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Introduction 

The principal subject of this paper is the symbiosis between program verification 

and programming methodology, especially the way the relationship has affected the design 
of a particular programming system, Alphard (currently under development at Carnegie- 

Mellon University). The original design goals for Alphard were concerned with both 
methodology and verification. We wished to produce a programming environment which 
supported and encouraged the development of "well structured" programs, and which also 

made the verification of those programs easier than in existing languages. We have been 
surprised and extremely pleased at the degree to which these concerns have reinforced 

each other to produce a coherent system design. Although we shall discuss language 

design and verification separately, our real goal in this paper is to show that they are not 

independent, and that when they are treated together a pleasing union results. 

Our ultimate concern is with the cost and quality of real programs. It is by now 

generally accepted that programming costs are too high, quality is too low, schedules are 
too often missed, and so on. We assume that the reader is already familiar with the 
discussion of the situation and with some of the proposals for remedying it [Baker72, 

BrooKs75( Buxton70, Dahl72, Dijkstra68a, Goldberg73, Gries74, Naur69, Parnas? 1,72a. 

Weinberg71,Wirth71,Wulf72]. 

The area called programmmg methodology or structured programming is concerned 

with those aspects of the current software problem which result from our human 

limitations in dealing with complexity. Large programs, even not-so-large ones, are among 

the most complex creations of the human mind. They are often too complex for their 

creators to understand. This "unmanageable complexity" is at the root of many problems 
with contemporary software. Structured programming has addressed this situation by 

attempting to reduce the complexity of programs (or at least their apparent complexity), 

by restricting either the form of the programs (by eliminating the goto, for 

8xample[DijKstra68b]) or the process of creating them ^as is the case with stepwise 

refinement [Wirth71]). In both cases the intent is to match the complexity, as we humans 

perceive it, to the limitations of our understanding. 

Problems that arise from repeated modification of large programs are often ignored 

in the literature on programming methodology. Most large programs are not simply 

written and run; rather, they are continually modified and enhanced. The same limitations 

which effectively prevent humans from dealing with the complexity of large programs also 

prevent them from anticipating all the ways their programs will be used. Thus the initial 

program is seldom adequate for all its eventual uses, and it experiences constant pressure 

-    .!. 
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for improvement and expansion. Indeed, the more successful a program is, the more likely 

it is to be modified: only programs no longer in use are safe from this pressure. In many 

cases the cost of modification exceeds that of initial development, often by a large amount 
[Goldberg73]. 

Although modification issues have not received the attention we believe they 

deserve, the concerns of programming methodology are especially relevant to solving 

them. Much of the effort involved in modifying an extant program is devoted to simply 

understanding what is already there. If what's there is overly complex, modifying it can 
be difficult, time consuming, and susceptible to errors. 

Responding to the modification issue adds a dimension to programming methodology. 
It is no longer adequate for the original programmer to develop the program in a well- 

structured manner; if the program is to be modifiable, the structure of the development 
must be retained in the ultimate program text. The future reader must be able to perceive 

the structure and use it to understand what the program is doing. Thus, a major objective 
of the Alphard design is precisely retention of this structure. 

The research on program verification has been concerned with another approach to 
alleviating the problems with current software — proving that the programs we write are 

in fact implementations consistent with their specifications [Floyd67, Hoare69,72b, 
London75, Manna74, Naur66]. No matter how clearly we write, we must recognize that 

programming demands absolute precision. To have real confidence in our programs we 

must develop them with a degree of precision comparable to that found in mathematics. In 

short, we must aim toward proofs of our programs, even if the proofs are not in fact 
carried out. 

Program proofs tend to be large (at least as large as the orogram) and tedious. It is 
not reasonable to expect them to be done "by hand" as a mathematician would; the human 

effort would be unreasonable and the probability of error too high. Automatic proof aids 

will be needed if we are to find proofs with a reasonable amount of effort. Existing 
automated methods are not strong enough to cope with the complexity of real programs, at 

least as those programs are currently formulated; this has prohibited routine verification 

Of production programs. The Alphard response, as we shall see, has been an attempt to 

modularize the proofs so that each individual segment is within the ability of present, or 
easily attainable, automated proof aids. 

Recently, attention has turned to verification of collections of related functions as a 
means of segmenting the verification task along the same lines as the decomposition of the 

program itself. For example, proof techniques described by Hoare [Hoare72b] and Spitzen 

and Wegbreit [Spit2en75, Wegbreit76] can show that a data representation and its 

associated operations possess the expected properties, provided that the representation 

is directly manipulated only by the associated operations and not by other parts of a 

program.    This  decomposition  and factorization permit  parts of the verification  to  be 
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performed for each operator definition instead of for each use. Ultimately, the techniques 

rely on induction on the number of data operations performed. Related proofs may be 

found in [Guttagys, 76b, Zilles75]. 

Well structured, understandable, easily modified, and demonstrably consistent 

programs can in principle be written in any programming language. In practice, however, 

we Know that the presence or absence of certain features in a language can materially 

affect all these desirable properties. We also know, from both natural and artificial 
languages, that the language we use to express our ideas can shape the ideas themselves 

[Whorf56]. Thus, by choosing language features and structure properly we can hope to 

exert a positive influence on the programs written in the language. 

Instead of starting with an existing language and focusing on either methodclogy or 

verification individually, we therefore chose to treat the issues together in a new language 

design. 

This paper, together with its companions [London76, Shaw76b], briefly introduces 

the Alphard language, discusses the verification issuos in this general context, and then 

elaborates on the language mechanisms suggested by this approach to verification. This 

cycle is repeated several times for various aspects of language and verification; several 
examples are developed. The closing section returns to the symbiotic relation between 

methodological and verification concerns. 

Preview of the Alphard Language 

A key concept in structured programming is abstraction: the retention of the 

essential properties of an object and the corollary neglect of inessential details. For 

example, all programming languages provide their users with an o6itroct machine from 

which inessential details such as the specific assignment of memory locations has been 
eliminated. Abstraction is important to structured programming precisely because it 

permits a programmer to ignore inessential detail and thereby reduce the apparent 

complexity of his task. 

Several abstraction techniques have appeared in the literature on structured 

programming. For example, in stepwise refinement or top-down design, the top-level, 

abstract description of a program is refined to a description in a programming language in 

1 Of course, in a certain sense any attempt to design a structured programming 

language is doomed to failure. A perverse p Dgrammer can easily defeat any attempt by 

the language to guarantee clarity or correctness. The language can only encourage good 
structure and provide the opportunity for verification ~ it cannot enforce either one. 

i 
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a series of progressively more concrete steps [DijkstrayZ, Wirth71]. In modular 
decomposition [Parnas72a, 72b], the final (source) version of a program is divided into 

units; each unit is the realization of some abstraction. Parnas further advocates that the 

implementation of each of these abstractions be hidden from its users lest they 

inadvertently misuse knowledge of the implementation [Parnas71]. 

The gross organization of Alphard programs is based strongly on Parnas' ideas, 

although not on the details of his proposals. This style of program decomposition provides 

the opportunity to isolate and textually localize all of the details about the implementation 

of an abstraction.  This has several advantages over more traditional organizations: 

- The places where modifications must be made are more likely to be close 

together. 

- A smaller portion of the program will have to be reverified when a change 

is made. 

- The user of the abstraction may ignore the details of the implementation. 

- It becomes possible to make absolute statements about certain things (e.g., 

data structures) which are independent of even perverse programmers. 

- The implementor of the abstraction may (sometimes) ignore the complexity 

of the environment in which the abstraction will be used. 

The specific language mechanism used to capture this style of decomposition is derived 

from Simula classes [Dahl72]; a similar adaptation has also recently appeared in CLU 

[Liskov74,75a], and related features are beginning to appear in other languages (see, for 

example, [DataConference76]). At this point we shall only introduce the general nature of 
the construct and the Alphard notation; more details will follow an explanation of the 

verification issues. 

The abstraction mechanism in Alphard is called a form. It permits the programmer to 

introduce a new abstraction into the program; in most ways the newly introduced 

abstraction will resemble a new type as that term is used in other programming 

languages. 

^ In general, the abstraction introduced by a form need not be a type in the 

traditional sense. We use the word "type" informally in this paper, however, and the 

reader will not be misled too badly by thinking in those terms. 
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Thus, in an Alphard program one might find a definition such as: 

form complex» 
beeinform 

endform 

This definition introduces a new abstract notion, "complex variable". (Here and in the 

sequel we shall use ellipses, ". . .", to denote text whose details we wish to ignore for the 
moment.) The form contains all the information relevant to the implementation of the 

abstract notion. In this case, for example, we would find both the definition of the data 

structure to be used in representing a complex variable (e.g., two real variables) and the 
definition of a set of operations on them (addition, multiplication, assignment, etc.). The 

form also gives a formal specification of the abstract properties of these complex 

variables, but the full story of that must wait a bit. 

Once such a definition is written, a programmer can write an abitract program using 

the newly defined notion; variables of the new type may be declared, the defined 

operations may be performed, and so on.  For example, one may write: 

local x,y,z:complexi 

x<-x4-y*Zi 

because certain features of the language allow new functions to be associated with the 

infix operations. 

All of this is, of course, very similar to the notions found in er ensible languages 

[Schuman?!]. However, the emphasis is considerably different: we are not interested in 

general syntactic extension. Rather, we are concerned with encapsulation, separating the 

concrete realization (implementation) of an abstraction from its use in an abstract program. 

Thus, for example, all of the representational information in a form is inaccessible to the 
abstract program; only those properties defined in the formal specification are accessible. 

