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1.  INTRODUCTION 

1.1 SCOPE OF THE RSXOR PROGRAM 

REXOR is   a rotorc^aft  analysis  tool which has  resulted from applying an 
interdisciplinary math modeling philosophy,  Reference  1.     The  REXOR math 
model has been written  for a single  four-bladed,  gyro-controlled, 
hingeless-rntor helicopter with additional capability  for analysis  of 
teetering or hinge-offset rotor systems with conventional controls  and two 
or  four blades.     This  helicopter may be  conventional  in design,  winged,  or 
compounded.     The  specific  analysis   is  limited to  a maximum of four blades, 
but  it  can be expanded to include more blades by following the detailed 
mechanical  derivation procedure established for the analysis.     The model is 
broken down into  the  three major categories  shown  in Figure 1-1.     These 
categories  are  the  control  system,   the  rotor,  and the body. 

Figure 1-1  indicates  the manner in which these components  are related to 
one  another as utilized  in the  analysis.     The analysis  is  the  simulation of 
an entire  aircraft,  which includes   a detailed dynamic  description of the 
rotor and control  system as well  as  a conventional  six-degree-of-freedom 
body dynamic  description which  operates  in two modes  identified as  TRIM 
and FLY.     In  the TRIM mode,  the aircraft  is  constrained to a prescribed 
static  flight  condition while  the  controls  are activated and the rotor is 
allowed to  respond to obtain a force  and moment equilibriun of the  aircraft 
at that  static condition.     In the  FLY mode the entire aircraft  is  free to 
respond dynamically to a maximum of 30 degrees  of freedom to  control  inputs 
or  to  any other  arbitrary  inputs   such  as   gusts.     Pilot   inputs   can be  any 
single  or multiple  control manipulation  in  the  form of simple  steps  or 
pulses,  doublets,  stick stirs,  or other transient  input within the  capa- 
bilities  of the  control system simulated.     As  a result,  transient loads  and 
resulting aircraft  and  rotor dynamic  response can be obtained.     For corre- 
lation purposes,  actual  flight  test  control motions  can be used as  input 
to provide  comparative response data,.     For specialized applications,  an 
analytic  autopilot may be used to control the flight path of the aircraft. 
Additionally,  gust  inputs  and other  types  of external excitations  could 
be  applied directly  to  the rotor and/or airframe. 

1.2 REXOR CAPABILITIES 

REXOR is a detailed rotorcraft math model simulation with particular 
emphasis on the main rotor mechanics.  The program is particularly valuable 
in a detailed exploration of rotor characteristics of proposed uesigns, in 
identifying problem areas and verifying fixes in flight test development 
programs. A case history is given in Reference 2. 
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Typical REXOR  applications  are listed below. 

Dynamics: 

• Rotor stability in  regions below hp as  function  of flight 
speed, maneuvers,   rotor rpm,  nonlinear blade  aerodynamics 

• Rotor/body sensitivity and dissipation capacity  as  a function 
of gusts  and pilo'i  control  inputs 

• Effects  of design parameters   (mechanical  and elastic 
couplings,  controls,  etc.)  on  rotor stability  and load 
sensitivity 

• Correlation and check  of specialized dynamic models. 

Handling  Qualities: 

• Vehicle  response  to pilot  control  inputs  for vehicle  flight 
conditions,  speed,   altitude,   rotor rpm,  design parameter 
variations 

• Vehicle  stability  as   function of speed,  rotor rpm,   flight 
conditions,  design parameters 

• Effect  of design parameter variations  on handling qualities 

• Development and checking of handling qualities  models. 

Failure  Analysis: 

• Effect  of loss  of one  inplane damper on subsequent  flight 
time history 

• Blade projectile hit  and ensuing events 

«    Blade  strike and resulting rotor track. 

Performance: 

• Correlation and independent  check  of performance models, 
particularly in regions  of highly nonlinear blade  aerodynamic 
operation   (retreating blade  stall and compressibility effects) 

• Develop data for performance models  for use  in nonlinear 
areas 
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Loads: 

Steady-state rotor loads as a function of rotor rpm, flight 
velocity, control trim settings 

Dynamic rotor loads as a function of rotor rpm, flight velo- 
city, vehicle maneuvers, pilot control inputs 

Rotor/fuselage clearances as a function of speed, vehicle 
maneuvers, rotor rpm, pilot control inputs, flight 
configuration 

Rotor/fuselage/wing design characteristics requirements as 
functions of maneuver load factor, control commands (see 
Reference 3). 

1.3  IMPROPER APPLICATION OF REXOR 

While REXOR is capable of performing a number of analysis tasks, the 
program range of use is certainly not all inclusive. Examples of types 
of use where REXOR either wouldn't work well or would be impraccical are 
given below. 

REXOR is an extensive math model and, as such, may consume a considerable 
amound of computer time to execute a case.  Therefore, the program is not 
intended as a parametric design analysis tool, but rather as a device to 
verify the correctness of a parametric selection process. 

REXOR does not treat blade-to-blade vortex interaction,  ^is condition 
limits the validity of the vibration solution in the transition flight 
regime. 

REXOR typically us-as twenty or less blade radial stations.  The computer 
blade deflections show good correlation to measured data with this model- 
ing.  However, since shear is a first derivative, and moment is a second 
derivative of deflection data, care needs to be exercised in their use 
(Reference k). 

1.1+  THE REXOR REPORT MD ITS USE 

This report is presented in three volumes. 

• Volume I 

A development of rotorcraft mechanics  and aerodynamics  including 
a derivation of the equations  of motion from first principles. 
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o Volume II 

The development and explanation of the computer code required to 
implement the equations of motion. 

o Volume III 

A user's  manual  containing a description of code input/output and 
instructions  to operate the program. 

Volume  I is  intended to be  a self-sufficient guide  to  the math development 
of the equations  of motion and is  the  reference background as  juch.     Volume 
II gives the location of computation elements, and serves to locate elements 
for inspection or modification.     Volume III presents  normal program operation 
plus  troubleshooting guide material required for day-to-day program use. 
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2.  BACKGROUND 

2.1  THE DERIVATION OF REXOR 

The REXOR analysis is the result of a natural evaluation of capability- 
arising from a desire to develop a rotorcraft handling qualities e.nalysis. 
This require! a model of a complete aircraft which, as it was refined, 
exhibited unique advantages for analysis of dynamic stability, loads and 
performance.  The eventual outgrowth is an interdisciplinary analysis with 
broad areas of application. 

The initial development effort was called Rotor Junior (Reference 5).  This 
program had a reasonably detailed nonrotating airframe representation, but 
used a steady-state representation for the main and tail rotors.  (Bailey T 
Coefficients, Reference 6.) A major rework of this program especially in 
the main rotor led to Rotor Senior.  Here the dynamic response of rotating 
blades was calculated (References 7 and 8).  Many simplifying assumptions 
were made in the construction of the blade dynamics.  Starting afresh in 
this area plus a general overhaul of the model by an interdisciplinary team 
of specialists led to Revised and Extended RotOR Senior or REXOR.  A key 
feature was incorporating the solution of generalized force equations for 
incremental accelerations using a generalized mass matrix, and thus 
coupling of all the degrees of freedom. 

2.2 GROWTH OF CAPABILITY 

The original model (Rotor Junior) was intended strictly for stability 
derivatives. VJith the addition of blade dynamics, some evidence of and 
useful ir:ight into subharmonic rotor instability problems was obtained 
(Rotor Senior).  With the advent of very detailed blade and blade inter- 
face modeling, many new design problem areas have been avoided, and 
deficiencies of existing designs corrected (REXOR). 
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BASIC COivIPUTATIONAL IDEA 

3.1 MODAL SOLUTION - OVERVIEW 

The aircraft is described dynamically in approximat 
degrees of freedom. In addition to the six degrees 
principal reference axes, the fuselage is related t 
rotor rotational speed, shaft pitch, and shaft roll 
The control gyro/swashplate combination has three d 
Motion of each of the four main rotor blades is des 
flapwise and inplane modes and a pitch horn bending 
which couples blade feathering to the control gyro 
four degrees of freedom per blade make sixteen for 

ely thirty fully-coupled 
of freedom of the hub 

o the rotor hub through 
degrees of freedom. 
egrees of freedom. 
cribed by three coupled 
degree of freedom 
or swashplate.  These 
the four blades. 

The blade modes are primitive moues in that they are determined from a 
lumped parameter analysis of a rotating cantilever blade at a selected 
rotor speed and collective blade angle, hereafter referred to as the 
reference feather angle.  The generalized stiffness matrix is computed 
using these rotating modes and contains only the structural stiffness of 
the blades and hub.  This formulation ensures proper internal and external 
force and moment balance. Tbs  modal deflections outboard of the feather 
hinge are rotated through tne actual feather angle less the reference 
feather angle.  Thus, blade element deflections outboard of the feathering 
hinge due to modal displacements are defined to remain aligned with a 
coordinate axis system which is orthogonal to a plane containing the 
instantaneous deformed feather axis and rotated tnrough the instantaneous 
feather angle less the reference feather angle.  As a result, the internal 
strain energy in the blade due to unit modal displacement,?; is invariant 
with variation in blade angle. This technique permits the highest resolu- 
tion of motion and forces for the blade with an assumed mode solution for 
a given number of modes. 

3.2 ENERGY METHODS DEVELOPMENT 

The equations of motion for REXOR are developed from Lagrange's equations, 
which is an energy approach.  If one can express the kinetic, potential, 
and dissipative energies of a system in addition to the work done by exter- 
nal forces, then Lagrange's equations provide a powerful method for devel- 
oping the equations of motion. 

The dynamic equations of motion are written in matrix form as 

[A] )q}+ 1G}= 0 (3-1) 
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where [A] ii approximately a 30 by 30 matrix of generalized mass ele- 

ments, \'c $   is a column matrix of accelerations of the generalized coor- 

dinates and |G| is a column matrix derived from the Lagrangian energy 

functions, dissipation function and generalized forces, which take the 
form: 

|G| = - [B])4|-[c]lq}+[Q]|f (t)| (3-2) 

The equations of motion are solved as a time history at rotor azimuth angle 
increments required to provide a stable solution for the highest frequency 
mode present in the solution. 

3.3 CALCULATION OF ROTOR MODE DISPLACEMENTS, VELOCITIES MD ACCELERATIONS 

In a rotor simulation of this type, it is difficult to compute the proper 
displacement velocities and accelerations, and associated inertia and 
aerodynamic forces and moments which are required for high resolution of 
the blade feathering moments.  This requires exacting aerodynamic data as 
well as a precise statement of the inertia! loadings.  To establish the 
feathering moments due to these loads, the relationship between the feather 
axis and the point of application of the loads must be precisely determined. 
This is accomplished by a very accurate analytic constructioi of the unde- 
formed blade and a superposition of the blade elastic bending on this 
shape.  In order to achieve the highest resolution of the predicted blade 
shape and 1'eather axis position, the blade modes are defined it approxi- 
mately the trim collective blade angle.  The blade static poFition is also 
constructed at this blade angle. Blade element displacements, velocities, 
and accelerations are then computed from the combined static shape, the 
elastic blade motion, and blade feathering with respect to the reference 
feather angle. 

The aerodynamic description used in the analysis is composed of a rotor 
inflow model, nonlinear steady and unsteady blade element aerodynamics, 
nonlinear body aerodynamic characteristics, rotor/body aerodynamic 
interference, and auxiliary airloads from the tail rotor and propeller. 
The auxiliary airloads are contained in modular subroutines and are func- 
tions of advance ratio and propeller and tail rotor collective pitch. The 
main rotor dovnwash effect on the wing and horizontal tail angles of attack 
is an empirical function of rotor thrus; and advance ratio. The nonlinear 
body aerodynamics may be inputted as r.aiales of actual wind tunnel test 
data. 

The aircraft primary control systems are simulated from the pilot control 
levers operating through a boost system in all control axes. Gearing and 
gains in the control path are inputs to the analysis and may be easily 
changed for studying the effects of design changes in the control system. 
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Control servos  are  simulated by  first-order lags  with  rate limits  and with 
soft and hard physical stops.     Control  stiffnesses  in collective and cyclic 
pitch axes  of the main rotor are  included in the  dynamic equations    of 
motion. 

3.^    OUTPUT 

The  analysis  is  a time-history solution of the equations  of motion.     The 
standard output  format provides  plots  of up   to  kO output parameters  in TRIM 
and 60 in FLY.     In addition,  a tabulation  is  provided (it the end of each 
mode of operation.     The  analysis  also provides  plot capability at the end 
of TRIM to show loads  at  various points  in the system over a single  rotor 
revolution on  an  expanded linear scale.     These loads  are harmonically 
analyzed and the harmonic  components printed out. 

In addition  to the  tabbed or plotted time-history output  in the FLY mode, 
a tape or disc pack  record can be made  at  selected time points  for use in 
a fast Fourier transform analysis.     The  record pickup interface  and FFT 
are not  supplied as part  of REXOR, but  are  included by the user to match 
the  computation  facility used.     The  FFT analysis  gives  a quantitative 
evaluation of the mode/member oscillation in question.    Accurate damping 
ratio and resonant  frequency data are  available  frim this procedure. 
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k.     SYMBOLS 

The  notation used in REXOR generadly  follows what  could be termed NASA 
notation.     In general: 

• Axis  systems  use  a right-hand triad    X,  Y,  Z 

• Rotations  about these  axes  are  also a right-nand triad    9,  $,  ^ 

• Rotation  rates,  again a right-hand triadiare    p,  q,  r 

• Velocity components  of    X,  Y,   Z    are    u,  v,  w. 

h.l    SUBSCRIPTING NOTATION 

Subscripting is used as  a rule in REXOR to  further identify a variable. 
Superscripts  except  in a few column vectors are reserved to denote raising 
to a power.     The subscripting can mean: 

• Type of element;    F    for  fuselage,     SP     for swashplate,     TR    for 
tail rotor,     R    for rotor,  etc. 

• Coordinate  system reference;     BLn  for blade  axis,     H    for hub  axis, 
R    for rotor axis,  etc. 

• Modal  identifierb. 

4.1.1 Blade Number 

•The blade modal  identifier  typically is  of the  form    A     .     Where    n    is  the 
mn 

blade  number. 

4.1.2 Mode Number 

Also from    A    ,    m    is  the mode number,  and is  keyed to the symbol    A.     A 
mn - J 

represents blade bending modes   (3).     Therefore    m    can be 1 to  3. 

h.l.3    Mode Type 

Other than blade bending the remaining blade mode is torsion, and is sepa- 
rately identified as  ß,,,, . Nonblade modes are identified by the direction 

PHn 
am' subscripted axis of motion.  Examples are  I^R for rotation of the 

rotur and 9  for longitudinal shaft bending. 
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h.l.h    Generalized Mass, Damper, Spring, Forces 

The generalized masses are denoted as M doubly subscripted by the two 
modes active for that mass.  Examples are M „ „ and MA  . .  This 

^        <pS  $S       Amn 9 
n 

scheme is also used for other elements of the equations of motion, dampers 
(C), springs  (K),  forces  (F).  Note the forces are a column vector and 
singly subscripted. 

U.1.5 Forces and Moments 

In the process of forming the equations of motion many subelements of 
forces and moments are formed, translated and combined.  Several layers 
of subscripting may exist in performing this process.  The guidelines to 
tie  layering are: 

• First layer denotes the direction or axis system that the quantity 
is formed in.  Examples are X and BLE. 

• Second is the axis system involved or axis system being translated 
to, depending on the specification of the first level.  The second 
level may also be specified as  0 or nought, to indicate the 
value is at the coordinate system origin.  This notation is used 
to show an inertial reference and blade root summation quantities. 

• The third layer, usually outside a series of bracketed quantities, 
shows the blade number being computed, or the overall coordinate 
system in use for the computation at hand. 
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5.  COORDINATE SYSTEMS MD TRANSFORMATIONS 

5.1 INTRODUCTION 

Prior to developing the equations of motion, a system of coordinate sets 
with a description of the elements of the system in these sets and the 
interrelationship of the sets is required. 

5.2 COORDINATE SETS 

5.2,1 Fuselage Coordinates (X,,, Y_, Z^) 
    r   r   r 

The fuselage set origin is located along the undeflected main rotor shaft 
line, and at a convenient waterline (the eg for instance).  See Figure 5-1. 

The coordinates form a right-hand triad X„, Y , Z„.    Notations for veloc- 

ities with respect to earth of these coordinates are either X^, Y , Z 

or Up, v , w . A conventional double dot notation is used for accelera- 

tion. Euler rotations of the set follow conventional practice of roll right 

iJ)pJ pitch up )_,  and yaw right I|J_.  Rates of rotation are either 
r r 

denoted by dot notation or p , q„, r . 
F  x1   F 

Angular acceleration is double 

dot notation of the rotation or dot notation of the rates, $   ,  9 , ty 
... '   F  F  F 

or PF, qF> rF. 

Numerous aerodynamic terms are referenced to the fuselage set.  Figure 5-2 
shows the relationship of airflow to this set.  The components of airflow, 

also noted as u , v , w , are defined with respect to the fuselage set 
r   r   r 

by an angle of attack a, and a sideslip angle ß.  The angle of attack 
is the arcsin of the ratio of the vertical component and the vector sum of 
the X and Z components.  The sideslip is the Y component of airflow 
in relation to the total vector airflow sum. The angle of attack is 
positive (pitch up) of the fuselage set with respect to the airflow. The 
sideslip is positive (yaw left) for the airflow relative to the set.  The 
airflow is the vector sum of the fuselage set inertial motion and flow 
fields from other parts of the vehicle, such as main rotor downwash. 

5-2.2 Hub Coordinates (Principal reference set) (X^, Y„,  Z„) 

The hub set origin is at the top of the main rotor mast, but does not 
rotate with the mast. The mast top location represents the optimum choice 
as a summing point for loads, and a reference point to track relative posi- 
tions of model elements with a minimum of algebraic operations. 

22 

iV-Vrtf-«v«rF'.'-i-^~-^'",'""'"i''"ii^ 
timatimmmaaauaBMrtmaaaMmamoMmm******>*   --- jj^g^^ataaaMjagjaataaaaiiMMgiaiattMlM 



ipgW^^aMM^m^B^^ 

V VF' »F. ^F 
(RIGHT) 

ZF.wF(0F, rF 

(DOWN) 

Figure 5-1.  Coordinate Systems Fuselage Set 
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(FORWARD)       XF    u F 
jf  YF' VF   (RIGHT) 

Zp, w F'WF    (DOWN) 

a = sin 
w | 

\/uF
2 + wF2 

/3= sin-1 
VF 

V^F
2+ v   2 + w   2 

Figure  5-2.     Coordinate Systems Fuselage Axis to Airmass 
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For an undeflected rotor mast, the hub set origin is in line with the Z 

axis a distance Z   up from the fuselage set.  See Figure 5-3-  At this 
Or 

point, the hub set X, Y axes are in the same direction and sense as the 
fuselage set X, Y. 

Due to small angle assumption shaft (s) set bending, the hub set is rotated 

$„  and 8q (Euler angles) from the fuselage set.  As the hub set is the prin- 

cipal reference axis, the fuselage set rotates under the hub set. The fuselage 

set origin moves to the right and back for positive 4»  and e0.  The corr=?3pon- 

ding translations are {dX„/dQc)  Q-    and (3Y„/94'a) 4>a,     The partials are con- 
r   b   b rob 

stants, and are zero for a virtual pivot point at the fuselage set origin. 

Airflow information is also referenced to the hub set for use in the main 
rotor aerodynamic calculations.  The reference scheme is shown on 

Figure 5-^.  For components of airflow u , v , w  with respect to the 
n  H   n 

hub set, an angle of attack a ,  and sideslip ^ are defined.  The 

generation conventions are different from the fuselage airflow reference. 

5.2.3 Rotor Coordinates (X_,, Y_, Z_) 
n   K   K 

The undeflected rotor set has the same origin as the hub set and a common 

Z axis.  See Figure 5-5-  However, the X  axis rotates with the blade 
K 

number 1 reference axis system.  The Y_, axis points to the blade num- 
n 

ber 1 leading edge.  The rotation of the rotor set is measured counter- 

clockwise (CCW) from the -X  axis by the angle ^ .  The ro-uor set 
n '     R 

serves as a datum basis for blade number one and has a common Z axis 
with the BLn sets. 

5.2.1* Blade Coordinates (X^, Y^. Z^) 

To bookkeep the deflections properly of all the main rotor blades, sets 
equivalent to the rotor set are created for each blade.  These are the 
BLn sets, where n is the blade number (counted clockwise from blade 
number one).  All BLn sets are identical except for an azirauthal rota- 
tion  (n-l) AIJJ, where A^ is the interblade angular spacing.  The 

rotation is about the Z  axis. Note that BLn sets are rotating 

coordinates and have a common Z axis. 
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(FORWARD) X Ye (RIGHT) 

Zc (DOWN) 

THERE IS NO YAW (Z) ROTATION BETWEEN H AND F SETS 

Figure 5-3. Coordinate Systems - Hub  (Nonrotating Shaft Top) 
to Fuselage Axis   (Flexible Shafc) 
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YH,vH (RIGHT) 

^H2-^     VH2    t^ 

XHi  uH  (FORWARD)!a 

4r 
\/uH

2
+vH2+wH2 

ZH'   WH  (DOWN) 

a- = sin 
w H 

\/uH
2 + vH

2 + WH2 
;     i//w = sin -1 

^H^H 

Figure 5-i+.    Coordinate Systems - Hub Axis to Airmasj 
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a.  ROTOR AND HUB AXIS SETS 

Zc 

(RIGHT) 

ZR'ZBL1'ZBLn 

-OBL 

(USED IN INTERIM 
TEETER ROTOR, 
SECTION    6.7) 

b. nOTOR AND BLADE AXIS SETS 

(DOWN) 

BLE 

BLn 

Figure 5-5.  Coordinate Systems - Rotor, Blade, 
and Blade Element Sets 
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5.2.6 Freestream (Earth) Set (X^, Y , Z ) 

The freest-ream set is essentially the earth or inertial set inasmuch as 
the axis alignments are the same. However, the freestream set can assume 
any origin. Thus the use of the set is to reference the local gravity 
vector and/or an absolute angular displacement or l-'.near velocity accel- 

eration of another set As shown on Figure 5-7» the Z  axis points down 

toward local gravity.  ?ther sets reference to the E set, as the H set 
shown here, may assume any starting value of roll and pitch such as the 
trim initial conditions. The relative orientation changes with progressing 
time of flight. 

With the freestream set origin located coincident with the fuselage set, 

the components of fuselage set velocity in E set are VL, v , w .  These 
h     hi      h 

components combine into a trajectory velocity u  and path X . The 

trajectory path is yawed rig.it i^  and pitched up Ym 

See Figure 5-8. 

from the E set. 

5.2.7 Gyro Coordinates (X_, Y-, Zj 

A gyro set is used for modeling an internal, isolated control gyro.  This 
set is shown in Figure 5-9. The G set origin is coincident with the 
fuselage (F) set origin and has the same sense of direction and rotation. 
Rotations are measured relative to the fuselage set. 
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5.2.5 Blade Element Coordinates (X_TI?, YCT_, ZÜT_) 

The blade element set origin is located at the center of gravity of an 
element of a particular blade. See Figure 5-6.  Reference to a column 
vector subscripted by BLE is used to denote the blade element located by 
the blade element set origin. The right-hand coordinate triad of this set 
has the X axis parallel to the local quarter chord line, the Y axis 
along the chord line toward the leading edge.  The Z axis is mutually 
perpendicular and pointed up.  The BLE set is used to track the local 
feather angle, to develop aerodynamic and dynamic loading terms. 

The BLE set origin for each blade element specifies the element e.g. with 
respect to the quarter chord, and in terms of the BLE directions, i.e., 
for the Kth element the position coordinates are SY(K) and SZ(K). 
SX(K) is the blade radial station. Transformations to the neutral, no- 
stretch axis are made for X deflections. Note: The quarter chord is 
merely a convenient reference datum, and does not convey any model 
limitations or assumptions. 
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-BLE BLE 

C/4 Lh\'E 

NEUTRAL AXIS 

BLADE STATION K 

1 

Figure 5-6.     Coordinate Systems - Blade Element Set 
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(FORWARD) XH 

i YH (RIGHT) 

ORIGIN OF EARTH (INERTIAL) 
SYSTEM MAY BE INSTANTANEOUSLY 
ALIGNED WITH ANY SYSTEM 

(DOWN) 

Figure 5-7.     Coordinate Systems - Freestream  (Earth) to Hub Axis 
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(FORWARD)       XT VT 

YE (RIGHT) 

-E (DOWN) 

VT  = VuE
2 + vE

2+Wp2 

^T = $in~ j - Jin      i  

VuE
2 + vE

2 

-1 
«t 

7T = sin       ,  
VuE

2 + wE
2 + wE

2 

B\  DEFINITION:   v-p wT = 0 

Figure  5-8.     Coordinate Systems  - Trajectory Path to Freestreain Axis 
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a.  EXTERNAL GYRO AND SWASHPLATE SYSTEM (NONROTATING) 

Xc 

'SP 

(FORWARD) X. H (RIGHT) 

t 
ZH (DOWN) 

b.   ISOLATED GYRO (MOUNTED AT FUSELAGE REFERENCE AXIS) 

