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L Given herein is an easily implemented method for obtaining from complete

or censored data, approximate tolerance intervals associated with the uppe ° tail

of a Weibull distribution. These approximate intervals are based on point

c estimators that make essentially most efficient use of sample data. They agree

0 extremely well with exact intervals (obtained by Monte Carlo simulation proce-

dures) for sample sizes of about 10 cr larger when specified survival proportions

are sufficiently small. Ranges oier which the error in the approximation is

E 4 within 2 percent are determined.

The motivation for investioation of the methodology for obtaining the

approximate tolerance intervals was provided by the new formulation of Lanchester

Combat Theory by Grubbs and Shuford,[ ] which suggqsts a Weibull assumption for

time-to-incapacitation of key targets. With the procedures investigated herein,

one can use (censored) data from battle simulations to obtain confidence intervals

on battle times associated with given low survivor proportions of key targets

belonging to either specified side in a future battle. It is also possible to

calculate confidence intervals on a survival proportion of key targets correspond-

ing to a given battle duration time.

This research was supported by the Army and the Navy through the Office of Naval
* Research under Contract N00014-73-C-0474 (NR042-321).
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I. INTRODUCTION '

In the more usual analyses of life data, the parameters typically of

greatest interest are distribution percentiles in the lower tail of the asso-

ciated life distributions. These percentiles, in reliability analysis, are

values of reliable life corresponding to specified high survival probabilities.

In contrast, if a probability distribution is assumed for time-to-incapacitation

of key targets as in the new formulation of Lanchester Combat Theory by Grubbs

and Shuford, [. then it is very often the upper-tail percentiles of the distri-

bution that are of primary concern. There are, doubtless, other liff-ti,e

distributions in which times associated with low survival probabilities are

often of concern. For example, this might be true of distributions of particular

types of medical data or distributions of data collected to demonstrate inferior

quality in a material or piece ef hardware.

Here we assume a two-parameter Weibull model for time-to-failure or time-

to-incapacitation, as suggested by Grubbs and Shuford, [3] and we consider the

problem of obtaining confidence intervals for distribution percentiles asso-

ciated with the upper tail of the distributlon, or specified low survival pro-

portions. Alternatively a "mission time" might be specified and a confidence

interval desired for a corresponding (low) survival proportion. For Lancliester

Combat Theory such confidence intervals could be obtained from oata generated t

during computer simulation of a sample engagement that is, as Grubbs and Shuford [ 3]

remark, "represi.ntative of the hypothesized general characteristics af many (

battles in the supposed environment."

"In particular, for example, we may be interested in running a sample simu-

lation of a combat situation in order to see whether or not it is likely that

our choice of weapons, the tactics employed in using them, and certain command-

and-control principles would overwhelm and defeat an enemy with somewhat differ- 'J

ent weapons capabilities in the same hypothesized battle environment."
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If a Weibull model is Assumed for time-to-incapacitation, or time-

to-neutralize, for key targets of each of the two opposing sides in a fixed

V combat situation, then the simulated "observed" times of incapacitation of

targets on each of the two sides can be used to estimate the two sets of

distribution parameters. If a survival proportion is specified for either

side, then a time corresponding to this proportion can be estimated as a func-

tion of the parameter estimates. If, alternatively, a "mission time," or

"battle duration time," is specified, corresponding survival proportions can

be estimated for both sides from the two sets of parameter estimates.

In the following, an approximation that can be used in conjunction with

the parameter estirates for obtaining confidence intervals on survival pro-

portions corresponding to specified battle duration times or on duration times

corresponding to specified survival probabilities is described.

II. A WEIBULL MODEL FOP TIME TO INCAPACITATION

It is assumed here that the random variate time-to-incapacitation T is such

that

) II1 exp[-(t/6)0]  , t-' 0(1

0 , otherwise,

-I

where 6, a > 0. For X nT, n = n6 and = > 0, this is equivalent to

P(X < x) 1 - expI-exp[(x-n)/f]1 (2)

The random variate T has a Weibull distribution with shape parameter 8 and scale

parameter (characteristic time-to-incacit tion) 6. (The parameters a and 6

will of course tend to be different for the two opposing sides in a battle.)
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The random variate X has the first asymptotic distribution of the smallest

extreme (the extreme-value distribution). The parameter n is the mode andI Tt/I6 is the standard deviation of the distribution of X. The linear estimates

discussed in the following are based on observations on X ordered from smallest

to largest.