So much for a preliminary peek into the nature of Alphard. In the following section 

we describe a technique for verifying the properties of a form. Since so much of the 
syntax and semantics of Alphard are tuned to this verification technique, we shall explain 

the technique first, then present the language via an extended example. For now, the 

important property of the language is its ability to separate the use of an abstraction from 
the definition of its concrete representation. The verification technique exploits this 

separation and permits the implementation (the form) to be verified independently of the 

abstract program in which it is used. 
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In order to show as clearly as possible the relation between language and 
verification we have omitted a number of issues from this discussion of Alphard. These 

include data representation, reference variables, storage allocation, statement and 
expression syntax, exception handling, input-output, literals, and other things not needed 
for this exposition. At least for the programs given here, the reader's intuition and good 

sense should suffice to fill in the gaps. 

Verification of Forms 

Our overall strategy for verifying Alphard programs parallels the program 

decomposition implicit in the notion of a form. We shall presume a relatively small main 

program expressed in terms of operations on abstract objects natural to the problem. 

This main program is verified by traditional methods (e.g., Inductive assertions [Floyd67, 

Manna74(chapter 3), Naur66]), treating the specifications of the abstract objects and 
operations as if they were primitive. Then, to justify the use of the specified properties 
of the abstract objects we verify that the concrete implementation of each abstraction is 

consistent with its specifications. In general the implementation of an abstraction will be 

given in terms of further, lower Level, abstract objects and operations on them. Thus the 
verification of the algorithms used to implement an abstraction will be similar to the 
verification of the most abstract (top level) program. An obvious requirement of this 

approach is that each of the implementations be correct, or verified, if the ultimate 
program is to be verified. Roughly speaking, the verification will show that the specified 

relations exist between all abstractions and their implementations so that each 

implementation "behaves liKe", or models, its abstraction. 

The key to the utility of this approach is separating the proof of each program that 

uses an abstraction from the proof of the implementation of that abstraction. Several 

advantages accrue *<om this separation: 

- Individual proofs are kept manageably small. 

- Program modifications generally imply reverification of only the affected 
program portion, usually a single form (exceptions occur when the 

modification affects the specification of the abstraction implemented by 

the form). 

- Although   the  entire   program  can  be considered  correct  only  when  all 
portions have been verified, it is feasible for certain portions to be 
unverified during program development. Alternatively, some verified 

forms may be available from a library while others may have been 
developed and verified by a subgroup independently; these forms can be 

used confidently during the development of further programs or forms. 
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The remainder of this section explicates a proof methodology which permits this 
separation. !t is based on ideas from Hoare's notable paper on correctness of data 

representations[Hoare72b]. 

Suppose that we have an abstract type, T, that "y" is an arbitrary object of type T, 

and that Aj.-.-.A,, are abstract operations defined on objects of type T. Our first concern 

will be to define the objects of this type and the operations on them in a manner which 
permits a higher level program tc use these objects and be verified easily. This definition 

consists of three parts: the specifications, which constitute the user's sole source of 

information about the form, the representation, which describes the representation and 

related properties of an object of this type, and the implementation, which contains the 

definitions of the functions that can be applied to an object. 

In the specifications, we first define the class of objects belonging to this type by a 
predicate which, for reasons which become clear later, is called the abstract invariant, Ia. 

Second, since the abstract type, T, may be defined only under certain assumptions about 
the parameters supplied when it is created, we capture these assumptions by a predicate, 

/3reci. Third, we give another predicate /?|njj, which characterizes the initial value given to 

an abstract object w4ien it is created. Fourth, we define the abstract operations by their 
input-output relations, using pairs of predicates which characterize their effect. We call 

these /?pre and ^p0sti in Hoare's notation [Hoare69] they say: 

ßpreW { Aj } ^post(y) 

characterizing the effect of the operation Aj by asserting that if the predicate ßpre holds 

before the operation is executed, then /?p0st will hold afterwards. Aj is assumed to read 

or change only y. 

Our next concern will be to characterize a concrete implementation of these abstract 

objects and operations. Suppose that "x" is the concrete representation of an object of 

type T, and hence, in general, "x" will be a collection, or record of concrete variables. 

Further, suppose that Cj,...,Cn are the concrete operations which purport to be the 

implementations of the abstract operations A^A^ The set of concrete objects is also 

defined by a predicate, which we shall call the concrete invariant, Ic. The relation 

between a concrete object, x, and the abstract object that x represents may be expressed 

by a representation function, rep: 

rep(x)=y 

Note that the reg. function may be many-one; that is, more than one concrete object may 

represent the same abstract object.  Re£ must, however, be defined for all x sat.sfying L. 

The concrete operations, Cj, must also be characterized in terms of their input- 

output relations.   To avoid confusion in the sequel we shall refer to these predicates as 
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the input and output conditions, ßm and /?out, rather than as pre and post conditions. 

Thus, 

/W*) I ci} /Wx) 

We assume that each Cj alters or accesses variables only in x. 

Finally, we shall presume a distinguished concrete operation, Cjnjt, which is invoked 

whenever an object is created; this operation is responsible for initizür'ng the concrete 

representation. 

Now, at an intuitive level, we wish to show that the concrete representation and the 

implementation of the concrete operations are "correct". More specifically, we wish to 

show that it is safe for the programmer working at the abstract level to prove the 

correctness of his program using only the abstract specifications of the types he uses: Ia, 

ß /?init, and (for each abstract operation) ßpre and /?post. In th* sequel, we often 

discuss an arbitrary function whose corresponding abstract and concrete operations are 
denoted by the symbols A and C, respectively; our remarks are therefore implicitly 

quantified over the set of such operations. 

We have chosen to break the proof of the correctness of the concrete realization 

into four steps. The first step establishes the validity of the concrnte representation. The 
second establishes that the concrete initializahon operation is sufficient to ensure that 

/?init and L hold initially, provided /?req is satisfied. The third establishes that the code of 

the concrete operations is in fact characterized by the input-output assertions, /(?in and 

/?„.lf, and furthermore that L is preserved. The last step establishes the relation 
between the concrete input-output assertions and the abstract pre and post conditions. 
After describing the proof steps we discuss the relationship between this methodology 

and Hoare's. 

For the Form 
1. Validity of the Representation'' 

Ic(x) ^ Ia(rep(x)) 

2. Initiaiization of an Object 

/^req I Cinit )   ^init^P**» A M** 

3 This condition is actually slightly stronger than necessary since we only need to 

ensure that those representations reachable by a finite sequence of applications of the 

concrete operations actually represent abstract objects; in practice, however, the stated 

theorem is not restrictive since Ic can be made stronger if necessary. Note, by the way, 

that we need not prove the dual {la(y) implies the existence of an x such that y-rep(x) A 

Ic(x)) since this is guaranteed for reachable abstract objects by steps 1-4. 
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For each function 
3. Verification of Concrete Operations 

/?in(x) A Ic(x)  { C i  ß0^M A Ic(x) 

4. Relat*' i Between Concrete and Abstract Specifications 

4a. Ic(x) A /?prfc'rep(x)) 3 ßmM 
4b. Ic(x) A ßpre{re^y)) A /?out(x) 3 ßpos[{repM) 

where the primed variable in step 4b represents the value of that variable prior to the 

execution of the operation. 

Note that steps 1 and 4 are theorems to be proved while 2 and 3 are standard 
verification formulas. Only the last step, 4, should require further explanation. 4a ensures 
that whenever the abstract operation A could legally be applied in the higher level, 
abstract program (that is, whenever ß holds), the input assertion of the concrete 

operation, ß{n, v ill also ho!d. 4b ensures that if the concrete operation is legally invoked 

(that is, Ic(x;.^pre(rep(x)) holds), then the output assertion of the concrete operation, 

ßou[, is strong enough (0 imply the abstract post-condition, ßpOS[- The four steps are 

sufficient but not necessary for *he proof. 

Hoare's similar technique for verifying the correctness of the implementation of an 
abstraction differs from the one described above in two respects. First, his approach does 

not deal explicitly with the issue of the validity of the representation, or distinguish 

explicitly between the concrete and abstract invariants. Second, he did not break the 
proof into several steps; we did so because we felt it would add clarity, would allow easier 

modifications both of forms and verifications, and would facilitate mechanical verification. 

In any case, except for step 1, we shall show that the two techniques are equivalent in the 

sense that from the proofs of one approach, we can derive the proofs required by the 

other. 

Hoare's technique requires our step 2 and, for each function, a combination of steps 

3 and 4 which is expressed in our notation as 

/?pre(rep(x)) A Ic(x) { C } /?post(rep(x)) A Ic(x) 

To obtain the proofs required by Hrare's approach from our proofs, merge steps 3, 4a, 

and 4b, using the rule of consequence:4 The first premise for the application of the 

consequence rule is 

4   The rule of consequence is: 
PDQ, Q{S}R, R=>T 

P{S}T 
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/?pre(rep(x)) A Ic(x) = (8|n(x) A IC(X) A /?pre(rep(x)) 

which is step 4a with Ic(x) A fipre{repM) added to the conclusion.  The second prem...,* is 

/?in(x) A Ic(x) A ./?pre(rep(x)) { C ) Ic(x) A /?out(x) A /?pre(rep(x')) 

which is obtained by the consequence rule using 3, and then noticing that /5pre(rep{x')) 

still holds after C since C does not alter x'. The third premise is 4b with the hypothesis 
Ic(x) added to the conclusion. 

Conversely, to obtain our proofs from Hoare's, first note that ßm and ß0^ are not 

included in Hoare's proofs. We are therefore free to choose ßm to be /?pre(rep(x)) and 
/Sout to be /?post(rep(x)). Step 3 becomes exactly the combined form, and steps 4a and 
4b are trivially provable.  Thus the two techniques are equivalent. 

In some cases it may be appropriate to show the combined form directly for each 
function. Hoare proves the theorem that if step 2 and the combined form have been 

shown to hold for the implementation of some abstraction, then a concrete program using 
this implementation will produce the {representation of the) same result as an abstract 
program would have.5 The proof of this theorem uses induction on the number of 

applications of operations in the abstract program. Our steps 1 and 2 establish the basis 
step; steps 1, 3, and 4 are used to establish the induction. 

