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ABSTRACT

A communication network is modeled by an undirected graph with-

out loops and multiple edges. The maximal message delay index, in the

? network, is expressed in terms of the diameter of the graph. Three

reliability measures are considered: a given minimal degree, edge-

connectivity and vertex connectivity.

Let H (k,d) be the class of all graphc with diameter d and minimal

degree k, H2(k,d) is a subclass of H (k,d) consisting of all k-edge

iconnected graphs in Hl(k,d) and H 3(k,d) is the subclass of all k-vertex

. ,.,:•connected /7graphs in H2(k,d)° 11i(n,k,d) consists of• the graphsr in

4 . H (kd) with exactly n vertices (i=1,2,3). Let f'(k,d), g'(k,d) be the

Sminimum number of vertices and edges, respectively, that an Hi(k,d)-

graph must have and let gi(n,k,d) be the minimal number of edges of an

Hi (n,k,d)-graph (i=1,2,3). In Chapter 2 and 3 our main concern is to
'••Ir7 r, (i ~)fo rirr

calculate the values of f1 (k ,d), gi(k,d) and g'(nkd) for arbitrary

natural numbers n,k,d (i=1,2,3).* Furthermore, graphs attaining the

minimal number of vertices and edges are constructed.

Motivated by the problem of designing communication networks whose

maximal message delay does not exceed a prescribed value, even if a

number of communication links fail, we define a new class of graphs.

YK A graph G is called an (k,d)-graph if the removal of at least X edges

from G is required in order that the resulting graph would have aI

diameter larger than d. G is called P-distance stable if the removal

,o of at least P edges from G is required to increase thle distance between

any pair of nonadjacent vertices of G. In Chapter 4, classes of

A v



(Z,d)-graphs and i-distance stable graphs are constructed and various

properties of these graphs are given. In particular, we obtain neces-

sary and sufficient conditions for graphs to belong to some special

classes of (2,d)-graphs and a Menger type theorem for k-distance stable

graphs. Finally, we consider some extremal problems related to (2,d)-

graphs of diameter d, called 2-diameter stable graphs. More specif-

ically, the minimal number of vertices and edges of a 2-diameter stable

graph of diameter d is obtained and bounds on the minimal number of

edges of a 2-diameter stable graph on n vertices are calculated.
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CHAPTER 1

INTRODUCT ION

1.1 Motivation

In this dissertation, a communication network is topologically

modeled by a finite linear graph, whose vertices represent Lhe stations

(transmitting, receiving or relying information) while the edges repre-

sent the communication channels. Computer-communication, satellite and

telephone networks are examples.

In designing a communication network, reliability (survivability,

invulnerability) and message delays are of prime importance as perfor-

marnce indices. In studies of communication networks, reliability has

been defined in various ways (See (28]). The most conm.on definition

assumes the network to be operational, under channel or station failures,

provided there exists a communication path between any pair of stations.

Thus, under thu latter definition even if a set ol station,; whose

number does not exceed a prescribed value fail, it ig still possible

to form communication paths between all pairs of functioning stations.

The latter measure of network reliability is called in graph theoretical

terms the vertex connectivity of the underlying graph. Similarly, one

can use the edge connectivity of the underlying graph as a reliability

measure and require that even if a set of communication links, whose

number does not exceed a prescribed value, fail, it is possible to

' communicate between any pair of stations in the network. A weaker form

of reliabiliLv Is the requirement that each station should be directly

linked to bt least a given number of stations. All these three reli-

ability measure are considered in this research.



t2Momm4~on * diti lg Wt iiidos ati I hu network nource tuorm:inalm and

wout1 ud InoitgIh the1 notwor0 ~lowrd a I5~t dontit I iont Itl turminal I, oupert once

q uoiuai an cud tranu~im I A nIouiI iii.' dela ys. TLhe mIaIx.1imal Way OI experienced

' I byI a monag f iC)~'tlow I ii thrx ough t ho nomIork van he me~asured in terims of

I~ ~~h d iammio of 0 t ho uiueltxu vi u gra~phI ( rep ye s in tg th le maxi[malI distance

ho Iwoos anyv tw ux' yeit I of t ho grzaphI). Thit l-netetr clearly yi[eld.cs the

mhxLmaJ I tulilgl delIay IfI the udessage de'lays- across the channels in the

"no work a to of compariable valute, Ptur Ihe rmcxrc, I or any store-and-forward

cunamun ivna Con ne tworuk, iindar m txvd rout.ti g di a p1 inc , it has been

Ii~~j shown [11 t hat t 1w product of t he p rescr ibed maxinmal message dielay -Y

muid t hu ass octa ted minim iial overall i network cvp;pcity C, isa characterized

lIv iunii quLLe I lay-Cntxpnvi.ty product function QyC). The latter is shown

in [11~ to he the stun of two terms. The U [rat: term is yX1 , where Q is

the oiveralli internal t ra f Ac f low. The second term, called the Delay-

Capav'itCv Product number, (yc.) in uniquely determined by the routing

dimvipline and the topological st~ructure of the communication network,

and in independent or the terminal traffic intensities. It is readily

obue rvecl that for any network with m lines and diameter d, by assigning

equal. delays across the channels, one obtains (yC) I md. Furthermore,

it has been shown [31, [41 that QyC) md for many networks under a

variety of general routing disciplines, while for other cases md serves

as n tight bou.nd. One also noten that the overall internal flow

can be expresaed as X = nA. where X Eis the prescrihei multiterminal
-1 M'

flow value (network throughput) while ; denotes the average route

length. Cenerally, n•d. Furthermore, for a unifor" traffic matrix

(and other situations) n is proportional to mn. Hence, if the diameter

2
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d of a network is prescribed, the topological structure which yields

\AX vthe minimal (yC) product needs to have the minimal number of lines.

. Consequently, we study the characteristics of reliable (as expressed by

a prescribed number cf minimal links joined to each vertex, vertex

connectivity or edge connectivity) graphs with minimal number of lines

having a prescribed diameter. The latter will represent reliable

topological structures for communication networks, attaining the minimal

delay-capacity product, under a diameter (delay, maximal number of

message hops) constraint. For perturbation techniques used for the

design of computer communication networks with connectivity and diameter

constraints, see Lavia and Manning [25].

The use of connectivity indices of the underlying graph as a

reliability measure is based on the assumption the network is opera-

tional in the presence of failures provided there is at least one

communication path remaining between any pair of stations in the net-

work. However, under failures the resulting network may have an

excessively large diameter, which may result in intolerable queueing

delays while routing a message through the network. We thus study here

graphs whose diameter does not exceed a prescribed value even if a

number of communication links fail. In grap1 ' theoretical terms, the

underlying graph of such a network will defined to be diameter-stable.

Properties of diameter-stable graphs, and diameter stable graphs having

the minimal number of vertices, are investigated in the sequel.

Extremal graphs of diameter two with prescribed minimum degree

were studied by Bondy and Murty [14]. Studies [10] and [11] deal with

connectivity problems without the diameter constraint. Some properties

'N -- N i•• • • • ••e .. *.`,• . `•*••• • ` y• • ... " ',. •



of graphs with prescribed connectivity and diameter are studied in [7],

[8], [3.2], [13], [14], [251 and [27). Special problems associated with

extremal diameter stable graph (having mainly diameters 2, 3 and 4)

were considered by Bollobas, Murty, Vijayan and Caccetta in (15]-[22],

while in [23] vertex distance stability problems are studied. For an

extensive summary of methods of analysis and design of communication

network, the reader is refered to [281. Further references to the

above-mentioned papers are made in the appropriate sections of this

work.

1.2 Terminology and Notation

All graphs considered in this paper are undirected, without loops

and multiple edges. By V(G) and E(G) we denote the set of vertices and

the set of edges of the graph G, respectively. The number of elements

1  of a set A is denoted by JAI. The degree of a vertex v E V(G) is

defined as the number of vertices adjacent to v, and is denoted by

deg(v). A graph all whose vertices have the same degree k is called

a k-regular graph. An almost k--regular graph is a graph which has one

S. t> vertex of degree k + 1, while all the other vertices are of degree k.

The edge with end-vertices v and w is denoted by vw.

A graph G with IV(G)I Ž k + 1 is called k-vertex connected, or

simply k-connected (k-edge connected) if between any pair x, y of

distinct vertices of G, there are at least k vertex (edge) disjoint

x, y-paths in G. It is obvious that a k-connected (k-edge connected)

graph cannot be disconnected by removing less than k vertices (edges)

from the graph. The converse is also true. Hence, a graph is

k-connected (k-edge connected) if and only if JV(G) k + I and it is

4



impossible to disconnect G by removing k - I or fewer vertices (edges)

from G, (Menger-Whitney theorem and the corresponding edge version by

Ford, Fulterson and others, see [9] Chapter 5).

The distance d (x,y) between two vertices x, y E V(G) is the length

of the shortest path in G joining x and y. In cases where no confusion

can occur we may omit the index G from the function dG(X,y). The

ý . diameter of G, d(G), is defined as

d(G) max dH(x,v)
x,y E V(G)

A pair of vertices x,yc V(G) such that dc(x,y) d(G) is called a

diametrical pair of vertices.

In many cases in the following chapters we will have a function

g(n,k,d) (where n denotes the number of vertices of a graph G, d is the

diameter and k is some reliability measure) bounded by an upper and a

lower bound, which will also be functions of n, k and d. To estimate

the tightness of the inequality a tightness measure will be applied to

the inequality by dividing each bound by n and taking the limit as

n ÷ '. The latter yield per vertex asymptotic measures.

Kn, Km,n and C will denote the complete graph on n vertices, the

complete bipartite graph on n and m vertices and the cycle on n vertices,

respectively. [x] denotes, as usual, the integral value of a real

number x. For further definitions used in this dissertation the reader

is refered to [9].

1.3 Outline

Most of the work reported in this dissertation is concerned with

synthesis of graphs under reliability and diameter constraints. While

5
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design results were at time the main objective, analysis of certain

classes of graphs are also presented.

Chapter 2 is concerned with constructions of graphs with prescribed

diameter d, and minimum degree k, called 11 (k,d)-graphs. The minimal

number of vertices and edges that an Hi(k,d)-graph must have, is calcu-

lated and classes of extremal graphs, in this sense, are synthesized.

Then, we consider H1(n,k,d)-graphs, which are H1 (k,d)-graphs with
4 exactly n vertices, and obtain bounds on the minimal number of edges

that an H1(n,k,d)-graph must have.

In Chapter 3 graphs with prescribed diameter d and connectivity

(edge-connectivity) k, called H 3(k,d)-graphs (H 2(k,d)-graphs) are con-

sidered. The minimal numbers of vertices and edges of an HI3 (k,d)-graph

are obtained, extremal graphs are constructed and the family of H.3 (k,d)-

graphs having n vertices is studied. In section 3.4, some results

concerning H 2(k,d)-graph are given.

