
\-~;-:··-:--~---~-'·.···· -~::·~:7--~~\fEl
I , .. ·. . . , :: .'1 \
I . '. ·' . "·~ -- 'I

'\ . -----
···- -·- .-- -· - _ ____.._---'

L.---------

UNCLASSIFIED

Technical
Report

distr:ibuted by

I, Defense Technical Information· Center
DEFENSE LOGISTICS AGENCY

Cameron Station • Alexandria, Virginia 22314

UNCLASSIFIED

r

•
U.S. DE:''.?.T~ENT OF COMMERCE
Nationll Tt<:l'mrcallnfarmaticn Service

AD-A028 297

••

A Common Programming language for

the Department of Defense

Background & Technical Requirements

Institute for Defensf,j Analyses

PrepaNd F«

Defense Advanced Res. Projects Agency

June 1976

------·----..----·-------· ------~~ -~·----~-····--·....._·~----~-.-~-4·~·-----~-- -- - -~---- ·- .--. ··- --------·- --

KEEP UP TO DATE
Between the time you ordered this report

which is only one of the hundreds of thou
sands in the NTIS information collection avail·
able to you-and the time you are readmg
this m3Ss&ge, several r•ew reports releval'!t to
your intt'rests probably have entered the col·
lection.

Subscribe to the Weekly Government
.IUmrKta series that will bring you sum
maries of new reports ss soon as th&y are
received by NTIS from the orig:nators of the
research. The WGA's are an NTIS weekly
newsletter service covering the most recent
research findings in 25 areas of industrial,
technological, and sociological interest
invaluable information for executives and
professionals who must keep up to date.

The eXE'CUtive and professional informa
tion service provided by NTIS i'l the Weekly
Govem.ment Abstrects newsletters will give
you thorough and comprehensive coverage
of government-condu-:ted or sponsored re-

search activities. Alld you'll get this impor
tant information within two weeks of the time
it's released by originating agancies.

WGA newsletters are computer produced
and electronically photocomposed to slash
the time gap between the release of a report
and Its availability. You can learn about
technicAl innovation! immediately-and use
them in the most •aningful and productive
Wc'\ys possible for your organization. Please
request NTIS.PR-205/PCW for more infor
mation.

The weekly newsletter series will keep you
current. But leam what you have missed in
the past by ordering a computer NTISearch
of all the research reports in your area of
intere!'t. dating as far back as 1964, if you
wish. Please request NTIS-PR-186/PCN for
more information.

WRITE: Managing Editor
5285 Port Royal Road
Springfield, VA 22161

Keep Up To Date With SRIM
SRIM (Selected Research in Microfiche)
provides you with regular, automatic distri
bution of the complete texts of NTIS research
reports only in the subject areas you select.
SF<IM covers almost all Government re
search reports by subject area a·.ld/or the
originating Federal or local government
agency. You may subscribe by any category
or subcategory of our Wut.. (Weekly Govern
ment Abslracta) or Government Reports
Announcements and lnde¥ :;ategories. or to
the reports issued by a particular agency
such as the Department of Defense, Federal
Energy Administration. or Environmental
Protection Agency. Other options that will
give you greater selectivity are available on
request.

The cost of SRIM service is only 45c
domestic (60t foreign) for each complete

microtit:hed report. Your SRIM service begins
as soon as your order is received and ;Jroc
essed end you will receive biweekly ship
ments thereafter. If you wish. your service
will be backdated to furnish you microfiche
of reports issued earlier.

Because or contractual arrangements with
several Special Technology Groups. not all
NTIS reports are distributed in the SRIM
program. You wfll receive a notice in your
microfiche shipments identifying the excep
tionally priced reports not available through
SRIM.

A deposit account with NTIS is required
before this senrice can be initiated. If you
ha\ ' specific questions concerning this serv
ice. orease cNI PQ3) 451-1558, or write NTIS.
attention SRIM Product Manager.

This information product distributed b'i

· ·· -----HDS.~~~:~~~~~;,~~o?!a~~~~c~CE
5285 Port Royal Roau
Springfield, Virginia 22161

·I . ' ' '

I
I
I
I
I'
I
I
I
I
I
I
I
I
I
I
~

. 'f.' '· ·'·

··'

' '.
. PAPER P-1191

·~ :~. ' :; . :

. June 1976 f . , •·. ~ r

' •, . ,.

~INSTITUTE fOR DU'ENSE ANALYSES
~ SOEN_C~ AN? ncH~OLOGY DIVISION

II{I'J()DUCEL BY

· NATIONAL TECHNIC" Al
: INFORMATION SERVICE
\ U S DEPARIM'.Nl or COIIIIUCE
j •. VIINufl£:.0. VA.. 22lU

' ... -.-. ' ~. .. . \
. ~ '•, '·. ', '.

·'·

,. ·."

:>--.;:-.
'

IDA l.Gg No. HQ 76-18215
. 'Copy 126 of 155 copi~ . .

.'i.

I
I
I
I
I
I
I
I
J
1

1
I
I
I
I
I
I
I
..

UNCLASSIFI£D . -
lt!PORT OOCUM!NTATION PAGE IU:4D INIT.UCTIOifl

Ill FOliE COU~LIETTW~ 1'011111
. •••oa· •u•••• l" GOVf 6CCIIII01t toO ' lllC:otottiiT I C&TAI.OG IIUIIOtlll

Pape-.r P-1191 .. '"'"· , __ ,,., ' T¥101 o• aatoOaT oil •1•00 COVIII'IO

A Camr::m Prograrrming I.anguage for the Depart- Final
n.mt of Defense-Backgrourxi and Tectnical January-Deceni:>er 1975
Requirerents • ,.,., 0 .. 1110 o•o •••oaT ·-•••

P-1191
!'· auf•Oflfo1 i I . CO. rlt&C:T Qa OA&10'1' ,

D.A. Fisher DAHC15 73 C 020u

t. fOCit•0-1110 OltGollllll&ToO. oo-l &100 &OO•lU 10 10110(110 ·~ &•II-•' Oo"C)Jf c' ••••
INS'ITlUI'E F0.9. DE?'EliSE ANALYSES

....... "<) ,, , ••
400 Aney--Navy Drive Task T-36
Ar 11r..a:ton. Vind.nia 22202

II. cooe••o""'"o o•••c• , ••o aooaau ··J;;;;"i976' Defense Advanced Research Projects Agency
1400 Wilson Boulevard I) •u•tllt o• IO&C.II

Arl!ru;ton, Virginia 22209 lSA' I_-;-~

I& Olo()IOITOIIIIIO &GI•C¥ oo41011 & &OOitllltol .,,,._, - C-1- OUor•J
,,

IIC'-t•I~Y C\.&'1 tel ltNe,...,.,

ODilUE, Electronics & Ph,rsical Sciences UNCIASSIFIED .,. OICI. \no•oc UoOII OOIOIICi"&DnoG
ICwtDu~l N/A

,, 0\IT•••"TIO .. S":'ATC;.tiNT ,,., '"'• • ...,,,

Approved for public release; distribution unlimited.

17 OIITitoec.tTJ-ITATIMIIIT t_, __ ,_,_,.,.,.,. H. u.-1--li-J

I

None

II. lui"I"I.IE .. CaTAitY tiO'"CI

N/A

,. ... y wO .. DI (C_.,..._. _. , ••• tl •H•••_,.,.. ,..,_,, ... a.Je.-e ~~

Enlbedded Computer Sys ter:lS (Col111l:Jn) , Progranming Languages , Software
Contronali ty, Real t:1Jne, Cor.lPilers, Software tools, rata types, Machine
representations, Translators, Control Structures, Syntax, Pr.>gt"WlJJling
Language Semantics, Progranr.dng language Desie71 Criteria

!:;"' .. " ""'-----··-"-··---·· ~ ·-· -· 'Ihis paper presents the set of characteristi~s ne-eded for a .conroon
rogramning language c,f embedded cCJTl)Uter systems applications 1ri the

... ?D. In addition, it describes the backgrOuni, purpose, and orga.nizatio(]
• of the DoD Corrt'r0'1 Progranr.dng language Efforts. It reviews the issues

considered in developing the needed ~~ characteristics, explains
how certain trade-offs and potential conflicts were resolved, and dis-
cusses the criteria used to ensure that arry language satis.:'ying the

DO 10]

I G._, PRICES SUBJECT TO CHANGi

1
t
!
l
I

UNCLASSIFI.::..:::ED_---:_
IICU ... 1'Y CL.A\IIFtC•UIOM or 1'Mtl .. AGII- D .. el!,.,_,

20.

criteria will be suitable for embedded CO!ll)ute:r applications, will not
aggravate existing sofh:are p!"·oblems, and will be suita:lle for stan
dardization •

.lt(.~l~~-·;r ___ . ---

;~ . . "~ ·~ S;,•;n ~
DoC &::1 h;:.A 0
I•A••:"'C~l 0
.k.'Slt;:,"-:I;M · ·

..................... ·········-···-

-

UNCLASSlRED

• I

,

I
I

I
T

...

,.
l

....

r
I
~

.
J

T
~·

i

J,

J

l
l
I
I
..
'·

PAPER P-1191

A COMMON PROGRAM~HNG LANGU.AGE
FOR THE DEPARTMENT OF DEFENSE-

BACKGROLTND AND TECHNICAL REQUIRET\1ENTS

D. A. Fisher

June 1976

A?"&
IDA --

INSTITUTE FOR DEFENSE ANALYSES
SCIENCE AND TECHNOLOGY DIVISION

400 Army-Na\'y Drive. Arlingron, Virginia 22202

Contract DAHCi5 73 C 0200
Task T-36

..
I I

-~....,._~.,, . ..,. ___ _

.....

••

..
I
I

. ,

...

• I•

'

'
I

' ,;

ABSTRACT

This paper presents the set of characteristfcs needed for .-
a common prc.:;rarnming language of embeddP.d com•uter syster.1s
applications in the DoD. In additi~n, it de5cribes the back
ground, purpose, and organizatio:l of tne DoD Comm~n Programm1ng
Language efforts. It review~ the issues consider~d in developi~g

the n~eded language charact~ristics, explains how certain
trade-offs and potential conflicts were resolved, and discusses
the criteria used to ensure that any l~nguage sati~fying the
criteria will be suitable for embedded computer ap~lications,
will not aggravate existing software p1·oblems, and will be suit
able for standard!zation.

•

iii

I
I
I
I
J
I
l
I
l
I
I
~

J.

1
l
J

1
1

ACKNOWLEDGMENT

The author is pleased to acknowledge the many valuable con
tributions and comments from individuals and organizations in

side and outside th~ Department of Defense. A list of contribu
ting organizations and individuals is given as the Appendix, with
apologies to those whose names may have been inadvertently omit·
ted. Special thanks are deserved by those who took opposing po
sitions and, thereby, exposed fundamental issues.

The author is also indebted to Thomas A. Standish and John B.
·~oodenr:ugh for their reviews ar.d many valuable comments and sug
gest1or~:. on this paper.

I v

1 Preceding page blank

I
[

' - [

[
,.
L

[

(

r
I
•
' ; ,.

I
r
I

I
I
I

'

PREFACE

This paper was prepared for the Office of the Director of
Defense Research and Engineering (Electr0nics and Physical
Sciences) as Part 1, Software Research and Development, of
Task T-36 (revised), "Evaluations of Options in Electronic
Technology". Task ·r-36 provides independent eval•Jations of
selected areas of electronic technology where the Services ~re
pursuing different technical approaches to similar problems.

Portions of this document have appeP.red in "Programming
Language Commonality in t~e Department of Defense", by D. A.

Fisher, Defense Management Jou:ronal, Vol. 11, No. 4, (Octobel•

(1975), pp. 29-33.

vii

Precedilg page blank

l r
f ., .
~

I

J

i

l

I
I

...

...
I ..

; ..

..
J
l .

..

..

CONTENTS

Abstract

Acknowledgment

Preface

Summary
A.

B.

c.

..

Background
1. The DoD Software Problem
2. Character of the DoD Software Envir~nment
3. Programming Languages in the DoD
The Common Programming Language Effort of the
1. Background
2. Organization and Method
Findings

I. Introduction

A. The Problem
1. Software Costs
2. Programming Language
3. Lack of Comrr.onality
4. Common Language
5. Morse Code Experiment

B. Purp0se of the Common Programming Languag~
Effort
1. A Common Programming Language
2. High-Order vs. Low-Level Prosra~ming

Language
C. Other Issues

1. Scope
2. Application-Oriented Languages
3. Effect on Software Expenditures
4. Effect on Software and Programming

Language R&D
5. Direct Costs of Common-Language Effort
6. Standardization
1. A New Language
8. Size
9. Priorities

10. Consistency
11. Committee Design
12. Nontechnical Needs

ix

Preceding pagt blank

iii

v

•• vii

1

2
2
3
6

DoD 7
7
9

11

17

lti
18
20
20
23
24
21

26
29

33
33
33
34
36

36
37
38
39
40
40
40
41

J
\

II. Major Confl!cts in Criteria and Needed
Characteristics
A. Simplicity vs. Specialization
B. F~ogramming Ease vs. Safet; from Programming

Errors
C. Object Efficiency vs. Program Clarity and

CorreC'tness
D. Machine Independence vs. Machine Dependence
E. Generality vs. Specificity

III. The t.To!:t. Pressing Software Problems

A. Responsiveness
B. Reliability
C. Flexibility/Maintainability
D. Excessive Cost
E. Timeliness
F. Trrnsferability
G. Efficiency

IV. Language Desj1n Criteria
A. Criteria to Satisfy Specialized Application

Requirements
1. Flexibility in Software Design Criteria
2. Fault-Tolerant Programs
3. Machine-Dependent Programs
~. Real-Time Capability
5. System-Programming Capability
6. Data Base Handling Capability
1. Numeric Processing Capability

B. Criteria Addressing Existing Software Pro~lems
1. Simple Source Language
2. Readable/Understandable Programs
3. Correct Translator
~. Error-Intolerant Translator
5. Efficient Object Code

C. Criteria to Assure a Common Programming
Language Product
1. Complete Source L~nguage
2. Wide Applicabili~y
3. Implementab:e
~. Static Design
5. Reu!'>ability
6. A Pedagogical Language

V. The Needed Characteristics

A. Data and Types
B. Operations
C. Expressious and Parameters
D. Variables, Literals, and Constants
E. Defin~.tion Facilities

X

~3

~3
45

~6

47
~9

51
52
52
53
5~
55
55
56

59
60

60
60
61
61
61
62
62
62
62
64
64
64
66
67

6{
68
68
68
70
70

71

72
76
81
86
91

-,
. ' . ;
\: ..
. ·,

..

..
.. ,

..

I
I
I

'
r
§

;

F. Scopes and L~braries
G. Control Structures
H. Syntax and Co~~ent Conventions
I. Defaults, Conditional Compilation, ar.d

Language Restrictions
J. Efficient Object Representations and

Machine Dependencies

VI. Characteristics Needed for Other Aspects of the
Common-Language Effort

A. Program Environment
B. Translators
C. Language Definition, Standards, and Co~1trol

References

Appendix

xi

95
99

106
113

117

123

124
127
132

137

A-1

i <

' j
I
I

l u

f .:.
s£&

·-

...

..

!.

.. .

£!;a

-~

4 d

SUMMARY

This document, which reports the work of the author in sup

port of the DoD Higher Order Language Working Group, is intended

to provide the Services with the necessary technical buidelines

to achieve their goal of programming language co~~c~~lity for

embedded computer applications in the Department of Defense.*

It provides background on the software and programming language

problems in the DoD, presents the language desi~n/selection

criteria used to guide evaluation of technical characteristics,

and identifies the characteristics needed ~or the co~~on language.

The IDA effort provided the background, analysis, and evalu

ations necessary to reconcile the diverse and sonetimes conflict

ing perceived needs. It included exa~ination of the purpose and

expectations for the High~r Order language effort, review of sev

eral technical and managerial issues in selecting a common pro

gramming language, and analysis of some important _trade-offs in

the design/selection criteria and in the choice of language char

acteristics. The select~d choices were subjected to intensive

Lritical revi2w by the language's potential users and others con

cerned, in ar. attempt to illuminate the issues in a comprehensive

way. This document represents the degl'ee to which this has been

done.

An embedded computer syste~ is physically incorporated into a
larger system ~hose primary function is not data processing
(e.g., electromechanical system combat weapon system, tactical
system, aircraft, s~ip, missile, spacecraft, command, control,
and communication s~·ste:ns) is Integral to that system from a
design, prccure~ent, and operations viewpoint, and ge~erally
includes inform~tion, control signals and computer data in
its output.

l

A. BACKGROUNL

The problems of digital computer software are complex and
poorly understood. Althou~h there are many widely ~ecognized

symptoms, the underly~ng problems are not well delineated and

there £tre few useful quantitative measures for assessing either
the importance of perceived problems or the effectiveness of
proposed solations.

1. The DoD Software Problem

Some iMportant software-related problems are listed below.

Each item describes a class of unrealized expectations about the

development or maintenance of DoD software. These "problems"

are unique neither to software nor to the military, but unlike

electronic equipment, software has no inherent physical constraints
to limit expec~ations.

• Responsiveness. Computer-based systems often do not meet
user needs. This may reflect poor specification of re
quirements, poor system performance, or lack of flexibil

ity in the software.

• Reliability. Software often fails. Both the probability
of software faults and errors and the effects of such

errors on system operation must be reduced.

• Cost. Software costs are seldom predictable and a1·e often
perceived as excessive. Life-cycle costs are given insuf
ficient consideration during software developme~t.

• Modifiability. Software maintenance is complex, costly,
and error prone, and the difficulty in modifying software
increases the need for duplicative software development.

• Timeliness. Software is often late and frequently deliv

ered with less-than-promised capability. There are no

accurate methods for predicting software production times.

• Transferability. Software from one system is seldom used

in another, even when similar functions are required.

2

\ 1 -·
-· !
.. '

••

·'
• I

••

l.
!.
l .

\ ..

'.

r
I
~ .

• Efficiency. Software development efforts do not make

optimal use of the resources (processing time and memory
space) involved, esp~cially in embedded c0mputer appli
cations with their real time constraints and often lim
ited hardware resources.

Although the above list is consistent with the findings of

many DoD in-house and contractor studies cf th~ s0ftw~re preble~
(Ref. 1), its elements represent only perceptions of the problem,

and, in most cases, are not or cannot be substantiated by quanti
tative data. For example, software costs are thought to be ex
cessive, but actual software costs are largely unknown and there
is little evidence that they can be reduced.