Grubbs and Shuford E3] reference three papers containing tabulations from

which one can calculate confidence intervals, for each of the two opposing

sides, on the distribution parameters, on high survival probabilities of key

targets, or on lower-tail distribution percentiles. These are based on (itera-

tively obtained) maximum-likelihood estimates, best linear invariant (BLI)

estimates, or approximations of BLI estimates. One of these three papers

(Billman, Antle and BainL J) applies only to censored samples. The tables given

are extensions of those published by Thoman, Bain and Antle [17] applying to

maximum-likelihood estimates cbtained from complete samples. The paper

referenced in Grubbs and Shuford with tables %-r obtaining Weibull confidence

intervals -from best linear invariant estimates of MannL 8] j .nn and

Fertig. I l l ] The tabulations givert therein apply to samples of sizes 2 through

26, either complete or with all possible right-hand censorings. Tabulations

(4]of Johns and Lieberman pertain to asymptotic approximations of best linear

invariant estimates and four right-hand censcrings for each of six sample sizes

ranging from 10 to 100. These published tabulations have all been generated by

means of Monte Carlo simulation techniques since the exact distributions of the

estimators cannot be determined. The estimators to which they apply are all

asymptotically fully ef'icient; that is, as sample s- :e n approaches infinity

the variances of the (asymptotically unbiased) estimators approach the Cramer-Rao

lower bounds for variances of regular unbiased estimators.
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Wr.
The parameter of primary ints est in the present context is tp exp(xp),

the lOOPth percentile of the distr bution, where P is proportion of key targets

incapacitated by time tp. The prooortion P incapacitated will, of course, tend

to be different for each of the two opposing sides for fixed tp. Note, from

(2), that Xp r + an[-Zn(l-P)]. If P is specified, then essentially optimum

point estimates of t in terms of mean squared error in the log space can be
p

obtained for targets on each of the two sides as exp{j + Zn[-Z..:l-P)]l or

expl6 + ILn[-1n(l-F)]1, where for each side and are best linear invariant

estimates and n and a are maximum-likelihood estimates of n and {, respectively,

and in[-Ln(l-P)] is the 10Oth percentile of-(X-n)/. If a battle duration

time to = exp(xo) is specified, then expi-exp(x o - B)/ ]1 or

exp{-exp[(xo - ^)/&]l provide efficient point estimates of l-P(tu), the propor-

tion of targets on each side surviving incapacitation until at least time to-

As noted, the tabulations mentioned earlier apply only to calculation of

confidence bounds on lower-tail distribution percentiles or on high survival

probabilities. Because of this and because these tabulations of exact values

were necessarily generated by Monte Carlo simulation procedures, one would

expect that similar simulation procedures would be necessary in order to find

values to be used in calculating confidence bounds on upper-tail distribution

percentiles or low survival proportions. We show now that such is not the case.

II. APPROXIMATIONS FOR CONFIDENCE INTERVALS ON BATTLE DURATION TIME

Recently, Engelhardt and Bain [2] and Mann and Fertlg [!2] have shown that

efficient linear estimators of (those with smallest or nearly smallest mean

squared error) are approximately proportional to chi-square variates. Thus,

using the two-moment fit of Patnaik, ] one sees that If * is an unbiased'Ir,n

efficient linear estimator of ,, based on the r smallest observations from a

2sample of size n, with variance Crn,, then 2r,* /(C is approximately a
r,n drn rn

chi-square with 2/C rndegrees of freedom.



If r,n is the unique best (uniformly minimum variance) linear unbiased estimator

of g, then r,n r ,n/(lI r,n) is the best linear invariant estimator of (.

