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ABSTRACT

'A communication network is modeled by an undirected graph with-
out loops and multiple edges. The maximal message delay index, in the
network, is expressed in terms of the diameter of the graph. Three
reliability measures are considered: a given minimal degree, edge-
connectivity and vertex connectivity,

Let Hgkk,d) be the class of all graphs with diameter d and minimal
degree k, Hg(k,d) is a subeclass of Hgkk,d) congigting of all k-edge
connected graphs in H:(k,d) and H;(k,d) 1s the subclass of all k-vertex
connected graphs in H;Qk,d). HZ(n,k,d) consists of the graphs in
H:(k,d) with exactly n vertices (1=1,2,3), Ilet f:(k,d), gikk,d) be the
minimum number of vertices and edges, respectively, that an Hg(k,d)—
graph must have and let gikn,k,d) be the minimal number of edges of an
H;(n,k,d)~graph (1=1,2,3). n Chapter 2 and 3 our main concern is to
calculate the values of f:(k,d), gg(k,d) and gitn,k,d) for arbitrary
natural numbers n,k,d (i=1,2,3).\ Furthermore, graphs attaining the
minimal number of vertices and edges are constructed, é&“"

Motivated by the problem of designing communication networks whose
maximal message delay does not exceed a prescribed value, even if a
number of communication links fall, we define a new class of graphs.

A graph G 18 called an (£,d)-graph if the removal of at least % edges
from G is required in order that the resulting graph would have a
diametey larger than d. G is called 2-distance stable 1if the removal
of at least L edges from G 1s required to increase the distance between

any pair of nonadjacent vertices of G. In Chapter 4, classes of




(2,d)-graphs and f-distance stable graphs are constructed and various
properties of these graphs are given., In particular, we obtain neces-
sary and sufficient conditions for graphs to belong to some special
classes of (2,d)-graphs and a Menger type theorem for 2-distance stable
graphs, Finally, we consider some extremal problems related to (2,d)-
graphs of diameter d, called 2-diameter stable graphs. More specif-
ically, the minimal number of vertices and edges of a 2-diameter stable
graph of diameter d is obtained and bounds on the minimal number of

edges of a 2-diameter stable graph on n vertices are calculated.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

In this dissertation, a communication network is topologically
modeled by a finite linear graph, whose vertices represent ihe stations
(transmitting, receiving or relying information) while the edges repre-
sent the communication channels. Compu*er-communication, satellite and
telephone networks are examples.

In designing a communication network, reliability (survivability,

invulnerability) and message delays are of prime importance as perfor-
mance indices. In studies of communication networks, reliability has
been defined 1n variocus ways (See [28]). The most common definiticn
assumes the network to be operational, under channel or station faillures,
provided there exists a communication path between any pair of stations.
Thus, under thec latter definition even 1if a set of stations whose

number does not exceed a prescribed value fail, it 1g still possible

to form communication paths between all palrs of functioning stations.
The latter measure of network reliab{lity is called in graph theoretical
terms the vertex connectivlity of the underlying graph. Similarly, one
can use the edge connectivity of the underlying graph as a reliability
measure and require that even if a set of communication links, whose
number does not exceed a prescribed value, fall, 1t 1s possible to
communicate between any palr of stations In the network, A weaker form
of reliabilitv (s the requirement that each station should be directly

linked to st least a given number of stations. All these three reli-

ability measure are considered in this research.
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Muanugen, avelving at vandom at the network nource terminals and
vontend thvough the network towards a deat fuation terminala, oexpevience
quesig buyg and tranawdnaton Ctwe dolaya.  The maximal delay experiencad
by o meuwuage tlowlong through the natwork can be weasured In terms of
the damwtler ot the underlviog graph (veprasoentting the maxi{imal distance
batweon any tuwo vertleen ol the praph), The latter clearly yilelds the
manimn) mensape delay {1 the messape delays acrosg the chamnels in the
natwork are of comparable value. PFurthermore, tor any sture—-and-forward
cumnund catfon network, under s tixed routing discipline, it has been

ahown [1] that the product of the prescribed maximal wessage delay vy

and the asnoctated minfmal overall network cepreity C, 1Is characterized
by a unigque Delay-Capacity product function (YC). The latter is shown
tn (1] to be the suwm ot two terms, The [{rst term is Yaqo where AI is
tha overall Internal tratfic tlow. The second term, called the Delay-
Capacity Product number, (YC)*, 1s uniquely determined by the routing
disciplting and the topologlcal structure of the communicatiocn network,
and s [ndependent of the terminal traffic intensities. It 1s readily
observed that for any network with m lines and diameter d, by assigning
equal delavs across the chanuels, one obtains (YC)* < md. Furthermore,
it has been shown [3]), [4) that (YC)* = md for many networks under a
variaty of peneral routing disciplines, while for other cases md serves
as o tight bound. One also notes that the overall intermal flow AI

can be expressed as XI = HXE, where XE is the prescribed multiterminal
flow value (networl throughput) while n denotes the average route

leupth, Generally, n ¥ d. Furthermore, for a uniform traffic matrix

i
i
i
i

(and other situations) n is proportional to m. Hence, if the diameter
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d of a network 1is prescribed; the topological structure which yields
the minimal (YC) product needs to have the minimal number of lines.
Consequently, Qe study the characteristics of reliable (as expressed by
a prescribed number of minimal links joined to each vertex, vertex
connectivity or edge connectivity) graphs with minimal number of lines
having a prescribed diameter. The latter will represent reliable
topological structures for communication networks, attaining the minimal
delay-capacity product, under a diameter (delay, maximal number of
message hops) constraint. For perturbation techniques used for the
design of computer communicatlion networks with connectivity and diameter
constraints, see Lavia and Manning [25].

The use of connectivity indices of the underlying graph as a
reliability measure is based on the assumption the network is opera-
tional in the presence of failures provided there is at least one
communication path remaining between any pair of stations in the net-
work. However, under failures the resulting network may have an
excessively large diameter, which may result in intolerable queueing
delays while routing a message through the network. We thus study here
graphs whose diameter does not exceed a prescribed value even 1if a
number of communication links fail. 1In grap!' theoretical terms, the
underlying graph of such a network will defined to be diameter-stable.
Properties of diameter-stable graphs, and diameter stable graphs having
the minimal number of vertices, are investigated in the sequel.

Extremal graphs of diameter two with prescribed minimum degree
were studied by Bondy and Murty [14]. Studies [10] and [11] deal with

connectivity problems without the diameter constraint. 3ome properties

N v s, RGNS




\oan T e 7

P B B T A AL v

of graphs with prescribed connectivity and diameter are studied in [7],

181, {121, {13}, [14}1, [25] and [27]. Special problems associated with

extremal diameter stable graph (having mainly diameters 2, 3 and 4)

were considered by Bollobas, Murty, Vijayan and Caccetta in [15]-[22],

while in [23] vertex distance stability problems are studied.

For an

extensive summary of methods of analysis and design of communication

networlk, the reader is refered to [28].

Further references to

the

above-mentioned papers are made in the appropriate sections of this

work.

1.2 Terminology and Notation

All graphs considered in this paper are undirected, without loops

and multiple edges.
the set of edges of the graph G, respectively.

of a set A 18 denoted by [A'.

By V(G) and E(G) we denote the set of vertices and
The number of elements

The degree of a vertex v € V(G) is

defined as the number of vertices adjacent to v, and is denoted by

deg(v). A graph all whose vertices have the same degree k is called

a k-regular graph.

An almost k-regular graph is a graph which has one

vertex of degree k + 1, while all the other vertices are of degree k.

The edge with end-vertices v and w is denoted by vw.

A graph G with [V(G)| @ k + 1 is called k~vertex connected, or

simply k-~connected (k-edge connected) i1f between any pair x, vy of

distinct vertices of G, there are at least k vertex (edge) disjoint

x, y-paths 1n G.

It i1s obvious that a k-connected (k-edge connected)

graph cannot be disconnected by removing less than k vertices (edges)

from the graph.

The converse 18 also true. Hence, a graph is

k-connected (k-edge connected) if and only if 'V(G)l & k+ 1 and it is

o Fo
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impoasible to disconnect G by removing k — 1 or fewer vertices (edges)
from G, (Menger-Whitney theorem and the corresponding edge version by
Ford, Fulterson and others, see [9] Chapter 5).

The distance dG(x,y) between two vertices x, y € V(G) is the length
of the shortest path in G joining x and y. In cases where no confusion
can occur we may omit the index G from the function dG(x,y). The

diameter of G, d(G), is defined as

d(G) A max dc(x,y) .
X,y €V(G)

A pailr of vertices x,y € V(G) such that dG(x,y) = d(G) is called a

diametrical pair of vertices,

In many cases in the following chapters we will have a function
g(n,k,d) (where n denotes the number of vertices of a graph G, d is the
diameter and k is some reliability measure) bounded by an upper and a
lower bound, which will also be functions of n, k and d. To estimate

the tightness of the inequality a tightness measure will be applied to

the inequality by dividing each bound by n and taking the limit as
n + %, The latter yield per vertex asymptotic measures.

Kn’ Km,n and Cn will denote the complete graph on n vertices, the
complete bipartite graph on n and m vertices and the cycle on n vertices,
respectively. [x] denotes, as usual, the integral value of a real
number x. For further definitions used in this dissertation the reader
is refered to [9].

1.3 OQutline

Most of the work reported in this dissertation is concerned with

synthesis of graphs under reliability and diameter constraints. While

B R L s i Y]
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design results were at time the main objective, analysis of certain
classes of graphs are also presented.

Chapter 2 is concerned with constructions of graphs with prescribed
diameter d, and minimum degree k, called Hl(k,d)-graphs. The minimal
number of vertices and edges that an Hi(k,d)~graph must have, 1s calcu-
lated and classes of extremal graphs, in this sense, are synthesized.
Then, we consider Hl(n,k,d)—graphs, which are Hl(k,d)-graphs with
exactly n vertices, and obtain bounds on the minimal number of edges
that an Hl(n,k,d)~graph must have.

In Chapter 3 graphs with prescribed diameter d and connectivity
(edge~counnectivity) k, called HB(k,d)—graphs (Hz(k,d)—graphs) are con-
sidered. The minimal numbers of vertices and edges of an H3(k,d)—graph
are obtained, extremal graphs are constructed and the family of HB(k,d)~
graphs having n vertices is studied. In section 3.4, some results
concerning Hz(k,d)wgraph are given.

In Chapter 4 we study diameter stable graphs. A graph G is called
an (%,d)-graph if the removal of at least & edges from G is required
for the resulting graph to have a diameter larger than d. (£,d(G))-
graphs are called L-diameter stable graphs. A graph G with the prop-
erty that at least L edges are to be removed from G in order to
increase the distance between any pair of non-adjacent vertices of G,
is called an 2~distance stable graph. Classes of (%,d)-graphs,
f-diameter stable graphs and &-distance stable graphs are constructed
for any arbitrary £, d 2 2, in Section 4.2. Various properties of the
latter classes of graphs are presented in Section 4.3. In particular,

a Mengerian type characterization of %~distance stable graphs,

ey
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indicating the appropriate similarity of 2~distance stable graphs to
f~edge connected graphs, is obtained. In Section 4.4, (2,d)~graphs are
considered. Two classes of 2-diameter stable graphs are characterized
by necessary and sufficlent conditions. In Section 4.5, a few extremal
problems, similar to those in Chapters 1 and 2, are solved for
2~diameter stable graphs.