Obvious solutions are not necessarily the best. Efficiency
is important, and although any computer program can be re\-:ri t~en

to run faster or to use less memory space, more optimal coding

may, in fact, result in higher total costs. There is evidence
that software costs grow exponentially with attempts to increase
hardware utilization, while hardware costs for increased speed
or memory capacity grow linearly, or less. Thus, if the phy~i
cal constraints on the hardware can be met, the least costly
solutions may lie with more capable but underutilized hardware.

2. Character of The DoD Software Environment

Software is becoming increasingly costly to the DoD. Digi
tal computer software costs in the DoD in 1973 were estimated
(Ref. 2) at $3 billion ~o $3.5 billion annually. Between 1968
and 1973, there was a 51 percent 1ncrease in total direct cost
of DoD computer systems (including both hardware and software)
reported under the Brooks Bill (P~blic Law 89-306, October 1965).
These increases occurred even though there were drastic reduc
tions in both unit and total costs of computer hardware and fewer
systems were repG~ted in 1973. The increased costs of computer
software may reflect a combination of factors, includi~lg (a) the

3

trend toward more automation and increased use of computers,

(b) the greater complexity of software resulting from increased

expectations and expanded requirements generated by improved

hardware and software technology, and (c) rising personnel costs.

The major problems o!' o~;D software are associated with em
bedded computer systems. Embedded computer system software in

cludes all software which is integral to a larger military system

or weapon, including tactical weapons systems, communications,
command and control, avionics, si~ulation, test equipment, train
ing, and zystems programming applications. It also includes any

eoftware which supports the design, development, or maintenance
of such systems. As a general rule, embedded computer software
is software for any DoD computer hardware which is not reported

under the 0eneral Management Category of the Brooks Bill. DoD
software which is not in the embedded computer software category
is used primarily in data processing !.IIld scie'.ltific applications.

The majority of software costs in the DoD are associated
with embedded computer systems (see Fig. 1). Emb~dded computer

software often is large (50,000 to 100,000 lines and greater),
is long-lived (10 to 15 years), is subject to continuing change
(annual revisions of the same magnitude as the orig!nal software
size), a1d must conform to physical and real time constraints of
the assouiated system hardware and requirements. Scientific ap
plicatior.~ require the largest end most visible computers in DoD
and may use a significant portion of the tot~l computing power,
but they represent only about five percent of software costs.

4

:I

0, I

••

••

..

r
••

! ..
' I
L •

t .

f
I '.

I ..

! .

OTHER
& INDIRECT

SOFTWARE COSTS
20%

DATA
PROCESSING

19%

EMBEDDED COMPUTER SYSTEMS
56'1o

FIGURE 1. Breakdown of Estimated $3 Billion Annual DoD Computer Software
Costs [Derived from figures in CCIP-85 and in P-1046 (Refs. 1
and 2)]

5

3. Programm;ng Languages in The DoD

There are at least 450 general-purpose languages and dia
lects currently used in the DoD, but it is not known whether

the actual number is 500 or 1500. With few excEptions, the only

languages used in data processing and scientific applications
are, respectively, COBOL and FORTRAN. A larger number of pro-

~ grarnrning languages are used in embedded computer systems appli-

~~ The continued proliferation cf progra~!~g languages
for embedaed computer software may reflect an unfounded ~pti
mism that software p~oblems would disappear if only there were
a language better suited to the task at hand. However, tne

little available evidence indicat~s that the major payoffs will
come from better programming methods and techniques, more SJft

ware commonality, and more useful and easily accessible soft
ware tools and aids.

There are a number of widely held perceptions about the ill

effects of the lack of programming language commonality in the
DoD. Although these ill effects can be substantiated only by
examples, and their true extent is unknown, they have provided
much of the incentive fer the co~~on-language effort. The lack
of programming language commonality in DoD embedded computer
applications may:

• Require duplication in training and mair.tenance for the
languages, their compilers, their associated software
support packages, and of all the common functions needed

in the application.
• Mini~ize communication among software practitioners and

retard technology transfer.
• Result in support software being project-unique and tie

software maintenance to the original developer.

• Diffuse expenditures for support and maintenance soft
ware so only the most primitive software aids are de

veloped, but repeatedly.
• Limit the applicability of n~w support software and tech

niques.

6

r
t.

I . '

' L

l •

' ..

'.

) . .
~ .

.; .

• Crtate a situation in which the adoption of an existing
language by a new pr~ject is often ~~re risky and less

cost-effective (at lea~t during development) than de

velopi~g a new programming language specialized to the

project.

On the other hand, programming languag~s are the primary
~eens of introducing new programming methods, toolst techniques,
and greater automation into ;aftware develop~ent and maintenance

pro~esaes. Consaquently, there should be periodic review of the
common languabe(s) for possible upgrading or replacement to ac

commodate demonstrable and useful advances in software technology

and methods. Also, there is no practical way to reimplement
existing software, so ~ven if all language proliferation were
stopped, it would be 10 to 15 years before the ~xisting languages
could be dropped.

B. THE COMMON PROGRAMMING LANGUAGE EFFORT OF THE DoD

1. BackQround

During 1974, elements in each of the Military Departments
independently proposed the adoption of a common programming lan

guage for use in the development of major def~nse sy~tems within
their own departments and undertook effor~s to achieve that goal.
Those efforts included the Army "Implementation Language for Real
Time Systems" study, the Navy CS-4 effort, and the Air Force "High
Order Language Standardization for the Air Force" study .

In January 1975, the Director, 'efense Research and Engi
neering (DDR&E), in a memo to the Assistant Secretat•ies of the
Military Departments for R&D, noted the multiple benefits of a
single common language for military applications (Ref. 3). He
requested immediate formulation of a joint Serv!ce program to
assure maximum useful software commonality in the De.!.>. A working
group was f~,;!'med from official representative& l)f the Military

Departments and chaired by DDR&E. Representatives from OASD-I&L,
OASD-Comptroller, and the Defense Co~~un1cations Agency, and NASA

also participated. The author acted as technical advisor.

7

A major step in achieving software co~onallty will be the
adoption of a very few (possible only one*) common programming
languages to be used for the design, development, support, and

maintenar.ce of all digital comp~ter software for embedded com
puter applications in the DoD. Such a language would need to
encompass the specialized needs of the intended DoD software

applications, be able to support best c~rrent software practice,
be complete and ur.ambiguous in ~ts definitio~, and be capable
of supportir,~ enforceable standards. As a short-te~ effort,
it will have to be practically a~d efficiently implementable
with existing software technol03Y·

Programming languages are neither the cause of nor the so
lution to software problems, but because of the central role
they play in all software activity, they can eit~er aggravate
existing problens or simplify their solution. Adoption of a

single common language alone, .will not make softwa~e mo~e re
sponsive to user needs, reduce software design or prograrrming
errors, make software more reliable, reduce software costs,
simplify test and maintenance, inc~ease programmer productivity,
improve object efficiency, or reduce ~nti~ely delivery of soft

ware.

However, adoption of an appropriate common prograr.ming

language may remove many of the barriers to solving software
problems. It may lessen the cornmunications barriers which pre
vent new systems from us!ng the experiences of earlier, similar
systems to full advantage. It may reduce the burden and delay
of designing, build!ng, and ~aintaining languages, compilers,
support software, and software tools for individual projects
and permit them to be concentrated on their applications. It
may remove the dependence on original 3oftware ven~ors and in
crease competition. It may encourage development of better tools,

both through pooling of costs within the DoD and by creating a

larger market for independently developed software tools and aids.

For convenience hereafter, we use the singular to refer to the
minimum number of languages needed.

8

http://raaintenar.ee

The scope of the common programming language effort has

been limited to applications subsumed by embedded computer sys
tems because there are several software problems unique to em

bedded computer systems, because such systems represent the

majority of software costs in the DoD, because they are the ma~~r
application areas in which there is no widely used language

~urrently, because they represent the applications with thl
most pressing software problems, and because they ~e the only
area in which most programming is c•Jrrently •1one in assernb'fy or
machine languages. The diversity of functions performed b:,• em

bedded computer systems, however., guarantees t~at the most char
acteristics needed in data processing and scientific programming
will be included in the requirements for a embedded computer sys
tem lang·LJ.age.

Embedded computer systems software tends to be large (in

volving many prograrnmers working together), and to be long-lived
(with several turnovers of software personnel during its life

~ime). Run-time efficien:y is important because of real-time
constraints. D~layed deliveries can be extremely eY.pensive in
indirect costs from loss in th~ useful life of the :nilitary
systems in which the software is embedded. Programming errors
can have catastrophic consequences.

2. Organization and Method

The needed language characteristics will be used as quali
fication criteria for candidate languages. They attempt to ad
dress each major issue associated with the selection of a com
mon language, and where there is a definitive reason, the char
acteristic prescribes a resolution to the issue. In other cases,
they provide only guidelines or decision criteria.

The needed characteristics were developed thrrugh a 9-rnonth

lcng feedoack ~recess involving the Working Group, IDA, many
commands and offices within the Military Departments, and several

9

outside organizations. These included all ~otential users who

could be identified. In all, over 200 jndividuals from 85 DoD

organizations, 26 industrial cont~actors, 16 universities. and
7 other organizations participated.

The effort to identify the needed technical characteristics
for the common DoD programming language began wtth a meeting

of technical personnel representing the Military Departments at
IDA on April 4 to 11, 1975. That meeting generated a trial set
of language characteristics which was intentionally vague and
inconsistent, but provided the stimulus which enabled the roten
tial users to characterize their needs for a programming lan

guage and to point out the factors which affect their choice of
language.

This trial set of characteristics was widely distributed
by th~ Military Departments with a request that the recipients
submit their own set of language requirements in response. Out
side contractors, cor.t~cted by the individual offices that deal
with them, responded Jverwhelmingly. The responses were first
sent to Working Group representatives of the individual Depart
~ents for coordination within their 'departments and on to IDA.

IDA's task was to analyze. interpret, and resolve the re
sponses into a consistent and unambiguous set of needed char
acteristics. In many cases, this involved direct consultation
with individual contributors. The r~sult was an extensive docu
ment which explained some of the implicatio~s, noted the trade
offs which were considered, and, in general, provided the ra
tionale behind the listed characteristics.

The whole process was then repeated. The rev~sed document
was distributed by the Services and, again, many thoughtful and

helpful responses were received, processed, analysed, and recon
ciled by IDA. A revised version of the characteristics was then

prepared. This set of requirements involved few major changes

10

..
I!
• .i

. I

i ..

in substance, led to a contraction in the number of needed char

acteristics through ccnso!idation of related items, concentrated
on clarifjcation, and led to the elimlnatiou or weakening of
requirements, which, although desirable, are not feasible with
existing programming language technology. At a session held

December 10-12, 1975, the set of needed tP.chnical characteris
tics for a common DoD programming language unde~:ent ~everal
minor revisions based on the official coordinated inputs of each

Military Department and a detalled review by the Working Group

and representatives of several interested organizations within
the Services. Further char.ges are not anticipated. We hope
the curr~nt set is neither vague nor unnecetsarily limiting; it
represents a few compromises, but appears to be technically
sound and achievable with existing technology and is a consen
sus of the Military Departments which individually approved it

early in 1976.

The resulting characteristics, presented in Chapter V and

VI of this report, are discursive rather than quantitative be

cause there are few useful quantitative measures of software or
of programming lcnguages. The depth of discussion varies accor
ding to the characteristic. The relative merit of alternative
approaches, the trade-offs involved, and the rati~n~le for the
final choice are giver. in greatest detail for those lar.g~age
characteristics which have greatest irnpa~t on ~he language se
lection, have several competing approaches, or were resolved in
apparent conflict with conventional wisdom.

C. Findi~gs

The Higher Order Programrnir.g Language Werking Group identifiea

78 needed characteristics. Major characteristics, listed bela~,
were abstracted from +-hat list. There is no significance in the

order of presentation.

11

1. The common probi'anuning language can only achieve its

breadth of application and flexibility of expre3sion
by having a few, general, abstract concepts an= struc
tures which can be applied in many combinations. I~

should not be a conglomerate of many s~ecial features
of limited application or of features with many special

cases in their abstract definitions.

2. The common language should have a high degree O\.general
ity and flexibility at compile time, but should be
static at run time. The language itself should not
require dynamic storage allocation or the presence of
an operating system in its object machine.

3. The lang~age should require its users to specify the
type of data and operations, the range and precision
of numeric data, and the action to be taken under each

alternative condition in its programs. These all rep
resent information that is known to the programmer and
needed by those who must maintain software. These kinds
of information can also be helpful to the translator
ln producing more opt.imal code and can aid in testi.1g
and debugging programs.

~. The language should require redundant (not du;:>licate)
specifications in programs so that many program errors

·can be detected automatically. For example, both for
mal and actual parameters should be (p~ssibly iMplicitly}
specialized by type to permit compatibility checking.
A combination of typed data and type independent prec
eden~e levels of operators will ensure that the struc
ture of expressions can be verified both syntactically

and semantically.

12

,
D'

.,
i J

I ...

'I
'I,

'

i
l .

''

..

I •

The lar~uage sh01:ld permit definition of new data types

and operations, thus allowing specialization to par

ticular appli~ations without modification of the lan

guage definit~on, its translator, or its support soft

ware. Type definitions may also enable its use in un

foreseen applications.

6. The language should permit its users to distinguish be-

tween the abstract and concrete representa~ion of data,

b~tween the functional ar.d algorithr.ti~ representation
of opcl'dtions, and between the scope of allocation and

the scope of access for variables. The ability to sep

arate specifications of these kinds means that the logi
cal structure and intent of pror,rams need not be ob
scured by those aspects which are concerned only with

adherence to physical constraints of the underlyin~ ma
chine.

7. The language itself should not be optimized to any par

ticular criterion, such as object code speed, object

code size, ease of program modification, program clar
ity, o~ ease of programming, but should provide facilities

which permit individual programs to be optimized to any

of these criteria. Optimization criteria are often

application- or task-dependent.

8. The language slould provide special facilities to sim
plify the description and implementation of programs

with real-time constraints and real-ti~e interaction
with multiple peripheral devices.

9. The language should have a complete and unambiguous defi
nition and should not be dependent on any particular ob
ject machine or operating system structure.

13

10. The common language should be composed of existing lan

guage features, but may not be exactly any existing

language well known to ln'"~St potential users. Thus far,

no combination of the needed characteristics which is

not achievable with existing programming language tech

nology has been found and, if any were, they would be

interpreted as cause for reducing the needed char~cter

istics. On the other hand, since no identified language

satisfies all the needed characteristics, som~ modifica
tion of existing languages will be necessary. Further

more, regardless of the language selected, the diversity

of languages currently used guarantees that it will be

new to most of its potential users. The cha~acteristics

dictate a language which draws its features in obvious

ways from existing languages and which avoids many

specific recognized deficiencies of currently usect

languages.

11. A major emphasis should be on tr.e support supplied with

th~ language. Ultimately, the success of ~he common

language effort will aepend on the acc~ptance of t~e

language by DoD software developers and, to a large

extent, that will depend Gn the availability and acces

stbility ~f supported compilers, software aids, and

libraries for the language.

From preliminary analysis, the identified needed technical

characteristics for the Co~~on Higher Order Progranming Language
for military applications appear to be self-consistent, to con
form to the established language design/selection criteria, to
be acceptable to the Military Departmentc, and to be achievable
witu existing software and progr?;nmlng language technology. More

analysis is required, however, particula~ly on the feasibility

of achieving all the te~hni~al requi~ements simultaneously.

l
t
I
l
1
l
I

'

I

I
i .
l
!
i

.J

L
I
L •

i
I
j

' .

I
l

. .

Detailed examination of existing language features, language

design techniques, and compiler implementation and optimizatJon

methods are n~eded.

The process of identifying the needed technical character

istics for a Common Higher Order programming language also un

covered several possible properties of the programming environment,
transldtors, and man~gement of the language which the Working

Group thought will be important to the success of the common

language effort. These properties include the availability of

language-associated software development tools, standard libraries,
translator options, and source language diagnostics. They pro

hibit superset and subset implementations, recommended multiple
object-machine translators, and require self-implementation of
the language. Most ~mportantly, they require user documentation,

configuration manage~ent, standards, control, and support for
both the language and its libraries .

15

l
J.

I
.J

I
J
J
J
I
....

, .
.l

J
I
1

I
I
I

' .,

·-- _ ... _...--...-_........

I. INTRODUCTION

This paper is concerned with criteria and issues that will

have an impact on the needed technical characteristics for a

Common Higher Order Progra~ing Language for military applica~ions.

Chapter I gives an introduction to the software and pro

gramming language problems in DoD, the purpose of the common

language effort, and some related issues.

Chapter II presents some conflicts that arise in any lan

guage design or selection process and describes their resolu

tion for the common-language effort •

Chapter III reviews sorr.e of the major problems affecting

software design, development, maintenance, and use in the DoD.

Chapter IV presents the language design criteria which

helped determine the needed characteristics. These criteria

fall into three major categories: those which satisfy spec

ialized application requirements, those which address recog

nized existing software problems, and those which are intended
to assure that the resulting language can serve as a common

language.

Chapter V gives the needed technical characteristics for

the common language, while Chapter VI provides additional re

quirements related to the programming environment of the re

sulting language, to its translators, and to a number of man

agement issues concerning its definition, standards, support,

and control. Many of these issues will have direct or indi

rect effects on the technical acceptability of candidate lang

uages.

17
Preceding pag: blank

A. THE PROBLEM

As long as there were no machines, pro
gramming ~as no problem at all; ~hen ~e
had a fe~ ~eak computers, programming be
came a mild problem and no~ that ~e have
gigantic oomputers, programming has become
an equally gigantic problem. In this sense
the electronic industry has net solved a
single problem, it has only created them-
it has created the problem of using its
products. ~

E. W. Dijkstra in 1972 Turing
A~ard Lecture

..
The past 25 years of digital conputer hardware history

are characterized by orders-of-magnitude increases in compu

ting speed, memory capacity, and reliability. At the same

time, the physical size, power consumption, and cost of com

puter hardware hav~ decreased by several orders of magnit~de.

These trends have led to inflated expectations and expanded

use of digital computers not only to automate tasks that pre

viously had been performed manually, but tasks not seriously

considered heretofore.

The burden of increased expectations for computer systems

has fallen on software. Software is the collection of com

puter programs which give direction to the computer hardware,

tailor the computer to serve the needs of the applicat!on, and

specify the sequencing of individual actions to be taken by
the computer under prescribed conditions. Demands on the de
sign, development, and maintenance of computer software are

magnified by increases in the speed, capacity, and reliability

of computer hardware.

