number)

Single Variable Search Method Nonlinear programming
Golden Section
cubic interpolation
quadratic interpolation

20. ABSTRACT (Continue on reverae aide It neceeeary and Identify by block number)

This study compares three single variable search methods —
Golden Section, cubic interpolation and quadratic interpolation.
The SUMT nonlinear program was used for the comparison. The
OPT subroutine which performs the single variable search in
SUMT currently uses the Golden Section method. Two different
OPT subroutines were written which implemented cubic
interpolation and quadratic interpolation. Seven test

DD
, ^73 1473

(Page 1)

EDITION OF 1 NOV 65 IS OBSOLETE
S/N 0102-014-6601

I

1

UNCT.ASSTFTEn
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UHCLASSXEIED
CltCURITY CLASSIFICATION OF THIS PAGE.(Wh*% Dmtm Enturmd)

(20. ABSTRACT Continued)

problems which contained 9-100 variables and 2-20 constraints
were used. The comparison was made on computation time per
single variable search for the three methods and the number
of function evaluations per single variable search for the
Golden Section and quadratic interpolation methods.

A single variable search by Lasdon, Fox and Ratner
and one by Fletcher and McCann were also discussed.

The results showed that the quadratic interpolation was
slightly faster than the other two methods and required fewer
function evaluations per single variable search than the Golden
Section method. Time per single variable search was approximately
the same for the cubic interpolation and Golden Section methods.
Cubic interpolation required fewer points to be evaluated than
the other two methods but the need for gradient evaluations
proved to be costly in terms of computation time per single
variable search.

DD Form 1473 (BACK) __
7
__ AOO ______

1 Jan 73 UNCLASSIFIED
S/N 0102-014-6601 9 SECURITY CLASSIFICATION OF THIS PAGEfWh.n Dmtm Enfrmd)

An Evaluation and Comparison of

Several Single Variable Search Methods

by

Daniel Brian vyick
Ensign, United States Navy

B.S., United States Naval Academy, 1975

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 1976

UBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY. CALIFORNIA 93940

ABSTRACT

This study compares three single variable search methods —

Golden Section, cubic interpolation and quadratic interpolation.

The SUMT nonlinear program was used for the comparison. The

OPT subroutine which performs the single variable search in

SUMT currently uses the Golden Section method. Two different

OPT subroutines were written which implemented cubic inter-

polation and quadratic interpolation. Seven test problems

which contained 9-100 variables and 2-20 constraints were used.

The comparison was made on computation time per single variable

search for the three methods and the number of function evalua-

tions per single variable search for the Golden Section and

quadratic interpolation methods.

A single variable search by Lasdon, Fox and Ratner and

one by Fletcher and McCann were also discussed.

The results showed that the quadratic interpolation was

slightly faster than the other two methods and required fewer

function evaluations per single variable search than the

Golden Section method. Time per single variable search was

approximately the same for the cubic interpolation and Golden

Section methods. Cubic interpolation required fewer points to

be evaluated than the other two methods but the need for

gradient evaluations proved to be costly in terms of computation

time per single variable search.

TABLE OF CONTENTS

I. INTRODUCTION 8

II. THE PENALTY FUNCTION METHOD 10

A. THE OPTIMIZATION PROBLEM 10

B. THE SUMT COMPUTER PROGRAM 10

III. SINGLE VARIABLE SEARCH METHODS 18

A. GOLDEN SECTION SEARCH METHOD 19

B. CUBIC INTERPOLATION METHOD 23

C. QUADRATIC INTERPOLATION METHOD 28

D. SECTIONS COMMON TO THE DIFFERENT METHODS 32

E. OTHER SINGLE VARIABLE SEARCH METHODS 34

1. Lasdon, Fox and Ratner Method 34

2. Fletcher-McCann Method 39

IV. TEST PROBLEMS 44

A. TEST PROBLEM ORIGIN 44

B. TEST PROBLEM DESCRIPTION 44

V. TEST RESULTS AND COMPARISONS 51

A. PROGRAMMING AND TESTING PROCEDURE 51

B. COMPARISON CRITERIA 52

C. COMPARISONS 52

VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY — 57

A. CONCLUSIONS 57

B. SUGGESTIONS FOR FURTHER STUDY 58

APPENDIX: COMPUTER CODES AND GLOSSARIES 60

LIST OF REFERENCES 75

INITIAL DISTRIBUTION LIST 76

LIST OF TABLES

I. Test Problem Results 53

II. Normalized Test Problem Results 55

LIST OF FIGURES

1. Behavior of the Penalty Terms 13

2. SUMT Program Flow Diagram 16

3. Golden Section OPT Subroutine 22

4. Cubic Interpolation OPT Subroutine 27

5. Quadratic Interpolation OPT Subroutine 31

I. INTRODUCTION

The concept of optimization has grown to play a major

role in the analysis of many complex decision and allocation

problems. The quality of the analysis not only depends upon

the skill and good judgement used in interpreting and

modeling the problem but also upon the reliability and

efficiency of the vehicle used for finding a solution to the

problem. The solving of nonlinear programming problems has

seen substantial development during the past twenty years

and, no doubt, will increase in acceptance and popularity in

the future

.

Within the Department of Defense several problems of

significant importance, such as weapons targeting and alloca-

tion, aircraft and power plant design and manpower planning,

to name a few, have arisen which are nonlinear in nature.

Some examples of industrial nonlinear programming problems

include oil refining, curve fitting, inventory and logistics.

Many methods exist for solving nonlinear programming

problems. Some of these methods, called penalty function

methods, are based on transforming a constrained minimization

problem into a sequence of unconstrained minimization

problems whose solutions approach the solution of the

original constrained problem.

In the penalty function method, as well as in most other

nonlinear programming algorithms, a one dimensional

minimization search is used repeatedly in the solution

process. In this paper several different one dimensional

minimization search methods are compared in the context of

penalty function algorithms.

The different one dimensional minimization search methods

(also called single variable searches) are compared by the

amount of computation time and by the number of function,

gradient and Hessian evaluations of the objective function

and constraints needed to find a solution to the original

constrained optimization problem.

Section II of this paper explains the formulation of

the penalty function method and where the single variable

search is used in this method. The nonlinear computer

program SUMT is used in comparing • the different single

variable search methods and is also explained.

Section III formulates the different single variable

search methods — Golden Section, cubic interpolation and

quadratic interpolation — and also discusses several other

methods which were not programmed because of their

complexity.

Results and comparisons of the different methods are

stated in Section IV with conclusions and suggestions for

further study in Section V. The Appendix contains the

computer codes for the three methods that were programmed.

II. THE PENALTY FUNCTION METHOD

A. THE OPTIMIZATION PROBLEM

The single variable search is a major part of finding

an optimal solution to a constrained optimization problem

by the penalty function method. Dr. W.C. Mylander, an

author of the SUMT computer code, estimated that forty percent

of the computation time required to find an optimization

problem solution using SUMT involved single variable searches.

The constrained optimization problem to be solved is of

the form:

minimize: f(x)

subject to: g . (x) >_ j = l,...,m

h.(x) = j = m+l,...,m+p ,

where x is an n-dimensional vector, the functions f, g and h

are continuous and may be either linear or nonlinear, and

the set of values satisfying the inequality constraints has

a non-empty interior, i.e. {x: g. (x) > 0, j=l,...,m} .

B. THE SUMT COMPUTER PROGRAM

The computer program used to compare the different single

variable search methods was SUMT - Version 4 (Sequential

Unconstrained Minimization Technique for Nonlinear Programming)

coded in FORTRAN IV by W.C. Mylander, R.L. Holmes and G.P.

McCormick for the Research Analysis Corporation [Ref. 1].

10

It was written to experiment with different methods of

solving nonlinear programming problems.

A Guide to SUMT - Version 4 [Ref. 2] is the program manual

which contains detailed information about the development of

the code, the subroutines , options, input-output, limitations,

user-supplied subroutines, data deck setup and a detailed

example of the use of the program to solve a nonlinear

programming problem.

The method used by SUMT to solve the original constrained

optimization problem is described in detail in Chapter 8 of

the book on nonlinear programming by Fiacco and McCormick

[Ref. 3] . Basically, SUMT solves the constrained problem

by finding the solutions of a sequence of unconstrained

problems which approach the solution of the original con-

strained problem.

Previous versions of SUMT used different penalty functions

for approximating the solution to the constrained problem but

the function currently used to sequentially solve the problem

is of the form:

m m+p
2

P(x,r) = f(x) - r Z In g. (x) + E [h. (x)JVr
j=l J j=m+l J

where the parameter r determines the severity of the penalty

and consequently how closely the unconstrained problem

solution approaches the solution to the constrained problem.

The penalty function of SUMT uses the mixed interior

point-exterior point method described in detail in Chapter 4

11

m
of Ref. 2. The term, r Z In g.(x) , involving the

j-1 D

inequality constraints is from the interior point method

which is also known as the barrier method. As the x vector

approaches the boundary of the infeasible region for these

constraints, this term approaches infinity. The term,
m+p

2
E [h . (x)] /r , involving the equality constraints is

j=m+l J

from the exterior point method. As the x vector moves

farther away from the feasible region for these constraints,

this term approaches infinity. The behavior of these two

terms is shown graphically in Figure 1. How much of a

penalty these terms add to the penalty function depends upon

the value of the parameter r.

The solution procedure requires minimization of P(x,r)

over those x satisfying the conditions g.(x) > , j=l,...,m

for r = r,,r
2
/... where r, < r~ <... < r, < ... < . Under

mild conditions on the original NLP problem the minima of

the sequential unconstrained problems approach the solution

of the original constrained problem as r. + 0. The condi-

tions to be met for the method to solve the original problem

are described in detail in the SUMT program manual [Ref. 2].

When the NLP problem is convex the SUMT program also

generates a sequence of points that are feasible for an

optimization problem called the dual of the original prob-

lem. The maximum function value of the dual feasible points

and minimum function value of the unconstrained problem

bracket the optimal solution of the constrained problem.

12

P(x,r)

S INFEASIBLE

a. INTERIOR POINT METHOD INVOLVING INEQUALITY CONSTRAINTS

P(x,r)

b. EXTERIOR POINT METHOD INVOLVING EQUALITY CONSTRAINTS

FIGURE 1. BEHAVIOR OF THE PENALTY TERMS

13

As the unconstrained problem is minimized and the number of

dual feasible points found increases the difference between

the two solutions decreases and the optimal solution is more

accurately approximated.