Finally, in Chapter 5, we conclude with summary of the work

presented, indicating further problems for future research.
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CHAPTER 2
GRAPHS WITH PRESCRIBED DIAMETER
AND MINIMUM DEGREE

2.1 Introduction

Consider a communication network of stations in which certain
pairs of vertices are linked directly and other pairs must communicate
indirectly by means of a sequence of direct links. The given communica-
tion network is represented as usual by a graph G whose vertices and
edges correspond respectively to the stations and the direct links of
the communication network. Assume that if a failure occurs at a station
it can rely for support only upon those stations to which it is
directly linked. Reliability considerations may require therefore that
each station should be directly lirked to at least k stations. Further-
more, in order to have a reasonable message delay when it 1s routed
over the network, we may require that each palr of stations must be
able to communicate by means of a sequence of direct links which does
not exceed a given integer d 2 1. In graph theoretical terminology, it
is required éo congtruct a graph with prescribed minimal degree of the
vertices ~ k, and a given diameter - d.

Let Hl(k,d) dencte the class of all graphs with minimal degree k
and diameter d. The subclass of graphs in Hl(k,d) having exactly
n vertices is denoted by Hl(n,k,d). The graphs in Hl(k,d)(Hl(n,k,d))

are called Hl(k,d)—graphs (Hl(n,k,d)ngraphs).
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Let

£, (k, ) & Min | V@],
(§€Hl(k,d)

A
g, (k,d) = Min | E(®)],
G éHl(k,d)

e e G s AR e

g, (n,k,d) & Min | E@)] .
G €1, (n,k,d)

Hl(k,d)—graphs with fl(k,d) vertices are called vertex extremal graphs

of Hl(k,d), and Hl(k,d)~graphs (Hl(n,k,d)~graphs), having gl(k,d)

(gl(n,k,d)) edges .re simply called extremal graphs of Hl(k,d)

(8, (n,k,d)).
In this chapter we investigate the above functions and find some
extremal graphs. !
Considering the case d = 2, J. A. Bundy and U. S. R, Murty [14]
proved that if n > k3 + a(n) * a(k) * k + 1 (where for an integer t, i

a(t) = 0 or 1 according as t is odd or even), then

(n=1) (k+l) + 1
gy (n,k, 2) =[ A ]

and every Hl(n,k,Z)—extremal graph has a vertex of degree n - 1. They
have also obtained a characterization of vertex extremal Hl(n,k,Z)—
graphs.

2.2 Vertex Extremal Hl(k,d)~graphs

Assume G to be a graph of diameter d, then there exists a diametri-
cal path Koo Kps coes Xy in G, (xié V({G)).
Define w.r. to the vertex X v 4 [v'éV(G) l d(v,xo) = i},

1
= <
o€ 1 £d. Clearly V {xo}, x, €V, 1514 5d.
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Let

A A >
n, = |V1I , n=|v@)}| = rr n,.

If in addition the minimal degree of G is k, we must have;

: <€i1<4 -

ng g tmg v, 2k+ 1, 254342, (2.1)
n0+n12k+l, nd_1+nd.>.:k+1. (2.2)
n0+n1 + ., 2k + 2, nd_2+nd_l+nd2k+z. (2.3)

Inequality (2.1) follows by noting that deg (v) 2 k,¥v € V(G), while
(2.2) and (2.3) follow from deg (xo) Z k, deg (xd) 2 k. The following
theorem determines fl(k,d).

Theorem 2.1. For all integers k22, fl(k,l) = fetl, fz(k,Z) = k + 2
and for ¥ 21,

fl(k,BR + 1) = (k+1)(441) + 1 i=0, 1, 2. (2.4)

Proof. It is easy to verify fl(k,l) =k + 1 and f2(k,2) =k + 2,
For d > 2 we examine three cases of d(mod 3).
Cagse 1: d =232 , &21.

By (2.2) no+n +n

1 d-1 +n

g 2 2(k+l), and if 2 > 1 then by (2.1)

2% (g +my +ng) 2 G+ 1) (L= D).
j=3m

i€ m¥ -1

Hence, n = i ny 2 2(l+1) + (k+1) (4-1)
i=0

and,

fl(k,BQ,) 2 (k+1) (2+1). (2.5)

We now construct an Iil(k,32)—graph with (k+l) (#+1) vertices,

e A T A e
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ng = 1, n, = k, n, = 1, ng = k-1, n, = 1, ...

Paprg = Lo Bygeg = kel mggy = Lo

n =k, n, = 1.

d-1 d

Two distinct vertices peVi, qGV:i are joined by an edge if and only if

| i-3 ] €1, (Figure 2.1). The graph obtained is obviously an

Hl(k,32)~graph.

Figure 2.1. A Vertex Extremal Hy (3,6) - Graph.

Thus, by (2.5)

fl(k’ 32) = (k+1) (241). (2.6)

Case 2: d=230+1, 2 21. By (2.2) and (2.3),

+n +n

2
a1 F g Z 20k + 1,

no + n1 A nd_2

and if £ > 1 by (2.1)

Hence,

and,

j:%m (ng_p + 0y +ng) 2 () (871

1€m €41

n= 9 ng 2 2(ktl) + 1+ (let1) (A-1)

£, (k, 30 + 1) 2 (k+1)(2+1) + 1. 2.7
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An Hl(k, 3% + 1)-graph with (k+1)(%&+1) + 1 vertices may be constructed

as follows.

Choose,
n = 1, n, = k, 1, =1, ng = k-1, n, = 1, ...
n3j+2 =1, n3j+3 = k-1, n3j+4 =1, ...
ni_o = 1, g < k, ng = 1.

As in Case 1, join pri, qéVj by an edge if and only if | i-j I <1,

(Figure 2.2).

Figure 2.2. A Vertex Extremal H{{(3,7) - Graph.

This corstruction shows equality in (2.7) is attained, thus,

fl(k, 30 + 1) = (k+1)(2+41) + 1, (2.8)
Case 3: d =32+2, 221.
By (2.3)
n, tn +n, +n +nd_~1+nd 2 2(kt2),

1 2 d-2

and 1f £ > 1 by (2.1)

(nj-l +n, + nj+1) 2 (k+1) (2-1).

J=3m 3
1Sm<e~1
As before,
fl(k, 32 + 2) 2 (k+1) (241) + 2, (2.9)

13
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To construct the vertex extremal graph in this case, take

o, = 1, n, = k, n, = 1, ...

n = ]

33 = s Pagyp = kL m

3j+2”“1, . e

n k, n

a = b

g-2 = lamgg =

and proceed as before, (Figure 2.3).

Figure 2.3. A Vertex Extremal Hq (3,8) - Graph.

Hence from (2.9),

fl(k, 32+2) = (k+1)(2+1) + 2. (2.10)

(2.4) follows from (2.6), (2.8) and (2.10).

Q.E.D.
2.3 Some Results for gl(k,d)
Clearly,
£ (k,d) - k
2.

We shall show that gl(k,d) differs from the right hand side of (2.11)
by at most 1. As before we again treat three cases of d(mod 3).

Theorem 2.2. For k 2 3, d 22, we have

fo(k,d) * k fl(k,d) ek + 1
2 gl(k,d)?. — —3 .

|
g
l

(2.12)

114

For k¥ Z 1 (mod 2) and d 1, 2 (mod 3) the lower bound is attained,

s0 that

Fy(k,d) = k+ I

gl(k,d) = ) . (2.13)
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Proof. In all the three cases of d(mod 3) ni's are defined and

chosen as in the proof of Theorem 2.1, and two distinct vertices pc‘Vi,

q éVj (25 i £3 £d-2) are joined by an edge if and only if |i-j| € 1.

Further, join by an edge all the vertices of Vl and Vd—l to VO and Vd’

respectively. Finally join an arbitrary vertex of Vl to X and an

arbitrary vertex of V to x,, so that the resulting graph is connected.

d’
Call the graph obtained 5, and distinguish between three cases of

d-1

d(med 3). In each case we will complete G, by addition of lines, to an
Hl(k,d)~graph.

Case 1: d = 32, 2 2 1.

The partial graph G constructed in the previous paragraph can be
completed to a k-regular Hl(k,d)~graph (which, of course, will yield
an Hl(k,d)—extremal graph), if and only 1f it is possible to construct
on Vl (and Vd—l) a graph Gl with k-1 vertices of degree k-1 and a single
vertex of degree k-2. But then the sum of degrees of the vertices of
G, 1s (k—l)2 + (k~2), which is an odd integer Vk, and therefore such

1

a G, cannot exist. Instead, take on Vl (and V

1 ) a complnte graph on

d-1
k vertices, Kk’ The graph obtained 1s obviously an Hl(k,d)~graph, and

it has (k+l)(%fl)'k edges, (Figure 2.4). Therefore,
_(k+1)2g2+1)1g 1 gl(k'%) Qc‘+1;(l+}.)k ) (2.14)
| gg

Figure 2.4. An H,(4,9) - Graph.

15
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(2.14) proves (2.12) for case 1.

Cage 2: d =30 +1, ¢ 21.

Complete the partial graph G as follows. As in case 1 join by en
edge any two distinct vertices of Vl’ and join alsp k-1 arbitrary
vertices of Vd~1 to Vd—Z'
Gd—l with k~1 vertices of degree k-2 and a single vertex of degree k-1.

We would 1like to construct on Vd__1 a graph

This is possible only if the degree sequence (k-1, k-2, k-2, ..., k-2)
k-1 times

is graphical (which means that there exists a graph having the given
degree sequence), (see Chapter 6 [9] and [26]). By Hakimi's Theorem
[26], such a sequence is graphical 1f and only if the sum of the degrees

(k--l)2 is even, and the degree sequence, (k—B, k~3, ... k-%} is
5 k-1 times
graphical. (k~1)" is even 1if and only if k is odd, and a (k-3)-regular

graph on k-1 vertices exists for k odd, (see [7], {8], [10]). Therefore,

if k = 2o+l, (m21), then the final graph obtained has

( ' )
((2m+2) (A1) + é) (Zmtl) + 1 edges, and 1f G4y 1s constructed as in

[7] and [8], the graph is clearly an H1(2m+l, 32+1)~gravh, (Fieure 2.5).

By (2.4) and (2.11),

+ 1) (2mt1)

3 {2.15)

(m+1) ((441) (2mkl) + 1)2 g, (2u+1,30+1) 2 ((2m+2) (A+1)

Since the lower bound in (2.15) 1is not a whole number, whereas the upper
bound 1s a whole number differing from the lower bound by %, we conclude
81 (2mtl, 38+1) = (mtl) ((4+1)(2m+1) + 1), (2.16)

which proves (2.13) for k Z 1(mod2) and d Z l(mod 3).

16
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Figure 2.5, An Pt‘(B,T) ~ Extramal Graph.

0

)

{t on the other hand Ik {8 even (k = 2m, m 2 1), construct on Vd-—l
a (k-2)-vegular graph on k vertices as before, and addition of a single
Hue will aat{safy the degree vequirements, (Figure 2.6). This settles

(2.012) tor k = O(mod 2).

s

Figure 2.6. An H1(4,7) - Graph.

Case 3: d = 30+ 2, R 2 1.

To complete the partical graph 5, join by an edge k-1 arbitrary
vertices of V1 and Vd_‘]. to V2 and dez respectively.

If k

iH

1(mod 2) we establish en V] and Vd-l a praph with one vervex

of degree k~1 and k-1 vertices of degree k~2, (as in Case 2, this is

17
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! possible if k i3 odd). Let k = 2m+ 1 (m 2 1) then we obtain (2m+1)-

regulay H](2m+1,32+2)-graph which 1s obviocusly an extremal graph,
(Figure 2.7). Thus,

g1(2m+1, 38+2) = ((w+l) (2+1)+1) (2m+l), (2.17)

‘ which proves (2.13) for k = 1(mod 2) and d = 2(mod 3).

St

Figure 2.7. A 5-Regular H¢(5,8) - Graph. :

If on the other hand k = O(mod 2), take in Vl and Vd~1 a (k-2)-

regular graph on k vertices as in Case 2, (k = O(mod 2)), and add two

additional edges to satisfy the degree requirements, (Figure 2,8).

Figure 2.8. An H4(4,8) - Graph.




This completes the proot of Theorem 2.4. Q.E.D

It should be noted that all the extremal-Hl(k,d) graphs obtailned

in Section 2.3, are obviously also vertex extremal Hl(k,d)-graphs.

