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INTRODUCTION

1.1 SCOPE OF THE REXOR PROGRAM

REXOR is a rotorcraft analysis tool which has resulted from applying an
interdisciplinary math modeling philosophy, Reference 1. The REXOR math
model has been written for a single four-bladed, gyro-controlled,
hingeless-rotor helicopter with additional capability for analysis of
teetering or hinge~offset rotor systems with conventional controls and two
or four blades. This helicopter may be conventional in design, winged, or
compounded. The specific analysis is limited to a maximum of four blades,
but it can be expanded to include more blades by following the detailed
mechanical derivation procedure established for the analysis. The model is
broken down into the three major categories shown in Figure 1-1. These
categories are the contrcl system, the rotor, and the body.

Figure 1-1 incdicates the manner in which these ccmponents are related to
one another as utilized in the analysis. The analysis is the simulation of
an entire aircraft, which includes a detailed dynamic description of the
rotor and control system as well as a conventional six-degree-of-freedom
body dynamic description which operates in two modes identified as TRIM
and FLY. 1In the TRIM mode, the aircraft is constrained to a prescribed
static flight condition while the controls are activated and the rotor is
allowed to respond to obtain a force and moment equilibrium of the aircraft
at that static condition. In the FLY mode the entire aircraft is free to
respond dynamically to a maximum of 30 degrees of freedom to control inputs
or toc any other arbitrary inputs such as gusts. Pilot inputs can be any
single or multiple control manipulation in the form of simple steps or
pulses, doublets, stick stirs, or other transient input within the capa-
bilities of the control system simulated. As & result, transient loads and
resulting aircraft and rotor dynamic response can be obtained. For corre-
lation purposes, actual flight test control motions can be used as input

to provide comparative response data. For specialized applications, an
analytic autopilot may be used to control the flight path of the aircraft.
Additionally, gust inputs and other types of external excitations could

be applied directly to the rotor and/or airframe.

1.2 REXOR CAPABILITIES

REXOR is a detailed rotorcraft math model simulation with particular
emphasis on the main rotor mechanics. The program is particularly valuable
in a detailed exploration of rotor characteristics of proposed uesigns, in
identifying problem areas and verifying fixes in flight test development
programs. A case history is given in Reference 2.
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Typical REXOR applications are listed below.

Dynamics:

Rotor stability in regions below 4P as function of flight
speed, maneuvers, rotor rpm, nonlinear blade aerodynamics

Rotor/body sensitivity and dissipation capacity as a function
of gusts and pilo. control inputs

Effects of design parameters (mechar cal and elastic

couplings, controls, etc.) on rotor stability and load
sensitivity

Correlation and check of specialized dynamic models.

Handlirg Qualities:

® Vehicle response to pilot control inputs for vehicle flight ]
conditions, speed, altitude, rotor rpm, design parameter E:
variations 3
® Vehicle stability as function of speed, rotor rpm, flight
conditions, design parameters
® Effect of design parameter variations on handling qualities
® Development and checking of handling qualities models. 2
Failure Analysis:
® Effect of loss of one inplane damper on subsequent flight
time history p
® Blade projectile hit and ensuing events i
® Blade strike and resulting rotor track.
Performance: ;
® Correlation and independent check of performance models, k'
particularly in regions of highly nonlinear blade aerodynamic
operation (retreating blade stall and compressibility effects)
)

Develop data for performance models for use in nonlinear
areas




Steady-state rotor loads as a functicn of rotor rpm, flight
velocity, control trim settings

Dynamic rotor loads as a function of rotor rpm, flight velo--
city, vehicle maneuvers, pilot control inputs

Rotor/fuselage clearances as a function of speed, vehicle
maneuvers, rotor rpm, pilct control inputs, flight
coniguration

Rotor/fuselage/wing design characteristics requirements as
functions of maneuver load factor, control commands (see
Reference 3).

1.3 IMPROPER APPLICATION OF REXOR

While REXOR is capable of performing a number of analysis tasks, the
program range of use is certainly not all inclusive. Examples of types
of use where REXOR either wouldn't work well or would be impraccical are
given below.

REXOR is an extensive math model and, as such, may consume a considerable
amound of computer time to execute a case. Therefore, the program is not
intended as a parametric design analysis tool, but rather as a device to
verify the correctness of a parametric selection process.

REXOR does not treat blade-to~blade vortex interaction. This condition
limits the validity of the vibration solution in the transition flight
regime.

REXOR typically us=s twenty or less blade radial stations. The computer
blade deflections show good correletion to measured data with this model-
ing. However, since shear is a first derivative, and moment is a second
derivative of deflection data, care needs to be exercised in their use
(Reference U4).

1.4 THE REXOR REPORT AND ITS USE

This report is presented in three volumes.
e Volume I

A development of rotorcraft mechanics and aerodynamics including
a derivation of the equations of motion from first principles.




Volume II

The development and explanation of the computer code required to
implement the equations of mction.

e Volume III

A user's manual containing a description of code input/output and
instructions to operete the program.

Volume I is intended to be a self-sufficient guide to the math development

of the equations of motion and is the reference background as such. Volume

IT gives the location of computation elemerts, and serves to locate elements

for inspection or modification. Volume III presents ncrmal program operation
j plus troubleshooting guide material required for day-to-day program use.




i 2. BACKGROUND A

2.1 THE DERIVATION OF REXOR

The REXOR analysis is the result of a natural evaluation of capability
arising from a desire to develop a rotorcraft handling qualities enalysis.
This requirel a model of a complete aircraft which, as it was refined, ) 3
exhibited unique advantages for analysis of dynamic stability, loads and
performance. The eventual outgrowth is an infterdisciplinary analysis with
broad areas of application.

The initial development effort was called Rotor Junior (Reference ﬂ. This i
program had a reasonably deteiled nonrotating airframe representation, but :
used a steady-state representation for the main and tail rctors. (Bailey T

Coefficients, Reference 6.) A major rework of this program especially in

the main rotor led to Rotor Senior. Here the dynamic response of rotating

blades was calculated (References 7 and 8). Many simplifying assumptions

were made in the construction of the blade dynamics. Starting afresh in

this area plus a general overhaul of the model by an interdisciplinary team b
of specialists led to Revised and EXtended RotQR Cenior or REXOR. A key B
feature was incorporating the solution of generalized force equations for
A incremental accelerations using a generalized mass matrix, and thus

] coupling of all the degrees of freedom.

LTS el s

s

2.2 GROWTH OF CTAPABILITY ;

The original model (Rotor Junior) was intended strictly for stability
derivatives. With the addition of blade dynamics, some evidence of and

useful ir:ight Into subharmonic rotor instability problems was obtained é
3 (Rotor fenior). With the advent of very detailed blade and blade inter- 1
g face modeling, many new design problem areas have been avoided, and 3
k/

deficiencies of existing designs corrected (REXOR).
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BASIC COMPUTATIONAL IDEA

3.1 MODAL SOLUTION - OVERVIEW

The aircraft is described dynamically in appreximately thirty fully-coupled
degrees of freedom. 1In addition to the six degrees of freedom of the hub
principal reference axes, the fuselage 1s related to the rotor hub through
rotor rotational speed, shaft pitch, and shaft roll degrees of freedom.

The control gyro/swashplate combination has three degrees of freedom.
Motion of each of the four main rotor blades is described by three coupled
flapwise and inplane modes and a pitch horn bending degree of freedom

which couples blade feathering to the control gyro or swashplate. These
four degrees of freedom per blade make sixteen for the four blades.

The blade modes are primitive moues in that they are determined from a
lumped parameter analysis of a rotating cantilever blade at a selected
rotor speed and collective blade angle, hereafter referred to as the
reference feather angle. The generalized stiffness matrix is computed
using these rotating modes and contains only the structural stiffness of
the blades and hub. This formulation ensures proper internal and external
force and moment balance. The modal deflections outboard of the feather
hinge are rotated through ‘ne actual feather angle less the reference
feather angle. Thus, blade element deflections outboard of the feathering
hinge due to modal displacements are defined to remain aligned with a
coordinate axis system which is orthogonal to a plane containing the

instantaneous deformed feather axis and rotated tnrough the instantaneous 3
feather angle less the reference feather angle. As a result, the internal :
strain energy in the blade due to unit modal displacements is invariant 5
vith variation in blade angle. This technique permits the highest resolu- 2
tion of motion and forces for the blade with arn assumed mode solution for 5

a given number of modes.

3.2 LEHERGY METHODS DEVELOPMENT Y;

The equations of motion for REXOR are deveioped from Lagrange's equations,
which is an energy approach. If one can express the kinetic, potential,
and dissipative energies of a system in addition to the work done by exter-

nal forces, then Lagrange's equations provide a powerful method for devel-
oping the eguations of motion.

EERRE Vv

The dynamic equations of motion are written in ma“rix form as

- [a] {at+{ct=0 (3-1)

ATATRIETZICS




where [A] iz approximately a 30 by 30 matrix of generalized mass ele-
ments, {o { is a column matrix of accelerations of the generalized coor-
dinates and {G} is a column matrix derived from the Lagrangian energy

functions, dissipation function and generalized forces, which take the
form:

{c}=- [B){a} - [c] {a} + [Q] {r (0} (3-2)

The equations of motion are solved as a time history at rotor azimuth angle
increments required to provide a stable solution for the highest frequency
mode present in the soiution.

3.3 CALCULATION OF ROTOR MODE DISPLACEMENTS, VELOCITIES AND ACCELERATIONS

In a rotor simulation of this type, it is difficult to compute the proper
displacement velocities and accelerations, and associated inertia and
aerodynamic forces and moments which are required for high resolution of
the blade feathering moments. This requires exacting aerodynamic data as
well as a precise statement of the inertial loadings. To establish the
feathering moments due to these loads, the relationship between the feather
axis and the point of application of the loads must be precisely determined.
This is accomplished by a very accurate analytic constructioa of the unde-
formed blade and a supe.position of the blade elastic bending on this
shape. In order to achieve the highest resolution of the predicted blade
shape and leather axis position, the blade modes are defined at approxi-
mately the trim collective blade angle. The blade static position is also
constructed at this blade angle. Blade element displacements, velocities,
and accelerations are then computed from the combined static chape, the
elastic blade motion, and blade feathering with respect to the reference
feather angle.
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The aerodynamic description used in the analysis is composed of a rotor
inflow model, nonlinear steady and unsteady blade element aerodynamics,
nonlinear body merodynamic characteristics, rotor/body aerodynamic
interference, and auxiliary airloads from the tail rotor and propeller.

The auxiliary airloads are contained in modular subroutines and are func-
tions of advance ratio and propeller and tail rotor collective pitch. The
main rotor dowawaszh effect on the wing and horizontal tail angles of attack
is an empiricel function of rotor thrus: and advance ratio. The nonlinear
body aerodynamics may be inputted as tables of actual wind tunnel test
data.
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The aircraft primary control systems are simulated from the pilot control
levers operating through a boost system in all control axes. Gearing and
geins in the control path are inputs to the analysis and may be easily

changed for studying the effects of design changes in the control system. &
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Control servos are simulated by first-order lags with rate limits and with
soft and hard physical stops. Control stiffnesses in collective and cyclic

pitch axes of the main rotor are included in the dynamic equations of
motion.

3.4 OUTPUT

The analysis is a time-History solution of the equations of motion. The
standard output format provides plots of up to L0 output parumeters in TRIM
and 60 in FLY. In addition, a tabulation is provided ut the end of each
mode of operation. The analysis also provides plot capability at the end
of TRIM to show loads at various points in the system over & single rotor
revolution on an expanded linear scale. These loads are harmonically

’ analyzed and the harmonic components printed out.
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In additijon to the tabbed or plotted time-history output in the FLY mode,

e tape or disc pack record can be made at selected time points for use in

a fast Fourier transform analysis. The record pickup interface and FFT

are not supplied as part of REXOR, but are included by the user to match $
the computation facility used. The FFT analysis gives a quantitative b
evaluation of the mode/member oscillation in question. Accurate damping f
ratio and resconant frequency data are available from this procedure. 3

. &
i
} i
/. k
i
b i
& -
" 4
A E:
g
it A
o 3
& -3
i’ 3
3 ;
b
s 2,
B! b
A 4
3 i
i %
0 ]
3 ]
e §
8
3 4
5 i}
: i
b ]
4 {4
3 f
%
g 4]
: g
- A
0
b
»

19

Lo i i

e B TN e Y e KN L




L. SYMBOLS

The notation used in REXOR generally follows what could be termed NASA
notation. In general:

® Axis systems use a right-hand triad X, Y, Z
® Rotations about these axes are alsc a right-nand triad 6, ¢, ¢
@ Rotation rates, again a right-hand trisd,are p, q, r

e Velocity components of X, Y, Z are u, v, w.

L.l SUBSCRIPTING NOTATION

f Subscripting is used as 2 rule in REXOR to further identify a variable.
Superscripts except in a few column vectors are reserved to denote raising
to a power. The subscripting can mean:

@ Type of element; F for fuselage, ©SP for swashplate, TR for
tail rotor, R for rotor, etc.

e Coordinate system reference; BLn for blade axis, H for Lub axis,
R for rotor axis, etc.

® Modasl identifiers.
+.1.1 Blade Number

The blade modal identifier typically is of ihe form Amn' Where n 1s the

blade number.
4.1.2 Mode Humber

Also from Amn’ m 1is the mode number, and is keyed to the symbel A. A

represents blade bending modes (3). Therefore m cean be 1 to 3.

L.1.3 Mode Type

Other than blade bending the remaining blade mode is torsion, and is sepa-

rately identified as BPHn' Nonblade modes are identified by the direction

and subscripted axis of motion. Examples are YR for rotation of the ' f;

rotur and BS for longitudinal shaft bending.
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4.1.4 Generalized Mass, Damper, Spring, Forces ;

The generalized masses are denoted as M doubly subscripted by the two

modes active for that mass. Examples are and M . Thisg ‘%

M¢S $S Amn GH

'; scheme is also used for other elements of the equations of motion, dampers

(C), springs (K), forces (F). Note the forces are a column vector and -
singly subscripted.

4.1.5 Forces and Moments

: i In the process of forming the equations of mction many subelements of

i forces and moments are formed, translated and combined. Several layers
; of subscripting may exist in performing this process. The guidelines to
: tte layering are: =

ﬁ ® First layer denotes the direction or axis system that the quantity
g is formed in. Examples are X and BLE.

@ Second is the axis system involved or axis system being translated
to, depending on the specification of the first level. The second
level may also be specified as 0 or nought, to indicate the .?
value is at the coordinate system origin. This notation is used 3
to show an inertial reterence and blade root summation guantities. 4

The third layer, usually outside a series of bracketed quantities,
shows the blade number being computed, or the overall coordinate
system in use for the computation at hanl.




COORDINATE SYSTEMS AND TRANSFORMATIONS

5.1 INTRODUCTION

Prior to developing the equations of motion, a system of coordinate sets
with a description of the elements of the system in these sets and the
interrelationship of the sets is required.

5.2 COORDINATE SETS

5.2.1 Fuselage Coordinates (XF’ Yo ZF)

The fuselage set origin is located along the undeflected main rotor shaft
line, and at a convenient waterline (the cg for instance). See Figure 5-1.
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The coordinates form a right-hand triad XF, YF’ ZF' Notations for veloc- 3

O IOk

ities with respect to earth of these coordinates are either XF’ YF’ Z

F
or u

7 Vo Vg A conventional double dot notation is used for accelera-

tion. Euler rctations of the set follow conventional practice of roll right

¢F’ piteh up BF, and yaw right wF. Rates of rotation are either !

denoted by dot notation or pF, qF, rF. Angular acceleration is double

dot notation of the rotation or dot notation of the rates, ¢F’ GF, wF F
or PFa qu rF'

Numerous aerodynamic terms are referenced to the fuselage set.

Figure 5-2 ?
shows the relationship of airflow to this set. The components of airflow, 3
also noted as Ups VF, Vg, are defined with respect to the fuselage set §

by an angle of attack a, and a sideslip angle Rg. The angle of attack
is the arcsin of the ratio of the vertical component and the vector sum of
the X and 7 components. The sideslip is the Y component of airflow
in relation to the total vector airflow sum. The angle of attack is
positive (pitch up) of the fuselage set with respect to the airflow. The
sideslip is positive (yaw left) for the airflow relative to the set. The
airflow is the vector sum of the fuselage set inertial motion and flow
t'ields from other parts of the vehicle, such as main rotor downwash.

5.2.2 Hub Coordinates (Principal reference set) (XH’ Yo ZH)

The hub set origin is at the top of the main rotor mast, but does not
rotate with the mast. The mast top location represents the optimum choice
as & summing point for loads, and a reference point to track relative posi-
tions of model elements with a minimum of algebraic operations.
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M

(RIGHT)
Ve U, 9, Pp

(FORWARD)

¥

ZF: wFr wF: rF
(DOWN)

Figure 5-1.

Coordinate Systems Fuselage Set
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» YFUF (RiGHT)

ZE.WE  (DOWN)

Figure 5-2. Coordinate Systems Fuselage Axis to Airmass
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For an undeflected rotor mast, the hub set origin is in line with the ZF
axis a distance ZOF up from the fuselage set. See Figure 5-3. At this

point, the hub set X, Y axes are in the same direction and sense as the
fuselage set X, Y.

