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Weibull Tolerance Intervals Associated with Small Survival Proportions;
For Use in a New Formulation of Lanchester Combat Theory*

Nancy R. Maan
Science Center, Rockwell International
Theusand Ozks, California 91360

Given herein is an easily impiemented method for obtaining from complete
or censored data, approximate tolerance intervals associated with the uppe- tail
of a Weibull distribution. These approximate intervals are based on point
estimators that meke essentially most efficient use of sampie data. They agree
extremely well with exact intervals (obtained by Monte Carlo simulation proce-
dures) for sample sizes of about 19 cr larger when specified survival proportions
are sufficiently small. Ranges avser wirich the error in the approximation is
within 2 percent are determined.

The motivation for investication of tﬁe methodology for obtaining the
approximate tolerance intervals was provided by the new formulation of Lanchester
Combat Theory by Grubbs and Shuford,[3] which suggests a Weibull assumption for
time-to-incapacitation of key targets. With the procedures investigated herein,
one can use (censored) data from battle simulations to obtain confidence intervals
on battie times associated with given low survivor proportions of key targets
belonging to either specified side in a future battle. It is also possible to
calculate confidence intervals on 2 survival proportion of key targets correspond-

ing to a given battle duration time.

*Th1s research was supported by the Army and the Navy through the 0ffice of Naval
Research under Contract N0O0014-73-C-0474 (NR042-321).
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I. INTRODUCTION

In the more usual analyses of life data, the parameters typically of
greatest interest are distribution percentiles in the lower tail of the asso-
ciated life distributions. These percentiles, in reliability analysis, are
values of reliable Ilife corresponding to specified high survival probabilities.
In contrast, if a probability distribution is assumed for time-to-inccpacitation
of key targets as in the new formulation of Lanchester Combat Theory by Grubbs
and Shuford,[?] then it is very often the upper-tail percentiles of the distri-
bution that are of primary concern. There are, doubtless, cther 1ife-time
Bistributions in which times associated with low suryival probabilities are
often of concern. For example, this might be true of distributions of particular
types of medical data or distributions of data collected to demonstrate inferior
quality in a material or piece cf hardware.

" Here we assume 2 fwo-parameter Weibull model for time-to-failure or time-
to-incapacitation, as suggested by Grubbs and Shufbrd,[3] and we consider the
problem of obtaining confidence intervals for distribution percentiles asso-
ciated with the upper tail of the distribution, or specified low survival pro-
portions. Alternatively a "mission time" might be specified and a confidence
interval desired for a corresponding (low) survival proportion. For Lanchester
Combat Theory such confidence intervals could be obtained from aata generated
during computer simulation of a sample engagement that is, as Grubbs and Shufbrd[3]
remark, "representative of the hypothesized general characteristics af many
battles in the supposed environmant.”

“In particular, for example, we my be {nterested in running a sample simu-
lation of a combat situation in order to see whether or not it is likely that
our choice of weapons, the tactics employed in using them, and certain command-
and-control principles would overwhelm and defeat an enemy with somewhat differ-

ent weapons capzbilities in the same hypothesized battle environment."

i o s

T




g g e

WA GO

PR

R R A A

AL T S

o ‘«m‘mmu|mwnmvnmm"«"n"ulwvmmW"m*hmlﬂa:wwmimm Lt

pow

T va—

A O

If a Weibull model {s assumed for time-to-incapacitation, or time-
to-neutralize, for key targets of each of the two opposing sides in a fixed
combat situation, chen the simulated "observed" times of incapacitation of
targets on each of the two sides can be used to estimate the two sets of
distribution parameters. If a survival proportion is specified for either
side, then a time corresponding to this prcportion can be esiimated as a func-
tion of the parameter estimates. If, alternatively, a "mission time," or
“battle duration time," is specified, corresponding survival proportions can
be estimated for both sides from the two sets of parameter astimates.

In the foellowing, an approximation that can be used in conjunction with
the parameter estimates for obtaining confidence intervals on survival pro-
portions corresponding to specified battle duration times or on duration times

corresponding to specified survival probabilities is described.

II. A WEIBULL MODEL FOR TIME TO INCAPACITATICN

It is assumed here titat the random variate time-to-incapacitation T is such

that

f1- expl-(t/8)%] , t>0 (1)
PIT =
(T<®) l s otherwise,

where §, 8 > 0. For X =2nT, n=2né and § = S-‘ > 0, this is equivalent to
P(X<x)=1- exp{~exp[(x-n)/€]§ . (2)
The random variat: T has a Weibull distribution with shape parameter 8 and scale

parameter (characteristic time-to-incapacitation) 6. (The parameters 8 and §

will of course tend ta be different for the two opposing sides in a battle.)
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The random variate X has the first asymptotic distribution of the smallest
extreme (the extreme-value distribution). The parameter n is the mode and
nE//6 is the standard deviation of the distribution of X. The linear estimates
discussed in the following are based on observations on X ordered from smaliest
to laégest.