2.4 Inequalities Concerning the Class Hljnlk,d)

First we note that if the diameter 1is not prescribed and a graph
on n vertices whose minimal degree is k, is to be constructed, then a
k~regular graph or an almost k-regular graph on n vertices can always
be obtained.

Lemma 2.3, TFor all integers n > k > 0, there exists a k-regular,
or almost k-regular graph on n vertices.

One way to construct such graphs is given in [10], where
k-connected graphs on n vertices having minimal number of edges are
obtained. The graphs of [10], have degrees 2 k and satisfy our require-
ment here, but their diameter is not prescribed.

As mentioned before gl(n,k,Z) was computed in [l4]. We consider
thus here H, (n,k,d) with d Z 3.

Clearly,

g (n,k,d) 2 g (k,d)
for
n 2 fl(k,d).

Considering a graph in Hl(n,k,d), we derive in the next theorem
relations between the parameters n,k and d.

Theorem 2.4. 1f there exist graphs in Hl(n,k,d), k,d 2 1,

with d=30+1 (221, 0%i82), then,
(a) n 2 (k+1) (&+1) + 1

and n can be arbitrarily large.
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Furthermore, all bounds are best possible.

Proof. (a) was proved in Theorem 2.1. To show that n could be
as large as desired, take the Hl(k,d) vertex extremal graphs
constructed in the proof of Theorem 2.1, then join each of the
n—-(k+1(4+1)-1 remaining vertices to the k vertices of vy (the notation
of the proof of Theorem 2.1 is used here). The resulting graph has,
by symmetry, diameter d and its minimal degree is no less than k. From
this graph we conclude the following upper bound on gl(n,k,d) {the

lower bound is obvious).

— Sg,(n,k,d) £ g,(kd) + (0 - £,(k,d)k . (2.18)

The upper bounds in (b) and (c¢) are derived from (a) and by the
construction in (a) one sees that thz bound are best possible. The
lower bounds in (b) and (c) are achieved when one takes a complete
graph on n vertices (k < n) and a tree with diameter d on n vertices,

respectively. Q.E.D.

The upper bound in (2.18) will be improved considerably in the
following, but first to estimate the ''tightness" of the bounds in (2.18)
divide the inequality by n and take the limit as n =+ ®, as indicated

in the introduction.

Since gl(k,d) and fl(k,d) do not depend on n we obtain from (2.18)
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1 -+ @
To obtain a better upper bound on gl(n,Z,d), let n = d+2+(d~1)wtt,
(0 £t € d-2). Connect two vertices by a path of length d + 1, a path
of length t + 1, and m paths of length d, (Figure 2.9). The resulting
graph G
Figure 2.9. An H4 (30,2,7) - Graph.
has diameter d, n vertices, and its minimal degree is not less than 2,
Hence, by counting the edges of the resulting graph, (the lower bound
is obvious),
< < n-d-24 n-3
n < gl(n,Z,d) €n+ 1 n 1+ ) (2.20)
b Applying the tightness measure to (2.20) yields
g 1 (n,2,d) 1
) 1 € 1lim Sl+a:-i‘ . (2.21)
é:- n >~
% which for d >> 1 is much better than (2.19).
b 2 We present now a method to construct Hl(n,k,d)~graphs for k > 2
i
! with a "small" number of edges, provided that n is '"large" enough.
f These graphs wiil iwprove the upper bound in (2.18).
\%.
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First let d = 2m, m £ 1. Let mm k be a hierarchic tree with m + 1
]

levels of vertices, such that there is one vertex of degree one in the

first level, then m -~ 1 levels of vertices having degree k and all

vertices m the last level have degrees equal to one, (Figure 2.10).

Figure 2.10. 144.

For Tm,k we have,
m
= v _ Q™1
vm,k |v(rm,k)I k-2 +1,
- L lel) 1
®m,k |E(1m,k)| T k-2 :

= - < -
For given m and k let n S(Vm,k +t+1, (0t vm,k 1),
8 2 k. We assume that n 2 (vm K" 1) « k+ 1.
]
If t = 0 take s copies of Tm K and identify in each of them the
»
vertex of the first level. The graph obtained is a tree with one

vertex of degree s 2 k, .e;(ls:—l)m—l vertices of degree 1 and all the

other vertices have degree k.
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Figure 2,11,  Combined Tm k"s.

We then complete each group of k - 1 vertices of degree 1, belouging

to a common tree Tm K’ to a complete graph on k ~ 1 vevtices, K
’

k-1°
(Figure 2.11). Finally, to satisfy the degree requirements join by an

ﬁ'
k

4

edge the corresponding vertices of successive Kk-—l's“ If s is even,

el R

the resulting graph is illustrated in Figure 2.12.

Figure 2.12. A 4-Regular t4(17,4,4) - Graph.
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For odd s the degrees are attained similarly. The vesulting graph has
the required minimal degrae and is of diameter d. T
Nove that after combiniang the & coples of 'I‘m K’ on the a(k~1)m~i |
R {
|
vartices of degree 1 one may also construct a (k-1)-regular or alwmost i
{
!
(k-1)-regular graph using the wmethods of [10], (Figure 2,13). This :
also can be done with the final diameter being exactly d. This con- !
struction will have higher connectivity and will be used in the next
chapter,
|
i}
i
i
Figure 2.13. A 4-Reguier H,(17, 4 4) - Graph.

If t > 0, construct as before an hievarchic tree on t vertices ;
with vertices of degree k, combine this tree to the previous tree and ;
proceed as before, (Figure 2.14). If only one level or less can be !
constructed then the graph corresponding to the t vertices is a star. |
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Figure 2,14,  An H4 (15, 4,4) - Craph.

If d= 2m+ 1, m 2 1, then we take (s-1) hierarchic trees Tm K
k4

and one hierarchic tree T and proceed as before,
w1,k

In all cases we are able to construct a graph which has one vertex
of degree s and all other vertices have degree k or k + 1. This is

possible provided that n is large enough.

By these congtructions the upper bound of (2.13) is improved, and

is a neavr optimal value for gl(n,k,d).

For example, if d = 2m, k= 3 and n = (2™L)s + 1 + ¢, 0St £(2"1)

then, (t = 3) (See Figure 2.15)

g, (n,3,2n) S s(@™2" 11y + 5, s 23) . (2.22)
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Figurs 2.16.  An H4{26,3,6) - Exiromal Graph.

If we substitute in (2,22) the value of 8 und use the obvious lower

bound on 81 (n,3,2m) we obtain, (for t = 0),

{o-1) (2’“ R 1)+ 52g.(n,3,2m) 2 3n . (2.23)
2m__l 1 2

The tightness measure on (2.23) yields,

1
+2m 2 lim

, g, (n,3,2m)
g 1. l L ] >
2°-] n+®

rofes

(2.24)

The asumptotic bounds in (2.24) are the same for any n such that

0<¢t< Vi, k-~ 1, since t is bounded by a function independent of n.
If m > 1 then (2.24) is a substantial improvement over (2.19),

(when k = 3). Similar asymptotic bounds may be obtained for odd d.
In general for m 2 3 from the previous family of graphs that

arises fron the trees 'I'm (t = 0)

Wk’

okt 1+ .
JL‘S__._.E_..E 2 gl(n,k,Zm) 2z 1(*2-9
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or after substituting the value of s, {(t = 0),

(n—-1)k+1 (n-1) (k-2) . k *n
+ 2 g, (n,k,2m) 2 . (2,25)
2 2((e-)™1) T 2

Ry applying the tightness measure to (2.25) we obtain,

gl(n,k,2m)

j=

(2.26)

(k=1)™1 n >

e
P

which for m >> 1 improves (2.19). Note that if t > 0 we still get

(2.26) and that a similar inequality for d odd may be obtained in the
same manner. We may therefore summarize,

Theorem 2.5. For k 23, d 22 and n 2 (v[d] - 1)« k+1,
=l k
’

gl(naka d) >

k 1 k
2+2 2 lim )

d] = n
— n -+ OO
-1
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CHAPTER 3
GRAPHS WITH PRESCRIBED DIAMETER AND CONNECTIVITY

3.1 Introduction

Two fundamental considerations in the design of a communication
network are its reliability or survivability and its associated maximal
transmission delay between any pair of stations. These characteristics
depend on the topological configuration of the network. Based on a
graph theoretical model of the communication network, many different
rellability or survivability criteria may be defined. The simplest
criterion used is the minimum number of edges or vertices which must
be removed from the graph in order to break all paths between any
remaining pailr of vertices. Those measures are called the edge connect—
iviety and the vertex connectivity, respectively. 1In a network where
the fallure of links is more likely to occur, one uses edge-connectivity
as a reliability measure. Whereas in a network whose stations are more
likely to fail, vertex comnectivity 1s a more appropriate reliability
measure. For given diameter and connectivity values it is generally
desirable to construct a network with minimal numbey of edges. Graphs
with given number of vertices and given connectivity, having minimal
number of edges, were constructed by F. Harary [10]. However, many of
these graphs have a large diameter, and the diameter cannot be pre-
scribed. In this éhapter we construct graphs for which the diameter
as well as the connectivity are prescribed.

To this end let Hz(k,d) (Hs(k,d)) denote the class of k edge
connected (k vertex connected) graphs of diameter d. The subclass of

graphs in Hz(k,d) (H3(k,d)) having exactly n vertices 1s denoted by
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Hz(n,k,d) (H3(n,k,d)). For 1 = 2,3 we call the graphs in Hi(k,d)

(H{(n,k,d)), Hi(k,d)~graphs, (Hi(n,k,d)~graphs).

Let
A
f,(d) =  Min v | ,
G €N, (k,d)
i
A
GeHi(k,d)
A
gi(n,k,d) = Min IE(G)I .

Ge€ Hi(n,k,d)

The graphs ia these classes with minimal number of vertices are called

vertex extremal graphs of the respective classes, and those having

minimal number of edges will be called simply extremal graphs. Since

a k-connected graph is also k edge connected, and a k-edge connected
graph must have a minimal degree larger or equal to k, we have,

By (k,d) D W, (k,d) D By (k) (3.1)
Hl(n)k’d) D) Hz(n;k:d) D) Ha(nskrd) (3v2)

The extremal graphs constructed in Chapters 2 and 3 show that
equality does not hold in (3.1) and (3.2). Some properties of the
functions gB(k,d) and 33(n,k,d) were studied in [7], [8]. 1In this
chapter the above functions are considered and some extremal graphs
are gilven.

3.2 A Class of H.(k,d)~Exvremal Graphs

It is knowr [12] that,
f3(k,d) = k(d-1) + 2, (k,d 2 1), (3.3)

and vertex extremal graph are obtained as follows. Let Hl’ “2""’“d—l
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be disjoint copies of Kk’ such that every vertex of Hi is joined by an

edge to every vertex of H (1 €1 £d-2). Finally join a vertex u

i+l

to all vertices of H, and a vertex v to all vertices of H

1 (Figure

d-1’
3.1).

Figure 3.1. A Vertex Extremal Hj (3,4) ~ Graph.

Using (3.3) and the fact that every vertex of a k-connected graph has

degree k or more, we obtain,

f3(k,d)k+1

L e@-1)+2) ket
2 2 :

g3(k,d) 2 (3.4)

In (3.4) we have used the fact that the sum of the degrees of the
vertices of a graph is always even,
The exact value of g3(k,d) is calculated In Theorem 3.1.