Due to small angle assumption shaft (S) set bending, the hub set is rotated
¢S and eS (Euler angles) from the fuselage set. As the hub set is the prin-
cipal reference axis, the fuselage set rotates under the hub set. The fuselage
set origin moves to the right and back for positive ¢S and es. The corr=aspon-
ding translations are (axF/aes) 84 and (aYF/8¢S) ¢S. The partials are con-
stants, and are zerc for a virtual pivot point at the fuselage set origin.
Airflow information is also referenced to the hub set for use in the main
rotor aerodynamic calculations. The reference scheme is shown on

Figure 5-4. For components of airflow Ups VH’ Yy with respect to the

hub set, an angle of attack a2, and sideslip ¢ are defined. The

generation conventions are different from the fuselage airflow reference.

R’ ZR)

5.2.3 Rotor Coordinates (XR’ Y

The undeflected rotor set has the same origin as the hub set and a common
Z axis. See Figure 5-5. However, the XR axis rotatz:s with the blade

number 1 reference axis system. The YR axis points to the blade num-

ber 1 leading edge. The rotation of the rotor set is measured counter-
clockwise (CCW) from the —XH axis by the angle wR.
serves as a datum basis for blade number one and has a common 2
with the BLn sets.

The roior set

axis

5.2.4 Blade Coordinates (XBLn’ YBLn’ ZBLn)

To bookkeep the deflections properly of all the main rotor blades, sets
equivalent to the rotor set are created for each blade. These are the
RLn sets, where n is the blade number (counted clockwise from blade
number one). All BLn sets are identical except for an azimuthal rota-
tion (n-1) Ay, where Ay is the interblade angular spacing. The

rotation is about the ZR axis. Note that BLn sets are rotating

coordinates and have a common Z axis.
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VIRTUAL PIVOT

POINT \

(FORWARD) X Yg (RIGHT)

Z; (DOWN)

THERE IS NO YAW (Z) ROTATION BETWEEN H AND F SETS

: Figure 5-3. Coordinate Systems - Hub (Nonrotating Shaft Top)
i to Fuselage Axis (Flexible Shafc)
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YH' v H (RIGHT)
s 22 2
u + v
H H ‘~‘-

fr"h.‘
T I /E;“-‘-.,_h
Xn, YR (FORWARD)IQ{[
«

2 2 2
\/uH +vH +WH

]
———
A

2y WH (DOWN)

Figure 5-b. Coordinate Systems - Hub Axis to Airmass
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.......

a. ROTOR AND HUB AXIS SETS

Zq
A

(FORWARD) (RIGHT)

H
Xy

+
2y

b. ROTOR AND BLADE AXIS SETS
(DOWN)

2g. Zg11- ZgLn

XgLe

ZoBL

=

(USED IN INTERIM
TEETER ROTOR,
SECTION 6.7)

iTH STATION
(n-1)AY

XgL1

XBLn

Figure 5-5. Coordinate Systems - Rotor, Blade,
and Blade Element Sets
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5.2.5 Blade Element Coordinates (XBLE’ Yerg ZBLE)

The blade element set origin is located at the center of gravity of an )
element of a particular blade. See Figure 5-6. Reference to a column

vector subscripted by BLE is used tc denote the blade element located by

the blade element set origin. The right-hand coordinate triad of this set

has the X axis parallel to the local quarter chord line, the Y axis

along the chord line toward the leading edge. The Z axis is mutually
perpendicular and pointed up. The BLE set is used to track the local

feather angle, to develop aerodynamic and dynamic loading terms. i

The BLE set origin for each blade element specifies the elemen* c.g. with
respect to the quarter chord, and in terms of the BLE directions, i.e.,
for the Kth element the position coordinates are SY(K) and SZ(K).

SX(K) is the blade radial station. Transformations to the neutral, no-

3 stretch axis are made for X deflections. Note: The quarter chord is

3 merely a convenient reference datum, and does not convey any model

8 limitations or assumptions.

5.2.6 Freestream (Earth) Set (XE, YE’ 7))

E

The freestream set is essentially the earth or inertial set inasmuch as
K the axis alignments are the same. However, the freestream set can assume
{' any origin. Thus the use of the set is to reference the local gravity
: vector and/or an absolute angular displacement or 1l‘near velocity accel-

eration of another set. As shown on Figure 5-7, the ZE axis points down

toward local gravity. Other sets reference to the E set, as the H set
shown here, may assume any starting value of roll and pitch such as the

! trim initial conditions. The relative orientation changes with prorressing
- time of flight.

With the freestream set origin located coincident with the fuselage set,

the components of fuselage set velocity in E set are uE, VE, WE.
- components combine into a trajectory velocity U, and path XT. The

o trajectory path is yawed rigat wT and pitched up YT from the E set.
See Figure 5-8.

These

5.2.7 Gyro Coordinates (XG, YG, ZG)

: A gyro set 1s used for modeling an internal, isolated control gyro. This
£ set is shown in Figure 5-9. The G set origin is coincident with the

: fuselage (F) set origin and has the same sense of direction and rotation.
Rotations are measured relative to the fuselage set.
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ZBLE YBLE

C/4 LINE

NEUTRAL AXIS

BLADE STATION K

Figure 5-6. Coordinate Systems - Blade Element Set
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Yy (RIGHT)
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SYSTEM MAY BE INSTANTANEOQUSLY
ALIGNED WITH ANY SYSTEM
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(DOWN)

Figure 5-7. Coordinate Systems - Freestream (Earth) to Hub Axis
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Yg (RIGHT)
(FORWARD) X¢ Vg
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3 z
E (DOWN)
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v
1 E 1 Wg

Y =sin | T—— , Y = sin
T
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B% DEFINITION: V. W =0

Figure 5-8. Coordinate Systems - Trajectory Path to Freestream Axis

32



a. EXTERNAL GYRO AND SWASHPLATE SYSTEM (NONROTATING)

Xsp
/ YSP

(FORWARD) X, YH (RIGHT)

S lze et Ehl e e S e e L e

v
Z,, (DOWN)

b. ISOLATED GYRO (MOUNTED AT FUSEL/\GE REFERENCE AXIS)
Xg

Figure 5-9. Coordinate Systems - Control Gyro and Swashplate

Sets to Reference Sets
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5.2.8 Swashpla“e Coordinates (XSP’ YSP’ ZSP)

The swashplate set serves one of two possible functions. For a conventional
: control system, or a system using an isolated control gyro (Section 5.2.7),
4 the motion of the set describes the motion of the swashplate. For systems

; using & control gyro directly in the feathering angle control path, this

set describes the control gyro motions.

As shown on Figure 5-9, the SP set origin is located in line with the
ZH axis and above the hub set a distance ZOSP' The SP set does not

rotate with the rotor shaft. For no d~flection of the SP set, the
X and Y axes have the same alignment as the X and Y of the hub set.

5.3 DEGREES OF FREEDOM

E The degrees of freedcem of the REXOR equations are defined as the general-
ized coordinate variables of the set of equations of motion to be devel-
oped in Section 6. These degrees of freedom fully describe the motion of
the physical elements of the modeled helicopter, but each direction of
motion of the helicopter may not have a degree of freedom directly asso-
ciated with it. The physical motions may be described by a series of
modal variables (Section 6.4) or through a set of transformations and com-
binations of the degrees of freedom as developed in Sections 5.4 and 5.5.

% The REXOR rotorcraft simulation analysis can be applied to describe the

: vehicle~-rotor-control system dynamic response for up to thirty-two fully-
coupled degrees of freedom. These include the normal six rigid body or
vehicle degrees of freedom; rotor speed; and additionel provisions for up
to twenty-three degrees of freedom defining rotor blade motion (one mode
per degree of freedom), flexible swashplate and rotor shaft or pylon
motion, and a flapping moment feedback control gyro. The equations of
motion are written in a general form so that additional degrees of freedom
can be added if desired. The current thirty degrees-of-freedom are listed
in Figure 5-10, followed by a discussion describing them in detail.

W RRILr

Gt

Tag
hY

TRy

5.3.1 Vehicle or Rigid Body

The six rigid body degrees-of-freedom, three translations, and three rota-
tions are defined as motions of the hub or principal reference axis sys-
tem, Section 5.2.2, relative to freestream (inertial) reference datum.

Translational displacements (X, Y, Z)oH of the origin of the hub coor-
dinate, and rotational displacements (¢, 8, ) _ about the hub axes describe

H
these degrees of freedom. See Figure 5-7. As mentioned in Section 5.2.6,
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. tzure 5-10.

‘ ITEM
’ MAIN ROTOR
HUB AXIS
EI

ROTOR
ii.
SHAFT OR PYLON
3 BENDING

: BLADES

- {(n=2o0r4)
SWASHPLATE
L GYRO

SYMBOL

Xon- Yon- ZoH

¢H' BH' l'bH

VR

¢s: es

A1n' A2n' A3n

ﬁPH n

$sp- Ugp
Zsp

¢G' eG
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ROTATION OF ROTOR SE1
WITH RESPECT TO HUB
AXES

DEFLECTION
OF FUSELAGE REFERENCE
WITH RESPECT TO HUB AXES

BLADE BENDING MODES AND
FEATHER/PITCH HORN
BENDING OR TORSION WITH
RESPECT TO BLADE

ROOT AXES

SWASHPLATE AXES MOTIONS
WITH RESPECT TO HUB
AXES

GYRO (INTERNAL) AXES
ROTATION WITH RESPECT
TO FUSELAGE AXES

Degrees of Freedom

3
R

3

1
D
&
3
g

A AT o oo S b A TR P ard I S ST e

Eirdnaniae

Soaciasis

i




3
F B I AT s ViiavIens e s v e

the freestream set mey instantaneously assume any reference point;

and (¢, 0, w)H have

: therefore, only the time derivatives of (X, Y, Z)OH

significance.

In order to locate the direction of the gravity vector relative to the

I hub, a running calculation of the Euler angles ¢E’ GE, wE must be made.

Since these are not degrees of freedom and therefore not calculated in the
equations of motion, they must be calculated outside the dynamic equations
as the time history proceeds. When the initial orientation of the hub is

defined, ¢E’ GE, and wE are known ané their changing values may be cal-

culated by integrating the hub rotation rates in the earth or freestream
2 axes.
? 5.3.2 Rotor

The rotation for the rotor degree of freedom wR is defined as motion of

the rotor coordinate system relative to the hub axis system. This is
shown in Figure 5~5. This figure also indicates the change from 2 down
to Z wup axis, which is equivalent to a 180-degree positive rotation
about the Y axis.

5.3.3 Shaft or Pylon Bending

Shaft or pylon bending degrees-of-freedom are defined as motions of the
fuselage coordinates relative to the hub or principal axis system. As

shown in Figure 5-3, fuselage translations, Xop and Ygp, are dependent
variables which ere functions of the two shaft bending Euler rotations,
¢S and 6_.. These rotations are about a virtual hinge of the shaft or

S
pylon.

Shaft bending or pylon bending is assumed to be small enough such that
displacement along the 2 axis is negligible. Thus, when computing the

translation of the origin of the fuselage coordinate system in the XF and

Y dire: ¢tions due to shaft bending, small angle approximations for the

F

sine and cosine of ¢S and es can be used. These translations are thus
aY EKF

defined as products, EE; ¢S in the YF direction and EE; ES in

the XF direction. The partial derivatives represent the distances from

the virtual hinge in each axis to the fuselage reference.



5.3.4 Blades

Each blade's motion relative to the rotor coordinate system is defined in
terms of four generalized coordinates. These consist of three blade bend-

ing modes and a combined feathering, pitch arm bending mode, or a torsion
mode.

5.3.4.1 Blade Bending

Blade motion due to blade bending is defined by the following
generalized modal coordinates:

Aln: coupled first inplane bending mode

A2n: coupled first flapwise bending mode
;; A3n: coupled second flapwise bending mode

Ordinarily in a modal analysis, the effects of centrifugal and struc-
tural stiffness are lumped together into a generalized stiffness

3 which is simply the modal natural frequency squared times the gen-

3 eralized mnass. In contrast to this, the REXOR analysis separately

1 treats the strain energy or structural stiffness in each mode and the
3 stiffening due to the centrifugal force field. This provides the

% capability of being able to account for the periodic variation of

ﬁ stiffness in the modes due to the reorientation of the centrifugal

» force field with respect to the blade principal axis due to varia-
: tions in blade angle. This feature can be important in the study of
= subharmonic stability where the periodic variation of coefficients
i may be important, but it also permits being able to make rather large

L changes in rotor speed and collective blade angle without having to
4 change blade modal data.

% Mode shapes and natural frequencies are initially determined for a

: twisted blade at or near the collective blade angle and rotor speed
- to be analyzed. Such effects as precone, blade sweep, blade droop,

-; and blade angle variation are included in the REXOR analysis and

5 couple the initially orthogonal modes. The elastic bending contribu-

k. tiocn due to the modal deflections is calculated relative to the
3 blade's static shape.

As previously noted, the blade modes are initially defined at some

{ reference feathering angle, ¢REF' As time progresses in the

E analysis, the blade feather angle varies about this reference posi-
?? tion. The mode shapes are correspondingly transformed to account for
1 the difference between the instantaneous feathering angle and the

g reference feathering angle, at the same time accounting for other
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effects such as the static and instantaneous shape of the blades.
This yields the modal coefficients (partial derivatives) that relate
blade element motion to the blade bending generalized coordinates as
a function of time.

The vertical and inplane blade element variational motions, GYi and

dzi, can be written as follows:

BYi BYi aYi
8V, = ga— (@t)8A) g (a L t)8A,  + o=— (g ,t)6A,  (5-1)
1n 2n 3n
and
BZi BZi BZi
Gzin - EK__-(qr’t)GAln T (qr’t)6A2n S (qr’t)6A3n (5-2)
1in 2n 3n

where the given or input partial derivatives are the true modal
coefficients of the orthogonal modes for the blade in an undeformed
shape, with no static geometry accounted for, and at the rotor speed
and collective angle for which the blade modes were initially
calculated.

The orthogonal bending modes used in the analysis are illustrated in
Figures 5-11, 5-12, and 5-13. Observe that the root boundary condi-
tions for the modes may be cantilevered or articulated.

Note that in addition to the normal bending responses, Yi and Zi’

the spanwise motion of each blade element is also determined, and
blade feathering due to pitch-lag and pitch-~flap kinematic coupling
effects are also accounted for in each blade bending mcde. This
feathering is added to that due to swashplate motion as is blade
feathering due to flexibility.

This modal data is developed {10 the form used in the blade equations
in Section 5.5.5. The discussion of modes is carried on from & math
viewpoint in Section 6.k.

5.3.4.2 Pitch Horn Bending - Dynamic Torsion

The remaining mode per blade, pitch horn bending, is comprised of
either a blade feathering drive flexibility with a torsionally
rigid blade or an uncoupled torsion mode. Examining the first
alternative, the swashplate position determines the primary blade




Figure 5-11. First Inplane Mode
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Figure 5~12. First Flap Mode
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Figure 5-13. Second Flap Mode
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feathering motion. In addition, the linkage between the swashplate
and the blade (see Figure 5-14) has flexibility in the pitch link,
pitch horn, and cuff. The feathering or pitch horn bending degree-
of-freedom therefore can be rigid blade feathering motion outboard of
the blade cuff coupled with & net inboard stiffness. Inboard of the
blade cuff, feathering flexibility results from the pitch link, pitch
link bearings, pitch horn, and cuff. The relationship between blade

feathering, ¢ and motion of this degree-of-freedom, B8 5| His

PHn
3¢F

9B

Fn’®

defined as the partial derivative, .
PH /n

Alternatively, this degree of freedom, BPHn’ can be a distributed

torsional response of the blade based upon defining an uncoupled
dynamic torsion mode. The selection of the degree~of-freedom repre-
sentation is made on the basis of the type of analysis being per-
formed. The mode defined is uncoupled in the sense that it is not a
function of the flapping or lead-lag modes.

An optional quasi-steady torsional response of the blade may be used
in conjunction with pitch horn bending. This is superimposed on the
rigid blade feathering and permits a distributed torsional response
alternative of the blade reacting the spanwise variation of applied
torsional moments from aerodynamics, coriolis, and centrifugal force
terms. The blade torsional response at the ith blade station is
computed from the following equation:

1 ¥ ax wip
6. =__._f j M (x)dx (5-3)
Ti T S5+1 rook GJ(x) x; ¢

where S 1is the Laplace operator, and Top is the time constant

associated with blade torsional response. This equation is imple-
mented numerically in the REXOR program.

To aid in program trouble shooting the pitch horn bending representa-
tion (with or without quasi-static torsion) may also be operated as
a quasi-static degree of freedom without second-order response.

5.3.5 Swashplate

washplate has three degrees of freedom: Rota-

bgp> Bgps 8nd Zgp.
¢SP ard egP are FEuler angles defining the orientation of swashplate
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Figure 5-14. Blade, Pitch Horn and Feather Hinge Geometry
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cooréinates relative to the hub. Likewise, the translation ZSP defines

vertical displacement of the swashplate relative to the hub axis. These 2
are shown schematically in Figure 5-9.