X, 

Figure  5-9.    Coordinate Systems - Control Gyro and Swashplate 
Sets to Reference Sets 
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5.2.8    Svashplau.e Coordinates   (X    , Y     , Z    ) 
 ~~~~"^^^^^^—""^^   bir   oir   or 

The swashplate set serves one of two possible functions. For a conventional 
control system, or a system using an isolated control gyro (Section 5.2.7), 
the motion of the set describes the motion of the swashplate.  For systems 
using a control gyro directly in the feathering angle control path, this 
set describes the control gyro motions. 

As shown on Figure 5-9, the SP set origin is located in line with the 

Z  axis and above the hub set a distance Z  . The SP set does not 
xl UbJr 

rotate with the rotor shaft. For no deflection of the SP set, the 
X and Y axes have the same alignment as the X and Y of the hub set. 

5.3 DEGREES OF FREEDOM 

The degrees of freedom of the REXOR equations are defined as the general- 
ized coordinate variables of the set of equations of motion to be devel- 
oped in Section 6. These degrees of freedom fully describe the motion of 
the physical elements of the modeled helicopter, but each direction of 
motion of the helicopter may not have a degree of freedom directly asso- 
ciated with it. The physical motions may be described by a series of 
modal variables (Section 6.1+) or through a set of transformations and com- 
binations of the degrees of freedom as developed in Sections 5.k  and 5.5. 

The REXOR rotorcraft simulation analysis can be applied to describe the 
vehicle-rotor-control system dynamic response for up to thirty-two fully- 
coupled degrees of freedom. These include the normal six rigid body or 
vehicle degrees of freedom; rotor speed; and additional provisions for up 
to twenty-three degrees of freedom defining rotor blade motion (one mode 
per degree of freedom), flexible swashplate and rotor shaft or pylon 
motion, and a flapping moment feedback control gyro. The equations of 
motion are written in a general form so that additional degrees of freedom 
can be added if desired. The current thirty degrees-of-freedom are listed 
in Figure 5-10, followed by a discussion describing them in detail. 

5.3.1 Vehicle or Rigid Body 

The six rigid body degrees-of-freedom, three translations, and three rota- 
tions are defined as motions of the hub or principal reference axis sys- 
tem. Section 5-2.2, relative to freestream (inertial) reference datum. 

Translational displacements (X, Y, Z)   of the origin of the hub coor- 
OH 

dinate, and rotational displacements (<t), 6, ty)    about the hub axes describe 
H 

these degrees of freedom. See Figure 3-1•    As mentioned in Section 5-2.6, 
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ITEM 

MAIN ROTOR 
HUB AXIS 

SYMBOL 

X0H' Y0H' Z0H 

^ÖH>H 

TYPE OF MOTION 

TRANSLATfON AND ROTAT'ON 
WITH RESPECT TO 
INERTIAL REFERENCE 

ROTOR h 

SHAFT OR PYLON        0S, 0- 
BENDING 

ROTATION OF ROTOR SE1 
WITH RESPECT TO HUB 
AXES 

DEFLECTION 
OF FUSELAGE REFERENCE 
WITH RESPECT TO HUB AXES 

BLADES 

(n = 2 or 4) 

A1n'A2n' 

^PHn 

A3n BLADE BENDING MODES AND 
FEATHER/PITCH HORN 
BENDING OR TORSION WITH 
RESPECT TO BLADE 
ROOT AXES 

SWASHPLATE 0Sp. Ögp 

ZSP 

SWASHPLATE AXES MOTIONS 
WITH RESPECT TO HUB 
AXES 

GYRO *G-dG GYRO (INTERNAL) AXES 
ROTATION WITH RESPECT 
TO FUSELAGE AXES 

igure 5-10.     Degrees of Freedom 
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the freestream set may instantaneously assume any reference point; 

therefore, only the time derivatives of  (X, Y, Z)r.u and ($, 9, tj;)  have 
Un n 

significance. 

In order to locate the direction of the gravity vector relative to the 

hub, a running calculation of the Euler angles (j)_, 9 , ij;  must be made. 
&      iL      & 

Since these are not degrees of freedom and therefore not calculated in the 
equations of motion, they must be calculated outside the dynamic equations 
as the time history proceeds. When the initial orientation of the hub is 

defined,  (f> , 9 , and ^_ are known and their changing values may be cal- 

culated by integrating the hub rotation rates in the earth or freestream 
axes. 

5.3.2 Rotor 

The rotation for the rotor degree of freedom i|/  is defined as motion of 
K 

the rotor coordinate system relative to the hub axis system.  This is 
shown in Figure 5-5.  This figure also indicates the change from Z down 
to Z up axis, which is equivalent to a 180-degree positive rotation 
about the Y axis. 

5.3.3 Shaft or Pylon Bending 

Shaft or pylon bending degrees-of-freedom are defined as motions of the 
fuselage coordinates relative to the hub or principal axis system.  As 

shown in Figure 5-3, fuselage translations, Xgp and YQP ,  are dependent 

variables which are functions of the two shaft bending Euler rotations, 

(|) and 9 .  These rotations are about a virtual hinge of the shaft or 

pylon. 

Shaft bending or pylon bending is assumed to be small enough such that 
displacement along the Z axis is negligible. Thus, when computing the 

translation of the origin of the fuselage coordinate system in the X and 
r 

Y      dire;'cions  due to  shaft bending,   small angle approximations  for the 
r 

sine and cosine of $„  and 9  can be used. These translations are thus 

defined as products. (j)c in the Y  direction and 
b r 

in 

the X^ direction. The partial derivatives represent the distances from 

the virtual hinge in each axis to the fuselage reference. 
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5.3.1+ Blades 

Each blade's motion relative to the rotor coordinate system is defined in 
terms of four generalized coordinates. These consist of three blade bend- 
ing modes and a combined feathering, pitch arm bending mode, or a torsion 
mode. 

5.3.1+.l Blade Bending 

Blade motion due to blade bending is defined by the following 
generalized modal coordinates: 

In" 

^n- 

3n- 

coupled first inplane bending mode 

coupled first flapwise bending mode 

coupled second flapwise bending mode 

Ordinarily in a modal analysis, the effects of centrifugal and struc- 
tural stiffness are lumped together into a generalized stiffness 
which is simply the modal natural frequency squared times the gen- 
eralized mass. In contrast to this, the REXOR analysis separately 
treats the strain energy or structural stiffness in each mode and the 
stiffening due to the centrifugal force field. This provides the 
capability of being able to account for the periodic variation of 
stiffness in the modes due to the reorientation of the centrifugal 
force field with respect to the blade principal axis due to varia- 
tions in blade angle. This feature can be important in the study of 
subharmonic stability where the periodic variation of coefficients 
may be important, but it also permits being able to make rather large 
changes in rotor speed and collective blade angle without having to 
change blade modal data. 

Mode shapes and natural frequencies are initially determined for a 
twisted blade at or near the collective blade angle and rotor speed 
to be analyzed. Such effects as precone, blade sweep, blade droop, 
and blade angle variation are included in the REXOR analysis and 
couple the initially orthogonal modes. The elastic bending contribu- 
tion due to the modal deflections is calculated relative to the 
blade's static shape. 

As previously noted, the blade modes are initially defined at some 

reference feathering angle, $ 
REF' 

As time progresses in the 

analysis, the blade feather angle varies about this reference posi- 
tion. The mode shapes are correspondingly transformed to account for 
the difference between the instantaneous feathering single and the 
reference feathering angle, at the same time accounting for other 
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effects such as the static and instantaneous shape of the blades. 
This yields the modal coefficients (partial derivatives) that relate 
blade element motion to the blade bending generalized coordinates as 
a function of time. 

The vertical and inplane blade element variational motions,  6Y. and 
i 

6Z.,     can be written as follows: 

SY BY. 9Y. 
ÖYin =  aÄT (Vt)6Aln + ÜÄT (Vt)öA2n + BAT (qr't)6A3n      ^-D 

In 2n 3n 

and 

S 7 9 7 r\7 

6Zin = äÄT ^'t)6Aln + ^T ((1r't)6A2n + it  (^'t)6A3n  (5-2) 
In 2n 3n 

where the given or input partial derivatives are the true modal 
coefficients of the orthogonal modes for the blade in an undeformed 
shape, with no static geometry accounted for, and at the rotor speed 
and collective angle for which the blcole modes were in?tially 
calculated. 

The orthogonal bending modes used in the analysis are illustrated in 
Figures 5-11, 5-12, and 5-13. Observe that the root boundary condi- 
tions for the modes may be cantilevereü or articulated. 

Note that in addition to the normal bending responses, Y. and Z. , 

the spanwise motion of each blade element is also determined, and 
blade feathering due to pitch-lag and pitch-flap kinematic coupling 
effects are also accounted for in each blade bending mode. This 
feathering is added to that due to swashplate motion as is blade 
feathering due to flexibility. 

This modal data is developed to the form used in the blade equations 
in Section 5.5.5. The discussion of modes is carried on from a math 
viewpoint in Section 6.^. 

3.3.h.2    Pitch Horn Bending - Dynamic Torsion 

The remaining mode per blade, pitch horn bending, is comprised of 
either a blade feathering drive flexibility with a torsionally 
rigid blade or an uncoupled torsion mode. Examining the first 
alternative, the swashplate position determines the primary blade 
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"BLn 

!_ A In 

Figure 5-11. First Inplane Mode 

L_A 2n 

^^Ln 

Figure 5-12.  First Flap Mode 

"BLn 

\Jn 

Figure 5-13. Second Flap Mode 
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feathering motion. In addition, the linkage between the svashplate 
and the blade (see Figure 5-lM has flexibility in the pitch link, 
pitch horn, and cuff. The feathering or pitch horn bending degree- 
of-freedom therefore can be rigid blade feathering motion outboard of 
the blade cuff coupled with a net inboard stiffness.  Inboard of the 
blade cuff, feathering flexibility results from the pitch link, pitch 
link bearings, pitch horn, and cuff. The relationship between blade 

feathering, $„  , and motion of this degree-of-freedom,  ß  , is 
Fn rnn 

defined as the partial derivative, I — 
PH /n 

Alternatively, this degree of freedom,  ß 
PHn' 

can be a distributed 

torsional response of the blade based upon defining an uncoupled 
dynamic torsion mode. The selection of the degree-of-freedom repre- 
sentation is made on the basis of the type of analysis being per- 
formed.  The mode defined is uncoupled in the sense that it is not a 
function of the flapping or lead-lag modes. 

An optional quasi-steady torsional response of the blade may be used 
in conjunction with pitch horn bending. This is superimposed on the 
rigid blade feathering and permits a distributed torsional response 
alternative of the blade reacting the spanwise variation of applied 
torsional moments from aerodynamics, coriolis, and centrifugal force 
terms.  The blade torsional response at the ith blade station is 
computed from the following equation: 

KTi 
Mi(x)dx (5-3) 

where S is the Laplace operator, and T™ is the time constant 

associated with blade torsional response. This equation is imple- 
mented numerically in the REXOR program. 

To aid in program trouble shooting the pitch horn bending representa- 
tion (with or without quasi-static torsion) may also be operated as 
a quasi-static degree of freedom without second-order response. 

5.3.5 Swashplate 

The swashplate has three degrees of freedom:  (finrj» 9-,^, and Za . 
or       01       oP 

Rota- 

tions ())  and e^p are Euler angles defining the orientation of swashplate 
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■ SWASHPLATE ATTACH 

BLADE ATTACH 
CUFF 

FEATHER AXIS 

Figure 5-.l1+.    Blade, Pitch Horn and Feather Hinge Geometry 
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coordinates relative to the hub. Likewise, the translation Z   defines 

vertical displacement of the swashplate relative to the hub axis. These 
are shown schematically in Figure 5-9• 

In a gyro-controlled feathering moment feedback system, such as the 
Lockheed concept, the swashplate becomes the control gyro and the swash- 
plate degrees of freedom correspond to the degrees of freedom associated 
with the control gyro. The selection of tMs or other control system 
configurations is optional in the program; fundamentally by data changes 
in terms of inertias and spring rates. 

5.3.6 Gyro 

A gyro is included in the present version of the analysis which permits 
the description of a direct flapping moment feedback-gyro controlled rotor 
system. As already noted, the inclusion of this control system is a 
selectable option in the program. The degrees of freedom associated with 

this gyro are $n  and 6 , 
(j        u 

and are Euler angles defining the orientation 

These degrees of the control gyro relative to the fuselage axis system 
of freedom are shown schematically also in Figure 5-9. 

5.1+ GENERAL MOTION AND COORDINATE TRANSFORMATIONS 

In development of the equations of motion, it is convenient to write the 
forces, moments, velocities, and accelerations .     coordinate systems 
related to separate elements of the system. Consider the concept of 
general space motion of a particle. 

5.^.1 General Case of Space Motion 

For the general case of space motion,a particle, p, moves with respect 
to a reference axis system which is, in turn, in motion with respect to a 
fixed coordinate system. This is illustrated in Figure 5-15 where the 
fixed or inertial coordinate system is designated by capital letters 
X, Y, Z, and the moving coordinate system is designated by lower case 
letters x, y, z. The moving coordinate system is rotating at an angular 

velocity. U). The vector w may, in general, vary in magnitude and 

direction, both of which can be referenced with respect to the fixed 
X, Y, Z axes. 

Thus, the absolute motion of the particle p, referred to the inertial 
X, Y, Z axes, is equal to the motion of the particle relative to the 
moving coordinate axes x, y, z plus the motion of the moving-axis system 
with respect to inertial space. 
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cox r 

Figure 5-15.  General Case of Space Motion in Terms of Moving Coordinate 
Axes x, y, z and Inertial Axes X, Y, Z 
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To visualize the motion of the particle p, let its motion with respect 
to the moving axis system be indicated along a curve s fixed in the 
moving axis system, x, y, z. An observer sitting on the moving axis 
system would therefore see only the motion of p along the curve s. 

From Figure 5-15» the position of p relative to the x, y. 
represented by the vector 

axes is 

xi + yj + zk (5-M 

where i, j, and k are unit vectors along x, y, z,  and therefore must 
be treated as variables due to their changing direction.  Differentiating 
-> 
r results in 

->■->■->•->    ->     ->■     -+• 

r = xi + yj + zk + x - + y ^ + z — (5-5) 

dk di  ->■-*■ dj  "*•  -*■ 
Since — = a)xi, -TJ = UXJ and -r-f = u x k, this exraression can be 

dt dt dt " 

written as 

r = xi + yj + zk + to x (xi + yj + zk) (5-6) 

or 

->■      •*■-+■ 

r = r + a) x r (5-7) 

In this equation, the first term, r represents the velocity p relative 

to the rotating axis, x, y, z. The second term, w x r, is the velocity 

of the point in the moving coordinate system due to the rotation u. The 
->• 

absolute or inerulal velocity R of the point p is obtained by adding 
-> -> 

the velocity of the origin R  of the moving axis system to r , or: 

R = R+r + tüxr (5-8) 

where 
->■->-->■->- 

oi = pi + qj + rk 

and 
• -}■      • ->■  • -> 

to = pi + qj + rk 
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The inertial accelerations of the point p can now be determined by 
simply differentiating this expression with respect to time. Performing 
this differentiation yields 

->-*->-->■ 

R = R+r + (jjxa)xr + wxr + 2a)xr (5-9) 

where the terms u x to x r and w x r represent accelerations of the 
-> 

coincident point in the moving axis system, r is the acceleration of p 

relative to the moving axes, x, y, z,  and 2a) x r is the coriolis 

acceleration which is directed normal to the plane containing the vectors 

to and the relative velocity r, as given by the right-hand rule. 

The vectors expressed in the preceding equations are in the most general 
form Tor defining the motion of a particle moving in a moving coordinate 
system. All special cases can be deduced from these equations. 

For convenience, the time derivative equations can be expanded in matrix 
form. The inertial or absolute velocity and accelerations of the particle 
p, written in expanded matrix form, are given by: 

X 
I 

^0 
I 

X 

Y =   i Yo 
+ . y • + 

Z .V z 
V        ^ k.    J 

-q 

r    -\ 
r q X 

0 -p . y 

P 0 Z 

(5-10) 

and 

r          i 
I 

X 

'Yo + . y - + 

K z -1 

0 

p -q 

-r q 

0 -p 

P    0 

x 

y 

z 

-q 

-r 

0 

P 

x 

Cj 

+  2 

-q 

-r 

0 

" r  ■> 

q X 

p < y 

0 z 

(5-11; 

^.f^^^^t^^^^WimM*^^* ir ->" lirii^tiild-itii ■ 
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Performing the indicated matrix multiplication gives; 

and 

X 
I V I 

X 

Y •    =  < Yo + . y ' + , 

Z lZoJ z 
V         > k.     J 

zq - - yr 

xr - -   ZP 

yp ■ - xq 

(5-12) 

X 

Y 

Z 

>  = < 

lzo 

►  + 

X 

Z 

2    2 ■ ... 
x(-r -q ) + y(pq-r) + z(pr+q) + 2zq - 2yr 

2 2        ... 
+ ^ x(pq+r) + y(-r -p ) + z(qr-p) + 2xr - 2zp 

2  2 
x(pr-q) + y(qr+p) -1- z(-p -q ) + 2yp - 2xq 

(5-13) 

The same vector development applies to the inertial velocity or accelera- 
tion of the reference set. That is, the total derivative is the sum of 
linear and turning components.  The reference for a given coordinate set 
in REXOR is the inertial reference of the hub axis (principal set) plus 
the motion of the set in question relative to the hub axis. 

5.U.2 Coordinate Transformations - Euler Angles 

To describe motions in one coordinate system in terms of motions in 
another coordinate system, Euler angles ij), 6, and ty    with the appropriate 
subscripts are introduced. These angles can be applied to define the 
rotation of one coordinate system, x, y, z,  relative to another coordi- 
nate reference frame, X, Y, Z.  Since the development contained in this 
report utilizes these angles in relating coordinate systems, a brief 
explanation is given here. 
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Rotational displacement of a coordinate system can be represented by the 
three rotational displacements <)), 9, and ^, as shown in Figure 5-l6. 
The order of rotation is not important as long as the sequence selected 
remains consistent and the reverse order is used when rotating back to the 
original position.  In this analysis, the rotations start with displace- 
ment (j) about the x axis, then a rotation 6 about the new y axis, 
followed by a rotation ^ about the new or final z axis unless geometry 
or physical considerations of the modeled part dictates another order. 

This means the  (X, Y, Z)  coordinates can be rotated into the a 
(X, Y, Z)  axis system as follows: 

X 

Y 

Z 
V.  J 

cosip sin* 0 cos 6 0 

sinij; cos* 0 0 1 

0 0 1 sine 0 

-sine 

0 

cose 

0 

COSlJ) 

-sincp 

0 

sin(j) 

COS(J) 

or: 

X 

Z 

'  =  T v a-b 

X 

z 

and the inverse transformation can be writt en as 

(5-15) 

r   A 
X X 

a-b Tv  I ■ b-a 

Z 

(5-16) 

where 

T  V  = a-b 

cos*  sin*  0 

■sin^  cosij;  0 

0     0    1 

cose  0  -sine 

0    1    o 

sine  0   cose 

10 0 

0        cosij)      sinij) 

0      -sincj)      cosij) 

(5-17) 
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r 

X'.X 

I 

AXES (X, Y, Z)b DEFINtD RE!.ATIVE TO REFERENCE 

AXES(X,Y,Z)a SYEULER ANGLES0,0,)// 

Figure 5-l6.  Rotational Displacement of a Coordinate System 
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and 

M'1 
10 0 

0       cos<j)       -sinij 

0      sin4>        cosij 

cosö       0      sinö 

0 10 

-sine       0      cos8 

cosii      -sini);      0 

sini^        costy      0 

0 0 1 

By inspection,  then,   it can be seen that 

or 

inverse of [T] = transpose of [l] 

K-b]"1 = [VbT = [Tb-a] 

(5-18) 

(5-19) 

Carrying out the indicated matrix multiplication yields the transformation 
matrix [T] : 

W ■ 
(cosi|/cos6)       (sin<()sinecos^+cob(|)sini(j)       (-sir6cos(J)cosi|;+sin(f>sin^) 

(-sinif'CQSÖ)     (-sint^sin^sine+cos^cos^)     (sin^sinöcosifi+cos^sin^) 

(sine) (-cosesinif)) (cos(j)Cose) 

(5-20) 

Using this transformation, the inertial velocities and accelerations of a 
point or particle be written in one coordinate system in terms of those in 
the other coordinate system as follows: 

X 

Z 
■ =!>] 

^ ^ i x 

(5-21) 
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and: 

and inversely, 

' = [v.] 
X 

Y 

Z 
v J 

(5-22) 

X 

Y X = w ■ [v.] (5-23) 

and 

X 

Y 

Z 

= [Vj (5-2M 

5.^.3 Angular Velocities and Acce3.erations - General 

For the general case, consider the coordinates in the previous section, 

and let  (p, q, r)  and  (p, q, r)  be the respective angular velocities 
9. D 

of and about the (x, y, z)  and (x, y, a)  axis systems. Also, assume 
£L 0 

that the Euler angles are varying with time ((j), 6, and ty)    and let 

(x» y» z)Q he the reference coordinate set with (x, y, z),  coordinate 
a * '  b 

set moving relative to it. This is illustrated in Figure 5-17. 
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► Ya,q; a'^a 

Xh-P b'rb 

Figure 5-17-  Relationship of Euler Angle and Coordinate 
System Angular Rates 
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Fror1 this  figure,  the following  can be written, 

p 0 COSIJJ sinij; 0 
r 

0 COSÖ 0 -sin9 

a ►     —   . 0 ► + -sinip costj; 0 • e . + 0 1 0 • • 0 

r 
b * 

k. 

0 0 1 0 sine 0 cose 0 

cos(f)  sin(|) 

0  -sini})  coscf) 

P 

(3-25) 

Differentiating this expression with respect to time results in angular 

accelerations  (p, q, r),  in terms of the reference coordinate system 
b 

angular velocities and accelerations. This results in the following: 

0 

► + ijj 

1 

0 

0 

-sini^ COSIJJ      0 

-cosip       -sinij^      e 

0 0 0 

0 cose     o 

o        i 

sine       0 

-sine 

0 

cose 

o o 

coscf) sin(j) 

-sin<() cos^ 

-sine       0 

+  Q       0 

cose     o 

cose      0 -sinf 

0 10 

sine       0 cost 

P 

r 

-cose 

■-e
- 

0 
■ . o .  + 

-sine 0 
. v. 

cos^ 

-sinijj 

0 

0 0 

cos(})       sinij) 

-simj)       cosij) 

sin4/ 0 
r     -\ 

0 

cos^ 0 • - e 

0 1 0 
L k.        * 

^   "^ 

► + ()> 

0 0 

coscj)       sinef) 

0      -sin<))       cose}» 

f   , -x 
P 

d 

r 
a 

J    j 

0 0 

0      -sin(f) 

0 

COS<)) 

-coscfi       -sincj) 

I 
(5-26) 
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These equations represent a general form for defining angular velocities 
and accelerations of one axis system rotating relative to another axis 
system,which in turn is in motion. 

5.5 RELATIVE MOTIONS AND TRANSFORMATIONS USED IN THE EQUATIONS OF MOTION 

In this section are presented the inertial linear and angular velocities 
and accelerations of major components of the vehicle, including motion of 
the principal reference system, the fuselage, the swashplate, the control 
gyro, the rotor, and blade elements. Also included is the development of 
coordinate transformations that relate motion in one axis system to 
another.  Motion of the principal reference axis system in relation to 
the earth is described.  Motion of each component or reference axis system 
is then defined in terms of the degrees of freedom. 

5.5-1 Hub Motion in Inertial Space 

At each instant in time the hub axis (Section 5.2.2) is related to an 
inertial coordinate axis system.  Inertial accelerations of the hub 
axis system are defined by the vector 

0 
v j 

(5-27) 

where the quantities represent the total inertial acceleration of the 
generalized coordinates of the vehicle as defined by motion of the 
principal coordinate axis system. 

Orientation of this system relative to the earth is specified by Euler 

angles (f> , 6 , and i^  as seen in Figure 5-7. The sequence and defini- PE' E rE 
tion of these angles is ^ (yaw), e_ (pitch), (L (roll). Note that the 

ill Üi h 
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sequence of rotations is opposite to that given by Figure 5-l6. The 

angular rates, pTT, qTT, rTr, of the huh or principal reference axis system 
n   n   n 

with respect to the inertial coordinate system can he written as 

■"! - 
P *E 

1 ^    =  , 0 ^         + 

r 
H 

0 

0 0 

0   cos(}.E  sini)>E 

0  -sin^  cos^E 

0 

0 

cos0„  0  -sinf 

sine„  0   cos( 

E 
0 

* 0 ■ 

E. .V 
(5-28) 

This equation can he rewritten to solve for (j>_, Q_,  and 4  as 
E  E       E 

1   sin$E taneE   cos«)) tan0 

COS())t 

0   sincf)^ secö^ 

-sin^ 

cos(() secö^ 

r    A 
P 

^ 

j v -/ H 

(5-29) 

The Euler angles defining orientation of the principal reference axis 
system with respect to the earth is next ohtained by integrating the rates 
with respect to time, or 

*E=7O *Eät (5-30) 

\'l \* (5-31) 

*E=J0 *Edt 
(5-32) 
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Angular velocities of the hut, with respect to the inertial axes reference 

system, pTI, q.., rTT, are defined in terms of the degrees of freedom as 
H  n  H 

p *0 

q z=     * eo 
r 

H *0 

p 

q. r  dt 

H 

(5-33) 

where 

P 

•< 4 

H 

y0 

(5-3M 

Linear velocities of the hub or principal axis system are now determined. 
The first three quantities of the hub axis acceleration vector represent 
the linear inertial acceleration of the hub.  For a system in motion, the 

I 
inertial acceleration, a 

0 at the origin of the system is defined, 

based on the vector algebra of Section 5.1+.1, as 

tit       +  + 
ao =ao + toxV0 (5-35) 

->■ 

where a 0 is 
dVo 
—— , the rate of change of velocity, V , of the origin 

of the moving coordinate system and w is the rotational velocity of the 
moving coordinate system, both relative to the earth. Now making the 
definition 

u 

w 

(5-36) 
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gives 

X0H 
I ü 

^OH 
•     =  « V •    + 

H 
w 

H 
-q 

r q. 

0 -p 

P 0 

u 

w 

(5-37) 

From this equation, then, the rate of change of velocity of the moving 
coordinate reference system becomes 

u 

w 

► = < 

X0H " VH + rHVH 

Y  - r u + ü w 
OH   H H  PH H 

Z0H - PHVH + VH 

(5-38) 

This set of accelerations and the time integral are transformed into rotor 
and fuselage sets and rep/esent airflow acceleration and velocity incident 
on the helicopter. 

A separate set of hub accelerations is carried through the analysis, based 
on the hub set, which contains the acceleration due to gravity.  Ordinar- 
ily, gravity is treated as a force of mg on the right-hand side of the 
equations.  However, the gravitational term can be introduced by defining 

X0H 

^OH 

^OH 
H 

X0H 

^OH 

"OH 

I 

-  < 

H 

gx 
gY 

gz 
to            > 

(5-39) 

where S,vu,  &vu,  §„,, are the three components of the gravity vector to 
An   In   Ziii 

be defined. The hub acceleration on the left may be defined as being in 

"earth-inertial" axes. 
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The logic behind this substitution is as follows.  For a rigid body in 
motion, the equilibrium equations can be written as 

mX = m(u + qw - rv) = F 

mY = m(v + ru - pw) = F 

mZ = m(w + pv - qu) = Fr 

(5-i*0) 

where 

F       F       s 
X       X      SX 

FY ' = ' FY ' + ' gy (5-Hl) 

F , FY, and F  represent the external forces acting on the body, exclusive 

of gravitational forces. 

Subtracting the gravitational vector from each side of the previous 
equations yields: 

m(X - gx) = ra(u + qw - rv - g ) = F 

mU - gy) = m(v + ru - pw - gY) = FY 

m(Z - gz) = m(w + pv - qu - g,,) = Fz 

(5-^2) 

(5-^3) 

(5-MO 

which by inspection gives 

X - gx = u + qw - rv - gx 

Y - gY = v + ru - pw - gY 

Z - gz = w + pv - qu - qz 

(5-^5) 

(5-^6) 

(5-^7) 
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Rearranging these equations yields: 

ü = (X - gx) - qw + rv + gx 

v = (Y - gY) - ru + pv + gY 

w = (Z - gz) - pv + qu + gz 

(5-W) 

(5-^9) 

(5-50) 

The first terms on the right side of the equation are identified with the 
proposed gravitational acceleration definition of equation 5-39- 

Making the substitution: 

u 

v 

(0H " VH + rHVH + SXH 

^0H " rvS + PHVH + SYH 

^0H - PHVH + ^ + gZH 

(5-51) 

In this equation, the accelerations X0H' Y0H' and Z0H are the degree- 

of-freedom accelerations of the hub or principal reference axis system 
used in the REXOR analysis.  These accelerations represent the inertial 
accelerations plus the equivalent accelerations of the reaction force to 
gravity. Thus, gravity is an equivalent acceleration applied to the 
refeience coordinate axis system. Via coordinate system referencing, 
every mass element on the vehicle is therefore acted upon by this accel- 
eration. This avoids including gravitational force as an external force 
individually applied to each mass element. 

The gravitational vector at the hub is simply the gravity vector in earth 
axis transformed to the hub axis system through the Euler angle rotations 

$E, eE, and ^ .  Or 

gZ 

0 

= M (5-52) 
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where 

T 
_ E-H_ 

10 0 

0 cos^E       sin^ 

!_0      -sin*E      cos(},E 

coseE     0     -sineE 

sine        0        cose^ 

costk. 

-sin^ 

sinij;        0 

cost)/        0 
E 

1 

(5-53) 

The velocities of the principal axis  system are obtained by integrating 
the rates  of change of velocity with time,  or 

X0H 
I 

^0H 
►     =   . 

Z0H 
H 

u 

V 

w 

v      J 

w 

V       J 

\    dt 

H 

(5-5M 

These velocities in earth coordinates can be written as 

V0H 

OH 

^OH 
V      J 

'            •» 

X0H 

V 
^0H 

un 

=  T     . Y   .  =  T  1^ 
. H-EJ  'OH    |_rE-H 

OH 

'OH 

^OH 
v.   J 

(5-55) 

which can be integrated to give the position of the system relative to the 
earth. Doing this yields 

^OH 

OH 

J0H 

-f 
Jb 

OH 

OH 

OH 

dt (5-56) 
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5.5.2    Fuselage Motion in Inertial Space 

As  shown in Figure  5-3,  the  fuselage  is rotated from the huh position hy 
bending of the rotor  shaft.     The  origin of the  fuselage coordinate axis 
system is  displaced from the hub  axis  system by the distances 

P0FI 
Y0F f 

M V           , f J H 

in hub  coordinates (5-57) 

or 

f          -v 

M 1 Y    i 
OF f 

Z0F 

in fuselage coordinates (5-58) 

As  discussed earlier,    Xnr, and Y are functions  of shaft  or pylon bend- 
Ur Or 

ing and hence are not independent degrees of freedom. The fuselage rota- 

tions relative to the hub are described by the Euler angles -6 and -$ 

taken in that order.  The minus signs and reversed order are taken so the 

transform from fuselage to hub is  (j)  and then 8 . 

From Figure 5-3, the location of the fuselage reference in hub coordinates 
is 

X0F 

Y0F| 
►         ~ es 

Z0F 
V.                   J 

H * 

axF/9es 

0 

0 

+ $a 

■\ 
i>                «^ 

0 0  ! 

9V8*s + 0  j ►     = 

0 
H 

Z0F 
1        j 

H        j 

es 3xF/9es 

*s 8YF/3*S 

(F H 

(5-59) 
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Now,  defining the transformation from hub to  fuselage coordinates as 

M 0  coscj)   -sinij) 

0  sin^Q   Gos(f> 
b b 

cosö   0  sinO 

-sinO   0  cosö 

(5-60) 

The inertial velocities of the fuselage reference system in fuselage 
coordinates can be written as 

OF 

"OF 

OF 

X0H 
I 

T      1 " 
^-F Y0H 

•    +   - 

Z0H 
H 

es axF/8es 

0  -r 

r   0 

-q   p 

es 3xF/9es 

*S 
9V3*s 

OF 

(5-61) 

Differentiating this expression once more with respect to time (Sec- 
tion 5-^.1) yields accelerations of the fuselage reference point in 
fuselage axes. 

OF 

OF 

OF 

'  = N ' 
-f          -» I x 

OH 

■   Y '     +     < 
OH 

z 
OH 

k. V                            4 
H 

es 8XF/3es 

► + 

H 

0  -r 

r   0 

+ 2 

0 -r q. 0 -r      q 

r 0 ? r        Op 

-q P 0 
H 

-q         p       0 
H 

0 -r q 

L. 

'es Vaes 
r 0 -p • 

*S  3YF/9*S 

-q. P 0 
H 0 
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►« 

eS DXF/39S 

*S 3YF/8*S 

OF 

q 

-p 

o 

H 

(5-62) 
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These two equations define the linear velocities and accelerations of the 
fuselage reference point in fuselage axes in terms of the generalized 
coordinate velocities and accelerations of the huh or principal reference 
axis system, and in terms of the shaft or pylon bending generalized coor- 
dinate displacements, velocities, and accelerations. 

Keeping in mind the order of rotation of 9 and (f , and the rotation 

formulas developed, the angular velocities  (p, q, r) , of the fuselage 
F 

reference system can be written as: 

- n " f 

*s 1 0                  0 0 

0 '    + 0 cosc|)s      -sin(J)s ■ --K 
0 

- 
0 sin<j)s        coscjig 0 

f- -. r     -v ■* 

coses 0 sines P 

0 1 0 * q - » 

_] 3ines Ü coses r 
H. 

(5-63) 

Likewise,  the angular accelerations  of the fuselage reference become 

r 
v.     J 

= < 

-*, 

0 1. 
0 

0 0 0 

0      -sincfi -coscj) 

0        cos(})        -sin(|)_ 

0 

0 

cose 0      sine 

0 

-sine s    0     coses 

r      ■« ■* 

P 

^ q. • ■ + 

r 
L   J H: 

1 0 

0      cos(t)c 
L. 

0      sin(t). 

0 

-siniji 

COS(fi 

r >•          -i 

0 

s 4 * -*s 

s. >. 
0 

t       J 

-sines      0 

0 

■cose. 

o 

o 

cose,. 

0 

■sine. 
H     L 

cose 0      sine 

-sine        0      cosec b b. 

f    ■% 

p 

r 
V      J HJ 
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Tha above equations define the fuselage reference axis system angular 
velocities and accelerations in terms of hub or principal reference 
axis system angular velocities and accelerations and shaft angular 
displacements. 

5.5.3 Motion of Rotor Coordinate Axis 

The rotor coordinate axis system is shown in Figure 5-5. Note that the 
rotor coordinate axis system is rotated l80 degrees about the Y axis 
relative to the hub axis system at the time when the rotor is at azimuth 
position zero. That is, X and Z change directions. The rotor coordinate 
system then rotates through the angle ij;  from this position. 

K 

The sequence of rotation in going from hub to rotor coordinates consists 

of first a l80-degree 6 rotation, followed by the I|L rotation. 

Following the convention established in Section 5-^.2 for Euler angles; 

M = 
COSI(L      sini/v.      0 

-simlv,       cosijv,      0 

lJ  - 

cosir      0      sinir 

0 10 

-sinir      0      cosir. 

cost|j        sin^R      0 

-siniL      cosij\,      0 
n rv 

_     0 1. 

-10 0 

0       10 

L0       0       -1, 

(5-65) 

where the last matrix represents the 180-degree    9    rotation.    The next 

matrix is the rotor rotation,    i|>. 
R Jo 

SL, dt. 
R 

Since the origins of the rotor coordinat3 system and the principal refer- 
ence axis system are coincident, the linear velocities and accelerations 
of the origin of the rotor coordinate system can be directly written as: 

M 
0H 

OH 

OH 

(5-66) 
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and 

^0 

^0 

■^c 
V.         j 

= [VH] 

-              -"I 

X0H 

VOH 

■^OH 

(5-67) 

Noting gravity has been treated as an equivalent acceleration in the hub 
generalized coordinate accelerations.  This same equivalent acceleration 

is included in (X,., Y , Z ) , the rotor coordinate accelerations, 
U   U   UK 

The angular velocities, p_, q-,, r_,  and accelerations, p , q , r_ of 
n   n  K K   n   n 

the rotor coordinate system are determined; again noting the rotation 
order.  The rotor coordinate system angular velocities are: 

-v r r    ^ 
p 0 

q. ^           S           4 0 ■   + 

r 
R UJ H 

cosi^   sin^n  0 
n       n 

-sin^  costL.  0 

/■  "\ "\ 

P 

-r 

(5-68) 

Likewise, accelerations of the rotor coordinate system are: 

*        ■" ••          -v - 
r       ^ 

p 0 -sin^R        cos^R 0 -p 

4 *    - 
=    ■ -  0 + 

*R 
-cosi//R      -3int|/R 0 • q 

r 
R 

^R, H 
0                 0 0 -r 

_ <"        -i > 
cos^R sin^R      0 -P 

+ -sini|;R cos^      0 ■ 4 * ► 

0 0           1 -r 
H 

L J ^ * 

(5-69) 

The above equations then define the coordinate transformation from hub to 
rotor coordinates; and rotor axis system linear and angular velocities and 
accelerations in terms of velocities and accelerations of hub and the rotor 

degrees of freedom ty R' 
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5.5.^ Blade Coordinate Relative to Rotor Coordinates 

Interim equations to describe teetering make use of ZnT,T , the 'blade 

undersling.  These equations are approximations given in Section 6.7. 

It is assumed tne blade axes and rotor axes origins coincide and Znr,T - 0 

in this section. 

Referring to Figure 5-5» observe that each blade has its own coordinate 
axis system. 

Since each blade has its own blade reference system, the X^,.  and Y^T BLn     BLn 
axes are rotated with respect to the X„ and Y  axes azimuthally by an 

n      n 
angle ^    defined by the equation 

_ -jMn-l) 
rBLn 

(5-TO) 

where b is the number of blades and n is the blade number. This 

equation states that the X   and X.,,  and the Y    and the Y  axes 
aLx K BLi R 

are coincident. 

The transformations between the rotor coordinate axis system and the blade 
coordinate axis systems are defined by the equation 

LTR-BLnJ 

cos^BLn  sin^^  0' 

-sin^BLn  cos^BLn 

0       0 

(5-71) 

Note that these equations define blade one as being straight aft at time 
zero. 
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In the "blade reference axes, the velocities and accelerations of the 
origin of the blade reference axis  system become: 

X 
OBLn 

OBLn 

J0BLn 

[TR-BLnJ 

BLn 
0 

(5-T2) 

and 

OBLn 

OBLn 

J0BLn 

LTR-BLnJ 

BLn 

(5-73) 

Likewise, the angular velocities and accelerations of the blade reference 
axis systems become: 

r 
v.    y 

[TR-BLnJ 

BLn 
r 

R 

(5-TM 

and 

r 

^R-BLnJ 

BLn R 

(5-75) 
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5.5.5 Blade Element Motion 

The following blade motion description, due to the involved nature of the 
geometry, is rather lengthy. First, in this development, the motion of 
the "blade with respect to the relative "blade coordinates is given. This 
motion is the sum of static and modal deflections. Then the relation to 
freestreara coordinates is computed. Partial derivatives are extracted 
from the transformations for use in the equations of motion of the "blade 
in Section 6.6. 

The blade element motions for the nth blade are defined relative to the 
blade  (BLn)  coordinate reference axes (Figure 5-5).  The blade element 
relative motions are functions of the static shape, of blade feathering 
and torsional deflection, and of blade bending of the coupled inplane and 
flapping modes. 

The static shape includes such items as blade twist, <}> 
TW 

hub p "econe 

angle,  3 , blade droop angle relative to the precone angle, y,    blade 

sweep angle,  x 
0' 

feathering axis precone,  ß ., the blade feathering 
rA 

angle, and the blade element center of gravity location. 

The blaie motions about this static shape include the effects of the 

three blade bending modes, A. , A, 
In  <; 

and blade torsional deflection, $ 