(The estimator En has mean squared error independent of n and uniformly smaller

mean squared error than that of rn.) As can be seen from the results of Lawless

and Mann, E6J is very nearly equivalent to the iteratively obtained maximum-r,n
likelihood estimator n of E. This near equivalence can be seen, too,r,n
if one comnpres tabulations of dist-ibution percentiles of r,n/ and of E/gr,n

rll [6appearing in Mann and Fertigl and Thoman, Bain and Mtle,[16 ] respectively,

keeping in mind that both sets of Monte Carlo generated tabulations are correct

to within about a unit in the second decimal place for the values of n compared.
Hence 2(l+C )X /(C E) and 2(l C /)I(Crn) are both approximate chi-

r,n r,n r,n r n r n r,n
square variates with 2/Cr,n degrees of freedom. This fact allows one to calcu-

late confidence bounds for ( by using either iteratively obtained maximum-

likelihood estimates or best linear -unbiased or best linear invariant estimates

(or efficient approximations thereof) in conjunction with values of Cr,n

obtainable from tabulations in, for example, ann,[78Egelhart and Bi[2

Mann, Schafer and Singpurwalla, [14] and Mann and Fertig. [12] Engelhart andBain also provide, for various values of r/n, approximate expressions for Cr,n

that are quadratics in I/n.

Mann, Schafer and Singpuralla[14] use the chi-square property of

2,n/(CrnE) to construct an approximately F-distributed staistic for obtaining

confidence intervals on tR (reliable life, or in this context, battle duration

time). First, consider best (or approximately best) linear unbiased estimators

a 2 2
i ar.n an n of n and (, respectively, with variances Ar, and C and2

covariance 8n . st (or approximately best) linear invariant estimators of

n and are then n  B /(l+C )and = /(lr - rn rn rn rn r,n r,n r,n
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Oeflner r,n r,n r
42 2rnas -( /C ), arn-(rn/rn ,jihviac

s(A - Bra/C ).The covariance of? X ard is given byrnr,n r,n r,n r~n

[Bin -(rnC~ )C ~]& 2  0. Mann, Schafer and Singpurwaiial4 give examiples

of comparisons with exactMonte Carlo-generatedpreviously-tabulated values to

show that for small values of P one can consider

(X* -x) 1r,n r,n r,n'(3

to have an F distribution with

Vi 21B8n/Cf + Ln~(ilP)]I /(Arn-Bn/rn (4)

and

"2 =2/Cr,n (5)

degrees of freedom. Note that both and (X* -x )+4B /C'. - Lf(-Ln(I-P]l
r,n r,n P r,n .,n

are unbiased estimators of ~;and with a two-moment fit to chi-sciuare, each is

under the proper conditions, an approximAte Chi-square over its degrees of free-

dom. The value of v~ is, like the value of "2 obtainled from tle two-moment

=chi-square fit [2m(X* -xp)/v is approximately chi-square witn 2Wn/v degrees of

freedom, for E(X* -x) m and var(x* - xp=vJadcnecluatdfm

tabulated values. Values of A an~d 8 can be found with tabulations ofr,n r,n

Cr,n- ~dtoa auso r,n, for large n, are given by lneai(J

p. 252.
1 00
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Mann [ l0 ) gives the rationale for the chi-square fit for the numerator and

gives ranges in terms ofv j. and v2 fcr which values for obtaining confidetice

bounds on Xp from the F-approximation (3) are in error by two oercent or

le-s for P = .01, .05 and .10. In most cases the approximation is excellent,

even for n or r as sma3l as 4 unless cen-orling is extreme. Lawless 5] siows

that lower confidence bounds on Xp based on (3) with Xr*, reolaced by

nr,n - (Br,n/Cr,n )tr,n' a function of the maximum-likelihood estimators nr,n'

and Pr,n" and r,n repliced by (1 + C "r agree to two or more significant

figures with exact values for sample sizes 25 through 60 unless nearly 90 per-

cent of the sample is censored; i.e., r/n < .10. MannE g ] demnstrates the

excellence of a similar F-approximation in obtaining prediction intervals for

future samples, or lots to be manufactured in the future.

Thus, for a specified large survival proportion P applying to either of the

opposing sides in a.battle one might conclude from (3) that an approximate

lower (l-a)-level confidence bound on the corresponding battle duration time

-- exp(xp) can be calculated as

expr n + F (v 'k.,)48 /C +(6

r,n rn rn I (6)

where F(v ,v is the lOOith percentile of F with 1 and v2 degrees of freedom
1 l~2) V1  2

and v and v2 defined by (4) and (5), respectively. An upper (1-a)-level confi-

dence bound on tp is given by

expXr, n + F._(vl,v 2 ) B+/C + tn-2(l-P)Jt( (7)

2 .n r,nr

A two-sided confidence interval on t at confidence level (l-2a) is an interval

with lower and upper bounds given by (6) and (7), respectively.
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Recall, for use of r tables, that F(vt,v 2 ) = l/F_ (viv 1), In general,

however, vI and v2 will not be integers so that one can interpolate in tables

of percentiles of F, or can use the approximation suggested by Mann and

Grubbs [ l3 ] to evaluate F (v1 v2) for given y.