In a gyro-controlled feathering moment feedback system, such as the
Lockheed concept, the swashplate becomes the control gyro and the swash-
plate degrees of freedom correspond to the degrees of freedom associated
with the control gyro. The selection of t!l'is or other control system
configurations is optional in the program; fundamentally by data changes
in terms of inertias and spring rates.

5.3.6 Gyro X

A gyro is included in the present version of the analysis which permits £
;. the description of a direct flapping moment feedback-gyro controlled rotor f
4 system. As already noted, the inclusion of this control system is a iﬁ
' selectable option in the program. The degrees of freedom associated with

T R ST

this gyro are ¢G and SG, and are Euler angles defining the orientation

of the control gyro relative to the fuselage axis system. These degrees
of freedom are shown schematically also in Figure 5-9.

3
A M AR AR
g s ER o

5.4 GENERAL MOTION AND COORDINATE TRANSFORMATIONS

RS

Y

In development of the equations of motion, it i= convenient to write the
forces, moments, velocities, and accelerations . coordinate systems i
related to separate elements of the system. Consider the concept of g
general space motion of a particle.

caloates

il

5.4.1 General Case of Space Motion

For the general case of space motion,a particle, p, moves with respect
to a reference axis system which is, in turn, in motion with respect to a
fixed coordinate system. This is illustrated in Figure 5-15 where the

- fixed or inertial coordinate system is designated by capitel letters

;. X, Y, Z, and the moving coordinate system is designated by lower case
letters x, ¥y, z. The moving coordinate system is rotaeting at an angular

-> -> i
K velocity. w. The vector w may, in general, vary in magnitude and %

9 direction, both of which can be referenced with respect to the fixed
b X, ¥, Z axes.

Thus, the absolute motion of the particle p, referred to the inertial
X, Y, Z axes, is equal to the motion of the particle relative to the

moving coordinate axes X, ¥, z plus the motion of the moving-axis system ic|
with respect to inertial space. 2
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To visualize the motion of the particle
to the moving axis system be indicated along a curve s

moving axis system, x, ¥y, z.

P, let its motion with respect

fixed in the

An observer sitting on the moving axis

system would therefore see only the motion of p along the curve s,

From Figure 5-15, the position of p relative to the x, y, z axes is
represented by the vector
T =i+ y3 + 2k (5-k)
where i, j, and kX are unit vectors along x, y, z, &and therefore must
be treated as variables due to their changing direction. Differentiating
; results in
> > > > d—} ﬁ di{*
: . . d i
= xi + + + x —— + + g = -
r i+yj+zk+x T B g B (5-5)
. Q_—» > gzi_—r +> %_" > . .
Since - wxi, It wXxJ and qt S WX k, this expression can be
written as
-> > > > -+ - -»> -»>
r=xi+yj+zk+uwx (xi+yj+ zk) (5-6)
or
> > ->
r=r+wxr (5-7)
>
In this equation, the first term, r represents the velocity p relative
to the rotating axis, x, y, z. The second term, ; X ;, is the velocity
of the point in the moving coordinate system due to the rotation w. The
+
absolute or inertial velocity R of the point p is obtained by adding
> >
the velocity of the origin RO of the moving axis system to fo, or:
-> - -> > ->
R = Rp*r+uwxr (5-8)
> -+ > ->
where w=7pi+qgj + rk
. .o .« >
and w=piL+qj + rk
44
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The inertial accelerations of the point p can now be determined by %
simply differentiating this expression with respect to time.

Performing 3
: this differentiation yields A
3 q
-> > - - > > -+ > -»> >
R = Ro +tr+uxewxr+ewxr+2wxr (5-9)

> -»> > >
where the terms w x w x r and w X r represent accelerations of the

-+
-5

coincident point in the moving axis system, r is the acceleration of p

> -+ b
: relative to the moving axes, x, ¥y, 2, and 2w x r is the coriolis ga
% acceleration which is directed normal to the plane containing the vectors :
N + _y ‘; by
? w and the relative velocity f, as given by the right-hand rule.
*7

The vectors expressed in the preceding equations are in the most general 8
form for defining the motion of a particle moving in a mcving ccordinate i
system. All special cases can be deduced from these equations.

SR

gl i

For convenience, the time derivative equations can be expanded in matrix

form. The inertial or absolute velocity and accelerations of the particle
p, written in expanded matrix form, are given by:

T SR L




RSy

R R S Yo

gy i Daibies

Performing the indicated matrix multiplication gives:

X I % I x 72q - yr
0
Y S YO + 4y +4dxr-zp (5-12)
Z 20 z YPp - xq
and
X L XO I X
n e E
Y YO y
Z ZO_ z

) . . . .
x(-r"-q°) + y(pa-r) + z(pr+q) + 2zq - 2yr
. 2 2 ; . .
+ ¢4 x(pg+r) + y(-r"-p~) + z(qr-p) + 2xr - 2zp (5-13)
. Cy 2 2 . .
x(pr-q) + y(qr+p) + z(-p"-q") + 2yp - 2xq
The same vector development applies to the inertial velocity or accelera-
tion of the reference set. That is, the total derivative is the sum of
linear and turning components. The reference for a given coordinate set
in REXOR is the inertial reference of the hub axis (principal set) plus

the motion of the set in question relative to the hub axis.

5.4.2 Coordinate Transformations - Euler Angles

To describe motions in one coordinate system in terms of motions in
another coordinate system, Euler angles ¢, 6, and y with the appropriate
subscripts are introduced. These angles can be applied to define the
rotation of one coordinate system, x, y, z, relative to another coordi-
nate reference frame, X, Y, Z. Since the development contained in this
report utilizes these angles in relating coordinate systems, a brief
explanation is given here.

46




- Rotational displacement of a coordinate system can be represented by the

: taree rotational displacements ¢, 8, and Yy, as shown in Figure 5-16.

3 The order of rotation is not important as long as the sequence selected
remains consistent and the reverce order is used when rotating back to the

3 original position. In this analysis, the rotations start with displace-
ment ¢ about the x axis, then a rotation 6 about the new vy aris,

followed by a rotation Y about the new or final 2 axis unless geometry

or phyvical considerations of tie modeled part dictates another order.

This means the (X, Y, Z)a coordinates can be rotated into the

(% T Z)b axis system as follows:

{ X [ cos¥  sind 0| )cose 0 -sing rl 0 0 ] X
é & = |-siny cosy O 0 1 0 o) cos¢ sing Y
: Z 0 0 1llsine o0 cos@if 0 -sing cos¢ Z
{ B L i JL i n
(5-14)
é or:
3 X X
% b4 =|T i ( )
é | a-b =15
3 z b . a

and the inverse transformation can be written es
3 X X X
Y =7 14y T ¥ (5-16)
E a-b b-a

yA & Z b 7 b
where
cosy siny O] cose 0 -sine 1 0 0
[Ta-b] = |-siny cosy O 0 1 0 0 cos¢ sing (5-17)
0 0 1| sine6 0 cosé 0 -sing¢ cos¢

47




AXES (X, Y, Z),, DEFINED RELATIVE TO REFERENCE
AXES (X,Y,Z) , BY EULER ANGLES ¢,0 i

E Figure 5-16. Rotational Displacement of a Coordinate System
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AT

.
1L 0 0 cos®@ O sinb |} cosy -siny O E
L . . '
[Ta-b] =0 cos¢ =-sin¢ 0 1 0 siny cosy O} (5-18)
J
0 sin¢ cosd -sind 0 cosb 0] 0 1

By inspection, then, it can be seen that

inverse of [T] = transpose of [T]

or

] - ] - ]

Carrying out the indicated matrix multiplication yields the transformation
matrix [T

(cospcost)  (singsinBeosy+cosdsing)  (-sinBcospcosy+sindsiny)
[Ta—b] = | (-sinycosB) (-sinysingsinB+cosycosd) (sinysinBeos¢+cosysing)
(sind) (-cosfsing) (cos¢cosh)

(5-20)

Using this transformation, the inertial velocities and accelerations of a
point or particle be written in one coordinate system in terms of those in
the other coordinate system as follows:

X I X I .
vy = [Ta_b] Y (5-21) :
2]y 21e 5
b2

i

%

b

49 +

L

g

R TR




AT R e

e

Branan SUE S0 g oo

s

FLE T i

Leis

VR s e

gt Con e Ay e it
SR UreE R R SR do,

Lo 2ttt

¢s,
-d
BRo.
7,

5
b

2R

\.,
el
i

g T T ey G S S A bt

and:
i I X I
Y o= [Ta_b] ¥ (5-22)
z b 2 a

and inversely,
x|* x|t
Yy =lm f (5-23)

L b-a

Z 7 Z b

and
¥ I ¥ I
¥y = [Tb_a] ¥ (5-2b)
4 a 4 b

5.4.3 Angular Velocities and Accelerations - General

For the general case, consider the coordinates in the previous section,

and let (p, q, r)a and (p, q, r)b be the respective angular velocities

of and about the (x, y, z)a and (x, y, a), axis systems. Also, assume

b
that the Euler angles are varying with time ($, 8, and &) and let
(s ¥r z)a be the reference coordinate set with (x, y, z)b coordinate

set moving relative to it. This is illustrated in Figure 5-17.

50




Figure 5-17. Relationship of Euler Angle and Coordinate
System Angular Rates
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Frorm this figure, the following can be written.

0

0 +
{

cosy

-siny

uil_o

L

0

cos¢

0 -sin¢

0

sind

cos¢

siny
cosy

0

p

q

r

.

0

1

a

D - o

(@]

-

cosf

0

sind

e J
0] -sinb ¢
1 0 0
0 cosb 0

(i5=35)

Differentiating this expression with respect to time results in angular

accelerations (p, Q, f)b in terms of the reference coordinate system

angular velocities and accelerations.

—

-siny

~cosy

cosy

-siny

0]

8

This results in the following:

7

0

~

cosH

+ 0

sinb

cos¢

-sin¢

o A £ R AT S AN e N A SR
A S B A T S Ea kB on g b

0 -sin8]
1 0 )
0 cosb
n L
=
siny OT 0
cosy 0 8 >
0] ill 0
J S
7 s
0 p

sing | & a p

cos¢é r

cosp | a3

-sin¢ r

.

¢

0

(5-26)




These equations represent a general form for defining angular velocities
and accelerations of one axis system rotating relative to another axis
system,which in turn is in motion.

5.5 RELATIVE MOTIONS AND TRANSFORMATIONS USED IN THE EQUATIONS OF MOTION

In this section are presented the inertial linear and angular velocities
and accelerations of major components of the vehicle, including motion of
the principal reference system, the fuselage, the swashplate, the control
gyro, the rotor, and blade elements. Also included is the development of
coordinate transformations that relate motion in one axis system to
another. Motion of the principal reference axis system in relation to

the earth is described. Motion of each component or reference axis system
is then defined in terms of the degrees of freedom.

5.5.1 Hub Motion in Inertial Space

At each instant in time the hub axis (Section 5.2.2) is related to an
inertial coordinate axis system. TInertial accelerations of the hub
axis system are defined by the vector

Y1

where the quantities represent the total inertial acceleration of the
generalized coordinates of the vehicle as defined by motion of the
principal coordinate axis system.

Orientation of this system relative to the earth is specified by Euler
angles ¢E’ BE, and wE as seen in Figure 5-7. The sequence and defini-

(piteh), ¢ (roll). Note that the

tion of these angles is Y (yaw), 6
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sequence of rotations is opposite to that given by Figure 5-16. The
angular rates, pH, Qs Tys of the hub or principal reference axis system

with respect to the inertial coordinate system can be written as

9] ¢E 1 0 0 0
q = 0 +]10 cosq>E 51n¢E BE
r H 0 _0 —51n¢E COS(bE-J 0
cosGE 0 —31n6E 0
+ 0 1 0 0 (5-28)
_smnGE 0] COSGEL wE

This equation can be rewritten to solve for ¢E’ eE, and wE as

¢E 1 51n¢E taneE cos¢E taneE s
GE =10 coséy -31n¢E q (5-29)
wE _O 51n¢E seceE cos¢E seceE_ r H

The Euler angles defining orientation of the principal reference axis
system with respect to the earth is next obtained by integrating the rates
with respect to time, or

t
g = /0 o dt (5-30)

i

‘ t
,» eE =f eE dt (5-31)
% 0

t )




Angular velocities of the hub, with respect to the inertial axes reference

systen, Pys Gy Ty are defined in terms of the degrees of freedom as

) r_\I ()
p % p
. -t -
4q>=<60>= 4 q ¢ dt (5-33)
. O .
B v
H 0 H
. " JH - 4
where
. ) [« YI
P b
Tap = 1 50 r (5-34)
r v
H 0
. J - JH

Linear velocities of the hub or principal axis system are now determined.
The first three quantities of the hub axis acceleration vector represent
the linear inertial acceleration of the hub. For a system in motion, the

. ; o I . ; .
inertial acceleration, ao ,» at the origin of the system is defined,

based on the vector algebra of Section 5.4.1, as

>

-> av
where EO is EEQ , the rate of change of velocity, VO, of the origin
of the moving coordinate system and w 1is the rotational velocity of the

moving coordinate system, both relative to the earth. Now making the
definition
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i From this equation, then, the rate of change of velocity of the moving
g coordinate reference system becomes

This set of accelerations and the time integral are transfcrmed into rotor
and fuselage sets and rervesent airflow acceleration and velocity incident

A separate set of hub accelerations is carried through the analysis, based
on the hub set, which contains the acceleration due to gravity.
ily, gravity is treated as a force of mg on the right-hand side of the
However, the gravitational term can be introduced by defining

Ordinar-

(5-39)

are the three components of the gravity vector to

The hub acceleration on the left may be defined as being in



The logic behind this substitution is as follows. For a rigid body in
motion, the equilibrium equations can be written as

mX = m(Q + qw - rv) = F
nY = m(v + ru - pw) = B (5-k0)
mZ = m(w + pv - qu) = Ee
where
F
Fx X 5
= F + -
Fy Fy gy f1 (5-41)
Fg V2 &2
FX’ FY’ and ?i represent the external forces acting on the body, exclusive

of gravitational forces.

Subtracting the gravitational vector from each side of the previous
equations yields:

n(X - gx) =m(u + qw - rv - gx) = fk (5-L42)
m(f{ - gY) =m(v + ru - pw - gY) = F& (5-43)
m(Z - gz) =m(w + pv - qu - gz) = ?Z (5-kk)
which by inspection gives
i—gx=ﬁ+qW-rV-gX (5-L5)
Y -gy= v+ ru- pw - &y (5-46)
Z-g, = W+ pvV - qu - a, (5-47)
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Rearranging these equations yields:

Q= (X - gx) - Qv rv o+ g (5-L8) i
v = (Y - gY) - ru+ pw + gy (5-49)
w=1(2 - gZ) - PV taqu+g (5-50)

The first terms on the right side of the equation are identified with the
proposed gravitational acceleration definition of equation 5-39.

Making the substitution:

u X

- + +
o -~ W' T TH'H T Exu
; = Y - + + -
v YOH Lo A - (5-51)
v 7 - +
" Ju Zon = PpVy T WYy T Gy
In this equation, the accelerations XOH’ YOH’ and ZOH are the degree-

of-freedom accelerations of the hub or principal reference axis system
used in the REXOR analysis. These accelerations represent the inertial
accelerations plus the equivalent accelerations of the reaction force to
gravity. Thus, gravity is an equivalent acceleration applied to the
refeience coordinate axis system. Via coordinate system referencing,
every mass element on the vehicle is therefore acted upon by this accel-
eration. This avoids including gravitational force as an external force
individually applied to each mass element.

The gravitational vector at the hub is simply the gravity vector in earth
axis transformed to the hub axis system through the Euler angle rotations

¢E’ eE, and wE' Or

0

gyt = [TE_H] 0 (5-52)
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where

1 0 0]
cos¢E 51n¢E
LO -51n¢E cos¢E

fk 1 [ )1

OH g
.>= 4
4 YOH < v
Z W
OH H
Gy B: I O

;)=

XOH
4 YOH = [TH—E] 4
Z

| OHJ E

cos9

0

s1neE

The velocities of the principal axis s
4 the rates of change of velocity with t

o
*on
Yot
Zoy

which can be integrated to give the

Doing this yields

CH

OH

OHJ

I

. JH

0 —51neE

1 0

cosyp,

—sinwE

0 coseEJ 0

- [re]”

-
PR
XOH
y S
YOH dt
7.
OH
. JE
59

AL
XOH

%

Y oK >
Z

4 OHJ H
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(5-53)

ystem are obtained by integrating
ime, or

(5-54)

(5-55)

position of the system relative to the

(5-56)

Lo A5 AL oy

T e e s




s oacen

G 2 ki an e

AT T O

Z9ETIERY

T

Dl Dl

Fuselage Motion in Inertial Space
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As shown in Figure 5-3, the fuselage is rotated from the hub position by
The origin of the fuselage coordinate axis
system is displaced from the hub axis system by the distances

bending of the rotor shaft.

or

XOF

OF

OF

oF

As discussed earlier,

tions relative to the hub are described by the Euler angles
taken in that order.

transform from fuselage to hub is

X

in hub coordinates

in fuselage coordinates

and YOF

ing and hence are not independent degrees of freedom.

g

S

(5-5T)

are functions of shaft or pylon bend-
The fuselage rota-
-8, and -¢S
The minus signs and reversed order are taken so the

¢S and then ©

From Figure 5-3, the location of the fuselage reference in hub coordinates

is
( 3
XOF

<4
YOF

ZOF

r

BXF/BGS
0

0

~N

60

r

%

dg aYF/a¢S

BXF/BBS

ZOW

T

4

(5-59)

Y et 11

e b O e M T SR W]

e e <o STE A tle -




e S P

Géps s

N
<3
b
4
-
i
G

gL

LSRN AR R R AR i R

P B AV
s RN ARG T T "’3"?{??-3‘3‘]

Now, defining the transformation from hub to fuselage coordinates as

-

1 0 0 coseS 0 51nes

[TH—F] =10 cosd)S ~sin¢s 0 1 0 (5-60)

0 51n¢s cosgbS —51n8S 0 coseS

The inertial velocities of the fuselage reference system in fuselage
y coordinates can be written as

4 ' r (. ' 4 A

XOF XOH GS BXF/QSS

{y ¢ = 14y 3 + {4 1
Yor [TH-F] You 1 ¢s 3Yp 3¢

0

v

OF OHJ

= = - S g
GS BXF/BGS

+} r 0 -p 1 ¢ BYF/B¢S

v
g

(561}

-4 P Oy ZoF H
L al L J 7

Differentiating this expression once mure with respect to time (Sec-
tion 5.4.1) yields accelerations of the fuselage reference point in
fuselage axes.