In Chapter 4 we study diameter stable graphs. A graph G is called

an (t,d)-graph if the removal of at least k edges from G is required

for the resulting graph to have a diameter larger than d. (i,d(G))-

graphs are called i-diameter stable graphs. A graph G with the prop-

erty that at least k edges are to be removed from G in order to

increase the distance between any pair of non-adjacent vertices of G,

is called an i-distance stable graph. Classes of (i,d)-graphs,

i-diameter stable graphs and i-distance stable graphs are constructed

for any arbitrary Z, d k 2, in Section 4.2. Various properties of the

latter classes of graphs are presented in Section 4.3. In particular,

a Mengerian type characterization of i-distance stable graphs,

6
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Ai indicating the appropriate similarity of i-distance stable graphs to

2k-edge connected graphs, is obtained. In Section 4.4, (2,d)-graphs are

considered. Two classes of 2-'diameter stable graphs are characterized

by necessary and sufficient conditions. In Section 4.5, a few extremal

problems, similar to those in Chapters I and 2, are solved for

2-diameter stable graphs.

Finally, in Chapter 5, we conclude with summary of the work

presented, indicating further problems for future research.

j;.
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CHAPTER 2

IVi GRAPHS WITH PRESCRIBED DIAMFTER

AND MINIMUM DEGREE

2l 2.1 Introduction

Consider a communication network of stations in which certain

pairs of vertices are linked directly and other pairs must communicate

indLrectly by means of a sequence of direct links. The given communica-

tion network is represented as usual by a graph G whose vertices and

edges correspond respectively to the stations and the direct links of

the communication network. Assume that if a failure occurs at a station

it can rely for support only upon those stations to which it is

directly linked. Reliability considerations may require therefore that

i•. each station should be directly linked to at least k stations. Further-

more, in order to have a reasonable message delay when it is routed

over the network, we may require that each pair of stations must be

able to communicate by means of a sequence of direct links which does

not exceed a given integer d 1 1. In graph theoretical terminology, it

is required to construct a graph with prescribed minimal degree of the

vertices -k, and a given diameter - d.

Let 1 (k,d) denote the class of all graphs with minimal degree k

and diameter d. The subclass of graphs in Hl(k,d) having exactly

n vertices is denoted by Hl(n,k,d). The graphs in H (k,d)(Hl(n,k,d))

Sare called Hl(k,d)-graphs (Hl(n,k,d)--graphs_.

X______ H(nkd-gah~

.......



q4-

Let

f (k d) Mi V (G) I
G C H(k, d)

A
g1 (k,d) Min F,(

G f H (k, d)

(~nk, d) Gi E(G)
G E R (n, k,d)

H1{1(k,d)-graphs with f I(k,d) vertices are called vertex extretnal graphs

of R 1(k,d), and 1i(k,d)-graphs (111 n,k,d)-graphs), having 91 (k,d)

(gj(n,k,d)) edges -ire simply called extrenial graphs of H (k,d)

(U(nkI))

In this chapter we investigate the above functions and find some

extreinal graphs.

Considering the case d 2, J. A. Bundy and U. S. R. Murty [14]

3
proved that if n > k + ct(n) -ct(k) k + 1 (where for an integer t,3

a =t 0 or 1 according as t is odd or even), then

R 9 n,k,2) [(n-4) (k~l) + 1]

and every H (n,k,2)-extreinal graph has a vertex of degree n -1. They

have also obtained a characterization of vertex extrenial H (n,k,2)-

graphs.

2.2 Vertex Extremal R (k,d)-graphs

Assume G to be a graph of diameter dl then there exists a diametri-

cal path x09 x1 s , xd in G, (xifEV(G)).

Define w.r. to the vertex x, V~ jv EV(G d(v,xo)

o i d. Clearly V I x.1, xi eii 1 d.

A'm . 10



~ Let
V

11 V',j n V(G)

If in addition the minimal degree of G is k, we must have;

flj* +fln + ni~ k + 1, 2• 1 • d - 2. (2.1)

o .'n. + n1  k + 1 nd1 nd Ž k + 1. (2.2)

, no + nAn 2 k Ž + 2 . nd- +fln 1+fn ýk + 2 . (2.3)

Inequality (2.1) follows by noting that deg (v) Žk,Vv f V(G), while

(2.2) and (2.3) follow from deg (x) k, deg (xd)'Z: k. The following

theorem determines f (k,d).

Theorem 2.1. For all integers kŽZ2, f (k,l) kc+l, f (k,2) k + 2

and for 2 .

f (k,3R + i) (k+l) (k+l) + i i 0, 1, 2. (2.4)

Proof. It is easy to verify f (k,l) k + 1 and f2(k,2) =k + 2.

For d > 2 we examine three cases of d(mod 3).

Case 1: d 3k, k , 1.

By (2.2) n + n1 + nd + nd ý!2(k+l), and if k~ > 1 then by (2.1)

~L (nj.4 + nj + rij+l) Ž(k + 1) (2-1).

Hence, n n~ 1 2 (k+l) + (k+l)(~l

and,

f (k,39,) ?(k+l)(k+l). (2.5)

~ , We now construct an H (k,3U)-graph with (k+1)(2,+1) vertices,



W Choose n. 1, n: k, n2  1, n 3  k-1, n4  1,

n3J+2 n 3J+3 = f-l, n 3 j+ 4  1,

ndl k, nd = 1.

Two distinct vertices p Vi, q EV are joined by an edge if and only if

i-j 5 1, (Figure 2.1). The graph obtained is obviously an

H1 (k,U32)-graph.

Figure 2.1. A Vertex Extremal H1 (3,6) - Graph.

Thus, by (2.5)

f1(k, 3k) - (k+l)(9,+l). (2.6)

Case 2: d = 3 + 1 , k 2-1. By (2.2) and (2.3),

n + n 1 + 2 +n n > 2(k+l) + 1,

and if k > 1 by (2.1)

njl+n, + nj, (k+l) (k-1)

J=3m j-l nj+l
lm 5_Z-1

Hence,

Vn

n ni >- 2(k+l) + I + (k+l)(k-l)
i=0

and,

f 3(k, 2 + 1) Ž (k+i.)(2+l) + 1. (2.7)

I

12



An 32(,. + 1)-graph with (k+i)(2.+i) + 1 vertices may be constructed

as follows.

4 Choose,

no =1, n, k, n .1 nl k-1, n4  1,

nj+ 1, n3 3  k-I, n3 4  1

nd-2  1, n d 1 =k, n d I .

As in Case 1, join p f Vi* q fV by an edge if and only if 1 -1 1:5 1,

(Figure 2.2).

Figure 2.2. A Vertex Extrernal H, (3,7) - Graph.

This construction shows equality in (2.7) is attained, thus,

32.(, + 1) = (k+l)(2.+1) + 1. (2.8)

Case. 3: d =32. + 2 k .>1

By (2.3)

no i-n1 +n + 2(k+2),
0n 2 d-2+d-1 d

and if k. > 1 by (2.1)

(n~ + n~ + nji ?:(k+1)(2-i).

~- ~ As before,

f(,32. + 2) (k+l)(9.±l) + 2. (2.9)

~ 13



To construct the vertex extremal graph in this case, take

no 1, nI1 k, n 2 i ,..
n

n3j n 3 j+1 ` k-1, n3J+2 ,

nd-2 d1, nd k, nd 1,

and proceed as before, (Figure 2.3).

Figure 2.3. A Vertex Extremal H1 (3,S) - Graph.

Hence from (2.9),

fl(k, 3k+2) = (k+l)(Z+l) + 2. (2.10)

(2.4) follows from (2.6), (2.8) and (2.10).

Q.E.D.

2.3 Some Results for g1 (k,d)

Clearly,

f (k,d) " k
~1glI(k'd);ý 2

We shall show that gl(k,d) differs from the right hand side of (2.11)

by at most 1. As before we again treat three cases of d(mod 3).

Theorem 2.2. For k - 3, d Z 2, we have

f (k,d)" k [f(k,d) "k + 1]

d + 1Ž gI(kd) > -1 " (2.12)

For k I (mod 2) and d E 1, 2 (mod 3) the lower bound is attained,

so that

lfd (kd) " k + I(

I S. (2.13)

14



Proof. In all the three cases of d(mod 3) ni's are defined and

chosen as in the proof of Theorem 2.1, and two distinct vertices pEVi,

q Vj (2:5 i •1 J !5d-2) are joined by an edge if and only if ti-Jl - i.

Further, join by an edge all the vertices of V and V to V and V
1 6-1 o Vdt

½ respectively. Finally join an arbitrary vertex of V to x and an

arbitrary vertex of Vd_ to Xd, so that the resulting graph is connected.
-pl

Call the graph obtained C, and distinguish between three cases of

d(mod 3). In each caqe we will complete G, by addition of lines, to an

Hl(k,d) -graph.

Case 1: d 3k, • 1.

The partial graph G constructed in the previous paragraph can be

completed to a k-regular H (kd)-graph (which, of course, will yield

an Hl(k,d)-extremal graph), if and only if it is possible to construct

on d -• n V l a graph •• 1 with k-1 vertices of degree k-i and a single

vertex of degree k-2. But then the sum of degrees of the vertices of

G is (k-l) + (k-2), which is an odd integer Vk, and therefore such

a G1 cannot exist. Instead, take on V1 (and Vd-) a complete graph nn

k vertices, Kk, The graph obtained is obviously an H (k,d)-graph, and

i ~it has (k+1) (Z+l) "k
2 i edges, (Figure 2.4). Therefore,

•!i k+l)(Z+l) k 1k) (Z+'.) k
(kLl- 2-•~ + 1 gl(k,3) .2(2.14)

2 1' 2

Figure 2.4. An H, (4,9) - Graph.



(2.14) proves (2.12) for case 1.

Case 2: d -3U + 1, Z Ž-1.

Complete the partial graph G as follows. As in case 1 join by an

" edge any two distinct vertices of V.. and join also k-i arbitrary

vertices of Vd_ to V d_. We would like to construct on Vd-I a graph

Gd_1 with k-i vertices of degree k-2 and a single vertex of degree k-i.

This is possible only if the degree sequence (k-l, k-2, k-2 k-Zk-i -im-es

is graphical (which means that there exists a graph having the given

degree sequence), (see Chapter 6 [9] and [26]). By Hakimi's Theorem

[26], such a sequence is graphical if and only if the sum of the degrees
(k-l)2 is even, and the degree sequence, 2k k k,--3) is

k-i times
2graphical. (k-l) is even if and only if k is odd, and a (k-3)-regular

graph on k-l vertices exists for k odd, (see [71, [8], [10]). Therefore,

if k = 2m+l, (m l), then the final graph obtained has

((2m+2) (9Y.+l) + 1) (2mi-l + 1
2 2 edges, and if Gd-1 is constructed as in

,[7] and [8], the graph is clearly an H (2m+l, 39,+l)-grauh, (Figure 2.5).

By (2.4) and (2.11),

(m+l) ((9+I) (2m+l) + 1) >_ g1 (2m+l,39+l) _(2m+ - + 1)(2,rf1) (2.15)
2

Since the lower bound in (2.15) is not a whole number, whereas the upper

bound is a whole number differ-ing from the lower bound by -~,we conclude

9l(2mrl, 3Z+l) - (mrl) (QL+l)(25sl) + 1), (2.16)

' which proves (2.13) for k -= (mod2) and d - l(mod 3).

16



1~1

Fiur 2.6. An Iym-Extwronut Graph.

It' on the~ ot~her ha~nd IT is even (k 2mi, m Ž1), construct on Vdi1
ik (k-2)-rogul~ar graph on k verti~ces as before, anid addition of a single

I hie wILiI mat (sfy thIe degree requItrements, (Figure 2.6). This settles

o.2 1)or k 0 (mo d 2)

Figure 2.6i. An Hj(4,7) Graph.