It should be clear from inspection of the expression (3), (4' and (5) that

if Xp is specified and a confidence interval is required for P (or equivalently,

for inr-in(l-P)), it ntist be computed iteratively since P occurs in both (3)

and (4). In this case we find that a lower confidence bound for P at lev-l

1 --a for specified Xp =n(tp) is given by 1 exp -expl(Xp *P . _ Xr,n~l

£CE.nF . l1 lS2] Br,r/Cr,n}i, where v, is a function of the value of P which

is being determined.

IV. PRECISION OF THE APPROXIMATION

A Monte Carlo simulation study was ndertakern so that the precision of the

F-approximation (3) could be determined for values of P of intevst. The values

of P considered were .75(.05).95 and .99 and the percentiles of trie appropriate

F-distributions tabulated and ccmpared with Monte Carlo v3luas wer .01, .02,

.O5(.A5).95, .9, .39. The values of n and r considered were o - 8, r 4,8

and n I S, r 5,10,15. For r/n fixeeI, one would expect prvcision to increase

with increasing -ample size r; since the basis of the approximation is an

asymptotic result. Monte Carlo sample size for the study was 10,000.

It was found that the orecision of thLa approximation increased with

incr-asing P over the range consicered and with a limited amount of increased

censoring for a fixed sample size. In both cases the increase in precision

resulted apparently from an increase in v, relative to ' 2 . Results indicate that

agreement of exact percentiles of (3) and those based on the F-approximation

is to within about 2 percent over the range of percentiles f-w .01 to .99 for

-- H 5
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vi v .03v 2 +?20. 0 , v2 >8. 0

and over the range of percentiles from .10 to .0.9 for-IV 1  0. N2 + 4.0 , ~.8. 0

These ranges are similar in spirit to those given by MannC'03 for swenll valuesjI of P. Shown in Table I are the results of six of the 3C independent simulations
Performed

V. EXAMPLE

An example of simulated-battle data is given in Table I of Grubbs and

Shu 3rd and a description of the simulated battle is given precedina their

table. Frr each of the two sides in the engagement, the number of key targets

(tanks, in this case) is 20. The data consist of times-to-incapacitation in

minutes for four C8T's (chief battle tanks) and for five RIO tanks on the

opposing side. Extensions of tables of MannC8 have been used to provide esti-

mates n 4 2 0 =5,827 and 4,0=1.002 from the RIO data.

To use (7) to obtain a confidence interval on t~ for the RIO tanks fora

specified P of, say, .95, one needs to calculate 2n(-Zn(l-.P)3 1.0972 and to

look up tabulated values from which values of A-.20, 352 ard C can be
5,20 Sir.

determined in the report that provides the coefficients (or weights)

for calculating the estimates of .1 and E. The tabulated values from which the

necessary constants can be calculated are E %t0 LU) 520;nl

r--22 - 2E 20(L8) E5 2U,, )J/ and E, (CP) E(-)-)/ .To determine
51 ~20

A52 , 52 dC 2  one needs to know the reilatic-iships:

C5,21 8 5. 20 tL)( an E5,2 (L

85,20 E5,20(C)( - 5,20(L)

10



Table I. Appoximate and Monte Carlo (M.J.) Values of iOOyth Distribution

Percentiles of the Approximate F-Variate (3)

n 15, r 10, P -.85 n = 15,. r- 5 P .85 n 15, r 5, P .75

val - 15.6 V2 -22.4 v, = 2.2 V2 8.8 v, 19.1 v2 = 8 A

M.C. JApproximate M.C. I Approximate M.C. Approximate I
Percentile Percentile rpercentile Percentile IPercentile Percentile

0.01 0.223 0.310 0.3.15 0.319 0.268 0.283
0.02 0.:,42 0.358 0.360 0.364 , 0.318 0.39
0.05 0.409 0.442 0.445 0.446 I 0.406 0.412
0.10 0.518 0.530 0.535 0.535 1 0.491 0.504
0.25 0.718 0.713 0.728 0.732 1 0.697- 0.7070.40 0.886 0.873 0.921 0.917 0.891 0.899