1. Software Costs

Although little reliable informatton on the costs of soft

ware in the Department of Defense (DoD) is available in a

clearly identifiable form, some reasonable estimates have been

reported (Ref. 2). Total annual expenditures for systen anal

ysis, design and progran~ing of software in DoD are estimat~d

18

-~ ---
I
I
I
I
I
...

...

. ,.

!
' ..
,
l.

I.

! ..

at $3 to $3.5 billion, divided among the Military Departments
as follows: Army 23 percent, Navy 36 percent, Air Force 36
percent, and other DoD agencies 5 percent. Another study

(Ref. 1} has provided some estimates of the software costs by
application, as shown below. If management and logistic in

formation systems are taken as primarily data processing, and
if aircraft and missile er.gineering and production are taken

as primarily scientific programming, then the remainder, called

embedded computer systems, constitutes 55 to 75 percent of the
total software cost.

APPLICATION

Research, Development. Test,
and Evaluation

PERCENT

28

Intelligence and Communica- 19
tion, Command and Control

Avionics
Aircraft and Missile Engi

neering and Production
Management Information

Sys te 11s
Logistic Information Systems
Other and Indirect Costs

9

5

14

5

20
TOO"

The process of design, implementation, test, documentation,
and maintenance of software can generally be called programming.
Programming activity is constrained by the availability of dol
lars, real time, machine resources, competent programming per
sonnel, and programming tools. As with any activity in which
expectations exceed the available capability, something must
give. In this case, the symptons appear in the forM of soft
ware which is nonresponsive to user needs, unreliable, inflex
ible, difficult to maintain, and not reusable. The solution
to the software problem will be cvmplex, ir.volving More and

better requirements validation, software desi~n techniques,
design analysis, management visibility, discip:ine in software

19

development, program validation and testing methods, mainte

nance documentation, education of programming personnel, and

software tools. Because there are so many aspects to the soft

ware problem and its solution, improvements in one area are
often difficult to measure and have only indirect impact on
the total problem.

2. ProQramming Language

The programming language is the one software tool which

pervades all software activity from ctesign and development

through maintenance. It is a formal notational mechanism with

which the programmer specifies desired conputation. The pro

gramming language provides the set of software building blocks

in the form of variables, data structures, operations, and con
trol structures. With it, the programmer can

• Design, build, and refine his programs.

• Obtain the feedback enabling him to test, verify, and

debug his prograMs.

• Assemble and manage the component parts of a software

system.

Together with its programs, :he progra~~ing language pro

vides the only complete and accurate documentation of the soft
ware. It is, itself, a computer program in the form of a trans
lator converting programs of the language into strings of sym
bols that can be directly interpreted by some object mach~ne.
It defines an abstract machine which associates an interpreta
tion with each program of the language, independent of any

hardware, and it is a language for communicating procedures,
techniques, and algor!thms among software personnel.

3. Lack of Commonality

There are a nu~ber of widely held perceptions about the

ill effects of the lack of programming language commonality in

the DoD. Although these can be substantiated only by examples,

20

I
1'
I

J
I
J
J
1
1
I
T

...

...

1.

. . .

and their true extent is unknown, they have provided much of

the incentive and generated much of the initiative for the com

mon-language effort. The lack of programming language common
ality in DoD embedded computer applications may:

• Require duplication in training ana maintenance for the

language, its translators, the associated software sup
port packages~ and all the common func~ons needed to

use any language effectively. Programming lankuages are

themselves implemented as computer programs whi~h must be
designed, developed, and maintained. The cost and ef
fort required for implementation, maintenance, and train
ing increases with the number of languages in active

use •
• Minimize communications among software practitioners

and retards technology transfer. The strengths and

WP.aknesses of the programming language affect the way

one organizes programs, the techniqu~s employed, and the
approaches used in solving computational problems. A
programming language provides much of the technical vo

cabulary needed to communicate ~bout programs and prob
lem-solving methods in software. Consequently, diver
sity in languages establishes artificial boundaries
among software practitioners, complicates communication,
reduces understanding and cooperation, and may lead to
distrust and mutual criticism. A prime example is COBOL.
COBOL is a thoughtfully designed language well suited to
data processing applications, where it is used almost
exclusively. Its effectiveness is demonstrated by the
stability of its design for about 15 years. Yet, those
who have not used COBOL a~e almost universally critical

of the language. They know little about the language,

except that it is different, they find itE appearance
aesthetically displeasing, and are sure they would not

like it.

21

':·

• Result in support software being project-unique and.

tie software maintenance to the original developer.
Programming langua~es are often developed to support

individual projects in DoD. Typically, the language

will be develor-~d as part of the project effort and used

only for that projert. Although the language is devel

oped at government expense, the original software vendor

is both its developer and only user. This tends to tie

maintenance of the application software to that vendor.
Thus, a language can be seen as a handy device to as

sure a continued flow of business to the contractor over
the life of a system. This tendency is strensthened in

the usual situation in which the translator and support
tools for the language are written in ano·her language
which is proprietary to the vendor.

• Diffuse expenditures for support and mainte~~nc~ soft

ware so only the most primitive software aids ~re devel

oped, but repeatedly. Software tools and aids 1~ the

form of compilers, interpreters, diagnostic aids, Qe

bugging packages, code optimizers, automatic testing

systems, program editing ~ystems, and many more are pro
gramming-language-dependent, and, consequently, must be

developed for each new language. Projects are, of ne
cessity, application oriented; their primary goal must

be to develop the application software. Project per
sonnel have neither the inclination, time, funds, nor
expertise to develop more powerful or more generally
useful software tools.

• Limit the applicability of new support software. Even
if a variety of useful tools were developed for some
language, the: benefits would be limited to the users of
that language. Ideally, generally useful software tools

should be independently developed and ma:ntained and made

available to any proJect, but the diversity of language

guarantees that any such independer.t development ~ill have

only limited payoff.
22

................ ___ ,. ___ _

...

...

••

...

..

, ..

! .

4.

' /

• Create a situation in which the adoption of an existing

language by a new project is ·Jften more risky and less
cost-effective (at least during development) than devel

oping a n~?w specialized langu1ge. There must ahtays be
a trade-off between a specialized language tailored to
the application and a more general language whose sup
port and maintenance costs can be shared across many
projects. As long as there is no common, widely used
programming language for embedded computer applications

which has useful, independently developed and maintained

off-the-shelf support tools, there is little advantage
to selecting an existing language for a new project.

Developing a new language will not be ~ignificantly
more expensive than developing a new compiler for an ex
isting language and may avoid unnecessary generality
while providing features especially well-suited to the
application.

Common language

The intent of the common language effort is to identify a

language for DoD which will eventually supplant all lang~ages in
military appli<:!ations for which there is cucrently no co:r-~on lan
guage. These incluQe weapon systems, command and control, test
equipment, communications, avionics, training, systems prcgr~~ming,
and embedded computer system support software. There is no in
tent to supplant COBOL for data processing applications or FOR
TRAN for scientific applications. Because weapon systems and
command and control applications incl~de both data processing
and numeric processing functions, however, the resulting com-
mon language should be suited to those applications.

In several ways, COBOL is a model for the common language

effort. It may not be a viable candidate as a common language
for embedded computer systems because it represents the soft
ware technology and programming practice of 15 years ago. 1t

23

was designed specifically for data processing, and it lacks

many of the special capabilities needed in embedded computer
systems software. Nevertheless, the adoption of standards
early ln its development, the consistency of design throughout
the language, the early involvement and support by industry,
the uniformity of its implementations, the stability of its de
sign, and its concern for potential users are all characteri~
tics worth emulating.

:
Another successful example of language con~onality i~-

CORAL-66. In 1970, the United Kingdom Ministry of Defence
formally adopted CORAL-66 as the standard programming language
for real-time systems. The official policy disseminated to
indust1·y included a requirement that all computers used in
weapon systems must have a tested and approved CORAL-66 com

piler. The result has been not only language commonality
within the United Kingdom military establishment, but wid; ac

ceptance in the commercial sector as well.

5. Morse Code Experiment

There are few useful measures of quality, performance, or
cost. There is insufficient data to determine quantitatively the
c~rrent situation in software, let alone predict the effects of
greater software commonality. A recent experiment~ however,
contributes to the optimism for better software when existing
software tools are more widely accessible.

There have been claims from the rE-search community that
the combination of powerful and stable software tools (includ
ing language), proper methodology, and competent personnel can
improve the cost ~nd performance of software by orders of mag
nitude for large complex problems. The Defense Advanced Pro

jects Research Agency (DARPA) recently funded an experiment to

test some of these claims. Researchers at MIT were asked to
build a software system to solve a real, nontrivial, ill-defined

problem in an application with which they were unfamiliar but

1
I
I

...

...

..

using tools and methodologies they had developed earlier under

DARPA sponsorship.

The problem was to implement a system that could recognize

Morse code generated by a human operator in the presence of

transmission noise. The product was impressive in its ability

to recognize Morse code, but was able only to operate at one

half to one-third real time. When this deficiency was pointed

out, the MIT researchers undertook a two-week effort which 1m

proved response by a factor of 30 to 50. The major claim made

of their approach is the ease of making changes, whether for

correctuess, to meet new requirements, c;_,. to improve perfor
mance •

A rule of thumb used in software development says that a

programmer will produce an average of ten debugged instructions

per day. The Morse code project took a grand total of 54 man

months. The final systeffi consisted of object programs, object

program tables, and run-time support software which was devel

oped independently of the project. There were also a number

of object programs developed and later discarded. Some Morse

code support software was developed to help implement the sys
tem but was not a part of the final system. Depending on which
subsystems are included in the instruction count, the instruc
tions per man-day range from 139 to 909. The results are de
tailed in Table 1. The figure of 625 instructions per man-day
is most consistent with usual practice and the figure of 491
is probably the most fair. The RAND CCIP-85 Study (Ref. 1)
pointed out that an increase of from 10 to 11 instructions per
day would, in theory, save the Air Fvrce $100 million per year.

25

/

Table 1. Results of Morse Code Experiment

NO. OF INSTRUC- INSTRUCTIONS
Tll:>NS H~ R~R-~~v

Excluding
Program Including Excluding Including
Tables Tables Tables Tables

Objtct Program 158,000 478,000 139 422
Only

Total Codes 559,000 879,000 493 775
Written

Total Codes in 389,000 709,000 343 [6251
Final System
or its Support

Total Codes Writ- 237,000 557,000 209 ~ ten ~nd Not Dis-
carded

Total Codes in 210,000 530,000 185 467
Final System

Total Codes Written, 711,000 1,031,000 627 909
in Final System, or
in its Support

26

I
I
I
I

..

...

!

)
! •

'.

B. PURPOSE OF THE COMMON PROGRA~MING LANGUAGE EFFORT

And the Lo~d said, BehoZd, the peopZe is one,
and they hav~ atZ on~ Zanguage; and this they
bb,in to do: and no~ nothing ~iZZ be restrained
from them, ~hich they have imagined to do.

--Genesis XI 6

The purpose of the Common Programming Language effort is

to achieve maximum useful software commonality i.n DoD embedded
computer applications through a reduction !n the numb,::l'or
progran~ing languages used •

Reducing the number of programming languages may be a
slow and tedious process, since languages used in existing
systems can be phased out only as the systems become Jbsolete

or go through major upgrades. Incentives in the form of sup
ported, easily accessible, and easily used software tools and

aids are needed for the languages whict. remain. The standards
and stability in the remaining languages should not impede the

use of new software tools and methods, hinder the adoption of
new programming techniques, or stifle innovation. When new

language~ are introduced, and they must be to take advantage
of n~w software and programming language technology, it should
be done in a controlled manner and only when there is expecta
tion of major benefits and full understanding of the trace-offs.

Software commonality refers to the reuse of computer pro
grams, software subsystems, or methodologies, eith~r directly
or after minor modification. The value of software commonality
derives not only from ~eduction in redundant software develop~
ment, but from lower costs for training and maint~nance of the
resulting systems, more timely system development, lower risk
in software design and development, and better communicat~on

among software practition~rs.

27

-1
I

The benefits of r~usable software are greatest for support

software, including compilers, verifier~, prograMming and de
bugging systems, and optimizers. Support tools are often in
effective, because they are reinvented and rebuilt for each new

project. There is seldom the time or money to perfect the sup
port tools or to provide any but the most primitive capatili

tles. If the same software is widely used, costs can be shared
over many projects and each effort can build on its predeces
sors.

1. A Commo,, Programming Language

Software commonality can be achieved only through the
adoption of a common progr~~ing language. 1~e programming
language is central to the development of software. Tne soft
ware tools and aids are built around specific programming lang
uages. The compilers and other software tools are themselves

the most widely used computer programs and, as such, can espe
cially profit from the attendant improvements in reusability,

training, maintenance, timeliness, risk, and communication.

The fewer the programming languages the greater the lev
erage associated with those that remain. The comnon-language
effort has as a goal minimization of the number of programming
languages in DoD. The common language is intended to be a sin
gle or minimal set, of general-purpose programming language that
will eventually replace the many hundreds of general-purpose lan
guages being used currently in the DoD. The assumption that a
single general-purpose language will suffice must remain until
specific needs or conflicting language requirements demonstrate
a need f0r more than one. Neither should general-purpose langu
ages be confused with application packages, which are nometimes

called, "application-oriented languages". Unlike general-pur
pose languages, application-oriented languages can be used to

describe computations only in limited application areas, are
designed for use by practitioners in the appl~catian and not

28

I
l
I
1
J
I
T
.}>-

...

..

by computer programmers, are usually interactive, and are oft~n

nonprocedural. The adoption of a common program:ning language

should lead to the implementation and support for standard ap
plication packages. Finally, although a single, general-purpose
language is desirert, there is no intent to impose another lan

guage where useful language commonality already ex~sts (e.g.,

among COBOL users and in scientific uses of FORTRAN). Neither

is it feaEible to rewrite existing programs, regardless of the
merits of a standard language.

Although adoption of a ccmmon prcg~amming language is nec
essary to obtain the benefits of software commonality, it is
not sufficient. There have been many past efforts which merely

attempted to standaraize on a language's syntax anQ semantics
while ignoring performance properties and progr~m development
aids. There must be commonality a~ong language-related suppo~t

tools, commonality in com~iler performance, and suppJrt a~d
maintenance for the language, for its s0ftware development and
maintenance aids, and for its library of aoplication routines.

2. High-Order vs. Low-Level Programming Language

The distinction between high-order and low-level languages
is similar to that between people and machi~es. Any programming
language should present 2.n analog to the underlying machine in

a form more amenable to human use. Low-level languages are ma
chine-oriented and simplify the translation proce~s at the ex
pense of human resources. The higher the level of the language
the more it caters to the needs of the programmer, the greater
the portion of software development which is automated, and the
less visible are the underlying machine resources. Prograrr~ing

here, of course, encompasses not just coding, but the entire
spectrum of software design, development, and maintenance.

29

1

I
'

- ------~

I
\

/

I

\

\ /

-,

In commenting on section V.J. of this report, E. W.

Dijkstra said:

I can enlaPge on that: in the past~ ~hen ~e
used 'lo~-level language' it ~as conside~ed
to be the pu~pose of oup pPog~a•s to instPuct
ouP machines; no~, ~hen using 'high-opdeP
language', ~e ~ould like to pega~d it as the
purpose of our machines to execute oup p~o
grams. Run time efficiency can be vie~ed as
a mismatch between the pPogPam as stated and
the machinePy executing it. The diffepence
bet~een past and pPesent is that~ in the past,
the pPogPammeP ~as al~ays blamed foP such a
mismatch: he should ha~e ~~itten a moPe
efficient, moPe 'cunning' pPogPar.! With the
p~ogpamming discipline acquiPing some matuP
ity, with a betteP undePstanding of ~hat it
means to wPite a pPogpam so that the belief
in its coPPectness can be justified~ ~e ter.d
to accept such a pPogPam as 'a .good pPogPal'l'
if matchinf haPdwaPe is thinkable, and if,
with ~espeat to a given machine, the afoP
mentioned mismatch then occurs, ~e no~ tend
to blame that computeP as ill-designed, in
adequate, and unsuitable fop pPoper usage.
In such a situation, thePe ape only a fe~
ways out of the dilemma: (1) accept the
mtsmatoh~ (2) continue bit pushing in the
old ~ay, ~ith aZl the kno~n ill-effects~
and (3) Peject the haPd~aPe, because it has
been identified as inadequate.

A higher-order language permits automation of the more

repetitive aspects of software development in return for

greater constraints on the programmer. The high-level lang

uage prograrruner is deprJved of dangerous capabilities, such

as being able to create self-modifying programs, to do arith

metic on machine addresses, and to use fixed-point operations

on floating-point numbers. I~ return, the programmer is able

to partition his pro~ram into logically meaningful parts, is

guaranteed th?.t updating one variable will not affect others,

and is given ~arning when he violates his own assumptions and

stated conditions.

30

\

J
J
I
I
J

1

1

•• !

/ i

The costs in machine resources which must be paid for

greater automation of software development through the use of

high-order programming languages can be paid at compile time

(i.e.~ the time of translation) or at run time (i.e.~ the time

the software is used). Many of the widely used HOLs sirr.plify

the programming task by providing general-purpose mechanisms

and many automatic defaults so that the programmer not only

has the advantage of intuitively meaningful structures and

notations, but is relieved of having to specify his intentions,

assumptions, and the detailed constraints on his programming

problem. Consequently, information available to the program

mer is hidden from the compiler and maintenance personnel and

must be derived dynamically from the program at run time, thus

imposing mu~h greater run time costs than would be associated

with a corresponding program written in ~achine language.

There are several ways out of this dile~~a. For programs

which are to be executed only a few times or for other reasons

have unimportant run tine costs, the solution has been to admit

to the greater run time costs, incorporate the run time environ

ment into the translator to form an interpreter, and take full

advantage of the machine-independent high-order language. Where

run time cost~ are important, at least four approaches have been

tried. The most widely used approach in DoD has been to allow

portions of the HOL program to be written in machine language.

This permits the programmer to optimi~e his programs to any de

gree within his capability but defeats the purpose of the HOL.

Another approach used in DoD, but most popular in the commer

cial and scientific world, has been the optimizing compiler.

Large, sophisticated compilers have been built to rework the

object code to produce an optimal run time program. Although

these systems impose considerable compile time costs, they

have seldom been able to produce codes comparable to those of

good machine language programmers. The third approach admits

that a compiler-produced code is not as efficient as handwritten

31

/ \
I

code for small static programs, but points out that programs

in which object code efficiency is important tend to be large

programs which are modified many times. The mass of detail
which must be processed for effective optimization of a large

software package may be too much for even the best programmer,
and when success is achieved, it may be very traository because

assumptions under w~ich the optimizations were made change as

system requirements change.