Case 3: d U39 + 2, X. Ž 1.

To complete. the partical graph Gjoin by an edge k-1 arbit-rary

vertices of V and V d-.to V2arid Vd2respectively.

If k :: l(mod 2) we establish on V Iand V d1a gahwt n ee

IT of degree k-1 and k-i vertices of degree k-2, (as in Case 2, this is

V 17



possible if k is odd). Let k 2mn I (m Ž:1) then we obtain (2m4+1)-

regular H. (2in+l,3YA-2)-graph which is obviously an extrernal graph,

(Figure 2.7). Thus,

g1 (2mH-l, U.+2) ((nd1) (2,+)+1) (2ud-1), (2.17)

which proves (2.13) for k 1(mod 2) and d 2(mod 3).

'a

Figure 2.7. A 5-Regular H (5,8) - Graph.

If on the other hand k E O(mod 2), take in V and V a (k-2)-

regular graph on k vertices as in Case 2, (k E O(mod 2)), and add two

additional edges to satisfy the degree requirem~ents, (Figure 2.8).

Figure 2.8. An H (4,B) - Graph.

lil I

18.............................................,., ,' ".I.-



This completes the proof of Theorem 2.4. SQ.E.D.

It should be noted that all the extremal-Hl(k,d) graphs obtained

in Section 2.3, are obviously also vertex extremal HU(k,d)-graphs.

S2.4 Inequalities Concerning the Class H ~n k md

First we note that if the diameter is not prescribed and a graph

on n vertices whose minimal degree is k, is to be constructed, then a

k-regular graph or an almost k-regular graph on n vertices can always

be obtained.

Lemma 2.3. For all integers n > k > 0, there exists a k-regular,

or almost k-regular graph on n vertices.

Q
One way to construct such graphs is given in [10], where

k-connected graphs on n vertices having minimal number of edges are

obtained. The graphs of [10], have degrees 2_ k and satisfy our require-

ment here, but their diameter is not prescribed.

As mentioned before gl(n,k,2) was computed in [14]. We consider

thus here Hl(n,k,d) with d ?:3.

Clearly,

9g1(nk,d) > g1 (k,d)

for

n f 1f(k,d).

Considering a graph in H (n,k,d), we derive in the next theorem

relations between the parameters n,k and d.

I Theorem 2.4. If there exist graphs in Hl(n,k,d), k,d Ž 1,

with d = 3k + i (R, - 1, 0 -< i : 2), then,

(a) n Ž (k+l)(k+l) + i

and n can be arbitrarily large.

19



A (b) 3[-i ] + i - d -

. (c) n-i k I

Furthermore, all bounds are best possible.

Proof. (a) was proved in Theorem 2.1. To show that n could be

as large as desired, take the H (k,d) vertex extremal graphs

constructed in the proof of Theorem 2.1, then join each of the

n-(k+l(Z+l)-i remaining vertices to the k vertices of V1 (the notation

of the proof of Theorem 2.1 is used here). The resulting graph has,

by symmetry, diameter d and its minimal, degree is no less than k. From

this graph we conclude the following upper bound on gl(n,k,d) (the

lower bound is obvious).

n-k
2 !5 g1(n,k,d) < gl(k,d) + (n- f 3 (k,d))k (2.18)

The upper bouuids in (b) and (c) are derived from (a) and by the

construction in (a) one sees that the bound are best possible. The

lower bound3 in (b) and (c) are achieved when one takes a complete

graph on n vertices (k < n) and a tree with diameter d on n vertices,

respectively. Q.E.D.

The upper bound in (2.18) will be improved considerably in the

following, but first to estimate the "tightness" of the bounds in (2.18)

divide the inequality by n and take the limit as n + •, as indicated

kA in the introduction.

Since g (k,d) and fl(k,d) do not depend on n we obtain from (2.18)

20



4 -~ur k. (2. 19)~~ 2

M To obtain a better upper bound on g,(n,2,d), let n1 d+2+(d-l)m+t,

M ~(0 :5 t :5 d-2). Connect two vertices by a path of length d + 1, a path

of length t + 1, and m paths of length d, (Figure 2.9). The resulting

graph 0

Figure 2.9. An H, (30,2,7) - Graph.

has diameter d, n vertices, and its minimal degree is not less than 2.

1 Hence, by counting the edges of the resulting graph, (the lower bound

is obvious),

D. :5 g (n,2,d) n ± [nd 12 I n I + [jL] (2.20)

Applying the tightness measure to (2.20) yields

1 1 • urn 9 (n,2,d) (.1

'R ,n d-1
n - 00

which for d >> 1 is much better than (2.19).

We present now a method to construct H (n~kd)-graphs for k > 2

with a "small" number of edges, provided that n is "large" enough.

U, These graphs will improve the upper bound in (2.18).

"21



First let d =2m, mn ?.1. Let T ~ be a hierarchic tree with mn + I

M.levels of vertices, such that there is one vertex of degree one in the

first level, then-m - I levels of vertices having degree k and all

vertices mn the last level have degrees equal to one, (Figure 2.10).

Figure 2.10. T44

For T we have,
mu k

v = V(T ) kl 1+ I
m , k n,0k k-2

For given in and k let n s(v- ) m t + ,(- 1),
Onk in,

s ýk. We assume that n Ž(v 1) k+ .

If t 0 take s copies of T mkand identify in each of themn the

vertex of the first level. The graph obtained is a tree with one

vertex of degree s Žk, s(k-l) ilvertices of degree 1 and all the

~ 1~ other vertices have degree k,

22
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fM -

Figure 2.11. Comnbined Tmk3-

We then complete each group of k -1 vertices of degree 3., belon~ging

to a common tree Tmk to a complete graph on k -1 vertices, K11

.1 (Figure 2.11). Finally, to satisfy the degree requirementiB join by an

edge the corresponding vertices of successive Kk-l's. If s is even,

the resulting graph is illustrated in Fi~gure 2.12.

Flguro 2.12. A4-Regu~ar Hj(l7A4,4- Grah.

.'.~.~*I23
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For odd s the degrees are attained similarly. The resulting graph has

the required minimal degree and ise of diameter d.

M ~~Note that af ter combining the a' copies of T on the (k1

vertitces of degree I one may also conatruct a (k.-i)-.regular or alimvost

(Ic-1)-ragular graph using Lhe methods of [10], (Figure 2.13). This

also can be done with the finAl diamnet~er being exactly d. This con-

struction will have' higher connectivity and will. 1e used in the next

ch-apter.

'1-

Figure 2.13. A 4-ReWuiar Hj1{l7, 4) -GrsPh.

If t > 0, construct as before an hierarchic tree on t vertices

with vertices of degree k, combine this tree to the previous tree and

M, .,proceed as before, (Figure 2.14). if only one level or less can be

Nv constructed then the graph corresponding to the L vertices is a star.

241



tMR

100

Fiuro 2.14. An H, (115, 4,4) - Graph.

if d 2m + 1, mn 1 , then we take (s-1) hierarchic trees TV
IM,, k

and one hierarchic tree TV and proceed as before.
uIl , k

In all cases we are able to construct a graph which has one vertex

of degree s and all other vertices have degree k or k + 1. This is

possible provided that n Is large enough.

By these constructions the upper bound of (2.13) is improved, and

is a near optimal value for g,(n,k,d).

For example, if d =2mi, k -3 and n (2 1-l)s +- 1 + t, 0!-t•5(2in-l)

~ then, (t '~3) (See Figure 2.15)

g1 (n, 3, 2m) :5 (2'4,2inl. 1) + 5, (aŽ3) .(2.22)

25
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Figura 2.15. An H, (25,3,6) - Exirornal Graph.

If we substitute in (2ý.22) the value of s Lnd use the obvious lower

bound on g,(n,3,2rn) we obtain, (for t 0),

2~ ('2i + 2 -l+ 5 g g(n, 3, 2m) n.(2.23)

The tightness measure on (2.23) yields,

3 i 1 3_ _

-. + -l .Žur 1 nmm (2.24)

The asumptotic bounds in (2.24) are the same for any n such that

0 < t <~ V mk- 1, since t is bounded by a function independent of n.

If m >> 1 then (2.24) is a substantial improvement over (2.19),

(when k -3). Similar asymptotic bounds may be obtained for odd d.

In general for m 2:3 from the previous family of graphs that

arises fron, the trees T k'(t =0)
n,k

iik.-k+l+skn
g g(n, k, 2m)

~., 26
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~,or after suhstitutinig the value of s, (t 0),

1n~+l 1 k k * n
2 + > 2 *~k2m (2.25)

B y applying the tightness measure to (2.25) we obtain,

k 1 (k-2) _>(.6

2 2(k- ) m- n 2o

M ~which for m >> 1 improves (2.19). Note that if t > 0 we still get

(2.26) and that a similar inequality for d odd may be obtained 
in the

same manner. We may therefore summnarize,

Theorem 2.5. For k 2 3, d ?.2 and n 2:(v~j 1) k + 1,

k + k-2 g1(n,k~d) k
> lim n2

2[ 2_1

(k-1)

V G

~27
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CHAPTER 3

GRAPHS WITH PRESCRIBED DIAMETER AND CONNECTIVITI

3.1 Introduction

Two fundamental considerations in the design of a communication

network are its reliability or survivability and its associated maximal

transmission delay between any pair of stations. These characteristics

depend on the topological configuration of the network. Based on a

graph theoretical model of the communication network, mzny different

reliability or survivability criteria may be defined. The simplest

criterion used is the minimum number of edges or vertices which must

9 •be removed from the graph in order to break all paths between any

remaining pair of vertices. Those measures are called the edge connect-

ivity and the vertex connectivity, respectively. In a network where

the failure of links is more likely to occur, one uses edge-connectivity

as a reliability measure. Whereas in a network whose stations are more

likely to fall, vertex connectivity is a more appropriate reliability

measure. For given diameter and connectivity values it is generally

desirable to construct a network with minimal number of edges. Graphs

with given number of vertices and given connectivity, having minimal

number of edges, were constructed by F. Harary [10]. However, many of

"these graphs have a large diameter, and the diameter cannot be pre-

scribed. In this chapter we construct graphs for which the diameter

as well as the connectivity are prescribed.

To this end let H 2(k,d) (H 3 (k,d)) denote the class of k edge

connected (k vertex connected) graphs of diameter d. The subclass of

graphs in 112 (k,d) (113 (k,d)) having exactly n vertices is denoted by

29



H (n,k,d) (H (n,k,d)). For i 2.3 we call the graphs in H (k~d)

(H (n,k,d)), H~ (k,d)-granhs, (H i (n,k,d)-graphs).

Let

~~ (k~d),AGE H (k, d) I(~

gi (k,d) Min IE(G)!
GEH H(k,d)

gi (n,k,d) Min HEG
Gf i(n, k,d)

The graphs in these classes with minimal number of vertices are called

vertex extremalgraphs of the respective classes, and those having
minimal number of edges will be called simply extremal graphs. Since

a k-connected graph is also k edge connected, and a k-edge connected

graph must have a minimal degree larger or equal to k, we have,

H (k,d) D H2 (k,d) D H(kd (3.1)

A" l (n,k,d) DH (n,k,d) DH (n,k,d) (3.2)

The extremal graphs constructed in Chapters 2 and 3 show that

11V equality does not hold in (3.1) and (3.2). Some properties of the

functions g(k,d) and g (n,k,d) were studied in [71, [8], In this

chapter the above functions are considered and some extremal graphs

are given.