Theorem 3.1. For any integers k,d 2 2,

(k(d~1)+2)k+1
2

83(k,d) = . (3.5)

Proof. To prove (3.5), it 1s enough to construct a family of

(k(d=1)+2) ktl
2

graphs 1in H3(k,d) having exactly edges. The construc~

tion of these graphs, which we denote by G

i will depend on k being

even or odd.
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Came i kw20, ¢ 20,
Faabel the ko vertices of the complate graph on o verticas, Kk” by

UTAAURRRACE Delote rom Kk the adpon ViVigg (151 92), and

danote the resuleing graph by H (45 ¢ =« |, H Is a palr of vertices Vl

and v ). H {a one of the graphs constructed {n [10] and shown to be

(k=) connected, Lot lll.il,,,...,l(dm1 be d-1 disjoint copies of H, and

Jeaote the verticen of i

(“l
LIN
0“‘

‘ by Vigava eee Vi (L £ €£d-1). VYorm

o the foltowing way., Jdoin v, to v, by an edpe for all 1818k
) i+l
and 1 S ) S d-2. Then joln a new vertex uy adjacent to all the vertices

ut u‘. and a vervex u, wlincent to all the vertices of Hd~l’ (Fig. 3.2).

— N

Figura 3.2, Gg

Counting the edges we cbtain

T

‘E((d )i = (R(d-1)+1)2% . (3.6)
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Case 2: k=20 +1, £ 21 .
We begin by drawing a k-cycle Ck’ with vertices VisVoseeesVy .

Then we join 2 vertices v, and v, if and only if |i~j| = m{mod k),

3
where 2 €m €2 - 1 (if £ = 2, we obtain a 5-cycle). Finally join
vy tO Vi by an edge for 1 £1i £ % (see [10]). The resulting graph

is agalin denoted by H (if & = 1, H is a disconnected graph composed

of an edge ViVo and an isolated vertex v We have, in H,

3)'
deg(vi) =k - 2, 1 <1i €28,
dg(v2£+1) =k - 3,

Let Hl’HZ""’Hd—l be d-1 disjoint copies of H. Denote the vertices

of H, by v, 4V, ,++.sv, , 1 £1 £ d-1, in such a way that
3 lj 2j kj

deg(v, ) = deg (v Y=k - 3 (s-odd) .
1 2
] s+l

To construct H3(22+1,d)—graphs, two subcases are considered.

(I) d=20¢1l, n 21
A <3i <
To form 522+1 join v11 to vij+1 by an edge for all 1 £ 1 £ k and

1 €3 £ d. Then joln new vertices uy and u, to all the vertices of Hl

and Hd-l’ regpectively and finally jcin Vig to v23+l for s odd

(1 £s £d-1), (Figure 3.3). We then have

IE(Gg‘,zﬁ)l = (n(20+1)+1) (22+1) . (3.7)
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Figure 3.3. G .

(II1) d = 2n, n 21.

2n

2041 is similar to the construction in (I},

The construction of G

except that v; 1is joined to vp_ . for s odd only for 1 <€ s £4d-3, and
8

vld 1 is connected by an edge to Vl”’d»l’ (Figure 3.4).

N <Z

Figure 2.4. Gg R
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By counting the edges we obtain,

G

, {~21 ((284+1) (Zn~1)+2) (28+1)+1 ;
2(025.,)1 - : - a9

sumnarizing (3.6), (3.7) and (3.8) we conclude,

d (k(d~1)+2)kt1
|E(Gk){ SERLY )2 )

(3.9)

for all k,d 2 2.

Each pair of vertices in Gi (k,d Z 2) is contained in a cycle of length

€ 24, therefore, d(Gd

K
d
d(Gk) d.

)S(L Since d(ul,uz) = d, we conclude,

To complete the proof, the k-connectivity of Gi nust be established.

To that end we state the following definition and assertion.

We shall say that a vertex Vij € Hj has the star property if vij

is adjacent to all vertices of H, except one vertex, say vio .

|
Assertion: If the vertices vyy € Hy and v4 €H (1 S& <n £d-1),

both have the star property, then there are k-vertex disjoint Vigsy V§ =
n

paths in Gi.

To prove the assertion consider the following paths,

ViV VLY 1 € m,k m # io, jo .
£ 78 nn
Vi ulvio

. vi v

2 n jn
A\ v v u,.v
1o 30g oy 273

Note that 1 may be equal to j, 1 to m etc. Since the above k Vyos vj -
2 n

paths are vertex disjoint, the assertion is proved.
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Let a, b € V(Gg), if {a,b} = {ul,uz} then clearly there are k
vertex disjoint a,b-paths in Gi. Otherwise, a few cases and subcases

need to be considered.
Case 1: k=22 , £ 21.
I. a= Uys b ¢ Hj

Since b has the star property, one easily asserts the existence

(and the symmetric case).

of the required paths.

IT. a, b € Hi'

Hi is (k-2)-connected and therefore there are k-2 vertex disjoint
a,b-pathg in Hi' Fufthermore, there is a cycle throwugh a, b, Uy and u,
which has « .y a and b in common with the previous k-2 a,b-paths.

I1I. a € Hi , b€ Hj and 1 # j.

Since both 2 and b have the star property, the existence of the
vertex disjoint a,b—paths follows by the assertion.

By the Menger—~Whitney Theorem, Gd is k~connected.

2%
Case 2t k=20+1, 8 21

Consider only the case d odd (d even is treated similarly)

I. a-= Uy b € Hj (and the symmetric case). If b has the star
property in Hj then the paths exist like in Case 1 (I). Otherwise,
b = v, or b = v, for some 1 €3 € d-1, and again the existence of
s 8+1

the paths is easily obhserved.
IT and I1I. a, b € Hi and a does not have the star property in

Hi (there is only a single such vertex in Hi)’ Or a ¢ H,, b € H,, and

i, jl

a or b or both do not have the star property. Then in a similar manuner,
we estabiinh the k disjoliont a,b-paths and the k-connectivity follows.

Q.E.D.




(B3]

A ,Z?\mx\“hm&w?’(“‘\‘mlﬁ“ﬂ""“R"ﬁ'b‘lﬂ‘l‘&‘ﬂﬂ-‘ﬁh&\h?:r\u\,‘,-A'\-\u-w F T T L e L S YN PSP PSPV S . T A AL LGl

e AT,
o S
N

v

It should be noted that the H3(k,d)»extremal graphe obtalnad in
this section, are Hl(n,k,d)—extramal graphs, where n has the appropriace

value.

3.3 Inequalities Concerning the Parameters of H3gn,kld)

Considering a k-connected graphs with n vertices and diametevr d,

ve derive a few relationships between the parameters n, k and d.

Theoren 3.2. For all H3(n,k,d)~graphs
(a) n 2 (d-Dk + 2 (3.10)
and n can be asg large as deslred.
1)) If ke=n -1, then d =1

If k<n=-1 then k

[PT(-% + 1] 2422 . (3.11)
. -n"z » ),
(c) ) 2k 21, (3.12)

and all the bounds are best possible.
Proof. (a) As mentioned before, (3.10) is proved in [12].
To construct a graph G € H3(n,k,d), with any given n, provided

that n 2 (d~1)k + 2, take the HB((d—l)k + 2, k,d)~extremal graph as in

the proof of Theorem 3.1. Then add the remaining n—{(d-1)k-2 vertices, :

and join each of them to all the k vertices of Hl by an edge, (the nota-

tion of the proof of Theorem 3.1 is used here). The resultipg graph
(Figure 3.5) has, by symmetry, diameter d and is k-connected, therefore,
it is an H3(n,k,d)*graph. The latter can be used to establish an upper
bound on g3(n,k,d),

~‘25 (2n-kd+k=2) 2 g, (n,k,d) 2 -‘231‘- : (3.13)
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Figure 3.6, An Hy (10,3,3) -- Graph.

(b) If G € H.3(n,lc,d) and k=n-1 then, lE(G)I 2 _S.l}..“%)ll . Hence, G“k“.

Otherwise, k < n~1 and d 2 2. Using Harary's method (10], a (k~1)~

e N Tt A A e e a3 e o o e

connected graph on n-1 vertices may be coustructed. By adding a new 3
vertex adjacent to all previous n-1 vertices an H3(n.k,2)“grnph is ‘
obtained, which proves that the lower bound in (3.il) achieved. %
The upper bounds in (3.11), (3.12) are derived from {3.10) and the i é
graph constructed in part (a) attains theuw. %
(c) To show that for any n and d these exists & l-connected graph §
with n vertices and diameter d, simply take & path of length d and join 3 g
all the other n > d + 1 vertices to any vertex of degree two on the E
path. Q.E.D. g
3.4 Bounds on gg(n,kjd) :Ig
Clearly, any k~regular graph in H3(n,k,d) will be HB(n,k,d)— é
extremal. The following theorem gives the construction of such a class %
of graphs for k even, for a limited ranpge of n. ‘*;
Theorem 3.3. For £ 2 2 and g
]
(d-1)28+2 £ n £ (d-1) (R~1)4+2, §
(3.14) :
g3(n,22,d) = nl . @;
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é%ﬁ% %“ Proot,  Hince ﬁw(n.ﬂl.d) 2 nld, any conntructdon of We-vepular
) \\f}}‘*‘ W ]
¥E graplin in Hl(n,lﬂ,d)‘ for (d=1)2042 € 0 8§ (A1) (R=1) Ak willl prove
'
3 (J.14)
?i Honws (d=1)24+2, the extramal graph was constructed in the proo!
’
é of Theovem 3, 1. Assuma n-(d=1)28-2 » 9 n 0, and start with the
o
@' Hq((dml)2Q+2, 2, d-axtremal graph of Theovem 3.1, Add the othex m
i g
? N vortices Wi WypueoaW (L € m % (d-1)(28-4)) to tho extremal graph as
§ followa, T8 m €28 - 4 joln oach of wl(l £ i $w toall verticas af
i
§ Hy, and change H,, which 18 a (2L-2)~regular, (28-2)=-connocted graph
; 1
? ; on 28 vertilces, to a (28-2-m)-regular (20~2-m)-connected graph on tha
-
? 28 verticas of H], using the methoda of [10])., If m > 28 - & connact
¥t h
! the remalning vevtices to H2’ while reducing the regularity aud counect-
§ " ivity of H? appropriately, then do the same tu Hq etc. (Flgure 3.6),
3 The total number of vertices one way add to the extremal graph in this
:
B way 1s (28~4)(d~1). It is easy to verify the resulting graph is
;
| " 28-regular 28-conmnected and has diameter d. Q.E.D
£
{1\
C e
}
f
¥
&{l."
i
2
e
P e
¥
i

Figure 3.6. An Hq (18,8,3) — Fxtromal Graph.
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Note that thin method of wmodilying the extvomal graph can ba

app Lded to grapha in H“(n.k.d) with k odd and ventricced to appropriate

B s e

valuos of u and hence cbtain a claun of H%(n,k.d)~uxtrumn1 praphs torv

e o
e

ey

k odd, (which will be k-vegular or almost k regulav). Further, it can

E=

=
e
e 3t e i

alao b applied to obtain Hl(n.k,d)—uxtramul graphs mentionad In
Chaptar 2.

Ifon o> (d=1) (A=1)4+2, an upper bound on 33(n“2ﬁod) way be obtainad
by adding new vertices to the HB((d~l)(E"1)4+2. 20, d)~extremal graph,
md joining each of them hy an edge to all vertices of Hl. Thus an
improvement ot (3.13) is obtained (the lower hound is obvious),

nl $ gB(n,22.d) § 2(2n~(d-1) (AR=~4)-2) . (3.15)

Applying the tighrness measure to (3.15) we obtaln,

B4 (n,20,d)
L lim  mTeeee—— 20, (3.16)
n o+ w n

which 18 similar to (2.19).

A
AR I
%4%@%{ It should be noted that some of the graphs congtructed 1n Section
i '(‘u’i‘,’?\‘l
AN By
{? 2.4 of Chapter 2 (Flgures 2.9-2.13), which were of diameter d, minimal
Y .

degree k and having exactly n vertices, are also k-connected and there-
fore some of the constructions may be used to obtain H3(n,k,d) and
Ha(n,k,d)—extremal graphs.