SUMT makes use of the theory derived in Fiacco and

McCormick's book [Ref. 3, Chapter 5] that uses the Lagrange

extrapolation technique to approximate the solution of the

constrained problem when more than one minimum of the

unconstrained problem has been found. By using these

extrapolation approximations the solution converges faster

and achieves a closer approximation to the actual solution

than the minima of the unconstrained problems.

The logic of the computer program taken from the SUMT

manual [Ref. 2] follows.

STEP 1 .

Find an initial starting point x within the interior

feasible region such that g .
(x) > , j=l,...,m . If such

an initial point is not given or is not feasible, the program

uses the optimization method to find one.

STEP 2 .

Determine r, , the initial value of r, which can either

be an input parameter or a rule for choosing r
1

can be

specified.

STEP 3 .

Determine the minimum of the unconstrained penalty

function for the current value of r.

14

STEP 4 .

Estimate a better solution using the extrapolation

technique, if possible.

STEP 5 .

Computation is terminated if the stopping criteria are

satisfied thus yielding an approximate solution to the

original problem with accuracy depending upon the stringency

of the stopping criteria.

STEP 6 .

If the stopping criteria are not satisfied select

r
k+l

K r
k

*

STEP 7 .

Go to Step 3.

A simplified flow diagram of the computer logic taken

from the SUMT manual [Ref. 2, p. 5] is shown in Figure 2.

The single variable search problem is involved in Step 3

of the procedure. In order to minimize the unconstrained

penalty function the program chooses a search direction in

n-space. It is believed that by searching in this direction

from the starting point of the subproblem the penalty function

will initially decrease. A one dimensional search is then

made along that direction until a local minimum is found.

At the solution to this one dimensional search problem a

new search direction is computed and a new one dimensional

search is performed. The one dimensional searches are

repeated, each time with a new search direction, until the

unconstrained problem for a given r is solved.

15

START READ IN PARAMETERS
AND STARTING POINT

gi
(x
o) >0

for all i?

NO > PHASE I

YES

phase n
f (x) = - E g. (x)

ieV

where V = (i|gi (x) <_ 0}

MARK SATISFIED CONSTRAINTS
FOR USE IN ENTRY PROBLEM

SET UP THE FUNCTION
(omitted in Phase I)

P(x,r) = f (x) - r ? In g±
(x)

nri-p i=l

r
j=m+l

h. 2
(x)

REDUCE r

r = r/c

A

min P(x.,r)

IN PHASE I KEEP A CONTINUAL CHECK TO
SEE IF ANY VIOLATED CONSTRAINT IS

SATISFIED, IF SO GO TO 1.

YES
NO

CONVERGED YET?

(endJ

MAKE SOLUTION ESTIMATES

PRINT OUT f , g, h
AND ESTIMATES

II

PHASE I OR II?

\fl

DOES A FEASIBLE STARTING
POINT EXTST? YES

V NO

PRINT OUT THIS FACT

FIGURE 2. SUMT Program Flow Diagram [Ref. 2, p. 5]

16

SUMT allows the user to choose one of three procedures

to determine the search direction — by Newton's Method using

first and second partial derivatives of the unconstrained

penalty function, by using the negative of the gradient of

the penalty function or by a variable metric method which is

taken from an algorithm of the Fiacco and McCormick book

[Ref. 3, pp. 170-175].

Finding a solution to the unconstrained n dimensional

problem thus requires several single variable searches.

Therefore, the more efficient the single variable search is,

the faster the computation time will be. Given a direction

of search, the SUMT program uses the subroutine OPT to

perform the single variable search. In this paper, the

presently used single variable search method in the OPT

subroutine is compared to other single variable search methods

17

III. SINGLE VARIABLE SEARCH METHODS

Since a major portion of finding a solution to the

constrained optimization problem involves single variable

searches, the SUMT program was used to compare several

single variable search methods.

The current OPT subroutine of SUMT uses the Golden

Section search method to perform the single variable search.

Two different single variable search methods were programmed

to replace the current OPT subroutine. The first method

uses cubic interpolation once the local minimum is

bracketed to accelerate convergence to that local minimum

and the second method programmed uses quadratic interpolation

to accelerate convergence once three feasible points that

bracket the local minimum are found. Single variable search

methods by Lasdon, Fox and Ratner [Ref. 4] and Fletcher and

McCann [Ref. 5] are also discussed.

The object of the single variable search is to find a

scalar 9 called the step length such that x* = x + 9s
o

where x* is the x vector that corresponds to the local

minimum of the penalty function along the search direction s

from an initial starting point x . For ease of notation

penalty function values are shown as a function of step

length 9 in each single variable search since the initial

starting point x , the search direction s and the parameter

r are constant, i.e. P(9) = P(x +9*s,r).

18

The optimal step length could possibly be found by

moving along the search direction in a random manner.

However, this would not be a very logical way to attack the

problem and would lead to many needless evaluations of the

penalty function which would increase computation time.

The OPT subroutine is supplied with a search direction

and an initial point from which to search. It must call

other subroutines of the SUMT program for functional,

gradient or Hessian evaluations and is expected to return

with a penalty function value and corresponding x vector

which is the local minimum for that single variable search.

It is assumed that the penalty function has a finite local

minimum along the given search direction.

The following subsections formulate and explain the

different single variable search methods.

A. GOLDEN SECTION SEARCH METHOD

The Golden Section search method uses the limiting

properties of the Fibonacci series [Ref . 6] . Fiacco and

McCormick's book [Ref. 3] define the steps of the procedure

used in the Golden Section method.

STEP 1 .

First an upper bound step length 0__ is obtained with the

lower bound step length 8 initially equal to zero. 9y is

obtained by evaluating the penalty function at successive

step lengths which are in the limiting Fibonacci ratio,

19

k
(1 + /D/2 z 1.618 , that is, Q^ = E (1.618)

1
, where

i=0

k is the smallest integer j such that

P [I (1.618) *] > P [I (1.618)*]
£=0 £=0

j
" 2

£with 9_ updated as E (1.618) .L £=0

STEP 2 .

The interval bounding 9*, the optimal step length , is

reduced by computing two other step lengths within the

interval (6_,9„). Their corresponding values are:

)L + 0.382(9U
- 9

L)

>

L
+ 0.618(9 - 9)

STEP 3 .

The penalty function values of the two interior step

lengths, 9 and 9, , are then compared.

STEP 4 .

If P(9) < P(9K), then the optimal step length which
a o

corresponds to the local minimum of the single variable

search should be in the interval (8L ,6,) if the penalty

function is unimodal. Because of the fact that

0.382/0.618 * 0.618, reassign Q^ = 9
fa

, 9
fa

= 9
a

and calculate

a new 9^ as computed in Step 2. Return to Step 3.
a

20

STEP 5 .

If P(8
a) > p (9b)/ then the optimal step size should be

in the interval (9 ,9
TT). Reassign 6 T = 9 , 9 =9, anda u Jj a a d

calculate a new 9
fc

as computed in Step 2. Return to Step 3.

STEP 6 .

If the penalty function values at both interior step

lengths are equal, reassign 9L
= 9 , Q^ = 9

fa
and calculate

a new 9 and 9^ as computed before by returning to Step 2.

STEP 7 .

When the stopping criteria is satisfied as explained

in subsection III.D, 9* is approximated by (9L + 9 u)/2

yielding an x vector x* = x + 9*S which corresponds to an

approximated local minimum P(9*) of the single variable

search.

A flow diagram of the Golden Section method presently

used in the OPT subroutine is shown in Figure 3. Certain

parts of the computer code that were the same in each of

the OPT subroutines are discussed in subsection III.D.

The Golden Section OPT subroutine initially updates 9
j_i

as it finds more feasible points by increasing the step

length until it finds a point which is infeasible or where

the penalty function value is larger than the penalty

function value at the previous feasible point. If it finds

an infeasible step length, the penalty function is assigned

3 6
a very high value (10) , the next to the last feasible

step length is assigned 9- and the last feasible step length

assigned as the lower interior step length 9 . If the first

21

9=0
a

V°
START

X = X +
u

FEAS—^~
V INFEAS

L
3

a

a

U

> = 1.618(6 -9) +6
U a L a

3 POINTS FOUND?
NO

VYES

9, = 0.382(9.-6) + 9
b U a a

X = X + 9 *s

FEAS
X =

0.382 (9
T
-9

T) + 8TU Li J-i

x + e *s
o a

INFEAS

VFEAS

STOPPING CRITERION MET?

\fNO

COMPARE P(9) & P(9,)a d

FEAF

EQUAL

GREATER.
>

LESS THAN

throw away right SIDE
e
u = e

b

b "'
a

3 = 0.382 (9T .

= X + 9 *i
o a_

3

L } + e
L

yv

FEAfc

THROW AWAY LEFT SIDE
9T = 9
L a

3

b
=0.382(

9u
-e

a) + 8
a

X = X + 9. *s

= <Veb>/2

NO

9
u
=9

b

w INFEAS*—

INFEAS

3 = 0.382(6„-8T) + 9Ta U L L
X = X + a *s

o a

FEAS INFEAS

3

b
= 0.382(6

u
-9

a
) +9

a
X = X + 9 *s

FEAS

INFEAS

STOPPING CRITERION I^ET?3
YES

O RETURN

FIGURE 3. Golden Section OPT Subroutine

22

step length from the initial point is infeasible, the lower

interior step length 9
a

= 0.382 9 , since only one feasible

step length (9 T = 0) has been found. OPT then uses 8„ and
1j U

8 to compute the upper interior step length

9b
= 9a + 0.382 (9n

- 9
a) . The optimal step length is

bracketed and the subroutine continues to reduce the

interval of uncertainty by comparing penalty function values

of the interior step lengths until it finds two values or

an interval that satisfies the stopping criteria.

In finding the minimum of each single variable search,

the Golden Section method only requires penalty function

evaluations which are compared to show where the penalty

function decreases to a local minimum and then increases to

infinity as the infeasible region boundary is approached.

The factor by which the interval of uncertainty is reduced

remains constant in this method. Therefore, any information

about the behavior of the penalty function other than the

fact that the optimal step length is somewhere within the

interval of uncertainty is disregarded.

B. CUBIC INTERPOLATION METHOD

The cubic interpolation method was programmed for

comparison with the Golden Section and quadratic interpola-

tion methods. Basically, this method approximates the

penalty function by a cubic fit and then finds the minimum

of the cubic equation to approximate the optimal step

length of the single variable search.