The fourth approach, and one which seems most reasonable

for the Common HOL effort, emphasizes software reliability,
program maintainability, and run time efficiency in the con

text o:r the current programming language model (e.g., ALGOL,

JOVIAL, PL/1 and the like). It gives up some programming ease
by using a language which requires the progr3mmer to make his

assumptions and intentions explicit in his programs and which

prevents hiding information from the compiler and those who

maintain the programs. Greater software reliability results

because more information is available to compiler for compile

time error detection, software is more easily maintained and
modified because it is more readable and comprehensible, and

executioo is more efficient because more information is avail
able to the compiler for optimization and because more deci
sions are bound at compile time. High-level language programs
should contain a great deal of information of value to the
compiler as well as to those who must maintain the program.
This in no way conflicts with the characterization of the HOL
as being oriented toward the programmer, human problem solving,
and particular application areas at the exclusion of machine
dependPnt characteristics. Programming language features which

aid the compiler in the generation of efficient object code

should have a form and meaning which will contribute to the

understandability of the program as well, should be translator

independent, and, to the degree possible, object machine inde

pendent.

32

~'":··""

'

I
I
I
I
I
I
I
J

1
]
.,,
J
~

\ ...
\

\
"!>·

....

C. OTHER ISSUES

There are a number of important issues and potential prob

lems associated with the Common DoD Programming Language effort

and with the discovery and use of the needed technical char

acteristics for such a language. This section discusses some

of these issues and gives the resolution where there has been

a decision by the working group.

1. Scope

The Common Higher Order Programming Language effort has been

limited to embedded computer systems applications because (1) the

majority of software costs in the DoD are associated with weap

ons systems applications, (2) COBOL and FORTRAN already sati~fy

many of the corrmonality goals of this effort for data process

ing and scientific applications, respectively s the two major

areas which have not been included, and {3) the large number

of unique, nonstandards general-purpose programming languages

used in the DoD are used in embedded systems applications .

The scope of the effort has not been further restricted

within embedded systems applications because (1) specialized

applications within weapons systems have si~ilar software prob

lems, (2) embedded systems applications are not pure and require

computations in many spP.cialized areas within the same system,
(3) the technical requirements for the individual applications
have proven to be nearly identical, and (4) no conflicting re

quirements have been found.

2. Application-Oriented Languages

The Common Higher Order Programming Language is intended to

eventually supplant all general-purpose programming language used

in embedded systems applications in the DoD. lt is not intended

to replace application-oriented languages. Application-oriented

languages are similar to programming languages in that they en

able their user to describe a computation which will be carried

33

\

\

out by a digital computer. They are unlike general-purpose

languages in that they provide very specialized capabilities

for a restricted problem domain, they are intended for use by

those familiar with the application and usually do not require

specific programming knowledge, they are often nonprocedural,

and in many cases are accessible interactively. Any applica

tion package is ~n exa~ple of an application-specific language.

The Common Higher Ord('r Prograr:uning Langua[t' effort is concerned

with the general-purpose procedural prorramr.ting languages used

to implement applications and systems software, and is not in

tended to replace application-oriented software.

3. Effect on Software Expenditures

The projected overall benefits of any standardization

should exceed its disadvantages. Ideally, the~e should be a

complete cost-benefit analysis, comparing costs with and with

out standardization, including life-cycle costs. This is not

feasible for software/programrning languages, because their cos ·s

are diffused throughout weapons systems procurements and are

seldom identifiable. We do know, however, that ~ost costs are

for peruonnel, that there are hundreds of general-purpose

languages in use in DoD, that much software work is duplicative

because similar software (particularly system and support soft

ware) must be redundantly developed for each language, and that

the diversity of programming language has complicated the de

velopment of widely applicable programming tools and aids which

could alleviate or reduce many of the recognized software prob

lems.

It is likely that adoption of a Common Programming Langu

age will result in better communication among software practi

tioners; easier transfer of new software technology to produc

tion systems; greater software reusability; easier transfer of

personnel among projects; greater visibility of underlying soft

ware problems; increased programmer productivity; improved

,.....__ __

l
l
J
1
1
I
"'t

""'

···---.__.......__

software quo.lity; and development of better and more applica

ble software design, development, and maintenance aids. Re

duced costs might be expected, not just from the adoption of

a common language, but from the prohibition on the development
of other new programming languages. Development costs for other

new programming languages will be eliminated (prior to January

1975, there were typically several ~t any given time under de
velopment by elements within each Military Depart~ent). Com-

" piler costs will be reduced, even when new digital computers
are introduced, because a common language with its machine-i:-.
dependent portions written in its own language means that a

new computer can be made accessible by reimplementing only the

code-generation portion. Because tools, programming aids, and

other support software will be more widely applicable, the

total cost of its development and maintenance should 'e reduced.
Similarly, the training costs for a single widely used langu

age should be lesf than those for the many project-unique lang

uages. Finally, as with any successful standardization effort,

the common language should encourage competition in software
development and give more freedom to change vendors.

It does not follow, however, that total software expendi
tures in the DoD will be reduced. Benefits of a successful

common-language effort must be limited to new software develop
ments. A primary impediment to reliable software is cl1ange to
existing computer programs. A common language might be used in
new software efforts, but it is seldom economical to reimple
ment existing systems. More importantly, cot.stantly increasing
personnel costs, mo~e demanding military system requirements,
and continuing budget pressures have led to more and more auto
mation. Computer software is a major component of electron!c

equipment procurements, so any increase in software productiv

ity or quality will likely accelerate this trend. Success in

the common-language effort may reduce the cost of software and
increase its quality, but these will likely be accompanied by

increases in software expenditures.

35

4. Effect on Software and Programming Language: R&D

The adoption of a common language should &ive greater vis
ibility to software, should separate the langaage design issues

from the more important software problems, and should provide

a base for comparing software techniques. It should provide a
community of users who can share the design, development, and

maintenance costs of more capable software tools. It should

provide a vehicle for transfer of software teebnology from re

search and development to practical use. It should provide a

bigger market for individual software tools (~1ch are often
specific-language oriented) and should, thererare, amplify any

benefits of the National Software Works. The separation of
language issues from other problems of software development may
serve to identify language deficiencies, problems, and needs

for innovation in language design, and thus lead to i~creased
programming language research and developnent.

All these effects tend to give greater visibility to the

real underlying software problems and to the tuportance and

benefits of their solution. A common language may give visi

bility to the sparseness of current software research and de

velopment efforts, and point out the need for improved soft
ware development m~thods, techniques, tools, and aids. It
will likely lead to a.: expanded- DoD R&D progr~ in software
and in programming langu~ges, but one directed more toward
finding practical solutions to important recognized problems.

5. Direct Costs of Common-Lan]uage Effort

There will also be several costs associated with obtain
ing a common language. There are the development costs for the

language itself; there are design, development, implement.c:.tion,

maintenance costs for its compilers, support software, and :-e

lated programming aids; and there are training costs for its
users. In each of these cost areas, however, the adoption of a
common language should result in reduced expe~itures, because

36

' '

\
\
\
\

I

I

_..KF llolltii

I
J
I
I
I
I
J
.I

1
1
1
I
1
I
1
1
1
I
1

the common language effort replaces many similar l~cdl efforts
that would otherwise have taken place within the Military De
partments. Even for a single large military system development,
independent development of the programming language, compilers,
and software support tools will remove those efforts from the
application software development and thereby reduce the devel

opment time for the application software (timeliness is a ma
jor indirect cost of software). That one development can be
used by many projects, of course, eliminates many redundant

expenditures. Finally, without speculating on the total cost
of the common language effort, it should be noted that at a
level of $3 million per year, it would be less than 0.001 x

the annual DoD software costs and at $10 million (i.e.~ approx
imately 100 man-years per year) it would be much less than 1

percent of software costs.

6. Standardization

Standards programs should not be undertaken unless cer
tain criteria are met. There should he several potential users
of the standard (in this case all new embedded computer ap
plication in DoD). There should be a mature technology well

in hand (in this case the FORTRAN, COBOL, ALGOL, PL 1-like
programming language technology). There should be a potential
market large enough to support at le~st one contractor for
several years. The projected overall benefits of standardiza
tion should exceed its disadvantages (see previous subsection).
And, adoption of the standard language by individual systems
should not be a major problem (in this case, it should be no
worse than adopting a nonstandard language, and much easier,
providing the common language is widely used and well-supported).

37

7. A New language

It is na.:>st desirable that the selected common language be

an existing language, and if trat is not feasible, that it be

a modification of an ex!sting language. Given the identified

requirements, it is likely that most features of the selected

language will be familiar to most DoD users, and that it will

not be exactly compatible with any existing lang~age implemen

tation in the DoD. The familiar features are likely because ..
the requirements dictate a FORTRAN, ALGOL, PL 1-like language

and were selected to be compatible with existing programming

language technology. The incompatibilities of existing imple

mentations guarantee ~hat it will differ from almost all im

plementations of languages used currently in the DoD. The se

lected language will be new to almost all its users because:

• Definitions of existing languages are vague,

incomplete, and ambiguous, resulting in creation

of a new incompatible dialect with each imple

mentation.
• The selected language is to emphasize program

reliability and maintainability 01er programming

ease, the traditional goal.

• The requirements encompass the needs of all em

bedded computer systems applications and not
just those perceived by programmers on a particu

lar project.
• The requirements legislate away many of the known

deficiencies (e.g.~ error-prone features) of ex

isting languages.
• The language will incorporate ma~y of the special

characteristics needed by embedded military system

applications. These have been largely ignored in

the more co~~only used languages (which were in

tended primarily for scientific and data precessing

computations).

I
I
I
I
I
1
J
T

I
' J.

....
...
-...
.,.

....

]

• Any attempt to standardize on one precise def
inition of any existing language cannot work,

because its divergent dialects are defined by
their implementations and are therefore machine
dependent.

- ···---~·--------

A new language name is desirable. Even if the langua~e
is a precise definition of some umbrella name lcnguage widely
used in DoD, it should be relabeled to distinguish it from
~he existing divergent dialects. The common language should
closely resemble (particularly in semantics) many of t~: ex
isting DoD languages, but which particular one is modified t1'
obtain the selected common language is of little significance.

8. Size

Each of the characteristics described in Chapter V ad
dresses one or several related issues in the design of a pro
gramming language. In several cases, the issues are complex
and the discussion quite involved. This does not, however,
imply that the selected language must be large or complex.
Each needed ch~racteristic specifies how the design/selection
process will resolve some issu~ affecting the design, imple

mentation, or use of the language. Where possible, they avoid
choices of particular language features. Each issue must ul
timately be resolved; Chapter V provides some of the analysis
and rationale where there is rea5on for a particular resolu
tion and provides guidelines where no clear resolution is in
dicated by the application requirements, relevant trade-offs,
or the goals of the common langua~e effort. The number of
issues is, of course, almost independent of the resulting
language and has little, if any, relation to the number of

features or the size of the language .

39

9. Priorities

There is no ordering of priorities among the needed char

acteristics, because (1) the priorities are typically applica

tion dependent and, therefore, dissimilar for the various po

tential users in the DoD, (2) priorities are of nc value what

soever, as long as none or the characteristics are in co~flict

and can be achieved simultaneously, and (3) the establishment

of priorities may unnecessarily serve, in effect, to eliminate

the lower-priority requirements. Priorities should be con

sidered only if and when compromise becomes necessary.

10. Consistency

It is very important that the needed characteristics be

achiPvable in combination with low-risk technology. Examples

of existing programming languages which satisfy each indivi

dual needed characteristic are known, but whether all can be

satisfied together remains a question of judgment, a&·'ld there

are differing opinions. Any formal demonstration that they

are self-consistent is probably still beyond the capability of

computer science. A more pragmatic demonst1•ation is required.

Ultimately, the only acceptable proof will be one or several

programming languages that satisfy the requirements. If there

are conflicts, they will become apparent in the design/modifi

cation process and must be resolved at that point.

11. Commit tee -Design

A set of needed language characteristics has been estab

lished. The modification of an existing language design re

quires sound engineering and design practice by qualified

people and is inappropriate to the compromise process of com

mittees. Consequently, the language will be selected from

candidates that have been reviewed by ~ersons knowledgeable in

the intended applications, in the construction of compilers,

and in the design of languages. The Working Group will not de

sign or modify languages.

40

I
I
T 12. Nontechn 1 ca 1 Needs

...

...
) ..
. .

. . .
I
l.

•

The success of the Common Higher Order Programming Language

effort ultimately will depend not so much on the technical char

acteristics of the language selected as on philosophical, manage

ment s~pport, and procurement issues. Some general approaches
to these issues have been determined by the Working Group and
are reported in Chapter VI.

..

41

" .
\

'·

I
I
I
I
1
I
1
I
I
I

II. MAJOR CONFLICTS IN CRITERIA AND NEEDED CHARACTERISTICS

Five major conflicts were ide~tified in attempting to find

a consistent and appropriate set of criteria. In several cases,

a closer examination of what was actually intended revealed

that seeming conflicts, in fact, did not exist.

A. SIMPLICITY VS. SPECIALIZATION

The common programming language must be useful for many

seemingly diverse applications, each with its own specialized

needs. Suitability of the language for each of the applica

tions is es~~~tial if it is to have wide applicability. This

suggests ~ need for a large conglomerate language with many

specialized subsets. At the same time, the single most preva

lent sympton of the software problem is the complexity of pro

grams and its adverse effects on the timeliness, reliability,

responsiveness, flexibility, and maintainability of software.

Probably the greatest contributcr to unnecessary complexity

in programs is the use of overly elaborate languages with large

numbers of complex features specialized in the Pope of provid

ing every anticipated application with capabilities unique to
that application. The result, in many cases, is a grotesque
language, expensive for everyone, understandable to none, and

well-suited to few real problems.

The problem is how to satisfy simultaneously the need

for simplicity and specialization in the same programming lang

uage. The only method of which we are aware is to achieve

simplicity through the use of a simple, gen€ral-purpose language

which has all the power necessary for all the intended applica

tions, but has not yet specialized that power for any particular

Preceding page blank
43

applicat~on. Such a language would have a few general-purpose

data structures~ operations and control structures, each pro

viding a single, ~all-defined capability, and all composable

to form more specialized capabilities needed in p&rticular

applications. The language should provide a simple, consis

tent, and easily learned semantic and syntactic framework.

There should be definition facilities within the language to

permit definition of new data and operations, but only within

the tuilt-in framework, so basic understanding of programs

written in the language would not be undermined by new defini

tions within the language. Such a language alone, however,

can only provide the simplicity and the power to bui~d data

and operations for specialized appl!cations; it alone will

not make useful definitions available to the software practi

tioners with the applications. To be useful, and to satisfy

the spe~ialized ne~ds of the various applications, there must

be a predefined, application-oriented library of definitions

available with the language. These application packages must

have the same support, standardization, and control afforded

the base language. As definitions, they will not, howeverr
add to the complexity of o~her applications, need not affect

the implementation, and will be tctally independent and unable

to i~~e~fez~ with other appJ.ic&tion subsets.

Neither should we think that simplicity and uniformity or

even power in language will make programMing easy. Intrin3ic

complexities which follow from the task will remain. The pur

pose of a high-order language is to remove the unnecessary com
plexities which arise from weaknesses in the programming lang
uage, operating system, or underlying computer hardware.

44

:J
-1
.Jj

I

:i
. Jl

I
. 1!

• ! .

• J:

/

---....

I
I
I
I
1
1
]

]

/

B. PROGRAMMING EASE VS. SAFETY FROM PROGRAMM!NG ERRORS

There is a clear trade-off between progra~~ing ease and

safety. The more tolerant the programming language and the

less it requires in specifications of the intent and assump

tions of the progranmer, the easier the coding task. A lang

ua~e which does not require declaration of va~iables, permits

any type of structure of data to be used anywhere without speci

fication, allows short cryptic identifiers, has large numbers

of default conventions and c~ercion rules to permit the use of

any operator with a~y operand, and is capable of assigning

meaning to most strings of characters presented as a rrc~ra~,

will be very easy to use, but also very ea::>y to abuse. Safe:::

from errors is enhanced by redundant specifications, by includ

ing not only what the program is to do, but what the author's

intentions and as3umptions are. If everythln~ is made exrlic!:

in programs with the lan~uage providing few defaults and im

plicit data conversions, then translators can automatically de

tect not only syntax errors but a wide variety of semantic and

logic errors. Considering that coding is less than one-sixth

the total programr.1ing effort, and that there are major soft"V:are

reliability and maintenance problems, this trade-off should be

resolved in favor of error avoidance and against pror-ra~~ing

ease.

Resolving this trade-~ff in favor of safety ~t the pro

gramming language level is important not only for large, lon~

lived weapons systems, but for any larfe long-lived cotputer

rrcgram, specifically support software, interactive application

packages, and softYare development and maintenance atds. In

specialized application software, the ease with which the user

(an application specialist rather than a computer specialist)

can interface with the application software is of primary im

portance, and user requests are often small and short-lived.

The application package itself, however, will often be large

45

\

·.'
J
I

' '
I
I

. ' \

and long-11 ved, and thus should be written and maintained in

..
\

a language which favors program correctness and maintainabil

ity, even if this costs in terms of programming eas~. The

Common Programming Language ltself need not be interactive and

should not affect progranming ease at the expense of other more

important criteria, but it should be possible within the Com

mon Programming Language to develop and maintain interactive

application packages with convenient, easy-to-use user inter

faces.

C. OBJECT EFFICIENCY VS. PROGRAM CLARITY AND CORRECTNESS

Two apparently opposing views have been suggested. One,

that a simple analysis of either develop~ent or life-cycle

costs shows that reliability, ~cdifiability, and ~aintainabil

ity are the most important factors, and, consequently, clarity

and correctness of programs must be given consideration over

efficiency of the object code~ w~ich only increases the cost of

computer hardware (hard\'lare relatively cheap compared to soft.

W3.re). In fact, if prcgra-r.s need not work co.cr~ct ly they can

easily be implemented with zero cost. The other view points

out real probl~ms and applications within DoD soft~are in which

the machine capability i~ fixed and in Khich object code effic
iency is of utmost importance ar.d rr.ust be given prefe~ence over

other considerations.

These views are not inconsistent with regard to the effec~

on progra~mine languabe selection. In the vast majority of

cases, clarity and correctness are more i~portant than object

code efficiency and the prograrrming lanruage should do the ut

most to aid the programmer in developing correct and underztand

able programs within constraints of reasonable object efficier.cy.