One might expect from this description of the methodology that the relationship 

rep(xl)-rep(x2) ^   A(rep(xl)) = A(rep(x2)) 

would be true for arbitrary abstract functions A. Unfortunately, it is false. For example, 

let xl and x2 be equal but not necessarily identical representations of a set S (i.e., xl and 

x2 contain exactly the same elements, but in different orders); let the function A select an 
arbitrary element from S. The post condition for A is just x i S, which does not specify 
uniquely which element to select. 

In the next section we shall return to the description of Alphard and in particular to 
how the various pieces of information required by the proof technique are supplied in a 

form. First, however, we must say a few words about the predicate language in which the 

fts are expressed. The real issue, of course, is the language used for expressing the 
abstract predicates: Ia, ßini[, ßpre, and ßp0s^ since the concrete predicates use the same 
language as the specification of the next lower level abstractions. 

There remains some controversy about the best specification techniques 
[Liskov75b].   We do not wish to enter that debate here; we are content to await the 

Assuming, of course, that both the abstract and concrete programs terminate. 
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emergence of one or more appropriate techniques and ♦hen adopt them. For the purposes 
of this paper, however, we must use some scheme trom among the existing techniques. As 
Guttag [Guttag76a] has noted, the operational specification technique we are using seems 
to be more easily used by current programmers, but may have other problems, such as 

overspecification. AxiomL.;ic techniques (may) avoid these problems at the expense of 

being less intuitive (at least until one becomes thoroughly familiar with them). We are 
neither advocating nor rejecting these two techniques here; Alphard should accommodate 

both, and we have chosen one we are comfortable with. 

In this paper, we shall presume the existence of a suitable collection of recognized 

mathematical entities, such as integers, booleans, sets, sequences, multisets, matrices, and 

the i perations defined on these entities. We assume that they have been defined 

pre..if.ely and that a rich collection of useful theorems has been proved for each. 

Our specifications will be stated in terms of these mathematical objects; in effect 

they will characterize a possible implementation in terms of the abstract mathematical 

entities. Thus, for example, in the next section we shall define an implementation of a 

(restricted) stack. The specification will characterize the stack operations in terms of 
operations on a sequenpe, with the sequence itself used to capture the state of the stack. 

A precise definition of the notion of a sequence, adapted from [Hoare72a], has been 

included as Appendix A. Although the notion is defined formally there, the following brief 

informal definition is included here to aid the reader in understanding the examples which 

follow, 

<si,...,sk> denotes the sequence of elements specified; in particular, '<>" 

denotes the empty sequence, "nullseq". 

s m <x> is the sequence which results from concatenating element x 

at the end of sequence s. 

length(s) is the length of the sequence 'V. 

first(s) is the first (leftmost) element of the sequence V. 

trailer(s) is a sequence derived from V by deleting the first element. 

Iast(s) is the last (rightmost) element of the sequence V. 

leader(s) is a sequence derived from "s" by deleting the last element. 

seq(V,n,m) where "V" is a vector and "n" and "m" are integers, is an 

abbreviation       for       the       sequence      "^n'^n+l'-'^m^' 
alternatively, seq(V,n,m)=sf3q(V,n,m-l) ~ Vm. 

Note: first, trailer, last, and leader are undefined for "<>". 



■■■-    ■• ■    ^...« M.    w 

Page 14 

Introduction to Alphard 

This section is an informal discussion of the Alphard language facilities which 

support the verification technique introduced above. Since we are primarily concerned 

with structural and verification issues we shall not concern ourselves with minor syntactic 

aspects of the language or with those (sometimes major) features of the language which 
do net bear directly on these issues. We expect that the reader's familiarity with other 

languages will be adequate for him to infer both the syntax and semantics of those 

constructs whose formal definition is omitted. 

Much of the exposition is by example. We develop a definition of stacks and a 
program which uses stacks. These examples illustrate both the abstract definition facility 

and the interaction of verification considerations with language. We chose the stack for an 
example because it is familiar to most readers and because the Alphard program can be 

compared to other descriptions. 

Forms 

Imagine that while designing some program we found it desirable to use the notion 

of a stack — in particular, a stack whose elements are integers. We presume that our 
language does not contain stacks as a primitive concept, as indeed Alphard does not, so we 
want to introduce it as a new abstraction. Suppose further that an a priori depth limit is 

known or desired, so we need not define a general stack mechanism, only one which 

behaves like a stack so long as its depth does not exceed some predetermined maximum. 

We shall lean heavily on the verification methodology developed above to explain 

the rationale for the various components of a form definition. We shall present the 
definition piecemeal, with each piece corresponding to some aspect of the verification 

technique. Starting at the top, the abstraction of a finite-depth stack of integers will be 

defined by a form such as: 

form   istack(n!inteeer)«« 

beginform 

endform; 

where "n" is the maximum permissible depth of the stack.   Note that we must carefully 
distinguish between the abstract concept introduced by such a definition and an instance 
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of that concept. In general there may be many instances of an abstraction. Instances of 
abstractions are introduced into an Alphard program in several ways, but a common one is 

by declarations.   Thus, 

local x:istack(50)i 

has the effect of creating an instance of an istack and giving the name "x" to this 
particular instantiation. In the jargon of programming languages, this declaration binds the 

name "x" to an instantiation of istack. 

We must now decide what the abstract properties of our stack are to be. We must 

decide both what operations the abstract program shall be allowed to perform and what 

effects these operations shall have. In this case we shall allow only four operations: 
"push" makes a new entry at the top of the stack, "pop" deletes the current top element 

of the stack, "top" returns the value of the current top element of the stack, and "empty" 

returns ':true" iff the stack is empty. (Obviously we could have chosen a more 
comprehensive set, but this will suffice for our first example.) 

The abstract program which uses the notion of an istack will apply these operations 

to instances of the abstraction. The form must provide a precise definition of these 

operations together with the concrete representation and operations to be used in 

implementing them. Thus, in general, a form is composed of three parts: specifications, 
representation, and implementation. 

form istack(n: integer) = 
beRinform 

specifications . . .; 
representation . . .; 

implementation . . .; 

endform; 

At the very least the specifications must provide the names of the operations 

supplied by the form together with the types of their arguments and results. In order for 
the user to be able to understand and use the abstraction solely in terms of the 

specification, and to permit verification, we must also include (1) a definition of the 

abstract domain, (2) the initial value of each entity of the ?bstract type, and (3) the pre 

and post conditions for each operation. Using the mathematical notion of a sequence, 

defined earlier, we can write: 
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form istack(n: integer) - 

beginform 

specifications 

requires n>Oi 

let istack  ■ < ... x»... > where Xj is integer} 
invariant 0<length(istack)$n; 
initially isfack=nullseqj 
function 

push(s:istack, x;integer) pre 0 5 lei.7,th(f) < n post S"s'~x, 

pop(s: istack) pre 0 < lengt   s) 5 n post s ■ leader(s'), 

töp(s; istack) returns x: integer 

pre 0 < length(s) S n post * - last(s'), 
empty(s: istack) returns b: boolean 

post b - (s-nullseq); 
lepresentation ..., 

implementation . , .; 

endform; 

Note how various pieces of information about the abstraction implemented by the 
form are introduced: the requites clause specifies /3req, the invariant clause specifies Ia, 

the initially clause specifies ßm\\, and each of the function clauses specifies /3pre and 

^post for *hat unction.6 Furthermore, no particular implementation is demanded or 
precluded. 

In this case, then, the lotion of an istack is explicated in terr.is of the mathematical 
notion of a sequence of bounded length. The operation "pop", for example, is defined to 
produce a new sequence which is just like the old one except that its last element has 

been deleted. (As before, the primed symbols in the post conditions, e.g., s', refer to the 
value of the (unprimed) symbol prior to execution of the opsration.) 

This particular example allows us to illustrate something which was awkward to 
introduce in the more abstract discussion in the previous section, because the form may 
be parameterized to allow each user to select his own maxim nth, it is more properly 

a "type generator" (that is, a definition of a set of types mple type definition. 

Although we will expand on this point at some length in ent section, we note 

here that not all values of the parameters may make sense. In ihis case, for example, a 
stack of negative size is senseless. Restrictions on the parameters are conveniently 

expressed in ßre^, that is, the requires portion of the specifications. 

To shorten the pre, post, in, and out conditions in this paper, we often, by 

convention, omit assertions about variables which are completely unchanged. Thus, for 
example, we have omitted s=s1 from the post condition of top. Such omitted assertions are 

nevertheless used in the proof steps. We also generally avoid in our proofs the legitimate 

concerns expressed in the term "clean termination" — such matters as array bounds 
checks, overflow, division by zero, and other inexecutable operations. 
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The representation portion defines the data structure which each instantiation of 

the form will use to represent the abstraction. It also specifies: (1) the initialization to be 

performed whenever the form is instantiatec1, (2) the refi function, which relates concrete 

to abstract descriptions, and (3) the concrete invariant. Thus, this section provides the 

major information relating an abstract entity and its concrete representation. 

For this example we have chosen a simple representation for the stack. A vector 

holds the contents of tKe stack and an integer variable points to the top of the stack. 

form istack (n: integer): 

beginform 

specifications . . .; 
representation 

unique v: vector(integer,l,n), sp: integer inrt. sp <- 0; 

rep (v,sp) = seq{v,l)sp); 

invariant 0 < sp < ni 

implementation . ..; 

endform; 

The first clause of the representation portion describes the concrete data 

structure(s) used to represent the abstraction; the key word unique used here indicates 

that the following data structure(s) are unique to each instantiation as opposed to being 
shared by, or common to, all instantiations. The re£ clause specifies the representation 
function which maps concrete objects to abstract ones. The invariant clause specifies Ic. 