23

In order to approximate the penalty function by a cubic

fit in the single variable search, two feasible step lengths

which bracket the local minimum along with their directional

derivative values are needed. This method actually consists

of two distinct parts — the bracketing section to find the

two feasible points and the cubic interpolation section to

find a minimum of the cubic function. The single variable

search method is supplied with an initial starting point x ,

the penalty function value at x [P(0)], the gradient of

the penalty function at x [VP(0)] and a search direction s.

The steps of the cubic interpolation method follow.

STEP 1 .

Since the directional derivative at the starting point

P 1

CO) is negative, by finding a step length that has a

corresponding positive directional derivative, the local

minimum along the given direction of search will be bracketed

if the penalty function is unimodal.

The step length is increased to find an upper step

length 9 until an n is found such that

n
P' [(Z 2

1
) - 1] > .

i=l

If, while initially increasing the step length, an infeasible

point is encountered, the increment by which the last step

length was increased is halved and subtracted from the

current step length. This is continued until a step length

that is feasible is found. If its directional derivative is

24

negative, the increment is increased by one half the

increment length and added to the current step length.

This is continued until a step length with a positive

directional derivative is found.

The lower step length 0, is always the last feasible

step length encountered with a negative directional

derivative.

STEP 2 .

Once two step lengths have been found that bracket the

local minimum along the search direction, the cubic equation

is used to compute a step length which corresponds to the

minimum of the cubic fit. This step length is found by the

equation:

p'<eD) + u
2

- u
1

e - e TT
- (e TT

- e T) [^u 1/ P' (9) - P* (8 L) + 2U.

where
. p(e

T
- p(9

tt
)

ox
- P'(e

L) + p'(
9u) - 3 [

e ^ .
6u

1

u
2

= [u
1

2
- p'te^p'Ojj)]

1/2

STEP 3 .

P'(9) is evaluated and if it is negative then reassign

= 9 and the left side is discarded. If P*(8) is positive
L

then reassign 9 n
=9 and the right side is discarded.

25

STEP 4 .

If the stopping criteria is satisfied, the two penalty

function values, P(8) and P(9) or P(8) and P(6), depending

upon P'(0), are compared and the smallest one is returned

as the local minimum P(0*) of the single variable search

with its corresponding x vector, x +9*s.

STEP 5 .

If the stopping criteria is not satisfied return to

Step 2.

A flow diagram of the cubic interpolation OPT subroutine

is shown in Figure 4. The parts of this subroutine that are

the same in the other OPT subroutines are discussed in

subsection III.D.

The cubic interpolation method uses more information at

each feasible step length to find the local minimum of the

single variable search than the Golden Section or quadratic

interpolation methods. It requires a gradient evaluation

for the penalty function at each feasible step length in

order to compute the directional derivative. A gradient

evaluation may require many function evaluations depending

upon the number of variables and constraints in the original

constrained problem. However, with this extra information

the local minimum should be found by evaluating fewer step

lengths in the cubic interpolation section of this method.

As the value of the parameter r decreases with each

unconstrained problem, the penalty function rises more

abruptly as the infeasible region boundary is approached.

26

e = o

e
L
=o

D = 2

TINC = 1

P'(6) = s'VP(O)

START

M

= e + TINC TINC - (6-9
L) * D

9=9,- TINC

x = xn + e*s \™™£-

L U
P'(8L) = P'Oy)

TINC = TTNC * D

V FEAS

COMPUTE VP(6)

p-ce^ = s'vp(e)/| |s

D-4

STOPPING CRITERION MET?

BRACKETING

YES

Vno

p' (e) < o?

CUBIC INTERPOLATION

NO

e = cubic interpolation
x = x + e*s

o

lnfeas

FEAS

STOPPING CRITERION NET?
YES

YES

COMPUTE VP(9)

p«(6) = s'vpce)/! |s|
I

^-
P' (0

L
) = P«(6)

NO
P' (6) > 0?

WES

u
P'O^.) = P'(6)

-| P(6) < P(9^)?

VNO

P(8
L

) <P(6
LT
)?

/WO

\
f NO

XL

P(0) < PO^J?
1
YHS

6 =

RETURN

FIGURE 4. Cubic Interpolation OPT Subroutine

27

This makes it more difficult to find a step length with a

positive directional derivative which is required to bracket

the minimum.

C. QUADRATIC INTERPOLATION METHOD

A quadratic interpolation single variable search was also

programmed for comparison with the two previously discussed

methods

.

This method requires three feasible step lengths and

their penalty function values which obey the relationship

P(0_) > P(9J < P(8
TT) where 9_ < 9 < 9 TT . With thisL M U L M U

information a quadratic fit is made with its minimum

approximating the minimum of the penalty function for the

given search direction. The penalty function is evaluated

at the interpolated step length which minimizes the quadratic

function and compared to P (9) allowing the interval of

uncertainty to be decreased. The process is repeated until

the minimum of the quadratic fit approximates the local

minimum of the penalty function or the interval of uncertainty

becomes small enough to satisfy the stopping criteria.

This method also consists of two sections — the bracketing

section and the quadratic interpolation section. The single

variable search is supplied with an initial x vector x , its

penalty function value P(0) and a search direction s.

The steps of the quadratic interpolation search method

follow.

28

STEP 1 .

The step length is increased from the initial starting

point to find an upper step length 9 until an n is found

such that

P[(Z 2
1

) - 1] > P[(Z 2
1

) - 1] .

i=l i=l

If, while initially increasing the step length, an infeasible

step length is encountered, the increment by which the last

step length was increased is halved and subtracted from the

current step length. This is continued until a feasible step

length is found. If its functional value is less than P(9 T),
Li

the increment is increased by one half the increment length.

This is continued until a feasible step length is found that

has a larger penalty function value than the previous step

and

9M = 9 , always ensuring that POt) > P (9«)

•

If only one feasible step length is found in obtaining

the upper step length, where in this case P(9y) > p (e
L)

(which indicates the minimum is bracketed) , the last

increment is halved and subtracted from the upper step

length which yields the interior step length 6m .

STEP 2.

length. Before this is repeated, reassign 9 L
= 9M

Now that the local minimum is bracketed, the quadratic

function is used to find a step length where the derivative

of the quadratic fit vanishes.

29

_ 1
b
23

P(9
L) + b

31
P(V + b

12
P(V

2 a
23

P(9
L) + a

31
P(6M) + a

12
P(

9u)

where a.. -9.-0. , b.. = 8.
2 - 9.

2
,

i,j = 1,2,3 where 1 = L, 2 = M, and 3 = U.

STEP 3 .

If 9 > 6M , then the left side is discarded and reassign

9
L

= 9M and 9M
= 9

*
If 9 < 9

M'
then the ri9ht side is

discarded and reassign 9 TT = 9.. and 9„ = 9.U M M

STEP 4 .

P(9M) is evaluated and if the stopping criteria. are

satisfied, the smallest of P(9
L), P(9M) and P(9) is returned

as P(9*) with the corresponding x vector, x +9*s.

STEP 5 .

If the stopping criteria are not met, return to Step 2.

A flow diagram of the quadratic interpolation method OPT

subroutine is shown in Figure 5.

The quadratic interpolation method only requires function

evaluations to perform the single variable search. It uses

the knowledge of three feasible step lengths and their

penalty function values to approximate where the local

minimum of the single variable search is located. However,

it must find an upper feasible step length that is within the

interval where the penalty function is increasing to infinity

and also this feasible step length must have a penalty

function value that is greater than that of the interior

30

5 = 6

8? =
Xj

D = 2

TINC = 1

START

m m + TINC
TINC = (6 -9

T) * D

JO QL
- TINC

X = X + 9 *S
o m INFEAS

1st TIKE THRU?

YES

YES

NO

L < eT ?

fNO

p(eJ > P(eT)?

Ijo

iL JD ID LL

—

r

D = 2

Y£S

6U= 6
m

*
P(6J > P(8)?

NO
TINC = TINC * D

+ TINC

STOPPING CRITERION MET?

yNO. BFACKETING

6= OUADPATIC INTERPOLATION
QUADRATIC

INTERPOLATION

I
9m> 9?

NQ
-r\\

Y YES

\U in 1

*
9=0
m

X = x_ +

NO

JO.

INFEAS

FEAS

p(9L) >P(em)?
YES

WNO

STOPPING CRITERION MET?
YES

P(9
U } > P(9

ra
)?

YES MO

21

FETUEN

FIGUPE 5. Quadratic Interpolation OPT Subroutine

31

feasible step length. This causes the interval containing

possible feasible upper step lengths to be reduced even more.

As the parameter r decreases for each unconstrained sub-

problem, the penalty function increases more abruptly from

the minimum as the infeasible region boundary is approached.

This also increases the difficulty in bracketing the minimum.

Once the three feasible step lengths are found, the

quadratic interpolation can converge to the local minimum

thereby solving the single variable search.

D. SECTIONS COMMON TO THE DIFFERENT METHODS

Some parts of the three different OPT subroutines were

made similar so that they could be compared under the same

conditions.

Essentially the same stopping criteria was used in each

subroutine. When the ratios of the two x vectors that

bracketed the minimum or ratios of their penalty function

-7
values were within 10 of one, the subroutine returned to

the program with a local minimum and a corresponding x vector

as the solution to the single variable search. These criteria

were checked in the Golden Section method whenever two

interior step lengths had been computed and in the inter-

polation methods both after the minimum had been bracketed

and also after each interpolated step length had been

computed.

In the three different methods, the subroutines also

contained counters which would cause the search to stop

32

after ten interpolations in the cubic interpolation method,

twenty interpolations in the quadratic interpolation method

or twenty-five feasible points in the Golden Section method.

In the test problems that were run these counters were never

reached, thereby, never satisfying this stopping criterion.

In the cubic interpolation method another stopping

criterion was used along with the ratio tests. When the

cosine of the angle between the gradient of the penalty

-7
function and the search direction vector was less than 10

the subroutine returned with a local minimum and x vector.

It was stated earlier that it was hoped that the penalty

function would initially decrease in the given search

direction from the initial starting point. In the three

different methods, if the ratio of any element of the

current x vector and the corresponding element in the initial

-7
x vector came within 10 of one, the single variable search

was restarted in the opposite search direction. In the

interpolation methods if after one hundred tries the minimum

was not bracketed or the step length had been decreased more

than twenty consecutive times, the search direction was also

reversed and the single variable search was restarted.

The three different OPT subroutines called the subroutine

EVALU for penalty function evaluations. EVALU would return

back a variable after each call up which would show if the

step length was feasible. The cubic interpolation method

called the subroutine GRAD for the gradient of the penalty

function when it was needed to determine the directional

derivative.