three blade bending modes, An , A„ and A^ , blade feathering,  dv , 
In  2n     3n a'  Tp» 

The blade element motions are now defined.  The blade static position in 
the blade reference axis system is first developed. The blade bending and 
feathering deflections are then introduced.  Both deflections and slopes 
are developed and then these equations are differentiated with respect to 
time to obtain the blade element linear and angular velocities and 
accelerations. 

The blade element linear motions are developed in blade  (BLn)  coordinates 
and the blade element angular velocities and accelerations are developed 
in blade element  (BLE) coordinates. The coordinate transformation 

matrix 
LTBLn-BLEj 

is also defined to permit the transformation of the 
BLn-BLEJ 

inertial velocities and accelerations from one axis system to the other. 
The development of the blade relative motion equations now starts with 
the description of the shape of the blade. 
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5.5.5.1 Blade Static Shape 

Blade elemental motion is defined as motion of the blade element 
reference axis system which has its origin at the blade element 
center of gravity. The blade aerodynamic reference axis is selected 
as the lA chord. Likewise, the geometry and dynamics are referenced 
to the lA chord, though any reference line could have been used. 
Starting with the straight untwisted blade with the blade 1/h  chord 

lying along the X, 
BLn axis as in Figure 5-l8, the blade element eg 

and blade element coordinate axis system origin are defined by the 
coincident point defined by the vector 

XCG(i) 

YCG(i) 

zCG(i) 

(5-76) 

BLn 

in blade coordinates. The dimension X (i)    is the undeformed 
CG  BLn 

spanwise location of the cg/blade element origin. The dimension 

Y (i)    is the chordwise location of the cg/blade element axis 

system origin forward of the blade l/h  chord and Z_-(i)_T  is any 
LG  BLn 

vertical offset of the cg/blade element origin with respect to the 
reference chord plane of the blade. 

Now, introducing blade twist by rotating about the X 
BLn 

axis 

through the local blade twist angles, Figure 5-19, results in: 

X(i) 

Y(i) 

Z(i) 

BLE 

BLE 

BLE 

► = •. 

X(i) 

Y(i) 

Z(i) 

BLE 

BLE 
►       = 

BLE. 
BLn 

0 

COSCJ), 

sinf 

TW 

TW 

0 

-sin<f>, 

COS<)) 

" r   "v 

XCG 

TW ■ YCG 

TW_ L
ZCG 

(5-TT) 

BLn 

The Roman numeral subscript I denotes the first of a sequence of 
static line transformations. 
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BLE _... 
4       Z<,,BLn 

'BLn 

Figure 5-18.     Blade Element CG/Origin Location in Blade Coordinates 

ZBLn'7\ 

BLADE ELEMENT eg. 
OF PARTICLE m: 

BLE 

V* CHORD 

► YBLn.Yl 

Figure 5-19. Effect of Blade Tvist on Location of Blade 
Element CG/Axis System Origin 
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At this point the subscripting, BLE will be dropped to simplify the 
development.  Rewriting the above equation, we have: 

X(i) 

Y(i) 

Z(i) 

►  = 

0 

COS(() 

sinij) 

TW 

TW 

0 

-sinij); 

cos^ 

XCG 

TW 
• YCG 

TW_ 1
Z
CGJ 

(5-78) 

Introducing blade coning, P , results in the location of the blade 

as shown in Figure 5-20. This results in: 

X(i) cosß0 0 

Y(i) = 0 1 

Z(i) TT sinßn 0 

-smfc 

cost 

X(i) 

Y(i) 

Z(i) 

(5-79) 

The next item of static geometry that is considered is blade droop, 

Y, and then blade sweep, T . These rotations are shown in 

Figure 5-21. Note that since the blade sweep and droop angles are 

introduced at a distance Xni7 out on the blade, it is first neces- 
SW 

sary to transfer axes to this location before making the rotations. 

Therefore, the blade displacements outboard of Station X„„ become: 
SW 

X(i) 

Y(i) 

Z(i) 
III 

COST, 

sinx. 

-sint. 

COST, 

cosy 

0 

0 

1 

-siny  0 

siny 
r 

'x(i)' 

0 * . Y(i) 

cosy Z(i) 
_ v   3 II 

xswcos3o 

xswsinßoj 

(5-80) 

70 

!:af^.w^>^to,^-&;^v^^^ 



Eg^.-yw^.^f^a'«!^ 

Figure 5-20.  Blade Precone Angle,  ß 

xswsinßo   l" 

Figure 5-21. Blade Sweep, T   and Blade Droop, y 
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At this same station, provisions are im^roduced to allow for offsets 
of the blade in both the vertical and horizontal directions by 

Z.  and Y,  , respectively. These offsets are shown in Figure 5-22. 
jog    jog 

These offsets represent displacement of the blade l/h  chord with 

respect to the blade precone line at blade station X SW 

Introducing these offsets,   :.hen,  and transferring back to the center 

of rotation through    X0.r    results in the  description of the blade 

displacements outboard of station    X SW including the effects of 

precone,  sweep,   droop,   and offset of the blade from the precone line. 

[x(i)> X(i)l 

Y(i) ►        =   \ Y(i)[ 

lz(i) 
IV        i 

Z(i)l 

+   . 

Ill 

jog 

JOgJ 

►   + , 

xswcosßo 

Lxswsinßoj 

(5-81) 

MV 

Figure 5-22. Introduction of Blade lA Chord Offset, Y   and Z 
With Respect to Precone Line '3og    j0S 
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At this point, a reminder that the prior development represents the 

blade displacement inboard of Station X   and the above equation 

outboard of Station X, 
SW* Therefore,  inboard of Station    X SW 

X(i) X(i) 

Y(i) 

Z(i) 

►       —       4 Y(i) 

Z(i) 

(5-82) 

II 

Outboard of Station X SW 

X(i)' 

Y(i) 

Z(i) 

X(i) 

Y(l) 

Z(i) 

(5-83) 

IV 

With this in mind, the remaining developing of including the effects 
of feathering axis static precone and blade reference feather angle 
in describing the static blade position continues.  No distinction 
will be made in the following developments between inboard of 

Station X SW and outboard of Station X SW* 

Figure 5-23 shows how blade feathering is introduced. The axis 
system is translated to a point p which is located at the inter- 
section of the precone line and the feathering axis. The location of 

this point is a distance Z      along the cone line, as shown in this 

figure. The blade is first rotated to the feather axis; then rotated 

about the reference feathering angle, 4>0-n™> the feathering angle 

for which the blade modes are defined. Doing this results in: 

'x(i)" 

Y(i) *                = 

Z(i) V 

0 

COStj) 

sini}> 

REF 

REF 

0 

-sin(J) 

COS(j) 

REF 

REFJ 

— 
C0S3FA 0 

sinf3 

0 1 0 

:sinßFA 0 cosß 

FA 
'x(i)' 

« Y(i) 

FA. Z(i) 

£ cosßn! p   0 

0 

I  sinB 
L P o 

(5-810 
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FEATHERING AXIS 

"BLn 

Figure 5-23.  Point p and Feathering Axis Precone 3 
FA 

This equation defines the location of the static shape of the blade 
in an axis system with the y-axis horizontal and the x-axis aligned 
with the "blade static feathering axis.  Transforming now back through 
the feathering axis precone angle and translating back to the rotor 
shaft centerline results in the static shape of the blade defined in 
blade coordinates, or 

xs(i) cosßFA 0 
-Sin3FA X(i) 

Ys(i) 
► 0 1 0 « Y(i) 

lZs(i) BLn _sin3FA 0 cosV Z(i) 

fa cose. 
p  0 

0   ► 

/    ^ p    Oj 

(5-85) 

where subscript S refers to blade static or undeformed shape. 
Combining equations developed so far results, then^ in the following 
two equations which represent the static shape of the blade for both 
inboard and outboard of blade station X  . 
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Inboard of Station    X 

.1; 
BLn 

S 
V. J BLn 

SW 

coseFA      0      -sin3FA 

sinl 
FA 

1 0 

0 cosß. 
FA 

1 0 

0       cos<() 
REF      -SinV 

0      sin^        cos*^ 

cosßFA       0      sinßFA 

-sinßFA      0      cosßFA 

10 0 

0      cos<j,TW      -sin^ 

0      sin^        cos,},, 

£ cosß„ 
p 0 

+   . 

I sinß^ 
p      p0 

cos30      0      -sinß 

sinß0      0        cosß 

XCG 

'TW 
* Y0G '     -        • 

TW 2cG 
J *- 

p       p0 

(5-86) 
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Outboard of Station X SW 

BV»«>V<»-WIW;!W;-5<'!'«"
:,
"'''

,
^

:
"K

>
'
;
>; 

^BLn 

COsßFA 
0 -sinßFA 1 0 

0 1 0 0 COS()) 

sinß™ 0 cos^A 0 siml) 
FA 

'REF 

•'REF 

0 

-sine}) 

COS({) 

REF 

REF. 

cos3FA  0 

-SinßFA  0 

sinß 

0 

cosß 

FA 

f 

• 

FA. V 

COST     -sinT0    0 

SUIT. COST     0 

cosy  0 

0    1 

-siny  0 

siny 

0 

cosy 

cosß0  0 

sinß0  0 

xswco3ßo 

xswsineojJ 

-sinß 

0 

cosß 

0 

Oj 

1    0 

0   COS(t> 

0  sinij) 

\   + \ jog 

jog 

TW 

TW 

0 

-sin^ 

COScJ) 

XCG^ 

TW 
« YCG 

TW. >. 

rH^\ 
\ + 0 

xswsineo 

^ - < 

l  cosßn 
P  o 

£ sinß- 
P   0. 

+ < 

i  cosßn 
P   0 

. i  sinß. 
LP  o. 

(5-87) 

These two equations then define completely the static shape of the 
blade. The development will now proceed to include the blade bending 
or elastic deformation. However, before proceeding with this, the 
static location of the blade feathering bearing is defined since 
these will be used in the development that follows. 
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Referring to Figure 5-2^, it can be seen that the static position of 
the inboard feather bearing location can be written as: 

SIB 

K 
'IB 

JIB 

= < 

BLu 

ilIBcosß0 

^IB^O- fp-^f^^FA-^O^^O 

(5-88) 

The static location of the outboard feather bearing is: 

xs S0B 

OB 

"OB 

= < 

BLn 

£0BCOsß0 

^OB3 '^O + (^OB " \)( ^OB " Mf^^FA " ß03)COSß0 

(5-89) 

With these definitions, the analysis will now proceed to include the 
effects of blade bending, blade feathering, and torsional deflection. 

-BLn 

OB FEATHER 
BEARING 

BLn 

IB FEATHERING 
BEARING 

Figure 5~2h.     Static Feather Bearing Geometry 
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5.5.5.° Blade Shape - Elastic Deformation 

In the foregoing development, the analysis has proceeded in a 
completely rigorous fashion.  At this point, though, a departure 
from a completely rigorous simulation of the elemental "blade motions 
will be made.  It will be assigned, as far as blade elastic deforma- 
tion is concerned, that the cosine of angles, like precone less droop, 
blade sweep, elastic flapping, and elastic inplane slopes, but not 
blade feathering is approximately equal to 1, and therefore, the 
blade elastic deflections, y and z,  in blade coordinates, will be 
assumed to be equal to those in the static blade element coordinates. 
This assumption is a reasonably valid assumption and is completely 
consistent with standard practice in the mathematical representation 
of blade element motions. 

Additionally, as far as the effect on structural axis reorientation 
due to blade <£ rotation, the effect due to blade elastic twist is 
considered to be small compared to that due to blade cyclic and 
collective feathering.  Also it will be assumed that the contribu- 
tions to blade Y and Z motion are small due to blade torsional 
motion, other than that due to local center of gravity offset. 

With these assumptions in mind, blade elastic bending will now be 
introduced.  The contribution to elastic blade bending is simply 

0 

YBEND 
*                    = 

ZBEND 
BLn 

0 

Y, 

0 

Y. 

Aln 

• A2n 

A3n 
L   J 

(5-90) 

Note that X or spanwise motions are not included in this equation. 
Blade spanwise motion will be determined separately by utilizing 
blade slope data to determine the change in the projected blade 
length upon the blade X axis.  With this in mind, the total Y and Z 
blade motions including blade bending, but not yet including blade 
feathering or blade elastic twist, is strictly the sum of the pre- 
vious static line expressions and the modal deflection. Blade 
torsional deflection is treated as an independent degree of freedom, 
and therefore is not included as part of these blade modes. Combining 
the previous static deflection with the modal deflections gives: 

X(B+S) 

Y(B+S) 

_Z(B-i-S) 
BLn 

+ * 

BLn 

BEND 

BEND 

(5-91) 

BLn 
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5.5.5.3 Blade Feathering 

Blade feathering is relative to the reference feathering angle «ta,™. 

The feather angle, then, as far as blade motion is concerned, is due 

to the difference 

feather angle <i> 

to the difference in the total feather angle $_ and the reference 

rREF" 

The bladi-; feathering motion is introduced similarly to the way the 
blade reference feathering angle was introduced, except that the 
feather axis slopes are due to the static position as well as due to 
elastic deformation in both the flapwise and inplane deflection. 

If we let Z'  and Y'   represent the instantaneous vertical and 
FA      FA 

inplane slopes of the feathering axis, then transferring to the 

inboard feathering bearing, making the rotations through Z'  and 
r A 

Y'   to the feathering axis, rotating through the delta feather 
rA 

angle -Up-^p) or -A<f>F, rotating back through -Y'FA and -Z
,pA, 

and then transfer.Ing back to the BLn axis system results in the 
definition of the displacements in blade axis coordinates. 

However, before proceeding with this, the feathering axis slopes 

Y1  and Z'   are defined. The slopes are simply defined as the 

differerje in the total static and elastic deflection of the outboard 
and inboard feather bearings divided by the spanwise distance 
between the bearings. Then from Figure 5-2*1 and the bearing static 
location equation: 

FA sin 
-1 OB ■IB 

(5-92) 

and 

FA 
«s sin 

-li Z0B " ZIB 
(5-93) 
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where in terms of the static and modal deflections 

0 

" r 

XIB 
^IB 

YIB 
' = • 

\B 

► + 

ZIB 
>IB. 

0 0 

IB, 

IB. 

Y     Y 
IB.  'iB 

2 

'2 
ZIB„  2IB 

'      ^ 

Aln 

• A2n 

3n 

(5-9M 

and 
■■      > 

Y0B 
■ = . 

\B 
• + 

Z0B 
. ^B. 

Y     Y 
0Bn    OB, 1 

31 
V   Z0B, 

OB, 

J0B 
3J 

f 
Aln 

■ A2n 

[A3n 

(5-95) 

In the development that follows, the time derivatives of Y'  and 

Z'   are required, so therefore, they are now defined.  Taking the 

first and second time derivatives of the slope equations yields: 

Y,
FA"

(Y
OB-V

/COS
(
Y
V

£
B (5-96) 

Z,
FA" 

(Z
OB-
Z
IB

)/COS
(
Z,
FA

)£
B (5-97) 

and 

Y,FA " (Y0B - V /C0S(Y,FAHB + S:Ln(Y,FA) Y,FAy/c0s(Y'FA) 

Z,
FA " (ZnR - ZTR) /cosiZ'^)^  + sinCZ'^) Z'^/costZ'  ) FA   V"0B  "IB FA'^B FA' " FA FA' 

(5-98) 

(5-99) 
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where 

r        "\ 

'IB 

JIB 

Y     Y     Y 
IB1   IB2   IB3 

ZIB1  
ZIB2  

ZIB3 

In 

A0 \ 2n 

A 
3n 

(5-100) 

^OB 

Z0B 

Y     Y     Y 
0B1   0B2   ■0B3 

Z0B1  
Z0B2  

Z0B3 

In 

A
2n 

L 3n 

(5-101) 

and where 

VIB 

ZIB 

Y     Y     Y 
IB^^   IB2   IB3 

ZIB1  
ZIB2  

ZIB3 

r            "V 

Aln 

- Ä2n 

[Ä3nJ 

(5-102) 

V0B 

Z0B 

Y     Y     Y 
0B1   0B2   OB 

Z0B1  
Z0B2  

Z0B3 

A. 
In 

A 

[ 
2n 

A 
3n 

(5-103) 

Transferring the blade displacements as indicated above to the 
inboard feather bearing, transforming to the feathering axis, and 
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performing the feathering rotation as discussed earlier, yields the 
following equation which defines the hlade displacements in blade 
axis coordinates: 

X 
(F+B+S) 

(F+B+S) 

'(F+B+S) BLn 

cosZ'FA  0  -sinZ'FA 

sinZ'FA  0   cosZ'FA 

cosY'    -sinY' n  0 
FA       FA 

sinY' 
FA 

cosY' .  0 
FA 

0  cosAA -sinA(f)_ 
r r 

0  sinAij) cosAi))^ 
r F 

cosZ'FA  0  sinZ'FA 

-sinZ'FA  0  cosZ'FA 

•V             r ' 
X(B+S) 

•      . Y 
Y(B+S) 

J       v 

Z(B+S) 

XIB 

IB 

IB 

IB 

"IB 

IB 

cosY'FA  sinY.FA  0 

-sinY'FA  cosY.FA  0 

(5-1010 

This equation then gives the "blade displacement in blade coordinates, 
including the effects of the static shape, blade bending, and blade 
static twist. The effect of blade elastic twist is now considered. 

5.5.5.^ Blade Elastic Twist 

Blade motion due to blade elastic twist is accounted for by going 

back to the static twist equation. Blade elastic twist, (j)  is 

assumed to be directly superpositionable with blade static or blade 

pretwist, (})  , except that the static pretwist takes place about 

the lA chord, and the blade elastic twist takes place about the 
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blade element shear center. This is shown in Figure 5-25. From this 
figure it can be seen that previous static twist equation can be 
rewritten as: 

BLE 

BLE 

BLE 

0       cos<()T      -sin<fiT 

0       sintJVp        cos^ 

0  Cos<(.TW  -sin*TW 

0  sinij), 
TW 

COS(j)r 

0 

(sc 

0 

► + 0  cos<).TW  -sin^ 

0  sinff", TW cos()> 
TW 

TW 

0 

[sc 

0 

J  V 

CG 

CG 

CG 

(5-105) 

If we let *m = (^m + '('my) then this equation becomes 

-1 

XBLE 

Y 
BLE •   = 

ZBLE 
k           4 I 

= 0  cos<I> 

0  sin*. 
T 

0  cos$„ 

0  sin$„ 

-sin$„ 

cos^ 

XCG 

f     - 

0 

■" 

■ ►   —  i Ysc 
» • + > 

ZCG 0 

- V.     .. \. J J 

YSCCOS*TW 

YSCSin*TW 

•sin*, 
T 

cos*, 
T 

^   -s 

XCG 
- 
YCG 

ZCG 
h.     w 

.   + Y 
SC COS<f,TW~COS<I>T 

Sin<*'TW"sin$T 

(5-106) 

5.5.5-5 Final Blade Element Y,Z Displacement Equation 

Substituting the above equation in the previous development sequence 
yields the blade displacement equation which includes the effect of 
the static shape of blade bending, of blade feathering, and of blade 
elastic twist.. 

However, before proceeding with these substitutions, the following 
column vector is defined to simplify the notation. 
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Z(il 
Zl'ZBLn 

BLE 

^Yl'YBLn 

a)  BLADE PRETWIST, 0(1)-,^, ABOUT BLADE REFERENCE AXIS 

Zl'ZBLn 

#-Y|.VBLn 

b) BLADE ELASTIC TWIST, (Mi)T ABOUT BLADE SHEAR CENTER 

Figure  5-25.     Blade Static Pretwist,     $        and Elastic Twist,     *, 
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M 
X 

a 

The total 'blade  element  displacement  equation becomes; 

"BLE 
BLn 

(5-107) 

-■vJ [-.■„]' M ['-„] [-■ 

•|[KJU'[''J]|[[\rH'] 
■ (HIH W • lU - Ml H 

- M HI * IN • N' H 
- hi Nil • IN' W 

(■ IB ('■■I 
where: 

m (vi = 
0 0 0 Aln 

Yl„ Y2n Y3n 
i A2n 

zl„ Z
2n 

?'3nJ LA3nJ 

(5-108) 

(5-109) 
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Note that for convenience of using the condensed matrix notation 

discussed above, the most general vectors for such terras as i , 

X_„T, Z±     ,  and Y_„ have been used. As can be seen in this equation, 
SW  jog'     SC 

these have all been treated as full vectors. Making the appropriate 
substitutions of course will result in the expressions previously 
obtained. 

It is noted that the equation is written for the relative displace- 

ment of points on the blade outboard of Station X  .  Inboard of 
DW 

that station, the displacements are determined from the previous 

inboard equation or simply by zeroing out such terms as  |r  | and 

r  r and substituting unit diagonal transformations for 

H N and 
in the full equation.  Following either approach yields the 

blade displacement equation for points inboard of Station X0,.; or 

'BLE^ 
BLn ■[['■.J['-JKrhvj[-j]|l[ir]Hl 

•([U'U'MIN'N'H 
•(W-NlHl-H'H 
• M -.11 - HI • H (5-110) 

The ith. station blade displacements, Y and Z, in blt-de coordinates 

for points on the blade both outboard and inboard of station Xr 

are then defined. 
SW 

5.5.5.6 Blade Element Y and Z Relative Velocities and Accelerations 

The blade element coordinate axis system linear Y and Z velocities 
relative to the blade reference axis system can be found by differ- 
entiating the position equation with respect to time.  Note that no 
distinction will be made at this point between outboard or inboard of 

station Xqu, but using t.ie equation for displacements outboard of 
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this station and as discussed earlier, zeroing out certain terms, 
results in the equations for velocities or accelerations of point! 
inboard of that station. points 

'BLE 
«• J 

BLn 

("•     IT r      -"IT r    TT r      "i r 
. FA

[I.
Z,

FAJ L
Y,

FAJ LSJ L
Y
VL

Z
'FA 

IT r      IT r    TT r     ~\ r•     ~\ +     T T TT T 
P'FAJ    L Y,

FAJ    L A
*FJ    L Y

'FAJ L Z,
FAJ_ 

r      TT r*     ~IT r     IT r      "i r 
FA
[L

Z,
FAJ   P'FAJ   [

A
*FJ   L

Y,
FAJ L

Z
'FA 

IT r      "IT r    IT r-      "i r      ~\ rp rp rp rp m 

.
Z,

FAJ   L
Y,

FAJ   L
ä

*FJ   L
Y,

FAJL
Z,

FAJ_ 

[L    FAJ   L    FAJ L   *FJ L    FAJ L Z
 FAJJ 

r3r I   [A    1     + FT     1T FT      1T FT     1 
IKJ 1 Jnlj   1I.L

3
FAJ LWJ LH 

rp rp m rp 

TT"1" T Tr IN v\\ IN [N iCG, 
iT IT I PTTr"! f 

+        T-T r -Tr +r 

Vl     L TJ J I   1       L eoJ    [ swj        (J0S 

rp Til T       r        " 
+    T r-T r +T r 

N 1 swj   poJ 1 pl      LßoJ (p 

IjlJ    LL    FAJ   L    FAJ    L  *FJ   L   FA-I LZ'FAJ_ 
Psr 1 f •    1        P      IT r       "IT r      "I     r    IT r  TT £±_      A +TT T TT 

.lL3AnJijn]j [L
3

FAJ LWJ LßFAjJ[L
ToJ LM. 

*     ^J    *T[\]
T
  (rCGJ "  {rScj      -{rlB}    ^^IB (5-111) 

87 

„MMM.^*^ 



ysjsjßm^^ 

w~,*',»--I^.l<".-'i'T-.T.*tM*»«(tV^r«'-'""">"*!*«■■«■» i-^.-,^^■■^^'.»f.lrt.■^■ 

Note in the above equation that the  T   matrices are not time 
r i L y 

derivatives of the  T   matrices but are derivatives of the trans- 

formation matrices with respejt to the transformation angle Q. 
This is arrived at by making the substitution that: 

d_ 
dt 

—       ~ 
rdT 1 -    - 

T _  ^ c =   Q T 
C dt KJ ? 

(5-112) 

and 

dt 
r[it] = E[TC] + ?

a[iJ (5-113) 

Taking the time derivative again of Equation  5-111 yields  the blade 
element    Y and  Z    linear accelerations relative to the blade reference 
axis system. 

BLE 
BLn h NT b'J W1 hi Hi 

*bJb'JMhihS\ 
^AbJb'JMHib'ri 
+ [T-J1 [^ JT N1 hi hi 
+^JhiTb4Thihi] 
* N2 hiT hi N1 hi hi 
+ 2hiT bJ hi hi hi 
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+ hiT hiT M hi hi 

+2bJ KJ W1 K] K] 
+ '^'J bJ [\]T K] hK 

*{tf[bJb'Jh]Thihi 
*f™)t4hiThiThfhih 
+ hi hi N hi hi 
+ b-J KJ KJ hi hi 
+ hiT hiT hJ hi hi 
* f*Mhi'hi'hT hihi 

LZFAJ   L^FAJ   L4*FJ   LY,FAJ L2VA 

.HT,        HTT "ITT-       HTr- -\   r nil   f f i-^    -, r       ^"^ 

L
Z
FAJ [

Y,
FAJ L^FJ L

Y
'FAJL

Z
VAJJJ  L^JM 
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•Hi^r-wiwi-MHMN 

- NT b'J NT b',i b'4 
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+NT W1 W] [N1 NlN1 

•|4%]T(H-H11-N1+M (5-11^) 
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These equations define the "blade element relative displacement 
velocities and accelerations, respectively, required by the blade 
inertial velocity equations developed shortly. Note that in the 
preceding development these equations are written for the nth blade, 

and with the exception of the 

K} Kw]' h0!' H' ^°z} {rp)'and {rcG}matrices'the 

terms are all blade dependent.    Remember, also,  that inboard of    irOIIl 
r "i     r i l   / the      T        and    T        matrices  are unit diagonal, 
L ToJ    L YJ 

5.5.5•7 Blade Element Slopes 

The blade element Y' and Z'  slopes are determined by differentiating 
the deflection equation with respect to the nth blade radial distance, 

)C . These formulations are used for quasi-static torsion formula- 

tion and output. Performing the required differentiation for points 
along the blade reference line: 

9X 
BLn 

r      -v r                       _ 

» 

Y 
BLE »           ^           4 Y

1 

BLE »       — r' 
BLE 

ZBLE 
BLn ^'BLE 

BLn 

BLn 
(5-115) 

BLE 
BLn [[^JT[^JNTN[vFj]((R](v)i 

+[ WT [v]T hi MT NT M] (5-116) 
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5.5.5.8 Transformation from Blade-to-Blade Element Coordinates 

In this section, the transformation matrix from blade (root) to ith 
blade element motions will be developed. Each blade will have its own 
transformation matrix for each ith blade station. The transformation 
matrix will initially be developed as the transform from blade 

'  LTBLE-BLnJ' 

,  T---, _T  ,  can be developed by referring 
|_ BLÜi—BLnJ 

to the development of the deflection equations. The first rotation 
from blade element to blade coordinates is through the combined twist 

angle,  -*m» the second rotation is through the negative of the 

precone. 

element to blade coordinates 

The transformation matrix 

Jo' the thi^d through the negative of the sweep and droop 

angles,  T , y;    the fourth through the feathering axis angle,  ßpA> 

the fifth through the negative of the reference feathering angles 

<()_,„„; and the sixth back through the negative of the feathering axis 

precone angle, 3 . 

These rotations then define the transformation from blade element to 
blade coordinates, including the effects of the static shape of the 
blade, pretwist, precone, sweep, droop, etc. Also included is the 
effect of blade elastic twist. Again note that for stations inboard 

of Station X, SW 
the sweep and droop angles, Tn and y,    respec- 

tively, must be set to zero in the formulation of the transformation 
matrix as in the definition of the blade displacements and blade 
slopes.  This portion of the transformation matrix which includes 
the static blade shar>e and combined twist is defined as follows: 

"BLE-BLn !%]' ["vT [V T 
.To. 

T 
T 

Y 

T T 

(5-117) 

The next two rotations from blade element to blade coordinates are 

due to the elastic blade bending slopes.  Since Y' _._ and Z'  .T_ BEND      BEND 
are motions of the blade elements with respect to the blade, then to 
transform from blade element to blade coordinates requires negative 

rotations of Y'BEND and Z,BEND 
to be included.  Finally, the blade 
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feathering rotation from the reference feather angle must be included. 
The final transformation then, from blade element to blade coordi- 
nates, is defined by the following equation: 

L J     L    FAJ   L    FAJ    L    FJ    L    FA
J L   FAJ L L

 BENDJ   |_ Y
 BEND 

. 3
FAJ   [ *REr]   [ 3

FAJ    L T
OJ   L Y

J   L  qJ   L $
T 

where 

BEND 

cos(Z'BEND)   0  sinlZ.^) 

:-Sin(Z,BEND)  0  ^^'BEND) 

and 

BEND 

and again where 

cos(Y: 

BEND' 
sin(YW   0 

^^^'BEND5     COS(Y,BEND; 

"T  1T 

.To. 

"•      ~ 
T 

~     " 
T I 

Y 

inboard of Station    X, 
SW 

(5-118) 

(5-119) 

(5-120) 

(5-121) 
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"* 
A 

Y   ' In 
i « A 

7,   ' 2n 
J 

A0 _ .  inj 

(5-122) 

The inverse or transpose of this equation yields the transformation 
from blade to blade element coordinates, or: 

BLn-BLE 
= T      1T 

_ BLE-BLnJ 

= WHNNKJ[v][v] 
I      BENDJ IL BEND] L     FAj     (_ ^  FAJ     [     FJ L     FAJ L     FAJ 

(5-123) 

again where 

N N ■ H (5-12^; 

inboard of station X^,,. 
bW 

5.5-5.9 Blade Element Angular Velocities and Acceleracions 

From the foregoing discussion, Che blade element angular velocity- 
vector can be determined.  Starting with the angular velocities 
(p, q, r) BL of the blade reference axis system and systematically 

and progressively transforming these velocities through each axis 
rotation and adding the respective angular velocity associated with 
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each of the indicated angular rotations, results in the following 
equation for the blade element angular velocities. 

P 

r 

r .  ^ 

BLE 

•+NNHWWTWW 
0 

0 

L"  BEND, 

|_    BENDJ 
' -Z' 

0 

BEND 

0 

f f A 
0 

[    BENDJ 
FA 

['-J 
0 

i o 

-Y» 
FA 

' f       ^ 

*F 

-   0 

0 
■+ KJ ■ •0 ■+ h] 

o 

o 

Y' 
FA 

+ [T-J  ' 
0 

-Z' 

0 

FA ■ * [■■>.] 
BLn 

(5-125) 

Note that  in this  equation,  starting on the right-hand side with the 
quantities  in the innermost brackets,  the blade reference  system 
angular velocities are first transformed through the  increment of 

feathering axis  flapping slope due to bending,     Z'     ,     and then the FA 
feathering  axis  flapping angular velocity,    -Z'     ,     is  added.     Minus 

r A 

is used since Z'  is a negative 6  rotation.  Next., the resultant 

W vector is transformed through Y'   and Y'   is added.  This is 
r A       r A 

then transformed through the delta feathering angle, A(j) ,  and the 
r 
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feathering angular velocity, $   ,     is added.  This is then transformed 
r 

back through the increments of feathering axis slopes due to blade 
bending, giving the vector: 

* f               ^ 

0 

< Z' 
FA 

0 

►   + T7' 
.      FA. 

T 
i 

0 

.      0 

-Y' 
.      FA. 

•   + 

FAl 

-v 

F 

0 

0 
• + N • 

0 

0 

Y' 
L FA 

• KJ 
0 

-Z' 

0 

FA ' t f-J 
P 

q 

r 
BLn 

(5-126) 

which represents the blade element angular velocities due to combined 
blade feathering and blade reference axis system angular velocities. 

Next, the effects of blade bending at each blade station are intro- 
duced. The above vector is first transformed through the local 

blade element flapwise bending slope,  Z' 
BEND' 

and then the angular 

velocity, 
BEND' 

is added.  This result is transformed through 

the blade element inplane bending slope,  Y' 
BEND' 

and the inplane 

angular velocity due to blade bending, Y'    , is added, resulting 

in the total vector less the initial transformation string. 
This vector then represents the blade element angular velocities due 
to the combined effects of the blade reference axis system angular 
velocities of the blade feathering angle and of the blade angular 
velocities due to blade elastic bending.  The remaining transforma- 
tions then include the static effects of the blade feathering axis 

precone,  0™. j  the blade reference feathering angle, ^„^-n,    blade 

sweep, T_, blade droop,  y,  and blade or hub precone,  ß ,  and 

the combined effect of blade static and elastic twist, represented 

by $ .  Finally, the blade elastic twist angular velocity,  (j ,  is 

added, giving the total blade element -uigular velocities. 

BLE 
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Also note, as indicated before, the matrix H [■■.] has  the value 

calculated if X is greater than X   and has the value of unity 
SW 

if    X    is  inboard of station    X, ;w 
At this point it has been assumed '.hat the contributions of Y' 

FA 

P 

and Z' .  are small compared to the other contributions to  « 

r 
BLE 

This  assumption  is  supported by referring  to  the  final  form of the 
above development.     First of all,  both of these vectors  are  small 

compared to  < 

P 

q 

r 

, uhich is fundamentally the rotational speed 

BLn 

of ehe rotor.  Also, both of the feathering axis flapping and inplane 
angular velocities are first added and then transformed through the 
delta feathering angle and then subtracted, meaning that fundamentally 

the principal magnitude or component contributions due to Y'  and 
i Pi 

Z'   are self-cancelling. 
r A 

With the above assumption: 

(1   [ 
r 

v-     J BLE 0 
V.        ■> 

►   + [\] I 

r r                -v 

0 

R 
T . 0 

k. /'BEND, 

L    BENDJ 
-z 

o 

BEND 

0 

L    BENDJ [TZ'FA]T [T-FJ 
*F 

0     > 

0 

NFJ 

/■     "\ A "\ "\ "\ "\ 

W [T-J ■ 
r BLn) 

(5-127) 
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where: 

R T =   T T       T T0    1
T  IT       1  FT 

L J   LßoJ L
Y

J N L
B

FAJ PREFJ LV 
(5-128) 

and: 

r            1 

Y' 
BEND »  — 

Z BEND 

b           - 

\'      Y2. 

z,'  z2. 

A 
Y ' 

In 
3 

• 2n z^' 
3 A^ 

. L 3nJ 

(5-129) 

The blade element angular accelerations can now be determined by- 
differentiating this equation with respect to time. Again, as in 
the case of the angular velocities, the contributions due to time 
derivatives of the feathering axis flapping and inplane slope changes 
due to bending are neglected. With this assumption, the time 
derivative is: 

'  1 "    * 
p VT 

4 = - 0 

r BLE 0 
•+ ^Jff 

0 

0 

'BEND 

L     BEND_ 
-Z' 

0 

BEND 

0 

BENDJ 

rT      "IT r      -IT 

/ FAJ   L Y
 FAJ 

L 

r   A 
p 

r 
v    j BLn 

0 

-Z' 
BEND 

0 

r   n r i1] 
-  +    T.       R 

L TJ 

l    BENDJ 

0 

0 

0 

0 

BEND 

+    T 
.
A

*FJ 
TY'     l^Z' FAj|_Z  F'A_ 

>   +  Y' T 
BEND[Y,BEND 

[T     1
T
 TT      1

T
 - 

.
Z,

FAJ    P'FAJ 
0 
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+ h] b;i hi 
fi 

r 
BLn 

+ K'  1 L    BEND] 

+ z*       IT 1 - 
BEND    Z'   „„ L    BENDJ KJ \yj 

L 

0 

l0J 

+ N hi h FAJ 

p 

q 

r 
BLn 

+ k-   1 " 
L      BENDJ 

»■ '           "• 

T 
Z1 

L   FA. 

T 
T 

Y1 
T 

0 

w 
0 

+ *F[T'J hi h.. 
P 

r 
V        J BLn, 

W  [T-J[T-FJ 
;1 
r 

v.    J BLn JJJ 

where: 

r 
BEND 

BEND 

V       Y
2
,       Y3' 

z,'     z2.     z3. 

/"             -v 

Al„ 
• x

2„ 
ISnJ 

ff°        1 
" 

"Z,BEND 

0 

(5-130) 

(5-131) 
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5.5.5.10 Blade Element X Motions 

.:. • ■ previous development, the equations did not account for the 
a     ment displacement, velocity, and acceleration in the span- 

direction.  The method used to define these is one of 
.ii.c    neutral axis as the axis of no stretch and determining the 

projecv-.u.. of this axis onto the X-axis as the blade be;ds. This 
projection, then, is the spanwise or X location of the neutral axis 
in blaae coordinates.  The rate of change of this projection is the 
spanwise relative velocity and the second rate of change is the 
spanwise relative acceleration of the blade element neutral axis 
location or point.  The motions are then transformed to the center of 
gravity to obtain the spanwise motion of the origin of the blade 
element reference axis. 

In Figure $-?6, the deflected neutral axis is shown as a function of 
blade radius.  The (i-l) and ith station are shown.  It can be seen 

from this figure that as  X.j.li-l) approaches ^Ma(i 

delta length of the blade (S„...(i) NAX V^)' 
then the 

can be written as: 

(Wi)-SNA(i-l))2 = (: XNA(i)   -V1-^ ')2       +f /BLn       \ 
YNA(i)   -  V1"15 

BLn 

(■ +  'ZNA(i)   " V1 

-) BLn 
(5-13 ̂  ) 

Rearranging this equation and summing from the blade root to the kth 
blade station yields: 

Vk) ■V1' - V; -^./Elv^'-w-) 

( 
V1' - V <->):Ln-(v'>-v-') 

'1/2 

BLn 
(5-133) 

where for i=l, 

SNA(i: 

BLn     BLn     BLn 
(5-13M 
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BLn 
a 

Ym       ^^'NA TBLn 

NEUTRAL AXIS 

►  XBLn 

Figure  5-26,     Neutral Axis vs  Blade Radius 
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Likewise, 

x^= Hi!= Hll (5-135) 

S  (i)  is simply the blade length to the ith station measured along 

the neutral axis and Y  (i) and Z  (i) are the Y and Z locations 
mBLn NABLn 

of the neutral axis in the blade coordinate axis system for the nth 
blade. These displacements, along with their derivatives, will be 
defined later.  First, however, by taking the first and • cond time 
derivative of X equation, the spanwise velocities j.nd accelerations 
of the blade element neutral axis point are determined and are given 
by the following two equations. 

s;: ■ s -( 
YNA(i)   "  V1"15 

/BLn  \ 
YNA(i)   - V1"13 

/BLn 

[h^ - V-')BLn 

i ZNA(i)  "  ZNA(i- BLn 

(V13-V1-13) BLn 

(5-136) 
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1=1 

e YNA(i) YNA(i-: ^L-^-^'1) BLn 

■(■ 
YNA(i) 

(XNA(i)  - ^A^-1)) 

YNA(1 

BLn 

(XNA(i)   -XNA(i-l))RT \ /BLn 

(Z»A(i)   "  ^A11"1')^  fM(i>   " SA'1"1') BLn 

(^NA^- V1-15) 
BLn 

R YNA(i)  " V1"1* ;BLnVNA NA 1 BLn 

i +'ZNA(i)   -  ZNA(i 

(XNA(i)  - XNA(i-13) 

i-D)      ( 
/BLn \ 

3 

BLn 

ZNA(i)   " hA^ 

( 
XNA(i)  -V1"13 

) 

■) 1 /BLnJ 

BLn 

5-137) 

If Y„„.(i)  is the distance along the ith blade element chord line 
ONA — 

from the blade element reference axis origin or center of gravity to 
the blade element neutral axis, then the blade element neutral axis 
motions can be written in terms of the blade element motions as: 

AXM(i) 

Y
NA(i) 

ZNA(i) 

r 

BLn 

YBLE(i) 

ZBLE(i) 

1 
L BLE-BLnJ 

BLn 

Y0NA(i) 

BI-E 

(5-138) 
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Referring to Section  5-5,  the time  derivative of the above equation 
is: 

AXNA(i) 

YNA(i)   t 

ZNA(i) 

BLn 

^BLE(i3 

^BLE(i) 

[T 1   < 
I BLE-BLnJ 

BLn 

-r      Y 
BLE ONA 

PBLEY0NA BLE 

(5-139) 

(i) 

and likewise,  the  second time derivative is: 

AXNA(i) 

YNA(i) 

ZNA(i) 
BLn 

YNA(i) 
+    T 

BLE-BLn 

BLn 

^PBLEqBLE rBLE3Y0NA 
,2       _ 2   v 
^~r BLE P BLE; ONA 

^qBLErBLE+PBLE)YONA 
BLE 

(i) 

(5-1^0) 

These three equations, then, define the Y and Z displacements, 
velocities, and accelerations of the neutral axis point used in the 
X equations and time derivatives.  Also, the increments of spanwise 
motions due to the offset between the center of gravity and neutral 
axis are defined by these same three equations.  This increment 
represents the motion of the neutral axis relative to the blade 
reference axis origin, therefore, the span motion at the center 

of gravity is determined by subtracting AX (i)  from the spanwise 
NABLn 

motion of the neutral axis, or: 

BLn     BLn      BLn 
(5-Ü41) 

BLn     BLn      BLn 
(5-11*2) 

BLn 
y-i) - ^ 

BLn X (i) 
Ln 

(5-1143) 

These equations,  then,  along with the previous  expressions  for 
X and Z,    define the blade element  relative displacement,  velocity, 
and acceleration vectors required for the total inertial vectors 
which follow. 
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5.5.5.11 Blade Motion in Absolute Coordinates 

To this point the blade element motion has been defined in terms of 
the blade axis or relative coordinates. The elements defined are: 

bladf element relative displacements 

XBLE(i: 

YBLE(i^ 

ZBLE(i) 
BLn 

(5-UM 

blade element relative velocities 

XBLE(i) 

YBLE(i) 

ZBLE(i) 

BLn 

(5-1^5) 

and blade element relative  accelerations     , 

XBLE(i) 

YBLE(i) 

ZBLE(i) 
BLn 

(5-116) 

Using the method of Section 5.^.1, expressions in freestream 
(absolute) coordinates can be written for use in the equations of 
motion.  The blade element velocity becomes: 

XBLE(i) 

YBLE(i) 

ZBLE(i) 

I 

BLn 

OBLn 

OBLn 

OBLn 
BLn 

XBLE(i) 

YBLE(i) 

ZBLE(i) 

BLn 
-q 

-r 

0 

q 

-p 

■J 

XBLE(i) 

YBLE(in 

0   ' ZBLE(i) 

BLn 

(5-UT) 

105 

i^igjttmäimämmmtämi^^      iimmiimm mamnäuäiiä 



Sj^ggf!B?^Jl:iy'WI|^^,^lrlJL|l^]lffHI^^^ 

The blade element accelerations are: 

XBLE(i) 

^BLE(i) 
BLn 

OBLn 

OBLn 

OBLn 
BLn 

XBLE(i) 

\LE(i) 

^BLE(i) 
BLn 

0 -r 

r 0 

• • 
-q p 

4 

p ■ 

0 
BLn 

XBLE(i) 

YBLE(i) 

ZBLE(i) 
BLn 

0  -r 

r   0 

-q   p BLn -q 

0 

P BLn 

XBLE(i) 

YBLE(i) 

ZBLE(i) 
BLn 

1- 2 

0  -r 

r   0 

-q   p 

q XBLE 

p • 
• 
Y 

BLE   \ 

0 BLn ZBLE 
BLn 

(5-1148) 

where 

X0 

0 BLn 

fxo1 

<      0 

BLn  , 

(5-1U9) 

and matching rotation terms are defined in Section 5-5-^ in terms of 
rotor axis terms which are in turn related to the principal (huh) 
reference axis. 
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5.5.6 Svashplate Motion 

As shown in Figure 5-9, the svashplate reference axis system is defined 
with the Z-axis down.  The motion of the swashplate reference system is 

defined by three generalized coordinate displacements,  Zon, *_-,, and eor,, 
air or or 

which move relative to the hub or principal reference axis system. 

The rotations <()  and 6   are taken in the same order as shown in 

Figure 5-17 and therefore, from Section 5.^.3 the angular velocities are: 

0 

SP, 

0 

0 

cost 

0 

sin6 

1 

0 

0 

COSIJJ       sini^ 

-sin^i       cosij; 

C 0 

SP 

0 

SP 

SP 

0 

1 

0 

0 

COS(j) 

-sind 

SP 

-sine 

0 

cos6 

0 

sintt) 

cos$c 

r f       "* 

SP *SP 

■< 0     ' 

SP_ V 
0 

SP 

r 

(5-150) 

Where    tf; „    is  the rotational speed of the  swashplate,   and 

'SP = -*R (5-151) 

where ^  is the rotational speed of the rotor. 
R 

As indicated before, the swashplate axes do not rotate at the rotational 

speed ^  .  However, the total angular velocities reflect the rotational or 
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rate ^qp-     Therefore,  the total angular rates of the swashplate 