Since the Hl(n,z,d)~graph constructed in Section 2.4, (See Figure

2.9), is clearly 2-comnected, inequalities (2.20) and (2.21) are true
for gB(n,Z,d) also.
Hence,

S ENCERUE T [3;{‘—;-?—] , (3.17)
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and,

g Hn e S 14 gy (3.18)

Since the Hl(nQB,d)mgruph obtained in Section 2.4 (Fig. 2.15) is also

4-connected we have the equivalent of (2.24) for 33(n,3,d) as follows,

. R, (0, 3,d) :
3 R B R S'; THE SR S (3.19)
) n + w n 2 2 [QJ
2 '2 "'l v

For k » 3 take the s copiles of Tm,k already combined as described in
Section 2.4 and on the s(k—l)m“1 vertices of degree construct a (k-1)-
regular, (k-1)~-connected, or almost (k-1)-regular, (k-1)~connected graph
by the methods of Harary [10] as illustrated in Figures 2.13 an:! 2.14.
The resulting graph is obviously k~connected on n vertices and has
diameter € d. Therefore if we denote the class of k-connected graph

on n vertices with diameter £d by'ﬁ3(n,k,d), (ﬁ3(n,k,d)'3 H3(n,k,d))
and the minimal number of edges of an.ﬁ3(n.k,d)—graph by EB(n,k,d) then,

for t = 0 we obtaln from (2.25),

k' n

: (=1)lktl . (0=1)(k=2) (3.20)

2 2( (l-1)"=1)

S Es(n,k,Zno <

Corresponding to Theorem 2.5 we obtein for k 23, d 22 and

n 2 (v -1)k+1
dl
(5]

k. §3(n!k!d)

[\

k¢ 1im DL PR Q. o ) (3.21)
) 73 [d]
n -+ o 5
O L
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o 3.5 Remark on Graphs with Prescribed Edge Connectivity

Conaildering the synthesis of reliable communication networks with

TSR,

At
ik

respect to link faflures, the following problem 1s of interest. Given

R

integers d, k 2 2, we wish to find the mirimal number of vertices and

S
st

edges that an k-edge connected graph with diameter d must have.
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Fulkerson and Shapley [11] solved the problew of finding the minimal
number of edges that an k-edge connected graph on n vertices must have,

but in their work the diameter is not prescribed. We, on the other

hand, will use both edge connectivity and diameter constraints.

) In terms of the definitions made in Section 3.1, we will obtain
bounds on the functions fz(k,d), gz(k,d) and gz(n,k,d). First note
that due to (3.1) we have for integers k, d 2 2,

£ (k,d) < £,(k,d) S £4(k,d) (3.22)
gy (k,d) gz(k,d) < 83(k,d) . (3.23)

For n 2 (d-1)k+2 we also have from (3.2),

gl(ﬂ:k:d) < gz(n’k:d) < 83(n;k’d) . (3'24)

lowever, one can obtain tighter bounds on fz(k,d) and gz(k,d) as

follows. Consider the class of H3(k,d)—extrema1 graphs constructed

o o e

¢ in the proof of Theorem 3.1 (Figures 3.2, 3.3 and 3.4), using the same

notation as in the theorem. Instead of Hl, H3, H5,...,H22+1, as defined
in Section 3.2, we take single vertices. The graphs obtained in this
way are clearly of diameter d and are k-edge connected, thus being

Hz(k,d)—graphs (Figure 3.7, 3.8). By counting the number of vertices

of such graphs, we obtain an upper bound on fz(k,d).
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(k;l d +1 , d-even

fl(k,d) < fz(k,d)ﬁ (3.25)

Lktl) (dH)) d-odd .

2 ’

[ 3 Figure 3.7. An H, (4,4) — Graph.
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Figure 3.8. An Hy (4,6) — Graph.
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Furthermore, (using the notation of Section 2,2) an Hz(k,d)~graph

A

must have at least k edges between the vertices of Vi and Vi+l’

] 0 €1 €d-1. Otherwise, the graph cannot be k-edge connected,

Hence, we must have,

. < . .
n ni+12k , 0€£1is8d~-1. (3.26)

i

From (3.26) we obtain
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; n +n Wk , 0Si1<€d-1. (3.27)

>
1 i+1 ~

Inequality (3.27) follows by noting that if we assume,
< 2k ,

together with using inequality n

ot

{K"

1+1 4 o , we obtain n,

+-%— < 2Vi~, or
2 2 i
ny + k < ZVani, or (ni - k) < 0, which is a contradiction. Incor-

B & e T M e o e o BN L s

porating inequalities (2.2) which must be satisfied by any Hz(k,d)—

graph, we have for d 2 3,
d-2
> n, 2 2(kH) + (d-3) Vx.
1=2

Combining the latter inequality with the upper bounds in (3.25)

we obtain

: ikgllé + 1 , d-even
: Max {fl(k,d),2(k+l)+(d—3)\ﬁc_}_<,f2(k,d)5 (3.28)
2 (ehl) (d+1)
k,d 22 k+1)2(d+1  deodd .

In some special cases the exact value of fz(k,d) can be obtained.
In other cases, tighter bounds than in (3.28) may be obtained, but the
general formula for fz(k,d) seems to be much more difficult to get than
the formula for fl(k,d) and f3(k,d).

We list a few special cases.

(1) fz(k,l) =k + 4, fz(k,Z) = k 4+ 2,

these are readily proved.

(2) For k= 4, d 26, the following graph attains the lower

bound in (3.28) (Figure 3.9).
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Figure 3.9. A Vertex-Extremal H, (4,8) — Graph.

Thus, for d 2 6,

fz(&,d) = 2d + 4 . (3.29)

(3) For k =5, d 26, consider Figure 3.10.

Figure 3.10. AnH, (6,8) — Graph.

1f 4 » 8, the construction in Figure 3.10 yields a smaller upper

bound than in (3.28). For this special graph we obtain,

24 £ 12(6.8) & 26,




=

whate the lowar bound fa dorived from (3.28) and the upper bound from

Flguve . L0, e

Hy countdng the uuamber of adges of the previously constructed
nrapha (Flguras 3.7 and 3,8), uppor bounds on gz(k,d) are obtained.
By fuposing the extatence of at least k edges between Vi and Vi+1 ot

D% 1 S d - 1, lower bound are attained.

Thur, we [ind

(" Jl (et
Qﬁﬂ%ﬁﬁl« d-even, k-even

k(k(d+1)22<d«g)) d-odd, k-even ;

dic $ g, (kd) S (3.30)

(et 1) (Gl (d=3) (k1)) deodd. Keodd ;
4 )

d1)”

; d-even, k-odd .
As o enleulating bounds on f?(k,d), the upper bounds on gz(k,d)

can be fwproved using the above mentioned techniques. ' S
Noting that the construction in Section 2.4, used to cobtain an E

unper bound on gl(n,Q,d) (Flgure 2.,9), 1s clearly an H?(n,k,d)—graph

wa obtain,

o . < n-d-—&]
nyg gz(n,z,d) <+ [ i . (3.31)
Thevefore,
gl)(n927d) 'L ’
1€ Ilim —*———— €1 + T (3.32) :
n -+ ® n :

Simila: 'v, from the Hl(n,3,d)~graphs in Section 2.4 (Figure 2.15),

which are also H?(n,B,d)—graphs, we may write,

A ﬁ
R g,(n,3,d) i
R 3¢ 1in g2 I (3.33) R
A T onrw E] £
e _ ;
St S |
f{:[\\ﬂ!, \
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For k > 3, we take the s coples of Tm,k and combine them as in
Section 2.4. On the s(k—l)m—1 vertices of degree 1 of the resulting
graph, we construct a (k-1)-regular, or almost (k-1)-regular, (k-1)-
connected graph, by the methods of [10] or [11] to obtain a k-edge
connected graph on n vertices with diameter £ d. Therefore, if
ﬁz(n,k,d) denotes the class of k-edge connected graphs on n vertices
with diameter <€ d, and the minimal number of edges of an'ﬁz(n,k,d)~

graph is denoted by éz(n,k,d), we obtain using the graphs thus con-

structed, (k > 3)

o eI A .-;,_we:-..m'_\ge.wa




CHAPTER 4
ON THE DIAMETER STABILITY OF GRAPHS

4,1 Introduction

We congider a communication network such as a store and forward
message switching computer communication network. The network is topo-

logically described by an underlying graph whose vertices represent the

network terminals and switches and whose edges represent the network
communication channels. Messages arriving at random at the network
source terminals and routed through the network towards the correspond-
ing destination terminals, experience queuveing and transmission time
delays. When we use the maximal average message delay as the network
delay measure, the diameter of the underlying graph can be shown to
serve as an index of the network message delay performance (see [1]-[2]).
Tte use of connectivity indices of the graph as a reliability measure is
based on the assumption that the network is operational in the presence
of failure provided there is at least one path remaining between every
pair of nodes. However under failures the resulting network may have an
excessively large diameter, which as previously indicated may result in

intolerable queueing delays while routing a message through the network.

Therefore, a more meaningful reliability measure for a computer network
would be the minimum number of nodes or links that must faill in order for
the diameter of the graph to exceed a specifided value. (See also Wilkov
Y ® [280).

In this chapter we agsume that it is required to construct the net-
worlk in such a way that the maximal message delay will not exceed a pre-~

v scribed upper bound, even if a number of communication links fail.
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Hence the following graph theoretical parameters are defined and
investigated.

A graph G is defined to be an (£,d)-graph (with respect to edges)

if

d(G-E) = 4,

VECE(G) such that |E[|£ 2-1, or equivalently a graph G is an (£,d)-
graph if and only if for any two distinct vertices X,y and any £-1 dis-
joint edges €15 €55 weey €17 there exists an x,y-path of length not
exceeding d, which avoids €15 €95 eeey € 1°

To show the equivalence of the definitions let G be an (%,d)-graph,
then by removing €15 €55 eeny €1 from G the diameter of the resulting
graph, G - {el, €5 euey eﬁ—l}’ does not exceed d, consequently for any
pair of distinct vertices x,y there 1s an X,y-path of length £ d avoid-
To show the sufficiency of the condition, let

ing e e

17 €25 c+es €y g
15 85 eeey a, k < L) be a minimal set of edges of G whose elimination

results in 2 graph of diameter > d. Therefore, there exists x,ye V{(G)

such that dG~A(X’y) > d, where A = {al, Aoy weny ak}. Choose f{-k-1
other distinct edges g1 gt v ag_q° According to the condition
in the definition there exists an X,y-path of length £ d, avoiding

a itrary to our assumption. Hence G is an (L,d)-graph.

(2,d)~stable graphs (with respect to vertices) are defined similarly,

as graphs G wich the property

d(c-v) < d,

VVCV(G) such that |V|< -1,
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By removing a vertex v ¢V(G) from G, yielding G - {v}, we mean removing
v and all edges incident with v. Since only (%,d)~graph with respect to
edges are investigated in this chapter, we call them simply Q&g&:—
graphs.

Clearly, d 2 d(G). An (R,d)-graph with diameter d is called an

f~diameter stable graph, Note that an (%,d)-graph is well defined only

if £, d 2 2 and that the diameter of an f-diameter stable graph must be
at least 2,
A pair of nonadjacent vertices x,y € V(G) will be called an %-dis-

tance pailr if
dG(X’Y) = dG—-E(X,y) >

VECE(G) such that |E| € 2-1.

A graph is called %-distance stable if and only 1f all pairs of non-

adjacent vertices of the graph are 2~distance pairs. In an 2~diameter
stable graph one has to remove at least % edges from the graph in order
to increase its diameter. Whereas in an f#-~distance stable graph at
least % edges must be removed from the graph in order to increase the
distance between any pair of nonadjacent vertices of the graph. (2,d)~
graph are in particular 2 edge connected graphs and the following rela-

tions between the respective classes exist.