In many cases, language features which Jmprove clarity do not

adversely affect efficiency. In many cases, additional infor

mation supplied to clarify a prcgram wi11 permit the compiJer to

46

,/

\(/
/ '. ~

'

";

.~-

;.

~· ... -.-~-

\
'

\ '·

\
\
I

\
. \ I

i
' \

·'~~"<'

I
I
I
I
I
I
..,.

...

.,.

r

, __

'

use optimizations not applicable in more general cases. There

remain, however, special situations in which efficiency is

critical. The language should not prohibit access to machine

features necessary to accomplish these optimizations when the

need arises. Thus, the major criteria in selecting a program
ming language should be clarity and correctness of programs

within the constraint of allowing generation ot extremely ef-
ficient object codes when necessary.

0. MACHINE INDEPENDENCE VS. MACHINE DEPENDENCE

Object machine dependencies occur in digital computer p~o

grams for at least three reasons. First, programs are limi~ed

by the choice of capability and capacity of the resources avail
able in the object machine environment. Programs written for
machines with different memory sizes, different peripheral con

figurations, and specialized hardware capabilities cannot be

totally machine-independent. Programming languages can, how

ever, treat these inherent limitations in a uniform way by per

mitting their users to describe the resources needed in their
programs and the translator producing diagnostic messages when

the program requirements exceed the capabilities of the object
machine.

Sometimes machine dependencies occur in programs when the
same capability is provided by different mechanisms in the var
ious object machines. These machine dependencies ca1 be avoided
when a higher-order programming language is used. When evalua
ting an arithmetic expression, the number of machine operations,
the form of the operatior.s, and t~e management of registers and
storage are quite different, depending on whether the object ma

chine has a single-address, two-address, three-address, stack,
or general-register architecture. Nevertheless, the programming

language can eliminate these machine dependencies from source

programs by providing a single abstraction of these mechaniza

tions in the form of algebPaic expressions. Similarly, real

47

\ ,I
,I

time clocks might be provided in the object machine as a

single writable countdown regist~r which interrupts on under

flow, or as a pair of registers, one of which is a read-only
counter with an interrupt when the register contents are iden

tical. Although the mechanisms are different, they b0th pro

vide the ability to cause an interrupt after {or at) a speci
fied time. A single programming language feature can make this

capability available to the source language programmer without
imposing a particular object representation.

A third form of machine dependency occurs in progra~s in

which the programmer knows that certain language constructs,
operations, or programming techniques are particularly effic

ient or costly on his intended object machine. This form of

machine dependency is sometimes necessary and is unavoidable

in languages which permit the description not only of \.zhat a

program is to do, but how that computation is to be accomplished.
If the source language definition is complete and unambiguous

and the translators implement the source as defined, then this

form of machine dependency will not adversely affect the abil
ity to cor!ectly compile and run programs on uther than the in
tended object machine.

A machine-independent language is one in which any of its
programs can be compiled and will run carr~. ~ly on any object
machine of the language, provided that the program does not
call for greater capability or more resources than are avail
able on the particular object machine. This means that the
language must permit the programmer to avoid unnecessary machine

dependencies in his programs. It should permit the user to de

scribe the ranges, precisions, and types of data and operations

needed in his programs, rather than forcing his concern to the

actual word-sizes, arithmetic type, and internal representations

provided in the object machine. The programming language can

and should be independent of the object machine characteristics

48

/

. ~---

\
\

I
I
J
I
I
J

.,.

..

..

..

and the compiler. At the same time, it should be possible to

write machine-dependent programs as described in the iirst and

third paragraphs above. When a program exceeds the capacity or

capa~ilities of the intended object mac~tne, the error should

be reported by the translator. Even the ill-effects of machine

language insertions and machine-dependent data representations

can be minimized by requiring that they be within the body of

a conditional which is dependent on the object machine configu
ration •

E. GENERALITY VS. SPECIFICITY

A problem which often arises in looking at more detailed

programming language characteristics is the trade-off bet'tleen
specialized and more general features. General features can

satisfy a greater variety of needs and can be specialized to

meet many, possibly unforeseen conditions. Specialized capa
bilities are often more efficient than specialization of gen

eral capabilities and, therefore, less expensive in use. Both

points are often true in practice but the latter need not be.

Generality can be achieved by consolldating many diverse cases
~nto a single general-purpose structure which treats each as

a special case, or it can be achieved by identifying the prim
itive building blocks from which more specialized structures
are built. The latter approach has several advantages in pro
gra~ing languages. First, because all language features ul
timately must have a representation in terms of computer hard
ware primitives, composable general-purpose pro~rarnming langu
age primitives which have a simple representation in hardware
primitives can be used to compose specialized language struc

tures as efficiently as could be done by building them in.
Secondly. general purpose language primitives which emulate

single machine language capabilities, but at the user level,

will obligate the user to pay only for the capabilities he needs.

49

The trouble with specialized capabilities built into a pro

gramming language is that they seldom are specialized in pre

cisely the direction needed for the problem at hand. The

ALGOL-60 for statement is extremely useful &nd desirable if

one's loop requires a control variable, has a sequence of possi

ble terminal conditions affecting different iterations, and

needs to be able to change the terminal value of the index vari-
. ~

able from within the loop body. Seldom are all these ~apabil-

ities needed, but all must be paid for in program clarity,

language complexity, and object efficiency. A programming

language should strive to provide a base of simple, single

purpose, composable primitives and leave th£ specialization to

supported application packages and to user programs. 7'he lang

uage primitives should be machine-independent abstractions of

machine pri~itives which have an obvious and effi:ient repre

sentation in most machines.

Care must be exercised to insure that language structures

which are defined within a lang~age, instead of being built in,

can be implemented efficiently. If the notational mechanism

used to make a definition requires over-specifications which

are not necessary to the intended structure, then the compiler

has no way of knowing that these additional specifications are

unnecessary and it must provide for them. Althou~h it is not
currently possible to write programs in an abstract languag~
which specifies only the essential aspects of defined struc

tures and then to use a compiler which will find an optimal

concrete representation from that description, it is possible

to separate the abstract and concrete descriptions of defined

features so that the idiosyncrasies and srecial characteristics

o~ a particular implementation do not interfere with the clear

understanding and easy use of tt. _, defined feature.

50

···~·-..---

l
I
I
I
l
I

..

III. THE MOST PRESSING SOFTWARE PROBLEMS*

The problems mentioned below are derived from a variety

of in-house and contractor studies of the software problem in

DoD as well as the Service inputs to the common-language ef
fort. It should be noted, however, that these problems are
unique neither to the military nor to software.

The cost of software is high and, therefore, its proble~s
art ~orth examining in more detail. Software costs in the DoD
are estimated at $3 to $3.5 billion annually. Another $2 to

$3 billion is consumed in the support and operation of digital
computer systems. These compare with computer hardware pro
curement and maintenance costs estimated at $1 to $1.5 billion

per year. Approximately 70 percent of all computer costs (i.e.,

computer hardware, software, and operations) are for personnel.
Essentially all software costs are for system design, analysis,
and programming personnel. Of these, 75 percent represent in

house costs.

That software costs are high does not necessarily mean
t:1at they are excessive. In some cases, computers are used to
automate previously manual tasks. With rapidly rising person
nel costs, declining computer hardware costs, and stable or
declining software costs (for given tasks), it is likely in
such cases that total c0sts have been reduced through the use
of computers. In many more cases, the use of computers pro
vides increased capabilities for tasks in which people arc too
slow, inaccurate, or otherwise ill-suited. It is difficult to
place dollar values on improved or increased capabilities.

Costs reported in this section are taken from Ref. 2.

51

\

A. RESPONSIVENESS

Software is often unresponsive to user needs. The dearth

of techniques for specifying requirements and the complexity of

software systems create a situation in which there is minimal
understanding of the intended user's real requirement by those
who must design and implement the software. By the time the

system is sufficiently near completion for the user to try ~t,

most decisions are irrevocably built into the design. There

is an almost universal disregard for the building of prototype
systems to resolve or clarify user requirements. The result,

all too often, is software that is of little value to anyone.
It should be noted that the need for prototyping applies to the
ccmmon language effort as it does to other software designs.

B. RELIABILITY

Software reliability resembles hardware reliability in

that it is possible to measure the mean time between failures
and in that failures are not always reproducible under seem-

ingly similar circumstances.
faults are quite different:

In reality, however, software
software does not degrade with

time; all software faults are inherent !n its design; once cor
rected, a software fault will not reoccur; ~~d excctly the same
faults will occur under the same circumstances in multiple de
ployment of software. Unreliable software has just two causes:

incorrect programs and erroneous input data. Incor~ect pro
grams result from transcription errors, lack of understanding
of the program by its authors, and the use of logically incor
rect algorithms. Software faults from bad data indiccte lack
of robustness in the program design, and~ more specifically,

failure of the program to validate the input for conformity

w!th the program's input assumptions.

Another difficulty of software reliability is that the

problem is often confused with the problems of changing user

52

I
I
l
I
.....

-
...

..

requirements and software maintainability. Thus, although a
program might be correct and its correctness ~-;ill not degrade
with time, user needs may change so that. the program does not

provide a useful service. Lack of maintainability and modifi
ability of programs may im?air the ability to re~air software
design errors. In some situations, the effects of a change

may be so opaque that there can be no cor.f~dence that changes
will not introduce as many errors as they correct! ,...

Software reliability is particularly important in the
military environment where errors can have catastrophic con

sequences. It ehould also oe remembered in this regard that
redundant deployment and voting will not reduce or protect
against software faults.

C. FLEXIBILITY/MAINTAINABILITY

Software is inherently flexible, modifiable, and amenable

to change. It is soft in the sense that it is a collection of
ideas, abstractions, and information without an essential phys
ical form. The only rationale for implementing a system with
software instead of hardware is flexibility. Software is used
when the task has a short lifetime and will soon be supplanted
by another task requiring a different program, when the task
is sufficiently complex that many changes and modifications
will be required to refine it into a workable system, when there
is expectation for growth in the system and continued revision
of the system requirements, and when the sy~tem is sufficiently
unique that the economies are in specializing a general-purpose
system instead of building a hard system.

Unfortunately, software's inherent flexibility is seldom

available in practice. Software is pure design, with only sym
bolic form. As such, any change or modification to software is
a change in its design. Design changes are easy only if we are
not cor;cerned with their consequences. To make desi3n changes

53

with predictable consequences, we must thoroughly understand

the design, what aspects of the design will be affected by our

changes, and how those piecewise effects will affect the whole.

Thus, purposeful software change and modification and its de

sign of flexibility are determined by the completeness, cor

rectness, end understandability of it& design and documenta
tion.

D. EXCESSIVE COST

There are wide variances in software productivity, reli

ability, flexibility, and cost. Programmers purportedly pro

duce an average of 10 debugged instructions per day, but the

variance is at least from 1 to 100 instructions per day. Soft

ware systems are not built from existing off-the-sr•elf or re

usable parts, but from scratch each time, using the priuitives

of the current programming language. Programming tools with

demonstrated software productivity increases of at least two

decimal orders of magnitude for large complex software systems

in research environments are unavailable for the military user.

In many DoD applications, assembly languages are still widely

used (and some would argue, to advantage, over the available

HOLs). Pin~lly, the lack of visibility of software to manage

ment, inaccessibility of software costs, and failure to give

software the sc;.me scrutiny as hard\.,rare in the development of

military systems creates a situation in which there is little

cost accountability.

Computer resource limitation is probably a large factor in

excessive cost~. It is Just as easy to add functions to a sys

tem that is full as it is to augment one that has plenty of

slack. One reason that promising tools are not being widely

used, that assembly language use is continuing, etc., is that

computer z~source limitations (fixed at the time of software

design) force emphasis on minirr.um possible code per function.

54

[

r
[

r
r
r

' ..

. -<~·- ·-~----·---.....

This may also account for the dearth of off-the-shelf software.

Most software customers want the product they buy to be small,
fast, and cheap. They ask, why add extra effort and resources
to provide general capabilities that are not needed for their
particular project?

E. TIMELINESS

Many software projects have gone awry for lack of calendar
time. The reasons are many: estimating techniques are poorly

developed; effort is often confused with p1•ogress in software
development, there is sometimes the false assumption that men
and months are interchangeable; uncertainty of estimates, which

assures that only the most stubborn software ~an3gers will stick
by pessimistic time estimates; lack of engineering discipline
in software development which makes it difficult to monitor
progress; and adding additional manpower when schedule slip
pages are recog~1ized.

In many systems, including large military systems, indi
rect costs from software slippages can far exceed the direct

costs of the software. Deployment of a recent Command and Con
trol syst~m, with an expected life of 7 years, was delayed 6
months because the software was not ready. Since the total
system cost was about $1.4 billion, the 6-month loss of system
capability represents a $100 million indirect cost (Ref. 1).

F. TRANS FE RAB H..ITY

Software transferability is a special case of flexibility,
but one with obvious economic consequences. Transferable soft
ware can be borrowed from one project or task and adjusted or

modified to suit another. For the present, a realistic goal of
transferability is that it be less expensive to move software

from one machine to another thaL to write it from scratch. The
costs of transferring software cannot be eliminated, and if

55

i
' ' ,
•
' ~

object efficiency is important, cannot be done entirely auto

matically. Successful reuse of software has been almost ex
clusively confined to mathematical subroutines in FORTRAN, data
processing application packages in COBOL, and a few follow-on
systems which borrowed extensively from their predecessors. A

key ingredient in each of these was the use of the same program
ming language. It may not be possible, or even desirable, to

reuse the top-level structures of applications software, ~ut
there is little reason why software design, development, test,
and maintenance tools and aids and other support software should
not be reusable. Neither is there reason to believe that lower
level software build~ng blocks used to compose specific tasks

must be unique to that task and cannot be constructed to ad
vantage for common use throughout that application area. There
was a time when functional commonality seemed as incredible in
scientific and data processing applications as it now dues to

some in weapons systems, command and control, communications,

and 3.vionics.

G. tFFICIENCY

In software, efficiency is usually taken to mean the time
and space utilization of a running computer program. Efficiency
in this form is important because in some applications there are
critical paths in the software which do press the available re
sources to their limit. Some applications (e.g.~ simulation)
have computational requirements in excess of even the largest
computers, while mobile systems (e.g.~ avionic, shipboard, and
van-mounted) often have environmental requirements limiting
their capability and performance. There are situations in which
object code and object data representation are ~ritical. In

a11 case, resources should not be wasted.

There was a time when computer hardware was the major cost
component of computer systems and hardware logic speed the major

l.

I
J
I
,..

...

-·----.-~------

performance limitation. Today, software cost~ far excPed ha~d

ware costs, and in many applicati0ns, the memory, peripheral,

and communications speed are the limiting performance factors.

Software costs increase rapidly as the computer r~aches satu

ration. Major savings may be realized by plannin~ for 50 to

75 percent corr.puter saturation, but the tendency remains to
consider only hardware in the initial design and to assume that
the software will adjust.

If efficiency is tak~n in t'1e broader sense of optimal use

of all resources to minimize total cost (either life-cycle or
initial development only), it becomes clear that there are many

trade-offs, and that coding tricks at the machine level seldom

can make a significant contribution. Real efficiency, even as
measured by execution times, results ftrst from the use of the
most efficient algorithm, ~ndependent of its implementation,

and secondly from identifying and i~proving those small parts
of programs constituting the majority of the executiun co3ts.

57

..

I
I
I
I
I
I

I
T
,.:.,

, I ...

IV. LANGUAGE DESIGN CRITERIA

The Common HOL effort is concerned with the selection of
a programming language which is expected to be used in a va~i

ety of applications, particularly those in which there is cur

rently no widely used language. Impliclt in this effort is
the expectation that a large number of programming language
users will adopt progra~ming lan~uage r.~w to them. Any change

involves costs, and can be just:! fied only if the resulting
savings exceed the total costs of the change.

Success in the Commor. HOL effort depends on the accessi
bility, utility, ~d applicaoility of the selected language for
use in individual application areas, on the benefits to be de
rived from its use, and on the ability of the language to re
mlir. uniform and stable for an extended period. Poten~ial us

ers of a language will not adopt it if it fails to satisfy the

special needs of their application. The help a language pro
via~s in reducing software problems determine~ lts utility

ann th~ benefits to b~ deriv~d from its use. Among the maj0r
benefits of using a cc~on langua~e are ~educed training costs,
greater personnel mob ill t;y, tdder use of corr:mon tools, and ac
cess to off-thc-she:f software components. These latter bene
fits depend primarily on the stability of the language defiP~
tion, the uniformity of its implementation, and an effective
program of awareness of what is on ~he shelf.

Selection of a good or best language to serve as a co~-

mon language implies use of value judgments whirh can have mean
ing only with reference to criteria. Criteria must be estab
lished to provide a basis fer measuring the suitability and ap
prcpriateness of alternative des:l.gr.s during the language sE-lection

Preceding page blank
59

------~-~

\' ,.
·,' ·F

process. Criteria tend to be gener~l, imprecise, and not sub

ject to quantative measure, but they should be unambiguous a.'1d

prcvide a framework, a set of guidelines, which can be used to

derive more specific characteri~tics that are subject to meas
urement.

The language-design criteri& below reflect the three goals

of (1) satisfying the specialized application requirements, (2)

resolving existing software problems, and (3) assuring that the

language can become a cor.unon language.

A. CRITERIA TO SATISFY SPECIALIZED APPLICATION REQUIREMENTS

1. Flexibility in Software Design Criteria

Software requirements of each system vary, dependinb upon

the mission. The relative import~ce of execution efficiency,

memory utilizatior., program modifiability, reliability, program

production time, and the many other program design criteria vary

widely from application to application, and even among the com

ponents of a single sy~tem. Consequently, the optimization cri

teria for software programs should not be built into the pro

gramming language. Instead, the language should be sufficiently

robust (at compilation time) to allow the zoftware designer to

optimize his programs according to the criteria of greatest im

portance to his project. The software optimization criteria
should be bound at program compilation time and not at language

desie;n time.

2. ~ault-Tolerant Programs

In many weapons systems and control applications, it is es

sential that the pro~ra~ning language permit the description of

co~putations which will continue to operate in the presence cf

faults, whether in the computer hardwQre, in input data, in op

erator procedur~s, or in other software. Crucial to fault-tole

rant programs is the ability of the program to specify the ac

tion to be taken for all run ti~e exception conditions.

I
I
I

\

>-'t ' I
I
1
J
1
,._\

l

'"'!