.......... 3.2 A Class of 1I,1c.d)-Extremal Graphs

It is known~ [12] that,

f (k,d) k(d-1) + 2, (k,d -e 1), (3.3)

jnd vertex extremal graph are obtained as follows . Let 11 If H..., H,
11 2 0 d-l

"M~~3

~j ~A ~ 3n



be disjoint copies of K.K, such that every vertex of H. is Joined by an

edge to every vertex of H (1 :5 i :5 d-2). Finally join a vertex u

to all vertices of H ancO a vertex v to all vertices of H1 l (Figure

3.1).

U V

H1  H2  H

Figure 3.1. A Vertex Extremal H3 (3,4) - Graph.

Using (3.3) and the fact that every vertex of a k-connected graph has

degree k or more, we obtain,

93 (k d) >_ LrkIJ=L~~2 2 + 1  (3.4)

in (3.4) we have used the fact that the sum of the degrees of the

vortices of a graph is always even.

The exact value of g3 (k,d) is calculated in Theorem 3.1.

Theorem 3.1. For any integers k,d >t 2,

t g3 (k~d) Lkd±2JAj .(3.5)

Proof. To prove (3.5), it is enough to construct a family of

graph 2n1 k avn xcl edges. The construc-

- d
tion of t~hese graphs, which we denote by G1 will depend on k beCing

even or odd.

31
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L'Ahol c ho I \4it IO- loom of c~ho ccotl4loirt graph on k vert Ices, Rkv by

\1V 0 V , 141 It o fI om K v ho tidgol V, ~v 1 (. 5 V • , and

d 1At 0i It, Vt j Iti t %II lig itrailpl by It ( I f Q -' .1 , Ii Is 12 p11a Ir ot ve rt ices

midit i ono of the gt-apm cs('onstruc ted in (.10] Lind aliol.n t-o b~e

(1( '1 o 111 c t. e d . Lot III U'i) t,l be (1-1 dis~jinft copies of 11, and

k0L4titt. ( lit, Vort I COi of 11 1) V5 d l u

In it tIo fI 11ow i lg wily. oinlV to V by an edge for all. 1 ! 1• k

diwi I S Ii-2 2. '11101 101n 41 new vertetX U. adi nceiit to all the vcertices

tit t Imida Vrto Il Lkdj jacont: to all. the Vertices of Ii-1 (Fig. 3.2)

AlA

Figure 3.2. H

Contn tleegs eoti



* ~IN,

Case 2: k 2k~ + 1, k I

' lWe begin by drawing a k-cycle ' 'with vertices v .,vZ**.~V..vI

Then we join 2 vertices v and v if and only if li-jilE m(mod k)$
where 2 :5m < 9, 1 (if Y£ 2, we obtain a 5-cycle). Finally join

v~ to v~ by an edge for 3I 1i • k (see (101). The resulting graph

N~is again denoted by R (if k. 1, 11 is a disconnected graph composed

of an edge v 1 v2 and an isolated vertex v 3) We have, in H,

deg(v) k - 2, 1 1 i S 2Z,

dg(v2 ~ 1  k -3.

Let.. H be d-1 disjoint copies of 11. Denote the vertices

of H% by vi.,v 2  ...'vk 1 :5j :5 d-1, in such a way that

*4.deg(v 1  deg (v2  k - 3 (s-odd)

'~To construct H (2P,-l-,d)-graphs, two subcases are considered.

"(I) d =2n+1, n ? 1

To form, ( 2 n~l join vi to v ijlby an edge for all 1 1 i 5 k and

1I j •d. Then join new vertices u1 and u2 to all the vertices of H13

and 1 1 d1 respectively and finally Jcoin vjlt V 1 fr d

(1 s 5 d-1), (Figure 3.3). We then have

ON.~ G29n+1
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U1 U2

H1  H2

Figure 3.3. G53

(HI) d 2n, n Ž1.
2n

The construction of G2n is similar to the construction in (I),

except thatvls is joined to V2s+l for s odd only for 1 :5 s !5 d-3, and

Vid-l is connected by an edge to vl+1 d-l, (Figiure 3.4.

V1  du2

U1 U

H1  H2  H3

Figuro 3-.4. Gb4
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By counting the edges we obtain,

i ~~~2n =((2P£+I)W2n-i)+2) (2k+l)÷!(38

summarizing (3.6), (3.7) and (3.8) we conclude,

ilkIEGI E Gl 2k+lJ (3.9)

for all k,d Žt2.

d
Each pair of vertices in G (k,d Ž 2) is contained in a cycle of length

k

5 2d, therefore, d(Gd) <d. Since d(ulU 2 ) = d, we conclude,

d(Gd) =d.dk.k

To complete the proof, the k-connectivity of G must be established.

To that dnd we state the following definition and assertion.

We shall say that a vertex vi, t H has the star.prop2erty if vij

I is adjacent to all vertices of Hj except one vertex, say vi

Assertion: If the vertices vik C H. and Cin H H (1 : P, < n : d-1),n; n

both have the star property, then there are k-vertex disjoint v Ji n-

dpaths in Gk.

To prove the assertion consider the followiug paths,

v. v v vj 1 5 m,k m #i 0 , Jo

vi u vi v .
uo n n

vivJo£vjon v 2 VJn

Note that i may be equal to j, i to m etc. Since the above k vi. v -
k n

paths are vertex disjoint, the assertion is proved.

,. . i..
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Let a, b f if {a,b} f {u 1 u then clearly there are k

d
vertex disjoint a,b-paths in G. Otherwise, a few cases and subcases

need to be considered.

Case 1: k = 2 , k >_1.

I. a =u, b f H (and the symmetric case).

Since b has the star property, one easily asserts the existence

of the required paths.

II. a, b C Hi.

Hi is (k-2)-connected and therefore there are k-2 vertex disjoint

a,b-paths in Hi. Furthermore, there is a cycle thro'igh a, b, u1 and u
112

which has y a and b in common with the previous k-2 a,b-paths.

III. a C Hi , b e H. and i - j.

Since both a and b have the star property, the existence of the

vertex disjoint a,b-paths follows by the assertion.

dBy the Menger-Whitney Theorem, G22 is k-connected.

Case 2: k= 2t + 1 £ >l

Consider only the case d odd (d even is treated similarly)

I. a =u1  b C Hj (and the symmetric case). If b has the star

property in Hj then the paths exist like in Case 1 (I). Otherwise,

b = v1  or b = v 2  for some 1 •8 s •_ d-l, and again the existence of
s3  s+l

the paths is easily observed.

II and III. a, b f H and a does not have the star property in

Hi (there is only a single such vertex in Hi). Or a t Hip b C Hi, and

a or b or both do not have the star property. Then in a similar manner,

we establiih the k disjoint a,b-paths and the k-connectivity follows.
Q. h. D.
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tIst should be noted that the 11 (k,d)-extremai graphs obtained in

thssection, are H(n,k,d)-extreiual graphs, where n has tile appropriate

value.

3.3 Ineuaities oceni the Parameters of HJd

Considering a k-connected graphs with n vertices and diameter d,

we derive a few relationships between thle parameters n, k and d.

Theorem 3.2. For all H (n,k,d)-graphs

(a) n ?t (d-Kt)k + 2 (3.10)

and n can be as large as desired.

(b) If k -n - 1, then d 1.

If k < n- I then

n --2~ d 2. (3.11)

n-2i

and all the bounds are best possible.

Proof. (a) As mentioned before, (3.1.0) is proved in [12].

M~'
To construct a graph GC H H(n,k,d), with any given n, provided

that n 2:(d-l)k + 2, take the H ((d-l)k + 2, k,d)-extremal graph as in

the proof of Theorem 3.1. Then add the remaining n-(d-l)k--2 vertices,

and join each of them to all the k vertices of H~I by an edge, (the nota-

tion of the proof of Theorem 3.1 is used here). The resulting graph

(Figure 3.5) has, by symmetry, diameter d and is k-connected, therefore,

~' ,~it is an H13(n,k,d)-graph. The latter can be used to establish an upper

~ ~.bound on g,(n, k,d) ,

k n
-~(2n-kd+k-2) g g(n,k,d) Ž -n- (3.13)
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FIlurs 3.5. An H3 ('10,3,3) - Graph.

(b) if C 4 H (n, k, d) and k(-l then, E (G) Hence,

Otherwise, k < n-I and d Ž 2. Using Harary's method [10], a (k-l)-

connected graph on n-I vertices may be constructed. By addinf.!, a new .

vertex adjacent to all previous n-i vertices an 113 (n,k,2)-graph is

obtained, which proves that the lower bound in (3.ii) achieved.

The upper bounds in (3.11), (3.12) are derived from (3.10) and the

graph constructed in part (a) attains them.

(c) To show that for any n and d these exists a i-connected graph

I with n vertices and diameter d, simply take a path of length d and join

all the other n > d + 1 vertices to any vertex of degree two on the

path. QED

3.4 Bounds on g,.nk(d) d

Clearly, any k-regular graph in H(nkd) will be H(n,k,d)-
3' 3

extremal. The following theorem gives the construction of such a class

of graphs for k even, for a limited range of n.

Theorem 3.3. For k 2 and

(d-I)29k+2 S n _< (d-1)(k-1)4+2,
(3.14)

g3 (n,2k,d) an
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I \v Proof Ilno (n. 01 QLd Z! coli I'it n o

g~ ~ Iv At2 + 1) It ti' i I(1Y1 .l)4+ý2 WTA1 1 Vi v-ov

If 11 (dW' ) UA-2, thto ox ti't111.1 grnphl Waa iut Cmin~tru d hi tho~ p roof?

113( (l-A 2.U+2, 2Q () -ext: rem1al Aratph of' 'heoroiu 3. 1. Add the a clier mi

vortl esm W1 W, w2  w 1 (0. S III ! (d-l-)(21-4) ) to LIhO oxtromal graph ma

Sfollowa . If mn V .IL 4 join 011Q,1 Of W(.1 :5 m ) to al I vertices of

H1 V flnd chainge 1111 which -is at (2ZQ.-2) -rdgu1.ar, (U~-2) -connected graphi

oil U12 vertiLces, to at (2 2 --2-ni)-regular (2k-2'.-m)--conriected graph oln tho

2k. \'etice8at of It uting the methods of [10) If mn > 29. 4 connact

the rema~inling Vertices to 112, White redUCing the regularity atnd connect-

ivity of' H2 appropriately, Ohen do the samen tu 11 etc. (Figure 1.6).

The cotal. number of vertices one may add to thie extreinal graph in this

way Is (25R.-O)(-i.). It is easy to verify the resulting graph is

'~~ h?.-regular 29.-connected and has diametter d. ~ ~

Q..D

Vi~

~~ Figure 3.6. Arn ( 3 (16,6,3) .- Extremal Graph.

A 44
39

4~ .a'*'11f V



WMWNote cha1~iLth CUM mantthod ort modtlyI i ,g tho Oxto Id graph vo n

apidto prapho in H13 (n *,d) with k odd mud ru om~ ctri d to app rop riate

k od, whch il h Wrgoluror almon c k rogu lar) Fo timer, it: caa

VIalo ba ampplied to obtain HI(n*k , d) -vtrvma graphs motiaou h-1

C~hapte~r 2.