{#-edge connected graphs} D {(%,d)-graphs} O {2-diameter stable
& graph} D {f~distance stable graphs},
The above inclusions are sharp as will be shown in the examples of
Section 4,2. 1t is easy to find graphs that are %-edge comnected and

not (f,d)-graphs, etc.
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1f d is "large" then the class of {(&,d)-graphs is identical with the
class of f4-edge connected graphs., o
The above definition of stability with some results appeared in
{5] and [6]. Some properties of f-distance stable graphs (mainly with
respect to vertices) were obtained independently in [23], where they are
called f%-geodetically line (vertex)-connected graphs. Some examples of
(4,d)-graphs may be found in [15]~[22], where the main problem is to
find the minimal number of edges that an (2,d)-graph with diameter 6§ and
n vertices must have and to construct classes of extremal graphs in this
sense. Later in the chapter we will refer to those works. In the
following, some properties of (&,d)-graphs, %-diameter stable graphs and
f~distance stable graphs are derived and some related extremal problems
are investigated.

4,2 FExamples of (&,d)-graphs

Example 4.2.1

A class of (R,d)-graphs having n vertices may be obtained by a
simple application of a result obtained by J, W. Moon in [24]. There
the function g(n,d) (n-1 > d > 2) is defined as the least integer r such
that if the degree of every vertex of G (|V(G)| = n) is greater or

equal to r, then d(G) € d. Moon obtained

n
[ [¢] ffa=at-4
g(n,d) = [mn't'l] if d = 3t ~ 3

.
= L d

Therefore, if all vertices of G satisfy

it

3t - 2,
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; l_"% + -1 if dw 3t - 4
Wy )

& n-1 :

g%r; deg(v) 2 =t g1 if d = 3¢ - 3
k::

%z [l‘—gg] + f-1 1f d = 3t - 2,

¢ b
% then G is an (4,d)-graph. Note that if the nuwber of vertices is pre—
Y}‘r scribed, an (R,d)-graph can be obtained by using the methods of Chapter
? ¥ 2 and 3. However, the latter graphs will have many extra edges.

% Example 4,2,2.

A Consider a collection of (2m+l)-cycles all sharing exactly one

t 'y vertex and let m € —_(.i,; The graph obtained is (2,d)~stable.

Figure 4.1. A (2,d) - Stable Graph.

W

N

Note that this graph is not a 2-diameter stable graph.

R e &

We now state three lemmas that will be used for comstructing

(R,d)~graphs. The proofs are obviocus and therefore omitted.
Lemma 4.1. 1f between any pair of vertices of G there are at |
least % edge disjoint paths not longer than d, then G is an (¢,d)-

graph,
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Lemma 4.2. L G, and G,

xi,yié V(Gi) 1s a dJdismetrical pasr of Gi (i=1,2), then the graph ¢

area f~dlameter stable graphs and

obtained by fdentifying tho vertex x, ¢ V(Gl) with x, € V(G?) 18 an

e et e T L LR T TS,

g~diameter stable graph of diameter d(Gl) + d(Gz).

Lemma 4.3. If fox any paly of nonadjacent vertices x,y € VIG),
! there are at least % edge disjoint x,y~paths of length dG(x,y), than G
is an f-distance stable graph.

Example 4.2,3.

Let %,d & 2 be any arbitrary integers. Let H;, Hy, ..., Hy ; be

d-1 disjoint copies of the complete f-vertex graph KQ, where the ver~

tices of H. are denoted by v, , Vo 5 +es, v, (1%) % d-1). Join v, to
k| 1i 21 lj 11
vy by an edge for all 1 £ 1 < g and 1 € § £ d-1. Then join a new
j+1
vertex u, adjacent to all vertices of Hl, and a vertex u, adjacent fto

all vertices of Hd—l’ (Fig. 4.2). The resulting graph H is an (L,d)~
graph by Lemma 4.l. Since d(H)=d, H is an f~diameter stable graph.

Note that H is not an f~distance stable graph.

Figure 4.2. A 4-Diameter Stable Graph With Diameter 4.
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n {17}, o (n,8,d,8-1) was defined as the class of (R,d)~graphs

with diameter & 8 om n vertices, g(n,d,d,&-1) denoted the mintmal numbder
of adges of graphs within GE(u,G,d,%~l).

U. 8. R. Murty proved {16] that {f

5)
n > jéi%CQJ—& » then

W
Ez ’ 2(n,2,2,8-1) = Q,(n - —Qizll—), (4.1)
i
& and the corresponding unique extremal graph is obtained from the complete
;
Q bipartite graph K2 et by adding all the edges within the class of %
& LA
% @ vertices (Fig. 4.3). The resulting graph is denoted as Fn(Q).
I,
. ®
{
X
Figure 4.3. A 3-Diameter Stable Graph With Diameter 2,
i
) Using the previous construction 2-~diameter stable graphs with
) %’ even diameter and arbitrary number of vertices can be obtained by taking
¢ [g]disjoint coples of Fn(l) and in each two successive Fn(ﬂ)'s identify
§ g two vertices from the class of n-% vertices, (Fig. 4.,4). The resulting
% graph is by Lemma 4,2 f—diameter stable with diameter 2 [g{]Q
§
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Figure 4.4, A 2-Diametsr Stable Graph with Diameter 6.

Using this construction an upper bound on g(n,2m,2m,&-1) is obtained, by
using (4.1), and the fact that an {-diameter stable graph is in parti-

cular %-edge connected, yields a lower beound, Thus,

nf

) £ 8(n,2m,2m,8~1) g Q(n_l - m(%—l)) .

Since,
g(n,2w+l,2m+1,2~-1) £ g(n,2m,2n,2-1),

we have,

%&Sg(n,d,d,z-l) <3 (n—l - [-“21] (2~1) —;—) ) (4.2)

Asymptotically, applying the tightness measure t~ (4.2) we obtain

% < 1 80.4,d,870) oo (4.3)

n
nre

The previous graph is not f-distance stable,

Example 4.2.5.

2-distance stable graphs with diameter d are obtained as follows,
Take d-1 disjoint copies of the complement of Kfc Hl, HZ’ cansy Hd~1’
where the vertices of Hj are denoted by Vs Vp s vees Vo s
3 3

<1§§j$ d—l) . Join v to v for all 1€ m, n €2 and 1 £ 3 <d-1.
"y T4

56
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Then join new vertices uy and u, adjacent to all vertices of Hl and

b Hd—l respectively, The resulting graph has diameter d and by Lemma 4,3

o A
SRR SS

is also an f~distance stable graph, (Fig. 4.5).

WL,

R

st
RS

o

LSRR

Figure 4.5. A 3-Distance Stable Graph of Diamster 5.

By adding new vertices all adjacent to the vertices of Hd—l’ L=

distance stable graphs with diameter d having prescribed number of

vertices may be constructed.

As can be seen from these examples and many others, there are
"many" different {(%,d)-graphs and f~diameter stable graphs. In the next

gection some of theilr properties will be investigated.

i ¥ 4.3 Some Results for (R,d)-graphs
. An edge e € E(G), will be called cyclic if there exists a cycle in
G contailning e. To each cyclic edge assign a natural number g(e) 2 3,
¥ which is the length of the shortest cycle in G containing e. If e 18 a
j bridge then g(e) A ». The girth of G, girth (G), is defined as
" glrth(G) A  Min g(e).

e € E(G)

The following properties of (&,d)-graphs are quite obvious.

Theorem 4.4, Let G be an (2,d)-graph, (£,d22), then

T e e
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gle) € d+1, Ve € E(G) (4.4)
and this result is best possible.

Proof. If G is an (R,d)~graph (£ 2 2), then G is in particular
2-edge connected and hence all of its edges are cyclic., Let ab= e be
an edge of G and asgume

g(e) > d+1l. Then d(G-e) 2 dG—e(a’b) > d.
To show that (4.4) best possible, consider the cycle Cd+1 which is

a (2,d)~graph and g{e) = d+1l Ve¢ E(Cd+1)‘

Q.E,D.
Theorem 4.5, Let G be an f-diameter stable graph, £ 2 2,
then
ge) £ d(G) +1, Ve €E(G). (4.5)

Furthermore, (4.5) is best possible,

Proof. G is 2~edge connected and if g(e) > d(G) +1 then

d(6-e) 2 4, _(a,b) > d(G),

where
e = ab,

contradicting the assumption that G is an f-distance stable graph.
To show that (4.5) cannot in general be improved we construct for
any arbitrary integer d 2 2 an f-diameter stable graph with at least

one edge e such that g(e) = d(G) +1, Let Gy and G, be distinct

f~diameter stable graphs with diameters d1 and d2 respectively, and let

%Yy be a diametrical pair of vertices of Gy (i=1,2). Assume in

addition that Gi contains a triple XisY¥ 12y such that

dy = dc1 Geyayg) = dci("i"‘i) i d(:i(yi’zi)’ i=1,2.

IR L T R AL TR T, gy
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By Lemma 4.2, the graph G*' generated from G1 and Gz by identifying

the vertex xle V(Gl) with the vertex %,

graph with diameter dl+d2. Finally define the graph G = ¢ + Y1Yp»

€V(G2) is an f-~diameter stable

obtained from G by joining the vertices vy and Yo by an edge ¥1Yp» G is
clearly an %-distance stable graph which contains an edge ¥1¥o such that
g(ylyz) = d(G) + 1, where d(G) = d,+d, by the above requirement of three

diametrical pairs in each graph.
0.E.D.

Inequality (4.5) (and also 4.4) does not yield a sufficient
condition for a graph G to be an f-diameter stable graph., Take for

instance the graph H, composed of 3 5-cycles Cl’CZ’CB with vertices

vi 1155, 1 Sk <3, such that
= yly! = v! ©f =
CiNCy = vivy, lej Cy = v, vi and CZ(W C2 b,
Although every edge of H is contained in a cycle of length < d(H)+1,
d(H - v! v!) = 6 > d(H) = 5 (Figure 4.6),

3 4

Figure £.6. A Counter Example.

In particular we conclude frow (4,5) that 1f G 18 2~diameter,

stable, then,

girth(G) £ d(G) + 1, {4.6)
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We do not know whether for d > 4, (4.6) can be improved. In other
words if one can construct for am arbitrary natural number d an %-diam-
eter stable (or 2~diameter stable) graph G such that d(G) = d and g(e)
= d(G) +1 Ve€E(G). If d=2 (4.6) cannot be improved. If d=3, 4

Figures 4.7 and 4.8 respectively show a realization for (4.6).

Figure 4.7. A 2-Diameter Stable Graph
with Diameter 3 and Girth 4.

Figure 4 8. A 2-Diametar Stabla Graph with Diametar 4 and Girth 5.

[N




The next vheorem gives a NASC for a pair of vertices tc be an
Veddntance paly,

Thooram 4,60 A parr of nonadjacent vertices x,y € V(G) is an 2~
dHatance palr {t and only (f there are at least £ edge disjoint
X,y=pathn of tength \1(;(x,y) in G.

Proot. Clearly, Lf there are at least % edge disjoint x,y-paths
of loenpth du(x,y) {n G, then x,y is an f-distance pair. To prove that
it x,v is an ¢-distance palr then there are at least L edge disjoint
w,v-paths of length dG(x,y) in G, we use the digraph version of Menger's
Theorem (see [9] Chap, 5). The only part of the graph G relevant to
the proot of the theorem {s the set W of the x,y-paths of length dG(x,y).
We can direct the edges of W to form a directed graph D on W with the
property that the directed x,y-paths correspond exactly to the x,y-
paths in W, By applyilng the digraph version of Menger's theorem with
respact to edges one cbtalns that the maximum number of edge disjoint
directed pathg of length dG(x,y) from x to y is equal to the minimum
number of edges whose removal from D cuts all directed x,y-paths in
W. This Is exactly an equivalent statement to the theorem, The vertex
verslon of this theorem was done in [23].