I '

'\ ,
'\. !

'.' ..,.

,

~

i ,
'.

..,
1

1
J

1

1

'

'•'''·-·t----"~·-

3.

DoD.

Machine-Dependent Programs

There are several hundred models of co~puters in use in

In many applications, they have unique configurations

not compatible with general-purpose installations. These com

puters may interface with sensors or control equipment such as

a radar. There are sometimes specialized computer equipments

such as associative memories, real-time clocks, analog devices,

and special-function boxes to aid particular computations.

Programs must have access to these machine-dependent capabili

ties.

4. Real-Time Capability

Some applications require that races be between the com

putational solution and equipment or people in real time. 'lhe

progra~~ing language used in these applications must, there

fore, give access to a real-time clock, allow specification of

the maximum duration for execution of designated parts of the

computation, and permit the progra~mer to specify the action

to be taken upon passage of designated time intervals. These

applications include monitoring of sensors; control of equip

ment; display; and operator input processing in applications

such as avionics, command and control, communications, and

training. Real-time programs m~y require access of time of day
and interval timers, the ability to respond at periodic inter
vals, to service interrupts within a limited time, and to pre

dict computation times accurately. Th~ tine quantities which

must be dealt with vary from microseconds for device interface
handling, through milliseconds in ser.scr monitorir.~, seconds

in control applications, to days in report generaticn.

5. J/Stem-Programming C~pability

Many applications use dedicated computers because they

cannot afford the overhead and do not require the generality of

general-purpose operating syste~s. For example, avionics, tac

tical systems, communications, and process control applications

61

\\\

\
/

I /

/

\ //
l /
I·
·I
;

i I

I

\
\

'·. ,,
I

···\ \
. I
. i

\I\.
1 '

i.,'
I I

'

-,I

\ _,_..,
' '.

\

\
\

;

I
I,

I' I -;

' \ 1

include development of specialized executive systems. System

programming capability is also needed for the development and

maintenance of general-purpose operating systems and other sup
port software.

6. Data Base Handling Capability

In many applications, including command and control; data

processing; training; and software design; development, and
•

maintenance it is necessary to access, manipulate, and display

large quantities of data. Much of this data is symbolic or

textual rather than numeric, and must be organized in ~, or

derly and accessible fashion. Memory space rather than execu

tion time is often the critical resource in data handling ap

plications; large peripheral storage devices must be employed,

and programs must be able to process densely packed data •

7. Numeric Processing Capability

Numeric processing capability is essential to many appli

cations, including simulation, sensor processing, equipment con

trol, and general-purpose engineering and scientific applica

tions. In some environments, only fixed-point arithmetic is

available on the object computers.

B. CRITERIA ADDRESSING EXISTING SOFTWARE PROBLEMS

1. Simple Source Language

The role of unnecessary complexity as the main source of

problems in the use of high-order programming languages ca~not

be overemphasized. Simplicity in a programming language ~eans

a small language with few special cases, each feature si~ple

in meaning and implementation, uniform syntactic forMs e::-:d

consistent interpretations when several special cases r.~st be

provided. There are conglomerate langua~es so large, d~verse,

and complex that programmers are not expected to understand

the whole language, but only those subsets applicable to their

62

\
I,

'

:--~
/ r:

'/
'

I'
I

\.

' i.
)i ,,

. .i

l
'

,_ -... "" ___ _
...

..,.
i ,.,,

.,.
I ;,

......

... ~-

' I

J

' I

I

'

problems. Partitions between subsets are often not well drawn

and there is little consistency among the s~bsets. so that when

something goes wrong in a ~rogram it may invoke language fea

tures totally foreign to tte authors' understanding. Even if

the system detects the error, the diagnostic will not be mean

ingful to the programmer. Ad hoc language designs which have

attempted to satisfy every application by providing specialized

features for each special problem result in languages that are

difficult to learn, impossible to implement consistently, and

which guarantee unreadable, inflexible~ and nontransferable
software •

Untimely delivery of software is primarily the result of

an inability to integrate the separate components of a large

software package. The integration problem is a direct result

::>f software interfaces too complex aud ill-defined to be fully

understood in the same way by all parties using them. Lack of

software flexibility and maintainability is the unavoidable

consequence of programs and programming languages so complex

that no one can predict the consequences of program changes.

Language complexity contributes to the nontransferability by

ensuring that few installations will b~ able to afford imple

mentation of the full language and that no two installations

will implement features with exactly the same semantics. The

result is impleillentation-dependent progra~s incomprehensible

and unusable anywhere but where written. Sofcware productivity
depends on the ability to reuse existing software, on desi~n,
coding, and maintenance efficiency, and on the usability of the
software design, development, and maintenance tools. The only
hope of significantly improving software productivity is the

ability to reus~ software, particularly support software and

software tools. This cannot happen as len~ as programs are in

comprehensible, unpredictable, and unmodifiable. Finally,

efficient prograr.:s cannot be written in languages that employ

highly specialized complex features which do not themselves

have efficient representations in ob!ect machines.

63

'·

This is not to claim that the use of simple programming

languages will solve the software problems. If that were true,

machine languages would be ideal. Rather, the claim is that

the problems cannot be solved with complex languages and that

many of the current problems have been aggravated by the use of

unnecessarily large and complex programming language::;.

2. Readable/Understandable Programs

In the development of large software systems which must be

integrated fro~ many separately developed parts or software sub

systems, have long lifetimes, a~d must go through many modifica

tions to their functional requirements, it is essential that the

programs be readable nnd understandable by their authors a~d

maintainers. Only when the progranmer thoroughly understands his

own programs can he convince himself or anyone else of their cor

rectness. We cannot accurately predict the effect of a program

if we cannot understand it and \-Je cannot modify, repair, or ex

tend a program if we cannot predict the impact of changes.

3. Correct Translator

The programmer must have confidence in the compiler. The

implementation must be consistent with the language semantics,

it must report errors rather than compile a garbage object code,

it must produce the object code a geed programmer would expect,

and it should not change the meaning of programs from tlme to

time. More simply, it should be correct, consistent, and pre

dictable. The language features it must implement, their form

in the source language, and the quality of the source language

definition affects the ability of the translator to meet these

goals.

4. Error-Intolerant Translator

The i::;sue here is, when are programming errors to be de

tected: durir.g the design, during program development, during

system validation and test, or ~hile the procram is in use? In

\
\

'

\-

' \

."'
/

1
J
I
l
J
...
j

~-

' ' ;<117

J .,.

many DoD applications, errors djscovered in operational use can

have catastrophic consequences. System test and validation is

an ideal time to build confidence in a system and to test the

rnost commo~ cases. It is, however, impossible to test every

case, and there must be confidence that the limited tests e~

ployed are 1nd1c~tive of the total program reliability. Errors

should be detected during the design and development phases . ..
The translator can help by reporting all e~rors which.~t can

detect. The ~umber and importance of these will be small (i.e.,

syntax only) if the source language is only a coding language.

Reducing the syntactic choices of the user by restricting the

set of acceptable program strings ~an increase the distance be

tween correct programs and increase the probability that syntax

errors will result in syntactically incorrect programs, but this

is of very limited help. The important errors are semantic and

can be detected by the compiler only if the programming langu

age is a design and documentation language as well as a coding

language. That is, if it allows specification of the progr·am

mers intent as well as his actions (e.g., ran~e and types of

variables), it allows redundant specifications (e.g., types of

formal and actual parameters), it does not violate his inten

tions (e.g., no implicit type conversions), permits him to iden

tify the parts of the program in which a program component will
be used (e.g., scope of access specification), and al:ows him
to deny access to n~nessential properties of his data and pro

grams. Each of these provides information ~hich allows the

translator to check the program design for semantic consistency
and to verify that the programmer has, in fact, conformed to

his own c0nventions and stated intent. These same specifica

tions will also contribute to the readability and maintainabil

ity of the program.

The goal, of course, should not be to maximize the number

of detectable errors, but rather to minimize the number of non

detectable errors, the difference being that the language ~hould

65

be first concerned with the prevention of errors and secondly,

with the detection of errors which cannot be prevented by the

lar.guage. Many errors are prevented, for example, when the

HOL does not permit run time modifications to executable code

or does not permit Boolean operations on floating point valuP.s.

In any case, the language design should attempt to minimize

the kinds of errors which can occur and shoul~ ~ttempt to maxi

mize the number of those which are detectable by a translator.
Finally, any translator for the HOL should report all error~
which it can detect.

5. Efficient Object Code

Software should strive to make optimal use of all the re

sources associated with the design, development, use, and main
tenance of the software. In some DoD software syste~s, the ma
jor costs are in hardware because of multiple deployment (e.g.~

fire control) or are sabject to computer hardware constraints
because of the environment (e.g.~ avionics). In some control

systems, there are critical time constraints which are diffi

cult for even machine language programs to meet; in some simu
lation pr~~lems, the full job is still beyond the capabilities

of even the largest computers, and in some data processing ap

plications, limited memory resources require shuffling of large
quantities of data between main and peripheral memories and
create a bottleneck at the I/0 interface. In all these appli
cations, the efficiency of program and/or data object represen
tations can be very Important. Optimal program design, of
course, must be relative to ~orne design criteria which are meas
ured in terms of so~e resource, such as time, sp~ce, manpower,

or dollars. Optimal program design does not imply, for example,

that compile time resources should be wasted in squeezing out

unneeded object efficiency.

66

..,..

J.

....

..

C. CRITERIA TO ASSURE A COMMON PROGRAMMING LANGUAGE PRODUCT

1. Complete Source Language

Every user level aspect of the language should be speci

fied in its defining documentation. No~e should be left to be
made arbitrarily and uniquely by each translator, operating
system, and object machine. The language proliferation prob
lem stems primarily from development of evermore new incompat
ible versions of existing languages. In many cases, new lang
uages are developed for sound reasons, but the effect is the

same. In some cases, the new language is given a new name, in
others, it retains the old name and becomes incompatible dia
lect. In many instances, it is not so much that the new ver
sion violates p1•evious standards, but that the standards are so
incomplete and ambiguous that commonality is impossible. Even
wor·se, many programming language definitions and standards in
tentionally leave portions of the semantics unspecified with
the intent that they will be provided by the translator. This
may be necessary for the appearan~e of commonality when 1ncom
patib:e compilers for a language already exist, but certainly
not for a new language. Commonality, in more than name, re
quires that the language specification be complete. Every de
cision made L1 the programming procesr- should be m::~.de irrevoc
ably in the language design or the choice should be given ex
plicitly to the progra~~er.

This does not mean that a program must be implemented in
the sam_e way on all object machines, only that the resulting
semantics be the same in all ways important to the program
logic. The user should not have to overspecify his programs;
he should be able to leave don't care and don't-care-within

limits conditions t~ the translator. For example, he might be
able to specify tha minimal numeric precision required by his
program with the exact implementation determined by the trans
lator and object machine. The order of evaluation of terms ln

67

an expression or of the operators in a sequenc~ of associativ~

operators should be left to the translator when it does not
affect the computation.

2. Wide Applicability

The wide use of a very small number of programming langu
ages is desirable for many reasons. Training costs are reduced

and personnel become more versatile. Project costs should be
less, because existing software can be reused. Pfogramming · ,-
costs should be lower because funds can be expended on improv··

ing existing software tools and building more powerful tools.

Increasingly, applications are net pure; they may be primarily

nume~ical computation, report generation, sensor processing,
process control, file searching, etc., but each has ingredient3

of several other applicatio~s. Special-purpose, problem-ori

ented languages lack the generality and adaptability to grow
with the applications. Confidence that the next project or
assignment will use the same language creates incentiv~s at

both the management and programmer level to develop flexible

and reusable software.

3. Implementable

A programming language will be widely used only if it is

capable of inexpensive translation into object computer pro
~rams. If the language is simple and easy to implement, the
cost of i ... ,Jlementation will be lower and translators will be
more widely available. Potential users will like it and want
to use it only if the cost in machine resources and elapsed
time for translation is reasonable. The smaller the transla
tor and the smaller the machines which can host the translator,
the larger the number of users.

4. Static Design

There can be no commonality if the programming languages,

are constantly changing. Projects often develop their own

68

jc , .. ,."1 ... --,....._··---·-·-·-

1
J
J
1
1
1
,.
J

J

••

...

~

""

"'t-

~

J

,
J

t
a

compilers. These compilers do not implement exactly some ex
isting source language, but are extended subsets which attempt

to incorporate the latest software technology and special fea
tures useful to their project while omitting seldom-used fen
tures. This approach, while providing specialized tools sor .. e
times well-suited to the task at hand, increases the research
content, risk, and cost of the project. The alternative is to
draw a distinct line between research in programming languages
and engineering development of a language. A language can be
built as an engineering development, incorporating the current
state of the art but not going beyond it; its design can be
frozen and the language used in that form for' an extended period.
A willingness to freeze languages and to accept the best tech
nology of some past moment is essential to obtain the benefits
of commonality. Research on software technology, management,
language features, and language design should continue in par

allel with use of a common language. Growth and improvement
in production programming languages shoulrt be limited to dis
crete, clearly defined points when there are major improvements
to be incorporated rather than on a continuous basis.

A static design cannot be maintained without controls.
Both implicit and explicit controls will probably be needed.
Explicit controls might include language standards, configura
tion management of language implementations, and policy requir
ing use of the common language. Implicit controls are at least
as important. They might include economic incentives, such as
low cost access to existing support software, software develop
ment aids and application packages, lower-risk developments,
and grea~er availability of trained programming personnel.

69

5. Reusability

A common language alone, even if it has easily accessible,

compatible, and efficient implementations, is insufficient to

encourage the development of flexible and rensable software.
Reusability does not result merely from the use of a common

language. A major problem in Nri ting reusable software is

that the generality required for reusability precludes it

from being acceptably effi~ient in many applications. General
purpose routines will be widely used only if it is easy to

tailor them to efficient, special-purpose variants. Most desir
ably, these specializations would be made automatically by the

compiler when constant arguments are used, or semiautomatically,
as when the progra~mer specifies that a call is to be compiled

as an open, rather than closed, subroutine. Language features

should be chosen to encourage the development and use of reus

able software.

6. A Pedagogical Language

A good pedagogical programming language is one which is
easy to learn and well suited to teaching programming method

ology and techniques. In applications for which there is cur
rently no common language, selection of a common easy-to-learn

language will reduce the difficulty and cost of adopting a com
mon language. A language well-suited for teaching and learning
programming methodology and techniques is, of course, also well
suited for applying those methods and techniques.

Already, in the short time of this effort, unsolicited in
terest in using a common DoD language has been shown by univer
sities. They not only need a modern pedagogical language, but
also one which has many users outside the academic community.
Few, if any, of the co~~ercial and academic progranming languages

satisfy both requirements.

70

I
I
I
I
I
I
·~

l

..

The set

synthesis of
rnents and is

V. THE NEEDED CHARACTERISTICS

of characteristics prescribed below represents a

the requirements submitted by the Military Depart
:

intended to be consistent with the language cri-

teria of Section IV, self-consistent, and achievable with ex
isting computer software and hardware technology. The needed
characteristics are the requirements to be satisfied by an ex

isting, modified, or new language selected as a common language.

The characteristics prescribe capabilities and properties which
a common DoD language should possess, but are not intended to

impose any particular language features or mechanization of
those capabilities.

The large numbFr of characteristics reflects an atte~pt at

thoroughness in dealing with the relevant issues. Similarly,

the length of the discussion for many items reflects the need
to resolve the ambiguities, examine the implications, and demon

strate th~ feasibility of the compendious statement introducing

that characteristic. Because the characteristics address issues

in the design, implementation, and use of the language and prop
erties of the resulting product, there should be no correlation
between the number of characteristics discussed here and the
number of features in a language which satisfies these character
istics. Many of the characteristics will influence the choice
of many features, and every feature will be influenced by many
of the needed characteristics that good l~nguage design is a

unification process. Any language that satisfies these character

istics must be smaller and simpler than the set of issues un
derlying its choice.

71

The header of each item gives a general description of the

needed language characteristic) while the subsequ~nt paragraph(s)

of its body provide clarification, discus3 some of the implica

tions and problems, provide the rationale behind its inclusion,

and further detail the requiremPnt. The entire text, not just

the headers, constitutes the requirements.

A. DATA AND TYPES

Al. The language UJill be typed. The type (or

mode) of all variables~ components of com

posite data structures~ expressions~ opera

tions~ and parameters UJill be determinable

at compile time and unalterable at run time.

The language UJill require that the type of

each variable and component of composite

data structure8 be explicitly specified in

the source programs.

By the type of a data object is meant the set of objects

themselves, the essential properties of thoJe objects, and the

set of operations which give access to and take advantage of

those properties. The author of any correct progra~ in any

programming language must, of course, know the types of all data

and variables used in his programs. If the program is to be

maintainable, modifiable, and comprehensible by someone other
than its author, then the types of variables, operations, and
expressions should be easily determined from the source program.

Type specifications in program~ provide the redundancy necessary

to verify automatically that the programmer has adhered to his

own type conventions. Static-type definitions also provide in

formation at compile time necessary for prodt:.ction of efficient

object code. Compile time determination of types does not pre

clude the inclusion of language stru~tures for dynamic rtiscrim-

1nation among alternative record formats (see A7) or among com

ponents of a union type (see E6). Where the subtype or record

72

l
I
1
l
I
I
..,.

I

structure cannot be deter~ined until run time, it should still

be fully dis criminated in the program text so that all thE' type

checks can be completed at compile time.

A2. The language ~iZZ provide data types for in

teger. real (floating point and fixed point)~

Boolean. and character, and as type generators,

~ill provide arrays (i.e., compoEite data

structures ~ith indexable components of homo

geneous type) and records (i.e., compositP.

data structures ~ith labeled components of

heterogeneous type) •

These are the common d~ta types and type benerators of

most programming languages anJ object machines. They are suf

ficient, when used with a data definition facility (see D6, E6,

and Jl), to mechanize other desired types (e.G·• compl~x or
vector) efficiently.

A3. The source language ~ill requi?'e global (to a

scope) specifi~ation of the pPeciaion for :loat

ing-point arithmetic and ~ill permit the global

precision to be ove?>ridden by p?>~cision speci

fic~tion for individu~l variables. These speci

fications b)ill be interp?'eted as the mazi,,um

precision required by the pPogram loqic and the

minimum precision to be suppo?'ted by the objeat

code.