Also, note the [nit clause attached to the data structure declaration; this is the 
distinguished operation, Cjnj(, mentioned in the previous section. The initialization 

operation is automatically invoked whenever an instantiation of the form is created, and is 

responsible for establishing ßin^. 

We would also like to point out the use of the names "vector" and "integer" in this 

example. These ar^ not primitive types of the language; they are simply form names. 

They happen to be the names of forms which will be automatically provided along with the 

compiler, but they are not special in any other way. 

From experience in writing forms, we have found that it is convenient to add 

another piece of information to the representation: a set of state definitions. These states 

are merely a shorthand for a set of boolean conditions, but, as we shall see below, they 

help to accent certain interesting situations. A more complete version of the 

representation portion of the form is thus: 
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form istack {n: integer): 

beRinform 
specifications .. .j 
representation 

unique v: vector(integer,l,n), sp: integer mit sp 
rep (v,sp) - seq(v,l,sp); 

invariant 0 5 sp < n; 
states 

mt when sp - 0, 

normal when 0 <  sp < n, 
full when sp ■ n, 

err otherwise; 
implementation ...; 

endform; 

0; 

The implementation portion of the form contains the bodies of the functions listed in 

the specifications, together with their concrete input and output assertions (/-?jn and ^out). 

In defining these function bodies we make use of the states defined in »he representation 
part. The state of the representation is determined when any function in the form is 

invoked, but is not re-evaluated as changes to the representation are made within a 

function body. Thus the state may be used, as in this example, to select one of several 
possible bodies for a function when it is called. In this particular example the ability to 

select alternate bodies is used only for error detection, but it is certainly not limited to 
this use. 

form istack(n: integer) - 

beginform 

specifications .. .\ 

representation .. .5 
implementatior. 

body push out (s.sp ■ s.sp' + 1 A s.v - o£{s.v,,s.sp,x))- 

mt.normal:: (s.sp *■ s.sp + 1; s.v[s.sp]«- x); 

otherwise;; FAILj 

body pop out (s.sp ■ s.sp'-l) - 

normal,full:; s.sp «- s.sp-l; 
otherwise:; FAIL; 

body top out (x - s.v[s.sp]) ■ 
normal,full:; x «- s.v[s.sp}; 

otherwise:: FAILj 
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body, empty out (b ■ (sp-0)) - 
normal,full:: b <- false; 

mt:: b *- true; 

otherwise;: FAIL; 

endform; 

Since the states are used to select one of several alternative bodies for a function, the 

state descriptions may be used as additional input assertions for the body selected. Thus, 

for step 3 of the proof we may add to the precondition the disjunction of the (state) 

conditions that can cause the selection of that body. The notation V(V,i,x)", which is used 

in the output assertion of "push", denotes a vector identical to "V" except that Vj-x. 

Finally, the symbol FAIL used above is intended to connote failure; we prefer to avoid a 
detailed discussion of the exception mechanism in this paper and hence will avoid further 

elaboration of this symbol here. 

Naming and Scope 

The previous section dealt with the general organization of forms; in thh section we 

shall deal with some of the linguistic details of naming and scope. There are two issues to 

be discussed here: one is almost at the level of syntactic detail, but the other is 
fundamental to the ability of a form to encapsulate an abstraction through information 

hiding. Given the goals of this paper we would normally omit the first of these; they are 

closely related, however, so we shall discuss them in sequence. 

Consider the previous definition of "istack". We said earlier that ona or more 

instantiations of this abstraction can be created by declarations, and that the operations 

defined in the form may then be applied to them.  For example, 

local sl,s2: istack{10); 

push(sl,5); 

if top(s2)=23 then . .. 

But now suppose that another abstraction, call it "rstack", had been defined in the 

same program and that it also defined a function "push". We then have to decide which 
push operation is being invoked in any given situation The answer, of course, is that the 

interpretation of operation names is context dependent. We know that in the example 

above the correct "push" is the one in "istack" because its first parameter is an instance 

of the istack abstraction. The point can be made clearer by a slight change in notation; a 

construct of the form "namel.name2" is called a qualified ncme, its first component must 
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be the name of an instance of some abstraction and its second component must be the 

name of a function defined in the appropriate form. Thus, 

sl.push(5); 

is an invocation of the "push" function defined in the form of which "si" is an instance. 
Although this notation is more explicit about the operation named, it has an asymmetry 

which is often displeasing.' Thus, Alphard permits both styles of naming, i.e., 

f(pl,p2,.. .,pn) ■ pl.f(p2,.. .,pn) 

Although this convention also has some problems, they do not arise in the examples in this 

paper (see [Geschke75, Ross70] for discussions of the "uniform referent" problem); we 

shai! use whichever notation seems most appropriate in a given instance. In all cases, 

however, functions are defined as though the abstraction instance were its first parameter. 

The more substantive issue is that of scope — which names are defined where. 

Consider the "istack" form again. Inside the form several names are defined; some of 

these are the abstract operations, e.g., "push", others are related to the representation, 

e.g., "sp". From the discussion above we know that the operation names are available 

outside the form as qualifiers of Instance names. In Alphard, however, names such as "sp" 

are not available outside the form. 

Only names defined in the specifications part of the form are legal outside the form 

definition (inside is another matter). If names such as "sp" were legal outside the form. 

the abstract program could access, and possibly modify, the concrete representation. If 
this were allowed, both theoretical and practical difficulties would arise. First, we could 

not partition the proof technique as described above; specifically, we could not ensure that 

the concrete invariant was preserved between function invocations. Second, since the 

representational information would no longer be hidden it would no longer be safe to 

modify a form under the sole restriction that specified properties were preserved. We 

would instead have to examine all the uses of the abstraction to be sure that the 

representational information was not being used in some clever, but obscure, way. 

In summary, only the names appearing in the specification part of a form are legal 

qualifiers outside the form definition. In the examples so far all such names have been 

function names; as we shall see in future examples, this need not always be the case. 

' For example, for binary commutative operations such as "plus" it seems unnatural 

to write Hx.plus(y)" rather than "plus(x,y)". 
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The   general   scope   rules   in  Alphard   are  Algol-like,0   but   with   two   important 

exceptions: 

1, Only those names appearing in the specification part of a form may be 
used as qualifiers outside the form definition. (Note: all the names 

defined in a form ^ay be used as qualifiers inside the same form 

definition.) 

2. Only *qm.    'mes obey the usual block-strud-J.e convention on entering a 

form. Specifically, only those variables defined outside a form which are 

passed as parameters are accessible inside the form body. 

The earlier paragraphs dealt with the rationale for the first of these restrictions. 

The second restriction is imposed so that there are no free variables in a form body; this 
ensures that any dependency of the form on its environment is explicated in its parameter 

list. 

An Aside on Primitive Forms 

A basic question which must be answered in the design of any language is which 

primitive types should be provided by the language and which should be left for the user 
to define. The Alphard position is that ail types but one are defined by forms and, at 

least conceptually, could be (re)defined by the user. (The one primitive form which can be 
specified but not implemented in Alphard corresponds roughly to the untyped memory of 
conventional computers.) To be usable, however, a collection of familiar and useful forms 
are defined by a standard prelude [vanWijngaarden69, chapter 10], which is automatically 

inserted at the beginning of every user's program. Throughout this paper we shall use 

notions such as integer, real, boolean, vector, and so on; the reader may presume that 
these are either provided by the standard prelude or have been explicitly defined by 
other forms in the same program. In all cases, however, the reader should assume that 

these provide the familiar facilities. 

Example of a form Verification: Restricted Stacks 

In this section we shall illustrate the verification technique on the istack form of the 

previous section.  First, however, let's pull togethe. the pieces of the istack definition: 

8 By Algol-like we simply mean that the interpretation of a name depends upon its 

nearest definition in a potentially nested, static block structure. 
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form istack(n: integer) - 
beginform 

specifications 

requires n>0; 

let istack • < ,.. Xi... > where Xj is integer; 

invariant 0<length(istack)^n) 

initially istack=nullseqi 
function 

push(s:istack, xHnteger) pre 0 < length(s) < n post s^s'^x, 

pop(s: istack) pre 0 < length(s) < n post s ■ leader(s,)f 
top(s: istack) returns x: integer 

pre 0 < length(s) < n post x ■ lasUs'), 
empty(s: istack) returns b: boolean 

post b = (s=nullseq)j 

representation 
unique v: vector(integer,l,n), sp: integer init sp <- 0; 

re^W.sp) = seq(v,l,sp); 
invariant 0 < sp S n; 
states 

mt when sp - 0, 

normal when 0 < sp < n, 

full when sp = n, 

err otherwise; 

implementation 

body push oyi (s.sp - s.sp' + 1 A s.v = <^(s.v',s.sp,x))- 

mt,normal.: (s.sp «- s.sp + 1; s.v[s.sp]«- x)j 

otherwise:: FAIL; 

body pop out. (s.sp - s.sp'-l) - 

•iormal,full:: s.sp «- s.sp-1; 

otherwise;; FAIL; 

body, top out (x - s.v[s.sp]) - 

normal.full;: x <- s.v[s.sp]; 

otherwise;: FAIL; 

body empty out (b - (sp-0)) - 

normal.full:; b *- false; 

mt:; b«- true; 

otherwise;; FAIL; 

endform; 
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In the verification of istack, which is given next, the precondition for each body is 

the conjunction of its m clause (which is defaulted to "true") and the union of the state 

conditions for which that body is selected. 

For the form 

1. Representation validity 
Show: 0<sp<n 3 0<length(rep(x))<n 

Proof: length(rep(x)) - length(seq(v, 1, sp)) - sp. 