in swashplate axes  are obtained with   "^ =  0.     This  gives 

1 r   "i 
p 

r 
V-        J 

SP, 

0 

=   {  0 

SP 

►   + 
SP 

►   + 

cos 
SP 

0 1 

sinesp      0 

0       -sin! 

0 cos^p      sin^p 

0      -simfigp      COS
^QIF 

p 

LrJHJ 

0 

COS0 

" ' • 
SP *SP 

* 0 

SP. 
0 

(5-152) 

Nonrotating swashplate angular velocities, cnbscripted SP  ,  are 
„ *      NR 

obtained by deleting ijj   above. 

The swashplate angular accelerations can be similarly determined by 

evaluating the general expression at \p = ty      =  0.  This yields: 

p 

r 
SP. 

*SPqSP 

esp . + , -^?pnp > + 

+ *c 

1 0 

0 COS*SP 

0 - ■3in*Sp 

0 0 

SP 
0 -sin^ 

0 -COS(|) 

sin*sp 

C03(f) 

SP 

SP 

SP 

p 

-sin 

cost 

SP 

0    0 

0 

0  -cos( 
SP 

0 

-sinö sr 

*SP 

0 

0 

SP 

0 

COS()) 

-sind) 

coseSp 

0 

sinö 

0  -sine 

SP 

p 

SP * q + 

SP_ 
r 

H 

1 

0 

0 

COS(J) 

0 

cost 

SP 

SP 

r 

*SP 

* o 

SP 
0 

0 

sin^i 
SP 

-sinOgp  cos$Sp 

'11 
H 

(5-153) 
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The vertical velocities and accelerations of the swashplate are simply 
defined as: 

'  I = Z  + Z 
I 

J0SP    SP   OH : 5-151) 

and 

J0EP 
1 = Z      + Z 

I 

^SP  ^OH (5-155) 

It is noted in these equations that the Z-axis motion is assumed to 
remain parallel to the hub Z axis. 

The swashplate angular displacements are obtained by integrating the 
angular velocities, or: 

^SP = / ^Pdt (5-156) 

and 

9SP= /V* (5-157; 

Likewise, the vertical displacement of the swashplate relative to the hub 
or principal reference axis system is: 

/ Z
SP 

= y zspdt + Z
OSP (5-158) 

Vifhere Z    is the location of the swashplate reference point with respect 

to hub or principle axis reference points along the Z-axis. 

It is noted that in a feathering moment feedback-gyro control system, the 
swashplate is used for the control gyro. 

109 

■l^^^t^tS^L^^^^-A^^iti^U.^^..:.. a ^l^W^^^.~,ai,.^,,,,W,;.,i..-:.,W.,,. ■ •' ''--"'-*'1 "'-V'aJi'nffrir* > i'•'■i nlbJäü 



UHWliK MUffipW^ ■ll1 ^'^l■'1.'^;'!■wl'^w■l"*L'"'?^"l"^^,■■.l "i—ll' .u^'-i^'i'wf ^^^ L»iw>jjijiiiwiii»jij.^t,iji^^.jijiiuwuiy. JI»U^I», iiir»'1^-'-:^J'^^'^ 

5.5.T Direct Feedback Control System Gyro Motion 

As indicated befor1, the equations of motion incorporate a description of 
a control gyro that is used in a direct flapping moment feedback control 
system (DFCS), which it: an option in the program.  The gyro motion is 

defined by the Euler angle rotations 4 and 6  relative to the fuselage 

reference a.-is system as shown in Figure 5-9-  The order of rotation has 

been selected to be first §„    and then 6 ,  so therefore, the trans- 
u u 

formation from the fuselage reference axis system to the gyro system is: 

M 
cos6   0  -sinö 

G u 

sine,,  0 cost 

0 0 

0   coscf) sin(|) 
u        u 

0  -sin(()n cos* 
u      G 

(5-159) 

In the same manner as the swashplate equations, the angular velocities are 

written with I|J = i^ = 0. 
G 

P 

q 

r 
G 

c 

0 

*G 

.       +     , 

r        ^ 

0 

• 
6G 

0 

•   + 

cose  o 
G 

■sine^ 

sine,,  0   cos( 
GJ 

0  cosiJ)n sin<t)_ 
u u 

0  sinifu cos^ 
u G 

P 

Fj 

(5-i6o; 

The p and q terms of this equation give the angular velocities of the 
nonrotating portion on the gyro, i.e., its gimbal frame. 
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The angular accelerations rotating gyro mass or inertia are likewise 

evaluated from Section 5.^.3 by setting i|/ = i|r, = 0. 
(i 

p ' ^G^G ' 

r         \ 
0 

(1 '         — "VG 
,   +   ■ ÖG 

f 
GR i       G   J 

0 
L       J 

-sinö 

0 

cose. 

0  cos*   -sin* 

0  sin^ 

0 P 

in*G • q ■ •  + 

OS*G. 
r 

F , 

0  -cosö 

0     0 

0  -sine 

cose 

G 

r 

'V 
i • 0 

G _ 
0 

+ *, 

0     0 

0  -sin* 
G  -C0S*G 

0   cos*. -SIM GJ 

P 

If     + 

G 

0    1 

sine„  0 
u 

1    0 

0  cos* 

0  sin*. 

-sine 

0 

cose 

o 

-sin*r 

cos* 

G ' *c" 
• ■   0 

G. 
0 

p] 

G ' ^ • 

GJ MF. 

(5-161) 

The accelerations, then, of the nonrotating part, subscripted G , are 

simply obtained hy deleting the first term of the previous equation. 

Or: 

NR 

^G 

-*GPG \ 

'in 

(5-162) 

5.5.8 Blade Feathering Motion 

The feathering occurring at the feather bearings, Figure 5-lU, is taken to 
be the sum of the motions of the following dynamic and kinematic elements: 

• Swashplate - collective command 

• Swashplate - cyclic command 

HI 

Ife^-.-^,^^.. ■^■^U^^,;,üI^i^^ 



Hiy*»jJ^MS«Pme!W*,W|W^^^ 

• Blade bending to feathering couplings 

• Elastic pitch horn and associated components 

The total feathering response is: 

*Fn = 90 " A1S COS^BLn + ^  " B1S sin(*BLn + V - C 
BY1 

FA 
1  9A   In 

8Z 
- C. 

FA A„ - C. 
3Z,FA      9*F 

2 8A2  2n   3 3A   3n  8ßpH PHn 
(5-163) 

Velocities and accelerations are formed by differentiation. The desired 
relations are: 

yFn 0 " A1S C0^BLn + ^R) " B1S sin(*BLn + ^R) 

+ A1S sin(*BLn 
+ V " B1S COS^BLn + *R)  ^R 

SY' 
- C FA 3Z' FA A„ - C, 

FA *       F 
A^ + 

1 3An  In   2 3A0  2n   3 3A0  3n  aßDU PHn i d J rn 
B^      (5-i6u; 

and for accelerations; 

*Fn = % " Ä1S COs(*BLn + ^R3 " B1S sin^BLn + ^ 

+  2 A1S sin(*BLn + ^  -  B1S COS^BLn 

•[■ A1S COs(*BLn + ^R3  +BlSsin(^BLn 

+^5 
+ ^R^ 

[■■ + IA1S COs(*BLn + ^R3 - B1S sin^BLn + ^ 
l-   9Y

'FA.- 
^-CllAf A In 

9Z' 
- C FA 

A„ - C, FAÄ  + '"F 
2 3A2  2n   3 3A   3n  3ßpH "PHn 

(5-165) 
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The commanded cyclic blade angles are: 

11S 

IS 

= (-) I        \e/ 

sini|j. PH COSlJj PH 

COS*PH  -sin^PH 

* SP 

SP 
(5-166) 

where the angle t|»ot, is the pitch horn-swashplate connection lead to 
rn 

feather axis.  See Figure 5-27. Thi: angle is computed as a static value. 
It should be noted that some hub configurations carry the pitch horn 
toward the blade trailing edge. These configurations are entered in 
REXOR by forming the supplement of ^t rPH- 

*pH = 180 - ^pH (degrees) (5-167) 

This angle gives the correct modeling of the sense of rotation 
reversal with the trailing pitch horn geometry. 

The velocities and acceleiations of the command cyclic are obtained by 
differentiation. 

Ais 
= (1) 

sin*pH        Cos^pH- 
• 
*SP 

Ks 
\e) 

^cos^pH      -sin^pH ^SP 

+(i I5«' 
siniJ;pH        GO: ■w-i 

PH 

PH_ 

*SF 

esP 
(5-168) 

and 

11S 

Is 
-il) 

sinty 
PH 

+ it), »o 

cos^ PH 

cosi(;pH  -sini^. 

sinij; PH 

PH 

f* SP 

SP 

os'.,W 1 f ^p i ■PH 
cos^pH  -sini^ PH 

KSP 

(II ^0 
sinty. cosi^ 

PH   —rPH 

C0S*PH  -sin*PH iesp 

(5-169) 
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IMON ROTATING 
SYSTEM 
RESOLUTION 

-H 

FEATHER 
AXIS 
(UNDER 
FORMED) 

ROTATING SY'iTEM VIEW 

Figure 5-2?. Pitch Horn Blade Feathering Phase Angle 
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The overall coupling (svashpiate to feathering) gear ratio, d/e, is 
expressed as a static term plus a first-order collective correction. 

(i) = (tl+ ill (5-170; 

The commanded collective is: 

= -zsp/e (5-171) 

The swashplate vertical motion,     Z SP' is developed in Section 5.5.6. The 

value e is the static effective crank (pitch horn) arm about the blade 
feather axis. This crank length is inputted as a negative number for a 
trailing pitch horn geometry to give the proper sense of collective for 
swashplate vertical translation. 

Taking time derivatives: 

3o = -zsp/e (5-172) 

and: 

= -zsp/e : 5-173) 

The blade bending to feathering coupling factors are C1, C2, and C3 for 

the first, second, and third blade models. The blade bending modes are 
described without a torsion component; this allows freedom in varying the 
blade sweep, droop. Jog, or oLiher geometric parameters without new input 
data for the blade mode shape. The torsion either is calculated sepa- 
rately along the blade proper or as a blade root component by pitch horn 
bending. The C-|_ ... C3 factors are intended to add a feathering component 
to the blade mode which would exist even with no torsion or feathering 
moments. As such, they are in effect the 63, a2» etc., coupling usually 
described in the literature. These couplings are usually determined as 
a function of the distance from the flap or inplane mechanical or verti- 
cal hinge to a pitch horn projection. 
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The factor C  is  defined positive as nose up feathering (radians) per 

radian aft inplane deflection of the feather axis slope.  The factors C 

and C  are defined positive as nose up feathering (radians) per radian of 

up flapping feather axis slope for the first and second flap modes, 
respectively.  These factors require the inplane feathering axis slope 

ay 
FA 

3A, 
for mode one and the jut-of-plane slopes 

FA 
3A, 

and 
3Z: 

FA 
9A, 

for 

the other two modes.  The slopes are defined as 

ay 
FA 

3Y 
OB 

3A 3 A, (5-171+) 

3Z, 

FA 
3A, 

3Z 
OB 

3Z 
IB 

8A, 
cos(Z'FAHB (5-175) 

and 

3Z 
FA 

3A, 

3Z 
OB 

3A, 

3Z 
IB 

3A, 
'cos(Z'FA)£B (5-176) 

The mode partial 
3Y 
OB 

3A, 
, etc., describe the inplane or outplane component 

displacement at the inboard or outboard bearing location due to mode A 
In' 

A The length     I      is  the distance between bearings, These 
n'  3n 

partials are the same type as described in Section 5.5.5 where the blade 
motion is built up from the bending, feathering, and twist components. 

116 

jBitaaaitiaiitatnMkwa^—^^L^*-.-....^-.^;-^-.^...^^^^^..-^-...^.. ,.—■^■...i.^.. 



w^l^^ 

EQUATIONS OF MOTION 

6.1 INTRODUCTION 

With the coordinate systems and transformation between systems well in 
hand, the development can proceed to the equations of motion. The 
development yields a set of second-order differential equations with time 
varying coefficients. These equations are formulated using the energy 
approach in a form credited to Lagrange. The solution to the system of 
equations is in the time domain by numerical integration.  The result is a 
time history of the displacements, velocities, accelerations, and loads of 
the components of the helicopter modeled.  Extra attention is given the 
main rotor where the blade geometry is modeled in detail, and the program 
treats each blade separately. 

Following the development of the equation methodology used, the math 
modeling of the vehicle component parts is carried out. 

6.2 ENERGY APPROACH TO DEVELOPMENT OF EQUATIONS OF MOTION 

There are two basic approaches to developing the equations of motion for 
a physical system.  These are: 

• Vector summation of forces 

• Energy approach. 

Given an equal set cf conditions, limitations, and assumptions, both pro- 
cedures should result in equivalent sets of equations. The difference is 
in the ease of arriving at a complete set of equations. Note that force is 
a vector, whereas energy is a scalar quantity. Therefore, in dealing in 
terms of energy, less information regarding direction needs to be handled. 
Also the systematic nature of the energy approach reduces the risk of 
error. As stated by Lagrange (Mecanique Analytique, 1788), "The methods 
which I present here do not require either constructions or reasonings of 
geometrical or mechanical nature, but only algebraic operations proceeding 
after a regular and uniform plan". 

The starting point of this development is Lagrange's equation. It may be 
derived by postulating Newton's second law, or from Hamilton's principle. 
Lagrange's equation may be written in the following form: 

d /aT \ _ aT 
dt^qj  9qr 

^. + ^L = Q (6-1) 
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where 

T is kinetic energy 

q is a generalized coordinate 

B is dissipation function 

U is potential energy function 

Q is the generalized force, derived from the virtual work, öW, and 

is defined hy the equation 

(6-2) 

Equation 6-1 will now be developed into the form as applied in REXOR. 
This form bears a close resemblance to a force balance equation, but is 
derived from energy considerations. For clarity, the development is first 
shown for a set of discrete mass particles, then, in the section that 
follows, is extended to the distributed elemental masses of the REXOR 
modeling and to the iterative solution scheme used. 

In a conventional manner the equation is formulated in terms of generalized 
coordinates. These coordinates are a function of time, and completely 
define the system. They are generally not directly identifiable as a 
physical quantity. 

The physical parameters or elemental coordinates are defined to be func- 
tions of the generalized coordinates and in turn a function of time. 
Consider a system to be composed of particles whose physical coordinates 
are a function of n generalized coordinates. For the ith particle: 

x. = x.^. q2! t) (6-3) 

yi = y^v v 

z. 

V t) 

i = zi(V v • • • ' V ^ 

(6-io 

(6-5) 

Note: a Cartesian coordinate set is selected, and used in REXOK, 
the argument is true for an arbitrary coordinate set. 

However, 
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The functional relationship of the physical or constrained coordinates and 
generalized coordinates yields: 

9x. 3x.                                  8x. 
<5x.   = T—  6qn +  -— &a    + •   •   •   + -— fin 

i       8q      ^1 3q      ^2                        8q      Hn 
l c:                                   n 

(6-6) 

3y. 3y. 
6yi = äij 6<11 +  3^ ^2 + 

3y 
+ ~ 6q 
%  n 

(6-7) 

3z, 
 ] 

6z. =  ^ 5qi .    6^ + 
3z. 
 j 

3q. 

3z. 
i 

+ 3rÖ(1n (6-8) 

The time dependence is implicit in the increments of the generalized 
coordinates. The equation is strictly true for infinitesimal increments. 
In REXOR the generalized coordinates are distinct from physical coordinates 
in the main rotor blade descriptions. Here the generalized coordinates 
are blade modal variables. The modal variables represent tangible defl ec- 
tions of the blade from a reference position, and as such are small but 
not infinitesimal variables. 

As the variables are a function of time: 

3x.     3x. 

^A +^2 + 
3x. 

(6-9) 

^i = l^l + 1^2 + 
9y. 

+ -3ra-n 
% 

(6-io) 

3z, 3z, 
Z. = ^  Q  + ■::  Q  + Zi   3q1 ^1   3q2 

q2 

dZ. 

(6-11) 

In terms of the ith particle the kinetic energy for the system may be 
identified as: 

N 

T = SiK {ki2 + h2 + h) (6-12) 

1=1 
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Toward the particular  formulation of Lagrange's  equation used in REXOR, 
the  first two  terms of the previously stated form.  Equation 6-1,  are 
developed: 

d_ 
dt m- 3T 

:6-i3) 

Performing these operations for the ith particle case and the rth gen- 
eralized coordinate and summing over the system yields: 

d     /ST \       8T        V^/l d 8   //•   2       -2       .   2V 
^[^)-WT= 2^2miit ii;^i + ^ + zi ^ 

1 3     /.   2       .2       .   2\\ i6-ih: 

A useful math operation of cancellation of the dots  Is  developed prior to 
proceeding.     Recall: 

8x. 9x. 
6xi^S+^6ci2 + 

9x. 
+  r-^ 6q 

9q n 
n 

(6-15) 

Then also 

8x. 3x. 

i       9q1    1       9q2    2 

Sx. 
• • + 7— q. 8qn     n 

(6-16) 

or 

8x.        8x. 
i i 

3q 9q 
r r 

(6-i., 

This  is also true for    y and z    and  for the double dot terms  in    x,  y 
and  z. 

An operation to reverse the order of spacial and temporal  differentiation 
is required.     To  show this the time derivative of a partial  is  taken as 

aqU^k (6-18) 
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Next the spacial derivative of x.  is given as 

9x.   . /3x.     3x. 
 i _ _9_/ i ■     i • 

Now since 

(6-19: 

x. = X.Cq^ q2, • • • , qj (6-20) 

the order of spacial differentiation is reversible 

3 x.    3 x. 
1       1 

3q 3q   3q 3q 
^r ^s   Hs > 

(6-21) 

and hence 

Similar relations exist for v. and z.. 
•' 1 1 

Proceeding on with the kinetic energy terms: 

N 
I' 

3q" = 

(6-22) 

d /3T \   3T =
IV^ 

dt^qj   3q„-Z-rmi 

d*i ^i 9^     d /9^-\    d Z3^- \ 

• UdzA   ■ Zi  dt\3qj " Xi 
9x.     3y.     3z. 
—i - y —i - z -^ 
a<lr   i \ i 9qr 

Using the relationship for cancelling dots in partials, reversing the order 
of differentiation and cancelling terms gives 

d /3T \  3T_  V1^ 

dt^qj ~ 8qr " Z^ mi 
i=l 

8x. 3y. 3z. 
1 ■ ■•   i ..   i 

Xi Sq" yi 3q~ Zi 3q~ 
r ^r r 

:6-2k) 
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Then from Equation 6-1,  Lagrange's Equation in constrained coordinates 
with point masses becomes 

m. 

i=l 

9x.             3y. 9z/ 
x    —i + y   -^ + z    —i 
i   oq           i   9q i   8q 

r                 r r 

8B 3U 
+ -^r— + -— 

dq dq 
r T- 

(6-25) 

Also,   in the  same vein of defining the generalized coordinates,  the 
relationship hetween the elemental and generalized forces can be developed. 
This relationship  is developed from the definition of virtual work on a 
particle as the scalar product of the applied force and an infinitesimal 
displacement.     Therefore for the total system of N elements, 

N     r 

6W = 

i=l 

F      6x.+F      öy.+F      6z 
x.       i        y.       i z.       i 

L   i i i 
(6-26) 

Using the definition of    Q      from Equation 6-2 gives; 

Q. £~i \ x..   3a y..   3q 

3z. 
+ F 

"      ^fVXiaqr      "yi  9qr       "Zi   ^^ 
(6-27) 

Substituting Equation 6-27 into Equation 6-25 yields the final form of the 
Lagrange energy equation in constrained coordinates for point masses, which 
is  in the form from which the REXOR Equations of motion are developed. 
Making this substitution and rearranging the equation yields 

£f IA Xi/   ^       \ '  1        yi/  9qr       V 1   1 h) \\ 

(6-28) 
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The above equation is the basis for the entire derivation of the equations 
of motion of REXOR.  Note that this equation is written for discrete ele- 
ment masses and discrete forces. Also, at any instant in time all of the 

ingredients required to define the elemental accelerations, x., y., z., 

are not known. Specifically, the generalized coordinate displacements and 

velocities, q and q, are known at any instant in time but the generalized 

coordinate accelerations, q, remain to be determined at the time the 

elemental accelerations are computed. 

The following section presents the manner in which the foregoing equation 
set is adapted to the REXOR numerical solution to solve the equilibrium 
equations or equations of motions for the generalized coordinate accelera- 
tions.  This development is first presented in the simpler form, for 
clarity, for discrete mass elements and forces and then in expanded form 
to include elemental distributed masses and applied moments. 

6.3 ITERATIVE CONCEPT AND EQUATION SET SOLUTION METHOD 

Given a set of equations as developed in the previous section, the next 
step is to establish a method of solution.  The solution process is 
defined as solving the equation set for the accelerations, integrating 
the accelerations for updated velocity, and position; then substituting 
the integrands back into the equations to determine new values of 
accelerations. 

The first step of the process is to define explicitly the accelerations 
from the equation set.  In the process of implementing the REXOR equations, 
it is desirable to handle the accelerations as an estimated plus a correc- 
tive term.  In generalized coordinates then we can write 

'^ 

NEW 

+ < 

CORR. 
n 

(6-29) 

^OLD 

This operation proceeds on a sequential time basis.  For each increment 
advance in time, the previous 'NEW' becomes the 'OLD'.  In REXOR, the time 
increment corresponds with a step azimuthal advance of the main rotor 
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yi 

1 1 
CORK 

yi 

z. 
i 

(6-30) 

EST 

where the estimated accelerations are determined using the generalized 

displacements and velocities, q and q , at time t,  and the generalized 

coordinate accelerations q, either estimated or from one previous time 

step in the numerical integration process. 

Then, at any given instant in time where the 'EST' elemental accelerations 
are thusly determined, it can easily be shown that the corrective ele- 
mental accelerations, (x, y, z^CORR, are a function only of the gen- 
eralized coordinate corrective accelerations. 

Or 
f        A 

X. 
1 

1 

V- J 
CORR 

fax. 

= ■< 

9x, 

^1 CORR ■'K 
q 
nC0RR 

3yi 

CORR CORR 

3z. 
i 

^1 CORR 

9z. 

CORR 

(6-31) 
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blades.  However, this need not be the case.  The 'NEW' accelerations must 
be used in the numerical integration process to define the generalized 
coordinate velocities and displacements.  But if some form of a predictor 
on accelerations is used then the 'OLD' would be this predicted value and 
in this case it would be an estimated, 'EST', value. 

Using the notation 'OLD' and 'EST' interchangeably the linear elemental 
accelerations can be written at time t as 
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or 

r    A 

X, 

z. 
1 

V      > 

-Y. 
k^l 

CORR 

3x. 

9qk    kCORR 

^k  ^CORR 

9z. 
 i .. 

8qk ^CORR 

(6-32) 

Now making the substitution of Equations 6-27 and 6-31 into Equation 6-25 
from the previous section and rearranging terms yields the Lagrange 

equation for the q  coordinate in terms of the estimated elemental 

accelerations and the corrective generalized coordinate accelerations. 

i=l 
KsT" SV;+ (vw - ^5 + (vl5si - %)5 

E". 
i=l 

!liy^5 ..       + ^i V Üi •• 3ziV^ 3zi 
9qr^ ^k ^CORR/  ^r^'  3^ VOPR  

+  sX 2^ ^ % 
qk + 

ir~   '^       C0RR-        irI7i   '^    "CORR.      "^r 

3<ir    3qr    
0 

k=l r    "CORR. 

(6-33) 
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The equat'ons of motion for  the  system can now be combined and presented 
in matrix   form. 

M . 
n: 

MASS 
MATRIX 

+ Crk 
DAMPING 
MATRIX 

CORR 

N  r 

^ (mÄEST-\)S+(   )5+(   ) 

K v rk 
STIFFNESS 
MATRIX 

= 0 

32. 
 i 
3^ 

E(vw--\)5+(  PA  ) 
32. 
 ] 

9^ 

(6-3U) 

where the matrices,  M , C  and K   will be defined in the following rK      rK rK 
discussion.     However  oefore proceeding with this,  Equation 6-3^  is now 
rearranged  into  the form actually used  in the numerical  process  in REXOR. 
The  equation  is  solved  in terms of the corrective accelerations. 
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The correction terms come from an inversion (or simultaneous equation, 
Cholesky method) operation on the model equation set. 

-1 

^ q ^ 

^ n J CORR. 

M . 
rk 

MASS 
MATRIX 

^ P^EST " ^i) ^1 + 

i=l L 

f    .        \ 3xi 
m.x.   - F \-T— + 

^ 1 ^ST   h)  9(1n 

rk 
DAMPING 
MATRIX 

v^ 

► + 
rk 

STIFFNESS 
MATRIX 

v   n 

(6-35) 

As indicated before estimated accelerations in physical coordinates come 
from the   'EST'   or   'OLD'  generalized coordinate accelerations and the cur- 
rent generalized coordinate velocities and displacements.    The integration 
part of the solution operation supplies the  (q) and  (q)  data. 

■/ %£¥ dt -fk dt (6-36) 

The whole package operates in a cyclical fashion, as shown in Figure 6-1. 
Arranging the solution sequence as such gives it some important attributes 
and advantages. 

First, to determine the corrective acceleration, the inverted mass matrix 
premultiplies the difference of applied and estimated reactive forces 
represented by the quantity in the large brackets on the right-hand side 

U7 
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^> 

NEW ACCELERATION 
REPLACES OLD 
ACCELERATION 

FORM NEW ACCELERATION 
FROM OLD AND CORRECTION 
TERMS 

A 

ADVANCE 
TIME 

A 
SOLVE FOR 
ACCELERATION 
CORRECTION TERMS 

V 
INTEGRATE NEW 
ACCELERATION TO 
FORM VELOCITY AND 
POSITION TERMS 

V 
SUBSTITUTE ACCELERATION, 
VELOCITY AND POSITION 
DATA BACK INTO EOUATION 
SET 

<^ 

Figure 6-1.  Equation Solution Loop 
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of Equation 6-35-     With the usual,  small,  integration  steps  these 
differences will be relatively small.    Therefore,  inaccuracies  in the 
mass matrix or  its  inversion process only slight.ly affect the total 
acceleration determination.     This means approximations and simplifications 
to  the mass matrix are acceptable.     In some instances,  a diagonal mass 
matrix will give convergence to the required  solution. 

Second, as will be  shown in the Section 6.1+,   (blade equations  section), 
carrying the running acceleration  in elemental  coordinates allows  for the 
simple separation cf the centrifugal and structural stiffness of the rotor 
blades which has  important advantages which have been discussed.    Also, 
the aerodynamic  loading terms,  already by nature in physical  coordinates, 
are easily accounted foi-. 

In the actual application of Equation 6-35 to  REXOR,  distributed elemental 
rigid body masses are associated with each coordinate point and applied 
moments  in addition to forces at  each coordinate point are accounted for. 

Referring back to  Equation 6-27  the generalized force,     Q  ,     from virtual 

work can be simply written in the  following form to account  for applied 
moments at each of the ith grid points as 

N   r 

Q    =   >     F 

i=l L 

3x. sy,- 

% 
+  F 

y. 9(1 i      r 

3z. 
+ F + M 

3(f), 

%        Xi  9cir 

36 
+ M 

y,- 3q. i       r 
+ M 

3*/ 
i 

(6-37) 

The terms of Equation 6-2^4 in Equation 6-28 can be developed for the dis- 
tributed masses by going back to the elemental acceleration equation, 
Fquation 5-11 of Section 5-^'l which is repeated here, in a rearranged 
.'orm, for clarity of this development. 

• \ I 
x 

y 

z 

x^1 

y 

z 

(-r -q  ) pq pr 1 X 

pq (-r^-p2) qr jy 

pr qr 
,     2     2. 
(-P  -q   ) (z 

+ 2 

'0 -r q X 

r 0 -p y 

.-q P 0, z 

0 z -y P 

z 0 X 4 

y -X 0 r 

(6-38) 
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For distributed masbes of a rigid body with coordinate point and system 
embedded in the body: 

x = y = z = 0 (6-39) 

and Equation 6-38 becomes : 

x 
2 2 

-x(r +q ) + ypq + zpr 

2 2 
xpq - y(r +pc') + zqr 

2 2 
xpr + yqr - z(p +q ) 

' zq - yr 

-zp + xr 

yp - 
x4. 

(6-i*o) 

Now, remembering that for a point mass, 

3x 

3*r 

3x 

8y _ 3y 

8z 3z 

3p 

3\ 

(6-1+1) 

(6-142) 

(6-1*3) 

(6-1*10 

36 = _3|_ (6-1*5) 

and 

3ijj _ 3r_ 

^  9^ 

(6-1*6) 
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The total partial derivatives relating the motion of the coordinate point 
and  set  imbedded within each elemental body and the motion of the 
generalized coordinate becomes 

9x ^0 3^ 

9qr " y 9qr 

+ z 
36 
3<1, 

(6-liT) 

3y_ 

9^ 

3y_c 

9(i. 
+ x 

dty 

^ 

3| 
(6-I48) 

3z, 
3z    =  

- x 
36 3(f) 

3^ + y  9^ 
(6-1*9) 

where on the right  side „:  these equations,    x,  y,  and  z    represent the 
location of the distributed masses within the rigid body elemental mass, 

and    xA,  yn and  z      represent the motion of the mass  element reference V •'o 0 
point. 

For each jth coordinate of the system, the elements of 
Equation 6-21* can be written by substitution of Equations 6-1+0, 6-1+7, 
6-1+8 and 6-1+9. This gives 
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N     x. ( x. 

mi yi        ' ^T   yi 
i=l   f z. 

i EST ^Jj 

i 

i=l 

••  3X0  •■ 3^   •• 36 , 2^ 2^ 3X0 ,.    ^ 2^ 2> 3(1; 
xn  5 x.y. ^— + x z. 5  x. (r +q r— + x.y. (r +q  )  ~Z- 

0  da           0  i 3q            0  i 3q i 3q           i   i                   3q 

• •     8y0 _, •• 3IJJ         •• 3(})     , dy0 ^       2       U                         34 
yo W + yoxi 3T " yozi 3^ + xip(1 W + ximW- - xiyipq ST r r                     r r r r 

••     8Z0       •• 39         .. 3(t) 8z0 2       36                         34 zn  5— ~  Z
A

X
- 5—  +  zrJ- T

1
— 

+ x.pr K— - x.   pr  s— + x.y.pr r-!— 0   3q           0 i 3q           0  i 3q i1^     3q i ^     3q           i^i^     3q 
i r                     r r r r 

3x, 
/   2,   2N   36 0 2       3il; 36 0 -  X   Z   (r +q   )   ^—   +  y  pq  — y     pq  JiL.  + y.z.pq  ~-   +   Z. pr  r-^ 

i   i dq^ i       3q^ i  ^^ 3qw      Ji  i       3qM i^     3q 

2.   2v   9y0 /   ^^ ^\       u /   2    2N   3i|; ,2    2.   34 
y.(r +p   )   ^ -  x.y^r +V   )   £- + V^ir ^P   )   ^- +  ziqr 

9Z0 36    ^       2       3<j> ,2    2,   az0 
+ yiqr  3^ " Vi^r  3^ + yi  ^r  si; "  Zi(P +*  )   3^ 

3x 
-  z.y.pr 3*     .       2       36     ^       •   UÄ0 .3^ 2-   36 

•s-r- +  z,   pr  r— +  z.q  TT y.z.a  ^— + z.   a   ^— ZA1 y,- Z; 1 i'l"   3q "i  ^   3qv       "i^   Sq^       ^i^i^  3^"   '   ^i   ^  3^ 

+ x.z.q 
dty 2       3(j) 3y 0 z- q   r1- - Z-P 

1r ^r 
i-i^r  3qr      "i  ^r  ^ ~  "i^  ^      XiZiP 3^ "  Zi P  3^ 

/   2    2,   36 ,2    2>   34 
+ XiZi(p +q  )  3— " yiZi(p +(1   )   i"  + yiP 

3i|) 2^  3^ 
i r T 

3Z0 •   36 
31"  " XiyiP  3T r Hr 

• 8X0 ^      2-3^ .36 
3      oq 1 3q 1   1     3q 

r ^r ^r 

3y 
• ^0 ,       2- 3^   . ■   34 

+ x. r r— + x.   r T
1
-   + x.z.r  TT- 

1     3qr        1 9tlr 11     9qr 

.   „ 2-   3(j) . 8z0 ,2-36 ■   3d> + y-   P  T1 x.q r— + x.   q  r—  -  x.y.q  r-*- 1        3q lu 3q 1   H  3q iJi^  3q 

(6-50) 

132 

m&U2xXhiäw&iASi£^kik^^ ;,-...--.,,,..,-.,..-..... ^ ....... -:. J..^.^J:,. ^.i w*j*« 



g.JW!WW!^f^!!B:J;^ffl^ 

Expanding and identifying mass moment and moment of inertia t 

m. 
i 

i=l 

erms: 

yi 
\ 

EST 

x. 
i 

'-•• 8xo Mx  j-^ - MJfx 
r 

8y 
My r-2   + MxV pi  - MzV ^- 

| + ^ -.. m(rv, § + IxY,rv. a- 
sy. 

8ci. 3^ 
Mzy f-  + Mxpq   —^   + I pq  ^L. _  i 

3q, 
3^ 

9qr X^^- 3q ^XZ^11 9^ PI 
3(J) 

L 
Mz   1° " MXz |i- + Myz  ^i.  + Mjjpr  !!£ _  j pr  39_ +  j     pr M_ 

3(1r 3(lr atlr        X      *%        XYpr 3qr 
9^ 

2, 2, 39 9x 3x, 
- ^z^ ^ ) ^ + Myp, o _ H   + ze   +    -o 9q. 

9y. 

^-^   Y^ 9q    YZ^11 3^ 3^ 

- ^^V) ^ - IxY(rV) |f + VrV, ^ + M2qr ^ 
3z, 

3^ 

8z, 

3<1. 

+ M^  0 _ ^^^^ 38 + ^^ 3^ _ M2(p2+q2) ? + ^^   ^ 

9qr  ~xzl 9
^ 

9x, 

" ^ ^ + V ^ + "^ a-^ - iYz. |f ^ V If - 
3i|) 9y. 

i        r        r      ^r r 

2. 2V 3ö 

M^r 

MXr 

3_lc 

9q. 

3z, 
" ^Z'PV) ^ M7P ^ - IYVP |f + Ivi |L . ^ ^ + U I«. 3q„ ■ ^^ ^ - V ail ' ^ äi: - "^^ ^ + ^^ a^- 

'Y1^ 3q - hz*  3T 
r       r 

+ I r Ü - I rd-±- 
X 3qr  "XZ1^ 3qr 

^Y^ af" 

3z. 
Mxq 

(6-51) 
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and finally collecting and grouping terms yields the final and complete 
definition of the terms of Equation 6-35 for  the estimated elemental 
accelerations. 

IM 

i=l 

m
± (y 

_d_ 
3^ 

EST 

rx 

M y 
1 L m 

'-irW)\ 
+ Mx {   pq+r 

pr-q 

+ My 

pq-r 

-(r +p   ) 

\   qr+p 

+ M 
3^_ 

9^ 

0 

;-2y, 

yz 

ix(o) 

86_ 

I   zx 

0 

-x'z 

+ 11 
9<L 

-yxt 

xyj 

o 

/ 3* ^[-^^ 

hi^] +iY(o) 

pr+q 

+ Mz  |  qr-p 

i-(p2+q2)) 

3q        y0( 

"z^'P^i) 

(^(-P.) -iz^ 

■Mz(0) 

^■r 

<AP2) a + Ixz(-(p^, M. + (9r-P, a.)+ lYz(rV) 

^('P^^-^P'^-^VP^2' 

3| 

2.   2X   99        T     ,   2L 2v   9$ 

r ur j 

(6-52) 
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where in this case the summation 

N 

i=l 

represents summation over the jth 

rigid body element. With this in mind, substituting Equations 6-52 and 
6-37 back into Equation 6-25 yields the complete form of the Lagrange 
energy equation in constrained coordinates with distributed elemental 
masses and forces from which the REXOR equations of motion are all devel- 
oped. Also including these terms as well as the moment terms of Equa- 
tion 6-37 in Equation 6-35 yields the final form of the equation as used 
in REXOR. This form will be presented following the development of the 
generalized mass damping and stiffness matrices. 

From Equation 6-33 it is easily seen, by examining the coefficients of 
the corrective accelerations that generalized mass matrix elements, 

M 
'rk' 

can be written as 

M rk 

Jl^  /ax. 9x.  3y. 9y.  9z. 9z.^ 

- Z^    i^qr 9qk  9qr 9qk  9qr 9q^ 
(6-53) 

This equation is for point masses. Actually, as discussed earlier, the 
REXOR equations model a set of distributed masses characterized by an 
overall mass, center of gravity, and moment of inertia values. As shown 
in the previous section, extension to the distributed mass form is made 
by describing the particle absolute coordinates in terms of the position 
of a relative coordinate set in inertial space ana the particle position in 
terms of this relative set as developed in Section 5.h.     For a rigid body 
the associated relative set and the particle associated with the body main- 
tain a fixed relationship. The summing over the particles of the system 
then becomes a sum over products of masses and lengths yielding mass 
moment end moment of inertia terms. 

The mass elements can be developed by substituting the partial derivatives 
developed in the preceding discussion. These partials describe both the 
motion of the mass element reference and also the distributed masses within 
the rigid body elemental masses. 
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Substituting these partials, Equations 6-U7, 6-hQ  and 6-U9 in the 
generalized mass expression, Equation 6-53 yields: 

'8x„ 3x, 
M 

9xo 3xo 9x. 3x, 

rk mil 9q^ 5Q7" 
i=l ^k " ^ ^ ^ + Zi ^r ^k " ^ \ d\ 

3x, 2 9iJ) 3^   r   aij; 36 +   9e__0+     36 3j; 
yi  3qr 3qk  

yi i 3qr 3qk  
Zi 3qr 3qk  

yiZi ^  ^ 

2 36  36  , 8y0 8y0     8y0 3*      %   3* 
- z. Zi  3qr 3qk   3qr 3qk '" Xi Sq^ 3qk   'i ^  3^ 

+ x ^L ?!o + x 2 9± 3JL _ x z 3JL 8A     3*_ ^£ 
1 3qr 3qk    i  Sq^ 9qk    i i 9^ ^       ^ 3^ 3^ 

- z.x 3^ 3* + z 2 3*  3£ + ^0 ^0 _   
3zo 3<(, 

i"i 9lr ^   i ^ 3qk  3qr 3qk " 
Xi 3^ ^ 

+ v —2 ^i-     3e_ ^0    2 36  36       36 3(J) 
yi 3qr 3qk " i 3qr 3qk  

Xi  3^ 3"^ " Vi 3^ ^ 

3z 
+ v    il   _0 _ v v    9i_3e_ + v2  34.     3<|. 

^i   3qr  3qk iyi   3qr  3qk       yi     3qr  3^ (6-5M 
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and using moment of inertia and mass moment  definitions: 

M ,   = M rk 
/3x_ 92L + 3y.9y   +^Lii_\+I   (djL ^L \ 

+  I 
(H_  9^\ + 

XX\Hr 9qk j        YY^qr  8qJ        XZ^-   ^  hk "   3qr  3qJ 

+  I 
(- 

80     3* 8(|)     30 
Hr    ^k        ^r ;) • ■.•(- 

_3j_   39_        36     3^ 
9qr  8clk ~  ^  ^ ;) 

+ Mx (3y    9i_ + iL   ^L _ iL iL.      9JL   —\ 
3qr  aqk      8qr  3qk "  9qr  9qk "  3qr  Z\) 

^K  3qr  X"   3qr   ^   "  3qr   9qk       3qr 9qJ 

/dx    36    +  36     3x    _  9*_   3y_       3y    3j  \ 

Wr d\      K d\ "  8<1r  3clk "  8cir 8qk/ 
+ Mz (6-55) 

and is identified as a generalized mass.  For orthogonal systems M   is 

zero except for r = k. The development of REXOR is mostly nonorthogonal 
coordinates, therefore, the generalized mass matrix has many off-diagonal 
terms. 

Similarly, terms can be developed for the strain (potential) energy and 
damping functions. 

U = 

+ (K<h    *i2 + K*    Q2 +  K, ^2\ \h i    ei i    *! iy (6-56) 
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ill 
8 

dx. ay. 
^ i (k„   x^ xr"""1" k,r  y; ^-^ + k    z- 

9z, 

qr      f^ \ Xi     i   9qr        "yi    i  9qr zi     i   d% 

30. 36. 9iJ;. 

*i ^ i    1    S- ^i    1    S- 

i=l 

3x 

x.   3 3qv  ^k       ky^   9q    Z^  3qv  S 
i       i   k=1       k ri   % -k 1 1       k=1 K 

n 
3z.  v—^ 3z. 

n 
3<J>. __L  3*. 

z    "3q~ Z^ 3q     \ +     (j)     3q    ^^  *%   ^ 
1     ^   k=l       ^ 1      ^   k=l       k 

96.  ^^ 36. 3^. Jl^ 9t|;. 
+ ke. ^rZi^r qk+ s ^r2^ 9^ qk 

1     ^  k=l       k 1      ^  k=l       k 

(6-57) 

Define 

N        r- 

i=l   L 

9x.   3x. 9y.   9y. 9z.   9z. 
k      ^^ + k      ^^+ k 1       1 

xi   9^   9qk y.   9^   9qk z.   Sc^   9q^ 

+ k 
9(J).   3d). 96.   96. M.   M. 1 

..   9qr9qk 6.   9qr9qk ^a^Sq,]' 

Similarly for damping 

N 
Y-% f        9x.   3x. 3y.   9y. 3z.   9z. 

1=1   '- 

K 
rk 

(6-58) 

+ c 
3(t)-.   34). 96.   36. 9ij).   3^. "1 

^ K + X  9^ ^ + %.   95;  9^J = c 
rk (6-59) 
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The stiffness and damping matrix terms in REXOR are defined with reference 
to relative coordinates; which parallels the physical configuration.    The 
coordinates used with these terms then should be on a relative basis. 
This statement at first appears to be contradictory to the premise of the 
equation development.    However, if these matrix ter^is were defined on ar? 
absolute basis the terms other than those associated with a relative 
motion would be identically zero.    The integration of the accelerations 
produces changes in velocity and position.     These changes with the proper 
starting reference are the relativ? coordinates! and velocities. 

Equation 6-35 is now repeated here in a slightly expanded form to include 
the effect of applied elemental moments. Equation 6-37, and distributed 
elemental masses. Equation 6-52. 

1 

/■   -v 

n 

v.  J 
CORR 

M v rk 
MASS 
MATRIX 

-1 

>     fm.x. -F    \-—+ M     T-^ + 
^V1  ^ST        XiyN Xi   dh 
1=1 ^ ' 

(Equation 6-55) 

N    r- 

Ejm.x. - F    W-i + M     -r-i+   •   •   • 
.=1 _\ 1  ^ST        Xi/^n        Xi  3<11 J 

(Sum of Equations 6-37 and 6-52) 

■                              m 

C:-k 
DAMPING ■ . ' + 
MATRIX 

4n 
V.        J 

rk 
STIFFNESS 
MATRIX 

In 

(Equation 6-59) (Equation 6-58) 

. >;   (6-60) 
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Even though Q  was defined as the generalized forces of the system, for 
r 

the purpose of further development and of the application of the above 
equation in the REXOR analysis, each line in the large brackets on the 
right side of Equation 6-60 will hereafter be referred to as a generalized 
force or a generalized delta force and will be referred to by the symbol, 
FR, in the following development. 

§ 

6.1+ OVERVIEW OF ROTOR-BLADE MODEL 

Many elements of the rotorcraft can be directly modeled along the lines 
developed in Sections 6 through 6.2 and systematized in Section 6.5 with- 
out further ado.  However, there are enough special considerations and 
concepts involved in modeling the individual blades and combined rotor to 
Justify a separate section to address these topics. 

6.h.l    Concept of Modes 

The basic textbook principles governing solutions for eigenvalues (natural 
frequencies) and eigenvectors (mode shapes) for systems of several degrees 
of freedom can be applied to those of many degrees of freedom. For each 
independent degree of freedom there is an additional natural frequency and 
mode shape. 

Free vibrations of continuous systems such as beams, or for example the 
helicopter fuselage, or rotor blades, are generally analyzed mathematically 
by reducing the system to a system of discrete masses and elastic 
constraints. 

6.k.2    Blade Bending - Modal Variable 

The blade is a twisted rotating beam and its  analysis requires considering 
the coupled flapwise-chordwise-torsional response of the blade. For the 
REXOR analysis, coupled flapwise-chordwise mode shapes are used, upon 
which is superimposed one of a number of torsional response representations 
of varying complexity (Sections 5-2.h,  G.h.Q,  6.6.5, and 6.6.6). 

; 

v 

i 

If one applies generalized coordinates,  each blade mode in the analysis 
may be treated as a single degree of freecom.    The generalized coordinates 
are called normal coordinates for the special case when the modes are 
orthogonal,   in which case the generalized mass matrix reduces to a diagonal 
matrix,  as does the generalized stiffness matrix. 

The REXOR analysis uses blade modes calculated for  the blade at a fixed 
rpm,  fixed collective,  and in an unswept,  unconed orientation.    Since the 
program allows  for variation of all of these parameters,  which is accounted 
for  in the overall REXOR analysis,  the predetermined modes become non- 
orthogonal as used in the program.     Thus,  blade motion is  effectively 
described by a  set of modal variables,   each representing a characteristic 
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frequency, and a set of modal coefficients that describe the relative 