-0.50 1.00 0.984 1 1.06 1.05 1.104 1 1.04
0.60 1.13 1.11 1.22 1.22 1.21 1.21
0.75 1.37 1.35 1.58 1.56 1 .55 1.57
0.90 1.81 1.8i 2.34 2.29 2.30 2.33
0.95 2.16 2.15 3.00 2.93 j' 2.96 3.01
0.98 2.65 2.62 4.08 3.97 4.18 4.10
0.99 3.04 3.00 5.08 4.92 5.14 5.10

n 15, r =15, P =.99 n = 8, r 4, P = .95 =8, r 8- P .95
vI 40.4 v2 =44.1 v, = 23.0 v, = 7.0 v= 9.9 V2 = 21.5

M.C. Approximate M.C. Approximate MC. ApproximateI
= Percentile Percentile Percentile Percentile PercentilIe Percentile

0.01 0.472 1 0.482 0.284 1 0.282 I 0.059 1 0.233
0.02 0.510 ..525 0.322 0.327 0.147 i 0.278

0.05 0.588 0.598 0.407 1 0.410 0.207 0.363
0.10 0.665 0.670 0.498 , 0.502 0.414 0.454
0.25 0.808 G.809 0.700 j 0.711 l 0.652 1 0.652
0.40 0.922 0.922 0.914 0.915 0.849 1 0.831
0,50 0.996 0.998 1.07 1 1.07 1 0.971 0.958
0.60 1.07 1.08 1.26 1 1.26 1.12 1.10
0.90 1.49 1.49 2.63 2.59 1.95 1.93

0.95 1.68 1.67 3.55 1 3.46 2.37 11.7 123 2.36
0.98 1.93 1.90 5.43 4.96 2 2.95
0.99 2.10 2.07 7.20 1 6.44 3.69 3.42z

___ ,__3._ _!,__3"42_ - _-= ----



and

A 5 ,20  E E5,2 0( + EE5,20(CP)1l - E5,2 0(L)]

From the tables and these relationships, we find A52  0.70308, Br2  0.33548

and C5 0  0.23662. (For n =25(5)!, p rn 0.10(0.l0)1.00, values ofI

Arn B and C (or 2. are tabulated directly by Mann, Schafer and
rn r,n r,n r,n

Singpurwalla ,l 4 .25 and p. 244.)

Next, from (4) and (5),we find for the R10 data,j

=2(1.4178 + 1.0972) 2 /(0.2274) =55.62

and

=2/.23662 C 8.45 I

correct to two decimal places. Note that v> 8.0 and vi> .3() + 20 22.53:

so we might expect the F-approximation to give very nearly the correct percentile

of the distribution of (3) over the percentile range of .01 through .99. Using

the method of Mann and Grubbs 1~ to evaluate, say, the loth percen~tile of

F(55.62,8.45), we obtain 0.567. Then a 90 percent lower confidence bound on

t is, from (6), given by

exp[5.040 -1.4178(1.002) + 0.567(1.4178 + 1.0972)(1.23662)(1.0021#] 218 minutes'

If a lower confidence bound on 6 is desired, as on page 938 of Grubbs and

Shuford,E3 then1 the specified value of P is 1 -exp(-l) =.63 and 2nL-2n(l-P)] 0

12



I °
so that v1  2(1.4178)2/(.2274) = 17.68 and v= 8.45, as before. The value

of F05 (17.68,8.45) is approximate), 0.408 so that a 95 percent lower confidence

bound on 6 = exp(n) is therefore given by

exp[5.040 - 1.4178(l.002) t .408(l.4178)(1.23662)(1.002)] = 76.4 minutes

This agrees welf with the lower 95 percent confidence bound 74.4 minutes shown

in the example of Grubbs and Shuford and calculated as exp(n - w 95Z), where

w.9 is a percentile of the distribution of (n-n)/ computed by Monte Carlo

simulation procedures and published in the report by Mann, Fertig and Scheuer

with tabulations supplemental to those of Mann and Fertig.Ill] A lower confi-

dence bound on 6, incidentally, will correspond to a lower confidence bound on

mean-time-to-incapacitation for a = 1, since the exponential distribution

is a special case of the Weibull with shape parameter equal to 1.

13:
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