.. Y 1 (.- I - I (1 ) M
Xop Xon 8g axF/aeS 0 -r q
N . o . | . I
4 YOF [TH—F] <4 YOH 4 4’8 aYF/a¢,s + 4 T 0 P

Y Z 0 -4 p O
OF OH

. 4F L\ JH g JH \ L JH

| ] T 1) [o. ax /o0 ]

0 -r q 0 -r gq - XF/ 5

v

+| r 0 »p r 0 p| p4 ¢S aYF/a¢S

-4 P Ofg]-a p OJH Zor H

+
N
=
(@]

|

e
.
€]

Q
<

e
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These two equations define the linear velocities and accelerations of the
fuselage refereunce point in fuselage axes in terms of the generalized

coordinate velocities and accelerations of the hub or principal reference
axis system, and in terms of the shaft or pylon bending generalized coor- i

dinate displacements, velocities, and accelerations.

Keeping in mind the order of rotation of 6

5

and ¢S,

and the rotation

formulas developed, the angular velocities (p, q, r)F, of the fuselage

reference system can be written as:

=
P —¢S 1 0 0 0
= + -si —.
qQ 0 0 cos¢S 51n¢s 68
r F 0 0 51n¢S cos¢s_ 0
- = 3
cosGS 0 51nes D
+ 0 1 0 af ¢ (5-63)
_-smeS 0 coses_ r H
Likewise, the angular accelerations of the fuselage reference become
P —¢S 0 0 0 0
=] + -si - -.
q 0 ¢.10 51n¢s cosd)S GS
e 0 f) coscbs —31n¢S- 0
) AN r r 3
cosGS 0 51n6S 1l 0 0 0
+ 0 F > <+ -51i <5 ¥
1 0 0 cos¢S 31n¢s 4 es
-smeS 0 coseS ) 1) -0 51n¢s cos¢S . 0 y
o = ol 4 N
-51n6S 0 coseS P coseS 0] sineS o}
+ eS 0 0] 0 <qf + 0 1 0 <q b
:coseS 0 —Slhea- LrJ H _-31nes 0 cosGS r )
(5-64)
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Tha above equations define the fuselage reference axis system angular
velocities and accelerations in terms of hub or principal reference
axis system angular velocities and accelerations and shaft angular
displacements.

5.5.3 Motion of Rotor Coordinate Axis

The rotor coordinate axis system is shown in Figure 5-5. Note that the
rotor coordinate axis system is rotated 180 degrees about the Y axis
relative to the hub axis system at the time when the rotor is at azimuth
position zero. That is, X and Z change directions. The rotor coordinate
system then rotates through the angle wR from this position.

The sequence of rotation in going from hub to rotor coordinates consists
of first a 180-degree 6 rotation, followed by the wR rotation.

Following the convention established in Section 5.4.2 for Euler angles:

coswR 51an 0 COST 0 sinm
[TH-R] = —51an coswR 0 0 1 0
| 0 0 1JL-sinm 0 cosT
-cos¢R sian 01[-1 0 0
= |-sin, cosp, O Jlo 1 0 (5-65)
. O 0 1JLO 0 -1

where the last matrix represents the 180-degree 6 rotation. The next

t
matrix is the rotor rotation, wR =./f QR dt.
0

Since the origins of the rotor coordinat= system and the principal refer-
ence axis system are coincident, the linear velocities and azcelerations
of the origin of the rotor coordinate system can be directly written as:

C . I C . A I
X5 Xou
1%t = [mas] {ouf (5-66)
Z 7
“ OJ R \ OHJ H
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and

(.. Y1 .. YI
XO XOH
- _ - > )
1Yt [TH_R] 1 You (5-67)
H
. CJ R \. O P H

Noting gravity has been treated zs an equivalent acceleration in the hub
generalized coordina.z accelerations. This same equivalent acceleration

is included in (X

..

0’ YO’ ZO)R’ the rotor coordinate accelerations.

The angular velocities, pps Qp, rp, and accelerations, bR’ dR’ fR of

the rotor coordinate system are determined; again noting the rotation
order. The rotor coordinate system angular velocities are:

2 -
p 0 coslpR slan 0 =P
q = 0 + —sinlpR cosy 0 q (5-68)
R
0 0

Likewise, accelerations of the rotor coordinate system

r ~

0 —51an coswR 0

-

—coswR ~31an 0

0 0

coswR

0] 1 H
. J

The above equations then define the coordinate transformation from hub to
rotor coordinates; and rotor axis system linear and angular velocities and
accelerations in terms of velocities and accelerations of hub and the rotor

degrees of freedom wR.
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5.5.4 Blade Coordinate Relative to Rotor Coordinates

Interim equations to describe teetering make use of ZOBL’ the blede
undersling. These equations are arproximations given in Section 6.7.

It is assumed the blade axes and rotor axes origins coincide and ZOBL =

in this section.

Referring to Figure 5-5, observe that each blade has its own coordinate
axis system.

Since each blade has its own blade rzference system, the XBLn and YBLn

axes are rotated with respect to the XR and YR axes azimuthally by an

angle defined by the eyguation

lpBLn

v - -27n(n-1)
BLn b

where b 1is the number of blades and n is the blade number. This

equat.on states that the XBLl and XR’ and the Y and the Y axes

BL1 R
are coincident.

The transformations between the rotor coordinate axis system and the blade
coordinate axis systems are defined by the equation

coswBLn simpBLn 0

[TR—BLn] = [S1™ppy oSV, O

0 0 1

Note that these equations define blade one as being straight aft at time
zero.




In the blade reference axes, the velocities and accelerations of the
origin of the blade reference axis system become:

r 3

XOBLn

Yot [ T [TR-BLn] \

ZOBLn
. s

'.. h
XOBLn
YToBlaf [TR-BLn]*

Z

OBLn‘ BLn

-

Likewise, the angular velocities and accelerations of the blade reference
axis systems become:




5.5.5 Blade Element Motion

The following blade motion description, due to the involved nature of the
geometry, is rather lengthy. First, in this development, the motion of
the blade with respect to the relative blade coordinates is given. This
motion is the sum of static and modal deflections. Then the relatica to
freestream coordinates is computed. Partial derivatives ere extracted
from the transformations for use in the equations of motion of the blade
in Section 6.6.

The blade element motions for the nth blade are defined relative to the
blade (BLn) coordinate reference axes (Figure 5-5). The blade element
relative motions are functions of the static shape, of blade feathering
and torsional deflection, and of blade bending of the coupled inplane and
flapping modes.

The static shape includes such items as blade twist, hub 1 ~econe

Oy

angle, B blade droop angle relative to the precone angle, 1y, Dblade

03
sweep angle,

B o L - R e e e NPT e s e

feathering axis precone, B the blade feathering

0 FA®
angle, and the blade element center of gravity locatiom.

The blz1e motions about this static shape include the effects of the

three blade bending modes, Aln’ A2n and A3n’ blade feathering,

and blade torsionali deflection, L

¢F’

The blade element motions are now defined. The blade static position in
the blade reference axis system is first developed. The blade bending and
feathering deflections are then introduced. Both deflections and slopes
are developed and then these equations are differentiated with respect to
time to ob*ain the blade element linear and angular velocities and
accelerations.

The blade element linear motions are developed in blade (BLn) coordinates
and the blade clement angular velocities and accelerations are developed
in blade element (BLE) coordinates. The coordinate transformation

matrix [?BLn—BLE] is also defined to permit the transformation of the

inertial velocities and accelerations from one axis syvstem to the other.
The development of the blade relative motion equations now starts with
the description of the shape of the blade.
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5.5.5.1 Blade Static Shape i

Blade elemental motion is defined as motion of the blade element
reference axis system which has its origin at the blade element
center of gravity. The blade aerodynamic reference axis is selected E:
as the 1/4 chord. Likewise, the geometry and dynamics are referenced
to the 1/4 chord, though any reference line could have been used.
Starting with the straight untwisted blade with the blade 1/4 chord

lying along the XBLn axis as in Figure 5-18, the blade element cg

and blade element coordinate axis system origin are defined by the
ccincident point defined by the vector

YCG(i) (5-76)

in blade coordinates. The dimension XCG(l)BLn

spanwise location of the cg/blade element origin. The dimension

is the undeformed

YCG(i)BLP is the chordwise location of the cg/blade element axis

system origin forward of the blade 1/4 chord and ZCG(i)BLn is any

vertical offset of the cg/blade element origin with respect to the
reference chord plane of the “lade.

Now, introducing blade twist by rotating about the XBLn axis ?
through the local blade twist angles, Figure 5-19, results in: f
T Xidgm 1 0 0 Xog
Y Wge = VY ) pm =] 0 cosbqy -sindgy )4 Ye (5-77)
BLE 2(1)pre 0 sindqy  cosdqy | | %6 | BLn
I BLn

The Roman numeral subscript I denotes the first of a sequence of
static line transformations.
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Figure 5-18. Blade Element CG/Origin Location in Blade Coordinates
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Figure 5-19. ZEffect of Blade Twist on Location of Blade
Element CG/Axis System Origin
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At this point the subscripting, BLE will be drcpped to simplify the
development. Rewriting the above equation, we have:

i3 r -

il X(i) 1 0 0 Xog

: L) ={0 coséy, -sin¢Tw YCG (5-78)
7(1i) T _O sind)Tw COS¢TWJ ZCG

Introducing blade coning, R results in the location of the blade

0’
as shown in Figure 5-20. This results in:

x(i) cosBO 0 —sinB0 X(i)
Y(i) = 0 1 0 Y(i) (5=79)
7(i) T _SinBO 0 COSBOJ Z(i) I

The next item of static geometry that is considered is blade droop,

Y, and then blade sweep, T These rotations are shown in

0
Figure 5-21. Note that since the blade sweep and droop angles are

4 introduced at a distance XSw out on the blade, it is first neces-

sary to transfer axes to this location before meking the rotations.

4 Therefore, the blade displacements outboard of Station XSW become:
ar v

' X(i) costy  -sint, 0 cosy O siny Xl )

3 Y(i) = | sint, cost, 0 0 1 0 Y )

] () — 0 0 1- L—81ny 0 cosY- Z(1i) o

é XswcosB0

4 - 0 (5-80)
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".‘0,

Blade Precone Angle,
71

Blade Sweep,

2
Figure 5-20.

MT
Figure 5-21.
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At this same station, provisions are inuvroduced to allow for offsets
of the blade in both the vertical and horizontal directions by

Z, and Y s
Jog Jog
These offsets represent displacement of the blade 1/4 chord with

respectively. These offsets are shown in Figure 5-22.

respect to the blade preccue line at blade station XSW'

Introducing these offsets, -hen, and transferring back to the center
of rotation through XSW results in the description of the blade
displacements outboard of station XSW’ including the effects of

precone, sweep, droop, and offset of the blade from the precone line.

(i) X(i) 0 XswcosBO
] G 5 W
Y(i) (1) Al BT 0 (5-81)
%) = Z(i) ITT Zjog XswsinBo
Zyy
f 2y
4
&
Z.
jog
Yin

Figure 5-22. Introduction of Blade 1/4 Chord Offset, Y and Zj
With Respect to Precone Line Jog ©&
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At this point, a reminder that the prior development represents the

blade displacement inboard of Station qu and the above equation

outboard of Station XSW' Therefore, inboard of Station X

W’
X(i) X(1)
Y(i) ¢ = {Y(i) (5-82)
z(i) 219

Qutboard of Station X

With this in mind, the remaining developing of including the effects
of feathering axis static precone and blade reference feather angle
in describing the static blade position continues. No distinetion
will be made in the following developments between inboard of
Station XSw and outboard of Station XSW'

Figure 5-23 shows how blade feathering is introduced. The axis
system is translated to a point p which is located at the inter-
section of the precone line and the feathering axis. The location of

this point is a distance ¢

along the cone line, as shown in this
figure, The blade is first rotated to the feather axis; then rotated

about the reference feathering angle, $REF’ the feathering angle

for which the blade modes are defined. Doing this results in:

—

-
x(1i) 1 0 0 cosBFA . 51n8FA X(1i)

1

0

0

-s1nBFA 0 cosBFA zZ(1i)



FEATHERING AXIS

ZBLn

O A R TIIT, Tt A i BT )

Figure 5-23. Point p and Feathering Axis Precone BFA %

This equation defines the location of the static shape of the blade
in an axis system with the y-axis horizontal and the x-axis aligned
with the blade static feathering axis. Transforming now back through
the feathering axis precone angle and translating back to the rotor
shaft centerline results in the static shape of the blade defined in
blade coordina*tes, or

P

o\ - Py o
XS(1, cosBFA 0 31n8FA X(i) chosBO
Ys(i) = 0 1 0 Y(i) + 4 0 (5-85)
lZS(i) i sinBFA 0 cosBFA Z(i) - llpsinBo

where subscript S refers to blade static or undeformed shape. i
Combining equations developed so far results, then,in the following @
two equations which represent the static shape of the blade for both ?

i inboard and outboard of blade station XSW'
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E Inboard of Station XSW:
i ( - ¢
XSW cosBFA 0] —SlnBFA Fl 0 0
rSBLn = YS b = 0 1 0 0 cosdJREF —51n¢REF
ZS sn.nfiFA 0 cosBFA 0 smtbREF COS¢REF
: [ “JBin | JL i
: | [ cosB 0 sing { H-cosB 0 -sinB ]
g FA FA 0 0
. 0 1 0 4 0 1 0
—s:LnBFA 0 COSBFA 51n80 0 COSBOJ
¢ b - \ A
r T 0 3 r 3
1 0] 0 XCG 2 cosBO
. i b
0 cos¢Tw s1nq>Tw 1 YCG 1 0 b >
0 s1nq>Tw cosq>Tw ZCG L_si nBOJj
L J \ J N
o '
lpcosso
+ 4 0 > (5_86)
zpsmso
S y
i
:
1 3
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Outboard of Station

X cosBFA
= Y = 0

7 s1nBFA

cosBFA 0
. 0 1

-51n8FA 0

!

cosBO 0

blade.

or elastic deformation.
static location of the blede feathering bearing
these will be used in the development that follows.

XSW:

o

-s1n8FA

'_I

0

(@]

cosBFA

hn 4

SlnBFA
0 4

cosBFA-

- -

—51n80 1

jog

Jjog

COST

sint

1 0

0 cosq>REF

0 sinq)REF

0 —SlnTO

0 COSTO

0 0

cos¢Tw
31n¢TW
X cosB0

SW

XSWSIHBO

76

-sin¢Tw

cos¢Tw

Lt AT TR AR L S AT ¥

0

—sin¢REF

cosq)REF

cosy 0 siny
0 1 0
-siny 0 cosy

CG
YCG f

CG

lpcosBO

L sinB
5 in 0

(5-87)

These two equations then define completely the static shape of the
The development will now proceed to include the blade bending
However, before proceeding with this, the

is defined since
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Referring to Figure 5-24, it can be seen that the static position of
the inboard feather bearing location can be written as:

)

X
SIB

Y
SIB

Z
sIB

\ J

BLu

-

\

QIBcosBO

0

; - - - )
QIB51nBO (2p QIB)<tan(BFA BO,)COSBO

J

The static location of the outboard feather bearing is:

\

Ean

SOB

Y
SOB

Z
SOB

J

BLn

(

L

g
058y

0

ROBsinBO + (QOB - Rp)(tan(BFA = BO))cosBO

P

> (5-88)

e (5-89)

With these definitions, the analysis will now proceed to include the
effects of blade bending, blade feathering, and *o>rsional deflection.

zBLn

Figure 5-24,

IB FEATHERING
BEARING

Static Feather Bearing Geometry
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5.5.5.7? Blade Shape ~ Elastic Deformation

In the foregoing development, the analysis has proceeded in a
completely rigorous fashion. At this point, though, a departure
from a completely rigorous simulation of the elemental blade motions
will be made. It will be assumed, as far as blade elastic deforma-
tion is concerned, that the cosine of angles, like precone less droop,
blade sweep, elastic flapping, and elastic inplane slopes, but not
blade feathering is approximately equal to 1, and therefore, the
blade elastic deflections, y and z, in blade coordinates, will be
assumed to be equal to those in the static blade element coordinates.
This assumption is a reasonably valid assumption and is completely
consistent with standard practice in the mathematical representation
of blade element motions.