amplitude of oscillation for each blade segment and each frequency. 

Since the modes are nonorthogonal, we will /ind in REXOR, as would be 
expected in such a case, off-diagonal coupling terms in both the gen- 
eralized mass and stiffness matrices. It can readily be shown in cases 
where generalized or normal coordinates are applied, that relatively few 
modes need be taken to define accurately the time-history of blade deflec- 
tion. This assumes that the primary frequencies of excitation fall within 
the range of mode.T considered. 

Some caution should be applied, however, in interpreting time-histories of 
moment (stress) or shear.  These variables generally represent the second 
and third spanwise derivatives of the deflection curve.  The higher the 
degree of spanwise derivative, the greater the number of modes required to 
define it. 

However, another unique feature of REXOR is that it actually makes spanwise 
integration of the blade element aerodynamic and inertial distributed load- 
ing functions to compute the moments and shears rather than using the 
second and third spanwise derivatives of the deflection curve. This 
approach greatly enhances the accuracy of the internal loads for a given 
number of modes. 

6.h.3   Adapting Modal Description to Variable Geometry 

It is noted that the selection of the modal description is such that the 
periodic reorientation of the structural axis, due to blade feathering and 
torsional deflection, with respect to the centrifugal force field stiff- 
ness is accounted for. This is accomplished by generating blade modes as 
rotating blade modes for input into the program, generating structural 
only generalized stiffness terms for each mode, and the couplings between 
modes. The centrifugal stiffness effects are then included separately 
within the REXOR program. Thus accounting for the effects of blade 
feathering, etc., as indicated above. 

The blade equations developed in Section 6.6 permit the easy separation of 
structural and centrifugal stiffness type terms. Including the centrifugal 
terms in the blade element accelerations and the structural stiffness terms 

8U 
in the expression r— permits accurate simulation of the effect of rotor 

speed. Secondly, due to the blade element motion description of 

Section 5.5-5, the modal structural stiffness, ;—, remains independent 
0CLT 

of blade feathering angle in each mode. 
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This modal development in conjunction with blade torsion as used in the 
REXOR analysis includes all of the principal terms of the blade motion 
equations (22, 23, 2h)  of Reference 9-  These equations are repeated here, 
using the notation of that reference, with the underlined terms being 
those, amongst others, accounted for in REXOR. 

GJ + TkB  + EB —    A i(ß
,)2l(i)' - EB ß'U" cosß + w" sinß) 

+ Te.lv" sinß - w" cosß) + Ü  mxe(-v' sinß + w' cosß) 

2 2 + fi me sinßv + fi m 
( 

km/ - kml2j^Üß + ee0 cosi 

2
fii ^i 

2- 
(}i + mk    d) 

m 

- rae(v sinß - w cosß)  = M +   (Tk    ß')1 

 T\ 

2 [/      2 2\ 
U  m/k _ - k n I sinß cosß + ee„ sin£ 
 I m2    ml I       0 

(6-62) 

(EI1 cos
2ß + EI sin2ß)wn + (EI^ - ElJ sinß cosß v" 

2    1' 

- TeA(j) cosß - EB^'cj)' sinß I" - (Tw')' - (n2mxe(J) cosß)' 

+ m(w + elf)- cosß) = Lz + (TeA sinß)" + {ü  raxe sinß)' (6-63) 

(Elg - EI1) sinß cosß w" + E^ sin
2ß + EI, cos2ß)v" 

+ TeA<J) sinß - EB^'V   cosßl" -  (Tv')'  +  {ü2mxe^ sinß)' 

2 .... p 
+ ü meij) sinß -t- m(v - e<$> sinß) - fi mv = Lv +  (Te    cosß)" 

2 2 
+  {ü    mxe cosß)'   + ü m(e    + e cosß) (6-61*) 
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In addition to the above terms, a considerable number of nonlinear terms 
are included in REXOR. These include blade spanwise acceleration, non- 
linear Coriolis type terms and feathering moments due to products of 
flapping loads timrs inplane deflection with respect to the feathering 
axis and inplant loads times flapping displacements relative to the 
feathering axis. Additionally, ß as used in REXOR is time dependent 
and includes the effete of blade pretwist and the instantaneous blade 
feathering angle due to collective and cyclic including pitch-flap and 
pitch-lag coupling effects. 

The effects of static precone, blade sweep, blade droop, Jogs in the 
structural axis, feathering axis precone, etc., are also included. 

G.k.k    Blade Mode Generation 

The blade modes can be determined by any appropriate classical method of 
analysis for coupled flapwise-inplane bending beams. The only require- 
ment is a cantilever (hinge or hingeless) boundary condition for the modes 
and that the terms included in the homogeneous part of equations 28 and 29 
of Reference 9 be accounted for. These equations are repeated here for 
convenience.  Flapwise: 

pi1 cos
2ß + EI2 sin

20)wM + (EI2 - E^) sing cosg v"l" 

(Tv*)' - n mv + rav = 0 (6-65) 

and inplanewise: 

UE12 -  EI^ sinß cos3 w" + (E^ sin2ß + EI cos2e)v"l" 

(Tv')'  - n mv + mv = 0 (6-66) 
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6.1*.5 Modal Coefficients 

Several additical points need to be made regarding modes in order that 
the equation development he properly understood. First, the same modal 
coefficients apply to the first and second time derivatives of the 
function, since 

US 
9A. 

i 

= f(x) (6-67) 

7     =   —£  A     +   - A    ■(-...+   2  A ZS       8A?   
Al       3A0 

A2 3A      n 
12 n 

(6-68) 

3Z„ 8Z 

ZS       3A1 
Al       8A2 

A2 

9ZS •• 
+  8rAn 

n 
(6-69) 

Second, the motion is not necessarily confined to one direction.    A given 
modal frequency may excite or couple with motions in other directions. 
For example: 

3Y 3Y                                3Yq 

Y     =   —2   A +   —- A     +   .    .    .   +    2   A YS       3A,   Al 3A0 
A2                   +  3A      n 

x 2                                    n 
(6-70) 

Y
S =  ST A

1 
+  äT A2 +   •   •   •  +  äT An 

12 n 
(6-71) 

BY 3Y 3Y 
Y    = —2 A    +   — A    + •   •   •   +  -■ A lS       3A,   Al       3A0 

A2 3A      n 
12 n 

(6-72) 

6.k.6    Independent Blades 

In REXOR the blade motions are couputed and tracked individually. One set 
of equations operates on a blade in BLE coordinates as explained in 
Section 6.i+.ll. The result for a time step is stored in BLn coordinates 
for that blade. The operating set in BLE coordinates then performs the 
computations for the next blade in turn. 
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6.U.7 Blade Element Aerodynamic Forces - Overview 

The functions F  , F  , F  , and moment terms from Section 6.2 are 
X,     1 ,     Li , 
111 

primarily aerodynamic loads for the blade equations. These loads are 
derived from blade inertial velocity (equivalent to air velocity) and 
table lookup aerodynamic coefficients as given in Section 7. 

6.U.8 Blade Torsional Response 

6.U.8.1 Pitch Horn Bending 

Several alternate approaches to modeling blade feathering dynamics 
exist in REXOR. The simpliest is to assume the blade is torsionally 
rigid, and that the flexibility is in the pitch horn. 

6.U.8.2 Quasi-Static Blade Torsion 

The blade pitch horn bending description is improved by the addition 
of a blade twist dependent on the moment loading. This quasi-static 
torsion is computed by integrating the blade pitching moment times 
the torsional flexibility from tip into the root.  (Developed in 
Sections 5.-3.^ and 6.6.5.) 

6.4.8.3 Dynamic Blade Torsion 

A third approach to blade torsional response in REXOR is an uncoupled 
torsional mode which operates as additional blade twist. This 
material is developed in Section 6.6. 

6.U.9 Radial Integration 

For each element of a rotor blade the equations of motion are formed per 
Section 6.2.9. As briefly touched on in Section 6.U.6 these data are 
formed in BLE axis. These elements are summed to total equations for 
each blade in BLn coordinates at the blade root.  This is explained in 
Section 6.6. These blade root summations are also used in the hub axis 
(Section 6.9). 

6.5 EQUATION SYSTEM DEVELOPMENT 

6.5-1 Reference to Base Operation Matrix 

The equation of motion, as developed in Sections 6.2 and 6.3 and as pre- 
sented in most general form by Equation 6-60, may be given in abbreviated 
form as 

CORR 

- -1 ■« 

M . 
rk F 

r 
_            _ L     J 

(6-73) 
EST 
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The M '3 are the generalized mass matrix elements, the F 's are the 
rk '      r 

generalized forces, and the q 's the generalized coordinates or degrees 

of freedom. As explained previously, the F 's are the complete set of 

external forces and internal reactions computed with estimated values of 

the accelerations, q_ 's,  at the next time point.  The q    's are 
rEST rC0RR 

then corrections to the estimated values. 

The generalized mass, M , is developed in Section 6.3. The generalized 

force may be expanded as (using the point mass form): 

i=l 

(3X,     3Y.     3Z.\ 

i 8qr   i 8qr   i Sq^ 
3B 3U 
3q   3q 
^r   ^r 

+ F   + F  + F 
FR    A c 

r    r    r 
iS-lk) 

The inertia, damping, and elastic terms are developed further in Sec- 

tion 6.3 (see Equation 6-60).  The friction force F  ,  the aerodynamic 
r 

external forces F, , and tne pilot control forces F   are described as 
A ^ c 
r r 

needed. Note that the potential energy and dissipation terms have been 
directly included in the force expression. Where the stiffness and damping 
matrices are simple diagonals, this is done. In the case of the blade 
equations the distinct stiffness and damping matrix form (Section 6.3) is 
computed before combining all the applied forces,, internal reactions, 
stiffness and damping terms into an overall force. 

6.5.2 Organization by Degrees of Freedom 

In developing the equations of motion there are three types of ingredients 
needed: 

• Generalized masses 

• Generalized forces 

• Partial derivatives   (used in both of the above items) 
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I 
The equation development can then proceed with these ingredients along one 
of two lines of organization. 

• For every major rotorcraft piece (fuselage, rotor, etc.), compute 
all the ingredients and sort according to degree of freedom for 
equation use. 

e For every degree-of-freedom group, sort through the rotorcraft 
pieces for applicable ingredients.  Sorting is minimal because of 
close association of degrees of freedom and component parts. 

The latter development is used here, 
given in Figure 5-10. 

The degrees of freedom modeled are 

The following subsections will describe the appropriate partial differen- 
tiations, the generalized masses, and the generalized forces in detail. 
Each generalized mass couples the inertia of one generalized coordinate 
with another or itself. The algebraic equations for each generalized mass 
will be given only once.  If the reader cannot find a particular mass 
element under one subsection, he should look into the other subsection 
relating to the coupled generalized coordinate. 

6.5-3 Partial Derivatives 

The generalized masses and forces use partial derivatives which describe 
the variational motion of each physical mass element in rectangular coordi- 
nates relative to the motion of each generalized coordinate.  The partial 
derivatives required are determined from the generalized mass and force 
expressions for distributed masses of Section 6.2. The partial derivatives 
are easily constructed from the coordinate transformations which have been 
developed. 

In developing the motions of a physical mass element relative to a gen- 
eralized coordinate, a number of transforms may be used.  These can be 
categorized as either linear or Euler axes transforms which either displace 
without rotation or rotate without displacement. The overall partial will 
be the product of partials associated with each of these transforms. The 
typical form of these partials will now be illustrated. 

To obtain the partials, the equations relating the velocities are obtained 
first. Reviewing Sections 5.1+.l and 5.1+.2, the velocity relations of 
interest are restated. For linear transforms: 

X xo X 0 Z 
a 

-Y 
a P 

Y '    =  « vo 
-    + -   Y -   + -Z 

a 
0 X 

a 

0 

q 

Z 
b KJ Z 

a 
Y 

.    a 
-X 

a r 

(6-75) 
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V.   J 

(6-76) 

and for Euler transforms 

\ 
xl 

i  *    = T    v a-b 
Y ► 

p 0 

1 r 

r    n 
0 

L         J 

r   -\ 

Z 
a 

*b r  n 

r    ^ 
P 

■" 

q ►      =   • 0 ►    + 6b 
-r Te ' 0 ►    + 

TJ  * ► 

r 
b S. a 

0 
a 

k. 

0 a 

L    J 
r 

a 

(6-TT) 

(6-78) 

The partials of interest are conveniently organized into 3 by 3 matrices, 
They are for the linear transform: 

r f •X r -1 1 - 
X X X 10       0 

3 

Ob 
Y » 3     .   Y 

3Y 
Ob 

• 3 

9Z0b 
Y ► = I = 0      10 

Z 
. b 

Z 
. b 

Z 
b_ 

0      0       1 

X 
r  -v 

X | 

r  -v 
X 

3 
3X   " 

a 
Y 3 

3Y   4 

a 
Y 

3 
3Z   " 

a 
Y . =   'l 

Z 
b 

Z 
b 

Z 
b 

f 
x' X ' 

-> 
X n Z         -Y 

a           a 
3 

3(f) ' Y ► 

3 
39 " 

V • 
3 

3* • Y ► 3 -z 
a 

0           X 
a 

k 

Z 
b 

z 
b 

Z 
b 

li 
a 

-X           0 
a 

(6-79) 

(6-80) 

(6-81) 
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'     ^ 
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a 
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* b _ 

(6-82) 

r       r    . r   'v Z'        >        ^ 

* «f» * 
3 3 9 ■     " 

34)  ' 
ü » 

39   " 
6 i 

3I|J   " 
6 ■ = I 

a a va .,     _ 

. b * b b 

(6-83) 

For the Euler angles defined in Section 5.i+.2: 

~ f    * ■■    •' f         *> 

X X X 
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3X   ' 

a 
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3Y  < 
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Y 3 
3Z  " 
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(6-85) 

(6-86) 

(6-87) 
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* r        > 
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9 
3*b 

6 « 9 
96 

* b 

_9 
9^. 

•■       ^ 

* 

—. « e ► = 
b 

* b 

cos^cos6      sin^      0 

-sirn^cosö      cosij;      0 

0      0    1 

(6-88) 

For Euler angles defined in reversed order or reversed sign the last matrix 
will differ.  Note by inspection that rotary to linear derivatives such 

96 
as r— are all zero. The derivatives can be strung together to get motion 

in a third axis c relative to motion in axis a. Abbreviating the 
matrices: 

fgr  I r9r 1 r^ui r9r  "1 rsci c c b c sb + 
at; ^ H 3^ 3? L   aJ bj L    aj .   ^J L   aJ 

(6-89) 

9r    fgr 1  r9r " 
 c _   c   _b 
9r     9r   9r 

_ aj    b    a 
(6-90) 

9r = 0 (6-91) 

L^aJ 
= 

r^cl 
KJ L3?aJ (6-92) 

assuming in general 

b   baa (6-93) 

and 

Cc = ?c(rb' S) (6-9M 
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The abbreviations used are 

r = JX,  Y,  Z) (6-95) 

and 

? = j*,  9,  ii>\ (6-96) 

6.5.^ Generalized Masses 

As discussed before, the helicopter is assumed composed of a finite number 
of mass elements. They are the 

• fuselage 

• tail rotor 

• propeller 

• engine rotor 

• swashplate 

• fixed hub 

0 k mass elements on each of b blades. 

The reader should realize the mass matrix is symmetric from the definition 
of equation (6-33) and interchange of the order of differentiation. 

M.  = M rk (6-97) 

Only the elements in the diagonal and the upper right triangle will be 
given in the following sections. 

Each of these mass elements must be summed for each of the generalized 
mass matrix, elements. Each mass is handled with the distributed mass M , 

rk 
relation of Section 6.2. Fortunately, only the fuselage requires the full 
equation. The center-of-gravity terms drop out if the mass motion is 
determined at the center of gravity. This situation is true for the blade 
line which passes through the center of gravity of the blade section mass 
elements. Only the fuselage and swashplate have reference axis origin off 
the center of gravity. Another simplification is that cross products of 
inertia exist only for the fuselage. Each blade mass element is con- 
sidered to be in the shape of a rod lying along the chord at the blade 
station in question. 
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Certain small terms and factors are dropped from the generalized masses. 
As discussed in Section 6.3, the equations of motion are solved for small 
incremental corrections to the accelerations. With this formulation the 
masses can tolerate approximations as contrasted to the generalized forces, 
For example, some partials are assumed to be zero or one such as the hub 
to fuselage partials, which in effect, says the shaft bending deflections 
are small. 

6.5-5 Generalized Forces 

The equation formulation. Section 6.3, requires that precision be used in 
compiling the generalized forces per Equation 6-7^, expanded per Sec- 
tion 6.3, Equation 6-60, to include rigid body distributed mass elements. 
This formulation includes for each degree of freedom: 

• Summation over all mass elements of the mass times inertial 
acceleration times partial derivative.  (Section 6.3 expression 
for distributed masses.) 

• External (aerodynamic) loadings times a partial derivative. 

• Potential energy and damping terms or assembled stiffness and 
damping terms with partial derivatives (Section 6.3). 

For some degrees of freedom the applicable mass elements and the total 
integration are directly written as final results which can be verified 
by inspection. Degrees of freedom that properly include summation over 
the main rotor blades involve some extensive numerical integrations and 
complicated coordinate transformations. 

6.6 BLADE BENDING MD TORSION EQUATIONS 

6.6.1 Blade Radial Summation 

The contribution from all the individual blade sections are summed to give 
the blade generalized masses and forces.  These are given for blade root, 
bending, feathering, and torsion motions.  The blade root values are then 
transformed to the final degree of freedom variables by partial derivatives. 
The summation is carried out over all elements of the rotorcraft, including 
the independent blades.  Due to the relative isolation of one blade's 
modes from another, only the ^ by U submass matrices along the diagonal of 
the i+b by Ub rotor matrix are filled, where b is the number of blades. 

6.6.2 Partial Derivatives 

The generalized masses and forces utilize partials relating the X, Y, Z, 
()), 9, and ty    linear and rotary motion of each blade element to the blade 
bending, blade torsion, body, rotor, and swashplate degrees of freedom. 

152 

ljaiijglggiyjggjggjjigyigl§iffift^ 



^SfSBW^g!^^ 

•:.•l^l'^lS.1 n ''*1W TMP »wwsnp» 

Only the blade bending, torsion, and feathering partials are derived in 
this section; the blade partials for the body, rotor, and swashplate are 
to be found in their respective sections. 

As developed in Section 5.3.^, the blade torsion may be modeled either as 
a pitch horn bending or an uncoupled dynamic torsion node. For the former 

90 
Fn 

case the partial 5-5  is a blade spanwise constant multiplier to summa- 
3ßPHn 

tions which couple in the feather angle.  In the latter case, 

function of span and blade number. 

3(f) 
BLE 

3ß 
is a 

PHn 

The first partials to be considered are those relating motions at any 
point i on the blade to the rigid body motion of the blade root.  These 
partials are; 

^BLE) 
BLn 

Or 
OBLn 

(6-98) 

'(^LE) 
BLn 

3? BLn 

0   ZBLE "YBLE 

"ZBLE  0   XBLE 

YBLE ~XBLE  0 
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3C BLE 
3^ BLn 

'(♦BLE)BLE  3
CBLB)BLE  fBL.) 

3(t) BLn 

8(|) BLn 

3(t) BLn 

3B 
BLn 

36 BLn 

86 
BLn 

BLE 
3ijj 
BLn 

f™)^ »(eBLE)BLE 
3(H BLE 

3iJ; BLn 

'(HBLE  
3MBLE  tBLE) BLE 

3tjj 
BLn 

BLn-BLE 
(6-100) 

Note that X^«, !._-_ and Z_TT:, are expressed in blade root coordinates; 

while ^-nrTPi 9-r.T-P and- ^-OTü are in terms of blade element axes aligned 
BLE  BLE     BLE 

with the blade element principal axes. 

Next consider the blade Y and Z bending response with respect to the 
blade bending modes. A number of equations can be used to develop the 
required expressions.  The velocity equations from Section 5-5-5 are 
selected for ease of analysis.  Using cancellation of the dots 
(Section 6.2): 

N   mn  ' T   
x   mn  ' 

BLn BLn 

(6-101) 

(!^BLE)  =(Ü1HBLE) 
3 ^  BLn  ' ^  BLn 

(6-102) 
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gives: 

0 

3Y 
BLE 

8A 
mn 

BLn 

az1 
PA 

8A 
m f-J f-J W f-J f-vj 

• [''•»]' ['■■„]' M' t'»] [*■■«] 
BY1 

FA 
BA m f-J NT \4 f-J [^ J 

4 WT [^ J MT [^ J [v j 
3(j) 

Fn 
3A m [^•JkNsN^J^J 

. +  r 
mn s 

[T-FA]T [T-FA]T [^F]T [T-FA] [T-FA] 
f9rBLE' 
1 3A 

(6-103) 
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t 
■ 

where 

f                    > r        -i 

I   BLE , = TR 
T 

l"     "i 11              f r    "i 

k L o. 
T r 

P ' r I     +     I 
L o 

T    j 1.1 - h-ll 

sc 

(6-101+) 

and 

9Y 
FA 

8A 
in 

8Z' 
FA 

3A 
m 

►   Defined Section 5.5.8. (6-105) 

3A, 

31' 
= -  C, 9A 

FA  .  _|_F 
'   8A„ 

3Z1 

FA Hx az1 

'2    3A2     '   3A 
= -  C 

FA 
3     3A, 

(6-106) 

The input coefficient    C       is  a pitch lag coupling.     The coefficients, 

C    and C   ,    are the pitch flap couplings  for first and second flap modes. 

The existence of two coefficients accounts for the difference in position 
of the flap  (virtual) hinge  for the two flap modes.     These  coefficients are 
developed further in Section 5.5.8. 

Even though these coefficients are referenced to the inplane or flapping 
slope in the inplane or flapping modes, they are the total pitch- flap- 
lag coupling in  each mode.     Therefore, they must account  for the effect of 
both the inplane and flapping feathering axis  slope changes  in each mode. 
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{ 
The angular derivatives with respect to the blade bending modes are also 
constructed in the velocity form. 

mn 

3<L 
8A 

mn 

dk 
mn 

BLE 

KLE] 
3A 

mn 

3eBLE 
8A 

mn 

9*BT,E 
3A 

mn 
V              J 

: 6-107) 

BLE 

Note that the angular derivatives, being applied to local  segments, 
presented in    BLE    axis.     Referring to Equation  5-125: 

are 

V    ^^BLE 

T '\ 
T 

Y 
T 

To 
Tß ßFA 

T 
VREF 

Tß 
^FA 

dY] 

BEND 

>   + 
BEND 

3A 

BET.D 

-3Z 
BEND 

3A 

T„ 
FA FA 

mn 

0      ^ 

3f 
Fn 

3A 
mn 

0 

L oj 

(6-108) 
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From: 

BEND 

Z' BEND 

Y'    Y'    Y' 1 1     2     3 

Z,l   Z,2   Z,3 

In 

2n 

3n 

(6-109) 

Gives: 

Y' m 

► = < 

Z' 
m 

(6-110) 

Also note that in the same context and argument of Section 5»5^5 the 

feathering axis slopes, Y'  and Z'   have been neglected in the above 

angular partials. 

Derivatives with respect to the blade feathering are also constructed 
using cancellation of the dots. 

r **■ *• i 

3Y 
BLE 

3(j) 
Fn 

► = . 

8Z BLE 
3^ 
Fn 

v.    s 

(6-111) 
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gives 

BLn 

['■■»]'[''v.]T[H]'[I"„] ['■■„] 

(6-112) 

Similarly, for angular motion: 

9*^ 

%]NMHHT MM 
.][- 

H { 0 

0 

TY' I   |TZ' 
BEND BEND 

TZ' FA 

(as programmed) 

I' w 
(6-113) 

The partials developed with respect to ^   are used directly in swash- rn 
plate and rotor summations as well as  some of the following mass and force 

terms.     Some terms require a further compounding derivative, 
d* Fn 
813 

,    for 
PHn 

the case of the pitch horn bending torsion option.     Taking the degree of 
freedom to be pitch horn angular deflection about the feather axis, the 
constant is approximately    l/e.     For 'he dynamic torsion option a different 
set of mass formulations is used in terms o'    BLE    axis, obviating the 
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need for the compounded derivative. As indicated in Section 5*5-5» 

expressions inboard of X   equal expressions outboard of X TT with 
oW SW 

W [\]-H (6-1110 

and 

hwl = Kog} = {0) (6-115) 

Blade X motions mast now be accounted for.  The assumption of the neutral 
axis as the axis of no stretch is discussed in Section 5.5.5 and the 
derivation of the X motions shown.  The equation for the partials in 
BLn axis for a point on the neutral axis is taken from the formulation for 
the X velocities: 

9X(i) NA 
3A mn 'BLn  i=l 

YaY(i)NA 3Y(i-i)NA\ 

'NAAIä      9A   I /\     mn mn  / 
^  _ Yd-'] ) 
NA   V   ;N^~5Ä       9A ~   mn       mn 

X(iL, - X(i-lL. NA       NA 

yzu: 
IPK  3A /\  mr 

i)    3Z(i-: 
zii)m ' ^-'■hit^ -    3A mn 

X(i)NA " X(i-1}NA BLn 

(6-116) 

The program data, however, is at the blade center-of-gravity axis.  The 
transfer is: 

BLn 

BLn-BLE ]1 
BLn 

\        mr / 

OH- 
\    mn / ONA 

(6-117) 
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where the right-hand side elements are from Section 5»5-5 and the previous 

development of this section.  The distance Y(i)   = Yd)      -  Y(i) 
BLE 

is the distance the neutral  axis is  from the center-of-gravity axis. 

8Y(i) 
positive forward.  The partials 

NA az(i) 

3A 
and NA 

mn 

8X(i)lvT.  A8X(i) 

8A 
are used in the 

mn 

preceding equation for 
NA NA is then the difference in X 

8A mn 3A mn 

motions between the reference and the neutral axis,  and is  subtracted from 
the neutral  axis motions: 

<aX(i)BLE 
3A 

mn 
(6-118) 

to obtain a center-of-gravity value. 

The spanwise variation of    X    with feathering, 

9X(i)1 

3X(i) BLE 
3(J> 

,    can be derived 
Fn 

in a manner similar to 
'BLE 

3A 
The formulations are: 

mn 

^X(i) 
BLE 

3X(i) 
NA 3X(i) 

NA 
3(f) 

Fn 
3(j) 

BLn Fn 
3(Ji 

BLn 
Fn 

BLn 

(6-119) 

where 

A8X(i)NA 
9*Fn 

8Y(i)NA 
9*Fn 

9Z(i)NA 
3*Fn BLn 

7   'MvrM 

JT 1 BLn-BLE 

ONA 

(6-120) 
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and 

3X(i) 
M 

9(|) 
Fn =£ 

/ BLn      i=l 

^NA " Y( 
.   n    V3Y(i)NA      *I^M 
1 W\3v " ^n y 

X(i)NA "  ^^^NA 

Z(i)NA "  ^V 

\/8Z(i 
^-^M^ 

X(i)NA " ^^^NA" 

The program assumes 
8XB LE' 
3<t> 

to be zero  for generalized mass calcula- 
Fn 'BLn 

tions.  This is done because of the latitude possible in the generalized 
masses and the second order nature of the term.  In contrast, the deiiva- 

3*, 
tive 

8XB LE 
8A 

is retained.  The partial 
'BLE 

mn 
84) is set to unity for 

'BLn 
Fn 

the generalized mass terms.    The full equations are used for all these 
terms  in determining the generalized forces. 

A simple partial derivative is also needed when    96.      is defined as 
rrln 

dynamic torsion. Since torsion occurs along the bent and tvisted blade 

line, in blade element axis BLE, only the vertical or normal tn chord 

motion of the shear center is of interest, hence. 

3Z(i) BLE 8Z(i)BLE 3*BLE 
80 PHn 

8<f) BLE 86 PHn 
= (Y(i ̂SC - Y(i)CG ) 

8((> BLE 

BLE 3ßPHn 
(6-122) 

8(1) 
BLE 

8 ß. 
is progrjm input for the torsion mode shape. 

PHn 
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6.6,3 Generalized Masses 

The blade generalized masses in conjunction vith partial derivatives 
couple "blade feathering, blade torsion, blade bending, body motions, and 
rotor tilt. All the blade generalized masses that are assumed to exist 

are given in the following table. As mentioned before, 
8XB LE 
9<}) 

is assumed 
Fn 

9(J) 
zero and 

BLE 
9(}) 

is assumed one in the program, although it is given in 
Fn 

the table.  The blade has a rotary inertia about the center of gravity 

axis 
"XXB 

The blade also has inertia I 
LE ZZ, about a vertical axis, 

BLE 

but its contribution is considered small to the generalized mass and is 
neglected.  This contribution is not neglected in the generalized forces. 

The coupling of the dynamic blade torsion with the body is assumed zero 
(but not for pitch horn bending).  The dynamic torsion is taken as a high 
frequency mode, and is assumed effectively decoupled from rigid body 
motions of the hub or rotor. 

Table 6-1 lists all the terms coupling rotary motion at the blade root, 

M and similar terms.  However, not all listed are used,as certain 
^BLn ^BLn 

approximations are made in developing the principal axis generalized 
masses which reduce the number of blade coupling generalized masses needed. 
Since the mass matrix operates on the acceleration error term rather than 
the total acceleration, these approximations do not detract from the 
validity of the results produced. 
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TABLE 6-1.    BLADE GENERALIZED MASSES 

Blade Root Coupling 

Tnr,T   K- ZnT,T   eTDT BLn CG 
OBLn BLn OBLn BLn BLn '^^LH 1=1 

k 

M^ ^ =-MX_^     =mBLnYCGT       =^    ^■-(i), 

(6-123) 

^BLn^BLn 't)BLnTBLn BLn 

M. = "^.^   ^T     = mBLnZCG 
OBLn BLn i0BLnTBLn BLn 

=g (^'"Lf'1') 

§ Mei'1') 
(6-12li) 

My   x    = M^   Y    = M = DL 
OBLn OBLn    OBLn OBLn    OBLn OBLn 

1=1 

Feather Coupling 

OBLn^Fn 
= £m(: >XB LE\ 

a* 
i=l 

k 

Fn 
BLn 

^mCi) 
<9Y. 

BLEI 

OBLn^Fn     " \   Fn . T,f i=l \        / BLn 

M 
Z       ii> 

OBLn^Fn 
=§m<1)te BLn 

M 4       A 
BLnTn =E 

i=l L 

/ ■ M 8YBLE 8YBLE , 9ZBLE 8ZBLE' 

' vBLn fFn    vBLn vFn 

+ I 
rJBLE  ^BLEl 

XXBLEWBLn  9<l>Fn 
BLn 

(6-125) 

n=^m(i) (6-126) 

(6-127) 

(6-128) 

(6-129) 

(6-130) 
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TABLE 6-1  - Continued 

Feather Coupling_(Continued) 

M 8       A 
BLn^Fn i=l 

^^(^BLE  8YBLE   ,   8ZBLE8ZBLE] 

+     I 

BLn    yFn 

(8*BLE  9*BLEl 

BLn    TFn 

^i^V^.r.   H, 3LEV"BLn  ^Fn 
J  BLn 

M 
^BLn*Fn i=l 

+ I, 

„uj&a^/WW 
^*BL„   S*F„ BLn    TFn 

^*BLE  3<t)BLE' 
:X

BLE\^ BLn  8<t,Fn 
J BLn 

M 
*Fn*Fn 1=1 

m (i) Kn /    l^Fn;    ^ 

+ I 
^BLE  9*BLE' 

XXBLE\8*Fn    8*Fn 

M 
mn Fn 

=z 
1=1 

i(i) 

BLn 

9Y„„ 9Y. 

(6-131) 

(6-132) 

(6-133) 

9Z_„  8ZT r3XBLE  8XBLE ^  "'BLE "BLE      ""BLE  ""BLE' 

mn        Fn mn        Fn 
3A 8<t 

mn Fn 

+ I 
^BLE  3*BLE' 

^LEV^mn    9*Fn 
(6-13M 

BLn 
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TABLE 6-1  - Continued 

Blade Bending Coupling 

OBLn mn       ._1 \    mn > 

OBLn mn       .   n \   mn /„,. 
1=1 ^ ' BLn 

k 

M., 
OBLn mn A 'E1-11' 

'8Z 
BLE' 

^A 

(6-135) 

(6-136) 

(6-137) 

M 
BLn mn 

i=l 

k 

i=l 

mn 
BLn 

r9X__  3)L 9Y„_  3Y,.,7,„       3Z„._,  3Z,. 
/ ■ M     'BLE     ^LE ,       BLE       BLE ,       BLE      BLE 

m(i)I-r-: — + T- r-: + 

+ I 

BiL,.     8A 9^13T     3A 3ij/BT     8A 
BLn      mn BLn      mn BLn      mn 

%LE 9*BLE' 

BLn 

M 
A    A 

mn mn 
i=l 

XX-TT,\9il/_T     3A 
BLE\    BLn      mn 

( • y^LE 9XBLE + !^BM 9YBLE + ^LE 3^BLE 
niU;\9A        9A 9A        9A 9A        9A 

\   mn        mn mn        mn mn        mn 

(6-138) 

+ I 
'3<f>BLE  8<,)BLE^ 

XX^^VaA        9A 
üLE\   mn       mn 

(6-139) 

BLn 

3™,    Defined As Dynamic Pitch Horn Bending 
rnn 

Fn 
94) 

M = M 
AmnePHn        ^Fn 9ePHn 

(6-11+0) 
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TABLE 6-1 - Continued 

g-,^ Defined As Dynamic Pitch Horn Bending (Continued) 
rnn 

'3(J) 
M, = M, 

Fn 
a 4 \8ß 

PHn PHn   TFnvFn\ PHn> 

Fn 

PHn 

M      = M     I — 
PHn^Fn   vFnvFn\ kPHn/ 

Defined As Dynamic Torsion 

(used in swashplate) 

M A 
mn PHn i=l 

ml BLEI,'  BLE 
fd$ 

BLE 

LE \ mn 
BLn 

(6-lHl) 

(6-11+2) 

BLn 

M. 
PHn PHn i=l 

m. 
m (i) 

BLE 
9(j) 

+ I 
BLE> 

XXB LE 36 
BLn PHn " 

BLn 

(6-11+3) 

(6-11+1+) 

/BLn 

M 
3   4 
PHn^Fn 

3<J) 
.^BLEU^LE BLE 

i=l 

(used in swashplate) 

Fn 

/3(j) 
BLE 

BLn \ 'BLn 

(6-11+5) 
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6.6.1t    Generalized Forces 

The development herein proceeds by first deriving the equations for the 
loads on an individual blade element.     The blade element loads are com- 
posed of aerodynamic and inertial components conveniently found in either 
the blade root axes    BLn    or  the blade element axes    BLE.     The loads will 
be summed in    BLn    axes with the appropriate transformation.     The desired 
equations are: 

fF (i) 

FY(i)BLE 

-FZ(i)BLE^ 

m (i)- 

X(i) 
BLE 

Y(i)BLE 

BLn ^(iW 

■       + FT T BLn-BLE 

BLn 

rF     (i) 
XAV   ;BLE 

FYA(i)BLE 

F     (i) ^ ZAV   ;BLEJ 

(6-11+6) 

V^BLE 

V^BLE 

tMZ(i)BLEJ BLn 

[T 1T 

BLn-BLE 

"I 
fVi: 

.-1 
XXB 

BLE 

0 

LE 

PBLE+qBLErBLE 

l-rBLE PBLEqBLE 

+ 

BLn 

-Y  (i)   F (i)  ^ 
CGV ;BLE ZAV 'BLE 

0 

0 
BLn 

0 

Z(i) 

-Y(i) 

BLE 

BLE 

-Z(i) 

0 

X(i) 

BLE 

BLE 

Y(i) BLE 

-X(i) BLE 

BLn 

FX(i)BLE 

FY(i)BLE 

lFZ(i)BLE^ 
BLn 

(6-lliT) 

The aerodynamic loads are in BLE axes alignment about the blade reference 
datum line which is the quarter chord. A transfer through the distance 

Y-^    is made to the aerodynamic moment.  To put the data on a common 
CGBLE 
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basis with dynamic terms.    The blade aerodynamics is detailed in 
Section 7-     Since only the blade section pitching moment is considered. 

H = M     = 0.  Note the blade element is assumed configured as a 
LE   LABLE 

chordwise rod for inertia; hence 

^I„„   = I„„   and I 
(LXXB LE ZZ. BLE YY 

BLE -) 
(6-II18) 

A number of blade summations are desired.  All will be made in BLn axes 
along the center-of-gravity axis. The loads at the principal reference 
axes and for rotor tilt make use of the blade root shears and moment. 
These are simply the sum of the k total blade elements. 

f                "< r 

Fx 
OBLn k 

FX(i)BLE 

FY 
OBLn 

i=l 

FY(i)BLE 

Fz FZ(i)BLE 
OBLn 

(6-11+9) 

BLn 

and likewise for root moments, 

M, 

1 

^Ln 

BLn 

MZ 
^ BLnJ 

i=l 

V^BLE 

MZ(i)BLE 

(6-150) 

BLn 

The summations illustrated above are for the total inertial and aerodynamic 
components.  In a similar manner, the blade root aerodynamic loads are 
derived. The blade root loads are summed over all the blade to give main 
aerodynamic loads for downwash computations (Section 7.2.2) in the manner 
the total main rotor loads are found in Section 6.9. 
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Feathering moments are used by the swashplate equations of motion. These 
moments are: 

M„ 
Fn 

[ BLn-FnJ | 

M. 
^Ln 

My 
BLn 

M„ 
BLn 

> + 

0    ZIB  -YIB 

-ZIB    0    XIB 

L YIB  "XIB 

OBLn 

"OBLn 

BLn ^ '^OBLr/J 

(6-151) 

where 

' TBLn-Fn 

cosY' .  sinY' „  0 
FA      FA 

-sinY'    cosY' „  0 
FA      FA 

cosZ'FA  0  sinZ'FA 

-sinZ' „  0  cosZ' 
FA FA 

(6-152) 

Only the X component is used by the program. The equations above trans- 
fer the summed blade loads to the inboard bearing, then transform them to 
feathering axes. Using the blade root loads is correct when one recalls 
that the blade is defined as those portions that are feathered; the fixed 
hub is excluded. 

The blade bending generalized forces are now presented. They are: 

mn 
i=l L 

f3X(i) 
BLE 

8A mn 
FX(i)BLE+ 

9Y(i) 
BLE 

8A mn 
FY(i)BLE+ 

3Z(i) BLE 
8A mn 

FZ(i)BLEi 
BLn 

Hii) BLE 
8A mn 

Mx(iW + 
3*(i) BLE 

9A mn 
MZ(i)BLE/ 

BLn 

3U 
3A 
mn 

3B 
3A 
mn 

(6-153) 
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The potential energy is given asi 

9Amn  ^ mJ jn 

J=l 

(6-1510 

where 

(6-155) 

are inputs calculated external to the program from a tending beam model. 

El  and El   are the flapping and chord stiffness about axes aligned 

with the blade element principal axes.  The chord and flapping moments, 

My and M   reflect the contribution of the bending moment from the i 
i      i 

(or j) mode.  The integration goes from root to tip.  The K's are 
evaluated for whatever normalized modes are used as program input. 

The last equation can be derived from the Bernoulli-Euler law for bending 
beams: 

M = — r (6-156) 

where r is a radius of curvature. The strain energy is 

U 
-/ROOT 

2 W dS  ZdS/ 
(6-15T) 

Substituting in from the Bernoulli-Euler law and noting that dS = r^ö = 

rzdt, 

J ROOT 2 \EIYY  EIZZ/ 
dS (6-158) 
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Partial differentiation gives 

8Amn JmOl\ 

TIP /M  M / A    M,, M/ A 
/ Y  y  mn .  Z  Z  mn 

El YY El ZZ ) 
dS (6-159) 

Considering the moments as a linear sum of components from each bending 
mode, one has: 

| 

~2n 3n 
(6-160) 

i=l 

and likewise for M .  Then, hy substitution, the desired equation is 
Li 

obtained. 

The damping factor is assumed proportional to the spring rate. This 
assumption in conjunction with a mechanical lead-lag damper operating at 
the feather axis with respect to the fixed hub leads to: 

9Ä  - CS 
mn 

y^K  A  +c   V(IIJ&A YIluL 
Z-r mj Ajn  ^LAG Z^\dA.       jn/ 9A 

(6-l6l) 

J=l J=l 

The coefficients K . used above can be directly identified with the 

coefficients K .  developed in Section 6.3. Here the partial derivatives 

associated with the elemental springs are embodied in the mode shape 
determinations. The lag damper is restricted to respond only to inplane 
motion. 

The generalized force is developed for pitch horn bending and dynamic 
torsion.  For pitch horn bending. 

^Fn 
5PHn ' ^ 9ßPHn 

- K, (6-162) 
PHn PHn 
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where M_,  is the total feather moment as derived in Section 6.10. For 

the uncoupled dynamic torsion option. 

'pHn ^ \  ''»BLE 
1=1 

FZ(i)BLE+MX(i)BLE 
^BLE  K 

BLE 30PHn   ß PHn'FHn 
(6-163) 

in BLE axes. Since the blade elements loads are derived in BLn axes, 
the transform 

LFZ(i)BLEj 

=  [. BLn-BLE 
FX(i)BLE 

FY(i)BLE 

FZ(i)BLE BLn 

(6-161*) 

is needed.  The spring constant can be interpreted as 

Kß   = MR   "fi PPHn   PPHn PPHn 
(6-165) 

where the generalized mass is computed continuously and u)R   is the 
PH 

nautral frequency of the uncoupled torsion mode, a program input 
constant. 

6.6.5 Quasi-Static Blade Torsion 

To improve the pitch horn bending blade feathering representation a quasi- 
static blade torsion distribution is introduced. Quasi-static torsion is 

computed from the structural stiffness, GJ , at each station and the 

torque MX   at the shear center. The torque is summed from the tip to 

the blade station in question as shown in Section 5.3.1+. The increment of 
twist produced at a blade station j can be displayed as: 

M,, 

T,,. ((l_, + (J) 
SCj 

T TTj  TTj  GJ 
(6-166) 

SCj 
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assuming a first-order Ir.g represents the torsional dynamics.     The time con- 
stant    T 
frequency. 
stant    T       i.-, c?iosen to be representative of the blade first torsional mode 

To obtain this result, the available computation elements require some 
further operations.     First,  REXOR conducts blade integrations  from root 
to tip,  in    BLn    axes.     To obtain tip to  root values: 

h LEj 

'BLEj 

BLEj 

^LEj 

M, 
BLEj 

M. 
JBLEj 

_ < 

BLn 

H 
F 

YO 

Fzo 

M 
Z0 

-E- 
1=1 

\LE{i) 

■YBLE(i) 

7      (i) 

BLn 

%LE(i) 

\LE^) 

(6-16?; 

BLn 

Note the summation is conducted from root to the station    j     in question. 
Thus the    j    represents a  summation whereas the    i    represents a blade 
station. 

Second,  these data are used to  form the required torque at the shear center. 

M„ 
SCj 

1     Y,sc     z,sc 

BLn 

^LEj 

BLEj 

M,, 

^   BLE^BLn 

0 zsc -Ysc 

zsc 0 xsc 

Ysc -xsc 0 

BLn 

BLEj 

BLEj 

JBLEj 
BLn 

(6-168) 
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Small angles are assumed.  The moments /NL.  \ 

BLn axes and hence the matrix of lengths {^r\ 

etc., act along the 

BLn 

etc., are employed to 
BLn 

ohtain moments at the shear center which are then transformed into shear 
center axes, subscripted SC, parallel to blade element center-of-gravity- 
axes, subscripted BLE. 

The blade deflections and slope in BLr are also needed for the above 
expressions. 

0 'xsc '^LE^ 

Ysc »             —    • YBLE 

^ zsc- ^ZBLE- BLn 

+ FT    1 • 
[ BLn-BLEl 

BLn 

Y -Y 
SC CG 