A constructive proof of the theorem can also be given. First con~

sider the (.se =2,

Define the following sets,

Ay () A{yev(c): dy(e,y) = 1 } 0512d(6),

and

B0 Afe€(e): ab=e, a€A (x), €A, (x),} 05 1< dE) - L.

i+1
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Since x,y is a 2-distance palr there are obviously at least two x,y-

-

paths of length dG(x,y) in G. We shall prove that one can always find

at least two edge disjoint such paths. 1If dG(x,y) = 2.3 the proof

follows immediately. Assume therefore dG(x,y) > 3, and let dG(x,y) = do'
If there are no two edge disjoint x,y-paths of length dO in G, there
must be a maximal integer i (1 < i < do) so that there are two x,y-paths

P, and P

1 2 of length d) with edge disjoint subpaths from x to a vertex

in Ai(x), (note that P1 and P, may have common edges in Em(x) only

if m 21), 1If i=0 x,y is not a 2-digtance pair, and i=l is impossible

Xi,

in a graph without multiple edges. Let e éEi(x) be an edge contained

both in Pl and P2, with end vertices Xy and Xip1?

X1 € A4+l(x)). Since x,y Is a 2-distance pair, there must be a vertex

vy € Ai{x) and a yi,y—path of length d -1 not containing e. Otherwise,

(xié Ai(x),

dG(X,y) < dc_e(x,y). Denote this path by Pé. By definition there

exists an X,y -paci PZ of length +, 1If Pl(PZ) and Pa are edge disjoint,

define P = PgtjPz. P](Pz) and P are two x,y-paths of length do’ such

that if there exists e, € Em(x) and e, € Pl(\P (elf Pzr\P) then m > 1.

1 1
This contradicts the maximality of 1.

1]
If P4 . Pl and P4,
1)

integer such that there is an edge e, € Ek(x) and e,€ Plr‘)P4 or

P have common edges let k < 1 be the greatest

1 =
ey EP,NP, , ey = X X 15 X € Ak(x) and x, . € Ak+1(x). Define a new

path P' composed of P, resp. Py from x to x, and of Pz from X, to y,.

1 k

resp. P, and P' contradict the maximality of i,

As before the paths P 1

2

This completes the proof for £=2, The same type of constructive proof

for ¢ ~ 2 1s walid but seems to be too tedious to present herc.

Q.E.D. $
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Since any diametrical pair of vertices in an f~diameter stable
graph wmust be an f~distance pair, the following necessary condition for
{~diameter stable graphs is obtained by applying Theorem 4.6,

theorem 4,7, 1If G is an f~diameter stable graph and x,y is a dia~
metrical pair of vertices in G, then there are at least R edge disjoint
x,y~paths of length d(G) in G.

Note that the statement in Theorem 4,7 cannot serve as a sufficient
condition for %~diameter stability, as can be seen for instance from a
cycle of even length, sz, which is not 2-diameter stable, but each
diametrical palr of vertices in sz is joined by two edge disjoint
paths of length m, whichk is the diameter ol sz.

We conclude this section by stating a necessary and sufficient
condition for a graph to be %-distance stable, which follows by Lemma
4.3 and Theorem 4.6,

Theorem 4,8. A graph G is f~distance stable if and only if between
any pair of nonadjacent vertices x,y € V(G) there are at least 2 edge
disjoint paths of length dc(x,y).

There is a clear analogy between Theorem 4.8 characterizing
2~distance stable graphs and the edge versiou of the Menger-Whitney
Theorem (see (9], Chapter 5), derived by Ford and Fulkerson, Elias,
Feinstein, Shanon, Kotzig and others.

1t should be noted that due to the similarity between f-distance
stable and £ edge connected graphs, other analogs of connectivity
theorems may be prosed for L-distance stable graphs (e.g., the Dirac's
fan theorem).

The next section is devoted to (2,d)}-graphs.
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4,4 Critical and Superfluous Edges and 2-Diameter Stable Graphs

An edge e € E(G) is called superfluous if d(G-e) = d(G), otherwise
e is said to be a (diameter) critical edge. By definition, a graph is
2-diameter stable if a only if all its edges are superfluous., A
graph is called (diameter) critical 1f all its edges.are critical.
Critical graphs were studies in [29] - {32].

Examples of critical edges are a bridge, any edge of Cn and any
edge of Kn' On the other hand all edges of the diameter stable graphs
mentioned in Section 4.2 are of course superfluous. A few properties of
superfluous and critical edges and consequently results on (2,d)-graphs
are now given.

Theorem 4.9. If e €E(G) 1s a superfluous edge of a graph G,
then

gle) £d(G) + 1 (4.7)
and this result is best possible.

Proof. If e is superfluous it is not a bridge and therefore it is
a cyclic edge. Let e = ab and assume g(e) > d(G) + 1. But then
d(G~e) 2 dG_e(a,b) > d(G) contradicting the - Lumption that e is
superfluous. To show that (4.7) is best possible, take a cycle of
length d+1 (d Z 3, integer) and a path of length [%] sharing exactly

one vertex with the cycle (Figure 4.9),

e

<

d=4 d=5

Figure 4.8. Superflows Edges.
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The resulting graph is of diameter d and contains at least one super~-

fluous edge whese minimal cycle 1is of length d + 1,
G.E.D.
It is easy to see that the converse of Theorem 4.9 is not true.
The edges denoted by e' in Figure 4,10 are critical although their

minimal cycle is of length less than or equal to d(G) + 1.

O

, Figure 4.10. Critical Edges.

A simple consequence of Theorem 4.9 is Theorem 4,10,

Theorem 4.10. If for an edge e € E(G) of a graph G

gle) > d(e) + 1, (4.8)

then e ' is critical.

Theorem 4,11, TIf e € E(G) 1s a cyclic edge of a graph G, then
d(G) <€ d(G~e) $ 2d(G). (4.9)

Proof. The left hand side of (4.9) is obvious.

Let
X,y € V(G)

be a dlametrical pair of vertices in G-e, and define

Ay ={vev@©E: d; xv) =1} 051 dG-e).
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Let e = ab, and let a€A , b€A O €mSn $£d(G-e). Define
L = [E%E] and take a vertex ZelAm+2. There exists an x,z-path Pl in
G-e of length wmtl, and a z,y-path P2 in G~e, of length d{(G~e} ~ m-L,
The shortest X,z-path in G does not contain e, otherwise it would be of
length at least mt+l+2. Simiiarly the shortest z,y-path in G does not
contain e, since otherwise it will be of length at least d{(G~e)-n+l+i,
which is not shorter than d(G-e)-m-L{ due to the specific value we have
chosen for 2. Therefore the length of Pl and Pz does not exceed d(G)
and PlUP2 yields an x,y-path of length not exceeding 2d(G) in the
graph G-e, which proves (4.9).

To show that (4.9) cannot be improved take an udd cycle C2k+1'

2k = (< - e) = 2d(Cy ) = 2k.
Q.E.D.

If G is 2-edge connected, then
d(G) € d(G-e) £ 2d(6), Ve €E(G).

We thus conclude the following,

Theorem 4.12., All 2-edge connected graphs G are (2,2d(G))-stable.

Another simple bound on d(G-e), where e is a cyclic edge is,

d(G-e) € d(G) + g(e) - 2.
We thus obtain the following property.

Theorem 4.13. If G is a 2-edge connected graph and g(e) < g

Ve€FE(G) for some integer g,
then,

d(G-e) € d(G) + g~2 Ve € E(G).
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The following theorem gives a sufficient condition for a graph tu be

o
WAL

=
A4

a (2,d)—-graph,

i

Theorem 4.14. If for some integer m 2 0, we have for a graph G,

s ¥

ot

(1) gle) € 34m, Ve €E(G),
3» (2) Any pair of vertices x,y € V(G), such that dG(x,y) 2 dm

is joiued by at least two edge disjoint paths of leng:th

%. not exceeding d;
% Then G is a (2,d)-graph.

Proof. Take any e € E(G) and let x,y € V(G-e). If dG(x,y) 2 d-m,
then by (2) dG_e(x,y) < d. Assume therefore, dG(x,y) £ d-m-1, then by

(1) do_o (55¥) < 3tm~l+d-m—-2=d,
Q.E.D,

Theorem 4.15 is a consequence of Theorem 4.14 for m=0 and

HE Theorem 4.7.

Theorem 4,15. Let G be a graph such that g(e) = 3 Ve € K(G).

Then G is 2-diameter stable if and only if every palr of diametrical
| 2 vertices in G is joined by at least two edge disjoint paths of length
d(G).
By Theorem 4.15, the following class of graphs with arbitrary
& diameter, is a class of 2-~diameter stable graphs, Take a cycle with
even number of vertices labeled VisVas cees Voo to each pailr of

adjacent vertices v,, Vitl(mod 2a)° 11 < 2n join a vertex w;, such

& . <1< ult-
hat Wy is adjacent to 2 and to vi+l(mod n) 1512 2n, The result

ing graph HZn (Fig. 4.11) is of diameter n+l, and is by Theorem 4.15

2~diameter stable graph.
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Figure 4.11, Hg.

The graph HZn shows that Lemma 4.1 is not a necessary condition for
2-diameter stability, since for instance the vertices x and y (Fig.
4.11) are not joined by two edge disjoint paths of length Sntl = d(Han
By joining in HZn’ Wy to Wys Wy to v, etc,, one obtaing a graph HZn with
diameter n+l which is 3 diameter stable and does not satisfy the con-

verse of Lemma 4.1 (Fig. 4.12).

Figure 4.12. Hg.

Fig. 4.11 shows a 2~diameter stable graph of diameter 4 which does not
satlsfy the converse of Lemma 4,1. If d < 4 then Lemma 4.1 1s a neces-
sary and sufficient condition for 2-~diameter stability, as stated in the

next theorem.
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Theorem 4,16, A graph G with diameter 2 or 3 is Z-diameter stable
if and only if there are at least two edge disjoint paths of length not
exceeding d(G), between any pair of vertices of G,

_Proof. Sufficiency follows from Lemma 4.1. If d(G) = 2 then the
necessity follows from Theorems 4.4 and 4.7. If d(G) = 3 then fc any
pair of vertices x,y € V(G) such that dG(x,y) = 1,3, the necessity again
is derived from Theorems 4.4 and 4.7. Therefore, let x,y € V(G) be two
vertices such that dG(x,y) = 2, and denote the shortest x,y-path by
P (P, = xzy). Since G is 2-dlameter stable,there exists an x,y-path

1
P, # P, and 2 < ]le <3, 1If lel = 2 then P, and P, are edge disjoint.

If all x,y-paths (¢ Pl) are of length 3 and none of them is disjoint
frem Pis take such a path Pq = xaby, and assume without loss of
generality that xz = xa. There must be an x,y-~path P4 of length 3
(P4 = x c dy) such that xc # xz, otherwise dG—xc(x’y) > 3, contradict-

ing the 2~diameter stability of G. In this case P3 and P4 are edge dis-

joint x,y~paths of length 3,
Q.E.D.

4.5 Some Extremal Problems for 2-Diameter Stable Graphs

Similar to the classes defined in Chapter 2, we denote by Hs(k,d)
the class of all k-diameter stable graphs with diameter d, and by

Hs(n,k,d) the subclass of Hs(k,d) containing all graphs with exactly n

vertices.

Let
£ (k,d) A Min ve) |,
8 G e H_(k,d)
g (k,d) 4 Min [E@) ],

= G €H_(k,d)
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and
g, (n,k,d) 4 Min lE(G)].
G €H_(n,k,d) B
As before we call the graphs in Hs(k,d),HS(k,d)—graphs etc,, and

the Hs(k,d)-graphs with minimal number of vertices and edges are called

P
vertex extremal and extremal graphs of the regpective classes, As
mentioned before Murty [16] showed that if p > £§§£Elk , then
k+1
g,@,5,2) = kfn - 5E) :
and obtained the unique Hs(n,k,Z)*extremal graph realization (see
Figuve 4.3).
In this section we deal only with the case k=2, First the value of 4
fS(Z,d) is given.
Since there 1is no 2-diameter stable with diameter = 1, we set
dz2, b
Theorem 4.17. For d 2 2
£ (2,d) = [142:.1_] +d+ 1, (4.10)
¥
Proof, Let Gé€ HS(Z.d) have a diametrical arc Xos Kyseees Xy and
. = <i<
Vizl}:{x(EV(G) : d(xo,x, i} , 0=%1i%d.,
Define .
o= vl 0S1%d.
G is bridgeless and hence n, +m, . 23 v 0 £1 <€ d-1.
3
Therefore
d
T ooz [ eas
1=0
¥
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and,

£ (2,d) 2 [9—“?-1-]+d+ 1.
8 LZ

On the other hand consid. v the following class of graphs of arbi-

trary diameter d 22, as in Fig. 4.13, which by Lemma 4.1 are 2-diameter
stable.

f "
A\ o o

An Hg (2,d) ~ Graph with Even Diamater {(8).