Additionally, as far as the effect on structural axis reorientation
due to blade ¢ rotation, the effect due to blade elastic twist is
considered to be small compared to that due to blade cyclic and
collective feathering. Also it will be assumed that the contribu-
tions to blade Y and Z motion are small due to blade torsional
motion, other than that due to local center of gravity offset.

With these assumptions in mind, blade elastic bending will now be
introduced. The contribution to elastic blade bending is simply

r T o q C A
0 0 0 O A
1n
{¥smmf | T Yo Y3t (5-90)
z 7 B B A
UBED s LY T2 T3 | 3n)

Note that X or spanwise motions are not included in this equation.
Blade spanwise motion will be determined separately by utilizing

blade slope data to determine the change in the projected blade

length upon the blade X eaxis. With this in mind, the total Y and Z
blade motions including blade bending, but not yet including blade
feathering or blade elastic twist, is strictly the sum of the pre-
vious static line expressions and the modal deflection. Blade
torsional deflection is treated as an independent degree of freedon,
and therefore is not included as part of these blade modes. Combining
the previous static deflection with the modal deflections gives:

r ) r h q N
X(B+S) Xs 0
; = > + 4 -
1% (B+s) 1% Y5END { (5-91)
7 A A
C®8) ) g US e UBEY ) gp
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5.5.5.3 Blade Feathering

Blade feathering is relative to the reference feathering angle ¢REF'

The feather angle, then, as far as blade motion is concerned, is due

to the difference in the total feather angle and the reference

¢F
feather angle ¢REF'
The blade feathering motion is introduced similarly to the way the
blade ref'erence feathering angle was introduced, except that the
feather axis slopes are due to the static position as well as due to
elastic deformation in both the flapwise and inplane defiection.

If we let Z'FA and Y'FA represent the instantaneous vertical and

inplane slopes of the feathering axis, then transferring to the

inboard feathering bearing, making the rotations through Z'FA and }?
t
Y F

A to the feathering axis, rotating through the delta feather

angle -(¢F-¢REF) °r =M, rotating back through —Y'FA and —Z'FA,

and then transfe:s. ing back to the BLn axis system results in the
definition of the Jisplacem=ants in blade axis coordinates.

However, before proceeding with this, the feathering axis slopes

1
¥ F

n and Z'FA are defined. The slopes are simply defined as the

differer:e in the total static and elastic deflection of the outboard
and introard feather bearings divided by the spanwise distance

between the bearings. Then from Figure 5-24 and the bearing static
location equation:
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é where in terms of the static and modal deflections
:i r 3 2 R B - ( 3
t X X 0 0 0 A
] IB SIB 1in
: vy V- dy L+ |y Y Y {Ar } (5-9%)
1B SIB IBl IB2 IB3 2n
Z Z Z Z Z A
1B S IB IB IB
L ) UPm) [ 2 ) "
g and
% r 3 r 3 i N7 h
G - = 0
0 0 Aln
4 Y r = <Y >+ Y Y Y wA p (5-95)
0B SOB OBl OB2 OB3 2n
Z Z Z Z Z A
o 2
; i BJ § SOB J | OBl OB2 OB3_ |30
é In the development that follows, the time derivatives of Y’FA and
% Z'FA are required, so therefore, they are now defined. Taking the
g first and second time derivatives of the slope equaticns yields:

(5-96)

(5-97)

/COS(Y'FA) (5-98)

cos(Z'FA) (5-99)
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Transferring the blade displacements as indicated above to the

inboard feather bearing, transforming to the feathering axis, and

(5-103)
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performing the feathering rotation as discussed earlier, yields the
following equation which defines the blade displacements in blade
axis coordinates:

3N - ar S
! —al 1 ' —ad 1
F+B+S) cosZ FA 0 sinZ FA cosY FA sin¥ FA 0
— 3 1 1
F+B+S) g = 0 il 0 sin¥'o, cosY's, 0
- .
F+B+S) sin? FA 0 cosZ FA 0] 0 1
J Bln L JL ]
I 1 cosy oy
1 0 0 cosY FA sinY FA 0
. _c —al t t
0 cosA¢F 51nA¢F sinY FA cosY FA 0
0 31nA¢F cosAcbF 0 0 1
F T r 3y
1 : 1
cosZ FA 0 sinZ FA X(B+S)
J b
0 1 0 44 Y(B+S)
—ai 1 1
sinZ FA 0 cosZ FA Z(B+S)
- -dJ “\ p
[ I [ h
X8 Xrp
= 4Y¥gpt * LYt (5-10k)
ZIB ZIB
-~ 7 ) - J

This equation then gives the blade displacement in blade coordinates,

ineluding the effects of the static shape, blade bending, and blade
static twist. The effect of blade elastic twist is now considered.

5.5.5.4 Blade Elastic Twist

Blade motion due to blade elastic twist is accounted for by going
back to the static twist equation. Blade elastic twist, ¢T is
assumed to be directly superpositionable with blade static or blade

pretwist, except that the static pretwist takes place about

by o
W
the 1/4 chord,and the blade elastic twist takes place about the
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blade element shear center. This is shown in Figure 5-25. From this
figure it can be seen that previous static twist equation can be
rewritten as:

[ h [ ir T (( j
XBLE 1 0 0 1 0 0 XCG
< = X1 —al d
YBLE P 0 cos¢T 51n¢T 0 cosd>Tw 51n¢Tw <4 YCG b
ZBLE 0 51n¢T cos¢,T 0 51n¢Tw cosmrw ZCG
. JI b L. - L\ 4
r I - 9
0] 1 0 0 0
- + -si =
{¥se tt 0 cosdp, 31n¢Tw 1 Yoo (5-105)
0 0 sln¢Tw cos¢Tw 0
. 7 J b - L P

If we let ¢

- (¢T + ¢Tw) then this equation becomes

r N o 1 r 3 < 3 ) r 3
XBLE 1 0 0 XCG 0 0
1 YBLE p =10 cos<I>T -sin¢T 14 YCG > - 4 YSC P> + 4 YSCcos¢Tw >
ZBLE : L0 sin<l>T cosqr ZCG L 0 YSCsin¢Tw
. y Jd LU J 7 J L y
e 9 r 3
1 0 0 XCG 0
=10 cosd>T -sinqr 1 YCG b+ YSCW cosquw—cosd)T L (5-106)
0 sin¢T cos(bl11 ZCGJ sin¢Tw—sin¢T
b - - " P

5.5.5.5 Final Blade Element Y,Z Displacement Equation

Substituting the above equation in the previous development sequence
yields the blade displacement equation which includes the effect of

the static shape of blade bending, of blade feathering, and of blade
elastic twist.

However, before proceeding with these substitutions, the following
column vector is defined to simplify the notation.
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Figure 5-25. Blade Static Pretwist, and Elastic Twist, ¢T
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2n
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3n

3n

r—~
2>

1ln

2n

3n

The total blade element displacement equation becomes:

(5-109)




Note that for convenience of using the condensed matrix notation
discussed above, the most general vectors for such terms as lp,

XSW’ Zjog’ and YSC have been used. As can be seen in this equation,
these have all been treated as full vectors. Making the appropriate
substitutions of course will result in the expressions previously

obtained. 0

It is noted that the equation is written for the relative displace-

ment of points on the blade outboard of Station X Inboard of

SW*
that station, the displacements are determined from the previous
inboard equation or simply by zeroing out such terms as rjog and

[rsw} and substituting unit dicgonal transformations for [TT ] and
0

{TY] in the full equation. Following either approach yields the

blade displacement equation for points inboard of Station X_.,; or

SW

W T[T or
r =[], T, T T, T, L 1]a
[ BLE[ grn [ 2 FA] Y FA] A MF] [ i FA] [ & FA] [aAn][ Jn]

AT Bl BT 5 6
(T B9 ) E B
" FBoJT rP] ) [rIB} * ["m] (5-110)

The ith station blade displacements, Y and Z, in blede coordinates
for points on the blade both outboard and inboard of station XSW
are then defined.

5.5.5.6 Blade Element Y and Z Relative Velocities and Accelerations

The blade element coordinate axis system linear Y and Z velocities
relative to the blade reference axis system can be found by differ-
entiating the position equation with respect toc time. Note that no
distinction will be made at this point between outboard or inboard of

station XSW’ but using t.ae equation for displacements outboard of
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this station and as discussed earlier

results in the equations for velociti
inboard of that station.

» zeroing out certain terms,
€s or accelerations of points

o ” [ [T P ] ] o)
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Note in the above equation that the [T ] matrices are not time
derivatives of the [IC] matrices but are derivatives of the trans-

formation matrices with respe:t to the transformation angle .
This is arrived at by making the substitution that:

far
d [ e I
dtl_TJ = dtl_(l ¢|T, (5-112)
=) c
and 2
2 s o[-
ii—z[Tc] = I;[TC] + CZ[TC] (5-113)
dt
j@ Taking the time derivative again of Equation 5-111 yields the blade
4 element Y and Z linear accelerations relative to the blade reference
il axis system.
g " .. g T T 7 l‘
i r =1&" o Meep T, [|* |7, Tl
BLE | BIn e [Z FA] [Y FA] i A¢F_| LY raf [ 2'Fa
)
FA FA F FA FA
:; ' E ILI T T [
; 0 | T Ty Tao | [Py Tz
| FA |~ FA F FA FA

+ [’I‘Z, T 5 T B T oo poo

FAJ FA F FA FA

3 T T, T

2 t ¢ i 1 T 1 T & ' T '

r [[ 2 FA] [ ! FA] [ Ay [Y ral [ %A
.
3 2 T Tl T .
b + g T ' i ' T T ' T [} ﬂ
( FA) [ & FA] [ & FA] | A¢F] BN [ 2 Fa 3
* 2T, : [TY' : 2 JE Ty Tg

FA FA ¢e| | ¥'ra) L 2'Fa
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These equations define the blade element relative displacement

velocities and accelerations, respectively, required by the blade
inertial velocity equations developed shortly. Note that in the
preceding development these equations are written for the nth blade, f‘

3
and with the exception of the [—gi—], [TB A], T¢ : TT s | T 1, 2
n F REF 0 / 3

. [TBO], [T¢Tw], [rscl, {rsw], [rjog]’ [rp], and {rCG] matrices, the

terms are all blade dependent. Remember,also, that inboard of [rSW]

the Tr] and TY matrices are unit diagonal.
0

24708 Hroes a0 Licsat e

5.5.5.7 Blade Element Slopes

o e e

The blade element Y' and Z' slopes are determined by differentiating
the deflection equation with respect to the nth blade radial distance,

TR

XBLn' These formulations are used for quasi-static torsion formula- 2

Gy

ticn and output. Performing the required differentiation for points '
A along the blade reference line:

FAs T TR

=<
]

Y BLE = 1"'pE (5-115)

cinedooists
Q>
P
=
(3]
3]

z A 3
BLE J o1 BLE | o {

T T T r ar'
. P! = [T 1 T T, J I e A
BLE! Bin [[ 2 FA:I [Y FA] [A4’F] ¥ FA] [ < FA] [BAK] [ jn}

' [[TBFA]T [T"’REF]T [TBFA] :TTO]T [TY]T [TBO]T] (5-116)
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5.5.5.8 Transformation from Blade-~to-Blade Element Coordinates

£ In this section, the transformation matrix from blade (root) to ith

| blade element motions will be developed. Each blade will have its own
transformation matrix for each ith blade station. The transformation
matrix will initially be developed as the transform from blade

g element to blade coordinates, [TBLE—BLn]' '

The transformation matrix, [PBLE-BLA]’ can be developed by referring B

H to the development of the deflection equations. The first rotation
’g from blade element to blade coordinates is through the combined twist

angle, —¢T; the second rotation is through the negative of the e
precone, BO; the thi»d through the negative of the sweep and droop E
g angles, Ty v; the fourth through the feathering axis angle, BFA; i
L the fifth through the negative of the reference feathering angles ?~
¢REF; and the sixth back through the negative of the feathering axis E

precone angle, BFA’ 4

These rotations then define the transformation from blade element to
blade coordinates, including the effects of the static shape of the r
blade, pretwist, precone, sweep, droop, etc. Also included is the &
E effect of blade elastic twist. Again note that for stations inboard

of Station X the sweep and droop angles, and y, respec-

SW* ‘0
3 tively, must be set to zero in the formulation of the transformation 8
5 matrix as in the definition of the blade displacements and blade K
slopes. This portion of the transformation matrix which includes

the static blade shape and combined twist is defined as follows:

I O T [ A,

(5-117)

T T

The next two rotations from blade element to blade coordinates are
. . . ' '
due to the elastic blade bending slopes. Since Y BEND and Z BEND
are motions of the blade elements with respect to the blade, then to
transform from blade element to blade coordinates requires negutive 8

x ] ; : :
rotations of Y BEND and Z REND to be included. Finally, the blade
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feathering rotation from the reference feather angle must be included.
The final transformation then, from blade element to blade coordi-
nates, is defined by the following equation:

[TBLE_BLn] ] [TZ'FA}T [TY'FA]T [TA¢F]T F V'F‘A:I [TZ'FA] [TZ'BEND:T [TY'BEND]T |
: | [TBFA:IT [Tq)REF]T [TBFA] [TTO}T [TY]T [TBO]T -Tq’T]T |

(5-118)

where

- ) .
cos\Z'yoyp) O sin(Z'pp)

L = 0 1 0 (5-119)
BEND

-3 ! A
sin(Z BEND) 0 cos(Z BEND)

S e

and

e L 28

1] > 1]
f cos(Y BEND) sin(Y BEND

s« = —al 1 (vt
- TY'BEND sin(Y BEND) cos{Y BEND)

(e

(5-120) ?

: and again where

Cren AT

S

gy

BT[]

3 inboaxrd of Station XSW'

EENT

S A e
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Also: -ﬁ

A 3

1n 3

1 ' ] [ 5

¥ BEND { _ Yl YE Y3 e

- 2 (5-122) 3

7 A gz 7 1 2n B’

BEND 1 2 3 by

A i

g 4
? The inverse or transpose of this equation yields the transformation ‘ b
g from blade to blade element coordinates, or: E

- i
[TBLn—BLEJ - :TBLE-BLn]
= o, e, e ]z e, 77 [r T
Foal s Bl [t
] 7 T T
B [ T, Fr . T o, ||T,,
[YBMQ[ZBM@[ZFJ LYI%} [MJ[YFJ[ZFJ

(5-123) Z

again where

dJRRe

inboard of station XSW'

5.5.5.9 Blade Element Angular Velocities and Acceleracions

From the foregoing discussion, che blade element angular velocity
vector can be determined. Starting with the angular velocities
(p, q, r) BLn of the blade reference axis system and systematically

and progressively transforming these velocities through each axis
rotation and adding the respective angular velocity associated with
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each of the indicated angular rotations, results in the following
equation for the blade element angular velocities.

[¢T 0
= do ¢t + |7, {lmg VT T, |17, g T, T, 0
|| Poj L Y L Tol | Pra REF|| “FaA _
O Yl
BLE _ BEND
4
[ 0
* 1Ty 1 Z'BEND 1Tz ] ‘Z'FA
BEND BEND)
0 0
\\
r 4 . ™
0 ¢ 0
+ |1, T o + |1y, T ddo} ”A¢] 0
F FA F
-Y! 0 YAl
. \ FA . y FA
.
0 P
+ |1, -2 + |1, q : (5-125)
[Y FA] R [7‘ FA]
2 F BLn J

Note that in this equation, starting on the right-hand side with the
quantities in thne innermost brackets, the blade reference system
angular velocities are first transformed through the increment of
feathering ax.s flapping slope due to bending, Z'FA’ and then the

feathering axis flapping angular velocity, -2 is added. Minus

1

FA®
is used since Z' 1is a negative 6 rotation. ©Next, the resultant
W vector is transformed througi Y'FA and Y'FA is added. This is
then transformed through the delta feathering angle, A¢F, and the
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feathering angular velocity,

.

¢

F,

is added.

This is then transformed

back through the increments of feathering axis slopes due to blade

bending,giving the vector:

e R
0 0 . 0
Al + 4T, 1 0 s, T4 b+ |T 0
FA Z FAJ o Do
_.' Y‘l
O Vra L ) FA
3 3
0 p
=7 > SEE NS =
+ [TY'FA] 2ot * [TZ'PA] q (5-126)
P rJ BLn J

which represents the blade element angular velocities due to combined
blade feathering and blade reference axis system angular velocities.

Next, the effects of blade bending at each blade station are intro-
duced. The above vector is first transformed through the local

blade element flapwise bending slope, 2 end then the angular

'
BEND’

velocity, -2 is added. This result is transformed through

BEND’

the blade element inplane bending slope, Y and the inplane

!
BEND’
'BEVD’ is added, resulting

in the total vector less the initial transformation string.