33

E. OTHER SINGLE VARIABLE SEARCH METHODS

Two other single variable search methods were also

looked at but were not programmed because of their complexity

and their need for changing other portions of the SUMT

program than just the OPT subroutine.

1. Lasdon, Fox, and Ratner Method

The single variable search developed by Lasdon, Fox

and Ratner [Ref. 4] uses a penalty function that doesn't

contain equality constraints and the penalty term for the

inequalities is also different than the SUMT penalty function

The unconstrained minimization problem is:

m
1minimize P(x f r) = F(x) + r E -

—

7
—r

i=l G
i
(x)

where F is the objective function and the G. *s are the

inequality constraints. This model could be modified to

handle equality constraints and a penalty function like that

used in SUMT.

The single variable search method is in three distinct

stages — linear approximation, quadratic approximation and

cubic interpolation. Linear approximations are made for the

objective function and each constraint using F(0), F'(0),

G.(0) and G.'(O). A step length (9-,) which minimizes the

penalty function consisting of the linear approximations is

then calculated. The information used to make the linear

approximations is then used along with F(9
1
), F'O^, G. (0

1
)

and G-'(9-|) to make quadratic approximations of the

34

objective function and constraints. The penalty function

consisting of quadratic approximations is then minimized

by computing 9
2

« If the directional derivative of the

original penalty function is positive at 9
2

, cubic inter-

polation is applied yielding 0*, the solution to the single

variable search. If the stopping criterion is satisfied

during any stage, the single variable search is terminated

yielding a local minimum and a solution to the search.

The following steps outline the Lasdon, Fox and

Ratner procedure.

STAGE 1 .

The objective function and inequality constraints

of the original constrained problem are approximated by

using the given values at the initial starting point.

f
1
(9) = F(0) + F 1

(0)

gj_.Ce) = G.(0) + G.'(0) j = l,...,m.

The approximating function for P(9) is

m
1

Pl (9) = f
L
(9) + r .^^-TeT

The smallest positive zero of the linear approximations of

the inequality constraints is found by taking the smallest

-G. (0)/G. ' (0) over all j. This value is designated the

upper step length 9y
.

The step length corresponding to the minimum of the

approximated penalty function is found by doing four or five

35

Newton's method iterations using = 6 as the starting point

1 ~ 2
8
U 1

Pi" <?
9
U>

The result of this stage is a step length that

approximates the optimal step length of the single variable

search. If the stopping criterion, explained following

Stage 3, is not satisfied proceed to Stage 2.

STAGE 2 .

The same procedure is performed in this stage as in

Stage 1 with the exception that quadratic approximations to

the objective function and constraints are made instead of

linear approximations. The second stage is entered with

values of F(0,) and G. (0,) along with the information used

to make the linear approximations. The quadratic approxima-

tions to the objective function and constraints are

f
2
(6) = ae

2
+ be + c

F(e
1

) - be
1

- c
where a =

b = F' (0) , c = F(0)

and

g 9
.(0) = d.0

2
+ e. + f . j = l,...,m

G (e
x

) - e
j 1

- f.

where d . = —* ~

3 9
1

ej = Gj'tO) , fj = G^O) .

36

If Gj(8
1) is infeasible for some j, then the smallest

positive root over all j of

-e. ± /e.
2
- 4d.f

.

—3 3 J J = e

2dj

is used as the starting step length for using Newton's

method to minimize the approximated penalty function

m ,

p2 (6) = f,(9) + r S W '

2 2 . =1 g2j
(9)

The step length which minimizes P?(e) should be

found after four or five iterations of Newton's method.

P '(6)9=9- -2 L.

P 2
"(9

1
)

If 9
1

is infeasible, use -j 9 in Newton's method.

If the stopping criterion is not satisfied after finding

9
2

continue to Stage 3.

STAGE 3 .

Direct cubic interpolation of the penalty function

is used in this stage. If P'(9
2

) is positive, the minimum

is bracketed and cubic interpolation can be performed to

find a step length which corresponds to the minimum of the

penalty function. If the minimum has not been bracketed,

that is, if P'(9
2

) < 0, a bracketing procedure like the one

used in the cubic interpolation method of subsection III.B

37

must be performed to find a step length that has a positive

directional derivative. Once this step length is found,

cubic interpolation is used to find a step length which

minimizes the cubic function. If the new step length does

not satisfy the stopping criteria, additional cubic inter-

polations are made using the two points which most closely

bracket the minimum of the penalty function.

When two penalty function values are nearly equal

or when the interval between step lengths that bracket the

minimum becomes very small, an optimal step length is deter-

mined by

Q
* = P'(e

a
)eb

- P'(e
b)9 a

P' (9)
- P 1

(6.)

a b

where 9 is the lower step length and 0. is the upper step
a d

length (8 < 8* < 9b)

.

The stopping criterion used in this method is the

I

s

T
VP

I

cosine test |
cos (j>

|

= ' '

, where <£ is the angle

I I

s
| | |

| VP
| |

between the search direction vector and gradient of the

penalty function. When the cosine of the angle is less than

10 , the stopping criterion is satisfied.

The authors found that in using this method on test

problems, the stopping criterion was often satisfied at the

end of Stage 2. In their comparisons of this method with a

cubic interpolation method, they found that it performed

the single variable search much more efficiently [Ref. 4,

p. 295].

"3R

This method requires gradients of the objective

function and constraints. In the SUMT program these values

are not stored so implementing this method would require

more storage or more gradient evaluations along with

changes in other subroutines and/or addition of new

subroutines

.

2 . Fletcher-McCann Method

The Fletcher-McCann method [Ref. 5, pp. 210-212]

uses an approximation of the original unconstrained penalty

function to find the local minimum of the single variable

search. The penalty function approximation used is of the

form

T(8) = a + be + c9
2

+ 5
d

5 ,

U

where the parameters a, b, c, d and are determined by

using objective function and constraint information at two

feasible step lengths. The authors felt that an approximation

of this type which goes to infinity at the barrier 9 = 6-j

would fit the penalty function better than a polynomial

approximation which goes to infinity only as 9 ->°°. 9 is

an estimate of the intersection of the search direction s

with the boundary of the infeasible region. The approximated

penalty function's minimum is found by applying Newton's

method to find a step length which corresponds to the local

minimum along the direction of search.

Since the explanation of this method by the authors

was rather sketchy, certain parts could be interpreted

39

differently and only resolved by testing the method on

different problems. An explanation of the notation for

this method is first given.

1
m+p

7 9
F(8) = f(6) + ± E h/(9) s a + be + cB

Z
r

j=m+l 3

m
G(0) = -r I In g. (0) z

j-1 3
(eu- 0)

s
A
Vf (9) + £ Eh. (9)s

i
Vh. (9)

F»(8) = r
j=m+l 3 J

s b + c9

G* (9) = - ^_ m sTv
gi

(9)
. d

s|| j-i g
j
(9) Oy-e) 2

The single variable search is supplied with an initial point,

functional and gradient information at that point and a

search direction. The steps of the method follow.

STEP 1 .

A feasible step length in the direction of search is

needed along with the initial point in order to estimate the

parameters a, b, c, d and 0„. A unit step length is initially

taken in trying to find a feasible step length. If it is not

feasible, the step length is progressively halved until a

feasible step length is found. The lower and upper feasible

step lengths are written as 9
Q

and 9^, respectively. At the

start of the search 9
Q

= 0. Function and gradient evaluations

40

are made at the second feasible step length in order to

compute F^, G,, F ' and G, ' (shortened notation for F(6
1)

,

GO,) , etc.) .

By using the information at the two feasible step

lengths, simultaneous equations are solved to determine

the parameters . The parameter values are

c =
2(9

Q
- e

1
)

b - V - 2c9
o

u v -v

d = v (9u- e
o
)2

•

The parameter 6 is taken as the smallest value of two

computed values which is greater than 6,.

STEP 2 .

Once the parameters are determined, the equation for

the minimum of T which is

T 1 = = b + 2c9 + j
(eu

- er

is solved by Newton's method using the midpoint between the

two feasible step lengths as the starting point.

41

9l-9
ei- n

T '

(
2

)

°1 °0
T" (

x u
)

2where T" = 2c + •=•

3 3
*

(eu" e)

STEP 3

The values of VP(8) are computed and if the stopping

criterion is satisfied, the single variable search is

terminated with 9 as the optimal step length.

STEP 4 .

If the stopping criterion is not satisfied, a new

step length is computed using Newton's method in Step 2.

The authors of this method stated that different

default actions would be necessary in cases where the inter-

polation failed or was unsatisfactory. For example, if for

the feasible step lengths, 9
fi

and 9,, a value of 9 could

not be determined, it would be necessary to use another

feasible step length to determine where the intersection of

the search direction and the boundary of the infeasible

region was. In later stages of the minimization the authors

said that this method sometimes failed and a quadratic

interpolation would have to be used.

Implementing this method in the SUMT program would

also require more storage or more gradient evaluations

along with modifications to other subroutines and/or additional

subroutines.

42

No comparisons are made of the Lasdon, Fox and

Ratner or Fletcher-McCann methods to the other three

methods since they are only discussed and not programmed

43

IV. TEST PROBLEMS

A. TEST PROBLEM ORIGIN

The problems used to compare the three different single

variable search methods programmed as OPT subroutines were

taken from problems used in a thesis by Lt. J. Waterman, USN,

which compared three different nonlinear programming codes

[Ref . 7] . The SUMT program and problem data decks were the

same as those used by Waterman except for the Golden Section

OPT subroutine being replaced by the cubic and quadratic

interpolation methods.

The structure and degree of difficulty among the seven

test problems are quite varied and represent a sample of

some real world problems. The number of variables and

constraints ranged from 9 to 100 and 2 to 20 respectively.

The problems contain combinations of linear, nonlinear,

equality and inequality constraints.

The following subsection contains the descriptions of

the test problems as presented in Waterman's thesis.

Constants in each problem are represented by a, b, c, d, e, L,

m, u and s unless otherwise specified.

B. TEST PROBLEM DESCRIPTION

Problem 1 was an example of determining the chemical

composition of a complex mixture under conditions of

chemical equilibrium. It contained 45 independent variables

and 16 linear equality constraints.

44

h
k x.

minimize f(x) = E [E x. v (c. v + In -r-

—

&—)]nk
E x

'ik v ik ±n
~h~

k=l j = l 1* 1* hk

jk
3=1 J

h
k

7
K

subject to h. (x) = E (E E. .,x. ..) - b. = 0,
k=l j-1 ^ k ^ k

i = 1, ... ,16

xjk-° j=l,...,h
k

k = 1, . . .,7

Problem 2 was formulated by the Shell Development

Company. It consisted of 15 variables and 5 nonlinear equality

constraints

.