L  0 
BLE 

(6-169) 

and 

SC 

SC 

S  , Y' 
1  BLE 

^T   ^
Z
'BLEJ T BLn BLn 

(6-170) 

6.6.6 Quasi-Static Pitch Horn Bending 

To facilitate troubleshooting numerical instability probleus an optional 
quasi-static pitch horn bending degree of freedom is available. The com- 
putation elements are the same as developed in Section 6.6.h  except that 
the solution does not use generalized masses, is therefore an uncoupled 
mode, and is calculated externally to the main computation flow. The 
formulation used is: 

TPH ^FnPH + ^FnFH 
ßPH 

(6-171) 

The dynamics are assumed represented by a first-order lag with T   as the 

time constant. The variable «f»- pH is used to distinguish this formula- 

tion from the usual 3_„  symbology. 
Pnn 
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6.7 ROTOR TILT EQUATIONS 

As an interim measure, the capability to model teetering rotor systems has 
been included in REXOR by the partial redefinition of the available blade 
degrees of freedom.  The methodology is to utilize blade positions n=l and 
n=3 to represent the rotor and suppress blade matrix positions n=2 and n=h. 

The four degrees of freedom per blade are used as follows: 

• #1 First Inplane (no change) 

• #2 Coning (first flap-collective) 

• ff3    Teetering (first flap-cyclic) 

• ffk    Blade Torsion (currently not used) 

The inplane calculations proceed as usual.  Currently the hard swashplate 
option is specified with the interim teetering modeling.  This means 
kinematic relations are used between command functions and blade angles 

produced.  The fourth mode,  ß 
PHn' 

therefore is not used. 

Positions 2 and 3 are programmed to be blade flapping modes, and proper 
generalized forces and masses will be generated assuming the modal data is 
entered. A fixed root restraint mode shape, coning, is used for mode #2, 
and a pinned connection pair mode shape (teetering) is used for mode #3. 
A rigid flapping mode (straight line) will also work for the teetering 
mode. 

To generate coning preferentially in mode #2 and teetering in mode #3 the 
opposite type is nulled from each mode.  This is done as follows: 

• Coning Blade #1 = 1/2 (Blade #1 + #3) 

• Coning Blade #3 = 1/2 (Blade #1 + #3) 

• Teetering Blade #1 = 1/2 (Blade #1 - #3) 

• Teetering Blade #3 =  -1/2 (Blade #1 - #3) 

This procedure is used for the blade generalized forces and accelerations. 

Modifications are made to the generalized mass matrix. As shown in 
Figure 6-2, the elements involved with the unused blade positions 2 and k 
are zeroed except for diagonal ones to prevent singularities.  Note that 
the teetering is associated with roll, pitch, longitudinal, and lateral 
hub velocities; whereas coning gives rise to yaw and vertical velocities. 
The remaining zeroes shown in Figure 6-2 remove the teetering coupling 
with coning associated hub motions and vice versa. 
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ELEMENTS NOT MARKED (0) OR (1) ARE 
USED AS CALCULATED 

Figure 6-2.    Teetering Rotor Mass Matrix MDdifications 
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The remaining element of the teetering representation is the hub undersling 

(Z0 )j which is taken positive above the teeter axis. The effect is 

approximately modeled by shifting the final blade X coordinate by the 
undersling times the teeter mode root angle. 

3n 

1=0 

('X"(i)BLE) T     =  ('
X'(i)BLE) T BLn BLn 

- Z       (^-\        A 
0BL19A   J 3n 

:i/i=0 

[ 9A3 ;BLn ■ l -3;" -K;i=0 

(6-172) 

(6-173) 

(6-17M 

(6-175) 

6.8 SHAFT BENDING EQUATIONS 

6.8.1 Prime Contributions From Fuselage 

The shaft equations of motion involve only the fuselage and shaft forces 
and masses. This simplification results from the hub axes being the 
principal axes.  Therefore, only derivatives of elements physically con- 
nected to the shaft branch of the system, i.e., the fuselage, need be 
considered. 

6.8.2 Partial Derivatives 

The needed partial derivatives are those relating fuselage motions to 
shaft bending motions. The reader should recall that shaft roll right and 
nose up are positive for hub motions in fuselage axes. Here the interest 
is in fuselage motions in hub axes where fuselage roll left and nose down 
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are positive. The desired derivatives are obtained from the fuselage 
equations of Section 5-5-2. 

8*S 1 

OF 

L0F 

■'OF 

= T 
. H-F. 

8 

89, 

0 

L o J 

8 

"OF 

Y0F 

Z0F 

=  T .H-F. 

)XF 
8ec 

0 

0 

8 

'V r-l ' 

•   =    « 0 

. o , 

(6-176) 

(6-177) 

(6-178) 

8 
86, 9F 

L*FJ 

0 

-COS(()c 

L-sin* J 

(6-179) 

where the  T „ elements are given in Section 5-5.2. 
n—r J 

6.8.3 Generalized Masses 

Table 6-2 lists the generalized masses.  It includes cross-coupling terms 
with the principal axis. Note that only upper diagonal terms are given. 
The lower diagonal terms are obtained by symmetry. Certain terms are 
Judged negligible and are dropped. 
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TABLE 6-2. GENERALIZED MASSES 

Shaft Axis Generalized Masses 

Vs 
= S+ mp 

M =  - I 
9  6 XY VS S F 

ft)" 
+ 2Z CGF  9^ X}[ENG ^TR XXP 

"^^H = 0 

M 
9S H v(5 + ZCGF) 

M*SZH = " "^ H 

(6-180) 

(6-181) 

(6-182) 

(6-183) 

(6-181+) 

VH 
^F ^F 8YF 
H5 Hn 

+ Z
CGF 8^ CGF  8*s 

- I 
XX

E: ;NG 

SR " IXXP 
(6-185) 

M           =1 (6-186) 

9YF 
M*S^H = IXZF + ^ XCGF    8*S 

(6-187) 

1(^1 2Z  ü 2Y  üüll 
V86S/   "      CGF  "S "      CGF  8eS  "S 

2IYZ
F "S 

+ IYY
ENG 

+ IYY
TR 

+ IYY
P 

(6-188) 

y-^^/^A.-V'-V^iJ 
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TABLE 6-2 - Continued 

Shaft Axis Generalized Masses (Continued) 

A 
r8xI 3^ 

M„ „ = HL r^ - Y 
F 

- Z, CG„ 9e„   CG, 
F  S J 

MesYH = »F 
X
CGF ^ 

8YF  8^F 3^F 

VH = I}CYF + ^ XCGF ^ ^ " IXZF ^ 

M, 
8X

F  ^ 

0uRu   = " V + "V 860   89,, S  H F .     S      H 

(6-189) 

(6-190) 

(6-191) 

(6-192) 

J^F^F 8
_XF ^F 

" Y
CGF 390 9eH 

+ Z
CGF "aeg " Z

CGF 8eH 

IYZF le; - IYYENG 

di>T 

- 1 YY 
TR YYT 

M0S^H       IYZF 
+  IZZ  3es  " mF YCG  80s 

(6-193) 

(6-191») 
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6.8.U Generalized Forces 

Table 6-3 gives the generalized forces for the shaft bending degrees of 
freedom. As mostly fuselage masses and inertias are involved, the con- 
tributions less the multiplying partial derivative are the same as those 
for the fuselage part of the principal axis generalized forces. The 
expansion of these terms is referred to in Section 6.9» and only referenced 
in the following table. The strain energy and dissipation terms are simple 
diagonals for shaft bending.  Rather than carry these in the stiffness and 
damping matrices (Section 6.3), they are incorporated into the generalized 
force at this point. 

TABLE 6-3 .     GENERALIZED FORCES 

Shaft Axis Generalized Forces 

V 
3*F 8U        8B 

(6-195) 

V 
SX0F                ^F 9*F 9U         8B 

"^~8ÖS 
(6-19") 

where: 

8U 
(6-197) 

3U 
8es Vs * "SPS   393p 

(6-198) 

8B 
3*s 

8B 
(6-199) 

3B 

"s %BS   * "SPS  a6sp 
(6-200) 

where    K. 
^S 

,  K    ,  C     ,  C         are 
9s    *s    es 

constants anä    RSPS = 
^'SP 

8*s 

36 

3C 
SP 

's   " 
•constant where    (Ji'       and 6' are equivalent motions of the swashplate 

if the swashplate  springs were infinite. 
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6.9    PRINCIPAL REFERENCE AXIS EQUATIONS 

6.9.1    Nonzero Contributions From Mjst Vehicle Mass Elements 

The principal reference axis equations of motion consider cortributions 
from most of the physical  elements of the rotorcraft.     The elements 
involved are: 

• Main rotor - defined as all portions that can be feathered 

• Rotor hub - includes all portions of the main rotor assembly that 
cannot be feathered,  and is treated as a rigid body 

• Swashplate 

• Tail rotor 

• Propeller (if used) 

• Fuselage 

• Engine 

The internal control gyro (if used) contribution is considered negligible. 

The six rigid degrees of freedom: X, Y, Z, <{', 9, «fi are taken with 
respect to the stationary hub axes which are also the principal axes. The 
origin lies on the main rotor shaft where it is intercepted by the rotor 
reference line. 

The other elements considered are then referenced to the hub axes. The 
fuselage is subject to shaft bending motions relative to the principal 
axes. The tail rotor, the propeller, and the engine are installed on the 
fuselage and rotate at the main rotor speed times the appropriate gear 
ratio. Positive rotations are defined as: 

• Hub 

• Swashplate 
same as main rotor 

• Propeller - Counterclockwise looking forward 

• Tail rotor - Clockwise looking right 

• Engine - Counterclockwise looking forward 

The propeller and engine are treated as rigid rotating bodies; the tail 
rotor is also allowed to flap (teetering hinge, etc.).  This flapping is 
considered secondary and enters only into the aerodynamic computations. 
The main rotor is allowed a variety of motions; teetering, feathering, 
bending, and twisting. 
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6.9-2 Partial Derivatives 

A prime ingredient for the equations of motion, Section 6.3, as outlined 
in Section 6.5» are the partial derivatives. First considering partial 
derivatives concerning the fuselage set with respect to the hub set. 

r9r0Fi 
KHJ 

= 
3 

8XOH' 

OF 

"OF 

OF- 

/■A  A 

3*Hi 

^ VF 

[ 
3r 

3^ 

OF 

rx0F] 
1  3 

8
*H 

Y0F 

-Z0F- 

3Y OH 

OF 

'OF 

^Z0FJ 

fY 

90, 

'F 

3F 

C^F 

rx 

96, 

OF 

"OF 

J0F 

3Z OK 

OF 

OF 

0FJ_ 

= [TH-F] 

3IJJT 
= [TH-F] 

A0F 

3 
8V Y0F 

'Z0F- 

► 9^ ' Y0F '   rH-Fj 

(6-201) 

(6-202) 

-Z OF 

9YT 

OF 

,  ^    6  ^ ^s 9(j)s   
Ds 3es 

-<(, S 3<t)0 

, 5L 
s 9e„ 

(6-203) 

As usual, partials relating rotary motions to linear motions are zero. 
For certain applications, the shaft tending is small and some small terms 
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in the partial equation can be neglected.    Note in the above, the axis 
notation is left off where the axis notation is the same as the mass 
element notation.     For example, 

8X 
ÜL 

3X 
OH 

(6-201+) 

Next the hub^to-blade root partial derivatives are given 
r 'S   \ r 

3r 
OBLn 

8rT 

OBLn 

— < Y 3X C i "OBLn 

OBLn 

_3 
3Y 

H 

OBLn 

f0BLn 

Z0BLn 

1 
3ZH< 

OBLn 

OBLn 

OBLn 

r-cos(VW        Sin(V*Bk1
) 0 

sin(VW ^^V^BLn5 0 

-1 

3?BLn = 
3 

*BLn 

eBLn 

*BLn 

3 

^BLn 

eBLn 

vBLn 

k,   ^ 

k 
9 

r 

*BLn 

eBLn 

*BLn 

k.   * 

- 

* 
9?H 

3r 
OBLn 

9C H 
=  0 

I TR-BLn    |TH-R I 

(6-205) 

-U     IFT   I 
I    R-BLn I I   H-R ! 

(6-206) 

(6-207) 

3rBLE 

BLn 

8rBLE 

BLn 

8r0BLn 

. V 8r0BLn 8rH 
(6-208) 
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dr 
BLE 

9^ 
BLn 

9r, BLE 
3r 
OBLn 

BLn 

8r 
OBLn 

3?T 
+ ^BLE1 

BLn 

r3tBLnl 
^BLn' 3CHJ 

(6-209) 

H, SP 
9^ 

f-     1 
1 3r 

'BLE 

BLn 

"^BLE" 

BLn 

9CBLn 1 
^H ^BLnl 9?H 

i 
—     -J 

H-SP 

cos8      sin6  sinit     -sin6 cosd) 
SP       SP  VSP       SP  VSP 

0 

sinö 

COS(j) 
SP 

sp      -si^spcosesp 

sintj) 
SP 

cos*SpcoseSP 

(6-210) 

(6-211) 

Note that all the rotary-to-linear partials like 

deriving these derivatives  the relationship 

-1 

-r 

0 

P 

q       X 

-p   '  Y   '   = 

0       Z 

9 «I'd) BLE 
9X 

0 

-Z 

Y 

OH 

z -Y H 
0 X 1 q j 

-X oj I T  1 

are  zero.     In 

(6-212) 

is helpful  in moving the rotary quantities  from a matrix to a vector. 

Derivatives properly ought  to be taken for  the other physical  elements 
bhat have teen considered for the principal axis degrees of freedom. 
Omission of the swashplate partials could be serious  for swashplate mass 
and inertia that are significant compared to the fuselage and rotor. 
Derivatives for the other rotating elements are covered for the constant 
rotational  speed in the fuselage derivatives.     The variable rotational 
speed case  is  estimated to  develop third or  fourth order chain rule 
derivatives,  and therefore can be  safely neglected. 
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6.9.3 Generalized Masses 

Tatle 6-k  lists the generalized masses.  Note that small terms are dropped 
from the generalized mass equations but not from the generalized forcep. 
This is justified because as discussed in Section 6.3, the equations of 
motion are solved for small increment corrections to the accelerations. 
With such a formulation, the generalized masses operate only on accelera- 
tion errors, and can tolerate approximations. 

The swashplate and the hub motions are given in the principal axes. The 
hub motions apply to the hüb center of gravity which is assumed to be at 
the origin of the principal axes. The swashplate, however, can be dis- 
placed vertically from that origin. The fuselage reference axis origin 
is taken to be directly below the principal axes. Note the fuselage mass 
and center of gravity include the propeller, tail rotor, and engine, but 
the moment of inertia excludes these items. 

The terms can be checked by inspection from the overall generalized mass 
formulation of Section 6.3 and the preceding partial derivatives. 

6.9.^ Generalized Forces 

As pointed out in Section 6.5, the generalized forces contain both the 

external forcing terms  (F  , etc.) and the internal reaction terms 
i 

such as m.x.. The latter is entered with a negative sign so that terms 

such as m.x.-F   from Section 6.3 are properly compiled. 
i 

The loads associated with the six principal reference axis degrees of 
freedom are listed in Table 6-5.  The propeller, tail rotor, main rotor, 
and engine are assumed to have shafts parallel to the fuselage reference 
axes. The transfer of the aerodynamic loads from tail rotor axes with 
origin at hub center and parallel to the fuselage reference axes is shown 
in the table. The propeller is similar. The fuselage aerodynamic loads 
are assumed to already be in the fuselage reference axes. Further 
development of the main rotor blade component loads is in Section 6.6.1 
and the aerodynamics for all rotors and fixed surfaces is left to 
Section 7- 
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TABLE 6-1+. PRINCIPAL AXIS GENERALIZED MASSES 

M, A   '2[m(1>(: 
mn     »-• L 

BXBLE  8XBLE ^   3YBLE  8YBLE ^  8ZBLE  8ZBLE 

i=l 

+ I 

Hu    8A H        mn H        mn 8<tin    8A 
H        mn ■) 

^BLE  8<f,BLE 
XXBLE 

3^     8A 
H        mn 

(6-213) 
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^LE    3^H     3A
i mn 

BLn 

9X. 9Y, 
M =       0BLnM +       0BLn  M 
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V.. A  + -9Y- ^„^ A "'Ann   3YH   "OBLn mn H    OBLn mn 

9Z 
M, 

OBLn 
ZuA 
H mn 9ZT 

M, Z   A 
OBLn mn 

(6-215) 

(6-216) 

(6-217) 

(6-2.8) 
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TABLE 6-1+ - Continued                                                        | 

Vf/.^^BLE '"BEE   .   3ZBLE 

1=1 ^ 

9ZBLE>| 
9*Fn '1 

,   _              8*BLE  8*BLE" 

'BLn 

(6-219) 
XXBLE     9*H     ^Fn. 

Vh-^E^BLE   ,   3ZBLE 9Z
BLE\ 

9*Fn/ 

a*BLE  ^BLE"1 

BLn 

(6-220) XXBLE     "H     
9*FnJ 

V^ T ^.PBLE 8YBLE   .   3ZBLE 
MVFn"l.[m(l)V^H    ^Fn    +     % 

9Z
BIE\ 

a*Fn/ 

|                                                    3(,>BLE  9*BLE (6-221) 
XXBLE     b*H     3*FnJ 

i             \XH      mH (6-222) 

^^H = ^ 
(6-223) 

(6-22*0 

\YH      \ZH      ^HZH 
(6-225) 
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TABLE 6-1+  - Continued 

\Ar 
= ^x, + "V^OF   

+ ^CG/OF^ 
+ T-   + J r

HTH )  ' ^\ -  ^xsp 

+ msp(zsp + Z
OSP)

2
 

+ hx^ + hx^ + hx^ + Ix: 
TR ^ 

M*H^ =  0 

\Y:.  -   - mHZCGH 

M = m Y 
*HZH H CGH 

M = - I - I 9   A XY XY 
HVH F R 

MeH9H = ^F 
+ "F^OF + 2ZCGF

Z
OF) 

+ ^Y,, + Irysp ■(Z0F2 + ^CG/OF) 
r 

'(^P + ZGSP/ ■ »SP(
Z

SP 
+ Z

OSF)   
+ VH 

+ ^ + ^^ * ^ 

where    Z     »   Z are explained in Section 5-5.6. 
or^ Uoir 

MeA - mHZCGH 

Me Y   
= 0 

H H 

M 
6HZH = ' "" ^H 

M 
*H*H =  " IXZF " ^'^'^F " IXZR 

(6-226) 

(6-227) 

(6-228) 

(6-229) 

(6-230) 

(6-231) 

(6-232) 

(6-233) 

(6-23M 

(6-235) 
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TABLE 6-k - Continued 

\3H =  - ^Zp - V0FYCGF " ^ (6-236) 

\*u 
= h^ + hz„ + V. + 'zz,. + ^z^ + hz^ + hzF    

(6-237) r
HTH F R SP H ENG TR 

M *n^ ' ' "HS 

M,   „    =  0 
VH H 

where the following weight and balance relations hold, 

n 

'"R      X   v-BLn 
1=1 

mH = "V + mSP + ^UB + "^ 

IXXH =  lYYH = IZZH ^ 

IXX
SP 

= IYYSP = IZZSP /2 

(6-238) 

(6-239) 

(6-2l40) 

f6-2ltl) 

(6-2U2) 

(6-21.3) 

(6-2i+10 
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TABLE 6-1* - Continued 

R "SJ 
R "-H 

R ^^j 

^ "IXY 
n 

'■"■YX^ """YY 

-I -I 
ZXp ZY 

I 0 0 
XX 

o        iYY       o 

ZZ 

n=l 

FT       1T 

[ R-BLnJ 

^R-BLnJ 

-"BLn 

M 

■XXB Ln 

YY 
BLn 

'ZZ. 

>   s  >    m{i)< 

i-1 

BLn. 

X 

x2(i) 

x2(i) 

CG,BLE 

CG,BLE 
BLn 

CG. 
BLn 

CG 
BLn 

^      BLn j 

[ H-Rj     L R-BLnj 

CG 
BLn 

'CG 
BLn 

D 

n=l El 

(6-2U5) 

(6-2U6) 

(6-21+7) 

(6-2U8) 
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TABLE 6-1+  - Continued 

b 

n~l I- 

XCGH 
= |mRXCGR 

+ MV + eS IT m. 

S = [Vca/4coF ^s %)]/mH 

ZCGH 
=   ["B2^ + mF(ZCGF 

+  Z
0F) 

+ mSp(ZSP +  Z
0SP)_ SP + Z
OSP)  /^ 

For pitch horn "bending option; 

\ PHn 

3Y 94 
OBLn ___Fn_ 

3XH   " "3ßPHn ^0BLn*Fn 

=   3Y0BLn  3*Fn 

^H^PHn 3YH      3ßPHn ^0BLn*Fn 

M, 
3Z    94 

OBLn vFn 

ZHePHn   3ZH  3ßPHn "^OBLn^Fn \ 

(6-2U9) 

(6-250) 

(6-251) 

(6-252) 

(6-253) 

(6-25M 

(6-255) 

(6-256) 
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TABLE 6-1*  - Continued 

M               = 
*HßPHn 

9*Fn 
3ßPHn 

r9*BLn 

L   3*H 
M                 + ■    BLn M 

^BLn^Fn        9<,,H       eBLn<,'Fn- 
(6-257) 

Me ß      = 

H PHn 

9*Fn 
aß

PHn 

r9*BLn 

L   99H 
1 di       d)              39          0       A 

^BLn^Fn             H         BLnTFn-l 
(6-258) 

M^  ß         = 

*H PHn 

9*Fn 
9ßPHn 

r3*BLn 

L9*H ^BLn^FnJ 
(6-259) 

9*Fn 
9ßPHn *R*Fn 

(6-260) 

For dynamic torsion c ption: 

Mr ft 
L rHßPHnJ 

=  0 (6-261) 

L CHßPHn. 
= 0 (6-262) 

M*RßPHn = 
0 (6-263) 
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TABLE 6-5. PRINCIPAL AXIS GENERALIZED FORCES 

3X0F      8Y0F      8ZOF F  = F  —— + F  —— +  F  —~ + 
h XF 8X0H   YF 9X0H   ZF aX0H {hJ'^h^A 

(6-26I4) 

ax 
F„    =  F 

OF 
SY 

+  F., 
OF 

3Z 
+  F„ 

OF 
XF9YOH   '   'YF3YOH   '   iZF9YOH 

3X 
F„ = F OF 

3Y 
+ F„ OF 3Z 

+ F, OF 
XF 9ZOH ' 'YF 9ZOH   ZF 9ZOH 

n 

mSPYH 

(6-265) 

mSPZOSP 

(6-266) 

F, = F 
9XOF . .  9YOF . „  9ZOF 

3* 36, 
+ F„ +  F. 

XF9*H     '   'YF3*H 'ZF9*H \9*H        \9*H 

+ V^7+V 

+  M 
ZF 3* 

^F       / \ / \ + I       \b a 
n 

-(—^ - tnsp(zsp +  Z0Sp)2j(pSp * qSprsp) + hzJ^ST 

(6-267) 

3X„Tn 9YrtT, 3Z^ 
F      _OE+F     —^+F 0F 

3^ 36, 

^   "H YF "H 

^F       / \ 

ZF9eH    +\9eH + MYF3eH 

or n 

/IZZSP 
>f (

4
SP - psprsp) mSP(ZSP + Z

CSP
;

J    l^SP " PSPrSP| NR 

(6-268) 
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TABLE 6-5 - Continued 

3X 
F,     = F 

OF 3Y, 

V^H 
+  F. 

T     TH 

9_z_c 

JF3*H 

94). 36, 
OF OF "TF ^F 

Y^,  3ij)„ Z™ 9lK, ^ ai|;„  + MYr,  3^ 
F    TH F    TH 

+ M 
3 if) 

^ (MÜ    ■ S^H ^H) -ZzJ^ - ^ 

where: 

(6-269) 

F      =  F         + F         +  F           + F., 
V        ÄIF        V         AATR        AAF 

(6-270) 

M..    =  MY      + M         + VL.        + MY 

^F         ^IF         AAP           ATR         XAF 
(6-271) 

F=F         + F         +F           +F 
Y           Y             Y              Y               Y 

F         ^F          AP           ATR          AF 
(6-272) 

1                F           IF          AP           ATR          AF 
(6-273) 

F=p         +p         +p           +p 
ZF         ZIF         ZAP         ZATP       'ZAF 

(6-2710 

M7    = M_       + M7       +  M_         + M7 

^F         ^IF        ^AP         ^ATR        ^AF 
(6-275) 

rxIF = - >(
X

OF " xcoF(v
2 * rF2) - Y       (r 

CG
F\

F - PF^F) 

+ ZC0F(«F + VF)) 
(6-276) 

FVIF = " >f OF - ^GF(%2 + ^) - • Z
CGF(

PF - vFj 
+ "CO^F + W)) (6-277) 
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TABLE 6-5 - Continued 

F        =  - m VOF "  ZCGF(
pF2 + ^F2) "  XCGF(

4F " VF) 

+ Y
CGF(PF 

+ VF)) 

%F = \P + \TR 
+ \ENa " f-A + l1^ ■ ^^J^ 

+ ^^VF  - ^F) 
+ ^(-PF^F - "F) 

+  ^Zp^F2 - ^F2) 

\F 
= \P +  ^ITH + ^lENO "  [^ + (^ ' S)^ 

+  ^Z^VF - ^F)  
+ ^pfVF - Pp)   +  ^(Pp2  - rF2) 

(-XCG:ZV +  ZCG5)] 

(6-278) 

(6-279) 

M        = M        + M + M 
IF IP ITR IENG 

(6-280) 

[v*+( F       \^YYF       ^XXpjVF f„ +    I„„    -  I, 

+ ^Zp^F^F " Pp)   + ^ZpfVp " ^p)  + ^Yp^ - PP2) 

+ m 
F(-

Y
CGÄ 

+ \ajy) 

\p - ' ^(PF " G
P*R) 

My    = - I YY 
IP P (

4F + PFrF)+IXXp
GpV> 

(6-281) 

(6-282) 

(6-283) 
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TABLE 6-5 - Continued 

V = - h^T - P, A?) - ^WF (6-28M 

My                   =0 
ÄITR 

(1-285) 

My      = -1^   (a   + 
ITR              ^TR\ 

G
TR*R) 

f6-236) 

M7         =0 
^ITR 

(6-287) 

^IENG              XXENG^ F - G
ENG*R) 

(6-288) 

IENG             1IENGX 
+ PFrF) + ^X^^ENG^R^ (6-289) 

ZIENG              ZZENG\rF " PF^F) - IXXENG
GENG*R(1F (6-290) 

' X
ATR)F     VW^ " (

Z
-)F \TR 

+ (Y-)F 
FzATR 

(6-291) 

j              \ 'ATR/p       \    ATR/TR 
" (^)F \TR 

+ (
Z

TR)F \TR 
(6-292) 

\ZATR/F     WTR'^ - WF ^ + (^TR), \TR 
(6-293) 

("-»VW,-! ̂F ^P + (
YF

)F 
FZAP 

(6-2910 

(vl ■ (v) ■ ( r                       r 
x?)   Fz    + (^   Fx T

/F   
Z

AP    \ VF   
X

AP 
(6-295) 

(v)F
=K\ - [

Y
P)     

FX      -"(^p)    FY ^ *h   X
AP    \ F

/F   
Y
AP 

(6-296) 
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The main rotor shaft loads are simply found from the blade root loads, 
The approximate equations are: 

MR 

M 

f          * 

hm 

FY 
MR 

Fz 
k 

Z
MRJ 

H-R     /_,     R-BLn 

MR 

H 

r        ^ 

\R 

My 
MR 

MZ ^   ZMRJ 

(6-297) 

FZ 
v.     J BLn 

H 
\R 

M 
MR 

MZ 
L   MRJ 

(6-298) 

The [T   1 H-RJ matrix accounts for rotor gimballing, the transfer between 

stationary and rotating axes, and the switch between Z up and Z down 

axes, The FT      ' 
I   R-BLn 

matrix accounts for the individual blade azimuth. 

These matrices were developed in Section 5>5-5.  Z     is the amount of 
UBLn 

undersling (negative value). 

6.10 SWASHPLATE EQUATIONS 

6.10.1 Use as a Pure Swashplate or a Feathering Feedback Control Gyro 

The swashplate converts the nonrotating system (hub axis) collective and 
cyclic blade commands into first-harmonic Fourier components in the 
rotating system (rotor coordinates). For a conventional swashplate system 
the command signal operates open loop from input to blade feathering. 
The swashplate formulation used in REXOR handles this case, but this 
original, and prime, use is for the external control gyro with feathering 
feedback. This is a closed-loop system where the command input torques 
the control gyro, which in turn feathers the blades. Response rates of 
the principal axes and rotor moment via hub geometry form a control system 
loop closure. Both.systems, as well as the swashplate element of the 
isolated control gyro, are handled merely by changing the system constants 
input. 
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6.10.2 Partial Derivatives 

The swashplate partial derivatives are readily obtained from Section 5-3.5' 
Using matrix notation 

94) 
SP 

f      x 

*SP 

esP 

Also: 

99, 
SP 

YSP 

0SP 

VSP 
v J 

cos6 
SP 

sint 
SP 

1 

0 

(6-299) 

9Z 
OSP 

9Z 
SP 

= 1 (6-300) 

Since the swashplate axis is directly referenced to the principal (hub) 
set, the above derivatives are complete.  The lack of translation to 
angular derivatives is explained by the parallelogram linkages used with 
swashplates to isolate the collective and cyclic inputs.  The terms left 
out of the matrix indicate that the swashplate does not have a yaw degree 
of freedom. 

The reader should be aware that the angular notavion §.,   6, and ty    have 
two meanings, depending on whether they are in the numerator or the 
denominator of the partial.  The numerator is the displacement of the 
mass element with respect to the principal reference axis, whereas the 
denominator is the degree of freedom incremental variable. 

Swashplate motions pick up large inertia loads from the rotor due to blade 
feathering. Partials relating feathering to swashplate motions are 
assembled by first relating the feathering motion in the rotating system 
with feathering in the stationary system: 

9<)) 
Fn 

96, 
= 1 (6-301) 

9*Fn 

•9Ä^= -COs(,|'BLn + V (6-302) 
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BE 
Fn 

IS 
= - sinU^ + ^) (6-303) 

From Section 5.5.8,   equations  relating  swashplate motions  to  the stationary 
feather angles give 

and 

where 

Also 

9A 
IS 

34) 
SP 

3B 
IS 

S<j) 
SP 

9A 
IS 

"SP 

3B 
IS 

36 
SP 

e rPH 
(6-ioM 

9Ais 
3eo 

3Bis ■a KPH 

*SP 

esP 
(6-305) 

KPH 

sinijj. 
PH cosi). 

PH 

,C0^PH        -sin*PH 

(6-306) 

Hi 
9Z, 

SP 

_1_ 
e (6-30?) 
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The 
PHJ 

matrix does not follow the conventional Euler angle notation 

since a desire existed to define 'I'   as the angle the pitch horn to 

pitch link attachment point leads the tlade.  The overall derivatives can 
be put together as: 

9*Fn _ 8*Fn 3A1S + 
9*Fn 9B1S 

3
*SP  

9Ais 3
*SP  

3Bis 9*SP 
(6-308) 

ÜFn  ^ 9As + ÜFn !!lS 
"SP " 9Ais "SP  9Bis "SP 

(6-309) 

a* Fn 
'SP 

a* Fn  ^Fn^lS.^Fn^96- 
"O + 9A1S "O ^  9B1S "OZ-FP /9Zri 

(6-310) 

6.10.3 Generalized Masses 

Table 6-6 presents the generalized masses which couple the swashplate 
motions with one and another, with the rotor, blade, and body degrees of 
freedom.  The table uses summations of the blade that are described in 
detail in Section 6.6.1. 
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TABLE 6-6.     1 3WASHPLATE GENERALIZED MASSES 

M<l> p 9SP mn 
-  8*Fn M (6-311) 

M<0    3 vSPPPHn 

8*FnM 

9*SP    ßPHn* Tn 
(6-312) 

VSPVSP ^ \3*SPJ 
n=l   x        ' 

/ 

M
A        A           +    IYY         ■ 
*Fn*Fn         XXSP\ 

^SPY 
H J       l-^A   (6-313) 

ZZ
SP\

9
*SP/ 

M 

b 

n=l 

OBLn 

3XH S*SP OBLn^Fn 

9Z0BLn 

3XH 

9*Fn 
9
*SP 

MZ       * 
OBLn^Fn 

(6-31M 

TSP H 

b       SY 
V^      YOBLn 

" ^   i    9YH n=l  L. 

3*F* 

9*SP OBLrTFn 

9Z0BLn 

9YH 

9*Fn 

9*SP 
M 

Z0BLn<,>Fn_ 

(6-315) 

M 
\P

Z
H 

b 

n=l 

8Y0BLn 

3ZH 

vFn 

VSP OBLn^Fn 

9Z0BLn 

9ZH 

3*« Fn 

YSP 
M 

Z0BLn*Fn 

(6-316) 

vSPyH 

b 

n=l 

Fn  M 
^Fn         XXSP 8*SP 

9*SP + 

9*H IZZ
SP 

^SP 9
^P 

9*SP  9*H 9SP    V] 

(6-317) 

TSP H 
n=l 

+ I           ^ 
i*Fn         XXSP  8*SP 

9*SP + 

"H IZZ
SP 

9^P 9*SP 
9
*SP "H 

(6-318) 
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TABLE 6-6 - Continued 

34) 
Fn 

^H  ^ 9*Sp *>H*Fn ' ^SP 3*SP 8*H    ZZSP 9*SP 9*H 
n=l 

M.(  ., =\      ™-:i M. ,   + I 

Z3*Fn 
M     = >  —-— M 
*SP*R  ^"^SP VFn 

n=l 

(6-319) 

(6-320) 

dty 
M Fn 
eSPAmn  8eSP Amn*Fn 

(6-321) 

8(j) 
M, Fn 

SP^PHn  86SP ^PHn^Fn 
(6-322) 

M^ =E yFn vFn M, 
6  (b    / j  36  8(1)   <!>  d) 
SP^SP  ^-f  SP VSP vFnvFn 

n=l 

n=l   x 

(6-323) 

(6-32M 

M„ 
SP h n=l 

3Y 3d) 
OBLn    vFn 

M, 
9Z0BLn  3<t,Fn M +  —m  TT  M, 

h      "SP   ^0BLn*Fn 9XH      "sP    Z0BLn*Fn 

(6-325) 
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TABLE 6-6 - Continued 

M. e   Y 
SP H -z 

n=l 

8Y0BLn ^Fn 8Z0BLn ^Fn 

3YH ' "SP ^OBLn^Fn   9YH " 3eSP Z0BLn*Fn 

(6-326) 

M, 
W'n -z 

n=l 

ay        a* 
OBLn    vFn ,   8Z0BLn  HFn u 

'ZH      36
SP ^OBLn+Fn        9ZH      '»SP '^OBLn^Fn 

=z d$ 
Fn 

6    *        Z-/  96 di  * 
SP^H     ^--      SP    VFn 

n=l 

3(j) 

M 
Fn 

M„ + I, 
3eOT1 9eOT, 

SP       SP 

SP-H     —  3eSP    VFn YYSP  39SP  3eH 
n=l 

M -Z ÜZnM +T ÜSPÜSP 

^P^H     *-r  ■'vSP    THTFn "SP  ""SP  "VE 
n=l 

9<j) 

Me     \l)    " / -i 96       Mil;  (b 
SP^R T       SP    VFn 

n=l 

94) 
M, 

Fn 
M. 

Z_pA 9Z        A^*^ 
SP mn SP     mn Fn 

■6-327) 

(6-328) 

(6-329) 

(6-330) 

(6-331) 

(6-332) 
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TABLE 6-6  - Continued 

8(f) 
M, 

Fn 
M, 

ZSPßPHn       8ZSP    6PHn*Fn 

VsP=5(%")    Vm^- 

^    / 
M, -z yFnU    vFn 

M, 
ZSP*SP     ^\8ZSP/\8*SP/    WFn 

n=l \ 

M, =E '♦F„U3tFn M, Z     6 X J \ 3Z      / \ 86      /   4     J) 
SP SP     *-f \     SP/\    SP/    *FnvFn 

n=l 

M, 
^p^ -z n=l 

3Y0BLn  3*Fn OBLn    TFn .. 
+  —rrz  rr:  M,. 

(6-333) 

(6-33M 

(6-335) 

(6-336) 

8XH       3ZSP    Y0BLn*Fn 3XH       3ZSP    Z0BLn* Fn 

(6-337) 

b    r 

M, 
ZSPYH n=l 

3Y0BLn  3*Fn 
^^   *„    + 

3Z0BLn  3*Fn 
M, 

3YH      3ZSP   Y0BLn*Fn 3YK       3ZSP    Z0BLn*Fn 

(6-338) 

M, 
^P^ n=l 

3Y0BLn  
3*Fn 3Z0BLn  3*Fn 

M. 
3ZH      3ZSp\BLn*Fn+     3ZH       3ZSP "Z0BLn*Fn 

+ m 
SP 

(6-339) 
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TABLE 6-6 - Continued 

8*, 
M =  > —■— M 

Z    it        / J dZ        $  * 
SP^H     -*-?      SP    VFn 

n=l 

n=l 

3* 
M =   >      —'-^ M 

Z    it / ^   3Z W it 
n=l 

.    ^ 3d) 
MzSp*R

=l]^MVFn 
n=l 

3*Fn 
M = M + —— M 

^R^Fn ^BLn^Fn       3*R       ^Fn^Fn 

34) 
Fn 

where —  is given in Section 6.12.3. 
3)1; 

R 

(6-31*0) 

(6-3U1) 

(6-3^2) 

(6-3M) 

(6-3^) 
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6.10.1» Generalized Forces 

As explained earlier, the swashplate generalized forces are obtained by- 
similar formulation, whether the swashplate is used in the normal manner 
or as an external control gyio.  The forces are:  (assuming a constant 
speed drive) 

8* 
SPi 

*SP     " 8*SPVPSP IXXSP + qsp rsp IZZSP;     9*SP isp ^ZZSP .)■ 

Sijj 
SP  . 

n=l 

3$ 
rti ou »^ M Fn 8U 

SP SP 

3B_ 

^SP SP 
(6-3U5) 

96 
SP 

f 0SP     " 3espiqsp IYYSP " rsp Psp IZZSP ) 

E_JFn 9U 9B 
% 9esp - 9esp " 9Ösp " ^i 

n=l 
SP 

(6-3H6) 

Note p, q terms are the same for R and NR systems, 

SP 

D 

= " (MSP + V mSP ^^n 
n=l 

9(p Fn   9U    9B 
8Z
SP  

9Z
SP  ^SP 

(6-3^7) 

where 

P 

r SP,NR 

P 

4 

SP 

. 1 

-*P 

V.     J SP 

(6-3W) 

The moments used in these formulas are developed below. 
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The feathering moment,    VL  ,    is taken to be composed of "blade loads; 

friction,  and tension-torsion pack loads. 

^n^    +V    +V Tn Fn Fn 
(6-3^9) 

The detailing of VL.     , feathering moments due to blade loads, is accom- 
*Fn 

pushed in Section 6.6.**.  The friction load, ^L _ , follows the func- 
FR rn 

tion shown in Figure 6-3.  By reducing ■$_ _„ to near zero, stiction 
rn ,BK. 

% 
is obtained.  Otherwise, if "())  _„ is large, the ratio —r- 

r n, bK. (? 

determines the amount of viscous  friction. 

Fn.BK 

Fn,BK 

The first part of the tension-torsion pack, M   , has a simple spring 
1 Fn 

contribution of 

KTT(*Fn - ^FnJ (6-350) 

from the torsion spring K ; <\> being the blade angle for zero spring 
TT 

load. The tension contribution from the tension-torsion pack requires a 
knowledge of the locations of the inbo.'ird and outboard feather bearings 
and the inboard and outboard pin ends of the tension-torsion pack. The 
locations of the bearings are described in Section 5.5.5- The inboard end 
of the pack is the sum of the static and blade bending contributions: 

TTI 

TTI 

"TTI 

=  I 

BLn 

TTI 

TTI 

TTI 

>      + 

BLn 

"TTI, 

JTTT 

Y       Y 
TTI2    TTI 

2,TTI2   
ZTTI3J 

X-             -v 

\n 

<A2n 

A-, •     3n 

(6-351) 
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Figure 6-3. Swashplate Friction 
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The symbols Y    , 
TTI1 ' 

static positions are: 

9Y. 
represent partials TTI 

\   ' 
,  etc.     The 

TTI 

TTI 

L       TTI  J 

>       =    < 

BLn 

£TT: cosßo 

^TTI  Sinß0 + Z0TTI 

(6-352) 

where    ZQ^     is the vertical offset at a distance    «.mmT    out  the coned 
TTI 

reference line.     See Figure 6-k. 

For the outboard end of the tension-torsion pack: 

TTO 

TTO ■ - hJ hJ KJ f-J[T-FJ 
'TTO 

BLn 

Y Y Y 
TTO TTO TTO 

Z Z 7 
TTO, TTO TTO 

1 2 3 

f      -v 

hn ■ 

■A2n 
> 

A3n 

r       "I 

xs 
TTO 

TTO 

TTO 
BLn 

(6-353) 
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-BLn 

TENSION-TORSION 
PACK AXIS 

BLn 

STATION 

BLn 

Figure 6-1+.     Tension-Torsion Pack Geometry 
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r'he static position formulation follows the development of Section 5.5.5 
inboard of X   (tlac 

twist is not included, 
inboard of Xsw (blade attack point to movable hub) except that geometric 

TTO 

TTO 

TTO 

rn m 

T      T    x  T 
. 6FAJ  L '''REFj  L ßFA. 

BLn 

- < 

£p cosß0 

0 

i    sineo P    0 

XTT0 COsß0 

0 

XTmn sinß„ + Z, 

v 

'TO ^"^O T ^TTO 

J 

Z    cosß„ 
P    0 

l    sini 

ie-35h) 

Knowing the location of the tension-torsion pack and the feather bearings, 
the total contribution from the pack is 

MTT^ = KTTUFn " ^Fn^) + I^^'FA^ ^^'FA^ ^^'FA^ 

"(ZTT0 ~ ZIB) 

(Y   - Y  ^ 
L  TTO   IB; 

-T  y 
TT  TT 

-T_ Y 
TT  TT ( 

—T   7 
TT  TT 

A 

(ZTT0 " ZIB) 

■(XTT0 " XIB) 

-(Y   - Y  ) v TTO  1IB; 

(XTT0 " XIB) 

(6-355) 
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where for each blade; 

sin(X'FA) - 

sin(Y'FA) « 

Bin(Z'FA) « 

(X0B- XIB' 
(t0B- hJ 

(I0B- "IB' 

"OB- V 

(Z0B- V 
U0B- V 

(6-356) 

(6-357) 

(6-358) 

TT' 

(X -   Y ) 
]   TTO   TTI 

(£TT0 " ^-PTJ) 
(6-359) 

(Y   - Y   ) v TTO   TTI; 

TT' a TTO £TTI) 
(6-360) 

TT1 

(7 -  7       ) 
]   TTO   TTI/ 

K  TTO   TTF 
(6-361) 

If no stretch is assumed, the ^'s can be treated as constants. Direc- 
tional cosines are used for convenience.  The negative value of the tension 
in the feather moment equation indicates a tension-torsion pack reaction 

force acting through the small arms XTT0 - X^, YTT0 - Y^, and Z^Q - ZIB 

to produce a feathering moment. 

The tension is equal to the component of the root shear lying along the 
tension-torsion pack axis.  The lateral components of the shears reacted 
at the feather bearing are ignored.  Using directional cosines 

T  = X'  F    + Y'  F 
TT    TT XDT     TT YT1T BLn        BLn 

+ Z'       F 
TT Zg Ln 

(6-36^) 
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The remaining portions of the generalized force are the potential energy 
and dissipation functions.  First consider the angular potential energy- 
terms which model the swashplate tilt spring rate.  This spring rate has 
a center dead-band, an operating range spring rate, and a high spring rate 
to simulate a travel limit stop. 

Consider the normal operating range spring rate first.  The swashplate 

springs are defined in control axes (Figure 6-5) as K,  and K0   (can 
^SP   

esp 

be unequal in size).  To find the elastic spring loads, the swashplate 
motions are first found in control axes as: 

SP   SPSVS 

3
SP 

+ Hspses 

cosilv 

-siniL 

siniK 

costjv 

TSP   SPSVS 

6  + R  6 
SP   SPSVS 

j v. 

(6-363) 

The geometric interpretation of ^„     is shown in Figure 6-5. 

A shaft bending to swashplate coupling ratio, RODC>  is allowed.  This 

coupling exists for the unloaded swashplate in much the same way as the 
blade bending to feathering coupling exists for the unloaded pitch horn 
and defines a modal component. 

Taking the swashplate deflections 1; the control axes, subtracting control 

inputs <J)p and 9,,,  and using the inverse transform, the swashplate spring 

terms in swashplate axes become: 

f9U1 
3*SP 

8U 

"SP 

»       - 

1 

cosij^ -sin^c 

sin^c costy 

K 
)SP(*SP 

+ R
SPS*S - *c)c 

KeSp(
esP + RsPses-94 

:6-36^) 

where the subscript (l) is used to distinguish these values (used iii sub- 
sequent logic calculations) from the final expressions developed below. 
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Figure 6-5. Control Axis 
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Substituting for the svashplate motions in terms of the swashplate axes 
and rearranging: 

3U 
3(() 
SP 

9U 

1 
96 

SP 

M 
\>       + R  4 
SP   SPS^S 

es + RSPs
es 

' i\l *SP* 

Ke e 
L SP cj 

(6-365) 

where 

N 
costy -sinij) 

sini^p COSIJJC 

(6-366) 

and 

w= 
2 2 

K        cos \l)    + K.       sin *       I   (K.       - KQ     )  sin^  cos^ 4.sp c      esp c *sp      esp c       c 

2 2 
K,      - Kn sin(|/    costj^       ,   K,       sin 4>„ + K„      cos t|/ 
*SP  

6
SP   c   c   *sp   c  esp   c 

(6-367) 

Note: ■ w is a symmetric matrix of constants, 

The spring constants, K  , K  , exist as springs in the usual sense 
'''SP   SP 

when the swashplate serves strictly as a swashplate. When the swashplate 
is used as a control gyro, the springs may be composed of springs operating 
in the usual sense plus a preloaded on center spring, which counteracts the 
other spring (positive spring) when the system is viewed from the swash- 
plate. The preloaded spring is called the negative spring. With this 
arrangement, it is possible to have zero spring rate of the swashplate 
motion while having a very stiff input spring rate. 
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The center deaa band is irodeled by the following logic. 

9U 
9(j) 

=  0    if 
SP (C), <KSp(l,l)   6*sp (6-368) 

ELSE '- (^A    - Kqp(l,l)   H SIGN (O (6-369) 

3U 
86 

0    if 
SP fei    ^ .^p(2,2)   66sp (6-370) 

ELSE = 
(^SP) 

- Ksp;2,2)   «esp SIGN fel (6-371) 

6(f)  and 66   are input constants giving swashplate angular freeplay. 
SP       oF 

Swashplate stops are also allowed with spring rate ^ sp. A load 

I,SP(( 

2     2VL/2 

*SP 
+ 6

SP )  - 6
E 

/• CD   "\ 

,spj 

rSP 

"^ SP 

(♦SP2 + ^P2) 

1/2 
(6-372) 

is added to 

W 
3$ 
SP 

8U 
36 

SP J 

(6-373) 

218 

^^t^.»J«^/^■;.-^a;^^.lt>^Vw;^,■l,-v^!^.^^I:.,^^ ».„y....--,.^.^..,,, iif^niitn^fi,, ^„m-ffti i^'.^^^ ■ ..^.^■.., »...^:;e .,/^.;.>, .. . .f ...... ^.^v-J^^A^li^JaW^a,^, 



,WfWrc^Wip|^|iy|lfl^ 

to account for a limit travel stop. The limit deflection for the 
swashplate is 

/  2     2\1/2 

S,SP (6-3TM 

where    6 is the circular stop swashplate deflection limit, 

The angular damping term is  analogous  to  the spring load: 

N- 
(b      + R      (J) VSP        SPS^S 

e    + R    e 
SP      SPS s 

► _ NT1 
[6CC 

(6-3T5) 

where h*] has the same formulation as w 
Control friction is treated as having rotating and nonrotating components. 
The rotating component has already been discussed as part of the feathering 
moment. The nonrotating component is applied to the swashplate. It has 

the formulation shown in Figure 6-3 with a change ir labels such that (j) 

is either ^ or esp, and M    is either ^ or M^ 
rn or oP 

The vertical potential energy term is described as: 

Fn 

8U 
az. SP SP^^ 

if 
SP < zn 

SP 
(6-376) 

Otherwise 

9U 
9Z = K1Z  Zl  + K2Z (ZSP " Zl  )+ Fi 1ZSP h?        2ZSP sp   1SP/ 

(6-377) 

F  is a constant to center the gyro springs, 
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The spring rate is taken to be tC    out to deflection Z1  and K 
iZSP iSP     ^^SP 

beyond. 

A simple coupling from the rotary dampers gives the vertical dissipation 
function. 

8B 
äz^ = czsp 

Z
SP - Rz* c*sp *SP *SP - 

Rze cesp 
esp esp (6-378) 

where    R^.j  R.7Q    are      coupling ratios.     Note the effect of vertical 
City LiV 

motion on the swashplate tilt loads through the rotary dampers is assumed 
zero. 

To correlate with flight test records and/or to force the swashplate 
vertical response to cross the spring rate changeover a force offset con- 
stant is used.  Introducing this constant into the swashplate vertical 
degree of freedom equation line, causes the variables, primarily the 
swashplate vertical motion, to shift and rebalance the equation. 

6.10.5 Control Inputs 

The swashplate angular input is controlled by the pilot's lateral stick for 