2. Initialization 
Show: n>0 { sp^-O } rep(v, 0) - nullseq A 0<sp5n 

Proof: rep(v) 0) ■ seq(v, 1, 0) ■ <>, i.e., nullseq 

For the function push 
3. Concrete operation 

Show: (0=s.sp v 0<s.sp<n) A 05s.sp<n { s.sp^-s.sp+li s.v[s.sp>-x ) 

s.sp=s.sp'+l A s.v=«;(s.v', s.sp, x) A 0^s.sp<n 

Proof: 0<s.sp<n o 0<s.sp+lSn 

AB.   ßm holds 

^in is true 

4b.   /?poSt holds 
Show: 0<s.sp<n A 0<length(rep(s.v, s.fp^^n A s.sp=s.sp'+l A 

s.v= <(s.v', s.sp, x) 3 s=s,'vx 
Proof: s=rep(s.v, s.sp) • seq(s.v, 1, s.sp'+l) - seqvs.v, 1, s.sp>s.v[s.sp] - 

seq(s.v,, 1, s.sp'^x ■ s'^x 

For the function pop 
3.   Concrete operation 

Show: 0<s.spsn A 0<s.sp<n { s.sp«-s.sp-l ) s.sp=s.spM A 0<s.spSn 

Proof: 0<s.sp<n o 0<s.sp-lSn 

4a.   ^jn holds 

ß\n >s true 

4b.   /?postholds 

Show: 0<s.sp<n A 0<length(rep{s.v, s.sp'))<n A s.sp=s.sp,-l ^ s-leader(s,) 

Proof: s=rep(s.v, s.sp) - seq(s.v', 1, s.sp'-l) ■ leaders').  Note that 

leader(s') is defined since s.sp'>l 

For the function top 
3.  Concrete operation 

Show: 0<s.spsn A Oss.spSn { x»-s.v[s.sp] ) x-s.v[s.sp3 A Oss.spSn 

Proof: Clear 

4a.  /fljn holds 

ß\n is true 
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4b.   .V.s, holds 

Shcvv: 0<s.sp<n A 0<length{rep(s.v, s.sp^^n A X"S.v[s.sp] 3 x=last{s') 

Proof: x=s.v[s.sp] - s.v^s.sp'] = 1381(5').  Last(s') is defined since s.sp'il 

For the function empty 
3.  Concrete operation 

(Normal, full) Show: 0<s.sp<n A 0<s.sp<n { b<-false } b ■ (s.ip-C) A 0<s.sp< i 
Proof: 0<s.sp ? false = (s.sp=0) 

(Mt) Show: s.sp=0 A 0<s.sp<n { b«-true } b ■ (s.i,p-0) A 0<s.sp<n 
Proof: s.sp=0 = true = (s.sp=0) 

4a.   /?in holds 

ßm is true 

4b.   /?post holds 

Show: 0<s.sp<n A b = (s.sp=0) ^ b = (s=nullseq) 

Proof: b = (s.sp=0) = (rep(s.v,s.sp)=nullseq) - (s=nullseq) 

QED 

The condition n>0 is used implicitly in this proof. The stricter n>0 is needed only to show 
that the four elates are disjoi.-.i. Finally, note that the union of the mt, normal, and full 

states includes Ic and that ßpre for each function and Ic specifically exclude the states 

that would trigger the otherwise alternative for the body. We therefore omit verifications 
involving FAIL. 

Generalizing Form Definitions 

The form defines the abstract notion of a stack-of-integers, but what does the fact 

that the items to be stacked are integers have to do with it? It seems that the abstract 
notion of a stack ought to be indepf ndent of the kinds of things being stacked.9 

We would like to be able to :,3fine a form such as 

form stack(T:form. n:integer)= 
bepjnform 

endform 

and then create instantiations with statements such as 

Perhaps one can argue that the fact that all items in a particular stack are the 
same type, e.g., integers, is an abstract property of a stack, but it would be unfortunate if 

we had to define separate forms for stacks of integers, stacks of reals, stacks of 
characters, and so on. 
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local si:stack(integer,35), sr:stack(real,14); 

which would make "si" a stack of integers and "sr" a stack of reals. 

We shall do essentially this, but as we introduce this facility we must be very 

careful to retain the validity of the verification technique. In fact, we want to ensure 
something stronger: that the resulting proofs are not complicated by the introduction of 
this additional flexibility. Thus, we shall start with a careful examination of the proof 
appearing in the preceding section. 

Specifically, let's observe how the proof depends upon the fact that the items being 
stacked are integers. A careful reading of the proof of istack reveals that it depends only 

upon the property of the items that we have an assignment operation which obeys the 
assignment axiom.*0 The reader is encouraged to examine the proof to verify that this is 

in fact the only property required, and therefore to see that the proof woüio be valid for 
any type of item possessing this assignment axiom. 

Returning to the language issues, what we want is a means for stating that the 

parameter "T" above cannot be just any form name; it must be the name of a form which 

supplies the properties required by the proof (and, of course, by the bodies of the 

concrete operations). The general mechanism used to accomplish this will be discussed 

belowj for the moment we will consider only the special case which handles the stack 
example. With this addition the form "stack has become a "type generator" as mentioned 
above rather than a simple type definition. 

We shall append a bracketed list <a|,...,an> to a formal parameter specification to 

denote that the properties a|,...,an are required of a corresponding actual parameter. 
Thus, in the present case we may write the stack form header as: 

form stack(T:torm«->. n:integer)= 
beginform 

endform 

The "«->" attached to the form parameter asserts that the actual form names used in this 
position must provide an assignment operation. The specifications part of the actual 

parameter form must assert the availability of this operation and assure that it obeys the 
assignment axiom. We shall discuss these issues in greater detail below, but first we shall 

give  the  full  stack definition and a verification of a program using it.   The full stack 

10   The assignment axiom is: 

P^  f x «- e }  P 

if x is a simple variable.   For subscript     variables the meaning of x[i] :- e is x :- oc{x,\,e) 
as in [Hoare72a]. 
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definition differs from ihe version at the beginning of the previous section only in the nine 
italicized lines, which are the ones that previously referred to "istack" or "integer". Its 
proof is identical to that given above. 

form stack(T:form«->, nunteger)' 
beginform 
specifications 

requires n>0i 

let stack "< i..«;,,, > where X: is T\ 
invariant 0<length(stack)<n; 
initially stack=nullseq; 
function 

push(s:stack, x:T) grz 0 s lengtMs) < n post s=s'~x, 
pop(s:stack) pre 0 < lengthis) < n post s m Leader(s*)t 

top(s:stack) returns x:T 
pre 0 < length(s) < n post x - last(s'), 

empty(s: istack) returns b: boolean 
post b - (s=nullseq); 

representation 

unique v. uector(T,l,n), sp: integer init sp 
rep (v.sp) -= seq(v,l,sp)i 
invariant 0 5 %p < n; 
state? 

mt when sp - 0, 

normal when 0 < sp < n, 
full when sp - n, 

err otherwise; 

0; 

implementation 

body push oui (s.sp = s.sp' + 1 A s.v = ods.v'^.sp.x))« 
mt,normal:: (s.sp ♦• s.sp + 1; s.v[s.sp] «- x); 

otherwise:; FAILj 

M) = body pop out (s.sp ■ s.sp' 

normal.ful!:: s.sp <- 

otherwise:: FAIL; 
■sp-l; 

body top out (x * s.v[s.sp]) = 

normal.full:: x «■ s.v[s.sp]; 

otherwise;: FAIL; 

  •  _  :   
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body empty out (b = (sp=0)) - 
normal.full:: b <- false; 
mt:: b «■ true; 
otherwise:: FAIL; 
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endform; 

Using Stocks in a Program 

Once the stack form is defined, programs may declare and use stacks. The following 
program uses a stack as defined by this fom to traverse a (finite) binary tree and count 
its tips. It also uses iteration and an explicit stack of binary trees [Burstall74, London75]. 
A binary tree is defined recursively to be either nil or to have a left son and a right son 
which are both binary trees.  The number of tips is defined recursively by 

tips(t) = ü t=nil then 1 else trps(ieftson(t))+tips(rightsona)) 

We shall not define a binary tree form explicitly, but shall presume that it meets at least 

the specifications 

isleaf(t;binarytree) returns b:boolean post b ■ (t=nil), 
left(t:binarytree) returns u-.binarytree pre tf«nil gost u=leftson(t'), 
right(t:binarytree) returns u:binarytree ßre ttnil ßgst u^ightson^') 

We shall also presume a tree assignment operation satisfying the assignment axiom.   In 
stating the maximum permissible depth of the stack we use the height function defined by 

height(t) - ü t-nil tjhen 0 else l+max(height(leftson(t)), height(rightson(t))) 

Suppose the tip counter is specified by 

function tipcount(t:binary\.c^ returns counbinteger EOSI count-tips(t) 

Then the body of the function tipcount might be 
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body tipcount out (counMips(t)) - 

begin 
unique s:stack(binarytree, ,nax(height(t)(l))( x:binarytree; 

x«-t; count«-l; 
invariant tips{l) = count - 1 + tips(x) + SIGMALKstips(u); 

while - empty(s) v i isleaf(x) do 
if isleaf(x) then (count+-count+l; x«-top(s); pop(s)) 

else {push(s, right(x)); x<-left(x)); 

end 

Throughout the body of tipcount the stack s means the abstract definition in terms of a 

sequence.   In particular, SIGMAu<:sf{u) means 0 if s=nullseq and otherwise 

f(lasUs)) + SlGMAuCleader(s)f(u) 

We shall verify the concrete operation of this body (i.e. proof step 3). Note first 

that the requires clause (n>0) of the stack form is satisfied. We shall use the usual proof 
rule for the while statement.11 Four verification conditions suffice; they are in the form 

obtained by backward substitution with each function operation of a form replaced by its 

post condition. 

1. (entry to while) 
Show: tip5(t) = 1 - 1 + tips(t) + SIGMAu(nul|seqtips(u) 

where "nullseq" is obtained from the initially clause of stack. 

Proof: The SIGMA term is 0. 