10 5 5 5
3maximize f(x)= E b.x.- E E yz-2 E d. z

i=l
1 1

j=l i=l j=l J

where y = c
ij

x
(1Q+i)

and z = x
(1Q+j)

5 10

subject to g.(x) = 2 E y + 3 d . z + e .
- E a. .x.

3 i=l J 1 i=l ±J x

x. >_ i - 1, . . o ,15

Problem 3 was to maximize the area of a hexagon in which

the maximum diameter was unity. The problem had 9 independent

variables, 13 nonlinear inequality constraints and a lower

bound of for x
g

.

45

Maximize: f(x) = .5(XjX
4

- x
2
x
3
+ x

3
x
g

- x
5
x
9
+ XgXg - XgX

?
)

subject to: 1 - x
2 - x

2
_>

1 - x
4

2
>

1 - x
5

- x
fi

>_

1 - {x
1
-x

5
)

2 - (x2 -x6
)

2 >

2 2
1 - (x

1
- x

5
) - (x

2
- x

g
) _>

2 2
1 - (x

1
-x

?
) - (x

2
-x

Q
) >

2 2
1 - (x

3
- x

5
) - (x

4
- x

6
) >

2 2
1 - (x

3
-x

?
) - (x

4
-Xg) >

2 2
1 - x

?
- Cx

8
- x

9
) _>

x,x
4

- x-x- _>

H
-x

5
x
9

>

X
5
X
8

" X
6
X
7 > °

x
9

> .

Problem 4 was probably the most difficult of the test

problems. It included a linear objective function, 24

variables, 12 nonlinear equality, 2 linear equality and

6 non-linear inequality constraints. The variables had

to also be zero or positive.

46

24
minimize: f(x) = E a.x.

i-1 x X

subject to:

h (x) = (i+12) °i
X
i = i = 1 12n^xj

24 x 12 x o, i i,...,±^

b,. x1 ,,, E rJ- 40b. E r-i
(i+12) , _ b. 1-1 b.

3=13 3 3=1 3

24
h,-(x) - E x. - 1 =
13

i-1
x

12 x. 24 x.

hu (x) = E -=i + f E ^ - 1.671 =
±4

i=l
a
i i=13 i

where f = 142.224

- (x. + x
t

. , ,

)

h
(i+14) <*> " *24 ' ' + -i > ° .

i - 1' 2 '3

E x.
j-l 3

m

- (X
(i+ 3)

+ X
(i+ 15)

)

+ o,i=4,5,6n
(i+14)

^ x; 24 i -
E x.

x. _> 0, i = 1, ... ,24 .

47

Problem 5 was a weapon assignment problem with 100

variables, a nonlinear objective function, 12 linear

constraints and zero lower bounds for the variables.

20 5 x. .

minimize: f(x) = S u. (n a.
3 - 1)

j=l 3 i=l ^

subject to:

I x - b
. > j = 1,6,10,14,15,16,20

i=l X J J _

20
E x. . + c. i = 1, . . .,5

j-1 1D

x
i

- _> i = 1,...,5, j = 1,...,20

Problem 6 was adapted from an inventory model where

the x., i = 1,...,50, represent the reorder quantity for

50 inventory items and x., i = 51,..., 100, represent the

reorder points for the same 50 items. It contained 100

variables, 1 linear and 1 nonlinear inequality constraint,

and 50 lower bounds on the variables.

48

50 B. (x. + 50)
minimize: f(x) = £ —1

i=i x
i

where

1 n o <*. s .d. d.
B.(x

i
+ 50) = i (s.

2 *^ 2
) #(-1) - -Jj-i (ji)

,

1

2
d
i

= x
(i+50) " m

i ' (*) 7=- e
"x /2

'2tt

X
and $(r) / (J)(x) dx .

t

subject to:

50 x.
200,000 - Z c.(^ + x

(

.

+50)
- m.) >

50 L.
300 - Z — >

. , x. —
1=1 l

x
i

> , i = 1, . . . ,50.

Problem 7 was an entropy model. There were 4 6 population

centers connected by a transportation network. Using a

congestion cost function the model yields an equilibrium

solution that identifies nodal populations as entropic

functions of the total cost of the journey to work. The

problem contained 4 6 variables, all of which have a zero

lower bound, 1 nonlinear inequality and 1 linear equality

constraint.

49

minimize: *<*>-*
SOT <*» JOT >

46
subject to: 500 - E x. =

i=l
1

46 h
10000 - E c.y. + ad.y. >

i-1 X x x l "

where y. = x. + I x. , A(i) consists of all the
jeA(i) 3

arcs that converge directly and indirectly upon node i,

and

x^>^0 i = l,...,46.

The preceding problem descriptions are only meant to

give a feeling of the kind of test problems used and their

structure. Detailed information of how each problem was

set up, the constant values, initial starting points and

where the problems specifically originated is contained

in Ref. 5.

50

V. TEST RESULTS AND COMPARISONS

A. PROGRAMMING AND TESTING PROCEDURE

The cubic interpolation method was first programmed

as a program that did a single variable search when given

a penalty function, its gradient, an initial starting point

and a search direction. After it had been debugged it was

converted into an OPT subroutine. After the subroutine

was debugged using a couple of the less difficult test

problems, OPT was converted into the quadratic interpolation

method by modifying the bracketing procedure and changing

the interpolation from a cubic function to a quadratic

function.

When the quadratic interpolation method had been debugged,

each problem was run through the SUMT program three times,

using the three different search methods. As discussed

earlier, the stopping criteria was made essentially the same

in each of the OPT subroutines so that the only thing that

varied in solving each test problem was the single variable

search method.

In the process of running the other test problems, minor

debugging changes had to be made in the interpolation methods.

After all the changes had been incorporated, a final run

of each problem with each method was made which produced the

results used in the comparisons. Each method found the same

solution to each problem to within six significant figures.

51

B. COMPARISON CRITERIA

Perhaps the best way to compare the different search

methods is to compare the computation time required to find

the solution to the problem. However, because of computer

interactions, computation time may vary as much as twenty
>

five per cent when the same problem is run at two different

times . Computation times were computed for each problem to

see if a trend could be seen between the methods.

Counters were inserted in the SUMT program so that the

number of single variable searches performed and the number

of functional and gradient evaluations needed to find the

solution could be counted.

Results of the test problem runs are shown in Table I.

In running problem 7 with the interpolation methods it was

necessary to change the factor by which the increment was

multiplied for step length increase or reduction to 1.618

vice 2 and 0.618 vice 0.5 respectively. This change was

needed because a feasible starting point was found in the

bracketing procedures which the SUMT program could not solve

By changing the factors to the same as those in the Golden

Section method, the same feasible starting point was used

to solve the problem.

C. COMPARISONS

Theoretically, each single variable search should reach

the same solution for all three methods. However, because

of the tolerances allowed in the stopping critera, the

52

TABLE I. TEST PROBLEM RESULTS

Problem

TIME
SVS
F
G

TIME
SVS
F
G

TIME
SVS
F
G

TIME
SVS
F
G

TIME
SVS
F
G

TIME
SVS
F
G

TIME
SVS
F
G

TIME = Computation time
SVS = # single variable searches
F = # function evaluations
G = # gradient evaluations

Golden Section Cubic Quadratic

105.8 105.7 94.8
86 89 75

15487 6171 10149
1462 7497 1275

11.4 9.6 8.3
63 53 53

4354 1574 2606
378 1704 318

4.8 5.6 4.0
39 38 40

8606 3302 5862
613 3358 628

395.3 404.1 396.1
163 151 174

44255 13922 30048
92.27 97319 98694

103.7 97.9 97.0
20 19 19

2683 1250 1991
296 1415 271

165.4 145.9 155.5
36 34 35

2320 836 978
104 817 107

78.8 80.3 67.8
20 20 17

865 307 397
1993 2257 1708

53

solutions were slightly different at the conclusion of each

single variable search. This meant that at the start of

the next single variable search the search direction would

be slightly different also. As several single variable

searches were performed in each problem, the differences

accumulated and this explains why for some of the problems

it takes a different number of searches for each method to

reach the same solution. This also explains the difference

in the number of function and gradient evaluations required

for each problem for the Golden Section and quadratic

interpolation methods.

Table II shows the normalized results for the time per

single variable search, function evaluations per single

variable search and gradient evaluations per single variable

As was expected, the number of gradient evaluations per

single variable search is essentially the same for Golden

Section and quadratic interpolation -methods. The only thing

that can be compared between the three methods is the

computation time per single variable search. Function

evaluations per single variable search can only be used as

a measure of effectiveness for Golden Section and quadratic

interpolation since the cubic interpolation also requires

gradient evaluations and fewer function evaluations.

In looking at the times per single variable search the

quadratic interpolation was faster than the Golden Section

and cubic interpolation methods 5 out of 7 and 4 out of 7

test problems respectively. Cubic interpolation was faster

54

TABLE II. NORMALIZED TEST PROBLEM RESULTS

Problem Golden Sectioil Cubic

1.19

Quadratic

1.23 1.26
180.1 69.3 135.3

17 84.2 17

.181 .181 .157
69.1 29.7 49.2

6 32.1 6

.123 .147 .1
220.7 86.9 146.6
15.7 88.4 15.7

2.42 2.67 2.28
271.5 92.2 172.7
565.2 644.5 567.2

5.18 5.15 5.10
64.4 24.6 27.9
2.8 24.0 3.0

4.59 4.29 4.44
64.4 24.6 27.9
2.8 24.0 3.0

3.94 4.02 3.98
43.3 15.4 23.4
99.7 112.9 100.4

TIME
F
G

TIME
F
G

TIME
F
G

TIME
F
G

TIME
F
G

TIME
F
G

TIME
F
G

TIME = time/single variable search
F = # function evaluations/single variable search
G = # gradient evaluations/single variable search

55

than Golden Section in 3 of the 7 problems with the same

time for problem 2

.

In comparing the number of function evaluations per

single variable search, the quadratic interpolation method

required fewer than the Golden Section on all seven problems.

In most of the test problems, it required between thirty to

forty per cent fewer function evaluations. The cubic inter-

polation method required fewer function evaluations than the

other two methods because it used more information about the

penalty function at each feasible step length to find the

optimal step length. However, it required more gradient

evaluations which increased the computation time making it

about the same as the Golden Section and slightly slower than

the quadratic interpolation.