This vector then represents the blade element angular velocities due
to the combined effects of the blade reference axis system angular
velocities of the blade feathering angle and of the blade angular
velocities due to blade elastic bending. The remaining transforma-
tions then include the static effects of the blade feathering axis

angular velocity due to blade bending, Y

precone, B

the blade reference feathering angle, ¢ blade

FA® REF’
Ty blade droop, vy, and blade or hub precone, BO,

the combined effect of blade static and elastic twist, represented

sweep, and

by ¢T. Finally, the blade elastic twist angular velocity, &T, is
p
added, giving the total blade element ‘ingular velocities, q
o0

BLE

96

s R e e N ke e b e s

PN

TOR T




-
% &
o
i

¥ - = A1 £ 0 b o3 AL i E % v} s 3 ¥ ' i g i,
x o e : ST & A% e e Ease it 2 o SENIe b SREAT e bERr 5 5k LR Adiie, s : i ik
s S s ORI i S R G A B s LR e b A bl i i b s I b el L S et sl e B e e b B R L

i

5y IR e 1ol
0, > :.

; Also note, as indicated befora, the matrix [%Y] [%T ] has the value |
0

calculatea if X 1s greater than XSW and has the value of unity
; if X 1is inboard of station XSW'
i At this point it has been assumed that the contributions of %'FA
! 12 \

and Z‘FA are small compared to the other contributicns to q 1
] *) BLE
: This assumption is supported by referring to the final form of the
§§ above development. First of all, both of these vectors are small 4
i@ i
i p) |
35 compared to q , which is fundamentally the rotational speed
¥) BLn

of the rotor. Also, both of the feathering axis flapping and inplane
;. angular velocities are first added and then transformed through the
delta feathering angle and then subtracted, meaning that fundamentally

the principal magnitude or component contributions due to Y and

. FA
E{ Z'FA are self-cancelling.
: With the above assumption: 3
E P bp 0 0
~ AT I ] ffoe
T , BEND ;
¥ ) BLE ¢ ' BEND 2 %
p
f ed {E T BT o ’
BEND FA FA ;
] ¢ it
,_ p :«.
§ s [TM)F] [TY,FAJ [TZ,FA] . (5-127)
* Y o))
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U1 Bod B [ D] P ]

: 1n
v YUyt oy
BEND 1 ,
, = N R (5-129)
] 1] 1 ]
2" BEND it Bt Gy -
A

The blade element angular accelerations can now be determined by
differentiating this equation with respect to time. Again, as in

the case of the angular velocities, the contributions due to time
derivatives of the feathering axis flapping and inplane slope changes

due to bending are neglected. With this assumption, the time
derivative is:

Nel
1]
o 3

+ &;T['f ¢T] [R]T | 0 * [TY'BEND] vz BEND]

r BLE 0 Y

Tt e e e e o
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where:

v
H BEND

7! 2n
2" BEND Z,t T,y
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5,5.5.10 Blade Element X Motions

- previous development, the equations 4id not account for the
"t ~ment displacement, velocity, end acceleration in the span-
-direction. The method used to define these is one of
Cileg neutral axis as the axis of no stretch and determining the
projecoic.. of this axis onto the X-axis as the blade berds. This
projection, then, 1s the spanwise cr X 1lucation of the neutral axis
in blaae coordinates. The rate of change of this projection is the
spanwise relative velocity and the second rate of change is the
spanwise relative acceleration of the blade element neutral axis
location or point. The motions are then transformed to the center of
gravity to obtain the spanwise motion of the origin of the blade
element reference axis.

In Figure 5-26, the deflected neutral axis is shown as a function of
blade radius. The (i-1) and ith station are shown. It can be seen

from this figure that az {i-1) approaches (i), then the

X
“NA

A
(i—l)), can be written as:

delta length of the blade QSNA(i) - 5,

! A

L, o S 2 ) ) 2 ) , 2

3 (’NA(l) E “NA(1‘1)> = (XNA(I) - XNA(l'l)) (Yyali) - Yy, (i-1)

1 BLn BLn

{ + (2, (i) ~ 2z, (i-1) 2 (5-13

: NA NA =l
BLn

e b D e o b S e

Rearranging this equation and summing from the blade root to the kth
blade station yields:

]

K k ]

, _ - . _ . )2 ;
Fualk) = (xNAm - XNA(1-1)> -y (SNA‘“ : SNA(l-l)) i
. BLn : 3

i=1 i=1 3

1/2 ]

- (YNA(i) - YNA(i—l)>2 - 2y (1) - 2y, (-1) . (5-133) é

BLn ) BLn ¥

where for i=1l, E

3

s (1) = ¥, (1) = 2., (1) = X, (1) = 0 (5-134) é
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Figure 5-26. Neutral Axis vs Blade Radius
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Likewise,

X (1) =X (1) =X (1) =0 (5-135)

iB NABLn NABLn NABLn

S..(i) is simply the blade length to the ith station measured along

NA

the neutral axis and Y are the Y and Z 1locations

(i) and 7. (i)
BLn NABLn
of the neutral axis in the blade coordinate axis system for the nth
blade. These displacements, along with their derivatives, will be
defined later. First, however, by taking the first and .-cond time
derivative of X equation, the spanwise velocities ind uccelerations
of the blade element neutral axis point are determined and are given
by the following two eqguations.

k |-y, (1) - Y (i-l)) (& (1) - Y (1-1)>
- }E: ( NA NA aLy \ A NA o

NA

: NA : .
I BLn Ty Xali) = X, (1)
4 BLn

(z. (1) - Z_ (i-1) 7 (i) - 2. (i-1)
( NA NA )BLn ( NA NA )BLn

(xNAm - XNA(i—l)>

BLn
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Ir YONA(i) is the distance along the ith blade element chord line

from the blade element reference axis origin or center of gravity to
the blade element neutral axis, then the blade element neutral axis
motions can be written in terms of the blade element motions as:

4 N ( h r 3
AXNA(l) 0 0
. ) . S )
1l Vet [TBLE—BLn] 1 oma ) (251582
2o (1) g =) 0
QLR R G g L ) BrE
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Referring to Section 5.5, the time derivative of the above eguation
is:

r -ry r 3 r 3
BXyp i) 0 “TRrE  ONA
v i b = Y 1 + 4 Al
4 YNA(I) 4 YBLE(l) > [TBLF-BLn] 4 0 (5-139)
Z. (i) D (4 ) Py ¥
E ONA
L™ Jeen (B ) Bn | PR O ) e
and likewise, the sccond time derivative is:
r W 4 ) r 3
Xy (1) o (Ppre%BrE"TBLE ToNa
oo . 2 2
. } - d + < — -
1 et AR [%BLE-BLn] (-r"BLE"® B1E!Yona
7 (i) P (1) (TS S D ) ¢
i NA ) Bn L NA J 3in L BLE BLE “BLE ONAJ BLE(i)
(5-140)

These three equations, then, define the Y and Z displacements,
velocities, and accelerations of the neutral axis point used in the
X equations and time derivatives. Also, the increments of spanwise
motions due to the offset between the center of gravity and neutral
axis are defined by these same three equations. This increment
represents the motion of the neutral axis relative to the blade
reference axis origin, therefore, the span motion at the center

of gravity is determined by subtracting AX_ (i) from the spanwise

NA
BLn
motion of the neutral axis, or:

Y-=(i) = Ho (2) = BE () (5-141)
BLEBLn NABLn XNABLn

X, (i) = X (i) - AX_ (i) (5-142)
BLEBLn NABLn NABLn
Xoo (1) = X (i) - &x_ (1) (5-143)
BLEBLn NABLn XNA'BLn

These equations, then, along with the previous expressions for

X and Z, define the blade element relative displacement, velocity,
and acceleration vectors required for the total inertial vectors
which follow.
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5.5.5.11 Blade Motion in Absolute Coordinates

To this point the blade element motion has been defined in terms of
the blade axis or relative coordinates. The elements defined are:

XBLE(i)

blade ~lement relative displacements YBLE(i) (5-1L4L)

blade element relative velocities Y (i) (5-145)

and blade element relative accelerations Y (i) (5-146)

BLn

Using the method of Section 5.4.1, expressions in freestream
(absolute) coordinates can be written for use in the equations of
motion. The blade element velocity becomes:

VT I L .
(1) X o0BLn XBLE(I) 0 -r q XBLE(l)
(1) e + YBLE(i) + | r 0 -p YBLE(I)
(i) Z % (i) -q p o} 24, (1)
BLn CELE ) B AB BLn BLE " Jorn
(5-147)
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The blude element accelerations are:

>, (. I od I
Xpp(t) X0BLn
Yprpt) = 4 YoBIn
2. () i
BLE . _“OBLn BL
[0 -r
+ 1 r 0
-q P
[ 0 -r
+ r 0
-q P
0 -r
+ 2| r 0
-q P
where
XO
Yo
5
0 BLn

7

Xprplt)
y YBLE(l)
2= (d)
L BLE BLn
o r .
qQ XBLE(I)

P 9 YBLE(i)
% lBLn LZBLE(l)_
d' K -

-p r 0O =-p
0 -q P
_BLn |
4 X8LE
P YBLE
Olsin | ZaiE 8L

Xo
Yo
A
) BLn ,

(5-148)

(5-149)

and matching rotation terms are defined in Section 5.5.4 in terms of
rotor axis terms which are in turn related to the principal (hub)

reference axis.

106




5.5.6 Swashplate Motion

As shown in Figure 5-9, the swashplate reference axis system is defined
with the Z-axis down. The motion of the swashplate reference system is

defined by three generalized coordinate displacements, ZSP’ ¢SP’ and eSP,

which move relative to the hub or principal reference axis system.

The rotations ¢ and GS are taken in the same order as shown in

SP p
Figure 5-1T7 and therefore, from Section 5.4.3 the angular velocities are:

cosy siny
+ | -siny cosy

G 0

0 0

cos¢SP sinq:SP

0 -sin¢SP cosq)SP

L

is the rotational speed of the swashplate, and

where WR is the rotational speed of the rctor.

As indicated before, the swashplate axes do not rotate at the rotational

speed ¢SP' However, the total angular velocities reflect the rotational




rate $ Therefore, the total angular rates of the swashplate

i' in swaii;late axes are obtained with ¥ = 0. This gives
;; P 0 0 cosb., 0 -sinf, bop
{ ] = 0] + éSP + 0 1 9 0
? r SPR .SP 0 sinesP 0 coseSP lO J
1 e 0 D
+10 cos¢SP sin,‘\SP q

0 -31n¢SP cos¢SP l'r y

Nonrotating swashplate angular velocities, cnbscripted SP are

. NR’
obtained by deleting wSP above.

The swashplate angular accelerations can be similarly determined by

(5-152)

evaluating the general expression at ¢ = wSP = 0. This yields:
. O 2 3 b i
P Yspdsp Eidlep, @ Scosbep bsp
a = {%p ¢t {VsPapf * O 0 . 0 o ¢
r 0 0 cos# 0 -sin® 0
SPR SP j SP SP J
cosd 0 -sin6 1
sp sP
0 at 0
51nesp 0 coseSP
4
1 0 0
0] coscbSP 51n¢SP<
0 —51n¢sp cos¢Sp

(5-153)




The vertical velocities and accelerations of the swashplate are simply
defined as:

.
—

. < I

Zosp = Ve ZOH (5-15L)
and

& I 5 . I

Eep e Ve N (5-155)

It is noted in these equations that the Z-axis motion is assumed to
remain parallel to the hub Z axis.

The swashplate angular displacements are obtained by integrating the
angular velocities, or:

t
dop = _O/¢>Spdt (5-156)
and
B
Bep = O/espdt (5-157)

Likewise, the vertical displacement of the swashplate relative to the hub
or principal reference axis system is:

t .
Lepls o/ Zgpdt + Zosp (5-158)

Where ZOSP is the location of the swashplate reference point with respect

to hub or principle axis reference points along the Z-axis.

It is noted that in a feathering moment feedback-gyro control system, the
swashplate is used for the control gyro.
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5.5.7T Direct Feedback Control System Gyro Motion

As indicated befor-, the equations of motion incorporate a description of
a control gyro that is used in a direct flapping moment feedback control
system (DFCS), which i: an option ir the program. The gyro motion is

defined by the Euler angle rotations ¢, and ep relative to the fuselage

G
reference a-is system as shown in Figure 5-9. Tne order of rotation has

been selected to te first ¢G and then 6 so therefore, the trans-

G’
formation from the fuselage reference axis system to the gyro system is:

0 -sinb 1 0 0

G G
[TF—G] = 0 1 0 0 cos¢G sin¢G (5-159)

cosH

51n6G 0 cosB 0 -51n¢G

G cos¢G

In the same meanner as the swashplate equations, the angular velocities are

written with ¢ = wG = 0. %

] 0 0 8 0 ind .
3 p cosf, -sinf, ¢G 3
e =Jo b +d6 Y+ o 1 0 0 :

“ [

r s Vg 0] 51n6G 0 cosGE 0 ] %

1 0 o |l»

3

+ i -160 E

0 cos¢G 51n¢G q (5 ) 3

:‘Q?

5

0 51n¢G cosqbG r F

The p and q terms of this equation give the angular velocities of the
nonrotating portion on the gyro, i.e., its gimbal frame.
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The angular accelerations rotating gyro mass or inertia are likewise

evaluated from Section 5.4.3 by setting y = wG = 0.

r

p quG 0 -31n8G 0 —coseG ¢G
= |-y + 46 + 0
a wGpG GG G 0 0 0 0
Lr G wG 0 coseG 0 —31nGG 0
R
3 .
1 0 0 P coseG 0 —51nBG ¢G
+ -si +
0 cosd)G 51n¢G q} 0 il 0 0
LO 51n¢G cos¢G r 7 ) 51nSG 0 coseG 0
0 0 o 1fp 1 0 0 P
S ¢G 0] —51n¢G —cos¢G {q + |0 cos¢G —51n¢G qQ
0 cos¢G -51n¢G T F 0 51n¢G cos¢wG'd r F
(5-161)
The accelerations, then, of the norrotating part, subscripted GNR’ are
simply obtained by deleting the first term of the previous equation.
Or:
b P Vel
: = ]34 -v.p
: : 66 (5-162)
r r ..
GyR SR Vg

5.5.8 Blade Feathering Motion

The feathering occurring at the feather bearings, Figure 5-1k, is taken to
be the sum of the motions of the following dynamic and kinematic elements:

® Swashplate - collective command

e Swashplate - cyclic command
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e Blade bending to feathering couplings

e Flastic pitch horn and associated components
The total feathering response is:

aY'FA
_ _ - _ X [
Ppg = 8o = Apg coslupr, + ¥p) - Big sinlyg + ) - C) N Mn
9Z! YA 39
C, =R A _C, —An F ¢ (5-163)

o o—
- D
2 0JA 2n 3 9A 3n aBPH PHn

Velocities and accelerations are formed by differentiation. The desired
relations are:

SINE 6 - A cos{y B.. sin(y

+ -
R P gn T VR) ~ Big Bln © YR

aY! az! 32! 3¢
FA ¢ FA ¢ s It F_:
C, —— A, _-C A, =TC AL + —3 (5-164;
1 2, In 2 9A, "on 3 8A3 3n  3Bp, Phn

and for accelerations:

bpp = 8 = Ajg cosligy *+ ¥p) - Big sin(ug + ¥p)

- | L
+ | Ayg coslugy + up) + Bigosin(yp + vp) [ug

i - OY Tk o
* |Ayg coslugr + ¥p) - Big sin(yg + wp)jy - C) . " in

32" 32! 3¢
FA - FA - F oo
c —— A o A — B (5-165)
2 8A2 2n 3 3A3 3n aBPH PHn
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The commended cyclic blade angles are:

1 .

hs| _ (51_ Simfpy  cosbpyl (ogp
: e , (5-166)
_ Bs cosbpy  -sinbpyl | Ogp
|
f where the angle wPH is the pitch horn-swashplate connection lead to
i Teather axis. See Figure 5-27. Thir angle is computed as a static value.
: It should be noted that some hub contigurations carry the pitch horn
: toward the blade trailing edge. These configurations are entered in
B REXOR by forming the supplement of wPH'
\
g bpy = 180 - Vpy (degrees) (5-167)
g This angle gives the correct modeling of the sense of rotation
; reversal with the trailing pitch horn geometry.
E The velocities and accelerations of the command cyclic are obtained by
3 differentiation.
Ms| _ (g) Sinbpy  cosbpy | égp
2 . e ] .
2 Bis cosvpy -sindbpy | | 8gp
4 1siny cos’y ¢
3 4 0 PH ‘PH SF
) +(8) (5-168)
H 5 | 0 cosy -siny 8
4 PH TTPH SP
i and
Ms | (g) Sif¥py  <OS¥py [ %sp
i3 s e . .
:z Bls cr)sq;PH -31anH eSP
N 2(@) s |5 e COSVey [ [ 4gp)
<. e 0 . H
E 1 coswPH -s1n1pPH eSPl
;g siny cosy ¢
i a\ |- PH P R
?A‘_? + (_.) b H S (5-169)
-4 ¢ 0 cosy ~-siny 8
s PH PH SP
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NON ROTATING ~
SYSTEM ~
RESOLUTION

FEATHER
- — \.. \". — — 5 Axls
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- h FORMED)

q';H ROTATING SYSTEM VIEW

Figure 5-27. Pitch Horn Blade Feathering Phase Angle
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The overall coupling (swashpiate to feathering) gear ratio, d/e, is
expressed as a static term plus a first-order collective correction.