2. (while to exit) 
Show: tips(t) = count - 1 + tips(x) + SIGMALKstips(u) A 

-> (s^nullseq v x^nil) ^ count ■ tips(t) 
Proof: The SIGMA term is 0 because s«nullseq.  tips(xM since x-nil. 

1 * The while rule is: 
PAB{S}P 

P { while B do. S } P A -B 

This is a special case of the Alphard iteration construct; it behaves as you would expect a 

While Jo behave.  A more general iteration mechanism, which allows the author of a form to 

specify  how  iterations involving objects of that type are  carried out, is described in 

[Shaw76b]. 
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3. (while through then to while) 

Show: tips{t) = count - 1 + tips(x) + SIGMAu<stips(u) A 

(s?<nullseq v x^nil) A x = nil 3 

tips(t) ■ count + 1 - 1 + tips(last(s)) + SIGMAu€|eac|er(s)tips(u) 

Proof: x=nil means s^nullseq whence last(s) and leader(s) are defined 
(i.e. the j)re conditions for top and pop are satisfied),   x-nil also 

means   tips(xM.    The  conclusion  follows  by  the   definition  of 

SIGMA. 

4. (while through else to while) 

Show: tips(t) ■ count - 1 + tips(x) + SIGMAu<stips(u) A 
(s^nullseq v x^nil) A x^nil = 

tips(t) - count - 1 + '.ipsdeftsonW) + SlGMAu<s<vrjghtsJn()()tips(u) 

Proof: x^nil means the ^re conditions of both left(x) and right(x) are 
met.   x^nil also means tips(x) = tips(leftson(x)) + tips(rightson(x)). 

The conclusion follows by the definition of SIGMA.   It remains to 

show  that  the  ^re condition of push is met.   To do this it is 

convenient to add two terms to the while assertion: 

length(s) + height(x) <, height(t) 

s^s^ ..., sk> A l<j<k 3 j + height(Sj) < height(t) 

Assuming these two terms are indeed invariants (proof omitted), 
the ere condition is met because x^nil means height(x) ^ 1, i.e. 

length(s) < height(t). 
QED 

Farther Parameterization of Forms 

The "<>" notation used above is actually much more broadly applicable than might 

be suggested by the stack example. To see this, and tc motivate another related facility, 

we shall turn away from the form concept for a moment and consider the more traditional 

functional abstractions provided by subroutines. Suppose that we wished to write a 
subroutine which tested for the equality of two vectors. Using a pseudo-Alphard notation 

such a subroutine might appear as: 

function eqvecs(A,B:vector(inleger,l,10)) returns (eq:boolean) - 

begin 

for i from 1 to 10 do 

it A[i] I1 B[i] then (eq«-falsej return); 
eqMrue; 

end 

(This example is  not "real" Alphard because of the iteration statement; the companion 
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paper [Shaw76b] defines the Alphard iteration construct and presents this example in its 

correct form.) 

Much as with the stack example, this program is quite unsrtisfying. We would at 

least like to be able to write a function that would cover a broader class of vectors — say 
those of arbitrary length. Unless we do this We will be forced to write a different 
subroutine for each possible vector length.12 But even if we were to accommodate 
different lengths, we might still have to write different subroutines for each possible 
element type. Once again, if we examine the proof of this subroutine we will find that the 

only dependence on the element type is the existence of a not-equal operation. 

The correctness of the implementation of any parameterized abstraction depends or 

certain properties of the parameters and is completely independent of others. An abstract 

"eqvecs" subroutine should require that: (1) its two parameter vectors be the same length, 

(2) the elements of both vectors be the same type, and (3) the type of the elements 

provide a not-equal operation. It should not require that: (1) the vectors be of some pre- 
specified length, (2) the upper and/or lower bounds of these vectors have some pre- 

specified value, or (3) the elements have any other properties. 

The "<>" notation provides a means of specifying the required properties of actual 
parameters. We shall now introduce questionmark identifiers to permit the specification of 

non-requirements. Defining occurrences of such identifiers consist of a "?" immediately 
followed by an identifier, e.g., "?xyz"; they appear in formal parameter lists and are 
assigned meaning from the corresponding actual parameters. Multiple occurrences of the 

same ?identifier are required to have the same meaning in the same scope. Applied 
occurrences of these identifiers are uses of the identifiers without question marks. These 
may appear anywhere in the scope of their definition — thus, for example, they may be 

used to declare variables of the same type as an actual parameter13. 

The use of both the "<>" notation and ?identifiers is illustrated by the following 

pseudo-Alphard coding of the "eqvecs" subroutine. (The syntax of tho iteration statement 

still prevents this from being oroper Alphard.) 

^2 Such a restriction is one of the less pleasing aspects of Pascal 

[Habermann73, Wirth75]. 

13 There are somewhat pathological situations involving recursive procedures in 

which this scheme will not work; in particular in these cases it is not possible to determine 

the proper type? at compile time. We choose to ignore these pathologies here. 
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function eqvecs(A,B:vector(?t<»<>)?lb,?ub)) returns (eq:boolean) 

be&in 
for i from lb to ub do 

if A[i] / B[i] then (eq<-false; return); 

eq*-true; 

end 
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Note that in this implementation the symbols lb and ub appear as applied 

occurrences in the for statement. The intent is that, whatever the lower and upper 

bounds of the actual-parameter vectors, these values will be used as the initial and final 
values of the for statement range. Also, note that the form of the formal parameter list 

ensures that the two actual parameters will have the same element types and bounds. 

We shall not prove this implementation of "eqvecs" (the verification of the true 

Alphard version appears in [Shaw76b]), but the reader should readily be able to visualize 
such a proof and to see that it has not been affected by the generalizations introduced. 

Protection and Access Control 

The "<>" notation introduced above is clearly an extension of the familiar notion of 

type checking in programming languages; in this section we shall try to show its relation to 

the protection facilities of modern operating systems, especially those using the capability 

based protection model. In the foregoing discussion we stressed the restrictions imposed 

on actual parameters by the appearance of the "<>" notation in a formal parameter list. 

We did not discuss either the restrictions it imposes on the body jf the subroutine (or 
form) or the precise nature of what may appear between the angle-brackets. Those 

issues will be treated here as well. 

Note that "x:X<p>" appearing in a formal parameter list is intended to assert that the 

body depends on property p, and omj on property p, of the parameter. Now, from our 
earlier discussion we know that the only visible properties of an abstraction are those 

specified in its specifications part. Thus we require that the name "p" be one of the 
names defined in the specifications part of the form X. Furthermore, since the abstraction 

being defined claims to depend only on the property p, we shall restrict the body of the 

abstraction to use only this property. That is, all qualifications of x other than "x.p" (or 

p(x,...)) are illegal. (Note that this 's a purely syntactic, compile-time, check. Also note that 
we must check that any functions called by the body of the abstraction, where x is a 

parameter to that function, must also require no more than "p" access to it.) 

In the terminology of operating systems the specifications part of a form defines a 

. . ..       .    .   . 
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set of accesses to objects of the type defined by the form. T 3 "<>" notation defines both 
the access rights required of the actual parameter and allowed to the body. Once the 

actual parameter has been bound to the formal at execution time the formal becomes the 

name of a capability [Fabry74, Graham72, Jones73, Jones74, Lampson71] for the actual. 

At compile time the formal parameter specification may be viewed as a template [Wulf74] 

for legal actuals. 

The analogy with the capability-based model of protection is not yet complete. In 

an operating system it is generally possNe to restrict access rights; the "<>" notation 
permits us to do this at formal/actual parameter binding, but may also be useful in other 

contexts. For verification purposes, for example, it may be convenient to know that in 

some block no side-effect producing operations are applied to a specific variable. 

A full treatment of a mechanism which provides this type of protection may be 

found in [Jones76]. For our present purposes we shall simply note that the "<>" notation 

is permitted in several additional contexts, two of which are discussed below, and in these 

contexts imply only a rights restriction (not also a requirement as in formal parameter 

specifications). These contexts are declarations and actual parameters. Consider the 

declaration: 

local i:integer<+,-,=,«->i 

This declaration defines a variable of type integer to which only the operations "+", -', = , 

and V" may be applied. Any other operations defined by the integer form will be illegal 
— specifically such things as "*", "/", and relational tests. Such a declaration might be 

used-for a variable which is intended only for use as a counter, for example. 

By attaching a rights restriction to the actual parameter of a subroutine invocation 
the user may ensure that only certain operations are applied by the subroutine. Thus, in 

the program: 

begin 
local hinteger; 

f(i<+,-.*>)i 
... 

end: 

the main program has all access rights to the variable "i", but restricts the operations that 

may be performed by "f" to those listed. This is, perhaps, a somewhat strained example 
since the more common case will be to restrict side-effect producing operations; hopefully, 

however, it illustrates the point. Once again let us emphasize that this is a purely static, 
compile-time check. At compile time, the rights permitted by the actual parameter are 

compared to those required by the formal; if the former are not a superset of the latter a 

compile-time error message is generated.  There is no run-time overhead. 
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Now let's turn to the question of what may be written between the angle brackets, 

especially in the context of a formal parameter specification. To this point we have simply 

written the name of a property, which is generally a function name. This is sufficient in 

the cases where th? type of the formal is specified, but not when the type is 

characterized by a 'identifier. Consider an example which involves less suggestive names 
than (hose used previously: 

function f(a:?T<h>)- .. .; 

The intent is, as before, that the function "f" depend only on the fact that the actual 

parameter be of a type which provides an "h" operation, not its name. But suppose that 
the type of the actual parameter does provide an operation named "h", but it has rothing 

to do with the operation which the writer of "f" had in mind, in fact, the writer of "f", or 

alternatively the correctness of "f", depends on some input-output relation of the "h" 

operation. Thus, we permit properties appearing in the angle brackets to be described in 

exactly the same manner as properties appearing in the specifications part of a form 
definition.   For example, 

function f(a:?T<h(T,integer) returns (b:boolean) pre ß\ post ß^)" . . .} 

When such specifications appear the problem of validating the legality of a i actual 
parameter is more complex than previously. We must not only establish that the form 

defining the type of the actual parameter provides a property named "h", but also that: (1) 
its parameters and result are of the appropriate type and (2) that the precondition 

required in the specification of that property is implied by ß\ and that the postcondition 

of that property is sufficient to imply /?£• We do not foresee this proof as part of the 
compilation process, but rather as another proof required in the verification of the 
program. 