With a larger sample of test problems more statistically

sound comparisons could be made of the three different methods

Also samples of test problems that are similar in structure

could be tested to show if one method worked better than the

others on those type of problems.

It should be emphasized that the results in this thesis

are obtained from single variable searches on a very special

type of function — the unconstrained penalty function in the

mixed interior-exterior penalty function algorithm. No

attempt should be made to generalize these results to other

nonlinear programming methods which also use single variable

searches, but on a significantly different class of functions.

56

VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

A. CONCLUSIONS

In looking at the computation time required for each

single variable search, the quadratic interpolation method

was faster than the other two methods on the test problems

that were run. The quadratic interpolation method uses

information about the penalty function at each feasible step

length to reduce the interval of uncertainty whereas the

Golden Section reduces the interval of uncertainty by a

constant factor. Because of this difference, quadratic

interpolation proved to be slightly more efficient than

Golden Section. The only drawback in the quadratic inter-

polation method is the fact that bracketing the minimum can

be quite hard to do. The cubic interpolation method reduced

the interval of uncertainty in a more efficient manner than

quadratic interpolation or Golden Section. However, having

to make gradient evaluations to determine the directional

derivative values proved to be very costly. The time per

single variable search was about the same as the Golden

Section search method.

If the user of the single variable search method has

prior knowledge about the complexity of the function or

gradient evaluations he may prefer cubic interpolation over

Golden Section or quadratic interpolation, or vice versa,

since the cubic interpolation requires more gradient evalua-

tions and fewer function evaluations.

57

B. SUGGESTIONS FOR FURTHER STUDY

A combination of different methods made into a single

variable search could be done with the three different

methods that were programmed. This combined methods approach

could use Golden Section until the minimum was bracketed,

then use quadratic interpolation until the minimum

was bracketed much closer and then finally use the cubic

interpolation to home in on the local minimum of the search.

The Lasdon, Fox and Ratner method uses three different stages

that each find a feasible step length, with the final stage

finding an optimal step length for the search. Another

approximation of the penalty function like the Fletcher-

McCann method could also be devised.

Implementation of the Lasdon, Fox and Ratner or Fletcher-

McCann method into the SUMT program with runs of the test

problems would enable a comparison to be made not only to

the three methods tested in this paper but also between the

Lasdon, Fox and Ratner method and Fletcher-McCann method.

Another possibility for study would be to fine tune the

three different methods by adjusting the tolerances and

termination conditions to see that if by allowing a less

accurate determination of the minimum of the single variable

search, the solution to the unconstrained problem could be

found any faster.

If a larger sample of test problems including more and

varied types of nonlinear programming problems could be

tested using the three different methods, a better comparison

58

could be made. The results may either show one method to

be superior over the other methods in all of the problems

or show each method suited best to a specific type of

problem enabling the user to choose the method which best

applies to the situation at hand.

59

APPENDIX

GLOSSARY FOR GOLDEN SECTION OPT SUBROUTINE [Ref. 2]

DELX

DELXO

DOTT

I

ISW

J

KSW

M

MN

N

NSATIS

NTCTR

N401

N404

N405

PREV3

The vector indicating the direction of move
in one dimensional optimization. S

The gradient vector of the penalty function
VP.

The inner product of the move vector and the
negative gradient vector of the penalty
function. -sTVp

Used as an index in DO loops.

A switch showing whether the motion on a given
vector failed to decrease the penalty function
and the negative was tried.

Used as an index in DO loops

.

Switch showing whether less than 25 feasible
points were found on the direction vector.

The number of inequality constraints

Number of moves in search for a solution of
a subproblem

The number of variables

Indicates whether constraints are satisfied.

The number of the point on which the program
is working.

The number of points generated in attempting
to find a point along the search direction.

The number of infeasible points found on the
direction vector.

Switch showing that a feasible point on the
direction vector could not be found and the
negative was tried.

Penalty function value at lower step length
P(X3)

.

60

PX1 Penalty function value for left interior steplength
P(X2).

PO Current value of the penalty function P(X)

PI Penalty function value for upper steplength
P(X1)

P31 Penalty function value at initial starting point

RJ Vector of current values of the constraints

RJ1 Vector of previous value of the constraints

X Vector of current value of the variables x
q
+ ^s

XX Temporary storage used for switching vector values

XI X vector of upper step length X_+0us

X2 X vector of left interior step length X
Q
+6

a
s

X3 X vector of lower step length X
Q
+0

L
s

61

SLERCUTINE OPT
INFLICIT REAL*8(A-H,0-Z)

C *ARCH 1971
C
C 0P7 LCCKS FCR A MINIMUM ALCNG THE SEARCH VECTOR USING THE
C GCLDEN SECTION SEARCH METHOD

CCMMCN/SHARE/ X(IOO), CELUOO), A (100, 10G) i N , H , MN,NF1

f£EK££!,^S!sY£/ F,G,PO.RSIGMA, RJ(2G0), RHC
CCNMCN/CRST/ DtLX(lOO), DELXO(IOO), RH0IN,R£7I0, EPSI ,

1THETAO,
2 RSIG1, Git Xl(lOO), X2(100), X2(100), XR2Q0O),
3XP1 (100) tPRlt
£ Fg2, PI j Fit RJl(200)t DOTT, PGRAC(IOO), CIAG(IOO),
5 FPEV3,ADELX, NTCTR, NUMINI, NPHASE, NSA7IS
AES(CUMMY)=DABS(OUMNY)
KSM1
N AC5=1
F31=P0
I SV% = 1
CCTT=0.
DC 10 J = 1,N

10 CCTT=C.7T+DELX(J)*DELXO(J)
GC TO 40

20 CC 20 I = 1,N
20 CELX(I) =-OELX(i)
40 CONTINUE

,N^C4=0
*<N = KN + 1

C MN IS NOW NUMB* OF P0IN7S AFTER MIN ACFIEVEC
NTCTR=NTCTR+1
CC 50 1 = 1,

N

50 X2(I)=X(ll
FX1=P0
N401=0

60 MC1 =N4C1 + 1

CC 70 I=1,N
70 X<I)=X2<I)+DELX(I)

CALL EVALU
C 1 VEAIVS SA7IS.GF CONSTRAINT NT.PREV. 2MEANS NCCFANGE 2
C MEANS VIOLATION
C IF POINT IS NOT FEASIBLE GIVE IT AN ARBITRARILY HIGH VALU

GC TO (540,90,80), NSATIS
60 P>2=10.E25

FO10.E25
GC TO 100

90 CONTINUE
FX2=P0
IF (PX1-PX2) 100,100,150

100 IF (N401-2) 130,110,110
110 CC 120 1=1,

N

12C xim=xm
F1=PX2
GC TO 420

C ONLY CNE PCINT SO FAR COMPUTEC
120 CC 140 1 = 1,

N

140 X2(I)=X2(I)
FREV2=P>1
GC TO 160

150 CC 160 1 = 1,

N

X2(I)=X2(I)
K*(I I"KII)

160 CELX(I)=1.61803399*CELX(I)
PFEV2=PX1
F)1=PX2
GC TO 60

C GCLOEN SECTION SEARCH METHOD.
C E VECTCR GCES TO XKI)

170 PC=1.E2 6

MC4 = N404+1
180 CC 190 1=1,

N

190 X1(I)=X(I)
F1=F0
CC 200 1=1,

N

X(I)=.28196601*(X1(I)-X2(I))+X3(I)
200 X2(I>=X(I)

CALL EVALU
GC TC (540,270,210), NSATIS

210 IF (N404.LT. 30) GC TC 170
211 CCNTINUE
C THERE IS NG REFERENCE TC 211, T H5 AeCVE STATEMENT IS A
C DUMMY STATEMENTC— IT IS POSSIBLE NG FEASIBLE POINT EXIST, IF NCT TRY MGVING
C ON CELXO
C— IF IT IS NCT POSSIBLE TC MOVE GN CELXC THEN kc MUST EE
C AT A SCLUTION CF NIP PROBLEM.

IF (N404.GT.100) GO TO 240
220 CC 230 1 = 1,

N

IF (AeS(ABS(X3(I)/XK I))-l.).GT.l.E-7) GC TC 170
220 CCNTINUE
240 GC TC (25C260), N405
250 N4C5=2
C— TRY TC MCVE CN GRADIENT.

NTCTR=NTCTR-1
m=NN-l
GC TC 20

260 WRITE (6,580)
CALL TIMEC
CALL OUTPUT (1)
CALL REJECT
STCP 22042

C
270 CCNTINUE

N*C4=0
FX1=P0
CC 280 1 = 1,

N

280 MI)=G.2319 6601*(X1(I)-X2(I))+X2(I)
CALL EVALU
GC TO (540,290,220), NSATIS

290 FX2=P0
N401=l

200 N^C1=N401+1
IF (N401-25) 340,210,210

210 KSW = 2
IF (N4C1-4Q) 320,460,460

IF UBS(X2(I)/X(I)-1.0).GE. 1.5-7) GO TO 240
220 CCNTINUE

GC TC 4 60
240 IF (ABS(PX1/PX2-1. ULE.l.E-7) GC TC 460

IF (FX1-PX2) 350,46C,400
C FRCM IEFTGRIGHT X3 (I) < PREV2) X2 (I) (PX 1)X (I

)

PX2 X 1 (I) P 1

250 CC 260 1 = 1,

N

260 X1(I)=X(I)
C TFRCW A*AY RIGHT PART

F1=PX2
CC 270 1 = 1,

N

C PCINTXF1 E5CCMES XP2 „ ,

270 X(I)=.3 81966G1*(X1(I)-X3(I))+X3(!)
C TEMPORARILY IN X STORAGE

GC
L
T0

E
^(540,280,170), NSATIS

280 CCNTINUE

c sutchSectcrs to proper POSITION
PX1=P0
CC 290 I=1,N
XX = X2(I)

X2(I)=X(I)
290 X(I)=XX

GC TC 200
C Li=FT SICE TOSSED AWAY
c— "CHANGFS FCR NONUNIMCCAL FN

63

c—
400
410

420

420
44C

450

C T
460

HE

470

480
490
500

C IF

510
5 20
520

C A
540

550

C—
c -
560

570

C
5 80

GC 7C ThRCW AWAY RIGHT IN THIS CASEINIT VAL LT FI3 PT
IF (PREV2-PX2) 35C25C410
CC 420 I-1,N
X2(Ii=X2(I)

X2(I)»X(I)
FPEV3=PX1
F)1-PX2
CC 440 1 = 1,

N

X(I)=0.281S6601*(X1(I *-X2(I))+X2(I)
CALL EVALU
GC TC (540,450,170), NSATIS
CCNTINUE
FX2=P0
GC TC 300
UTERICR PGINTS NOW GIVE EQLAL VALUE FOR P. CCMPUTE MI
CC 470 1 = 1,

N

CELXOd) = X(I)

X(I) = (CELXC(I)+X2(I))*0.5
CCNTINUE
CALL EVALU
GC TO (460,490), KSW
IF (ABS(P0/PXl-U).GT.l B E-7) GO TC 520
GC TO (500,510), ISI«
IF (P0.LT.P21) GO TO 510
ISk=2

P-FLNCTICN CIDN,T GC DOWN TRY NEG VECT.
GC TO 20
RE7LFN
CC 530 1 = 1,

N

X(I)=OELXO(I)
GC TO 250
VE NOW IN FEASIBILITY PHASE

CC 550 1=1,

M

IF (RJ(I)) 560,5oO,550
CCN7INLE
NSATIS=4
PETLPN
PPCELEM HAS BECOME FEASIBLE
F - FUNCTION CHANGES IF A CONSTRAINT BECC.VFS FEASIELE

f*h'Q
CC 570 1=1, M
R„1(I)=PJ(I)
RETLRN

FCFNAT (80H OPT CAN-T FINC A FEASIBLE POINT, THAT
1GIVES A LOWER VALUE OF THE F-FUNCTION.)