This is a specification of what tne program needs, not
what the hardware prcvides. Machine indepencence, in the use
of approximate value numbers (usually with floating-point
represPntatlcn), can be achieved only if the user can place
constraints on the translator and object machin~ without forc
ing a specific mechanization of the arith~etic. Precision

specifi~ations, as the maximum required by tte object co1e,

provice all the power and guarantees needed oy the programmer,

without unnecessarily constraining the object ~achine realization.

73

I
I
!

i
l
!
•

Precision specifications will not change the type of reals or

the set of applicable operations. Precision specifications

apply to arithmetic operations as well as to the data, and

therefor~ should be specified once for a designated scope. This

per~its ~!fferent precisions to be used in different parts of

a r ro~·: :,:·.. Specification of the precision will also contribute

to the le~ibili ty and irnplernentability of programs.

A4. Fixed-point numbers will be treated as ~xact

quanti ties ~hich have a t•ange a~;d a frac tior..al

step size determined by the user at compile

time. Scale-fa~toP manageme~t will be done

by the compiler.

Scaled inte~ers are useful approximations to real numbers

~he~ dealing with exact quantity fractjonal values, when the

object machine does not ha~e floating-point hardware, and when

greater precision is required than is available with the float

i~g-point hardware. Integers will also be treated as exact

qua"tities, with a step size equal to one.

A.S. ::'harac:er sets will be treated as any other

,_ •::.ucercztion type.

:~0 any other da:a type defined by enu~eraticr. (see E6),
it ~~ould be possible to specify the order of characters and

the!~ l~teral for~ to be used in prcgra~s. These properties
of ~ ctaracter set would be u~alterable at run ti~e. The def

:!.:.: ·_:!.cr. of a character set should reflect on the ranner : t is

used within a prcgram and not necessarily on the print repre

sentation a particular physical device associates with a bit

pattern at ~·un time. In general, ur.less all devices use the

same ch2!'

sets w~ ~ ·

;_:s.n.scr:::

·'r cod.:, r·.m-tir::e translation between character

required. Widely used ~haracter set~, such as

:J:c ~ill be availa~: in a standard library.

~iote th:: · ·- ·ss to a linear array ~illed with ':.he characters

of an al:--:~:1t~·t, A, and indexed by an alphabet, B, will con

vert strings cf ch~racters from B to A.

' .i

' '.

I
I
I
I
I
J
I
I
1
l

.\ '\

-~, ,_~---·

A6. The language wilt roequiroe usero speeJifica

tion of the numbero of aroray dimensions~

the roange of subscroipt values foro each aro

roay dimension~ and the type of each aroroay

component. The number of dimensions~ the

type~ and the lowero subscroipt bound wiZZ

be deterominable at compile time. The ~r

per subscript bound will be deterominabZe

at entroy to the aroroay allocation scope.

This is general enough to permit both arrays which can

be allocated at compile or load tirne and arrays which can ce

allocated at scope entry, but does not perr.it dynamic change

to the size of constructed arrays. It is sufficient to per~! t

allocation of space pools which the user can r:anage for aile

cation of more cor:plex data structures, includ!n~ dynamic ar

rays. The range of subscript values for ar:y given dir:e::sicr:

will be a contiguous subsequence of values fro~ an enur:eraticn

type (including integers). The preferable lower ~ound o~ the

subscript range will be the ini~ial element of an e~umeratior:

t:•pe or zero, because it often contributes to prc~ran effic

iency and clarity.

A7. The language will pero~it !'.:>CJorod.s to hat•c

alteronative stro:.cturoes~ ea.~h of ::i:ich ::."'

fixed at co~pile time.

of each roecorod CJo~ponent w~z: te speCJi:icd.

by the use~ at CJompiZe time.

This provides all that is safe to ure in C~S-2 apd JC~:A~

OVERLAY and in FCR':'RA~ EQlll\' ALE~:cs. It remits r.iE: rarchically

structured data of heterogeneous ty1=e, per ·.i'.:s records to have

alternative structures, as lcnp: as each st1·ucture :s fixf'.-:1 at

compile tine and the choice is fully discri~f~ated at rur: t!me,

but it does not permit arbitrary references to r..er:.ory or the

75

http://perr.it

\

I

'. 1 . ·,

/

'\
'

.... _v

-. ' \

dropping of type checking when handling overlayed structures.

The discrimination condition will not be restricted to a field

of the record, but should be any Boolean expression.

B. OPERATIONS

81. Assignment and ~eference ope~ations ~ill

be automatically defined for all ~ata types

r.Jhich do not manage th~ir data storage .• she

assignment operation uill permit an~ value of

a given type to be assigned to a variable~ ar

ray or record component of that type or of a

union type con taini11g that type. Pefe renee

r.Jill retrieve the last assigned value.

The user will be able to declare variables for all data

types. Variables are useful only when there are corres~or.ding

access and assignmer.t cp~ratior~s. The user will be permitted

to define assignment and access operations as part of encapsu

lated type definitions (see E~). Otherwise, they will be au

tomatically defined for types which do not manage the storage

for their data. (See D6 for further discussion.)

82. The sour~e lar.gua1e ~itZ have a built-in op

eration r.Jhich can be used to compare any two

data objects (regardless of t~pe) for identity.

Equivalence ts an essential universal operation which

~: ;uld not be subjec~ to restriction on its use. There are

~any useful equivalence operations for some types, and a lang

u3~e definition cannct for~see all the~e for user-defined types.

E::~l.<i·:'.:l·: . .:e, meanir.r: lorical identity, and r.ot bit-by-bit com

parison on the internal data representation, however, is re

quired for all data types. Proper semantic interpretation of

identity requires that equality and ~dentity be ~he same for

atomic data (i.e.~ numbers, characters, Boolean values, and

types defined by enumeration) and that elements of disjoint

76

i

I
I

\

I
I

I
I
I
I
I
I
I
I

' J

•
j

types never be identical. Consequently, its usefulness at ru~

time is restricted to data of the same type or to types with

nonempty intersections. For floating-point numbers, identity

will be defined as the same within the specified (minimum) pre
cision.

83. Relational ope~ations ~ill be auto«ati

eaZly defined fo~ numeric data and all

type~ defined by enume~ation.

Numbers and types defined by enumeration have an obvious

ordering which should be available through relational opera

tions. All six relational operations will be included. It

will be possible to inhibit ordering definitions when unor

dered sets are intended.

B4. The built-in a~ithmetic ope~ations 11ill

include: addition, subt~action, multi

plication, division (~ith a ~eal Pe&ult),

e:ponentiation, intege~ division (~ith

intege~ or fi:ed-point arguments a~d re

mainder), and negation.

These are the most widely used numeric cptrations and are
available as hardware operations in most machines. Floating

point operations will be precise to at least the specified
precision.

85. A~ith~etic and assignment operations on

data ~hich are ~ithin the range sp€cifi

cations of the program ~ill neve~ t~un-

cate the most significant digits af a

nume~ic quantity. Truncation and round-

ing wilZ al~ays be on the least-sipnifi

cant digits and ~ill neve~ be implicit for

intege~s and fi:ed-point numbers. Implicit

~ounding beyJnd the specified precision ~ill

be aZlo~ei for floating-point numbers.

71

These requiremel'!~s seem obvious, particularly for float

ing-point numbers, ~nd yet many of our existing languages trun

cate the most significant mantissa digits in some mixed and

floating-point operations.

86. The built-in Boolean operations !Jill in

clude and, or, not, and :r:or. Operations

such as and and or on scalars !Jill be

evaluated in short-circuit mode.

Short-circuit mode as used here is a semantic rather than

an implementation distinction and means that and and or are,

in fact, control operations which do not evaluate side effects

of their second argument if ~he value of the first argu~ent is

false O!' true, respectively. Short-circuit evaluation has no

disadvantages over the corresponding computational operations,

sometimes produces faster executing code jn languages where

the user can rely on the short-circuit execution, and improves

the clarity and maintainability of prograr.:s by permitting ex

pressions such as, i ~? & A[i] >x, whiGh could be erroneous

were short-circuit execution not intended. Note that the equiv

alence and nonequivalence operations (see B2) are the sa~e as

logical e~uivalence and exclusive-or, respectively.

F 1. The source language l.Ji Z l permit scalar

operations and assign~ent on confor~able

arrays and will permit data transfere be

tween records or arrays of identical logi

cal struature.

Conformability vlill require exactly the sar::e nurr.ter of
components (althou~h a scalar can be consijered compatible

w!th any array) and one-for-one compatibility in type. Cor

respondence wi 11 be by positior. in similarly st. aped arrays.

In many situations, compon~nt-by-component oreraticns are done

on array elements. In fact, a primary reason for having ar

rays is to permit large numbers of similarly treated objects to

78

/

/

I
I
I
I
I
I
I
I
I
1
I

have a uniform notation. Operations on large data aggregates

available directly in the so~rce language hide the details of

the sequencing and, thereby, simplify the program and make

more optimizations available. In addition, they permit simul

taneous execution on machines with parallel processing hard
ware. Although component-by-component operations will be

available for built-in composite data structures which are

used to define application-oriented structures, that capability

will not be automatically inherited by defined data structures. .-A matrix might be defined using an array, but it will not in-
herit the array operations automatically. Multiplication for

matrices would, for example, be unnatural, confusing, and incon
venient if the product operator for matrices were interpreted as

a component-by-component operation instead of cross product of

corresponding row and column vectors. Component-by-component

operations also allow operations on character strings repre
sented as vect~rs of characters and allow efficient Boolean

vector operations.

Transfers between arrays or records of identical logical
structure are necessary to pernit efficient run time conver

sion from one object repr~sentation to another, as m1ght be
done when data is packed to reduce peripheral stora~e require
ments and I/0 transfer times, but need to be unpacked locally

to minimize processing costs.

BB. There will be no implicit type conver

sions, but no conversion operatiQn will

be required when the type of an actual

parameter is a constituent of a union

type l.Jhich is the forrrral parameter. The

language will provide explicit conversion

operations among integer, fixed-point, and

floating-point data, between the object

representation of llumbel'S and their repre

sentations as characters, and between fixed

point acale factors.

79

Implicit-type conversions, which represent ch&nges in the

value of data items without an explicit indicator in the pro

gram, are not only error prone but can lead to unexpected run

time overhead.

B9. Explicit conve~sion ope~ations will not be

~equi~ed between numepic Panges. The~e will

be a ~un time exception condition when any

intege~ o~ fixed-point value is t~uncated.

Because ranges do not form closed systems, range valida

tion is not possible at compile time (e.g.~ I:=I+l may be a

range error). At best, the compiler might point out likely

range errors. (This requirement is optional for hardware

installations which do not have overflow detection.)

BlO. The base language 1..•ill pt·ovide ope~ations

allowing p~ogra~s to interact ~ith files,

channels, or devices, including terminals.

These operations will permit sending and

receiving both data and control informa

tioll, will enable prog~ams to ass1:gn and

~eassign I/J devices dynamicalZy, wiZl

provide us~~ ccr.trol for exception condi

tions, and ~ill not te installation-depen

dent.

Whether the referenced "files" are real or virtual and

whether they are hardware devices, I/0 channels, or lcgical

files, depends on the object machine configuration and on the

details of its operating system, if present. In any pro~ram

ming system, I/0 operations ultimately reduce to sendir.r, or

receiving data or control information to a file or to a de

vice controller. These can be made accessible in an HOL in

an abstract form through a small set of generic I/0 operations

(like read and write, with appropriate device and exception

parameters). Note that devices and files are ~imilar in many

Ao

J
J
I
I
l
"t

J

....

respects to types, so additional language features may not be

required to satisfy this requirement. This requirement, in

conjU!1Ction with requirement El, permits user definition of

unique equipment and its associated I/C operations as data

types within the syntactic and semantic fr'amework provided by

the generic operations.

B 11. The language LJi l l proovide ope roations on

data types defined as powero sets of enumero-

ation types (see E6), These operoations wiZZ

include union~ intersection~ difference~ com

plement~ and an element predicate.

As with any data type, power sets will be useful only if

there are operations which can create, select, and interrogate

them. Note that this provides only a very special class of

sets, but one which is very useful for computations on sets o~

indicators, flags, and similar devices in monitoring and con

trol applications. More general sets, if desired, must be de

fined, using the type definition facilities.

C. EXPRESSIONS AND PARAMETERS

Cl. Side effects ! • .'hich are dependent .:m the

evaluation orode~ among th€ ar~uMents of

an e.rpression '/,)ill be C:'.Jc!uated z.~ft-to

right.

This is a semantic rest~i~tion on the evaluation order c~

arguments to expressions. ~' provides an explicit rule (!.e.~

left-to-right) for order uf arguMe~t evaluation, but allows ~t~

1m;:: : .• nentations to alter the actual order in any way which d~es

not change the effect. -•.• is prov~des the user with a sir.Jple

rule for determining the effects of interactions among argucent

evaluations witrou~ :~posing a strict rule on compilers which

are sophisticated € •• ~·..~ '1 to detect potential side-effects a.'1d

optimize through 1~~~,erin~ of arguments when the evaluation

81

order does not affect the result. Control operations (e.g.~

conditional and iterative control structures), of course, must

be exceptions to this general rule, since control operations

are, in fact, those operations which specify the sequer1cing

and evaluation rules for their arguments.

C2. Which parts of an expressimz constitute the

operands to each operation within that ex

pression should be obvious to the reader. ,.

There will be few levels of operator hier

archy and they will be widely recvgnized.

The operator/operand stru.:ture cf expressions must not be

psyche logically ambiguous (i.e., to p::ua1•antee that the parse

implerrented by the languaE:e is the same as intended by the rro

grammer and understood by those reading the progra~). This

kind of problem can be minimized by having feu precedence levels

and parsing rules, by allowing explicit parentheses to specify

the intended execution order, and by requiri~g explicit paren

theses when the execution order is of significance to the re

sult within the same precedence level (e.g., X+Y+Z and X+YxZJ.

The user will not be able to define new operator p~ecedence

rules nor change the precedence of existing operators.

CJ. Expressions of a given type ~ill l;e per

mitted anywhere in source progra~s uhere

both constants and references tc va1•iab Zes

of th.:zt type ar•e allo1...1ed.

This is an exarrple of not impo:.;ing arbitrary restrictior1s

and special case rules on the user of the source language.

Special mention is made here only because so many languages do

restrict the fo!m of expressions. FORTRAN, for example, has

a list of seven different syntactic forms for subscript ex

pressions, instead of allowing all forms of arith~etic expres

sions.

82

I
I
I
I

. I

I
l
I
1
I ,.,.

C4. Constant e:tpr>essions tJil.! be al.1otJed in

pr>ogr>ams tJher>ever> eonstants ar>e allotJed,

and eonstant erpr>essions tJill. be evalu

ated befor>e r>un time.

The ability to write constant expressions in programs has

proven valuable in languages with this capability, particularly

with regard to program readability and in avoiding programmer

error in externally evaluating and transcribing constant ex

pressions. They are most often used in declaraticns. There

is no need, however, for constant expressions to impose run

time costs fer their evaluation. They can be evaluated once

at compile time, or if this is inconvenient because of incom

patib~lities between the host and object ~achines, the compiler

can generate a code for their evaluation at load ti~e. In any

case, the resulting value should be the same (at least within

the stated precision), regardless of the object machine (see

D2). Allowing constant expressions in pla~e of constants can

improve the clarity, correctnt~s, anj maintainability cf pro

grams, and does not impose any run-time costs.

C5. Ther>e tJiZZ be a eonsistent set of r>ules

appli~abZe to all par>a~eter>s, tJhether>

they be for> pr>o~edur>es, types, e:r~eptio~

handling, par>aZZeZ pr>o~esses, de~Zar>atio~s.

or> built-in oper>atior.s. ':her>e tJiZl be rzo

spe~ial oper>ations (e.g., ar>r>ay substr>u~t

ur>i~g) appl.i~able only to par>ameter>s.

Uniformity a1d consistency contribute to ease of learning,

implementing, aid using a Janguage; allow the user to concen
trate on the programming task instead of the lang·1·.age; and lead

to more readable, understandable, and predictable programs.
t.

83

C6. Formal and actual parameters will always

agree in type. The number of dimensions

for array parameters will be determi~able

at compile time. The size and subscript

range for array parameters need not be

determinable at compile time~ but can

be passed as part of the parameter.

Type transfers hidden :l11 procedure calls with incompati

ble formal and actual parameters, whether intentio~al or ac

cidental, have long been a source of program errors and of

programs which are difficult to maintain. On the other hand,

there is no reason why the ~ubscript ranges for arrays cannot

be passed as part of the arguments. Some notations permit

such parameters to be implicit on the call side. Formal para

meters of a union type will be considered conformable to actual

paraneters of any of the component ~ypes.

C7. There will be only four classes of formal

paraMeters. Fer data, the-re will be those

whiah act as constants. representing the

actual parameter value at the time of call.

and those which rename the actual parameter~

which must be a variable. In addition~ there

~ill be a formal parameter class for specify

ing the control action when e~ceptio~ con~:

tions oacur and there wi l Z be a cl.ase foJ·

procedure parameters.

The first class of data parameter acts as a constant within

the procedure body. Assignm~nts cannot be made to these para
meters and they cannot be changed c~ring execution of the pro

cedure. Their corresponding actual parametc..r n1ay be a:1y :!.egal

expression of the desired type and will be evaluated once at

the time of call. The second clas~ of data parameter renames

84

I
I
J

I
1

the actual parameter which must be 2 variable. The address of

the actual parameter variaole will be determined by (or at)
the time of call and will be unalterable during execution of

the procedure. Assignment (or rex~rence) to the formal para

meter name will a~sign (or access) the variable which is the

actual parameter. These are the only two widely used para

meter-passing mechanisms for data. The many alternatives (at

least 10 have been suggested) add compiexity end cost to a

language without sufficiently increasing its clarity or po~er.
A language with exception-handling capability must have a way
to pass control and rel?ted data through procedure-call inter
faces. Exception-handli.1g control parameters will be specified

on the call side only when needed. Actual p~ocedur~ parameters
will be restricted to those of similar (explicit or implicit)
specification parts.

CB. Specification of the type, range, precision,

dimension, scale, and format of parameters

~ill be optional on the formal side (i.e.,

in the procedure declaration). None of them

~ill be alterable at run time.

Optional formal parameter specification permits the writ

ing of generic procedures which are instantiated at compile

time by the characteristics of their actual parameters. It
eliminates the need for compile time type parameters. This
generic procedure capability, for example, allows the defini
tion of stacks and queues and thejr associated operations on
data of any given type, wit~out knowing the data type when the
operations are defined. This does not con~lict with the re
quirement for compile-time-determinable type determi.~ation (Al),
because the language permits union types (see E6) and compile

time evaluation of constai.t expressions (see C4), including

type te~ting expressions.