Grubbs and Shufordts] reference three papers containing tabulations from
which one can calculate confidence intervals, for each of the two opposing
sides, on the distribution parameters, on hiéh survival probabilities of key
targets, or on lower-tail distributiun percentiles. These are based on (itera-
tively obtained) maximum-likelihood estimates, best linear invariant (BLI)
estimates, or approximations of BLI estimates. One of these three papers
(Biliman, Antle and Bain{}}) applies only to censored samples. The tabkles given
are extensions of those published by Thoman, Bain and Antle[17] applying to
maximum-1ikelihood estimates cbtained from complete sampies. The paper
referenced in Grubbs and Shuford with tables -or chtaining Weibull confidence

r-
intervals from best linear invariant estimates of Hann"‘sj is 5y ‘ann and

Fertig.[1]] The tabulations giver therein apply to samples of sizes 2 through

25, either complete or with all possible right-hand censorings. Tabulations

of Johns and Lieberman[4] pertain to asymptotic approximations of best linear
invariant estimates and four right-hand censerings for each of six sampie sizes
ranging from 10 to 100. These pubiished tabulations have all been generated by
means of Monte Car1$ simulation techniques since the exact distributions of the
estimators cannot be determined. The estimators to which they apply are all
asymptotically fully ef/icient; that is, as sample s .e n approaches infinity
the variances of the (asymptotically unbiased) estimators approach the Cramér-Rzo

lower bounds for variances of regular unbiased estimators.
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The parameter of primary int: 2st in the present context is tp = exp(xp),
the 100Pth percentile of the distr- ‘bution, where P is proportion of key targets
incapacitated by time tp. The proasortion P incapacitated ;il}, of course, tend
to be different for each of the two opposing sides for fixed tp. Note, from
(2), that Xp = 1 +a.n[~2.n(1-.P)]. If P is specified, then essentially optimum
point estimates of tp in terms of mean squared error in the log space can be
obtained for targets on each of the two sides as exp{ii + Ega[-%.:1-P)]} or
exp{d + E2n(-2n(1-F)]}, where for each side 7 and £ are best linear invariant
estimates and n and § are maximum-likelihood estimates of n and §, respectively,
and 2n[-2n(1-P)] is the 100Pth percentile of-(X-n)/g. If a battle duration
time t = exp(x)) is specified, then exp{-expf{xo - 1)/} or
exp{-exp[(x° - n)/81} provide efficient point estimates of 1-P(t ), the propor-
tion of targets on each side surviving incapacitation until at_least time to.

As noted, the tabulations mentioned earlier apply only to catculation of
confidenée bounds on lower-tail distribu;ion percentiles or on high survival
probabilities. Because of this and because these tabulations of exact values
were necessarily generated by Monta Carlo simulation procedures, one would
expect that similar simulation procedures would be necessary in order to find

values to be used in calculating confidence bounds on upper-tail distribution

percentiles or low survival proportions. We show now that such is not the case.

ITI. APPROXIMATIONS FOR CONFIDENCE INTERVALS ON BATTLE DURATION TIME

Recently, Engelhardt and Bain[Z] and Mann and Fertig[lzl have shown that
efficient linear estimators of £ {those with smallest or nearly smallest mean

squared error) are approximately proportional to chi-square variates. Thus,

ris
using the two-moment fit of Patnaik,“' one sees that if s; n is an unbiased

¥

afficient linear estimator of £, based on the r smallest observations from a

sample of size n, with variance C niz, then 25; n/(Cr ns) is approximately a

chi-square with 2/Cr n degrees of freedom.
:

wn
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If E: n is the unique best (uniformly minimum variance) linear unbiased estimator
* .

of £, then Er,n = E:,n/{1+cr,n) is the best linear invariant estimator of E.

~

(The estimator Er,n has mean squared error independent of n and uniformly smaller g
mean squared error than that of 5:,n') As can be seen from the results of Lawiess

and Hann,ts] gr,n is very-nearly equiva]an; to the iteratively obtained maximum-
1ikelihood estimator Er,; of €. This near equivalence can be seen, too,

if one compures tabuiations of distribution percentiles of Er,nlg and of Elgr,n
appearing in Mann and FertigtII] ard Thoman, Bain and Antle,[]sl respectively,

keeping in mind that both sets of Monte Carlo generated tabulations are correct

to within about a unit in the second decimal place for the values of n compared.