ENC

PE

64

GLOSSARY FOR CUBIC INTERPOLATION OPT SUBROUTINE

ADELX Magnitude of the search direction vector

AL Lower step length Q_

BL Upper step length

COTES Cosine of the angle between the gradient and search
direction vectors

D Factor by which increment is multiplied

DELX Search direction vector s

DELXO Gradient vector of the penalty function VP(X)

DLX1 Gradient vector of penalty function for lower step
length VP(X3)

DLX2 Gradient vector of penalty function for upper step
length VP(X2)

DOTS Directional derivative of interpolated step length
times ADELX P 1 (X)

DOTT Directional derivative of initial starting point
times ADELX P 1 (XI)

DOTTA Directional derivative of lower step length times
ADELX P' (X3)

DOTTB Directional derivative of upper step length times
ADELX P' (X2)

EPSO Stopping criteria tolerance for cosine test

I Index used in DO loops

J Index used in DO loops

K Index used in DO loops

KTER Number of points evaluated in bracketing the minimum.

KTR Number of cubic interpolations performed

M Number of inequality constraints

MN Number of moves in search for solution of a

subproblem

65

N Number of variables

NRED Number of consecutive step length reductions

NSATIS Indicates whether constraints are satisfied

NTCTR Number of the point on which the program is working

N405 Switch showing that a feasible point on the
direction vector could not be found and the
negative was tried.

PO Penalty function value at current xvector P(X)

PX1 Penalty function value at lower step length P(X3)

PX2 Penalty function value at upper step length P(X2)

Q Coefficient used in computing interpolated step length

RJ Vector of current values of the constraints

RJl Vector of previous values of the constraints

SMAG Magnitude of the gradient of the penalty function

TAL Current step length

TINC Increment by which step's length increased or
decreased

X Current X vector

XI Initial starting point X vector

X2 X vector of upper step length X
Q
+0

u
S

X3 X vector of lower step length X
o
+0

L
S

Z Coefficient used in computing interpolated step
length

66

„ m SIEFCUTINE OPT
r J^TuF£T A?y?£C y7£ NE T

USES CUBIC INTERPOLATION TC FIND THE
C flMHf ALONG THE GIVEN SEARCH VECTOR

IMPLICIT R CAL S'C 8(4— H 1 — Z)
CCMMCN/SHARE/ X(IOO)

1

, CEL(IOO), A (100, 100) t N,M, NN,NP1

^CMNON /VALUE/ F , G ,PQ .RS IGMA, PJ(2C0), PHC
CCMNQN/CRbT/ DELXQOO), DELXO(IQO), RHOIN, RATIO, EFSI,

1< FETAO,

3XP1 (100)

G
PR1

X1(10C,T x 2dO0), X2Q00), XR2(100),

i SSi.'^lI^lt'RJKZOOt DOTT, PGRAC(IOO), CIAGUOO),
5 .?Piyi» ADfcLX » NTCTR, NUMINI» NPHASE, NSATIS
CINENSICN CLX1(100),CLX2(10C>
AES(CUMMY)=CABS(DUNMY)
S C PT (DUMMY)=DSQRT(DUMMY)
EFSC=l„E-7
CCTS=O.C
N4C5=1
GC TO 5

2 CC 4 1=1,

N

A CELX(I)=-DELX(I)

5 CONTINUE
C INITIALIZATION

NMNN + 1
NTCTR=NTCTR+1
CCTTA=0.0
TAL=0.0
AL=C.O
C = 2.0
KTER=0
NFEC=0
TINC=1.0
SMC-=O.C
CC 10 K«1,N
Sf AG=SMAG+CELX(K)**2
CCTTA=CCTTA-DELX(K)*DELXO(K)
XKK)-X(K)
CLX1(K)=DELX0(K)

1C X2(K)=X(K)
CCTT=-CCTTA
FX1=P0

C INITIAL ERACKETING BEGINS
25 TAL=TAL*TINC
2C CC 25 K = 1,IS
25 X(K)=X1(K)+DELX(K)*TAL

KTER=KTEP+1
CALL 6VALU
GC TO (170,50,40) , NSATIS

C RECLCE STEP SIZE
4C C=C5

NFEC=NRED+1
TINC=(TAL-AL)*D
T/L=TAl-TINC
GC TO 30

C SECCNC FEASI8LE POINT FCUND
5C Bl=TAL

FX2=P0
CALL GRAD(2)
CCTTB=O.C
CC 60 K=l

t
N

X2(K)=X(K)
CLX2(K)=DSLX0(K)

tC CCTTE = CCTT6-DELX(K)*DELX0(K)

C CHECK STOPPING CRITERIA OR MAYBE REVERSE SEARCH DIRECTION
I MAOELX.EC.0.0) GC TO 91
IF(SMAG.EC.O.O) GC TO 91
CCTES= ABS(DOTTB)/(SQRT<SMAG)*ACELX)
IF (COTES. LT.EPSQ) GO TO 91
IF(KTER.GT.IOO) GO TC 280
IF(NREC.GT.20) GO TO 280
CC 75 K = 1,N

67

IF(ABS(ABS(Xl(K)/X2(K))-l.).GT.l.E-7) GO TC 76

GC TO 280
_ 76 IF(AES<A6S<PX2/PXl)-l.).LE.l.E-7) GO TO 91
C IF CEPIVATIVE IS POSITIVE THEN THE MINIMUM 13 8FACK3TEC
C ANC CLEIC INTERPOLATION CAN BE PERFORMED, IF NOT NAKS THIS
C PCINT THE LCWER STEP LENGTH AND STEP CLT FARTHER

IF(DOTTE.GT.O.O) GQ TC 100
NFEC=0
TINC = TIfsC*D
CC 60 K=1,N
DLXl(K)rDLX2(K)

EC X3(K)=X2(K)
F>1=PX2
Al^EL
CCTTA=CCTTB
GC TO 2 5

C OF THE TWO FEASIBLE POINTS RETURN WITH THE SMALLEST
SI IF(FX2.LE,FX1) GC TO 220

PC=FX1
CC 92 K=1.N
X(K)=X3 (K)
CELX0(K)=DLX1(K)

92 CONTINUE
GC TO 220

C CLEIC INTERPOLATION FOLLOWS ************************* *****
ICC KTP=0
ics ccminue

Z=3.*<(FX1-PX2)/(EL-AL))+DOTTA+CCTTB
C=SCRT(Z**2-DOTTA*CCTT8)
TAL=BL-(BL-AL)*(DCTTB+Q-Z)/(DGTTB-CCTTA+2.*C)
CC 130 K = 1,N

13C X (K) = X1 (K)+DELX(K)*T/SL
CALL EVALU
GC TO (170,135,40) , NSATIS

135 CALL GRAD12)
CCTS=O.C
CC 140 K=1,N
CCT5=DC7S-CELX(K)*0SLX0(K)

14G CONTINUE
C CHECK STOPPING CRITERION CR IF SEARCH CIRECTICN SHCULC EE
C REVEPSEC

I F(ADELX.EC.O.O) GC TO 471
IF(SMAG.EC.O.O) GC TO 471
CCTES=AES(CCTS)/(SCR7(SMAG)*ADELX)
IF (CGTES.LT.EPSO) GO TC 471
IF(ABS(ABS(PX2/O0)-l.) ,L E. l.E-7) GO TO 471
K7R*KTR+1
IF (KTR.GT.10) GO TO 471
CC 143 K=1,N
IF(ABS(ABS(X2(K)/X(K))-l.) .G7. 1. E-7) GO 7G 163

143 CONTINUE
GC TC 220

163 IF(COTS.GT.O.O) GO TO 150
C TFPCfe AWAY LEFT SIDE

AL=TAL
FX1=PC
CCTTA=CCTS
CC 145 K=1,N
CLX1(K)=DELX0(K)

145 X3(K)=X(K)
GC TO 105

C THFCW AWAY PIGHT SIDE
15C EL=TAL

FX2=P0
CCTT8=CCTS
CC 160 K=1,N_
CLX2(K)=DELX0(K)

16C X2(K)=X(K)
GC TO 105

170 CC 130 K = 1,M
IF(RJ(KJ) 190,190,160

68

160 CCNTINLE
N5ATIS=4
RETLRN

ISC PN = C
CC 2C0 K=1,M

2CC RJ1(K)=PJ(K)
PETLRN

RETLRN luITH SMALLEST VALUE
471 IF(FO.LE.PXl) GO TO 474

IF(FX1.LE.PX2) GO TO 475
472 FC=FX2

CC 473 K = 1,N
X(K)=X2<K)
CELXO(K)=DLX2(K)

472 CCNTINUE
GC TO 2 20

474 IF(F0.LE.PX2) GO TC 220
GC TC 472

475 PC=FX1
CC 476 K = 1,N
X(K)=X2(K)
CELX0(K)=DLX1(K)

476 CCNTINUE
22C CCNTINUE
225 CCNTINUE

RETLRN
REVERSE SEARCH DIRECTIONS
26C GC TC (290,200)»N405
29C N4C5=2

NTCTR=NTCTR-1
fMNN-1
GC TO 2

2CC kFITE<6»580)
C4LL TIMEC
C*LL OUTPL'T(l)
CALL REJECT

5£0 FCFMAT(80H OPT CAN-T
1G1VES A LOWER VALUE OF
STCF 22042
EISC

FINO A FEASIBLE
THE F-FLNC7IGN.