(g> = (2) +(2) o (5-170)

0 1

The commanded collective is:

8y = —Zsp/e (5-171)

The swashplate vertical motion, ZSP’ is developed in Section 5.5.6. The

value e is the static effective crank (pitch horn) arm about the blade
feather axis. This crank length is inputted as a negative number for a

trailing pitch horn geometry to give the proper sense of collective for
swashplate vertical translation.

Taking time derivatives:

D

o —ZSP/e (5-172)

and:

eo = -ZSP/e (5-173)

The blade bending to feathering coupling factors are C C2, and C for

1’ 3
The blade bending modes are
allows freedom in varyiag the

the first, second, and third blade models.
described without a torsion component; this
blade sweep, droop, jog, or other geometric parameters without new input
data for the blade mode shape. The torsion either is calculated sepa-
rately along the blade proper or as a blade root component by pitch horn
bending. The C; ... C3 factors are intended to add a feathering component
to the blade mode which would exist even with no torsion or feathering
moments. As such, they are in effect the 63, ap, etc., coupling usually
described in the literature. These couplings are usually determined as

a function of the distance from the flap or inplane mechanical or verti-
cal hinge to a pitch horn projection.
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The factor Cl is defined positive as nose up feathering (radians) per

radian aft inplane deflection of the feather axis slope. The factors C2 %
and C3 are defined positive as nose up feathering (radians) per radian of i
up flapping feather axis slope for the first and second flap modes, N
respectively. These factors require the inplane feathering axis slope {
QY 220 CYA : 1
———— for mode one and the out-of-plane slopes and ——— for ] g
oA oA dA G
1 2 3
the other two modes. The slopes are defined as :
A
1]
Sl O - e cos(Y'_ )L (5-174)
3A 9A dA FA' B
a 1 i
1]
= ra =~ o: - aZIB //cos(Z' )2 (5-175)
aA2 0A2 8A2 FA' B b
and :i
‘::‘
1 b -
“ea(Zon Tmm) [ oip g (5-176) !
9. \3A T coSte pa’ B $oT a
3 3 3 3
2
BY l}
The mode partial A » etc., describe the inplane or outplane component ;
1 3
displacement at the inboard or outboard bearing location due to mode Aln’ ';

ADn’ A3n' The length lB is the distance between bearings. These

partials are the same type as described in Section 5.5.5 where the blade
motion is built up from the bending, feathering, and twist components.
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] 6. EQUATIONS OF MOTION
2 t BT
A 6.1 INTRODUCTION E:

With the coordinate systems and transformation hetween systems well in f

hand, the development can proceed to the equations of motion. The

development yields a set of second-order differential equations with time g
varying coefficients. These equations are formulated using the energy :
approach in a form credited to lLagrange. The solution to the system of 4
equations is in the time domain by numerical integration. The result is a -
time history of the displacements, velocities, accelerations, and loads of H
the components of the helicopter modeled. FExtra attention is given the f

main rotor where the blade geometry is modeled in detail, and the program
treats each blade separately.

Following the development of the equation methodology used, the math 3
modeling of the vehicle component parts is carried out.

R

6.2 ENERGY APPROACH TO DEVELOPMENT OF EQUATIONS OF MOTION

There are two basic approaches to developing the equations of motion for
a physical system. These are:

i bt st

e Vector summation of forces 3

e Energy approach.

Given an equal set cf conditions, limitations, and assumptions, both pro-
cedures should result in equivalent sets of equations. The difference is
in the ease of arriving at a complete set of equations. Note that force is
a vector, whereas energy is a scalar quantity. Therefore, in dealing in
terms of energy, less information regarding direction needs to be handled.
Also the systematic nature of the energy approach reduces the risk of
error. As stated by Lagrange (Mecanique Analytique, 1788), "The methods
which I present here do not require either constructions or reasonings of

geometrical or mechanical nature, but only algebraic operations proceeding
after a regular and uniform plan".

The starting point of this development is Lagrange's equation. It may be
derived by postulating Newton's second law, or from Hamilton's principle.
Lagrange's equation may be written in the folilowing form:

d [oT oT 9B oU

T r 9%
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T is kinetic energy

q is a generalized coordinate
B is dissipation function

U is potential energy function

Qr is the generalized force, derived from the virtual work, d&W, and

is defined by the equation

% = 5, Sl

Equation 6-1 will now be developed into the form as applied in REXOR.

This form bears a close resemblance to a force balance equation, but is
derived from energy considerations, For clarity, the development is first
shown for a set of discrete mass particles, then, in the section that
follows, is extended to the distributed elemental masses of the REXOR
modeling and to the iterative solution scheme used.

In a conventional manner the equation is formulated in terms of generalized
coordinates. These coordinates are a function of time, and completely

define the system., They are generally not directly identifiable as a
physical quantity.

The physical parameters or elemental coordinates are defined to be func-
tions of the generalized coordinates and in turn a function of time.
Consider a system to be composed of particles whose physical coordinates
are a function of n generalized coordinates. For the ith particle:

xi = xi(ql’ q2a () qn; t) (6-3)
T B yi(ql, Qys » + s QS t) (6-4)
2, = zi(ql’ Qs * ¢t s Qs t) (6-5)

Note: a Cartesian coordinate set is selected, and used in REXOR. However,
the argument is true for an arbitrary coordinate set.
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The functional relationship of the physical or constrained coordinates and
generalized coordinates yields:

Bxi Bxi Bxi
8x, =7 8q, + —=68gq, + + * * + —= §q (6-6)
9 2
i ql ili q2 2 aqn n 3
3y, 3y, 9y, ;
i i i ;
Sy, = 5= 68q, + ==18q, + + + + + == 8g (6-7)
i aql 1 8q2 2 Bqn n -
I
92, bz, ¥z, 4
§z, = — Sq + — (Sq + oo ek § (6—8) -
i Bql 1 3q2 2 3qn qn =
2
E The time dependence is implicit in the increments of the generalized 3
coordinates. The equation is strictly true for infinitesimal increments. 2
In REXOR the generalized coordinates are distinet from physical coordinates 3
in the main rotor blade descriptions. Here the generalized coordinates 3
are blade modal variables. The modal variables represent tangible deflec- &
tions of the blade from a reference position, and as such are small but b
not infinitesimal variables. b

As the variables are a function of time: 4

ax, 0%, o,
)‘(_ =_él + q + . . .+ —=—=q (6"9) t
i aql 1 3q2 2 Bqn n 1

ayi ayi ayi
R T el B (6-10)
i aql 1 aq2 2 aqn n
Bzi azi azi
= == Q. + == * e e .+ == (6-11)
i aql 1 8q2 2 aqn n

In terms of the ith particle the kinetic energy for the system may be
identified as:



-

Toward the particular formulation of Lagrange's egqvation used in REXOR,
the first two terms of the previously stated form, Equation 6-1, are
developed:

d oT 9T

H)-%

Performing these operations for the ith particle case and the rth gen-
eralized coordinate and summing over the system yields:

N
L(&)_ﬂ_:Zim a L(,-c2+y2+é2)
dt qu aqr ‘ 2 1 dt aqr i i 1
i=1
—Zm (5{.2 + 3,5+ 2.2) (6-14)
2 4 aqr i i i

A useful math operation of cancellation of the dots is developed prior to
proceeding. Recall:

8x, = Efi—&q + Eil Sq. + ¢+ ¢ 4 Eii 8q (6-15)
i aql 1 8q2 2 aqn n
Then also
5(=_ax_iq +3fi_q+,..+ﬁ' (6-16)
i aql 1 3q2 2 Bqn n
or
ix_1=i (6=
aqr aqr L

This is also true for y and z and for the double dot terms in x, y
and z.

An operation to reverse the order of spacial and temporal differentiation
is required. To show this the time derivative of a partial is taken as

a axi 5 axi ) 3 axi . 3 axi
at\sa. ) = sa\ea ) Y ag\ee )2 T T \ae M (6-18)
1 r 2 n iy
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Next the spacial derivative of ki

Now since

Xi = Xl(ql, q

.+
9

axi i
—— q 4+ .
qu 2

27

is given as

the order of spacial differentiation is reversible

2

2

9 x, 3 x,
il _ i
9q 9q 3q_3q
and hence
. [ax. ax,
a4+ =1
dt; Bq_r daq

Similar relations exist for yi and Z -

Proceeding on with the kinetic energy terms:

I N

g(&) =) g P .
dt qu aqr ipi qu

i=1

2

Ay,

. : .

3o L2 oo @8 N . a [y

i 9a. %1 ag. i F\da /) Yi at\dq.
T T T r

+ 2 q (6-19)
aqn n
, qn) (6-20)
(6-21)
(6-22)

3y, 3z,
o 2 (6-23)

i aqr i aqr

Using the relationship for cancelling dots in partials, reversing the order

of differentiation and cancelling terms gives

N v

dt qu qu :

m
i=1

8xi
%, 5= + ¥,
i qu i

oo i
75; t o, SO (6-2k)
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Then from Equation 6-1, lLagrange's Equation in constrained coordinates
with point masses becomes

N
90X, ay. 9z,
}E:I“i e T Vg t i e |t g@ * SU =& (6-25)
im1 9. 4 9 4 4,

Also, in the same vein of defining the generalized coordinates, the
relationship between the elemental and generalized forces can be developed.
This relationship is developed from the definition of virtual work on a
particle as the scalar product of the applied force and an infinitesimal

; displacement. Therefore for the total system of N elements,

. (6-26)
1

Using the definition of QT from Equation 6-2 gives:

E N

Bxi ayi azi
k- QNE E F —+F —-+F X (6-27)
3 AR, R L T
- i=1
3 Substituting Equation 6-27 into Equation 6-25 yields the final form of the
L§ Lagrange energy equation in constrained coordinates for point masses, which
9 is in the form from which the REXOR Equations of motion are developed.

=

Making this substitution and rearranging the equation yields

s

oo

s byl

N ax, ay. 3zi
E mXx, - F 3—3 + Gay. -F s—i + (mii. - FZ )'3——
ol B A T REREY B o) %

ST

(6-28)
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The above equation is the basis for the entire derivation of the equations
of motion of REXOR. Note that this equation is written for discrete ele-
ment masses and discrete forces. Also, at any instant in time all of the

ingredients required to define the elemental accelerations, ii’ &i, ii,

are not known. Specifically, the generalized coordinate displacements and
velocities, qr and qr, are known at any instant in time but the generalized
coordinate accelerations, dr’ remain to be determined at the time the

elemental accelerations are computed.

The following section presents the manner in which the foregoing equation
set is adapted to the REXOR numerical solution to solve the equilibrium
equations or equations of motions for the generalized coordinate accelera-
tions., This development is first presented in the simpler form, for
clarity, for discrete mass elements and forces and then in expanded form
to include elemental distributed masses and applied moments.

6.3 ITERATIVE CONCEPT AND EQUATION SET SOLUTION METHOD

Given a set of equations as developed in the previous section, the next
step is to establish a method of solution. The solution process is

defined as solving the equation set for tlie accelerations, integrating
the accelerations for updated velocity, and position; then substituting

the integrands back into the equations to determine new values of
accelerations.

The first step of the process is to define explicitly the accelerations
from the equation set. In the process of implementing the REXOR equations,
it is desirable to handle the accelerations as an estimated plus a correc-
tive term. In generalized coordinates then we can write

) () ()

Y S ) =< . > +4 . 4 (6-29)

q q a
. "Jyew U "Jcorr. U ®Jorp

This operation proceeds on a sequential time basis. For each increment
advance in time, the previous 'NEW' becomes the 'OLD'. In REXOR, the time
increment corresponds with a step azimuthal advance of the main rotor
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blades. However, this need not be the case. The 'NEW' accelerations must
be used in the numerical integration process to define the generalized

s . coordinate velocities and displacements. But if some form of a predictor
on accelerations is used then the 'OLD' would be this predicted value and
in this case it would be an estimated, 'EST', value.

Using the notation 'OLD' and 'EST' interchangeably the linear elemental
accelerations can be written at time t as

(.Y 1 (..W (. ) 1
b X, X,
1 1 1
, <yi> =<3}i+ + <yi> (6-30)
7 ii 2y
. J t . J CORR . J EST

where the estimated accelerations are determined using the generalized

displacements and velocities, a, and dr’ at time t, and the generalized

T o SO P e O naY

coordinate accelerations @r, either estimated or from one previous time

step in the numerical integration process.

Then, at any given instant in time where the 'EST' elementzl accelerations
are thusly determined, it can easily be shown that the corrective ele-

mental accelerations, (X, ¥, Z);CORR, are a function only of the gen-
eralized coordinate corrective accelerations.

Or
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; 3 %9 Koorg : E
: ] ]
; g ENG 5 i
V. ¢ = E 15— d : (6-32) !
) 17 99 Koopg . ] 2
k=1 i 1
{ 4
3z . i b
- z b Cj_ '.
i g, “k i
L ~J CORR (""k  "CORR J E

Now meking the substitution of Equations 6-27 and 6-31 into Equation 6-25
from the previous section and rearranging terms yields the Lagrange

equation for the qr coordinate in terms of the estimated elemental 3

s and the corrective generalized coordinate accelerations.

acceleration
N axl oy . 321 f
mlxl - FX \,.— -+ (m_iyi - F a—l + mlz g FZ 3—— .
Zi=l EST 4% e \Vtmsr Vi) ‘BT %)% :
Iy X 2 X, oy Q oy 3z n 0z
i i.. i i i i
+Z"&WZW%{ " 5q Lt ig. & +8TZ*qk '
=1 r =y k CORR. r k=1 r “CORR. r kel T CORR.
3 )
P20 (6-33) i
aq aq i
i g
:,
:
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The equations of motion for the system can now be combined and presented

in matri. form.
4
M . <.
I
MASS
MATR1X
y
\ " J CORR
L. -t
B .
4
+ Tk ] *
DAMPING
MATRIX
9,
s e

where the matrices,

discussion.

Krk
STIFFNESS
MATRIX

Mrk’ Crk

and K
r

k
However oefore proceeding
rearranged into the form actually used
The equation is solved in terms of the

+
1
aqn Bqn
=0 (6-34)

will be defined in the following

with this, Fquation 6-34 is now
in the numerical process in REXOR.
corrective accelerations.
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The correction terms come from an inversion (or simultaneous equation, ..
Cholesky method) operation on the model equation set.

3
r
Uy i k.
[T = axi A4
r 3 4
q m, X - F + 3
17 = ( i ipgp xl> aql :
¢ ) = - M, < . -
MASS - 4
MATRIX N .
r, .. e b
L q_ E m, X, S o E
Jeorr, - — L o7 [ 1gsT i) %Yy
L = -l }
) 1
- r g ) = q. ) 3
I 4 B 9, 3
. o, p =

+ Crk <4 Krk 4 (6-35) i
DAMPING STIFFNESS
MATRIX || - MATRIX 1

L - L an ) - L qn J

P

As indicated before estimated accelerations in physical coordinates come e
from the 'EST' or 'OLD' generalized coordinate accelerations and the cur-

rent generalized coordinate velocities and displacements. The integration

part of the solution operation supplies the (q) and (q) data.

a =deEw dt i g =/51 dt (6-36)

The whole package operates in a cyclical fashion, as shown in Figure 6-1.

3
A-ranging the solution sequence as such gives it some important attributes ;
and advantages. i

First, to determine the corrective acceleration, the inverted mass matrix
premultiplies the difference of applied and estimated reactive forces [
represented by the quantity in the large brackets on the right-hand side s




NEW ACCELERATION
REPLACES OLD
ACCELERATION

FORM NEW ACCELERATION
FROM OLD AND CORRECTION

TERMS

ADVANCE
TIME

SOLVE FOR
ACCELERATION
CORRECTION TERMS

INTEGRATE NEW
ACCELERATION TO
FORM VELOCITY AND
POSITION TERMS

V

SUBSTITUTE ACCELERATION,
VELOCITY AND POSITION
DATA BACK INTO EQUATICN
SET

Figure 6-1. Equation Solution Loop
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of Equation 6~35. With the usual, small, integration steps these
differences will be relatively small. Therefore, inaccuracies in the
mass matrix or its inversion process only slight’y affect the total
acceleration determination. This means approximations and simplifications
to the mass matrix are acceptable. In some instances, a diagonel mass
matrix will give convergence to the required solution.

Second, as will be shown in the Section 6.4, (blade equations section),
carrying the running acceleration in elemental conrdinates allows for the
simple separation ¢f the centrifugal and structural stiffness of the rotor
blades which has important advantages which have been discussed. Also,
the aerodynamic loadirng terms, already by nature in physical coordinates,
are easily accounted for.

In the actual application of Equation 6-35 to REXOR, distributed elemental
rigid body masses are associated with each coordinate point and applied
moments in addition to forces at each coordinate point are accounted for.