either a pure swashplate or use as a control gyro.  The input torques are: 

■•> 

Vc 
►   =    J 

Vc V' 
(6-379) 

The inputs are aligned with the control axis (Figure 6-5). 

Note the equivalence of forms in terms of angular commands ^V» ®c' or 

longitudinal stick (aft)  X„ and lateral stick (right) YQ. 

The controls are frequently linked to the swashplate through actuators 
which, as a first-order approximation, can be simulated by a first-order 
lag.  For illustration, consider the longitudinal stick. Its rate becomes: 

(XP - V 
(6-380) 
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The position is found by a time integration. The pilot's input is )L and 

TY  is the time constant. The actuator may be rate limited: 
xc 

^ x. : 6-381) 
'MAX 

or displacement limited; 

s X, (6-382) 
'MAX 

Similar formulations can be applied to Y , <()p, 9p. For the vertical or 

collective system, the command input is Zp = -6p e and the actual, true 

value is Z-^ = -9 e in terms of the collective angle and the pitch horn SP     O o i- 

arm. The vertical system is typically fully powered, and 0   is modeled 

similarly to the technique just described for Xr, 

6.11 CONTROL GYRO Jjy.n'IONS 

6.11.1 Introduction 

As developed briefly in Section 6.10.1, REXOR models three cyclic control 
configurations.  The first two type^? are the conventional swashplate and 
the feathering feedback external control gyro.  Both of these systems use 
the same modeling in REXOR; the type being set by the selection of the 
system constants.  The third configuration is an isolated direct flap 
feedback control gyro which operates a swashplate, as modeled in 
Section 6.10, via irreversible actuators. 

This configuration, and the associated degrees of freedom, du, 9n, are 

defined somewhat differently in that no generalized mass couplings are 
assumed with the other degrees of freedom. The generalized masses involved 
are simply the diametral moments of inertia of the control gyro. 

This simplification is possible because the inertia of the gyro is so small 
the principal axis loads do not include the control gyro contributions. 
This leads to zero generalized mass coupling, and advantage is taken of 
this fact to decouple the gyro degrees of freedom. Being decoupled, the 
control gyro can be handled apart from the main stream of the computations. 
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The following development also differs from other sections in that the 
contro" gyro interface with the other rotorcraft elements (feedback and 
phasing) are treated as separate subsections. 

6.11.2 Partial Derivatives 

Partials are required to relate the motions in the instantaneous gyro axes 
to the gyro Euler angle degrees of freedom.  The desired partials are 
extracted from the rotary velocities relationship of Section 5.5-T and the 
geometry shown in Figure 5-9« They are: 

9<t>c 

US 

"äe" 

Hi 
86, 

3*( 

cose   o 
G 

sine    0 
G 

(6-383) 

The values of the above partials are the same for axes rotating with the 
rotor or nonrotating axes attached to the gimbal.  As shown in Sec- 
tion 5-5-7» this is due to the rotor axes being inertial axes defined to 

be momentarily attached body axes at 

gimbal axes. 

K 0 and therefore coincident with 

The difference between the inner and outer gimbals is ignored and the gim- 
bal supporting the gyro rotor is taken to contain all the inertia. 

6.11.3 Generalized Forces 

The control gyro loads result from inertia, springs and dampers, pilot 
input and rotor flap feedback. The detailing of the feedback is extensive 
enough for a separate section. The net loads are: 

F      = o = 2- 
*G 

3*G f-G^1 ZZG ~ IYYG TG rG,NR "  IZZG R ^G *R 

-~-l77 ^    -^--ff-+M +M +M (6-3810 
^G    ZZG,NR    G       ^G       d*G        \UB        \FB        ^GFR 
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where subscript R is rotating component only, and NR is r.^rotating 
component only. 

and 

Fn = 0 = - 96, >G 
4° * ( ̂ 3 " ^Z^G rG,NE * hz^  Po \ 

8U   8B 

^■^G^G^^GP.^G,. 
(6-385) 

Stiction is allowed in the feedback load, and viscous friction can he 
equivalenced to damping. 

The equations can he solved for 4* and 9*  hy substituting in the expres- 

sion for angular accelerations derived in Section 5.3.1.    These are: 

C0S
VG 

sineG>G 

r    •» 

G (6-386) 

where; 

= e. 

-sin60  0 
G 

cose  a 
G 

-cost) 

0 

-sinö 

G *G 

- 0 .   + 

G 
0 

costf^      sirnji 

0      -sin(t)G      cos^G 

r   ^ 
P 

r 
L  J 

cose0     o 
G 

sinS^      0 
G 

-sin6 

0 

cose 

- •• 

G 

*G 

G 

0 0 

0      -sin*. 

0 

cosct. 

0      -coscji^      -sin* 

P 

J   v   v 

1 0 

0        cos* 

0      -sin*. 

0 

sin*(. 

cos*. 

i^ 

r 

(6-387) 
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Substituting the values of the partials and the above into the gyro 
equations of motion and rearranging yields: 

* 
cos *r, Iyy + sin ^r 199 G XXG       G ZZG,NR 

- coS*G I   G(l) 
G 

+ (IzzG " ^j^e ^.NR - V D ^e *R I - sin*G hz G,R i G(3) 
G.NR 

9U 9B 
?G 9G AGUB AGFB XGFR 

(6-388) 

C = r^- - Ivv G(2) + /: 
G  IYYn t  L YYG      I XXP  

IZz)PG rG,NR + IZZG R ^G 
PG*R 

8U        9B 
Tr-w + s   +M

Y   
+ ^ 

G G GUB 'CFB ^FR 
(6-389) 

Expanding the inertia load,  the general  formulation for the moments gen- 
erated by a body along principal axes are: 

Mx = ^ * + (IZZ " V^ 

^ = ^ 4 + (Ixx - hz^ 

MZ =1ZZ^+  (IYY - ^^ 

(6-390) 

(6-391) 

(6-392) 

where the moments, the velocities, and the accelerations are all along the 
principal axes.  If the body is axially symmetric about the Z axis, 

"x = WP + qr) = Izz(p + qr)/2 (6-393) 

My = IYY(q  - rp)  = Izz(q - rp)/2 (6-39M 

MZ = hz f (6-395) 
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Next, the motions are conveniently described as composed of a nonrotating 
component plus a spin    '(J. 

In addition,  the body motions are assumed referenced to inertia axes which 
are instantaneously attached to the body at    i|; = 0.     Specifically for the 
gyro rotor the relations are: 

'    >. '    ■■ '     -< 
p P 0 

q =   , q. ■■          +   . 0 

r 
^   J G r 

G,NR 

(6-396) 

and 

• 
p 

• 
P 

• 

'G qNR 
■ 

q ►     = , 

• 
q + • 

""''G PNR 

r 
G 

• 
r 

G,NR >G 

(6-397) 

Therefore, for the gyro gimbals which do not rotate, the moment £   are: 

M, 
G,NR 

IXXGjNR(PG,NR + qG.NR rG,NR) (6-398) 

\NR = H, JqG'm " rG'NR PG'N^ (6-399) 

and 

MZ =  IZ7 \rGsNR/ (6-itoo) 
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Next, recalling that all the gimhal inertia is in the gimbals that hold 
the rotor, we have for the gyro rotor: 

^SL      """XXJ^NR 
+ ^G.NR rG ,NR) 

+ 2IXXP ^CNR '"G 
(6-I+01) 

,(4G,1 .,, " ^„(^G^R " rG,NR PG,NR/  " 2IYYn 
PG,NR ^C 

li u Li 
(6-1+0.1) 

and 

M,, " IZZ-\rG,NR + ^GJ (6-1+03) 

The contribution from spin thrust appear as add-on terms.     Collecting 
terms: 

\ = ^i^G.NR + ^G rG,NR) + hz, % *G 
(6-1+01+) 

^  IYY_\qG,NR ~ rG,NR PG/ " IZZP 
PG ^G (6-1+05) 

M  = I   r    +1   \ii Zn ZZn G,NR   ZZ„ VG (6-1+06) 

The NR notation was dropped from p„ and q_ since p., = p. ._ and 

<ln = Qn ivm* T^16 control gyro rotation is assumed to be independent of G   G,NR 

rotor-engine speed variations, and driven through a constant speed 
coupling. These assumptions are reasonable even with rotor shaft driven 
configurations because the coupling of drive torque equation into the 
required roll and pitch equations is a second-order effect. The yaw 
moment reduces to 

M  =-I     r 
ZG   ZZG,NR G'NR 

(6-1+07) 
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The spring and dampers are taken to be defined in control  axes.     The 
formulation follows the corresponding formulation for the swashplate; 

fau ] 
8*G 

8U 

KJ 
• = h] kl [\J 

■Kxc xc 

^c^ 

(6-1; 08) 

and 

3B f . 

9B N- [\J 
■Kxc xc 

VY 
c   c 

(6-I+09) 

The development of the  K 1 and KL,! follows precisely the formulation 

presented for the swashplate in Section 6.10.5 or can be directly sup- 
plied as input.  Note the cross coupling terms only exist if the spring 

and damper are not symmetric.  The stick positions X and Y  are the 
c     e 

equivalent position output of first-order servos modeled in the manner of 
Section 6.10.5. 

The gimbals are allowed to be unbalanced. A simple formulation couples 
hub vertical motion into the gyro, and is included in the previous 
generalized force expressions. 

\UB ' ' "^ Y™ Z°« 
(6-1410) 

M, = m 
GUB GUB ^m ZOH (6-iai) 

Gyro tilt transforms are ignored.  The distances X^  and Y   are positive 

if the imbalance mass is to the right or forward of the gyro spin axis. 
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6.11.H Control Gyro Feedback 

The feedback is 
concept, and is 
not precessing, 
the gyro spring 
proportional to 
is proportional 

highly important to the direct feedback gyro control 
detailed with care.  For steady flight, when the gyro is 
the pilot input counters the moments from the feedback and 

The spring contribution is minor. Since the feedback is 
blade flap displacements, the resulting rotor shaft moment 
to the pilot's stick displacement. 

Typically, to achieve a feedback proportional to the rotor shaft moment, 
a feedback lever is mounted part way out on the fixed hub. Displacement 
and tilt of the lever mount with blade bending causes the tip of the lever 
to move, driving a rod that is attached to the gyro feedback spring. The 
displacement of the tip of the lever is : 

! 

= z RM - Z1 RM {\M-XJ) 
(6-U12) 

Where the subscript RM and J refer to the lever moment and tip, respec- 

tively.  The lever spanwise length is then X^M - X . The linear and 

slope displacements of the lever mount are given as: 

=£ 9Z. RM RM   /j  rr^A 
n  ^^ dA   mn m=l  mn 

(6-^13) 

and 

Z' RM 

3 9Z' 

m=l 

RM 

3A mn mn 
(6-iaiO 

for blade n due to modes 1, 2 and 3- The displacement does not depend 
on feathering, and the mount is taken to be at the same waterline as the 
hub origin. Polarity of the motion needs to be observed. For instance, 
the construction of the lever for the AH-56A helicopter caused the slope 

displacement contribution to ZT  to be greater than Z^.. . Therefore, 
J RM 
n n 

the tip of the lever went down as the blade flapped up. 
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A feedback spring preload is used to preclude deadband. Friction exists 

and is modeled by letting the point J  reverse direction an incremental 

amount, AZ 
LIMIT 

^1 
AZ FR 

JLIMIT   KFB 
(6-1+15) 

M™   is the gyro 
FR 

T'his acts without changing the applied gyro moment. 

stiction moment and K^    the feedback spring. The feedback spring 

displacement becomes: 

FB 

LIMIT 

(6-416) 

where: 

! /  Zj dt)     = SIGN 

^   n  ^ LIMIT !o\ 
dt < AZ, 

LIMIT JO      Jn 
dt (6-1+17) 

The action of stiction on the feedback displacement during a reversal of 
velocity is shown in Figure 6-6. 
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Figure 6-6. Effect of Stiction of Feedback Lever Displacement 
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Point J  on the feedback lever is located at an azimuth I|J   ahead of 
n ra 

the blade reference and a distance X^ from the rotor shaft center. The 

point J  in fuselage axis becomes 

^n 

JFB 

=     T fm    IT r T T < L H-RJ   L: 
T r IT T 

L BLn-FBn R-BLnl    I  BLn-FBn 

r^B i 
n 

■« 

0 
►■ 

ZFB v      n J 

' 0 
■* 

0 * * 

^F' i 4 

(6-418) 

where 

r- -iT T 1     - 
BLn-FBn 

cos^^ -sin*^ 0 1 

sint|/ 
FBn 

L      0 

cosi^ 0 
FBn (6-1+19) 

The other end of the feedback spring is grounded to the gyro at a radius 

of    X_,0    which leads the blade by the angle    t^-^^.     Hence, rau roh 

FBG 

FBG 

FBG 

L   GJ   L  GJ   L RJ   L    . 

^BG 

I 0    J 

(6-1*20) 
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in fuselage axes where 

N 
C0S(*R + ^BLn) -Sin(*R + W 0 

COs(
*R + *BLn) 0 (6-U21) 

and 

[^FBG] 

C0S*FBG        -Sin*FBG 

sintjj 
FEG 

costy 
FBG 

0 1 

(6-1+22) 

The feedback spring force is assembled as; 

(FFBn)F      KFB(ZFBn ~  ^FB) (6-1+23) 

The length    I        serves as the preload constant.    It does not affect the 
rB 

cyclic spring feedback to the gyro. The vertical displacement Z    of 
FBG 

n 

the lower end of the spring is excluded. It produces a force proportional 
to gyro tilt and this force is best considered to be a component of the 
gyro spring value. 

The feedback moment is the spring force times the gyro attachment arm. 
The moment becomes: 

GFB 

GFB 

Y     F r    FBG  FB " 
n   n 

n=l L  J 
-v- F 

BG  FB 
n   n 

(6-1+21+) 

which is taken about the gyro Euler axes, 
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To close the gyro-swashplate-rotor blade loop, a relation is needed 
between gyro motions and swashplate motions.    Assuming a power actuator 
between the gyro and swashplate gives: 

GSP VSP, +  * SP, 
= G, (6-1*25) 

'GSP 

and 

T      e 
GSP    SP, + 9 

SP, = G, (6-1+26) 
GSP 

The subscript C refers to the command or control value. 

The actuator variables can have rate and displacement limits in the manner 
described in Section 6.10.5. 

6.11.5 Summary Description of Phase Angles 

A number of phase angles were introduced in this section and Section 6.10 
on the swashplate. Figure 6-7 shows the relationship between all these 
phase angles as they apply to the Direct-Flap Feedback Control System. 
The values indicated are for the AH-56A Cheyenne helicopter. The pilot is 
assumed to have pulled the stick back, precessing the gyro until the flap 
feedback was sufficient to react against the pilot input. The vehicle is 
assumed fixed, otherwise it would pitch up and relieve the flapping. The 
gyro spring load is minor and is not shown. Swashplate to blade linkage 

is made with a trailing pitch horn, hence ij^. is l80 degrees minus the 
Fn 

actual pitch horn angle to account for the reversal in feathering going 
from a leading to a trailing pitch horn.     The pitch horn phasing is chosen 
to place feathering at an azimuth that will produce flapping at the desired 
direction,  in this case up flap forward for a nose up pitching moment. 

Note the gyro precesses up in an axis perpendicular to the applied moment 

F    , but that the swashplate displacement is in the same axis as the 
G 

applied moment    F.   .    The swashplate control acts through very stiff 
G 

spring rate which prevents the rotating swashplate .from responding in a 
low-frequency precession mode. 
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MAXIMUM GYRO 
DEFLECTION UP 

MAXIMUM SLADE 
FLAP UP 

PILOT UP 
FORCE LESS 
FLAP FEEDBACK 
DOWN LOAD 

NOSE UP 
FEATHER 
ANGLE 

SWASHPLATE UP 

SWASHPLATE 

Figure 6-7.    Phasing For Direct-Flap Feedback Control System 
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6.12 ENGINE EQUATIONS 

6.12.1 Rotor Azimuth and Rotation Rate 

The program allows a variation of rotor speed in maneuvers due to 
variations in the torque required by the various rotors and in the torque 
supplied by the engine. The dynamic system rotates as a rigid, geared 
unit. That is, the shafts are not allowed elastic windup. The main 

rotor speed, ^  and hence the engine speed, is referenced to the fuse- 
R 

läge, and not to inertial space. The displacement ij;  is the azimuth of 
R 

the number one blade. 

6.12.2 Engine Model 

Figure 6-8 illustrates the engine model used in the program. The figure 
also plots typical engine torque characteristics. The model represents 
the first-order lag power response characteristics of the free turbine 
powerplants commonly used in rotorcraft applications. 

Being a perturbation model, the engine is referenced to its trim position. 
The change in engine torque in a maneuver is 

M     - M 
^NG   XA- 

9M
E: :NG 

8M
E: :NG 

ENG,TRIM ^GEN rGEN 
9i|i ENG 

{i ̂ENG " "''ENG,TRIMJ 
(6-1+27) 

where 0 < 
^ENG ' ^NG, MAX 

The zero limit occurs if the overrunning 

clutch disconnects the engine in the transition to autorotation. The 
maximum value corresponds to the engine shaft torque limit. 

The gas generator, speed, ^p„.T, is a degree of freedom. It is considered 

a "secondary" degree of freedom in that the coupling through the general- 
ized masses with the "primary" degrees of freedom can be neglected. An 
equation for the generation speed can be supplied from its torque 
characteristics: 

I   il>   + C   0 
GEN VGEN   GEN VGEN ENG1 VENG " K:ENG2('''ENG ' *ENG,TRIM 

(6-1*28) 
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GASGENERATOR FREE TURBINE 

-(K^ + Kg) 

FUEL CONTROL 

t 'ENG 

M XA ENG 

iJ^ENG 
VARIATION 

A,/'ENG 
STATIC DROOP SLOPE 

^ 

GEN. CONSTANT 

-ä-^ENG 
a^GEN 

VARIATION' 

ENG 

Figure 6-8. Engine Itodel and Torque-Speed Characteristics 
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The terms on the left represent acceleration inertia torque and steady- 
state torque. On the right, the fuel control causes torque to be added if 

the engine speed drops belov the trim value. The i^™,-, tern exists since 

the control is modeled with simple lag. Restating this equation, using 
rotor speed and a generator time constant, gives: 

i 

^GEN - ^1 h  - V^R - ^,TRIM) 

GEN 
GEN 

(6-1+29) 

where i|> 
GEN 

GEN  C 
is the order of a second. 

GEN 

The engine droop characteristic can be used to size the engine constants. 

With *GEN " ^R = Ü'  SUbi 

equation and rearranging, 

With ^r,rm = ^r, = Ü, substituting the generator equation into the engine 

>(MMR 
3MB 

Wt 3^ 
GEN hi {6-h30) 

Only A incremental changes are of interest. The bracket subscripted R 
indicates the torque is determined at the rotor speed and includes the 
engine gear ratio. The term on the right is the static droop line shown 
in Figure 6-8,  This plot also geometrically interprets the partial 
derivatives on the left. 

The generator speed i^,™ is not given a reference. Its value is zero 

when trim is completed. 

6.12,3 Partial Derivatives 

Partial derivatives relating linear motions of the blade elements to shaft 
rotations are needed: 

3r BLE 
W 
R J BLn 

3r 
BLE 

9tL 
BLn 

ÜBLE!  /jM 
9*Fn L K / 

BLn 

(6-431) 
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Shaft rotation not only involves blade root rotation ü;„, but also H 

feathering motions. The feathering partial is obtained by differentiating 
the feather angle equation in Section 5.5.8: 

a* 
Fn 

3^, 
R 

= A1S Sin( Vn + *R) " B1S COs(*BLn + *R) 
(6-1*32) 

6.12.1+ Generalized Masseg 

The engine decree of freedom couples in with every other degree of freedom 
except those for shaft bending.  Equations for the engine generalized 
masses are given in Table 6-7. 
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TABLE 6-7.     ENGINE GENERALIZED MASSES 

n=l 

OBLn    vFn .       OBLn    9Fn M 

^      ^R    \BLn*En   '     9XH      9*R    '^BLnSn 
(6-li33) 

M 
i> Y VR H 

n=l 

8Y0BLn  3*Fn 
3Z„„       8d) 

.       OBLn  09Fn M +  ^^ rr  M, 

M 
VH 

n=l 

3YH      3*R" ^OBLn^Fn  '     3y„      »♦„    "Z0BLn*Fn 

3ZH      3*H    %BLA„      ^T ^ \Bto^ 

(6-U3^) 

(6-1+35) 

M 
VH 

D 

=S(Mv„)BL n=l BLn 
' IXXENG GENCJ " S GP 

(6-1*36) 

M 
VH 

u =5(v„)BL 
+ 

n=l 'BLn 

MVH = " Izz
R " S " IZZ

SP 

(6-1137) 

(6-1+38) 

\K = hz^ + V    + ^   + 1^      ^J - 1^  GJ I„„    G„ 2 
RTR ^^R --SP "ZZH   '   ^^G "ENG     '   ^Xp ^P    ^YTR -TR 

VpHn=^l\Ln*Fn
+^fVEn; 

(6-1+39) 

(6-1+1+0) 

239 

fjjjjgtf/jj&tfjjfäjiSjjjü^^ 



^^v^jf^t^ffjm^^ 

TABLE 6-7 - Continued 

3*Fn 

hArm        hLnAmn      ^R      Wnrn 
{6-hki) 

(VH)      =^ X     R H/BLn       i=l 

i ,n( 8XBLE  9XBLE  , 
PVR     ^H   + 

3Y
BLE  8YBLE  ,   8ZBLE 

^R       9*H           ^R 

9Z      \ BLE ] 
3((,H   / H /BLnJ 

(6-ltl+2) 

(VH)      =^ X    R H/BLn      i=l 

, . , f^LE 8XBLE   , 

\ ^R       "H 

9YBLE  3YBLE       3ZBLE 

^R       "H     '     3*R 

3Z
BLE\    1 

H ^LnJ 

(6-^3) 

6.12.5 Generalized Forces 

Only one generalized force is needed: 

\   ZMR/TT  \ XIP   XAP/ ^  \ ^ITR   ^ATR/ 
TR 

■(%MG-0
G-"(X+I-Sp)^"'«) 

{6-kkh) 

The inertia component of the propeller, the tail rotor and the engine are 
formulated in Section 6.9.^. The aerodynamic description follows in 
Section 7- The positive direction of these moments are right roll, nose 
up, and yaw right per fuselage axes. 
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7. AERODYNAMICS 

7.1 INTRODUCTION 

Other than gravity, the external loadings acting on the REXOR equations of 
motion can be traced to aerodynamic sources. The following subsections 
trace the source, nature and use of these aerodynamic loads. 

7.1.1 Aerodynamic Forces Producing Surfaces Considered 

The aerodynamic loads considered in REXOR are divided into the categories 
of (l) associated with the main rotor, or (2) the rest of the rotorcraft 
(nonrotating surfaces, tail rotor and propeller).  In view of the stated 
objectives of REXOR the program development emphasis is on the main rotor. 

7.1.2 Use of Forces Generated 

As mentioned, the aerodynamic loads are in essence the external forcing 
functions of the equations of motion. Generally the developed loads are in 
the axis of the apparent air velocity of the loaded element. Thus trans- 
formations are required to put the loads into the reference axes of the 
equation of motion considered. 

7.2 MAIN ROTOR 

7.2.1 Overview 

To generate a main rotor model with sufficient detail to do dynamic inves- 
tigations, a reasonably good quality aerodynamics presentation is re- 
quired. To this end a table lookup of blade section properties, multifunc- 
tion inflow model, quasi-steady aerodynamics, and dynamic stall are used 
in REXOR. 

7.2.1.1 Blade Flow Field 

As developed in the following subsections, the instantaneous blade air- 
flow is the inertial velocity of the blade element. This velocity in- 
cludes the motion of the principal reference set and the motion of the 
blade element with respect to the principal reference set. The cal- 
culation assumes the airmass is at rest, which is reasonable for 
dynamics investigations. 

7.2.1.2 Air Pressure and Angle of Attack 

The dynamic pressure used for these calculations is based on sea 
level standard density. The loads are ratioed to the actual air density. 
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The angle of attack is the sum of geometric pitch angle and the instan- 
taneous air velocity. The rate of angle of attack is also calculated 
and used for the transient blade aero loads, Sections T.2.3.S and 7.2.3. 

7.2.1.3 Forces and Moments Produced 

The s+eady blade loads are produced from the air velocity components 
of Section 7.2.3.1 and the coefficient data (C^, Cp, CM) of Section 
7.2.H. The transient lift and moment effects are developed in Sec- 
tions 7.2.3.3 (quasi-steady aerodynamics) and 7.2.3.*+ (dynamic stall). 

7.2.2 Concept of Rotor Inflow Model 

The main rotor inflow model used in REXOR is based on the air flow incident 
upon the rotor disc plus the air velocity imparted due to momentum exchange 
due to integrated blade span loading.  This "Is to be contrasted with a 
formulation which tracks the rotor blade positions and the attendant trail- 
ing vorticies 

The incident air flow is the inertial velocity of the rotor coordinates, 
and is directly available from the preceeding mechanical development. How- 
ever a number of assumptions need to be stated and utilized to arrive at 
the induced velocity component of the inflow model. 

I 

r 

7.2.2.1 Induced Velocity Assumptions 

1.  Only the vertical downwash and its variations radially and 
azimuthally over the rotor disk are considered. Induced 
swirl, and lateral downwash components are considered minor 
and therefore neglected. 

L 

2. Downwash effects due to unsteady aerodynamics are not treated 
here as an overall effect, but as a blade segment condition 
in Section 7.2.3.3. 

3. Rotor-induced flow distribution in hover and forward flight 
is patterned after Reference 10. This reference assumes a 
uniform loading in hover.  Figure 7-1s from Reference 11, 
shows this distribution compared with typical loading and a 
triangular loading model. Figure 7-2 from Reference 10 shows 
the theoretical induced velocity distribution in forward 
flight as a consequence of a uniform hover distribution. 
This data is fitted to slopes or a longitudinal skew as a 
function of speed in REXOR. Lateral distribution remains 
uniform in accord with Reference 12,which corrects the 
lateral distribution work of Reference 10. 

k.    A variation in lateral and longitudinal induced velocity is 
included to account for roll and pitch aerodynamic shnft 
moments. 
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Figure 7-1• Blade Loading Distributions in Hover 
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Figure 1-2.    Induced Velocity Distribution as a Function 
of Wake Angle (Forward Flight) 
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5. Lifting line theory correction, rotor tip loss, and root cut- 
out effects are ignored. 

6. Transient effects are simulated by a single time lag. 

7.2.2.2 Steady State Values 

The starting point for determining the do^mwash is momentum theory as 
applied to an elementary area dA: 

dT = (l) 2Wi = (PViMH **)   2"i 

= P\/UH2 + VH2+ ^H-Wi)
2^2v. (7-1) 

The thrust increment is dT, dm/dt is the flow of air thv,ough the rotor 
disk with resultant velocity V^p, p is the air density and w- the 
downwash velocity. The velocities are taken in hub coordinates and no 
effort is made to account for rotor tilt. 

The thrust expression above is used to define the following induced 
velocity components. 

• Average component, w. 

• Longitudinal variation with pitching aerodynamic moment. 

• Lateral variation with roll aerodynamic moment, p 

The downwash velocity becomes 

iMR 

Wi =ViMR + r ^iMB COS ^R + r PiMR  Sin \ (7-2) 

The coefficients can be evaluated by equating the thrust and moment 
values for the main rotor equations to the Integrals of the momentum 
expressions at hand. First consider the thrust expression. The 
evaluating task can be reduced by employing some boundary conditions. 
For rotor thrust only (no moment), qiMR and piMp = 0. A convenient ex- 
pression for the elementary area, dA, is shown in Figure 7-3. While 
radial anulii would serve for thrust integration, the form selected is 
particularly suited for the moment expressions. 
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Figure 7-3.  Incremental Area for Shaft Moment Integration 
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For the average rotor thrust, 

-F ZA. = T = 
MR,H 

^R 
V-H^K-"«)2 {4^*y*im 

(7-3) 

A further assumption is required to solve the square root of this ex- 
pression and the corollary momentum equations. 

For forward flight 

w.   «   V 2   .       2 
i  <<   ViMR =

\/
U

H    
+ VH    +  (vH  - WiMR5  =  (cons^nt) il-k) 

Completing the integration gives 

-F     = PTTR^ v        2 w 
^VH       

lMR   iMR (7-5) 

Next consider the case of no rolling moment; ia, only thrust and 
pitching moment. Figure 7-3 is used with the incremental strip con- 
sidered to be right-left oriented so that all eaual valiips of n— DT 
integrated at once. 

all equal values of qiMR are 

Then, 

R 

\ Am, H 
r dT 

-R 

R 

=       f r P\I\+VE2+   (VH-WiMl 
-R V 

•  (2v/R2-r2dr)2(wiMR + rqiMR) 

- r q. 
iMR; 

(7-6) 
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(T-7) 

Likewise for rolling moment,  and using fore-aft increment strips 
gives 

%,,„= 0 rv™2 Pi™ (7-8) 

denotes the Note the subscript A on ?„. , M , and VL.. 

aerodynamic component only of main rotor loads in hub axes. 

The foregoing expressions are now developed for hovering and low-speed 
flight.     In this condition, 

2 2 
UH    +VH    ^ (VH - WiMR)' 

(T-9) 

Integrating gives 

-V_=P7TR2    (VH-ViMR)    2V 
ZAMR,H iMR 

(T-10) 

and 

XH,, =   (#-("H - "IMB')   "'km    l1- 
WiMR   '"H  - "IMB1 

("H " "iMR)2 
W 11) 

^.•»yrn    Vvti   ~   ^MD' (™\ ,\    , (,       "IMR '"B - "IHR' \ ,    VJ) 
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The consequence of cyclic,  first-harmonic downwash was explored in 
Reference 13.     Their conclusion,     which parallels Lockheed's exper- 
ience, is that the phase and magnitude of the flap response of a hinge- 
less blade to cyclic feathering is markedly affected by cyclic down- 
wash.    The shaft moments variation with feathering angle and the 
phase angle between flap and feathering are both reduced with C3rclic 
downwash, the effect being greater in hover than in forward flight. 

A physical interpretation can be rationalized for the formula above, 
at least in hover, in that the aerodynamic thrust and moment produces 
a flow of linear and angular momentum.     Imagine the flow as a contin- 
uous stack of disks having a mass per unit thickness pirR^ and dimetral 
inertia per unit thickness p{'irBr/k).   2 W^R,  2 Pj^R and 2 q-^fi are 
the  final,  for downstream position, values of induced velocities ob- 
tain by these  disks orientated with the flow.    The terms pirR^v^ and 
pirR^/lt V^ are the mass  flow per unit time,  and the moment of inertia 
flow per unit time through the  "actuator" disk, which times 2w.. 
2p.._ or 2q.._1 is the gain of momentum. ■^iMR nMR ^ 

iMR' 

For programming purposes, an empirical blend of the forward flight and 
hovering sets of expressions is used.    The limiting cases of the 
empirical set give the derived cases.    The expressions used are: 

-F = PTR V        2 w iMR iMR (7-13) 

It 

^VH = "^ ViMR 2 q"ffi - WiMR (WH I ViMR) 1 U-lk) 
im J 

XB ,H 

PTTR    V      2 
IT   iMR    P1MR 1 - 

wiMR  KVE (v" " ^MR) 

iMR ] (7-15) 

7.2.2.3    Variations  in Forward Flight and In Ground Effects 

The previous development can be assembled and combined with linearized 
forward flight distribution and ground effect  factors. 

^BLE)       RT     =  WiMR fiMR    \1+ hm R C0S{\ + *BLn + V DW,BLn L 

+ rpiMR Sin(^ + ^BLn)  + rqiMR ^^^R + h^   (T-l6) 
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The ground effect factor,  f^MR) and the longitudinal linear gradient 
factor,  KXMRJ  accounts  for forward flight. 

Note this formula is in rotating coordinates, and that the forward 
flight distribution actually is applied along the line of the apparent 
airflow, !()„.     In doing this the distribution is valid for forward 
flight, sideward flight and sideslip conditions.     The angle ^r, is 

H»     = Tan W l   uH -'(^) 
(7-17) 

as shown in Figure 5-^+. 

The aerodynamic moment factors, q.-wn and p.MR3  remain attached to the 
hub axis. 

The downwash factor K-^MR'  as explained in assumption  3,  is given as 
a function of the wake angle defined as 

XiMR = Tan 
•1    ^UH2 + 

WiMR ~ WH 
(T-18) 

which is  zero in hover and near 90 degrees in high-speed flight.     The 
function can be constrained by a number of factors.     In hover, the 
value is  zero.    A 9Ü-degree value of about 1.6 can be read from Fig- 
ure 7-2.    Also from this  figure a set of linearized distributions is 
read,  and plotted as Figure f-k. 

The ground effect factor. 

•iME 
= 1 16   ( h) 16 (7-19) 

1 + 
^ + v, H 

w iMR 

is taken from Reference ih.    Where h = -(ZCO,, from Section 5.5.1. 
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Figure l~k.    Typical Shape of Longitudinal Factor Curve 
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1.2.2.h    Dovnvash Transients 

The downwash velocities  are assumed subject to simple time lags: 

wiMR =:  (wiMR,N      wiMR)/TiMR (7-20) 

and similarly for Pi^p and q^j^.     The value wiMR N is  the new value 
obtained from the steady-state formulation of the previous sections. 
The time lag  T^J^ is difficult to estimate.     It probably should be 
related to a length such that  TiMR = J,iMR ViMR.     Suppose there is a 
sudden change in collective or cyclic.    The characteristic length 
at which the old trailing vortices are having a minor  effect on the 
rotor would be expected to be of the order of a small  fraction, 
roughly 1/3, of the rotor diameter. 

Also,  de facto, the time lag serves as an averager which has some 
effect in assisting the convergence of the solution. 

7.2.2.5    Iteration of Downwash Solution 

As is the case with any rotary-wing loading calculation,  there is an 
interplay between the downwash variance  from calculating the loading 
and a variance in the loading from recomputing the downwash.    A common 
practice is to solve an iterative loop to satisfy both equations  (i.e., 
lift and momentum).     In REXOR the iteration does not take place in- 
dependently, but proceeds stepwise with the rotor azimuthal advance. 
With the normal,  rapid convergence of the iteration the solution will 
essentially be complete with the step advance.    However,  large step 
sizes will incur an additional downwash time lag. 

7.2.3    Blade Element Velocity Components 

In the  following subsections the blade aerodynamic loading is categorized 
and developed along two lines.     They are: 

• Steady-state aerodynamics 

• Transient phenomena consisting of quasi-steady aerodynamics and 
dynamic stall. 

7.2,3.1 Sources and Resolution from Blade Motion 

The steady aerodynamics are based on the air velocities while the 
quasi-steady aerodynamics (from flutter theory) and dynamic stall de- 
pend on accelerations. 
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The air velocity is the blade mechanical velocities sununed with a com- 
ponent due to downwash.  Tn a similar manner, the air acceleration is 
taken to he the mechanical blade accelerations minus the downwash accel- 
erations.  The downwash formulation as developed in Section 7.2.2 allows 
for lags, and it is these lags that result in downwash acceleration 
terms. 

7.2.3.2 Steady Aerodynamics 

The air velocities relative to a blade section are desired for an axis 
system with origin at the quarter chord to match the airfoil table 
data. From Section 5.5.5, the mechanical blade velocities relative 
to the free strean or earth .axes are available as |^r,rF) ^  > Z  I1- 
The desired relative air velocities at the quarter chord (orblade BLn 
reference axis) are: 

xiA c ^LE 
I 

' 0 \r rco ] 
YlA c •  =    T [BLn - ■ BLE ' • 

• 
Y 

BLE + 0 i' 
+ 0 

Zl/k c. 
BLE 

h. 

• 
ZBLE BLn 

WBLE 
DW,BLn 

-P
Y

CG 

/ 

BLE 

(7-21) 

Where the second vector on the right is the downwash velocity de- 
veloped in Section 7.2.2,  and the third transfers the velocity from 
the BLE reference point at the blade center of gravity back to the 
quarter chord.     The distance !__ is positive with the center of 
gravity ahead of the quarter chord.    For notational convenience. 

IL, 

U, 

v.      J 

-X. 1/h c 

Cl/h c 

-Z iA 

(7-22) 

The angle of attack is defined as 

alA c  = Sin"1    (UN//V + UN2 ) (7-23) 
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Airflow aspects of quasi-steady aerodynamic formulation are developed at 
this point for convenience.    The quasi-steady aerodynamic contribution is 
conceived as composed of circulatory and noncirculatory components.    The 
circulatory components are taken to he equivalent to finding the aerodyna- 
mic force, and moment coefficients are hased on an angle of attack at. the 
three-quarter chord: 

a3A c =aiA c 

PBLE 2 

V^ 
(T-210 

2 2 
N    +UC 

As such, the effect of angular rates is included in deriving the 
steady aerodynamic coefficients.    The formulation above does not 
attempt to account for local dovmwash rotation or curvature and its 
chordwise variation.     The net result is that aerodynamic coefficients 
determined in Section 7.2.U are computed with ao/i, 

A number of quantities used in the dynamic stall computations,  Section 
T.2.3.H, are also available from the previous mechanical development. 
They are also defined here for convenience.    First, the angle of side- 
slip appears only in the dynamic stall formulation.    For this purpose 
it is defined as 

A   = Tan -1 ® (T-25) 

Also, dynamic stall is based on the time derivative of the angle of 
attack at the three-quarter chord: 

'3/1* i - (uN/ucr 
N 

ucucj 

BLE 

Vv 
- p 

2 2 
'+ V 

BLE 
/
U

C
U

C 
+
 

U
N
U

NV 
W + oiy 

(7-26) 
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The above equation requires U    and U . 

U^ 

U,. 

=    +    T [TBLn - BLEJ   < 

■h LE 

«     BLE 

'BLE 
BLn 

y"             -V 

-gx 

Sy 

-gz 
BLn 

0 

0 

-w BLE 
DW,BLE 

(r-pq)Y 
CG 

0 

-(p+qr)Y 
CG 

BLE 

(1-21) 

The subscript I has been used to define motions to earth axes.    The 
additive of the gravity term places these accelerations in a true in- 
ertial axis system,  not earth inertia! axes,  as appropriate  for aero- 
dynamic calculations.    See Section 5.5.1.    Gravity does cause bouyancy 
forces, but these can be ignored.    The gravity vector can be obtained 
from hub values as 

/"      "\ 
sx 
SY 

gZ 

- fÜBLif.     PiR] 

BLE 

(7-28) 
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By differentiating the downwash velocities, the downwash accelerations 
are obtained: 

("™   W.BLnP1 
M  DW. BLn 

^ wiME 

-  ^5,m  f,.^ K,._-5j£ sin(^ +*T3T„  +>|.,r)i iMR    iMR    iMR "TT rR BLn      TW'TR 

+ ^iMR sin(*R + W  + r4iMR C0S(^R T W 

+ r [PiMR COs(,,JR + atJBIJn
)  - hm ^"^R ^BLn^R 

(T-29) 

7.2.3.3 Quasi-Steady Aerodynamics 

Quasi-steady aerodynamics is accounted for in REXOR hy incorporating 
the terms from the two-dimensional flutter theory of Theodorse-. (ref- 
erence 15). In the REXOR analysis, Theodorsen's lift deficiency func- 
tion C(k) is taken as unity. This means that the flutter theory 
presently incorporated neglects shed wake effects, or in physical 
terms does not account for the phase change between blade element lift 
(or pitching moment) and angle of attack, due to shed vorticity, or 
the assumption of quasi-steady aerodynamics is expressed by C(k) = 1. 

Referring to the classic text on aeroelasticity by Bisplinghoff, 
Ashley, and Halfman (Reference l6), the expressions for lift and 
pitching moment are given as: 

L = TTpb2[h + Ua- ba a] + 2-npU bC(k) [h + U a + b [i - a) a] 

(7-30) 
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and 

M^pb2 [bah-Ub (i- a)  i-b2(|+ a2)ä] 

+ 27TPU b2   (a + |)    C(k)    [h + U«+b  (1- a)ä] (7-31) 

In REXOR,  the blade aerodynamics and quasi-steady aerodynamics are 
referenced to the local section quarter-chord properties.     This  is 
done because the majority of available airfoil data uses  Lhis refer- 
ence.     Note that the  final aerodynamic loads are translated to the 
local BLE axis  (eg location)   for use in the equations of motion. 

Reviewing the above expressions,  and referencing the rotation point to 
the quarter chord gives a = -1/2.     If we take C(k)  as unity,  replace 
2 TT for circulatory lift by (dC^p/da),  and substitute c/2 for the semi- 
chord b, these equations become 

L = TTPC >tU«+|ä]+(4^)J|U   [fi + u„t^j   (7.32, 

and: 

M = "   c r     Uc   •    c2  / 3   .. \" 
(7-33) 

Note that the entire last term in the moment equation vanishes with 
a = -1/2. Referring to the lift expression, noncirculatory aerody- 
namic lift is accounted for in REXOR by the first term in which h + Ua 
are combined into % in blade element coordinates. The second term 
results from table lookup where 

-=i-2-(^)-i- c C LR (7-3»*) 

257 



nswwjww^roww^^fw^^ 

in which the angle of attack is previously computti from 

'sAc 
fh     cä"l = Lü+a+2üJ (7-35) 

The a within the hrackets is identified as 9, the actual physical 
angle of the blade with respect to the freestream direction. The a 
on the left hand is that due to the air velocities which include the 
plunging velocity h and rotation component c/2a. Hence PBLE = °L- 