Hence 2(I+Cr,n)§r’n/(cr’ng) and 2(1+Cr’n)§r’n/(cr’ng) are both approximate chi-
square variates with 2/(:!.’n degrees of freedom. This fact allows one to calcu-
Tate confidence bounds for £ by using either iteratively obtained maximum-
Tikelihood estimates or best linear unbiased or best linéar invariant estimates
(or efficient approximations thereof) in conjunction with values of cr,n
obtainable from tabulations in, for example, Mann,z?’al Engelhardt and Bain,[zj
Mann, Schafer and Singpurwa?ia,[ldl and Mann and Fertig.tlz] Engelhardt and

Bain also provide, for various values of r/n, approximate expressions for Cr n

>

that are quadratics in i/n.

Mann, Schafer and Singpurwal?a[14] use the chi-square property of
25:,n/(cr,n5) to construct an approximately F-distributed statistic for obtaining
confidence intervals on to (reliable life, or in this context, battle duration
time). First, consider best (or approximately best) linear unbiased estimators

* * e . . 2 2
N.n and ar,n of n and &, respectively, with variances Ar,ng and Cr,ns and
2

i =
covariance Br n5----Best (or approximately best) linear invariant estimators of i
3 . H
T~ * * ~ * E
and £ n - = - £ E = - :
n £ are the _;?r:,n pon r’r,nBr,n/(Hcr,n) and &r.n Er,n/“'}cr,n)

-
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Deﬁ"ez“r,n as E’?,.,n - (Br,n/cr,n)gr,njz[”r,n - (Br,n/cr,n)gr,rl“”th variance

2 . * * .

E°(A. = Bp o/Cp p)- The covariance of X | ard € q is given by

) 2 . - 4] ia
[Br,n (Br,n/cr,n)cr,nlg = 0. Mann, Schafer and Singpurwalla give exampias
of comparisons with exact, Monte Carlo-generated, previously-tabulated values to

show that for small values of P one can consider

*

(xr,n = xp)/{{°8r’n/(:r,n - M[-P,n(l-P)]}g:,ni 1 (3)

to have an F distribution with

vy =2 Br,nlcr,n + z"Eiﬂ(i’pnizl(‘\r,n - Bi,n/cr,n) (4)

and

v, = Z/f:m . (5)

degrees of freedom. HNote that.both g;’n and (X;',’n - XP)/{'Br,n/c?,n - in[-zn(}-P))}
are unbiased estimators of £; and with a2 two-moment fit to chi-scuare, each is
under the proper conditions, an approximate chi-square over its degrees of free-
dom. The value of v is, 1ike the value of Vo obf;ined from the two-moment
chi-square fit [Zm(x* - xp)/v is approximately chi-square witn nglv degrees of
freedom, Tor E(X* - xp) = m and var(x" - Xp) = v] and can he calculated from
tabulated values. Values of Ar,n and Br,n can be found with tabulations of

cr,n' Additional values of Ar,n’ for large n, are given by “ann, et al,£]4]

p. 252. N\
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HannExG} gives the rationale for the chi-square fit for the numerator asd
gives ranges in terms of.bi and v, fcr which values for obtaining confidence

bounds on Xp from the F-approximation (3) are in error by twe percent or

1ass for P = .01, .05 and .10. In most cases the approximation is excellent,

. Y )
ever; for n or r as small as 4 unless cen-oring is extreme. LawTess‘S] SHOWS

that lower confidence bounds on x, based on (3) with x: ]

N, n - (Br,nlcr,n)gr,s’ a function of the maximum-likalihood estimators n
* % N
and £ Eeun? and Er,n reataced by (1 + Cr’n)g

reniaced by

r.p d9ree to two or more significant
3

figures with exact values for sample sizes 25 through 60 unless nearly 90 per-
cent of the sample is cenrsored; i.e., r/n < .10. Mann£9J demcnstrates the
excellence of a similar F-approximation in obtaining prediction intervals for

future samples, or lots to be manufacturad in the future.

Thus, for a specified Zarge survival proportion P applying to either of the
opposing sides in a. batt?e one might conclude from (3} that an appreximete

lower (1-a)-level confﬁdence bound on the corresponding battle duration time

tp = exp(xp) can be calculated as

* *
explXy |+ F (v )8, /S, o+ aal-an(1-P))fET] (6)
where F&(v].vz) is the 100ath nercentile of F with 2 and vy degrees of freedom

and vy and v, define¢ by (4) and (5), respectively. An upper (1-a)-level confi-
dence bound on tP is given by

‘ *

OB X * Py (V)8 o/Cp p + Snl-n(1-PYe | (73

A two-sided confidence interval on tP at confidence level {1-2a2) is an interval

with lower and upper obounds given by (6) and (7), respectively.