Another Example: Queues 

As a further illustration of both the Alphard language and the verification technique, 

we now present another example. The example is a finite capacity fifo queue; in all 
respects but one it is similar to the stack presented earlier. The important difference is 
that the representation of a given queue configuration is not unique; that is, there may be 

several concrete representations for the same abstract object. We present one program 

and its verification with little comment; we then present another implementation of the 
same specifications. 

The specifications describe the behavior of queues in terms of sequences.   Queues 

.^i^^^ki,  
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are implemented using a vector to record the entries and integers to indicate the front, 

back, and current length. The enqueue operator, "enq", extends the queue toward higher- 

indexed vector elements, wrapping around to the zeroth element when the indices are 

exhausted. The dequeue operation, "deq", returns and removes elements in the order in 

which they were inserted.  The function "size" returns the current queue size. 

form fifo(T;'urm<*->, n:integer)= 

beeinform 

specifications 

requires n>0; 
let fifo = < . . . Xj ... > where x; Ls Tj 

invariant 0<length{fifo)5n; 

initially fifo=nullseq; 

function 
enq(q:fifo, x:T)  pre 0<length(q)<n  post q-q'^x 

deq{q:fifo) returns x;T 
pre  0<length(q)<n  post x=first(q,) A q«trailer(q'); 

size(q:fifo) returns x;integer posi x=length(q') 

representation 
unique v:vector(T,0,n-l), f,b,num:integer inü (f*-num<-0; b«-n-l); 

re£(v,f,b,num) - if num=0 then <> else 
if f<b then seq(v,f,b) else seq(v,f,n-l)~seq{v,0,b); 

invariant 0<num<n A 0<f<n-l A 0Sb<n-l A 

(num=0 A n-(b+n-f)mod n + 1 v num>0 A num=(b+n-f)mod n + 1)} 

states 
mt when num»0, 
normal when 0<num<n, 

full when num=n, 
err otherwise; 

implementation 
body enq out (q.b={q.b'+l)mod n A q.v^q.v'.q.^x) A q.num-q.num'+l) - 

mt,normal:: (q.b<-(q.b+l)mod n; q.v[q.b]<-x; q.num*-q.num+l)i 

otherwise:: FAIL; 

body de o out (q.f=(q.f'+l)mod n A x-q.v'Cq.f] A q.num-q.num'-l) - 

normal,full:: (x*-q.v[q.f]; q.f<-(q.f+l)mod n-, q.num«-q.num-l); 

otherwise;; FAIL; 
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body size out. (x=q.num') = 

mt.normal.full:: x<-q.numj 

err:: FAIL; 

endform 

To save space and reduce clutter, the proof omits from Ic the two terms 0<fSn-l 

and 0<b<n-l. That they are part of Ic follows because of the mod operations in the 

bodies of enq and deq and because of inlt- The requires clause n>0 guarantees disjoint 
states and also makes the "mod n" operation well-defined. As in the istack proof, 

verifications involving FAIL are omitted. 

For the form 

1. Representation validity 
Show: 0<num<n A (num=0 A n=-(b+n-f)mod n + 1 v num>0 A 

num=(b+n-f)mod n + 1) ^ 0<length(rep(x))<n 
Proof; 0<num<n, so the conclusion follows by showing length(rep(x)) - num. 

First,   num=0   =   length(<>)=0=num.    Second,   f<b   A   num>0   o 

length(seq(v,f,b)) ■ b-f+1 • (b+n-f)mod n + 1 = num.   Third, f>b A 
n>jm>0 => length{seq{v,f,n-lhseq(v,0,b)) ■ (n-f)+(b+l) - (b+r-f)mod 

n + 1 = num. 

2. Initialization 
Show: n>0 { f*-num*-0j b«-n-l } rep(v,0,n-l,0)=nullseq A Ic 

Proof: rep(v,0,n-l,0) - <>, i.e., nullseq.  For Ic note that the 

first term of the or holds for both n-1 anJ n>l 

As convenient notation below, let z = (q.v, q.f, q.b, q.num). Furthermore, steps 

4b in the proof are simplified if we rewrite the re£ function. Define seqm(v, f, 

b, n) to be the sequence 

<vf' v(f+l)mod n' v(f+2)mod n' • • ■' V 

i.e., the indices are computed mod n (the "m" in seqm suggests "mod"). Then 
rep(v.f,b,num) = if numO then <> dse seqm(v,f,b,n). To see that this is the 

same as the original refi function, first note that 0<f<n-l and 0<b<n-l. If 
num=0 it is clear. If f<b then (f+i) mod n - f+i for l<i<b-f so seq(v,f,b) - 

seqm(v,f,b,n).   If f>b let j=n-f.   Then 

seq(v,f,n-l)~seq(v,0,b) = seqm(v,f,n-l,n)'vseqm{v,(f+j)mod n,b,n) - seqm(v,f,b,n) 
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For the function enq 
3.  Concrete operation 

Show: 0<q.niim<n A IC { q.b<-{q.b+l)mod n; q.v[q.b>x; 

q.num<-q.num+l } ßou\ A IC 

Proof: /?out is clear.  0<q.num<n ^ 0<q.nutn+l<n.  The last term of the or 

becomes q.num+1 = ({q.b+l)mod n + n-q.f)mod n + 1.   If n=l then 
q.num=0 and it holds.   If n>l then ((q.b+l)mod n + n-q.f)mod n + 1 

= ((q.b+n-q.f)mod n + Drnod n + 1.  If q.num>0 this is q.num mod n 

+ 1 = q.num+1.   If q.num=0 this is n mod n + 1 = 1 = q.num+1. 

4a.   fyn holds 
/?ln is true 

4b.   /^post holds 
Show: Ic A 0<length(rep(z,))<n A ßau[(z) ^ q = q'^ 
Proof: q - rep(z) = seqm(q.v1q.f,{q.b,+Drnod n,n) = 

seqm(q.v,q.f,q.b',n)~q.v[q.b] = seqm(q.v',q.f',q.b»~x = q^x 

For the function deq 
3.   Concrete operation 

Show: 0<q.num<n A Ic { x*-q.v[q.f]; q.f«-(q.f+l)mod n; 

q.num<-q.num-l } flou[ A IC 

Proof: ßoui is clear.  0<q.num<n = 0<q.num-l<n.  The rest 

of lc follows similarly to enq.3. 

4a.   upholds 
/?in is true 

4b.   ^postholds 

Show: lc A 0<length{rep(z,))<n A /?out(z) = x = first(q) A 

q = traileriq') 
Proof: x = q-v^q.r] = first(q,).   Firstiq') is defined since 

length(rep(z,))>0.  q = rep(z) = seqm(q.v,,(q.f,*l)mod n.q.b» - 

trailer(q,) 

For the function size 
3.   Concrete operation 

Show: 0<q.num<n A lc { x«-q.num } x=q.num, A Ic 

Proof: clear 

4a.   flm holds 

fl\n i5 true 

4b.   /?p0st holds 
Show: Ic A x^q.num' ^ x=length{q,) 
Proof: As in step 1, Ic ^ length(rep(z))=num.  Hence x » q.num 

length(rep{z,)) ■ lengtKq') 
QED 
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Another way to implement q queue is to use a vector(T,0,n) rather than a 

vector(T,0,n-l). The integer to indicate current length can be eliminated because now 
front and back are sufficient. The specifications part is unchanged; the representation and 

implementation parts do change in various ways. Accordingly, the proof of the form will 

©hang« in each of the four steps. The modified proof steps are similar to the previous 

Ones, perhaps even easier because Ic is much simpler. The previous proofs provide useful 

guidance, at least to a human. What does not change, of course, is a proof that uses the 
fifo form because the specifications are identical. The modified form and its proof are 

given next.   Here z= (q.v, q.f, q.b). 

form fifo{T:form«->, n:integer)= 

beRinform 

specifications identical to the original fifo form) 

requires n>0; 

lot fifo ■ < ... X: ... > where Xj is T; 
invariant 0<length(fifo)<n; 

initially fifo=nullseqj 

function 
enq(q:fifo, x:T)   pre 0<lenglh(q)<n   post c=q,~x 

deq(q:fifo) returns x:T 
pre   0<length(q)<n   post x=first(q,) A q=trailer(q,)i 

size(q:fifo) returns x:integer post x=length(q') 

representation 
unique v:vector(T,0,n), f,b:integer inji (f<-0i b«- 0; 
rep(v,f,b) = [f f=(b+l)mod{n+l) then <> else seqm(v,f,b,n+l) 

invariant 0<f<n A 0<b<n 

states 
ml when f=(b+l)mod{n+l), 

full when f=(b+2)mod(n+l), 

normal otherwise; 

implementation 
body enq out (q.b=(q.b,+l)mod(n+l) A q.v=o<:(q.v,,q.b,x)) - 

mt,normal:: (q.b<-(q.b+l)mod{n+l); q.v[q.b]<-x); 

otherwise:: FAIL; 
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body deq out (q.f^q.f'+Dmodin+l) A X'q.v'Cq.f ]) - 
i.ormal.full:: (x«-q.v[q.f]; q.Mq.f+l)mod(n+i))5 

otherwise:: FAIL; 

body size out (x=(q.b,-q.f,+n+2)mod(n+l)) » 

x<-(q.b-q.f+n+2)mod(n+l)j 

endform 

For the form 

1.   Representation validity 
Show: 0<f<n A 0<b<n s 0<length(rep(x))5n 
Proof: Length(<>) = 0. LengtWseqmW.f.b.n^)) = (b-f+l+n+l)mod(n+l) so 

0<length(rep{x))<n.  (If f?<(b+l)mod(n+l) then 0?<length) 
-■; 

2.   Initialization 
Show: n>0 { f^-O; b«-n } rep(v,0,n)=nullseq A IC 

Proof: Since 0=(n+l)mod{n+l), rep(v,0(n)=<>.  Ic is clear. 