If n > (d-1) (1-1)4+2, an umppe bound on g1j 4 ,2Qd) may bu obtained

by adding now vertices to the (H(I-I)MOU0.)42, 21, d)-extremai. graph,

and j oini~ng eac of thom hy an edgeA to all.i vert ices of H1 Thus3 an

improvement: of (3.13) is ob tamned ( the lower hound is obvious),

Applying the tightness measure to (3. 15) we obtain,

SUng 3 (n,2U,d) ~2~(.6

which is simnilar to (2.19).

It should be noted that some of the graphs constructed in Section

2.4 of Chapter 2 (Figures 2.9-2.13), which were of diameter d, minimal

degree k and having exactly n vertices, are also k-connected and there-

A W fore some of the constructions may be used to obtain H13(n,k,d) and

H (n, k, d)-extremal graphs.3,

Since the H (n,2,d)-graph constructed in Section 2.4, (See Figure

2.9), is clearly 2-connected, inequalities (2.20) and (2.21) are true

for g3n2,d) also.

Hence,

(n 2,d (3.17)

Ii~ 40



and,~

I • 1 (n, ±t I2. d) 1 (.8

USince t~he 1I1(n, 3,d)-graph obtained in Section 2.4 (Fig. 2.15) is also

3-connected we have the equivalent of (2.24) for g 3 (n,3,d) as follows,

P .2 s ifi g 3 (n3 3 1 (3.19)

~j;.2 2 2[J

For k > 3 take the s copies of T already combined as described in

Section 2.4 and on the s(k-)' vertices of degree construct a (k-i)-

regular, (k-l).-connected, or almost (k-l)'-regular, (k.-1)--connected graph

MY by the methods of Harary (10] as illustrated in Figures 2.13 and 2.14.

V The resulting graph is obviously k--connected on n vertices and has

9
diameter :5 d. Therefore if we denote the class of k-connected graph

P, ~on n vertices with diameter <:d by H 3 (nQk,d), (H13 (n,k,d) D H83(n,k,d))

adthe miniml number of edges of an H ( k~d)-graph by g(n~kd)thn

Ifor t =0 we obtain from (2.25),

n g3 nkm n-l)k+l + (n-1) (k-2) (.0

2 9 nk2) 2 (.0

Corresponding to Theorem 2.5 we obtain for k Z3, d Ž 2 and

n Ž(v d~-l)k+l

'~ kg 3 nk,d)_ k 1 k-2
-< lim 5- -. (3.21)

* 2+ a n2 2(k-1) 27J-1

A' ~ 41
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3.5 Remark on Graphs with Prescribed Edge Connectivity

Considering the synthesis of reliable communication networks with

respect to link failures, the following problem is of interest. Given

integers d, k ý 2, we wish to find the minimal number of vertices and

edges that an k-edge connected graph with diameter d must have.

Fulkerson and Shapley [11] solved the problem of finding the minimal.

number of edges that an k-edge connected graph on n vertices must have,

but in their work the diameter is not prescribed. We, on the other

hand, will use both edge connectivity and diameter constraints.

In terms of the definitions made in Section 3.1, we will obtain

bounds on the functions f 2 (k,d), g2 (k,d) and g2 (n,k,d). First note

that due to (3.1) we have for integers k, d >- 2,

fl(k,d) 5 f2(k, d) : f3(k, d) (3.22)

gl(k,d) 5 g2 (k,d) f5 g3(k,d) (3.23)

For n >! (d-l)k+2 we also have from (3.2),

gl(n,k,d)5 g g2 (n,k,d)_< g 3(n,k,d) (3.24)

PRowever, one can obtain tighter bounds on f 2 (k,d) and g2 (k,d) as

follows. Consider the class of H3 (k,d)-extremal graphs constructed

in the proof of Theorem 3.1. (Figures 3.2, 3.3 and 3.4), using the same

notation as in the theorem. Instead of Hl H 3, H5,...,H2 ,+l, as defined

in Section 3.2, we take single vertices. The graphs obtained in this

way are clearly of diameter d and are k--edge connected, thus being

.. H2 (k,d)-graphs (Figure 3.7, 3.8). By counting the number of vertices

of such graphs, we obtain an upper bound on f 2 (k,d).
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f1(~d)• 2(kd)~{ k-~)d+ I d-even

2'

< f(325

~~~~~~ (k Fiur 3.7.) AnH<44)-Ga

IP

Figure 3.7. An H 2 (4,5) -~ Graph.

-W.

urhrmore, (using the notation of Section 2.2) an H (k,d)-graph

must have at least k edges between the vertices of V andV
i Vi+l,

7.S 0 1 i 5 d-l. Otherwise, the graph cannot be k-edge connected.

Hence, we must have,

n, nm k ,0 1 d -1.(3.26)

44 .From (3.26) we obtain

k,40"~i



S+ n > 2v§ 0 < i :_ d -1 (3.27)
i 1+1

Inequality (3.27) follows by noting that if we assume,

ni + n,+1 < 2V--,

k--kkor
together with using inequality n >k . we obtain ni + n 24 or

2 2
n+ k < 2V nil, or (n -k) < 0, which is a contradiction. Incor-

porating inequalities (2.2) which must be satisfied by any H2(k,d)-

graph, we have for d Ž 3,

d-2
Sn, >_ 2(k+l) + (d-3)v \/.
i=2

Combining the latter inequality with the upper bounds in (3.25)

we obtain

(k+l)d + e+2 I d-even

Max f(k,d),(k+ll+(d-3)\jf2(k,d)<_ (3.28)
k,d>-2[ 2 (1k+() (d+l) (-odd

L 2 d

In some special cases the exact value of f2(k,d) can be obtained.

In other cases, tighter bounds than in (3.28) may be obtained, but the

general formula for f 2 (k,d) seems to be much more difficult to get than

the formula for f 1 (k,d) and f 3 (k,d).

We list a few special cases.

(1) f 2 (k,l) k + i, f 2 (k,2) k + 2,

these are readily proved.
(2) For k - 4, d Ž 6, the following graph attains the lower

bound in (3.28) (Figure 3.9).
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4 Figure 3.9. A. Vortex-Extremnal H2 (4,8) - Graph.

Thus, for d Ž6,

f 2(4,d) 2d + 4 (3.29)

(3) For k =5, d > 6, conside~r Figure 3.10.

~2

-K 6

Figure 3.10. An H2 (6,8) - Graph.

If d 8, the construction in Figure 3.10 yields a smaller upper

bound than in (3.28). For this special graph we obtain,

24 5- 2(6. 8) :5 26
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A~l

to l~Iowor b ound n cl or ivtd f rom (3. 28) and t~he upper bound from

Hly counrn I t ho "1Aumbor of edgem of the previously cons truc ted

g rup ha (Figuriis 3.7) and 3.M), upper ihounds on g 2 (k,d) are obtained,

HvImpoming the eximtLence of at least k edges between V1 i n 1 +1A

~~~~~~ 1 )~I•tt , l owe r bound nro at ta ined.

Thuh, wu li d

-~ d-even, k-even
4

Vs.~&KI 2K d-odd, k-even
dk ', g.,(k, d) 4 (3.30)

41* .Ž--- +d-)d~~-odd, k-odd

1. ANT'."). d-even, k-odd
4

~~ I An in cal culating bounds on f k, d) , the upper bounds on g2 (k, d)

cun h I)~ mp roved using the ab~ove mentioned techniques.

Noting that the construction in Section 2.4, used to obtain an

Kai upper bound on g (n,2,d) (Figure 2.9), is clearly an H (n,k,d)-graph

we obtain,

.1 Q n (n,2,d) 5 n + .F- (3.31)

Therefore,

g9)(n,2,d)
1 lini .1---~ +-j~ (3.32)

n d-l

Similal 'v, from the B (n,3,d)-graphs in Section 2.4 (Figure 2.15),
~1

whitch are also H9( 3 d)-graphs, we may write,

:5 (3,33)++T
2U -l
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~% .<For k > 3, we take the s copies of T mk and combine them as in

In-i
Secti~on 2.4. On the s(k-1) vertices of degree 1 of the resulting

grpwe construct a (k-l)-regular, or almost (k-1)-regular, (k-i)-

I ~~~connected graph, by the methods of [1]o 1]to obtain a k-edge

connected graph on n vertices with diameter :5 d. Therefore, if

ii (n,k,d) denotes the class of k-edge connected graphs on n vertices

with diameter d, and the minimal number of edges of an H (n,k,d)-
2

graph is denoted by g(n,k,d), we obtain using the graphs thus con-
-. ~ - 4 fgK

structed, (k > 3)

k (n,k,d) <__k__k-2
-<lim-- _L + _I -2 (3.4)~2- n 2 2 dklJ2-
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•4i:
CHAPTER 4

ON THE DIAMETER STABILITf OF GRAPHS

4.1 Introduction

We consider a communication network such as a store and forward

ik . message switching computer communication network. The network is topo-

logically described by an underlying graph whose vertices represent the

k network terminals and switches and whose edges represent the network

communication channels. Messages arriving at random at the net"Jork

source terminals and routed through the network towards the correspond-

R ing destination terminals, experience queueing and transmission time

"" delays. W'hen we use the maximal average message delay as the network

delay measure, the diameter of the underlying graph can be shown to

serve as an index of the network message delay performance (see [1]-[2]).

S I Tte use of connectivity indices of the graph as a reliability measure is

based on the assumption that the network is operational in the presence

of failure provided there is at least one path remaining between every

I pair of nodes. However under failures the resulting network may have an

excessively large diameter, which as previously indicated may result in

intolerable queueing delays while routing a message through the network.

•d •Therefore, a more meaningful reliability measure for a computer network

.00 would be the minimum number of nodes or links that must fail in order for

the diameter of the graph to exceed a specifided value. (See also Wilkov

!; [281).

In this chapter we assume that it is required to construct the net-

work in such a way that the maximal message delay will not exceed a pre-

scribed upper bound, even if a number of communication links fail.
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Hence the following graph theoretical parameters are defined and

investigated.

A graph G is defined to be an (9k,d)-araph (with respect to edges)

j~ if

d(G-E) 5

VECE(G such that IEI<ý Z-1. Or equivalently a graph G is an Y,)

graph if and only if for any two distinct vertices' x,y and any Z~-1 dis-

joint edges ell e2 *..., e,_,, there exists an x,y-path of length riot

exceeding d, which avoids el, e9, .... e Z 1 .

To show the equivalence of the definitions let G be an (k,d)-graph,

then by removing ell e 2 1 e.. k 1 from G the diameter of the resulting

graph, G - e1 e, ... , e 1 } does not exceed d, consequently for any

pair of distinct vertices x,y there is an x,y-path of length < d avoid-

A ing el, e 2, e.. Zl11 To show the sufficiency of the condition, let

a,, a 2, .... a~ kk < U) be a minimal set of edges of G whose elimination

results in a graph of diameter > d. Therefore, there exists x,yc V(G)

such that d GA(x ,y) > d, where A {ala 2, a.. C Choose Q.-k-l

other distinct edges akl ak .... aL. According to the condition

in the defini-Ltion there exists an x,y-path of length :5 d, avoiding

al, a2 i, .. , a k 1 contra-ry "a our assumption. Hence G is an (X,d)-graph.