The total aerodynamic pitching moment is the sum of the quasi-steady 
loads computed above and the table lookup blade section properties 
(Section 7.2.it). 

1.2.3.h    Dynamic Stall 

Dynamic stall is included in REXOR based upon the Boeing-Vertol formu- 
lation set forth in References 17, 18, and 19. It is similar to the 
treatment of dynamic stall in the Bell C-8l program. A comparison of 
REXOR with the C-8l program is given in Appendix IV, pages 393-hOh,  of 
Reference k.     Dynamic stall is specifically addressed with respect to 
the two programs beginning on page 395 of that report. A significant 
point of difference between the treatment of dynamic stall in the two 
programs is that C-8l puts a 20-percent limit on the angle-of-attack 
overshoot in obtaining the dynamic maximuii lift coefficient, whereas 
REXOR has no limit. The correctness of the treatment of dynamic stall 
in either program is difficult to assess since the concensus of re- 
searchers in this area is that current methods are empirical at best, 
and much research still remains to be done in this area. 

Reference 17 notes that, "The trends show that compressibility effects 
reduce dynamic-stall delay, and at about M = 0.6 no dynamic-stall 
delay is evident." For thid reason an upper Mach number limit of 0.C 
was implemented in the dynamic stall calculations for REXOR. The test 
data obtained by Boeing Vertol and given in the references cited was for 
for the Mach number range 0.2 to 0.6. As implemented in REXOR if 
M < 0.25^ the value M = 0.25 is used in the analytic expression for de- 
veloping the stall hysteresis loop. 

Reference 18 notes that it was found that, "airfoils used currently 
by the helicopter industry had stalling dominated by leading edge 
stall. For this type of stalling process, the dynamic C extension 
was proportional to the time rate of change of the angle of attach." 
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In that reference,  so as to use static airfoil data as much as 
possible,  static  stall and dynamic  stall are empirically related hy 
developing a reference angle of attack given by 

REF = a - wyrfv   sign((i)) (7-36) 

in which. 

Y = log. 
0.601 

M (7-37) 

and is physically related to dynamic stall delay,    a is identified as 
a3Ac and 

M = a (7-38) 

As noted in Reference 19 in regard to dynamic stall..." as a blade 
element reaches and exceeds the static angle of attack, stall does not 
occ J~ as long as a sufficient, positive time rate of change of the 
airfoil angle of attack, d, is present." The experimentally derived 
equation for dynamic stall delay is given in the reference as 

dynamic stall delay = y /™ (7-39) 

where 

ca 
2V 

= k (7-^0) 

the blade element reduced frequency. 

Referring to the gamma expression., we note that Y ->- 0 as M -> 0.601, 
which is the upper limit for Mach number values for -dynamic stall cal- 
culations. Also, note that Y ->1 as M ->■ 0.2211, which is approxi- 
mated by the value of M = 0.25, the lower limit in REXOR for dynamic 
stall simulation. 
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The termapjtp given above is also called the dynamic angle of attack 
(Reference 19) and given by the notation ODYN* 

T.2.3.^.1 Lift Accounting for Dynamic Stall 

Using the reference or dynamic angle of attack computed from a   , the 
REXOR program implements the "Fast Aerodynamic Table", Section Y.2.1+, 
subroutine and determines the lift coefficient, Cj , corresponding to 
"pgp and the freestream Mach number for the specified blade element 
and blade azimuth position. Also computed at the given Mach number 
are the CL for zero angle of attack and the CT for a small incre- 
ment A a with respect to zero. Yawed or radial flow is accounted for 
by computing the yaw angle of the flow given by: 

A = Tan -1 m (7-Ul) 

where Uq and U^ represent blade spanwise and chordwise components of 
flow respectively. 

The slope of the lift curve is then found from: 

fe) 
DYN 

_ CL(aREF,M)  - CL(0'M) 

aREF cos A 
(7-U2) 

It can be argued from physical reasonings that the dynamic lift- 
curve slope cannot exceed the static life-curve slope.    As a check, 
REXOR also calculates: 

m 0,M 

CL(Aa,  M)  -  CL(0,M) 

Äa (T-U3) 

Only in the event  (3CL/8a)DYii is greater than (^Cj/aa^M is tlie 

latter value used to calculate 0^.     Otherwise CL is calculated by 

■m DYN 
a+ CL(0,M) il-kk) 
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The ability of this approximation to describe mathematically the lift 
hysteresis characterized by dynamic stall is shown in Figure 7-5, 
which compares analytical results with experimental two-dimensional 
airfoil data.   (From Reference 19). 

The component of the lift force per unit opan acting normal to the 
blade chord axis and including dynamic stall ef 'ects is then cal- 
culated from 

AF 
NC = C    c —— cos a 

Li C. 
(7-^5) 

The total normal force is determined by adding to this term the drag 
component,  Cp c PV2/2 sin a,  and the unsteady aerodynamic terms dis- 
cussed in the previous section.     To account for dynamic stall effects 
on drag, two-dimensional drag coefficient data are used, but as de- 
termined at a REF' not a.    This  is consistent with Reference 18. 

The component of the lift force per unit span parallel to the blade 
chord axis is  found correspondingly from: 

C    c PV 
AFC =   sin a (7-i*6) 

The total chordwise force is then obtained by adding the correspond- 
ing drag coefficient term multiplied by cos a . 

7.2.3.^.2 Pitching Moment Accounting for Dyanmic Stall 

For determining pitching moments due to dynamic stall (see Reference 
17), the reference or dynamic angle of attack given by (*„„„ must be 
modified. In REXOR, this is accomplished by multiplying iSe second 
term by an empirical constant, K. Hence, 

a 1 
REF 

= a' 
DYN 

= a"K (YVH^is:Lsn(a)) (7-1*7) 

K is selected based upon the dynamic stall characteristics of the air- 
foil. In general it has been found for conventional rotor blade air- 
foils that K should be selected so that 
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Figure 7-5.    Dynamic Stall-Lift Coefficient vs 
Angle-of-Attack Hysteresis Loop 
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«'   = a   + A a 
REF   REF (7-W) 

where Aa is of the order of 2.5 degrees. With "REJT calculated from 
the ahove equation, the moment coefficient is determined from tables 
such that, 

CM = CM(aREF' M) (T-^) 

A comparison of test and theoretical dynamic Cw from Reference 19 is 
shown in Figure 7-6. 

The total pitching moment acting per unit span on a blade element is 
then given by: 

T(i) = - M 2 - F NO sY(i) 
"quasi-steady" 

aero 
terms 

(Section 7-2.3.3) 

(7-50) 

where SY(x) represents the distance from the aerodyanmic center to 
the blade elastic axis, and the quasi-steady aerodynamic terms are 
included as described in Section 7-2.3.3. 

7.2.i+ Coefficient Table Lookup - Overview 

In cataloging blade section aerodyanmic data, 0.^  C and CM, there are two 
procedures available. 

• Curve fit the aerodynamic data to the specific airfoil goemetry 
being investigated for the range of Mach number and angle of 
attack to be considered. 

• Tabulate the data as a function of performance and geometric param- 
eters, and interpolate to the exact conditions at hand. 

REXOR uses the second procedure. The data consist of a series of synthe- 
sised airfoil data for five digit series airfoils. The synthesising pro- 
cess takes measured rotor data, and by means of numerical integration per- 
formance formulae, determines the equivalent two-dimensional airfoil 
section properties required. 

Two-dimensional airfoil data from Lockheed tests and technical literature 
were used at a starting point to synthesize the data. Data for thickness 
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Figure 1-6.    Dynamic Stall - Moment Coefficient vs 
Angle-of-Attack Hysteresis Loop 

264 

IIQglgliy^iglljjjIiljffii^^ 



jpmmpiiiiim 
^<?,JH^^wWBfg#|jfSM!^W^^^^ 

^-••>r,"^'i'.r-,>-i-'T:;-v>t>wtTf3%«»tfti*Sn»!Tv..——-f-..., 

I 

ratios and camber combinations, not previously available, were developed 
by using transonic similar      rules as  indicated in Reference <>0.     These 
data were cross checked for consistency with the data of the many sources 
noted in the bibliography of that reference.    The rotor airfoil data syn- 
thesizing process from two-dimensional CL   and C    data included the tip 
Mach relief and C    and C    adjustments  for rotor applications in a manner 
consistent with the synthesized rotor airfoil data of Reference 21. 

The C^,  Cj} data covers uncambered thicknesses ratios from 6 to 12 percent 
and design lift coefficients of 0.09 to 0.69 for cambered sections of the 
same range of thickness ratio.    For angles  of attack within +30 degrees 
the data is also presented as a function of Mach number to account for 
compressibility.    For large angles  (above +30 degrees)  compressibility 
effects are ignored.     Blade element pitching moment data is also arranged 
along these lines,  and is available for an uncambered 12 percent thickness 
ratio section and a 2upercent camber,  8-percent-thick section. 

I 

I 

7.2.it.l Inputs and Outputs 

Two alternate methods are available in REX0R to use the df ■<>. bank 
described above.  First a lengthy, but generalized procedure, uses 
the data bank directly. From the spanwise design lift coefficient 
variation, the existing span station angle of attack and Mach number 
the tables are multiple interpolated to yield a Cj  and Cp. The Cj^ 
coefficient is selected from one of the two sections available. 

The second and the most common method of table usage, is to pre- 
interpolate the base tables described into a set keyed to tue re- 
quired geometry and arranged for rapid access.  Currently the data 
take advantage of blade geometry characterized by either being con- 
stant thickness, camber or possessing a linear relationship between 
span - thickness and span -- camber to specify only thickness ratio 
and automatically specify the other ingredients. The C data have been 
curve fitted for arbitrary variations in camber again specified as a 
function of thickness ratio. The data sets referred to in this sec- 
ond manner are known as the fast aero tables. 

Note that by proper substitution, other tables and lookup procedures 
may be employed in REX0R. 

7.2.1+.2 Organization of Data in Tables 

The base data bank contains a total of 31 tables. These are primarily 
referenced by design lift coefficient (and coincidently camber) and 
thickness ratio. Secondary sorting is according to angle of attack 
range and if applicable. Mach number. 

The fast aero tables are a set of six tables, two each for lift, drag 
and pitching moment coefficients. The double tables are for angles 
of attack below +30 degrees (also a function of Mach number) and above 
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±30 degrees.  These tables are generated for a specific blade con- 
figuration and referenced by thickness ratio. 

Detailed contents of the tables are covered in Section h  of Volume II. 

7.2.i*.3 Accession Method 

As mentioned, the base data set is referenced to the desired C^, C-Q  and 
CM by a multiple interpolation scheme. The fast aero tables require a 
single trivariant interpolation (with Mach effects) to arrive at the 
required coefficient. By making the table entries at equally spaced 
intervals, an entry index is simply th.- entry value divided by the 
spacing value.  The trivariant interpolation scheme is shown in Figure 7-7.. 

7.2.5 Blade Element and Rotor Aerodynamic Loads Summary 

The required loads for use in the equations of motion are in Bin  axis. 
Development to this form from BLE axis about this quarter chord point is 
covered in Section 6.6.1*. The BLE axis form is: 

FY  (i) 
XA 

FY   (i) 
A 

F7  (i) 
ZA 

M^ (1) 
^A 

MY (i) 
A 

M7  (i) 
ZA 

[VBLK]  j     H 

I 

[0]     I   [VBLE] 

-ipdi/.u/xyi) 

i p(uc
2 . u/) cL(i) 

2 ^V - V' CM(1) 

0 

0 
J BLE 

0 

0 

V' 
V' 

(7-51) 

Unsteady,BLE 
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where. 

pa-BLE 

1  0 

0  cos 

0  sin 
(a3A c)  -sin(a3A c) 

in(a3/^ c)  C0S (a3/k  c) _ 

(7-52) 

7.3 INTERFERENCE TERMS 

7.3.1 Nature of the Phenomenon 

In the process of producing lift, the various parts of the rotorcraft im- 
part a net momentum change to the air mass opposite to the direction of the 
force produced. This induced air velocity from the momentum change impinges 
upon other elements of the rotorcraft changing their aerodynamic behavoir. 

The sources of interest are the main rotor and wing (or lifting hody charac- 
teristics of the fuselage). The surfaces "being affected are the wing plus 
fuselage and horizontal tail. The impinging velocity is expressed in Zp 
(fuselage verticle) axis as a percentage of the source flow and a function 
of the wake angle of this flow. 

A second interference velocity source is to consider the circulation part 
of the Theodorsen function. Here the wing or wing equivalent of the fuse- 
lage is producing lift at the quarter-chord point according to the air 
velocity at the 3A-chord location. Accordingly, the vertical component 
of air velocity at the wing includes a component. 

ir C .  q,, 
2 wing HF (7-53) 

Here the wing quarter chord is assumed to lie on the Yp axis. This com- 
ponent is also effective at the horizontal tail via the wing to horizontal 
tail downwash factor. 

7.3.2 Rotor to Wing/Fuselage 

The downwash function (percentage of source flow) used in REXOR is a lookup 
table of downwash factor, F. , and idealized main rotor wake angle X 

where, 

MR-2 

XMR = tan 

MR 

-1 /VH- WiMR\ 
(7r50 

The table data is linearly interpolated to the required wake angle value, 
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Figure 7-7«     Trivariant Linear Interpolation 

268 

Kjtjmikiimijijt^^ tgi^i^jjsiMäSimMäiflMi^iäää^ä^äämiä 



HnnnRjc mtfmwm.,m*'**'''*i* mim\wwm\*M»..™.U'i'^wv*.9mi ^mmmmmmm^mmw^^W1^ 

„^„.„.nsfjfjaf,^ 

The fuselage reference downwash velocity at the wing (or equivalent) then 
is 

WING   F   iMR Xjro „  2 WING qF 
MR-W 

(7-55) 

and taking time derivatives. 

•       • 
w =w_v        F + — C a 

WING        F        iMR rXlro „      2 UWING qF 
MR-W 

(7-56) 

The total air velocity to the wing/fuselage is 

V 
T WING 

and the angle of attack is 

/  2    2      2\ 
(UF + VF + WWING ) 

1/2 
(7-57) 

WING 
-1 / VWING \ 

(7-58) 

The total velocity in the fuselage XZ plane is used in the horizontal tail 
computations: 

V  = (u 2+v   
2\ 

Xz   ^ F    WING / 

1/2 
(7-59) 

7.3.3 Rotor to Horizontal Tail 

A downwash factor F^^   between the main rotor and horizontal tail is 

computed in the same manner as FY froift the main rotor wake angle X, XMR-W '  "^ "MR" 
This data in conjunction with the wing to horizontal tail downwash factor 
is used to compute incremental air velocities at the horizontal tail.  The 
fuselage lift, drag and moment data, Section 7.*+, is assumed to be complete, 
less the downwash factors. Hence, only incremental correction velocities, 
which in turn will be used in computing load increments»are needed. 
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Evaluating the main rotor increment, 

w 
iMR, WiMR ( FXMR-HT ' FXMR-w) 

(7-60) 

f.S.k    Wing to Horizontal Tail 

The wing to horizontal tail downvash factor appears explicitly as a quasi- 
unsteady aerodynamic term.  The steady term is accounted in an overall 
fuselage aerodynamic characteristic set. An airflow time delay from the 
wing to horizontal tail is computed as 

At=^T. 
xz 

(7-61) 

Using the downwash factor 3e/3a the vertical airflow component at the 
horizontal tail is 

At w i£ 
WING 3a 

•HT w 
WING 

3e 

3a 
(7-62) 

The total incremental velocity components at the horizontal tail are 

AW  = _ w    +i? 
HT     iMR-  ^HT 

(a     + Alw   /v 
^F  3 a WING' Xr 

(7-63) 

ÄVHT = " ^VT rF + hVT PF 

No fuselage - wing induced side wash is modeled in REXOR. 

7.3.5 Data Sources 

The theoretical downwash factor ranges from 0 at X = 0, l80 degrees to 2 
at X = 90 in the fully contracted rotor wake. Several sources of measured 
data are available to construct a distribution for a given configuration. 
Reference 11 gives isolated rotor data for field distances and wake angle 

270 

teaagii^tei^^ 



gpMHjWSj^^ 

ranges suitable for FXM|{_W 
and F

XMR-HT*     
Reference 22 gives a good data set 

for typical wing locations. 

l.h    BODY LOADS 

"J.h.l    Nonrotating Airframe Airloads 

The required loads are computed in REXOR as the sum of steady-state forces 
and moments plus loads arising from stability derivative type terms. The 
steady-state data are formed in terms of overall CL , C , and C for the 
fuselage, wing, and empennage assembly.  Typically these data are from 
wind tunnel tests. 

The static body loads are: 

s 

< 

F„ \ 

V 

\ 

M 

> 

r-\ \ ~ 

= < 
-CLI 

QA 

W, STATIC 

> 

^MI QA CWING 

^ 

(7-61*) 

where: 

1 2 Q    = ~  PS V 
^A  2   WING X„ 

Li 

(7-65) 

The wing area, S 
WIN( 

and chord, CWTNr,, are actual or the equivalent of the 
lifting fuselage. Alternately, they may be the reference length and area 
used for the available wind tunnel data.  Cp , C^ and Cj^ are linearly in- 
terpolated from input data tables of CT, C , CM, versus angle of attack. 
The data are interpolated on a    from Section 7.3.2. The loads developed 
are in wind axis. 

The stability derivative load contributions are computed as a 6 by 6 de- 
rivative matrix postmultiplied by a velocity component vector. 

271 

■^^■"■^'^•'•^•^-" .v...,:,„.J,......-.....v;:,:..^1:^.^,^^x,-vi, "■•^-■'~::' 



pgliJPgiBflPJI^ 

.„n.--ru™--l^*^***--<^'*™^*v^'>'''''''',-*r:!r- 

rY     ^ 
h 

> 

M 

v.   y 

'MN i 

J 

W.DERIV 

UF VF 

UF PF 

UF AVHT 

UF AVHT 

> 

^ 

(7-66) 

where, 

R,M(1, 2)  =~  PS,.T..r  C_ V = Drag due to side slip squared. 
MN d WiWU  Un 

(7-67) 

FMN(2,   3)  =^   PSWING-^ = Side force due to side slip.     (7-68) 

dC, 
FMN(2,  6)  =-|-   PSWING -^f = Side force due to lateral velocity 

(7-69) 

V3'  5) 
2    PuWING   dW 

- Vertical force due to vertical velocity 

(7-70) 

F    (U    1) 2    PSWING VlNG CL, 
Roll moment due to wing incidence 
differential. 

(7-71) 

1 CL 
FMN(l1'   3)   =T   PSWING bWINGTe-= Ro11 m0ment ^  t0 yav-dihedral' 

(7-72) 
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W-'" 1»   WING WING 
CL 

(i) 
- Wing roll damping.  (7-73) 

F
MN

(
^ 

6) =T PS
WING \im~W = Ro11 inoment " lateral 

velocity coupling. 

W5' 2) ="2 pSWING CWING CM V = PitchinS moment due to 
0 side  slip. 

1 dCM 
V5'  5)  =¥   PSWING CWING^7-= Pit"hinf mofn^due to 

vertical velocity. 

dC, 

(7-7M 

(7-75) 

(7-76) 

FMN(6'   3)  ="2    PSWING bWING"dJ = YawinS moment due to side  slip. 

(7-77) 

1 dCN 
FMN(6' 6) =2 PSWING ^WING^T = having moment due to 

lateral velocity.     (7-70) 

These terms also produce forces and moments in wind axes. 

The static and derivative terms are added to form the total body loads and 
transformed into fuselage axes. 
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F 

i B 

\ 

\ 

Mz 

>- = 

[\] [\J 1   [°] 

F 

J 
\ 

\ 

M 
ZB 

y 

H    1 [\] NT 

>v 

W,DERIV 

< < 

.\ W, STATIC 

(T-T9) 

where, 

rcos(aw) 0 -sin(aw)- 

N 0 0 

.sin(aw) 0 cos(aw) 

(T-80) 
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H' 
-cos(3w)        -sin(ß  )     o 

sin(ew) cos(6w)        0 

"-O o i 

(7-81) 

and 

cos(aw)  =uF/Vx (7-82) 

sin(aw3 = VNC^V (7-83) 

cos(3   )  = V    /V 
W XZ    TWING 

(7-81+) 

sin^w)  = VVT 
WING 

(7-85) 

The air velocities w    V   V    , are defined in Section 7-3.2. 
Y  XWIIG 

l.h.2    Component Additional Airloads 

A total array, {QMADs}, of non main rotor air loads is computed in fuse- 
lage axes. 

^F    ^ 

-[QLOADS]-    = = < 

/■ F ^ 

TR 

> +i 

B 

LMZ 

TR 

R 

TR 

'TR 

V 

>■ + 

^   ZmD> 
Mz 

(7-86) 
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The first component is described above.    The tail rotor load vector and 
propeller load vector are developed in the following sections. 

7.5    TAIL ROTOR 

A number of different levels of aerodynamic presentation accuracy and axis 
of representation may be used for tail rotor computations.    In line vith 
the stated objectives  of REXOR, a linear aerodynamic  approach is used.    A 
shaft axis reference is used for the analysis.     In this  system, the air 
velocity quantities involved are easy to visualize.     Also, the flapping and 
feathering motions are the true, measureable quantities. 

T.5.1    Formulations 

First,  consider the airflov quantities available in fuselage axis. Fig- 
ure T-8.     Note the tail rotor axes align with the  fuselage axis system. 
The detailed velocity components are given in Figure 7-9-    Constructing the 
blade element tangential (U_) and perpendicular  (lO  components, 

UT=(rn)TR+UF.sin^R (7-87) 

UP = -VF+SR*F-WiTR-rß- VC0S%R 
(7-88) 

where, 

w        is the tail rotor induced velocity 
UK 

and 

VTR = - VF + SR *F "  ViTR (7-89) 

Expressing the blade element angle of attack as a small angle of 
approximationj 

UP 
aTR=   e+ü-T 

(7-90) 
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Figure 7-8. Overall Tail Rotor Geometry 
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TR 
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Figure 7-9« Tail Rotor Blade Element Detail 
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where, 

e=6TR-A1cos^TR-B1sin^TR (7-91) 

A 6_  coupling is used to minimize tail rotor flapping. Defining + <5 _ 
TR TR as a reduction in feathering for positive flapping gives 

äTR + 63TR aiTR 
C0S *TR + ä3TR blTR 

Sin *TR      ^^ 

The tail rotor analysis assumes no coning. 

The blade flapping, 3, is then 

ß= - a   cos ^  - b   sin * 
1TR     TR   ^R     TR 

(T-93) 

The tail rotor expressions of interest are the prime forces added to the 
fuselage system. First looking at the tail rotor thrust. For a blade ele- 
ment we have 

d T TR 
= I | pa b c a UT drl (7-9^0 

TR 

where a is the lift curve slope, b is the number of tail rotor blades,  and 
c is the blade chord (assumed constant). 

Substituting, 

d TTR =    [i   pa b c   (9UT2 + UP UT)dr] TR 
(7-95) 

Integrating for the entire rotor, 

TR 

2Tr    BR 

2A   Pa b C (eu^ + Up UT)dr W 

o      o J   TR 

(7-96) 
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where B is the finite airfoil lift factor expressed as a so-called tip 
loss factor. 

Noting only even functions contribute to the integrand. 

TTR=T   Pa(bcR)TR    KR T (
KR 

+ eTR I UF2 

B B + - (.R)TR VTR +  (M)ra u 63TR 

in 
(7-97) 

Note the thrust is independent of the  longitudinal  flapping, but is a func- 
tion of lateral cyclic shown as lateral flapping times delta 3. 

The required lateral flapping angle is obtained by equating the lateral 
flapping moment equal to zero. 

0 = 

2TT    BR 

■^-2    pa b c ( 6 UT    + Up U^,)  cos * r dr d'l' 

o      o 
TR 

gives 

(7-98) 

b1 "   -    ai S-3«TO 
TR TR    J (7-99) 

To obtain the longitudinal flapping angle, the longitudinal rotor moment is 
formed and set equal to zero. 

0 = 

2T\   BR 
■LI 
^2    Pa b  C ( eUT    + Up U ) sin * r dr d* 

o      o 
TR 

(7-100) 
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gives 

.,..,-.-.- *-i-v-f):r7'''-''.^''*"!V'$$. 

I 

TR       6 3TR 

2UF(Vi""mf^TB"F) (7-101) 

In formulating the tail rotor drive torque,  the blade profile drag is ex- 
pressed as 

CD = CD0 
+ kV (T-102) 

where CL  is the average lift coefficient.    Reviewing the thrust equation 
with a constant  (average) lift coefficient gives 

TR |_2IT 2 

2Tr   BR 

2    Pb  C  CL 
/    UT

2 dr d 4- 

o      o TR 

gives 

CL^TR/^TR^R    (B3(fiR4+-iBUF2)) (T-103) 

The drive torque is expressed as  the reaction to turning the tail rotor 
shaft.    The sense of rotation is  clockwise,  facing a left-hand mounted tail 
rotor. 

where 

d Q, TR ■l-i 2 —        1 
pc b r U_    Cp +-^   pa b c a 4) r UT

2 dr 
TR 

(T-lOU) 

<M u,. (7-105) 
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integrating 

Q, TR 

2Tr /    R 

= [ii»-J   /-/S r dr 

o       \ o 

BR 

j     (a UT U. F    6-  a Up  )rdr ■ Id* 

■|p(bc)TR   (-^R2(aR)2--^R2UF
2 

+ a R2(fiR) ~Ve    +aR2V2Y" 

+ a a l(1-'3)VUFT+R2((!R'2iK2(1+ä3) 

2 02      2 B 
a a1    R   uF   -^ 

TR (T-106) 

The remaining load term in )^R.     Using the same formulation methodology. 

—        2 
b c CD UT   sin* dXTR = -   [l   Pb 

-^  pab caU      (sin $   sin*   + sin ß   cos * ) dr 
2 T J TR 

(T-10T) 
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Mald.ng small angle approximations, 

dXTR = 2"p(b c)TR   ["  CD UT2  sin 

+ a( 9 UT Up + Up  )   sin ^ 

integrating 

2 2 ~\ 
- a( 9 U^    + Up U^)   (a    cos    i|)  + b    sin 41  cos ^ ) dr 

' -J TR 

(T-108) 

TR |iiP(bc)TR [ 
—        2 
CD UT    sin i>   dr 

BR 

/   fa( eUTUp + Up
2)  sinij; 

- a( eUT
2 + Up UT)   (a1 cos2 * 

+ b    sin ii  cos ty )   jdr I d* 

TR 

I   pa(b c R)TR    /- a^teH)2 Sj-- al ¥ VTH 

TR (7-109) 
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The induced velocity is calculated from simplified momentum balance. 

WiTR = TTR/((2  P1TR2B2)TR(,TR  ■  F 

1/2 
2    2±IZ\ 

110) 

Normally, the thrust, flapping, and induced velocity equations are solved 
as an iterative set.  In REXOR, these equations are solved for every pass 
(azimuth step) of the main rotor, and the tail rotor set convergence is 
assumed a priori. 

Note that the pitch-flap coupling does not appear in the expressions de- 
veloped. This is due to the equivalence of flapping and feathering, 
coupled with the absence of lateral flapping. 

7.5.2 Airloads - Control Settings 

The force and moment terms are assembled for use in the overall body loads. 
Section 7.^. The pilot control is the rudder pedals to0mt,. in 

< 

'\l 

TR 

TR 

\ TR 

M, 

TR 

TR 

> A 

TR 

MZ 
k  

ZTR 

\^ 

> 

TR 

"QTR " hTR XTR 

-Y   X   - o   T 
TR TR  ^TR TR 

^ 

(7-111) 

7.6 PROPELLER 

7.6.1 Formulations 

A pusher propeller is modeled in REXOR, and is referenced to the fuselage 
axis as shown in Figure 7-10. The forces and moments generated by the 
propeller are added to the |F I vector of total fuselage forces and 
moments. These components are transformed to the principal reference set 
for use in the equations of motion. 
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Figure T--10.     Propeller   - Fuselage Geometry 
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The propeller aerodynamics are not calculated from blade theory, but  in- 
stead are interpolated from performance date. 1\ the form of nondimensional 
thrust and power curves.     See Figure 7-11.    These curves are in terms  of a 
thrust  and power coefficient scheme unique to propeller work.    Defining 
these coefficients: 

V,. 
J = Advance Ravio = 

NpDp 
(T-112) 

C    = Thrust coefficient = 2      h PNP v 
(7-113) 

C = Power coefficient = 

2TT 
^ 

PNp
2 Dp

5 
(7-1110 

where: 

N = rotational speed, revolutions/second 

D = propeller diameter, feet 

V = axial inflow velocity, feet/second 

•3 

P   = air density slug/feet 

In REXOR,  the  fuselage inertia! X velocity v    is used for V.    The rotational 
speed is ty    times the main rotor to tail rotor gear ratio less the gear 
case  (fuselage)  inertial roll rate. 

7.6.2    Airloads - Control Settings 

The coefficient curves are entered with the calculated advance ratio and 
command prop blade angle. The curves are bivariant interpolated to the 
required C    and Cp.    These quantities are then dimensionalized as shown 
above. 

285 

fMäjäMfjjjjjfjj^ 



sSriH..;'*1-' W5™^^fSW^^w>^»5T^^r)TO?,.'^tR53rs 
^■^^7^17^»;-'>^Ti-Wiv^-»71'?fmtw,.-s 

Figure 7-11.     lypical   Nondimenpional   Propeller Data 
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The required prop vector is 

X 
r. 

. Mz 

> = < y 

ZpTp 

-Y T 
P P 

(7-115) 

where Y and Z are prop shaft offsets from the fuselage axis. 
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LIST OF SYMBOLS 

The symbols used in the REXOR equations are quite numerous.  In order to 
keep the catalog of symbols to manageable proportions the following list 
is divided according to the discussion in Section h.     Namely, a list of 
basic symbols is given, followed by subscripts, superscripts, and post- 
scripts.  Nonconforming cases of usage together with complicated or 
obscure subscripting are fully annotated in the basic list. 

SYMBuLS 

3n 

IS 

0 

al 

[A] 

Al,2,3 

In 

A. 

A 

A 

b 

B 

B1S 

c 

[c] 

CD 

CL 

"M 

arbitrary vector 

speed of sound 

2 
acceleration vector, ft/sec 

longitudinal component of blade first harmonic flapping, rad 

generalized mass element matrix 

modal variables 

generalized displacement of nth blade, first mode 

generalized displacement of nth blade, second mode 

generalized displacement of nth blade, third mode 

cosine component of blade first harmonic cyclic, rad 

number of main rotor blades; arbitrary vector 

dissipation function 

sine component of blcde first harmonic cyclic, rad 

blade segment chord, ft 

damping matrix 

aerodynamic drag coefficient 

aerodynamic lift coefficient 

aerodynamic pitching moment coefficient 

power coefficient 

thrust coefficient 
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X,Y,Z 

Cl,2,3 

C(k) 

d 

dr 

dt 

d/dt 

(d/e) 
0 

(d/e). 

El 

f 

F 

F 

iMR 

X,Y,Z 

X,Y,Z 

F 

F 
ßPH 

g 

g 

G 

G 

GJ 

linear damping,  ]b/ft/sec 

rotary damping,   ft-lb/rad/sec 

blade bending to feathering couplings 

lift deficiency function 

infinitesimal increment 

increment in rotor,  radius,   ft 

increment in time,  sec 

derivative with respect to time 

swashplate to  feather gear ratio,   zero collective 

svashplate to feather gear ratio  slope with collective 

pitch horn effective crank arm,   ft 

blade bending stiffness  distribution,  Ib-ft 

ground effect  factor for main rotor 

factor;   force,  lb 

force components along X,Y,Z directions, lb 

generalized force about (j),  9,  ^  axis 

feathering mode generalized force 

2 
gravity,  ft/sec 

gravity components along X,Y,Z directions 

gear ratio 

generalized force vector 

eyro angular acceleration partial product 

2 blade torsional stiffness, Ib-ft 

=     Znu   X.^,  slug-ft2 

2 o 
=     Em.   Y.   ,  slug-ft 
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XX 

YY 

ZZ 

XY 

XZ 

YZ 

J 

J 

k 

[K] 

^B 

TTI 

L 

m 

m. 

= Im Z.2, slug-ft2 

= Era. (Y.2 + Z.2), slug-ft2 

= Im. (X.2 + Z.2), slug-ft2 

= Em. (X.2 + Y.2), slug-ft2 

= Zm. X. Y, , slug-ft2 
i i i    0 

= Em. X. Z., slug-ft 
iii 

= Ein. Y. Z. , slug-ft2 
ill    ° 

unit vector 

unit vector 

advance ratio 

number of blade radial stations; reduced frequency, 
rad/sec; unit vector 

spring matrix 

blade spring matrix element 

spring constants along X,Y,Z direction, lb/ft 

spring rates about (j), 9, i|; axis, ft-lb/rad 

location inboard feather bearing, ft 

location outboard feather bearing, ft 

radial location of intersection of precone and feather 
axis, ft 

tension torsion pack length, ft 

rolling moment, ft-lb 

mass of element, slugs 

summed fuselage coordinate mass, slugs 

summed hub axis mass, slugs 

mass of ith particle or blade segment, slugs 

292 

Ijjjg^ffljijjfajjjjjltfij^ 



^jgii^'^mw'''^ 

•.n-^ppvcww»;:- - ■ 

SP 

M 

[M" 

M . 
rk 

M- 

iMR 

qiMR 

Q 

QA 

QLOADS 

^ R 

R 

R, 

z^ze 

swashplate summed mass, slugs 

pitching moment, ft-lb;  = Em., slpgs; mach number 

generalized mass matrix ^ 

generalized mass matrix element 

l 
=    Em. X., slug-ft 

= Em. Y., slug-ft 

= Em. Z., slug-ft 

moments about X,Y,Z axis, ft-lb 

blade torsional moment, ft-lb/ft 

number of system particles 

angular velocity about X axis, rad/sec; particle 

main rotor pitch moment inflow, ft/sec 

generalized coordinate; angular velocity about Y axis, 
rad/sec 

main rotor roll moment inflow, ft/sec 

generalized forcing function 

aerodynamic preseire times reference wing area, lb 

total nonmain rotor aerodynamic loads matrix 

tail rotor torque, ft-lb 

general vector; radius of curvature, ft; angular velocity 
about Z axis, rad/sec; notation for (X,Y,Z) 

static blade shape 

vector displacement of particle p in X,Y,Z axis system 

vector displacement of x,y,z origin in X,Y,Z system 

gyro damper coupling ratios 
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NA 

S 

S 

t 

T 

[T] 

T, 

u 

U 

u 

TT 

C,P,S,T 

V, 
T 

iMR 

iTR 

w 

w 
i 

w 

x 

X 

xsw 
x 
T 

y 

Y 

Y 
TTO 

Y 
ONA 

1,2,3 

Laplace variable, path of motion cf particle p 

blade spline length along neutral axis locii, ft 

time 

kinetic energy, ft-lb 
s 

transformation of coordinates matrix 

tension in tension - torsion pack, lb 

velocity in X direction, ft/sec 

potential energy function, ft-lb; strain energy, ft-lb 

air velocity on blade element, ft/sec 

velocity in Y direction, ft/sec 

trajectory velocity 

velocity in Z direction, ft/sec 

main rotor collective inflow, ft/sec 

tail rotor collective inflow, ft/sec 

motion in X direction, ft; blade span location 

coordinate direction; axis; deflection, ft; location, ft; 
cross product 

blade radial station of sweep and Jog, ft 

trajectory path, ft 

tail rotor longitudinal force, lb 

motion in Y direction, ft 

coordinate direction; axis; deflection, ft; location, ft 

tension torsion pack outboard end modal coefficients 

difference between Y direction locations of eg and neutral 
axis points of blade element, ft 
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SP 

TTO 
1,2,3 

ZOBL 

OF 

JOSP 

OTTI 

FA 

3PHn 

3TR 

dz/da 

A 

P 

motion in Z direction 

coordinate direction; axis; deflection, ft; location, ft 

relative swashplate vertical displacement with respect to 
the hub, ft 

tension-torsion pack outboard end modal coefficients 

teetering rotor undersling, ft 

hub set distance above fuselage set, ft 

hub set distance above swashplate set, ft 

blade vertical offset at outboard end of tension - torsion 
pack, ft 

angle of attack, rad 

angle of attack with hub set, rad 

sideslip angle, rad 

blade feathering angle, rad 

feathering/pitch-horn bending or dynamic torsion 
generalized coordinate displacement 

blade droop relative to precone angle, rad 

blade sweep angle, rad; dynamic stall delay, sec 

trajectory path angle with E set, rad 

limit deflection, rad; freeplay, rad; small increment 

tail rotor pitch - flap coupling 

downwash factor of wing on horizontal tail 

vector notation of (j>, 6, ty 

rotation about Y axis, rad 

collective blade angle, rad 

sideslip at blade element, rad 

3 
air density, slugs/ft 
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*REF 

XiMR 

SUBSCRIPTS 

a 

A 

b 

BEND 

BLE 

BLn 

time constant, sec; natural period, sec 

feathering axis precone, rad 

rotation about X axis, rad 

feathering angle, rad 

feathering angle of blade element of nth blade, rad 

blade root reference feather angle, rad 

blade torsion, rad 

sum of blade twist and tjrsion, rad 

■wake  angle of main rotor, deg 

rotation about Z axis, rad; sideslip angle with hub set, rad 

control input axis rotation from swashplate, rad 

pitch lead angle, deg 

trajectory path yaw with E set, rad 

main rotor apparent airflow angle, rad 

rotational speed, rad/secj angular velocity, rad/sec; 
natural frequency, rad/sec 

partial derivative, derivation 

arbitrary coordinate set a 

due to aerodynamics 

arbitrary coordinate set b 

associated with blade elastic bending 

blade element coordinate system 

blade reference axis system for the nch blade 
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c 

CG 

CORK 

DW 

DYN 

E 

ENG 

EST 

F 

FA 

FB 

Fn 

FR 

G 

GEN 

GFB 

GSP 

GUB 

H 

HT 

i 

IB 

i 

Jog 

J 

associated with pilot control input, chordwise 

associated with center of gravity location 

corrective, correction 

referring tr downwash 

referring to dynamic component 

earth axis 

associated with powerplant - engine 

estimated 

fuselage axis; associated with blade feathering 

referring to blade feather axis 

associated with feedback 

associated with feathering of the nth blade 

due to friction 

referring to gyro or gyro coordinate system 

associated with gas generator section of powerplant 

associated with gyro control feedback 

gyro to swashplate connection 

relating to gyro gimbal unbalance 

referring to hub or principal reference axis system 

associated with horizontal tail 

referring to inflow, particle 

referring to inboard feather bearing location 

spring matrix index 

associated with blade attachment joggle 

associated with gyro end of feedback rod linkage 
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Jn 

k 

LAG 

LIMIT 

m 

MR 

n 

NA 

NEW 

NO 

NR 

OB 

OLD 

P 

PH 

r 

R 

REF 

RM 

S 

SC 

SP 

SP 
c 

S, SP 

associated with feedback rod coming from the nth blade 

generalized mass index 

associated with lead-lag damper 

signifying limiting value 

blade mode index, spring matrix index 

associated with main rotor 

blade number index 

referring to blade segment neutral axis 

newly determined value 

normal (to airflow) component 

pertaining to nonrotating value 

referring to outboard feather bearing location 

value from previous time step 

associated with propeller; perpendicular blade component 

referring to pitch horn 

generalized mass index 

referring to rotor axis system 

associated with blade feather reference value 

referring to control gyro feedback lever moment 

,'ferring to blade spanwise velocity; general mode; static; 
structural; shaft 

referring to blade segment shear center 

referring to swashplate 

command to swashplate 

referring to swashplate limit stop 
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STEADY steady component 

SW referring to blade sweep angle location 

T associated with trajectory path relating to E axis; 
tangential blade component; blade torsion; blade twist 

TR associated with the tail rotor 

TRIM initial or trim value 

TT associated with tension torsion pack 

TTI referring to inboard end of tension torsion pack 

TTO referring to outboard end of tension torsion pack 

TW associated with blade twist (built in) 

UB relating to control gyro unbalance 

UNSTEADY associated with unsteady component 

VT associated with vertical tail 

WING associated with the wing 

X relating to component in X direction 

Y relating to component in Y direction 

YA relating to aerodynamic component in Y direction 

Z relating to component in Z direction 

ZA relating to aerodynamitrcomponent ir Y direction 

0 (nought) associated with collective value, coordinate axis 
value, with respect to principal reference tjcis, blade 
root summation 

1,2,3 with respect to blade modes 1, 2, or 3 

IS first harmonic component shaft axis feathering 

l/h  c with respect to blade l/h  chord 

3/h  c with respect to blade 3A chord 
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PHn associated with the feathering mode of the nth blade 

<t> relating to component in the <|) direction 

6 relating to component iu the 9 direction 

ijj relating to component in the ty  direction 

SUPERSCRIPTS 

I referring to inertial reference 

T matrix transpose 

(bar) average quantity 

(prime) slope with respect to blade span 

(dot) time derivative of basic quantity 

(double dot) second time derivative 

matrix inverse 

vector quantity 

-) 

') 

•) 

-) 

-1) 

->) 

POSTSCRIPTS 

i) 

n) 

blade radial station index 

blade number index 
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