Referring back to Equation 6-27 the generalized force, Qr’ from virtual

work can be simply written in the following form to account for applied
moments at each of the ith grid points as

oxX, Ay . 9z 9, 90, 3.

e

D D R M 3—1—+M —>+ M —=! (6-37)
X3 0% Y

i
— 4
r L%y %,y %,z 9 LCP T

The terms of Equation 6-24 in Equation 6-28 can be developed for the dis-
tributed masses by going back to the elemental acceleration equation,
Fquation 5-11 of Section 5.4.1 which is repeated here, in a rearranged

‘orm, for clarity of this development.
pr X
qr y
2 2
(-p™-a") |tz ],
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embedded in the body: E

;, For distributed masses of a rigid body with coordina‘e point and system
i
K

LT (6-39) 4

i; and Equation 6-38 becomes: b
5

i3 X 00 I o a
£ )1 %, ~x(r®+q%) + ypq + zpr 2q - yr E
| -
i i I s |xpa - y(r%+p%) + zar |+ |-2p + xf (6-L0) 3
z
a

. 2 3 ) :
% xpr + yar - z{(p~+q") ¥yp - Xq

; Now, remembering that for a point mass, F
. E
1 - (6-h1)
I CLr qr -<

- (6-42)

(4
v
4
]
d
3

dz_ _ 3z_ (6-43)

qu qu }
3% _ 3 6-L! '.
R o ~

38 _ 34 (6-45)

3
.

and

Wy _ or -
ol (6-46)

i
3
|
»
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The total partial derivatives relating the motion of the coordinate point

and set imbedded within each elemental body and the motion of the
generalized coordinate becomes

where on the right side .. these equations,
location of the distributed masses within the rigid body elemental mass,

and x and z

o’ Yo
point.

For each jth coordinate of the system, the elements of

0

x . o g, , 08
9q,,  3q 9q 9q_
iy _ Yo 3y 3%
3. 3q X3 " %3

r r q‘r qT
2z _ °%0

L 30

qu = aqr "

ZED

X, ¥V, and z

(6-47)

(€-48)

(6-49)

represent the

represent the motion of the mass element reference

Equution 6-24 can be written by substitution of Egiations 6-40, 6-47,
6-L8 and 6-49. This gives
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: zazo 7 % ae+zv 9 8 x razo-x e r@—E
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- C r r r r s
; s a :
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3 : 2 £y 20 el 3¢ o
3 - + — - X,y.lr + = t ¥, + —— : s—
: . yl(r ) aq xlyl(r P) aq yy2; (r7+p%) aq 29y 9q »
; . r r 7 '
' az dz :
i : 0 a6 2 T 2, 2 0 H
¥ v + — —_— p_. S, e .
it Y9, 5 V1% 5t ¥ 4 5o - 2 (p™+q") T :
L SN r r r .
g__ Z2,¥Y.pr a_w- + 7z gpr .a_e._ + z.q a_x.Q - rAN| alp + z 2(.1 28 -E
§ ivi aqr 0 r aqr i'i aqr i 3qr 5
: dy :
+E+X1Z1qr?p—_zeqral_le'a_g—x‘Zpgl_zebgiE
: 94y 9 9 R : 4 @
E dz E
H 2.2 % 2, 3¢ : .36
s+ — + — Sy — ®
p+ x;2; (P74 5o~ Y32 (PT¥a") 3q iP 3 *3YiP 53 &
LI > r r
= =
E}'-’f'axo*‘y2rai—zyrae
E i qu i qu i qu
: 8y
+:+xr—0+)21"ﬂ[)--+xz,x"al (6-50)
: i 9q i " ag i7i” 9q
c r T T
: 0z
: 2. 3¢ 0 2 . 3¢
Y, Py - X.Q 57—+ Xx,q 77— - X,y.q =—
: i a, i aq_r i a " ivi qu
= - -‘J
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Expanding and identifying mass moment and moment of inertia terms:

: N X, >
'} 1 0 1
Zmi Yy 9 Vi (|7
7 .
3 1 J

i=1 Z, r
EST
-
15 raxo My S v ouzk 20 uz(r2+q?) _axo + I (x4 2
5 qr aqr qu qu XY 3qr é
oy oy E
o o OV .. 3¢ _ 0 Y 3¢ &
My == + MXy =— - MZy ——~ + MR%pq ~— + I pq oo - I Py 5— !
aqr aqr qu aqr X qu XZ qu E
: 9z kA :
8 . 0 .. 90 .« 3¢ 0 30 9¢
- Mz—-—MXz—+MVz—+MXpr—-Ipr—+I pr —— !
B aqr aqr E)qr aqr X qu XY aqr K
T~ 9x . ax -
~’ . 2.2, 96 = 0 96 - 0 '
3 = —-— + = A z — 8
: oy oy :
H 2 2 0 2, 2y 3y 2, 2 =4 :
+ 5= —af T AR i — .
: My (r“+p°) 7o Loy(r™+p%) T * Iy, (r%+p%) a, + MZqr A E
E 3z 9z :
H 0 28 3¢ 2, 2 0 2, 2, 36
ttWar w= - Lyar s~ + Iear - - MZ(pTHqT) — + I (p4q?) 28
. Y ]
: qu X aqr Y Sqr qu XZ 'c)qr_;
— 90X D¢ -
5 Y a8 0 1 - 38 0 .
e- LoPr =— + I pr — + Miq ~— - I Q — + I q — - — :
) Y :
? : Z 3qr Z aqr aqr YZ aqr 2% 3 aqr :
' : Y 3¢ ) <Y . 39 .70 :
+ Iqr—-——Iqr-——MZ‘p——-I P — +Ip = + MXr — H
o o X7 9 .
: : 4. Z aqr aqr X2 aqr Z 3qr 8qr :
: 9z 0z :
: 2.2, 3¢ - %20 26 1) . 20
i~ I, (p"+q") ~— + Myp - hyP 55 FIp s~ - MRQ ~— + I q —
s TYZ 3 3q_ q :
s 5 A qr XY 3q Y 8qr qu X aqr_;
f ;o 1 39 ]
e —r. _ i
E IYr aqr IYZr qr
. Y . 99
3 + o+ L~
Gl ralR R (6-51)
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and finally collecting and grouping terms yields the final

and complete

definition of the terms of Equation 6-35 for the estimated elemental
accelerations.
N X X
2 el 2 )
i y qu J
i=1 Z EST Z .
X ~(r%+g®)) pq-T pr+q Xy
- - . - 2. 2 — . 3
M{y) + MZ{ pgtr + My {-(r"+p%)} + MZ { qr-p s |70
LAd
.. . : 2. 2 -
2 pr-q qr+p -(p~+a") 2
0 zX -yx
| —. 38 W\ -
+ M| — -Zy + — 0] + Xy
qu aqr ) qu
¥z -Xz 0
B ]
I.(0) +T (-2 (pg-7) +1 (22 (pr+q)
X Y\ oq Z\dq
T T
+ (pg++) +1,(0) ~L (22 (qr-p)
X9 Y Z qu
1 (2 (proq) +1 (2 (qrep)] +1, (0)
X\ 3 Y\ o ) Z
- 2. 2, 3 2.2 8 ) sy \ |
2} 3
Ly{r™q%) 5= - I, (r+q%) o IYZ<(pq r) 5— - (pr+q) 55—)
T T T
2. 2, 3 .y 99 Y 2. 2, 3¢
+| - + + ~(pg+r) =2 + T T =SS
Ly(r™+p%) 3 Ixz( (pg+r) (qr-p) 5 Iy, (r7+p%) Ba,
po T
_ay 9% SELIAW 2 2, 30 2. 2, 3¢
IXY((pr v 5 - (evp) aqr) Txz (P7+a7) 5= - Ty (p%+a") 5q_
o -l
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N

where in this case the summation E represents summation over the jth

i=1

rigid body element. With this in mind, substituting Equations 6-52 and
6-37 back into Equation 6-25 yields the complete form of the Lagrange
energy equation in constrained coordinates with distributed elemental
masses and forces from which the REXOR equations of motion are all devel-
oped. Also including these terms as well as the moment terms of Equa-
tion 6-37 in Equation 6-35 yields the final form of the equation as used
in REXOR. This form will be presented following the development of the
generalized mass damping and stiffness matrices.

From Equation 6-33 it is easily seen, by examining the coefficients of
the corrective accelerations that generalized mass matrix elements,

Mrk’ can be written as

N

Bxi Bxl Byi ayl azi Bzi
My = ) m(5d gt e ot e it L (6-53)
rk ~ i qu qu qu aqk aqr qu

This equation is for point masses. Actually, as discussed earlier, the
REXOR equations model a set of distributed masses characterized by an
overall mass, center of gravity, and moment of inertia wvalues. As shown

in the previous section, extension to the distributed mass form is made

by describing the particle absolute coordinates in terms of the position
of a relative coordinate set in inertial space ani the particle position in
terms of this relative set as developed in Section 5.4. For a rigid body
the associated relative set and the perticle associated with the body main-
tain a fixed relationship. The summing over the particles of the system

thenr becomes a sum over products of masses and lengths yielding mass
moment #nd moment of inertia terms.

The mass elements can be developed by substituting the partial derivatives
developed in the preceding discussion. These partials describe both the

motion of the mass element reference and elso the distributed masses within
the rigil body elemental masses.

e e g el i S

i1
B
o
5]




o Substituting these partials, Equations 6-47, 6-L48 and 6-49 in the
it generalized mass expression, Equation 6-53 yields:
N 9x
I M — E m 0 -y 0 0 + gz ._._0. ?.e_ -y a_lp .—2
= i=1 ' aqr 5&; * ﬁ; f‘l; 5 aqr g k toody qu
2 3y Ay 3y 30 38 %o 36 9
+y1 ) §—_Y1Z15——+z.8—5—+yza Bw
qr qk T qk . qr qk e qr e
s
L, 200 20 oWy Wy, M 2 I
- S =
! i 9q aqk q qu i 9q aqk i qu ) X
ay oy 3
i oy 0 2 9y Y oYy 3¢ 3¢ 0 3
3 MRS T 9q._ ¥ X 8¢ da ~ *i%i 3q 3¢ T % Sq iq 7
r “% k I L 99 3
3 ‘};
- 3 [
] w208 2 T T 3 g :
3 %, 3q. 5g, ~ %i 3q 3
+1 9y qk = clr aqk qr rq}-: . aqr E{ %
t: g
: 9z 9z }i
by, 0% % o 2098 28 20 3 ]
i 3q, 9q, i 9q 3q, i dq, 9q, i'1 9q ﬁ' %
97 )‘
3 8b °%g 3¢ 96 2 wp B 3
4 +Y, o a— - XY, — — +t Yy, - (6-5k) i
3 i qu aqk ivi aqr aqk i aqr 3qk "n
s
4 5
A
- !
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‘ and using moment of inertia and mass moment definitions: '
i 9x 9x ., 3y 9y 9z 9z ) (aw 1 )
: M., = M— = + = e el # I ;
- a ?.
g rk <8qr qu 9q 5{1'1'; g, 3qk ZZ\9a,, 9
1
] 3 3¢ ) (ae 20 ) ( 3 6 9 AP ) 3
: + I = — |+ I == =]+ I  [-+— s - = 3
ol ' 3 o
l‘ XX(aqr 8qk YY aqr aqk XZ qu aqk qu qk
+I<ae T ae) <a¢ 30 20 aw)
T 73q Jdq.  dq 09q. T % 3. T 54 3q. b
XY\ dq,. 9  9dq_ dq YZ\ 9%, 3 9q 9 ]
_foy 3y 3y a8y 38 3z gz 98 :
" \8a, a, " %a, Jq. ~ Fq; 3a_ "~ 3q dq, )
r k L e k k 4
Q. 99, 9q, 9q  dq  dg 3q, dq
—fox 06 296 9 ap 2 9y 9
: +M(.3_£8T o -ai%_g’_%> (6-55)
] Ap 99 9% 9% Q. 99 99, 9q
o and is identified as a generalized mass. For orthogonal systems Mrk is
zero except for r = k. The development of REXOR is mostly nonorthogonal
3 coordinates, therefore, the generalized mass matrix has many off-diagonal
3 terms.
E Similarly, terms can be developed for the strain (potential) energy and
o damping functions.
E
L U =.£.§ : (k o L o z,2)
- 2 X, 1 y. °1 z, 1
8 5 1 1 1
v/ i=1
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The stiffness and damping matrix terms in REXOR are defined with reference
to relative coordinates; which parallels the physical configuration. The

coordinates used with these terms then should be on a relative basis.

This statement at first appears to
equation development. However, if

be contradictory to the premise of the
these matrix ter.is were defined on an

absolute basis the terms other than those associated with a relative

motion would be identically zero.

The integra=tion of the accelerations

produces changes in velocity and position. These changes with the proper
starting reference are the relative coordinates and velocities.

Equation 6-35 is now repeated here

~

in a slightly expanded form to include

the effect of applied elemental moments, Equation 6-37, and distributed

elemental masses, Equation 6-52.

() F T2 (v

i=

(Eqsation 6-55)

T
9
Crk
+ DAMPING 9
MATRIX
qQ
= - \. n
(Equation 6-~59)

axi 8¢i T
q E m%, = F Yam 4 M — . ..
1 ( 1 ipgm xi)aq X aql

qn CORR E

1 i

90X, ad.
Rmi*i -Fx)rl*Mx T
I\ * ‘mst i/ “%n iy

(Sum of Equations 6-37 and‘6-52)
N ~ -1 r )
i,
Krk
P+ STIFFNESS < .7 (6-60)
MATRIX
q
J . - . nJ
(Equation 6-58) J
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Fven though Qr was defined as the generalized forces of the system, for

the purpose of further development and of the application of the above
equation in the REXOR analysis, each line in the large brackets on the
right side of Equation 6-60 will hereafter be referred to as a generalized
force or a generalized delta foirce and will be referred to by the symbol,
FR, in the following development.

6.4 OVERVIEW OF ROTOR-BLADE MODEL

Many elements of the rotorcraft can be directly modeled along the lines
developed in Sections 6 through 6.2 and systematized in Section 6.5 with-
out further ado. However, there are enough special considerations and
concepts involved in modeling the individual blades and combined rotor to
Justify a separate section to address these topics.

6.4.1 Concept of Modes

The basic textbook principles governing solutions for eigenvalues (natural
frequencies) and eigenvectors (mode shapes) for systems o several degrees
of freedom can be applied to those of many degrees of freedom. For each
independent degree of freedom there is an additional natural frequency and
mode shape.

Free vibrations of continuous systems such as beams, or for example the
helicopter fuselage, or rotor blades, are generally analyzed mathematically
by reducing the system to a system of discrete masses and elastic
constraints.

6.4.2 Blade Bending - Modal Variable

The blade is a twisted rotating beam and jts analysis requires considering
the coupled flapwise-chordwise-torsional response of the blade. TFor the
REXOR analysis, coupled flapwise-chordwise mode shapes are used, upon

which is superimposed one of a number of torsional response rerresentations
of varying complexity (Sections 5.2.4, 6.4.8, 6.6.5, and 6.6.6).

If one applies generalized coordinates, each blade mode in the analysis

may be treated as a single degrez of freeuom. The generalized coordinates
are called normal coordinates for the special case when the modes are
orthogonal, in which case the generalized mass matrix reduces to a diagonal
matrix, as does the generalized stiffness matrix.

The REXOR analysis uses blade modes calculated for the blade at a fixed
rpm, fixed collective, and in an unswept, unconed orientation. Since the
program allows for variation of all of these parameters, which is accounted
for in the overall REXOR analysis, the predetermined modes become non-
orthogonal as used in the program. Thus, blade motion is effectively
described by a set of modal variables, each representing a characteristic
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¢ frequency, and a set of modal coefficients that describe the relative
amplitude of oscillation for each blade segment and each freguency.

Since the modes are nonorthogonal, we will *ind in REXOR, as would be .4
expected in such a case, off-diagonal coupling terms in both the gen-
eralized mass and stiffness matrices. It can readily be shown in cases i
! where generalized or normal coordinates are applied, that relatively few i
E modes need be taken to define accurately the time-history of blade deflec-
~ tion. This assumes that the primary frequencies of excitation fall within
the range of modex considered.

Ly mmid

Some caution should b~ applied, however, in interpreting time-histories of
E } moment (stress) or shear. These variables generally represent the second

- and third spanwise derivatives of the deflection curve. The higher the

{ degree of spanwise derivative, the greater the number of modes required to
E define it.

3 However, another unique feature of REXOR is that it actually makes spanwise
integration of the blade element aerodynamic and inertial distributed load-
3 ing functions to compute the moments and shears rather than using the
second and third spanwise derivatives of the deflection curve. This
approach greatly enhances the accuracy of the internal loads for a given
number of modes.

6.4.3 Adapting Modal Description to Variable Geometry

It is noted that the selection of the modal description is such that the
periodic reorientation of the structural axis, due to blade feathering and
torsional deflection, with respect to the centrifugal force field stiff-
ness is accounted for. This is accomplished by generating blade modes as
rotating blade modes for input into the program, generating structural
only generalized stiffness terms for each mode, and the couplings between
modes. The centrifugal stiffness effects are then included separately
within the REXOR program. Thus accounting for the effects of blade
feathering, etc., as indicated above.

The blade equations developed in Section 6.6 permit the easy separation of
structural and centrifugel stiffness type terms. Including the centrifugal
terms in the blade element accelerations and the structural