A (X, d)-stable graphs (with respect to vertices) are defined similarly,

as graphs G with the property

d (G-V) •5 d,

\fVCV(G) such that lvi:ý k -i.

A . 5 0



* A. By removing a vertex v cnV(G) from G, yielding G - }. we mean removing

•! v and all edges incident with v. Since only (9,,d)-graph with respect to

•.! edges are investigated in this chapter, we call them simply (12z-d)-

if'

Clearly, d incd(G). An (e,d)-graph with diameter d is called an

2,-diameter stable graph. Note that an (k,d)-graph is well defined only

4 if £, d Ž 2 and that the diameter of an Z-diameter stable graph must be

at least 2.

A pair of nonadjacent vertices x,yE V(G) will be called an k-dis-

tance pair if
0

d(Xy) =

VECE(G) such that ]Ej 9 £-l.

3'A graph is called Z-distance stable if and only if all pairs of non-

adjacent vertices of the graph are L-distance pairs. In an Z-diameter

stable graph one has to remove at least Z edges from the graph in order

to increase its diameter. Whereas in an 2-distance stable graph at
,<

least £ edges must be removed from the graph in order to increase the

distance between any pair of nonadjacent vertices of the graph. (t,d)-

%A !graph are in particular Z edge connected graphs and the following rela-

tions between the respective classes exist.

(9,-edge connected graphs} D {(i,d)-graphs} D fL-diameter stable

graph} D {(-distance stable graphs}.

2• The above inclusions are sharp as will be shown in the examples of

Section 4.2. It is easy to find graphs that are i-edge connected and

* •not (i,d)-graphs, etc.
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If d is "large" then the class of (Ud)-graphs is identical with the

class of k-edge connected graphs.

The above definition of stability with some results appeared in

[5] and [6]. Some properties of k-distance stable graphs (mainly with

respect to vertices) were obtained independently in [231, where they are

called Z-geodetically line (vertex)-connected graphs. Some examples of

(kd)-graphs may be found in [15]-[221, where the main problem is to

find the minimal number of edges that an (k,d)-graph with diameter S and

n vertices must have and to construct classes of extremal graphs in this

sense. Later in the chapter we will refer to those works. In the

following, some properties of (R,d)-graphs, t-diameter stable graphs and

X-distance stable graphs are derived and some related extremal problems

are investigated.

4.2 Examples of (k,d)-graphs

Example 4.2.1

A class of (k,d)-graphs having n vertices may be obtained by a

simple application of a result obtained by J. W. Moon in [24]. There

the function g(n,d) (n-l > d > 2) is defined as the least integer r such

that if the degree of every vertex of G (IV(G)I n) is greater or

equal to r, then d(G) 5 d. Moon obtained

(L]if d 3
rn-l

g(n,d) if d 3t - 3
StJ

if d=3

Therefore, if all vertices of G satisfy

~ 52

elV



de''> L~-~~1+ -i if dI 3t 4

Fa]+ z-, if d ~'3t -2,

then G is au (X~d)-graph. Note that if the number of vertices is pre-

scribed, an (i,d)-graph can be obtained by using the methods of Chapter

2 and 3. However, the latter graphs will have many extra edges.

01 ~Example(- 4.2.2.

Consider a collection of (2m+l)-.cycles all sharing exactly one

* vertex and let m !5 The. graph obtained is (2,d)-"stable.

Figure 4.1. A (2,d) - Stable Graph.

Note that this graph is not a 2-diameter stable graph.

& 1We now state three leimmas that will be used for constructing

(z~,d)-graphs. The proofs are obvious and therefore omitted.

Lemma 4.1. If between any pair of vertices of G there are at,

least 9, edge disjoint paths not longer than d, then G is an (~)

* graph.
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Laiuu 4.!2. If and Gare 9-iaeter st~ab le grapho anti

.ý '

X4 ,y 1  V,(u~ isa a dismutrneal pair of G, (01, 2) , then the Rraph Q

obtained by idontifying tho vertex x M wth x ½ V \(a 2) in ani

k-dliameter stable graph of diameter d (G I) + d (G2 ).

RLemmna 4.3. If for any pair of nonadjacent vertices xyi~V(G),

there are at least I edge disjoint x,y-paths of lengt~h d (x y), t:Wn GG

is an 2k-distance stable graph.

Example 4.2.3.

Let £,d A. 2 be any arbitrary integers. Let H19 H *.,H be21 2 .. d-l

d-1 disjoint copies of the complete V-vertex graph K.,, where the ver-

tices of H are denoted by v1  v2 ,.. v, (15 j : d-1) . Join vK to

v by an edge efor rll :il: Zanld1 j:5d-1 Then join a new
1+1

R vertex u, adjacent to all, vertices of Q1, and a vertex u, adjacent to

all vertices of H d-l (Fig. 4.2). The resulting graph H is an (.Qd)-

graph by Lemma 4.1. Since d(H)=d, H is an £.-diameter stable graph,

A ~Note that H is not an 9k-distance stable graph.

Figure 4.2. A 4-Diameter Stable Graph With Diameter 4.

a II
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7 ~ .~: ~ ~A4.2.4.

1~xa~e 44..wits definod as the class of (X,d)-grapha

wih imae on nvertices, gni.d-)donoLted the minwimal number

U. S. R. Murty proved [16] that if

R n >then

22

an dthe corepndinguniqueextrealgraphi is ob~tained from the complete

bipartite graph K by adding all the edges within the class of k~

vetie (Fig. 4.3). The resulting graph is denoted as I' ()

ME Figure 4.3. A 3-Diameter Stable Graph With Diameter 2.

Using the previous construction k~-diameter stable graphs with

even diameter and arbitrary number of vertices can be obtained by~ taking

[~disjoint copies of r' MZ and in each two successive F(kj's identify

Wle" * two vertices from the class of n-Z vertices, (Fig. 4.4). The resulting

* graph is by Lemma 4.2 2i-diameter stable with diameter 2 2~

M.
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Figure 4.4. A 2'Di1ameter Stable Graph with Diameter 6.

Using this construction an upper bound on g(n,2m,2m,i-l) is obtained, by

,.W using (4.1), and the fact that an Z-diameter stable graph is in parti-

cular i-edge connected, yields a lower bound. Thus,

ni m(k-l) \
M2 - g(n,2m,2m,i-l) Z in-l -

Since,

g(n,2m+1,2m+l,2i-l) !5 g(n,2m,2m,i-l),

we have,

Asymptotically, applying the tightness measure t,, (4.2) we obtain

!•img(n,d,d~i-l)< (43
2 m n(43

The previous graph is not i-distance stable.

~41 Example 4.2.5

i-distance stable graphs with diameter d are obtained as follows.

Take d-l disjoint copies of the complement of KHit Hl H d

where the vertices of HI are denoted by v1 , v2 , .

1 5 dl Join vm to vn for all 1: m i, n k and 1 S j 5 d-1.
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121.-... .... -t .. . .~*~dt f...s.. ..... .. r.., - . .....

Then join new vertices uI and u2 adjacent to all vertices of H and

d-ldI respectively. The resulting graph has diameter d and by Lemma 4.3

is also an Z-distance stable graph, (Fig. 4.5).

ftt

¾'

Figure 4.5. A 3-Distance Stable Graph of Diameter 5.

By adding new vertices all adjacent to the vertices of Hd~l,
{d-'.

distance stable graphs with diameter d having prescribed number of

vertices may be constructed.

As can be seen from these examples and many others, there are

"many" different (9t,d)-graphs and Z-diaxneter stable graphs. In the next

section some of their properties will be investigated.

4.3 Some Results for (Z.d)-graphs

An edge eE E(G), will be called cyclic if there exists a cycle in

G containing e. To each cyclic edge assign a natural number g(e) Ž: 3,

which is the length of the shortest cycle in G containing e. If e is a

bridge then g(e) A The girth of G, girth (G), is defined as

girth(C) A Minn g(e).
e r E(G)

The following properties of (t,d)-graphs are quite obvious.

io

STheorem 4.4. Let C he an (Zd)-graph, (Z,d)'2), then

.'U , I

A~X.~R')', 4 t: r?... i17 -M .tv 9'~'" M rt~ a~ i~YIIP3~titR/
* I 'I ,. vv~iiv'' 'w~ tOT A y ývt½ 'ý'N~ m »~*



g(e)• d+l,V Ve CE(G) (4.4)

and this result is best possible.

Proof. If G is an (9.,d)-graph (Vý. 2), then G is in particular

2-edge connected and hence all of its edges are cyclic. Let ab- e be

an edge of G and assume

g(e) > d+l. Then d(G-e) ?:d (a,b) > d.

To show that (4.4) best possible, consider the cycle C which is
Cd+l

a (2, d) -graph and g (e) =d+l Vee EE(Cd+1).

Q.E.D.

Theorem 4.5. Let G be an t-diarneter stable graph, k~ 2,

then

Furthermore, (4.5) is best possible.

Proof. G is 2-edge connected and if g(e) >' d(G) +1 then

d(G-e d dG.-e(a~b) > ()

where
e =ab,,

contradicting the assumption that C is an X,-distance stable graph.

To show that (4.5) cannot in general be improved we construct for

any arbitrary integer d Ž2 an 9t-diaineter stable graph with at least

one edge e such that g(e) d(G) +1. Let Gand G2 be distinct

t-diameter stable graphs with diameters d1 and d2 respectively, and let

Xi*of be a diametrical pair of vertices of (fr'lV2). Assume in

addition that G contains a triple x12y,,Z1 suchl that

di d G (,$y d dG (Xipz 1  d G (yi,zi), im12.
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By Lemma 4.2, the graph GI generated from G and G 2by identifying

ff the vertex x V(G) with the vertex x:fEV(G) is an k-diameter stable

graph with diameter al+d Finally define the graph G G + Y2

obtained from G by joining the vertices y, and y2 by an edge yy. Gi

~~ clearly an k-distance stable graph which contains an edge y~ 2 such that

g~yy2  =d(G) + 1, where d(G) dl+d2 by the above requirement of three

diametrical pairs in each graph.

O.E. D.

5, Inequality (4.5) (and also 4.4) does not yield a sufficient

condition for a graph G to be an Z-diameter stable graph. Take for

instance the graph H, composed of 3 5-cce 3 wt vertices

:'N'~~ 1 : 5, 1 :5 k :5 3, such that

i C~l 2 .. 2 3 C1 fl 3  4~ an C2 2l

Although every edge of H is contained in a cycle of length d()I

d(H -v' v) 6 > d(H) 5 (Figure 4.6).

.3 4

g".

V Figure 4.6. A Counter Example.

~p In par ticular we conclude from (4.5) that if G is 9,-diamneter,

~ ~ stable, then,

girth(G) :5 d(G) + 1. (4.6)

E~.

:5n

.........................



We do not know whether for d > 4, (4.6) can be improved. In other

words if one can construct for an arbitrary natural number d an k-diam-

eter stable (or 2-diameter stable) graph G such that d(G) d and g(e)

d(G) + I VeECE(G). If d=2 (4.6) cannot be improved. If d-3, 4

Figures 4.7 and 4.8 respectively show a realization for (4.6).

I Figure 4.7. A 2-Diameter Stable Graph
with Diameter 3 and Girth 4.

"W Q,. .T

Figure 4.8. A 2-Diameter Stable Graph withi Diameter 4 and Girth 5.



Th ne xt henrem given a NASC for a pair of vertices to be an
viol

1 0 A dA ol IWO pair.