Recall, for use of I tables, thct Fa(v},vz) = ‘/F}—Q(VZ’“I)‘ in general,

however, v, and v, will not be integers so that one can interpolate in tables

of percentiles of F, or can use the aporoximation suggested by Mann and

1
Grubbs{]3‘ to evaluate F¥(v},vz) for given v.

ORI

It should be claar from inspection of the expression (3), (4} and (5) that
it X5 is specified and a confidence interval is required for P (or equivalently,
for 2n{-2n(1-P}]), it must be computed iteratively since P occurs in both (3)
and {4). In this case we find that a lower confidence bound for P at lev«l
1-a for specified Xp = in(tp) is given by 1 - exp%-exp{{xp - x:,n)/
[E:,nFl~a(°l’“2}] - Br,n/cr,n}}’ where v, is a function of the value of P which

1
is being determined.

IV. PRECISION OF THE APPROXIMATION

A Monte Cario simulation study was undertaxer so that the precision of the
F-approximation (3) could be determined for values of P of interest. The values
of P considered were .75{.05).95 and .99 and the percentiles of the apyropriata
F-distributions tabalated and ccmpared with Monte Carlo viluas wers .01, .02,
.05(.n5).95, .93, .39. The values of n and r considered were n = 8, r = 4,8
and n = 35, r = 5,10,15. For r/n fixed, one would expect precision to increase
with increasing sample size r sinca the basis of the appreximation §is an
asymptotic resylt. Monte Cario sample size for the study was 10,000.

It was found that the precision of the approximation increasad with
incr2asing P over the range consicered and with a Yimited amount of increased
censoring for a fixed sample size. In both cases the increase in precisicn
resulted apparently from an increase in Yy relative to Vg Results indicate thst
agreement ot exact percentiles of (3) and those based on the F-approximation

is to within about 2 percent over the range of percentiles from .01 to .99 for
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> .03w, +20.0 , >8.0
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and over the range of percentiles from .10 tc .29 for

V} >0.3V2 +4‘ﬁ s \52)8.0 .

These ranges are similar in spirit to those given by Hann~'3] for small values

of P. Shown in Table I are the results of six of the 30 independent simulations

performed
V. EXAMPLE

An example of simulated-battle data is given in Table I of Grubbs and
Shaford,{3] and 2 description of the simulated battle is given preceding their
table. For each of the two sides in the engagement, the number of key targets
(tanks, in this case) is 20. The data csnsxst of txmes—to-sncapacxtatxcn in
minutes for four CBT's (chief battle tanks) and for tive R10 tank; on the
opposing side. Extensions of tables of &annis} have been used to provide esti-
mates ng 20~ = 5,327 and 54 20 = 1.002 from the RI0 data.

To use (7) to obtain a confidence interval on t? for the RI0 tanks for a
specified P of, say, .95, one needs to calculate n{-2n(1-P)}] = 1.0972 and to
1cok up tabulated values from which values of ﬁS,ZO’ 35’20 and CS,EB can be
detarmined in the report that provides the coefficients {or weights)
for calculating the estimates of n and §. Thne tabulated values from which the
necessary constants can be calculated are ES,ZG{LU) = Eg ZQE{F-n}z]/EZ,

ES 20(L8} = ES zgfff—;)zllaz and 55?26(6?) = E[{F-n){E- E)]/’ To gdetermine
AS,ZO’ 85!20 and CS,ZG one needs to know the relaticnships:

5,20 = Es,20{L8V/ 1 - £ 55(L8)]

85,20 = B5,20(CPM/L1 - Eg po(L8)]