An Hg {2,d) — Graph with Odd Diameter (9).

Figure 4.13.

This class shows

d+1
< | —
fs(z,d)_[ 5 ]+d + 1.

and (4.,10) follows.

Q.E.D,
Theorem 4,18, gq(2,2) =5, and for d 23
gS(Z,d) = 2(d+1) (4.11)
Proof., The value of g8(2,2) can easily be verified, The graphs
described in Fig. 4.13 show
gB(Z,d) < 2(d+1). (4.12)

On the other hand if

Ci = *(u,v) € E(G)

< -
u€v,, vev1+l} 0S51<d-1,
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then IGiI 22 V 0 £1% d-1, otherwise elimination of a single

Cra B yoi

edge disconnects the graph. ¥

Therefore, 24 < gs(Z,d). E

Let {xo} = VO {Xl,yl} = Vl (Xl # Yl), Xzsy2 € Vz

assume X Yy Xp¥y € GO’ X X9s Y1V, € Gl’ where Vi are defined

e B D 2,

for a 2-diameter stable graph G, as in the proof of Theorem 4.17, (C is

a vertex extremal HS(Z,d)-graph). If %,y ¢ E(G) then there must be an

N c———
edge in G1 (#xlxz) inciden. <ith X1s otherwise dG— (xl,xd)> d =

X. X
172
IGll Z 3., If %y € E(G) then again there is an extra edge in G,
The same argument applies to the Gd-Z’ Gd—l and therefore

2(d+1) £ gs(2,d), which together with (4.12) proves (4.11).
Q.E.D.

Theorem % ~~ _ives asymptotic bounds on gs(n,Z,d).

Theorem 4,19. For d 24 andn 2 [ﬁ%&] +d+ 1,

B

d--odd

o
1
o

8, (n,2,d)
1 £ 1lim -———;;—-«< (4.13)

nee

[V
I
[

|

d-even,

g

=%
¢
w

Proof. The lower limit in (4.13) is simply due to the 2-edge
conn. of any Hs(n,Z,d)-graph. To show the upper limit we start with
the HB(Z,d)~extremal graphs shown iu Tig. 4.13 and add to them vertices
so that the resulting graph is a 2-diameter gtable with diameter d, ;

Denote by XgsXqseees Xy the vertices of a diametrical arc of the

H (2,d)~extremal graph described previously.

let d be even, then consider two cases.
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Case 1: d=4m , mZ2i.
Connect Kol Fomtl by edge disjoint paths of lenmgth 2m,

and pogsibly one single path of length less than 2m, so that the result-

ing graph has exactly n vertices (Fig. 4.14),

Figure 4.14. An Hg {20,2,8) — Graph,

The graph obtained is clearly 2-diameter stable with diameter d with

8mt+2+ [E%-I%%l——-] 2m+t+1, edges, where n-6m-1 = (2m-1) s + t, 0<t<2m
Hence, b1
gs(n,Z,lnn) < 8u + L%] 2m + £ + 3, (4.14)

whzre t < 2m~1,

Case 2: d = 4m-2 m21.

Similar to Case 1 we obtain a family of Hs(n,2,4m+2)—graph of diam-

n—-6m-4
2m

] (2m+1) + t + 1, where

eter 4m+2, (Fig. 4.15), with 8mtb +[

n-bm~4 = 2m s + t, 0 £t < Zm,

Figure 4.16.  An Hg (28,2,10) — Graph.

73

T i N, s b A .

A O S D A0 G O A e

RN



A R PRA R YRR IS R A e - e ittt (LRI PR ULy S P BN L ean et v e e e e

Hence,
g, (n,2,4w+2) < B + [E‘Z%Zi] (mtl) + t + 7 (4.15)
where t < Zm,
If in inequalities (4.14) and (4.15) we substitute the appropriate

values of m, we obtain in both cases after dividing both sides by n

and taking the limit as n » ©

0
lim gS(n,.,d) < d

n-e n T4d-2
which proves the upper bound for (4.13) when d is even.
1f d is odd the following construction (Fig., 4.16) yields an

Hz(n,Z,d)~graph.

Figure 4.16. An Hg (17,2,7) — Graph.

By counting the number of edges of the resulting graph, one obtains

the upper bound in (4.13) for d .odd.

Q.E,D.
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JAPTER B
CONCLUSTONS AND FURTHER PROBLEMS
ln thin dignevtation, we have cousldered graph theorvetical problems
motlvated by quantion: related to the desigon of raliable communication
nolworka with a bounded maximal wensn o lelay.
In the tirat part ot the rewearch, conslsting of Chapter 2 and
Chapter 3, extremal problems rolated to the classes of graphs Ul (k,d)

and lll(n.k.d) (f o~ 1,2,0), delfned in Sectiong 2.1 and 3.!, were

studlea.  For the related functions we have obtalned the following
resultn,

(! rl(k, WA f) s (et 1Y (e+1) + f, = 0,1,2, k22, & 21.

il(k.d)k .l(k.d)k
R .g R[ (k.d) S e -

P

) ; I
I nome cases the tower bound fn (2) was shown to be attained.
1 oqeems that the lower bound mav be attained In other cases as well,

it we were nat able to prove that,

(D ror K, d 22,

.ﬁlﬁf.u.ﬁi. + 1 d-even
; 2
Max {f | (k,d), '2(k+l)+(d--'3)\/k1- < 1'2(k.d)5
k,d 2?2 J +
oy 22 .ﬁ‘.il%ﬂ@il. , d-odd.
Y [ dk (It
1) :{-L‘gw.ﬁ’-_), , d~even, k-even
ke (d1)+2(d- 1)) i cpve
Kd < 82“‘-“1)5’ 4 , d~odd, k-even
) (Gl (d-3) it
Lt DD L) od, k-odd
Bl
'l l ’< ‘.
waﬁi«{.’-l-)n , d-even, k-odd .
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In special cases tighter bounds on fz(k,d) and gz(k,d) can be

obtained.

B

(5) f3(k.d) k(d-1) + 2, k, d 2 1.

() gy(k,d) = [“‘(d”‘l?z*'z)‘”‘lj k,d 22,

(7Y For i = 1,2,3, (d > 1)

and asymptotically,

gi(nQZ)d) 1
1 £ lim ————e— €1 +.~NI
n o+ oo n -

(8) Ftor k= 3, and 1 = 1,2,3,

Sy BB D 51
2= n 272 [g]
n -r »
L2,
(9) For k » 3, d 22, n (v 41 ik + 2,
1]

g, (n,k,d)
o1 .

B - - -»]; - e e e - *
7 3 tm ey 7% [gl
{k~1) 2 ~1

%, (n,k,d)
L gmmm«5%+%MWWﬂw.,
n -+ w n & {5

(k-1) ~1

(10) For
d, £ 22 and {d-1)20 4+ 2 €n £ (A=) (-1)4 + 2, we have
shown tha

1

g}(n. W,od) = o
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Consildering network design applications, the previously listed
results may be used to calculate the "additional cost™, in terms of
vertices and edges, required for a higher reliability constraint measure
on the network. Thus, for instance, if a aetwork wirh diameter d and
minimal degree k is to be "wodified" to a k—vertex connected network,
at most (R-1) (2k-1) + 1(k+1) (d=30+i, 1=0,1,2) vertices must be added
to the network. Note that this modification may require a new arrange-
ment of the vertices and edges.

The obvious further problems to be investigated as suggested bv
the latter results are, of course, those of finding the exact val ues
cf the respective function, for which only bounds are gilven here.

In the second part of this research, Chapter 4, new reliability

criterla, motivated by maximal meszage delay considerations in communi-
cation networks, were defined and analyzed. (&,d)-graphs, %-diameter
stable and 2-distance stable graphs were introduced (see Section 4.1)
and different classes of those graphs were constructed. The main
results concerning those classes are ligsted below.

I. Concernlng (%,d)~graphs we obtained;

(1) For an (&,d)-graph G

gle) £d+ 1, ve € E(),

where g(e) was defined as the minimal cycle containing an edge e € E(G).
(2) All 2-edge coumnected graphs G were proven to be (2, 2d{G))-
graphs.
(3) The following, is a sufficient: condlition for a graph to be a

(2,d)-graph;
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If for some integer m 2 0, we have for a graph G,

(a) g(e) €3+ m, Ve € E) .

(b) Any pair of vertices x, y € V(G), such that dG(x,y) 2 d-m is
joined by at least two edge disjoint paths of length not exceeding d.

Then G is a (2,d)-graph.

II. TFor &-diameter stable graphs we obtained the followiung:

{1) If G is an f-diameter stable graph, £ 2 2, then
g(e) £4dG) + 1, ve € E(G).

(2) If G is an f-diameter stable graph and x, y is a diametrical
pair of vertices in G, then there are at least % edge disjoint x, y-paths
of length d(G) in G.

(3) If ¢ 1is a graph with the property g(e) = 3, Ve € E(G), then

G 1is 2-diameter stable if and only 1f every palr of diametrical vertices

in G is joined by at least two edge disjoint pathz of length d(G).

(4) A graph G with d(G) = 2, 3 is 2-diameter stable if and only if

there are at least two edge disjoint paths, uf length not exceeding
d(G), between any palr of vertices of G.
{(5) For the functions fq(k,d), gs(k,d) and gs(n,k,d), defined in

section 4.5, we have,

£_(2,d) = [9‘5—'3] FdE1, d 2 2.

B (2,d) = 2(d+1).

d
gs(n,z,d) g7 » drodd
1 € lim —=—— —
nore O d-1
43 d-even.
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III. For &-distance stable graphs we obtained an analog of the well

e
Y
s A
oy =
e

R
e

i
-«

known Menger Whitney Theorem (see {9], Chapter 5), as follows:

< LT

T

A graph G is f-distance stable if and only if between any pair of

S
03

nonadjacent vertices x, v € V{(G), there are at least & edge disjoint

paths of length dp(x,y).

From the varlety of open problems directly arising from this

L1 I R P I T
L

research, we mention only a few:

. TR

-4

(1) In (4.6) we had for an %~diameter stable graph, G

girth(G) € d(G) + 1 .

We could not decide whether (4.6) can be improved, or, whether

2 for any arbitrary integers 2,d, one can always find an %-diameter stable

graph with diameter d and girch d + 1
(2) Finding a necessary and sufficient condition for a graph G,

¢ to be an (f,d)-graph on an {-diameter stable graph, remains an open

problem. The sufficient condition in Theorem 4.14 for a graph to be a

(2,d)~graph, does not seem ve¢ be a necessary condition for (2,d)-

. 2 stability. But to prove that, a counter example is needed.

(3) Computation of the values of the functions fq(k,d), gs(k,d)

L and gS(n,k,d) for k > 2 (for k = 2, we obtained various results) is
S

& needed.,

X (4) Analogous problems for (&,d)~stable, £-diameter stable and

f-distance stable graph with respect to vertices may be obtained. For

¢ Instance, a graph G 1s f-distance stable (w.r. to vertices) 1if and only
i1f between any pair of nonadjacent vertices of G there are at least

L-vertex disjoint x, y-paths of length dc(x,y) in G, Ve have not
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pursued similar questions for (2,d)-graphs and L-diameter-stable graphs,
with respect to vertices.
(5) Extremal problems analogous to those considered in this

research may be posed for 2-distance stable graphs.
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