Thou KOd.u 4.6. A pair of nonadj scent vert ices x ,yf V(G) in an

d ia~anve pair [U and only I f there are at least I edge disjoint

I ~X ,v-~pat lo of length d (x ~y) in G.

Proof1. Clearly, if there are at least ~.edge disjoint x,y-paths

A. of Lengthi d (x,y) in G , Mhen x ,y is an O~distance pair. To prove that

It x,v Is an 1-distance pai~r then there are at least I edge disjoint

r,v-pachm of legt d (x,y) in , we use t~he digraph version of Menger 's

Theo rem (vec 191 Chap. 5). The onypr of the graph G relevant to

the proof of the theorem is t~he set Wof t~he x,y-paths of length dG MY).

We can direct the edges of W to form a directed graph D on W with the

piroperty that the directed x,y-paths correspond exactly to the x,y-

pntLhs iniW. By applying the dirp eso of Menger's theorem with

reupect toegsone obtains that: h maximum number of edge disjoint

direct-ed paths of length d G(x,y) from x. to y is equal to the mninimum

nmiuber of edges whose removal. from~ D cuts all directed x,y-paths in

AFJW. Thi:; is exactly an equivalent statement to the theorem. The vertex

version of this theorem was done in [23].

A constructive proof of the theorem can also be given. First con-

sider thme ..se 1-2.

Define the following sets.

A (x) Ay f:V(G): d Cx,y OA ()

and

'A,

A ~61.
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'i Since xjy is a 2-distance pair there are obviously at least two xy-

paths of length dG(x,y) in G. We shall prove that one can always find

, at least two edge disjoint such paths. If dG(x,y) = 2,3 the proof

follows immediately. Assume therefore dG(xy) > 3, and let dGy (x,y) d.

• If there are no two edge disjoint x,y-paths of length d in G, there

must be a maximal integer i (U < i < d ) so that there are two x,y-paths
0

P and P2 of length d with edge disjoint subpaths from x to a vertex

xi, in Ai(x), (note that P 1 and P2 may have common edges in E M(x) only

if m Ž-i). If i=O xy is not a 2-distance pair, and i=1 is impossible

in a graph without multiple edges. Let e CE (x) be an edge contained
'N' i

both in P1 and P2, with end vertices x and xil, (xiEAi(x),
bot in P1+1

Xi+c Al(x)). Since x,y is a 2-distance pair, there must be a vertex

yie Ailx) and a yi,y-path of length do-i not containing e. Otherwise,

dG(x,y) < doe (x,y). Denote this path by P'. By definition there

exists an x,yi-pach PP of length 4. If PI(P 2 ) and P4 are edge disjoint,

define P = P? UP'. P (P2) and P are two x,y-paths of length do, such
3 4 1'2'

that if there exists elf Em (x) and elC P flP (elC P 2 P) then m > i.

This contradicts the maximality of i.

tIf P4 P1 and Pý, P 2 have common edges let k < i be the greatest

i iinteger such that there is an edge e2 C Ek(x) and e2C PIf P' or
C~~~~~ Pkl 5  , e1 xk4~.x~ \x ~

,e2= xk , (x A and x A (x). Define a newie2 2 P2•4 2 kXk+1 Xk kx) k+1 Ak+l

path P' composed of P resp P2 from x to xk and of Pk from x to Y
1 esp P2 fro x ox n

As before the paths P2 resp. P 1 and P' contradict the maximality of i.

This completes the proof for £=2. The same type of constructive proof

for V 2 is valid but seems to be too tedious to present here.

Q.E.D.
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Since any diametrical pair of vertices in an i-diameter stable

I graph must be an --distance pair, the following necessary condition for

i-diameter stable graphs is obtained by applying Theorem 4.6.

iheorem 4.7. If G is an t-diameter stable graph and x,y is a dia-

* •metrical pair of vertices in G, then there are at least X edge disjoint

x,y-paths of length d(G) in G.

Note that the statement in Theorem 4.7 cannot serve as a sufficient

• • condition for i-diameter stability, as can be seen for instance from a

cycle of even length, C2m, which is not 2-diameter stable, but each

diametrical pair of vertices in C2m is joined by two edge disjoint

T paths of length m, which is the diameter o C2 m.

We conclude this section by stating a necessary and sufficient

condition for a graph to be i-distance stable, which follows by Lemma

4.3 and Theorem 4.6.

Theorem 4.8. A graph G is t-distance stable. if and only if between

any pair of nonadjacent vertices x,yEV(G) there are at least Z edge

disjoint paths of length dG(X,y).

There is a clear analogy between Theorem 4.8 characterizing

i-distance stable graphs and the edge version of the Menger-Whitney

.M. Theorem (see [9], Chapter 5), derived by Ford and Fulkerson, Elias,
q.1
X! Feinstein, Shanon, Kotzig and others.

It should be noted that due to the similarity between io-distance

S •stable and i edge connected graphs, other analogs of connectivity

theorems may be proed for i-distance stable graphs (e.g., the Dirac's

fan theorem).

The next section is devoted to (2,d)-graphs.
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4.4 Critical and Superfluous Edges and 2-Diameter Stable Graphs

An edge eeE(G) is called superfluous if d(G-e) = d(G), otherwise

e is said to be a (diameter) critical edge. By definition, a graph is

2-diameter stable if a only if all its edges are superfluous. A

graph is called (diameter) critical if all its edges are critical.

Critical graphs were studies in [29] - [321.

Examples of critical edges are a bridge, any edge of C and anyn

M edge of K . On the other hand all edges of the diameter stable graphs
n

mentioned in Section 4.2 are of course superfluous. A few properties of

superfluous and critical edges and consequently results on (2,d)-graphs

are now given.

Theorem 4.9. If e EE(G) is a superfluous edge of a graph G,

then
g(e) <_ d(G) + 1 (4.7)

and this result is best possible.

Proof. If e is superfluous it is not a bridge and therefore it is

a cyclic edge. Let e = ab and assume g(e) > d(G) + 1. But then

d(G-e) _ d (a,b) > d(G) contradicting the b ,umption that e is

G-e

superfluous. To show that (4.7) is best possible, take a cycle of

r length d+l (d - 3, integer) and a path of length sharing exactly

one vertex with the cycle (Figure 4.9).

e

d=4 d=5

Figure 4.9. Suporflows Edges.
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The resulting graph is of diameter d and contains at least one super-

IF fluous edge whose minimal cycle is of length d + I.

o. E. D.

It is easy to see that the converse of Theorem 4.9 is not true.

W •The edges denoted by e' in Figure 4.10 are critical although their

minimal cycle is of length less than or equal to d(G) + 1.

4e

i'8'

1.

Figure 4.10. Critical Edges.

A simple consequence of Theorem 4.9 is Theorem 4.10.

Theorem 4.10. If for an edge eEE(G) of a graph G

g(e) > d(G) + 1, (4.8)

then e is critical.

Theorem 4.11. If eE E(G) is a cyclic edge of a graph G, then

d(G) ! d(G-e) S 2d(G). (4.9)

Proof. The left hand side of (4.9) is obvious.

A] Let

x,yE V(G)

be a diametrical pair of vertices in G-e, and define

A, = vCV(G): d ge(xv) = 0 - i- d(G-e).

i7 65



Let e= ab, and let aCA, bfA On m:n •d(G-e). Define
m n

P, t2 and take a vertex zEA+•. There exists an xz-path P1 in

G-e of length m+k, and a z,y-path P2 in G-e, of length d(G-e) - m-o

The shortest x,z-path in G does not contain e, otherwise it would be of

length at least m+l+k. Similarly the shortest z,y-path in G does not

. contain e, since otherwise it will be of length at least d(G-e)-n+l+t,

which is not shorter than d(G-e)-m--L due to the specific value we have

chosen for X. Therefore the length of P1 and P2 does not exceed d(G)

and P1U P2 yields an x,y-path of length not exceeding 2d(G) in the

graph G-e, which proves (4.9).

I To show that (4.9) cannot be improved take an odd cycle C
2k+1

2k d(C 2k+l- e) = 2 d(C 2 k+l) 2k.

Q.E.D.

If G is 2--edge connected, then

, H(G) _< d(G-e) <- 2d(G), •• i)

We thus conclude the following,

Theorem 4.12. All 2-edge connected graphs G are (2,2d(G))-stable.

Another simple bound on d(G-e), where e is a cyclic edge is,

"d(G-e) _ d(G) + g(e) - 2.

We thus obtain the following property.

Theorem 4.13. If G is a 2-edge connected graph and g(e) < g

V efE(G) for some integer g,

then,

d(G-e) !5 d(G) + g-2 VeC F(G).
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The following theorem gives a sufficient condition for a graph tu be

a (2,d)-graph.

Theorem 4.14. If for some integer m - 0, we have for a graph G,

(1) g(e) !5 34m, Ve.CE(G).

(2) Any pair of vertices x,yEV(G), such that dG(x,y) - d m

is joined by at least two edge disjoint paths of length

not exceeding d;

Then G is a (2,d)-graph.

Proof. Take any e EE(G) and let x,yE V(G-e). If dG(X,y) • d-m,

then by (2) d (x,y) < d. Assume tiherefore, dG(x,y) ý5 d-m-l, then by
G-eG

(I) de(X,y) _ 3+im-l+d-m-2=d.

Q.E.D.

Theorem 4.15 is a consequence of Theorem 4.14 for m=0 and

Theorem 4.7.

Theorem 4.15. Let C be a graph such that g(e) = 3 VetE(G).

Then G is 2--diameter stable if and only if every pair of diametrical

vertices in G is joined by at least two edge disjoint paths of length

d(G).

"By Theorem 4.15, the following class of graphs with arbitrary

diameter, is a class of 2-diameter stable graphs. Take a cycle with

even number of vertices labeled vlv 2 , ... , Vm, to each pair of

adjacent vertices vl, vi+l(mod 2n)' l:i5 2n join a vertex w such

that w is adjacent to vi and to v2n)' 1 _ i 2n. The result-

S-• ing graph l2 n (Fig. 4.11) is of diameter n+l, and is by Theorem 4,15

2-diameter stable graph.
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X

Figure 4.11. H&.

The graph H2n shows that Lemma 4.1 is not a necessary condition for

2-diameter stability, since for instance the vertices x and y (Fig.

4.11) are not joined by two edge disjoint paths of length -<n+l = d(H 2 n).

By joining in R 2n' w1 to w2 , w3 to w4 etc., one obtains a graph H2n with

diameter n+l which is 3 diameter stable and does not satisfy the con-

verse of Lemma 4.1 (Fig. 4.12).

F~igur 4.'12. 1

Fig. 4.11 shows a 2-diameter stable graph of diameter 4 which does not

satisfy the converse of Lemma 4.1. if d < 4 then Lemma 4.1 is a neces-

sary and sufficient condition for 2-diameter stability, as stated in the

next theorem.
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Theorem 4.16. A graph G with diameter 2 or 3 is 2-diameter stable

if and only if there are at least two edge disjoint paths of length not

exceeding d(G), between any pair of vertices of G.