14 Bt
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Table I.

Approximate and Monte Carlo (M.C.) Values of zgoyth Distribution
Percentiles of the Approximate F-Variate (3)

n=15,r =10, P = .85 n=15, ¢=5,P = .85 r=15, r=5,P=.75
vy = 15.6 vy, = 22.4 v, = 23.2 v, = 8.8 v; = 19.7 v, = 8.8
. M.C. | Approximate M.C. Approximate M.C. Approximate
: Parcentile | Percentile Tercentile ! Percentile Percentile | Percentile
0.01 0.223 0.310 0.315 0.319 0.268 0.283
0.02 0...2 0.358 0.360 0.364 0.318 0.329
0.05 2.409 0.442 0.445 0.446 0.406 0.412
0.10 0.518 0.530 0.535 0.535 0.491 0.504
0.25 0.718 Q.713 0.728 0.732 0.697 0.707
0.40 0.8856 0.873 0.921 0.917 0.891 0.859
0.50 1.00 0.984 1.06 1.05 .04 1.04
0.60 1.13 1.11 1.22 1.22 1.21 1.21
0.75 1.37 1.35 1.58 1.56 1.55 1.57
0.9G 1.81 1.81 2.34 2.29 2.30 2.33
0.95 2.16 2.15 3.00 2.93 2.96 3.01
0.98 2.65 2.62 4.08 3.97 4.18 4.10
0.99 .08 3.00 5.08 4.92 5.14 5.10

e 3 1 g 0y vt

o o o 8 g

n=15 r=15, P = .99 n=8, r=4,P= 95 n=8, r=8.P= 95
vy = 40.4 v; = 44.1 v; = 23.0 v; = 7.0 vi = 9.9 vz = 21.5
Y M.C. Approximate M.C. Approximate M.C. Approximate
Percentile | Percentile Percentile | Percentile Percentile | Percentile
g.0t 0.472 0.482 0.284 0.282 0.059 0.233
0.02 0.510 C.525 0.322 0.327 0.147 0.278
0.05 0.588 0.598 0.407 0.316 0.297 0.363
0.3 0.£65 0.87C 0.498 0.502 0.414 0.45%
0.2% 0.808 G.809 0.700 0.711 0.652 0.652
0.40 0.922 0.822 Cc.914 0.915 0.839 0.831
0.50 0.996 0.598 1.07 1.07 0.971 0.958
0.60 1.07 1.08 1.26 1.26 1.
3 G.75 1.23 1.23 1.71 .4
< 0.90 1.49 1.49 2.63
= 0.95 1.68 1.67 3.55
3 0.98 1.93 1.90 5.43
= 0.39 2.10 2.07 7.20
E 1




e e et R e e e e e e S e

s

and

i , 2
A5 99 = Eg,20(lV) * [E5 o(CPI]*/D1 - E5 5o(LB)]

From the tables and these relationships, we find A5 20 = 0.70308, 85 20 = 0.33548
and CS 20 = 0.23662. (Fcr n = 25(5)"', p = r/n = 0.10(0.10)1.00, values of

: ]

? : A, Br,n and Cr,n (or Zr,n) are tabulated directly by Mann, Schafar and

r,n :
. 4] 5. 252 and p. 244.)

o Singpurwallz,

= Next, from (4) and (5),we find for the R1( data,

2(1.4178 + 1.0972)2/(0.2274) = 55.62

T Ay
<

oy
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2/.23662 = 8.45 ,

correct to two decimal places. Note that vy > 8.0 and vy > .3(v2) + 20 = 22.53,

%; so we might expect the F-approximation to give very nearly the correct percentile
i of the distribution of (3) over the percentile range of .01 through .99. Using

5 the method of Mann and Grubbs[13] to evaluate, say, the 10th percentile of

%‘ F(55.62,8.45), we obtain 0.567. Then a 90 percent lower confidence bound on

t.95 is, from (6), given by

% . exp[5.040 - 1.4178(1.002) + 0.567(1.4178 + 1.0972)(1.23662)(1.002)] = 218 minutes

If a lower confidence bound on § is desired, as on page 938 of Grubbs and

Fghh |

Shuford,[al ther. the specified value of P is 1 - exp(-1) = .63 and &n[-2n(1-P)] = 0.

A
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so that v, = 2(1.4178)%/(.2274) = 17.68 and v, = 8.45, as before. The value
of F 05(17.68,8.45) is approximately 0.406 so that a 95 percent lower confidence

bound on § = exp(n) is therefore given by
exp[5.040 - 1.4178(1.002) + .408(1.4178)(1.23662)(1.002)] = 76.4 minutes

This agrees well with the Tower 95 percent confidence bound 74.4 minutes shown
in the example of Grubbs and Shuford and calculated as exp(n - ".955)’ where
LY is a percentile of the distribution of (f-n)/E computed by Monte Carle
simulation procedures and published in the report by Mann, Fertig and Scheuer
with tabulations supplemental to those of Mann and Fertig.[lll A lower confi-
dence bound on §, incidentally, will correspond to a lower coifidence bound on
mean-time-to-incopacitation for B = £ = 1, since the exponential distribution

is a special case of the Weibull with shape parameter equal to 1.
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