PGINTfTHAT
)

69

GLOSSARY FOR QUADRATIC INTERPOLATION OPT SUBROUTINE

AL Interpolated step length

D Factor by which increment is multiplied

DELX Vector indicating the direction of move in one
dimensional optimization S

DELXO Gradient vector of the penalty function VP

DOTT Directional derivative of initial starting point
times search direction magnitude P'(X1)

I Index used in DO loops

J Index used in DO loops

K Index used in DO loops

KTER Number of points evaluated in bracketing the
minimum

KTR Number of quadratic interpolations performed

M Number of inequality constraints

MN Number of moves in search for solution of a

subproblem

N Number of variables

NFIRS Indicates if more than two feasible step lengths
found

NRED Number of consecutive step length reductions

NSATIS Indicates whether constraints are satisfied

NTCTR Number of the point on which the program is working

N405 Switch showing that a feasible point on the direction
vector could not be found and the negative was tried

PO Current penalty function value P(X)

PX1 Penalty function value of lower step length P(X3)

70

PX2 Penalty function value of upper step length

RJ Vector of previous values of the constraints

TAL Current step length

TALI Lower step length T
Li

TAL2 Upper step length

TINC Increment by which step length increased or
decreased

X Current X vector X
Q
+ 0s

XX Temporary storage used for switching values

XI Initial starting point vector X
Q

X2 X vector at upper step length X
Q
+0 s

X3 X vector of lower step length X
Q
+0

L
s

71

ALONG A GIVEN SEAQCH

MN t N F

1

RSIGMA, RJ(20Q), RFC
, DELXC(IOO), RHOINfPJTIOt EPSI,

, X2(100)t X3(100), X«2(i0C>»

PGRAC(IOG), CHGIlOOli
NPHASE, NSATIS

SLEROUTINE OPT
C ThIS CPT SUBROUTINE FINDS THE MINIMUN
C VECTCF USING CUAORATIC INTERPOLATION

INFLICIT REAL*8(A-H.0-Z)
CCMMON/SHARE/ XQQO), DELUOO), A (100, 100) , N , V

,

IthMl
CCNNCN /VALUE/ F , G , PQ ,

CCMMON/CRST/ DELX(IOO)
1TI-ETA0,
2 PSIG1, Gl, XK100)
3XP1(1C0),PR1,
4 FF2, F 1 , Fl, RJl(200)t DOTT,
5 FPEV3,A0ELX, NTCTR, NUMINIf
AES(CUyMY)=DABS(DLMMY)
N4C5=1
CCTT=C.
CC 2 K=1,N

2 CCTT=CCTT+DELX(K)*CELXO(K)
GC TO 5

2 CC 4 1=1,

N

4 CElXm=-DELX(I)
5 CONTINUE

C INITIALIZATION
Nf^NN + 1
NTCTR=NTCTR+1
TAL=0.0
TALl^O.O
C*2.
KTER=0
NPEC=0
TINC=1.0
CC 7 K=1,N
X1(K)=X(K)
X3(K)=X(KI

7 FX1=P0
NFIRS=0

C STAFT BRACKETING PROCEDLRE
7AL=TAL+TINC

10 CC 13 K = 1.N
12 X<K)=X1(K)+DELX(K)*TAL

K7ER=KTER+1
CALL EVALU
GC TO (170,20,20), NSATIS

C RECUCE STEP SIZE
20 C=C5

IF(NREC,GT.20) GO TO 280
NPEC=NRED+1
TINC=(TAL-TAL1)*D
TAL=TAL-TINC
GC TO 1C

C HAVE 2 CR MCRE FEASIBLE POINTS eEEN FCLND
30

21
22

IF(NFIRS.EC.l)
NFIRS-1
CC 22 K = 1,N
X2(K)=X(K)
FX2=PG
TAL2=TAL
IF(FX2.GE.PX1)

C INCREASE STEP SIZE
25 TINC=TINC*D

TAL=TAL+TINC
NPEC=0
GC TO 10

40 CONTINUE
C RECRCER POINTS

GO TC 40

GO TO 20

IF(TAL.LT
IF(F0.L7
XX=TAL
TAL=TAL2
TAL2=XX
XX=FO
FC=FX2

TAL2) GO TO 54
PX2) GO TO 50

72

45

46

47

50

51

F>2=XX
CC 45 K=1,N
XX=X(K)
X(K)=X2(K)
X2(K)=XX
GC TO 54
T*L1=TAL
PX1=PC
CC 47 K = 1,N
X3(K)»X(K)
TH=TAL2
GC TO 35
T/SL1 =TAL2
F>1=PX2
CC 51 K = 1,N
X2(K)=X2(K)
X2(K)*X(K)
TAL2=TAL
FX2=P0

C CHECK STOPPING CRITERION OR IF SEARCH DIRECTION SH3ULC eE
C REVERSEC

IF(ABS(ABS(P0/PXl»-l.).LT.l.E-7) GC TO 220
CC 52 K«1,N
IF(ABS(ABS(X1(K)/X(K))-l.).GT.l.E-7) GO TC 52

52 CCNTINLE
GC TO 2E0

52 CCNTINLE
GC TO 3 5

C CHECK STOPPING CRITERION OR IF SEARCH DIRECTION SHOULC E5
C REVERSEC
54 IF(AeS(ABS(P0/PXl)-l.).LT.l.E-7) GO TO 220

CC 55 K=1,N
IF(ABS(ABS(X1(K)/X(K))-l. J.GT.l.E-7) GO TC 56

55 CONTINUE
GC TO 2SG
CCNTINLE
IF(KTER.GE.IOO) GO TO 280
IF(F0.GT.PX2) GO TO 46
IF(PO.GE.PXl) GO TO 21
CC 57 K=1,N
IF(ABS(ABS(X2(K)/X(K) 1-1.) .G£. l.E-7) GO TC
CCNTINLE
GC TC 2 20

C CLADRA7IC INTERPOLATION BEGINS***************************'
60 KTR=0
61 K 1 P = KTR +1

AL=G.5*((TAL**2-TAL2**2)*PX1+ (TA L 2**2-7 AL 1**2) *P0+
1(TAL1**2-TAL**2
2)*FX2)/ ((TAL-TAL2)*PX 1+ <T AL 2-TAL

1

)*P0+< T AL 1-TAL > *P X2

)

IF(TAL.GT.AL) GO TC 75
C THROW AWAY LEFT SIDE

TAL1=TAL
FX1=P0
CC 71 K=1,N

71 X2(K)*X(K)
GC TO 78

C THPCh AWAY RIGhT SICE
75

56

57
60

77
78

80

TAL2=TAL
PX2=P0
CC 77 K = 1,N
X2(K)=X(K)
TAL=AL
CC 79 K^l.N
X(K)=X1(K)+DELX(K)*TAL
CALL EVALU
GC TO (170f80t85)t NSATTS
DC 82 K=l f N

C CHECK STOPPING CRITERION OR IF SEARCH DIRECTION SHOULD E =

GO TC 82

82
IF(AES(ABS(X2(K)/X(K)) -1.) . GE. 1 . E-7

)

CONTINUE
GC TO 220

73

83

65

IFUES(4BS(P0/PX1)-
IF(KTR.GT.20) GO TO
GC TO 6 1
NREC=0
KTER=0
GC TO 20

17C CC 180 K=l,y
IF(RJ(K)) 190,190,180

160 CCNTINUE
NSATIS=4
RETURN

190 MN=C
CC 200 K=1,M

2CC PJ1(K)=RJ(K)
RETURN

22C CCNTINUE
RETURN hITH SMALLEST VALUE

IF(FXl.GE.PO) GO TC 240
PC=FX1
CC 230 K=1,N
X(K)=X3 (K)
CCNTINUE
RETLRN

ERSE SEARCH 0IR5CTICNS
GC TO (290,300),N405
N4G5=2
NTCTR=NTCTR-1

GC TC 3
fcPITE(6,580)
CALL TINEC
C4LL GUTPUT(l)
C*LL REJECT
FCFMATC 80H OPT CAN-T

1GIVES A LOWER VALUE OF
STCP 22C42
ENC

)-lo).LT„l.E-7)
rn 2 20

GG TO 220

230
240

C RE\
2EC
29C

2CC

5EC FIND A .FEASIBLE
THE P-FUNCTIGN.

PCINT,ThAT

74

LIST OF REFERENCES

1. Mylander, W.C., Holmes, R.L., and McCormick, G.P.,
SUMT-Vers ion 4 , FORTRAN IV Nonlinear Programming
Compute Code, Research, Analysis Corporation, McLean,
Va. , March 1971.

2. Mylander, W.C., Holmes, R.L., and McCormick, G.P., A
Guide to SUMT-Version 4: The Computer Program Implementing
the Sequential Unconstrained Minimization Technique for
Nonlinear Programming , Research Analysis Corporation,
McLean, Va. , February 1971.

3. Fiacco, A.V. and McCormick, G.P., Nonlinear Programming
Sequential Unconstrained Minimization Techniques ,

John Wiley and Sons, Inc., 1968.

4. Lasdon, L.S., Fox, R.L., and Ratner, M.W. , "An Efficient
One-Dimensional Search Procedure for Barrier Functions"

,

Mathematical Programming , Vol. 4, No. 3, p. 279-296,
1973.

5. Fletcher, R. , Optimization , p. 210-213, Academic Press,
1969.

6. Luenberger, D.G., Introduction to Linear and Nonlinear
Programming , p. 134-137, Addison-Wesley , 1965.

7. Waterman, R.J., An Evaluation and Comparison of Three
Nonlinear Programming Codes , Master's Thesis, Naval
Postgraduate School, Monterey, March 1976.

75

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Documentation Center 2

Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0212 2

Naval Postgraduate School
Monterey, California 93940

3. Department Chairman, Code 55 1
Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

4. Professor J.K. Hartman, Code 55Hh 3

Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

5. Professor G.H. Bradley, Code 55Bz 1

Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

6. Professor W.C. Mylander, Code 1

Department of Operations Analysis
U.S. Naval Academy
Annapolis, Maryland 21401

7. Associate Professor G.G. Brown, Code 55Zr 1

Department of Operations Research
Naval Postgraduate School
Monterey, California 93940

8. Ensign D.B. Wick, USN 2

505 Road 38
Pasco, Washington 99301

76

thesW573

An evaluation and comparison of several

3 2768 000 99817 3

DUDLEY KNOX LIBRARY