Proof. Sufficiency follows from Lemma 4.1. If d(G) 2 then the

necessity follows from Theorems 4.4 and 4.7. If d(G) - 3 then fc -ny

pair of vertices x,ydV(G) such that dG(x,y) 1,3, the necessity again

is derived from Theorems 4.4 and 4.7. Therefore, let x,yoEV(G) be two

vertices such that dG(xy) 2, and denote the shortest x,v-path by

PI (P1 = xzy). Since G is 2-diameter stable, there exists an x,y-path

and2 5 2 IP 2 2 then P and P2 are edge disjoint.

If all x,y-paths (U P1) are of length 3 and none of them is disjoint

from PI, take such a path P3  xaby, and assume without loss of

generality that xz xa. There must be an x,y-path P4 of length 3
(P4 x cdy) such that xc # xz, otherwise dG (xy) > 3, contradict-

(4  xcG-xc' >3cntai-

ing the 2-diameter stability of G. In this case P3 and P4 are edge dis-

Soint x,y-paths of length 3.

Q.E.D.
im

4.5 Some Extremal Problems for 2-Diameter Stable Graphs

Similar to the clajses defined in Chapter 2, we denote by H (k,d)
5

the class of all k-diameter stable graphs with diameter d, and by

oH (n,k,d) the subclass of H s (k,d) conlaining all graphs with exactly n

vertices.

Let

f (k,d) Min IV(G)I
G Hs (k,d)

nigs(k,d) A Min IE(G)I,
G f 1s(k,d)
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and

gnkd) A Min E(G).
G C G H s(n,,k,d)

As before we call the graphs in H s(k,d), H s(k,d)-graphs etc., and

the H s(k,-d)-graphs with minimal number of vertices and edges are called

vertex ex-tremal and extremal graphs of the respective classes. As

(3+Vr-) kmentioned before Murty [16] showed that if n > 2then

9 (n,k,2) 2

and obtained the unique H (n,k,,2)-extremal graph rea'.ization (see
s

Figure 4.3).

In this section we deal only with the case k=2. First the value of

f (2,d) is given..

Since there is no 2-diameter stable with diameter =1, we set

d 2.

Theorem 4.17. For d Ž2!

[ I
('2, dAA + d+l1. (4.10)

Proof. Let G-EH (2.d) have a diametrical arc xO, XV,..., x~ and
5d

V A x f V(G) d (x~x =l 1 0 1 d.

Define

ni lvii 1 Oi d.

4G is bridgeless and hence n1 + n 3+ V 0 1 i 5 d-l.

Therefore

+d +
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"a and,

Onteohrhadcni~ the following class ofgah of arbi-

trr imtrd:,a nFi.41,wihb em . are 2-diameter

stable,

V._ _ __ _ _ _ __ _ _ _

An HS (2,d) - Graph with Even Diameter (8).

An HS (2,d) - Graph with Odd Diameter (9).

Figure 4.13.

This class shows

Mv f (2,d) [41] + d + 1.

and (4.10) follows..QED

Theorem 4.18. g (2,2) =5, and for d 3

g(2,d) 2(d+1) (4.11)

Prof Th1au fg (2,2) can easily be verified. The graphs

'.',~,described in Fig. 4.13 show

.9*I (2,d) !5 2(d+l). (4.12)

On the other hand if

~ ~. 
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then J~Ž 2 V 0 :5 15 d-1,, otherwise elimination of a single

edge disconnects the graph. J

Therefore, 2d !5 g8 (2,d).

t&41

Le *'XQ0 V0  I'V 1,y 1J V1  ('1 #yl), '2,y2 'E V2

assume x x Cx G01 x x2 ,yy where Vare defined

for a 2-diameter stable graph G, as in the proof of Theorem 4.17, (C is

a vertex extremal H (2,d)-graph). If x~y E(G) then there must be an

edge in G I (*X Ix 2) inciden-. with x1,, otherwise d G- (xl~x d)> d '

JG11 -C.3. If X ly1 C E(G) then again there is an extra edge. in G.

The same argument applies to the Gd2  Gd and therefore

2(d+l-) g g(2,d), which together with (4.12) proves (4.11).
Q. E.D.

Theorem :,-es asymptotic. bounds on g (n,2,d).

Theorem. 4.19. For d Ž4 and n > ý + d + 1,( d d-~odd
.... . . .. g(n,2,d) d-2

1 5 l im C(4.13)

d-3 d-even.
d-3

Proof. The lower limit in (4.13) is simply due to the 2-edge

con. o ay H(n,,d-graph. To show the upper limit we start with

the H (2,d)-extremal graphs shown ii, r~ig. 4.13 and add to them vertices

so that the resulting graph is a 2-diameter stable with diameter d.

D~enote b ,X,..Pxd the vertices of a diametrical arc of the

H (2,d)-extremal graph described previously.

Let d be even, then consider two cases.

_Uý 'ýA72
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Case 1: d=4m , m ZI

Connect x~m)x~ by edge disjoint paths of length 2mn,

W and possibly one single path of length less than 2m, so that the result-

ing graph has exactly n vertices (Fig. 4.14).
Ký

Figure 4.14. An H-s (20,2,B) - Graph.

The graph obtained is cleacly 2-diameter stable with diameter d with

~~ Fn-6m-l1
8m+2+ --L -J 2m+t+l, edges, where n-.6m-l (2m-1) s + t, O:5t:•2m

Hence,
g (n,,4m) n-6m-l]

g n ,m 8mn + 2m + t + 3, (4.14)

where t < 2m-1.

Case 2: d 4m-2  , in 1 1.

4~: I Similar to Case 1 we obtain a family of H (n,2,4m+2)-graph of diaxn-

eter 4m2 (Fig. 4.5) with 8m+ý6 + (2~l + t + 1, where

n-6m--4 2m s+ t, 0 t < 2m,

Figure 4.16. An HS (28,2,10) - Graph.

ýIi ý
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Hence.,

gsn24i2 2mi +[~~4 (2xn+1) + t + 7 (4.15)

where t < 2m.

If in inequalities (4.14) and (4.15) we substitute the appropriate

values of mn, we obtain in both cases after dividing both sides by n

and taking the limit as n -

liin 98 6,?,d)<d
n-ýo r d-2

V which proves the upper bound for (4.13) when d is even.

If d is odd the following construction (Fig. 4.16) yields an

H (n,2,,d)-j-raph.

Figure 4.16. An H8 (17,2,7) - Graph.

By counting the numiber of edges of the resulting graph, one obtains

the upper bound in (4.13) for d odd.

Q. E. DI.
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In special casea tighter bounds on f, (k,d) and g(d)can be

2g 2 (k

obtaine~d.

(5) f (k,d) kr(d-1) + 2, k, d 1..

(b) g~~~k d ) k d -l + _IL _ k 2
4-2 -1I

() For 1. 1, 2, 3, (d > 1)

n g (n,2,d) n +I 22

and asymptotically,

gi (n,2,d)

(8) Fo r k 3, and 1 1,2,3,

Icg g(ri,3, d)

2n 2 2(klWi

()For i c>3,dý 2, n3, )

k 91 (n,k,d) k I. k-2
2 im+

fl-2 2d

g~g (n, k,' ,d)
k k+ I k-

< i mn2 I d~Jn

(1)F
d, 2 an ( -1 29 2 n d- )( -1 4 , e7av
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V-V,.•. Considering network design applications, the previously listed

results may be used to calculate the "additional cost"' in terms of

vertices and edges, required for a higher reliability constraint measure

on the network. Thus, for instance, if a network with diameter d and

'." minimal degree k is to be "miodified" to a k-vertex connected network,

at most (X-l)(2k-.-I) + i(k+l) (d=39,+i, i=0,1,2) vertices must be added

to the network. Note that this modification may require a new arrange-

ment of the vertices and edges.

The obvious further problems to be investigated as suggested by

the latter results are, of course, those of finding the exact va&ues

of the respective function, for which only bounds are given here.

In the second part of this research, Chapter 4, new reliability

Z 4;criteria, motivated by maximal message delay considerations in communi-

cation networks, were defined and analyzed. (k,d)-graphs, 9.-diameter

stable and Z-distance stable graphs were introduced (see Section 4.1)

and different classes of those graphs were constructed. The main

results concerning those classes are listed below.

I. Concerning (Zd)-graphs we obtained;

(1) For an (Z,d)-graph G

g(e) 5 d + 1, V e f F(c),

MR," where g(e) was defined as the minimal cycle containing an edge e f E(G).

(2) All 2-edge connected graphs G were proven to be *(2, 2d(G))-

1 graphs.

(3) The following, is a sufficient condition for a graph to be a

(2,d)-graph;
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If for some integer m A 0, we have for a graph G,

(a) g(e) :5 3 + m, Ve E E(G)

(b) Any pair of vertices x, y E V(G), such that d (x~y) i d-m is

joined by at least two edge disjoint paths of length not exceeding d.

Then G is a (2,d)-graph.

II. Forl£-diameter stable graphs we obtained the following:

1)If G is an V-diameter stable graph, Z A 2, then

g(e) :5 d(G) + 1, V e 1E (G) .

(2) If G is an 1-diameter stable graph and x, y is a diametrical

p~air of vertices in G, then there are at least k edge disjoint x, y-paths

of length d(G) in G.

(3) If G is a graph with the property g(e) = 3, Ve C E(C), then

G is 2-diameter stable if and only if every pair of diametrical vertices

in G is Joined by at least two edge disjoint path3 of length d(G).

IR (4) A graph G with d(G) = 2, 3 is 2-diameter stable if and onlyif

there are at least two edge disjoint paths, uf length not exceediag

Rqq' d(G), between any pair of vertices of G.

(5) For the functions f (k,d), 9 (k,d) and g (n,k,d), defined *in

section 4.5, we have,

Sf (2,d) =Ai+ ci +4 1$ d Žý 2.

g8(2,d) -2dQ

g (n,2,d) [ d d-od
8

d40 ' c-even.

C, lit
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III. For k-distance stable graphs we obtained an analog of the well

known Menger Whitney Theorem (see [9], Chapter 5), as follows:

A graph G is k-distance stable if and onl.if between any pair of

nonadjacent vertices x, y 4 V(G), there are at least £ edge disjoint

paths of length d (x,y).

From the variety of open problems directly arising from this

research, we mention only a few:

(1) In (4.6) we had for an k-diameter stable graph, G

"girth(G) < d(G) + 1

We could not decide whether (4.6) can be improved, or, whether

for any arbitrary integers £,d, one can always find an ZQ-dLameter stable

graph with diameter d and girth d + I

tbe(2) Finding a necessary and sufficient condition for a graph G,

to be an (k,d)-graph on an £-diameter stable graph, remains an open

problem. The sufficient condition in Theorem 4.14 for a graph to 'be a

(2,d)-graph, does not seem to be a necessary condition for (2,d)-

stability. But to prove that, a. counter example is needed.

(3) Computation of the values of the functions fs(k,d), g (k,d)
si S

and g (n,k,d) for k > 2 (for k 2, we obtained various results) is
5

t needed.

(4) Analogous problems for (k,d)-stable, £-diameter stable Lnd

£-distance stable graph with respect to vertices may be obtained. For

instance, a graph G is Z-distance stable (w.r. to vertices) if and only

if between any pair of nonadjacent vertices of G there are at least

V -vertex disjoint x, y-paths of length d (G,y) in G. Ve have not
C7

UI
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pursued similar questions for (ZYd)-graphs and k-diameter-stable graphs,

~width respect to vertices.

(5) Extremal problems analogous to those considered in thi

research may be posed for k-distance stable graph~s.

24
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