The three concrete operations (steps 3) are clear.   The three steps 4a follow since 

each /?jn is true. 

For the function enq 

Ab.  /?posi holds 
Show: lc A Osiength(rep(z'))<n A /^(Z) D q = q~x 
Proof: q = rep(z) =seqm(q.v,qJ.(q-b'+l)mod(n+l),n+l) = 

seqm(q.v,q.f(q.b>+lH.vrq.b] - seqm(q.v',q.f',q.b',n+l)-x - q'~x 

For the function deq 
Ab.   ^p0st holds 

Show: Ic A 0<length(rep(z'))Sn A ^^(z) 3 x = firsl(q') A 

q ■ trailer^') 
Proof: x = q.v'^.f] = firstfq').   First(q,) is defined since 

length(rep(z'))>0.  q - rep(z) - seqm(q.v,,(q.r+l)mod(n+l),q.b,,n+l) - 

traileKq') 

For the function size 

Ab.   ßpOS[ holds 
Show: I   A x-(q.b,-q.f,+n+2)mbd(n+l) = x-lengtWq') 
Proof- xC- (qb,-q.f'+n+2)mod(n+l) - length(rep(z')) - lengtWq') 

QED 

  .... 
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For verifications involving FAIL, it is convenient to use the facts 

lengtKrepW.t.b))^ iff f=(b+l)mod{n+l) 
length(rep(v,f,b))-n iff Mb+2)mod(n+l) 

Conclusion 

We have described the data abst action facilities of the Alphard language and the 

associated verification methodology. In this conclusion we shall attempt to allay some 

fears which our programming colleagues may have after reading this paper, and then we 
shall return to the issue raised in the introduction: the symbiotic effect of methodological 

and verification concerns in the design process. 

Much of the effort expended in the design of programming languages over the past 

fifteen years has been aimed at improving the convenience with which a programmer may 
express his algorithms. Alphard in some ways represents the antithesis of this trend. In 

general, for example, Alphard programs are somewhat longer than similar Fortran or Algol 

programs. (The size increase seems to result maimy from the requirement that 

specification and verification information be supplied. Several of our examples, such as 

the "simpleset" form developed in [Shaw76b] and the tree manipulation program in 

[Shaw76a], suggest further that tne growth may be illusory.) We believe this expansion 

to be completely acceptable for several reasons: 

1. It   is   not   clear  that  the  concern  for  convenience  has  in  fact   saved 
programmers much work. Although isolated examples of the utility of 

elaborate features, e.g., array manipulation in PL/I, may be found, the 
data on actual language usage [Aiexander72, Knuth71, Wichmann70,73] 

suggest that these features are so rarely used that the labor saved is 

vanishingly small. 

2. Actual coding generally represents only a small fraction of the total effort 

expended on a project (e.g., 15-257. or less), whereas debugging, system 
integration, and testing represent a large fraction (e.g., 30-507. or 
more)[Goldberg73]. Thus, even if we were to double coding time (which 

we do not believe will happen) but in the process could halve the other 

times, total project time could be reduced. Alphard addresses primarily 

the latter costs. Suppose we were to change the representation and 

implementation, but not the specifications, of the stack form. The form 

itself would have to be reverified, but the programs using it (e.g., 
tipcount) and the verifications of thost programs would remain 

unchanged. 



e 40 Conclusion 

3. We hope that with a language such öS Alphard, the promise of extensible 

languages will be realized — that a library of useful abstractions will 

develop, and that programmers will thus simply not have to program as 

much to get a new system. Although the notion of program libraries is 

an old one, it seems (to us) to have had less impact than the notion 
warrants. Our hypothesis is that the availability of verified abstractions 

in the library will change this, but that hypothesis cannot be tested yet. 

We appreciate that there is considerable scepticism in the programming community 

concerning the practical applicability of verification techniques. This scepticism extends to 

both automated verification aids (e.g., theorem provers) and the ability of "typical" 
programmers to write the requisite formal specifications. To the first concern we cite the 

accomplishments of existing verification systems [Good75, vonHenke75, Su7Uki75]. All the 

examples in this paper and in [Shaw76a, 76b] appear generally within the capabilities of 

these systems. As for the second issue, two of the authors (Wulf and Shaw) are primarily 

programmers, not verifiers; on the basis of our experience thus far we all believe that the 

formulation of the specifications is a learnable formalization of what systems analysts do 

anyway.  We believe tfle potential gains more than justify the training required. 

The practical programmer may r'so question the potential (in)efficiency of Alphard 
programs; the pragmatic programmer who has experimented with some of the newer "high 

level" languages has ample cause to ask such a question. The intended application area 

for Alphard includes large systems programs where efficiency is often essential. We 

believe very efficient code can be compiled for Alphard programs, although the nature of 
this paper and the material presented do not tend to support this position. We can at 
present defend our belief with only one observation on the present discussion. In typical 
high level languages the compiler-writer makes certain implementation decisions (for 

example, how arrays will be represented); since these decisions are irrevocable, the 

programmer cannot choose representational optimizations which will make a particular 
program more time or space efficient. The usual argument is that these decisions must be 
made by the compiler-writer to prevent the programmer from making a mistake and 

hurting himself. Alphard takes a totally different position: all such decisions may be made 

by the programmer (if he chooses), but we do demand that he verify that they are correct. 

(That's why names such as "integer" and "vector" are considered as simply ordinary form 
names which are provided by a standard prelude.) In effect, we have no objection to dirty 

coding tricks so long as they are correct and can be verified. 

Now let us return to the intoraction of verification and methodology in our design. 

It is perhaps simplistic to observe that the things which are easily understood (that is, the 

things which we can informally convince o1..'selves are true) are usually easy to prove 

formally. Conversely, the things which are familiar or admit of a simple formal description 

tend to be easy to understand.  This observation is the basis of our remarks. 
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During the design of Alphard, we repeatedly proposed "features" which either were 

difficult to formulate proof rules for or which looked suspect on methodological grounds. 

We usually found that such a problem signalled an unforeseen problem in the other 

domain. For example, our original for statement was much more elaborate than the one 
described in [Shaw76b], but seemed plausible on methodological grounds. Its verification, 

however, was a horror to behold. Subsequently we have become convinced that the 

complexity of its verification was symptomatic of a difficulty which any reader would have 

in attempting to understand the statem trA or its use. 

Conversely, good ideas in one domain generally proved to be good in the other as 

well. The whole form concept, for example, was introduced for methodological reasons. It 

is this factorization and isolation, however, which appears to make either hand or 

mechanical verification feasible. Similarly, the notion of generators as described in 
[Shaw76b] was introduced on methodological grounds, but is simplifying the verification ot 

many loops. Since loop control is implidt rather than explicit, one verification of that loop 

control suffices. Various predicate were introduced because they were needed for 
verification, but their presence seems to direct our thinking toward things which, on 
methodological grounds, we ought to worry about. Finally, the explication of the 

verification technique exposed the need for certain features, e.g., the init clause in the 
representation part, which at best were thought of as conveniences and at worst would 
have been missed completely on the basis of methodological and/or language 

considerations alone.   Dijkstra [Dijkstra75] describes in general terms related experiences. 

One closing point: Alphard has not yet been implemented. Although an 

implementation is now underway, the authors and their colleagues made an early and 
conscious decision not to implement too early, thereby avoiding premature commitment to 

design decisions. though we may have frustrated some of our colleagues at other 

research institutions „/ changing the language almost daily, we believe this has been the 

right approach. We hope, but will not promise, that the publication of this document and 
of [London76, Shaw76a, 76b] represents a stable point in those featurss of the language 

which have been discussed. 
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Appendix A 
Formal Definition of a Sequence 

In the examples presented in the body of the paper the notion of a (mathematical) 
sequence was used several times. An axiomatic definition o* a sequence may be found in 

[Hoare 72a]; a version adapted to the needs of our examples is included below for 
completeness. 

1. Let D be a set called the domain of the elements of a 
sequence; then 

(a) <> is a sequence, the null sequence, sometimes denoted 
"nullseq". 

(b) if x is a sequence and d(D, then x~<d> is .i sequence 

(c) the only sequences are those specified by (a) & (b) 

2. The following functions and relations are defined: 

(a) last(x^<d>) =df d 

(b) leader{x'v<d>) »M x 

(c) x^y^z) »^f (x~y)~z 

(d) first(<d>) =df d 

x^o 3 first(x'v<d>) =df first(x) 

(e) trailer(<d>)   ■-«   <> 

x^<> 3 trailer(x'v<d>) ^äf trailer(xh<d> 
Note: "first", "last", leader, and "trailer" are not defined on 

the null sequence, <>. 

(f) length(<>) =df 0 

length(x'v<d>) =df l+length(x) 

3. The notation <d2,d2,...,dn> is an abbreviation for 
<>-v<d i >'v<d2>'v...~<dn>. 

4. If V is a vector whose elements are in D and n and m are 

integers, then "seq(V,n,m)" is an abbreviation defined by: 
n>m ^ seq(V,n,m) «^ <> 

n<m ^ seq(V,n,m) =df <Vn,Vn+1,...,Vm> 

5. The definition of equality of sequences is included in 1 and 2 
as the two theorems: 

x=y iff (x=y=<> v first(x)=first(y)Atrai!er(x)=trailer(y)) 

x»y iff (x=y=<> v last(x)=last(y)Aleafier(x)=leader(y)) 