85

C9. The'l'e will be p'l'ovision fo'l' va'l'iable

numbe'l's of a'l'guments, but in su~h cases

all but a constant numbe'l' of them must

be of the same type. Whethc'l' a 'l'outine

can have a Va'l'iable numbe'l' of a'l'guments

must be dete'l'minable f'l'om its desc'l'ip

tion, and the ~umbel' of a'l'guments fo'l'

any call will be dete'l'~inable at cam

pil~ time.

There are many useful purpose~ for procedures with vari

able numbers of arguments. These include intrinsic functions

such as print, generalizations of operations which are both

commutative and associative, such as max and min, and repeti

ti1e application of the same binary operat!0~ such as the Lisp

list operation. The use of operat:!ons with var.:able numbers

of arguments need not and will not cause relaxation of any

compile-time checks, require use of multiple-entry orc~edures,

allow thA number of actual parameters to vary at run time, or

require special calling mechanisms. If the pararr.eters which

can vary are l!mited to a program-specified type treated as any

other argument on the call side and as elements of an array
within the procedure definition, full type checking can be dcne

at corr.pile time. There will be no prlhibition on writing a
special case of a procedure for a particular number of argu
n:ents,

D. VARIABLES, LITERALS, AND CONSTANTS

Dl. The use '1' wi H have the ability to :2ssociate

constant values of any type with i1enti

fie'l's.

The use of identifiers to represent constant value~ has

often made programs more readable, more easily modifiable, and
less pro~e to error when the value of a constant is changed.

f5

Associating constant values w!th an identifier is preferable

to a:,zigning the value to a variable, because it ts the:-. clearly

marked in th~ program as a constant, can be automatically c~ecked

for ~nintentional changes, and cften can have a more eff!cient
object representation.

D2. The language will provide a ~yntax and a con

sistent interpreta~ion f~r constants of built

in data typeEt. Numeric constants will have the

same value (within the specified pr~cision) in

both programs and data (in?ut or o~tput).

Constants are needed for all atomi~ data types and shvuld

be provided as part of the langu3ge definition for built-in

types. Regardless of the source of the data and of t~~ object

machine, the value of constants should be the same. For inte

gers, it should be exact, and for real.3 it should be the same,

within the specified precision. Compiler writers, however,

would disagree·. '1'hey object to this requirenent or. t~..-c grounds:

that it is too costly if the host and object rnachines are dif
ferent, and that it is unnecessary if they are the sa:,:r,. In

fact, all costs are at compile time and must be insignificant
cornpared to the life-time costs resulting from object co1es
containing the wren~ constant values. As for b~1n~ un~e=es;ary,
there have been all too many cases of different values f~)rn

program and data literals on the same machi~e because the corn
pile time and run time conversion packages were d~fferent a~d

imprecise.

D3. The language will permit the use~ to specifb

the initial values of indi~idual variables

a$ part of their declaratio~. s~ch variable~

will be initialiaed at the ti~E of their appar

ent allocation (i.e.~ ~t entr~ to allQca+.ior.

scope). There will be no defauZt initial. !.-'a~ues.

87

, 1
l
~

------' .i

.l
:

The ability to initialize variables at the time of their

allocation will contribute to r·rogra;n clarity, but a require
ment to do so would be an arbitrary and sometimes costly de
cision. Default initial values, on the oth~r hand~ contribu:e
to neither program clarity nor correctness and can be even

more costly at run time. It is usually._ a programming error if

a variable is accessed befol'e it is initialize-d. It is desir
able that the tr·anslator give a warning when a path between

the declaration and use of a variable omits initialization.

Whether a variable will be assigned is, in general, an unsolv
able problem, but it is sometimes determinable whether assign
ments occur on potential paths. In the case of arrays, it !s
possible at compile time only to determine that some cornponentr

(but not necessarily which) have been initialized. There will
be provision {at user option) for run time testing for init!ali- -

zation.

D4. The aource language wi ZZ require its users

to specify individ~ally the range of all

numeric variables and the step size for

fixed-point variables. The range speci

fications will be int~rpreted as the maxi

mal range of values which will be assigned

to a variable and the minimal range which

must be supported by the object code. Range

and step-size specifications will r.ot be in

terpreted as defining new types.

Range specificationz are a special form of asser~ion.
They aid in understanding and determining the correctness o~
programs. They can also be used as additional informat!cn ty

the compiler in deciding what storage and alloc~tion to use

(e.g., half words might be more efficient fo~ integers in t~~
range 0 to 1000). Range specifications also offer the oppc~

tunity for the translator to insert range tests automatically

88

...... 1 .• •,!'<",~ ~-----·--

1
I
J
I
I

-
.• ,

...

••

for run time or debug time validation of the program logic.

With the ranges of variables specified in the progr~m, it be
comes possible to perform many subscript t,ounds checks at com
pile time. These bounds checks, however, can be only as valid
as the rangP. specifications, which cannot, in genez·al, be ve.li
dated at compile time. Range specifications on approximate
valued variables (usually with floating-point imple~entation)
also offer the possibility of their implementation using fixed
point hardware.

D5. The range of values ~hich can be associated

~ith a variable~ array~ or reco~d component

~ill be any built-in type~ any defined type~

or a ~ontiguous subseq~encc of any enumera

tion type.

There should not be any arbitrary restrictions on tne

structure of data. This permits arrays t~ be components of
records or arrays and permits records to be components of ar

rays.

D6. The language ~ilZ provide a pointer mech

anism ~hich can be used to build data ~ith

shared and/or recursive substructure. The

pointer property ~ill onZy affect the use

of variables (including array and record

components) of some data types. Pointep

variables ~ill be as safe in their use as

are any other variables.

Depending on the data type, variables of that type will

hold values which either can L~ shared or must be unique to
that variable. Assignment to a variable of a shared vaiue type

will mean that the vari~ble's name is to act as an additional
label (or reference) on the datum being assigned. Assignment

to a variable of a unique value type will mean that the vari
able's name is to lat.e::.. a copy of the object bei'.1P' assigned.

89

For data without alterabl~ component values, there is no func

tional difference between reference to mult~ple copies and mul
tiple references to a single copy. Consequently, whether values
are shared or copies is meaningful only for composite types and
for arrays and records with composite components. Whether a
composite type has shared or copied values will be specified as

part of the type definition. The use of pointers {i.E.~ shared
values) will be kept safe by prohibiting variables from holding
values whose allocation scopes are narrower than that of the
variable. Such a restriction is easily enrorced at compile
time using hierarchical scope rules, providing there is no way
to dynamically create new instances of the data type. In the
latter case, the dynamically created data can be allocated with
full safety, using a {user or ~ibrary-defined) space pool which

is either local (i.e.~ own) or global ~o the type definition.

If variatles of a type are not shared, dynamic storage alloca
tion will !le required for assignment ~mless their size is con
stant and known at. the time of variable allocation. Thur,
copied variables will be permitted only for types {a) whC's.
data have a structure and size which is cons~ant in the typ~
definition, or {b) which mana~e the storage tor their data as
part of the type definition. Because shared values are often
less expe~sive at run time than copied val~es and are subject
to fewer restrictions, the specification or copied values will
be explicit in programs {this is similar to ~he ALGOL-6~ issue
concerning the explicit specification of val.e (i.e.~ copied)
and name {i.e. ~ shared) . The nE eel for pointers is obviou~ 11~

building data structures with shared or recursive substructures,
such as, directed graphs, stacks, queues, ar.d list str:.Ictures.

Providing pointers as absolute address types, however, produces
gaps in the type checking and scope mechan15Ms. Type- and ac

cess-restricted pointers will provide the power of general
pointers, without their undesirable characteristic~.

90

I
I
I
1
1
I
..,.

...

l
..

E. DEFINIT!ON FACILITIES

El. The use~ of the language will be able to

define new data ~~pea and opa~atione with
in p~og~ame.

The number of specialized capabilities needed for a corn

men language is large and diverse. In mru1y cases, th~re is no
consensus as to the form these capabilities should take in a
programming language. The operational requirements dictat~~g
specific specialized language capabilities are volatile, and
future needs cannot always be foreseen. No language can make
available all the features useful to the broad spectrum of mil
ita~y applications, anticipate future applications and require

ments, or even provide a u:-iversally "best" capability in sup
port of a single P;_,plica~.i.vu area. A common language needs
capability for growth. It should contain all the power neces

sary to s'tisfy all the applications and the ability to spe
cialize th.tt power to the particular applicatioi~ ta.sk. A lang
uage with defining facilities for data and operations often

makes it possible to add new application-oriented structures
and to use new programming techniques an6 mechanisms through
descriptions written en:irely within the language. Definitions
will have the appearance and costs of features built into the
language while they are actually catalogued as application pack
ages. The operation definition facility will include the abil
ity to define I~'=w infix and prefix operator's (but see H2 for
restrictions). No programming language can be all things to
all people, but a language with ·d~ta and operation definition

facilities can be adapted to mee~ changing requirements in a

variety of areas.

The ability to define data and operations is well within

the state of the art. Operation definition facilities in the
form of subroutines have been available in all general-purpose
programming languages since at least the time of early FORTRANs.

91

http://th.it

Data definition facilities have ~een available in a variety

of programming languages for almost 10 yt'ars and reached their

peak with more than 30 extensible languages in 1968 and shortly

thereafter (Ref. 4). A trend toward more abstract and less

machine-oriented data specification mechanisms has app~ered

more recently in PASCAL (Ref. 5). Data type definitions, with

operations and data defined together, are used in several lang
uages, including SIMULA-67 (Ref. 6). On the other hand, there

is currently .nuch ferment as to what is the proper function and

form of data type definitions.

E2. The use of defined types ~ill be indis

tinguishable f~om built-in type$.

Whether a type is built-in or defined within the base \dll

not be determinable from its syntacti~ and semantic properties.

There will be no ad hoc special cases or inconsistent rules to
interfere with and ~omp:::.icate learning, using, and implementing

the language. If built-in features and user-defined data struc

tures and operat~ons are treated in the same way throughout th~
language, so that the b~se language, standard application li

braries, and application programs are treated in a uniform man
ner by the user and by the translator, then these distinctions
will grow dim, to eve~rone's ~dvantage. To achieve these goal3,
full encapsulation capabilities are needed, as well as ways to
specify special selection, printing, and storage management
policies for underlying representations. When the language
contain::, all t!1e essential power, wJ-.en few can tell the dif
ference between the tase language and library definitiorJ, and
when the introduction of new data types and routines does not

have an impact on the complier and the language standards, then

there is little incentive to proliferate languages. Similarly,

if type definitions are processed entirely at compile time and

the language allows full program specification of the internal

repre~entation, there need be no penalty to run time efficiency
for using defined types.

92

l
J
i
I
J
1 ..
l
J

-
•'

..

...

.,.
1

1

-.. ~ ---·-.-~ .. ·- .-..,--- .__ .. ~- -~---~-- -·-·•--· ··--------I ..

E3. Each program component will b~ defined

in the base language, in a libra~y, or
in the program. There will be no de

fault declarations.

As programmers, we should not P.xpect the translator to
write our programs for us (at least in the immediate future).
If we somehow know that the translator's default conve~tion ~s
compatible with our needs for the case at hand, we should still
docunPnt the choice so others can understand a~d maintain our
programs. Neither should we be able to delay definitions {po[
sibly forget them) until they cause trouble in the operatio~al
system. ~his is a special case of requirement 11.

E4. The user will be able, within the soured

language, to e~tend existing operators

to new d~ta typea.

When an operation is an abstraction of an existing opera
tion for a new type or is a generalization of an existing op
eration, it is inconvenient, confusing, and misleading to use
any but the existing operator symbol cr function name. The
translator will not assume that commutativity of built-in op
erations is preserved by extensions, and any assumptions about
the associativity of built-in or extended operations will be
ignored by the translator when explicit parentheses are pro
vided in an expression.

E5. Type definitions in the sokrce language will

permit definition o; both the nlass of data

objects comprisin~ the type and the set of

operations applicable to that class. A de

fined type will not automatically inherit

the operations of the data with which it is

represented •

93

Types define abstract data objects with special properties.

The data objects are given a representa~ion in terms of exis

ting data structures, but they are of little valu~ ~ntil opera

tions are available to take advantage of their special proper

tieR. Wher. one obtains access to a type, he needG its opera

tions as well as its data. Numeric data is ne·~ded in .nany ap-.-
plications, but is of little value without arithmetic opera-

tions. The definable operat~ons will include constructors, se

lectors, predicates, and type conversions.

E6. The data objects comprising a defined type

~iZZ be definable by enumeration of their

ZiteraZ names, as Cartesian products of ex

isting types (i.e., as a~ray and record

cZassesJ, by discrimina~ed union (i.e., as

the union of disjoint types) and as the

pow~r ~et of an enumeration type. These

definitions witZ be processe~ entireZy at

compi1.e time.

The above list comprises a currently known set of useful

definitional mechanisms for data types which do not require

run time suppo~t, as do garbage collection and dynamic st~rage
allocation. In conjunction with pointers (see D6), they pro

vide many of the mechanisms necessary to define recursive data

structures, and efficient sparse data structures.

E?. Type definitions by f-"ct! union (i.e., union of

non-disjoint types) and subsetting are not

desired.

Free union adds no new power not provided by discriminated

union, but does require giving up the security of types in re

t-·lrn for programmer freedom. Range rnd subset specifications

on -. ariables are useful documentation and debugging aids, b~..:t

will not be censtrued as types. Subsets do not introduce new

properties or operations not available to the superset and

94

c..,~-----

1
J
1
I
l
J
1
1
1
I
I
I
I
1
1
,...,

J

1
I
'I

often do not form a closed system under the superset operations.

Cnlike types, membership in subsets can be determined only at
run time.

EB. WhD.n defining a type, the user ~ill be able

to specify the initialisation and finaliaa

tion procedures for the type and the a.~tions

to be taken at the time of allocation and

deallocation of variables of that type.

It is often necessary to do bookkeeping or to t~te other
special action when variables of a given type are allocated or
deallocated. The language will not limit the class of definable

typ~s by withholding the ability to define those actions. Init
ialization might take place once when the type is allocated
(i.e., in its allocation scope) and would be used to set up the

procedures and initialize the variables which are local to the

type definition. These operations will be definable in the en

capsulation housing the rest of the type definition.

F. SCOPES AND LIBRARIES

Pl. The language ~ill allo~ the user to dis

tinguish bet~een scope of allocation and

sccpe of access.

The scope of allocation or lifetime of a program structure
is that region of the program for whjch the object representa
tion of the structure should be present. The allocation scope
defines the program scope for which own variables of the struc
ture must be maintained and identifies the time for initializa
tion of the structure. The access scope defines the regions of

the program in which the allocated structure is accessible to
the program and will never be wider than the allocation scope.

In some cases, the user may desire that each use of a defined

program structure be independent (i.e., the allocation and

a~cessing scopes would be identical). In other cases, the

various accessing scopes might share a common allocation of the

structure.
95

.

F2. The ability to limit access to separately

defined structures ~ill be available both

~here the struatu~e is defined and where

it is used. It ~ill be possible to as

sociate ne~ local names ~ith separately

defined program components.

Limited access specified !n a type definition is necessary

to guarantee that changes to data representations and to man

agement routines which purportedly do not affect the calling

programs, are, ln fact, safe. By rigorously controlling the

set of operations applicable to a defined type, the type defi

nition guarantees that no external use of the type can acci

dentallv ~r intentionally use hidden nonessential properties

of t.i1e type. Renaming separately defined programming "ompo

nents is necessary to avoid na~ing conflicts when they are

used.

Limited access on the call side provides a high degree of

safety and eliminates nonessential naming conflicts without

limiting the degree of accessibility which can be built into
programs. The alternative notion, that all declarations which

are external to a program segment should have the same scope,

is inconvenient ar.d costly in creating large systems which are

comp?sed of many sub~ystems, because it forces global access

scopes and the attendant naming conflicts on subsystems not

using the defined iterr.s.

F3. The scope of identifiers ~ill be wholly

determined at compile time .

Identifiers will ~e declared at the beginning of their

scope, and multiple use of variable names will not be allowed

in the same scope. Except as otherwise explicitly sp2cified

!n programs, access scopes will be lexically embedded, with the

most local definltion applying when the same identifer appears

96

r
'!l"A"'"'·~~--·--···

l
I
1
I
I
T ...

.. ,

...

' ..

..

at several levels. The language wilL use the above lexically

embedded scope rules for declarations and other definitions of

identifiers to make them easy to recognize and to avoid errors

and ambiguities from multiple use of identifiers in a single
scope.

F4. A variety of appZi~ation-oriented data and

operations wiZZ be available in libraries

and easily accessible in the language .

A simple base alone is not sufficient for a common lang
uage. Even though, in theory, such a language provides the

necessary power and tne capability for spe~ializa~ion to par

ticular applications, the users of the language cannot be ex

pected to develo:;J and s~pport cor.unou libraries unr:ier individual

projects. There \'I ill be llroad ::;upport for libraries common to

users of well-recognized application areas. Application li

braries will be developed as early as possible.

FS. Program components not defined within the

current program and not in vhe base tang

uage will be ~~intained in libraries ac

cessible at compile time. The libra~ies

witt be capable of holding anything de

finable in the language and will not ex

clude routineB whose bodies are written

in other source languages.

The usefulnes~ of a language derives primarily from the

existence and accessibility of specialized application-oriented

data and operations. \fuether a library should contain source

or object codes is a quPstion of implementation efficiency and

should not be specified in the definition of the source lang

uage, but the source language description will always be avail

able. It should be remembered, however, that interfaces can

not be validated at program assembly time without some equiv

alent of their so~rce language interface specificat!ons, that

97

object modules are machine-dependent and, :herefore, not port

able, that source code is often more compact than object code,

and that compilers for simple languages can sometimes compile

faster than a loader can load from relocatable object programs.

Library routines written in other languages will not te pro

hibited, provided the foreign routine has object codes compati

ble wit}) the calling mechanL:;ms used in the Common HOL and pro

viding sufficient header information (e.g., parameter types,

form, and number) is given with the routine in Common HOL form

to permit the required compile time checks at the interface.

F6. Libraries and Compools ~JJitt be indistin

guishable. They ~JJitt be capable of hold~:ng

anything definable in the language, and it

IJJill be possible to associate them IJJith any

level of programming activity frr.m systems,

through projects, to individual programs.

There IJJill be many specialized compools or

libraries, any user-specified subset of which

is immediately accessible from a given pro

gram.

Compools have proven very useful in orgar.izing and con

trolling shared data structures and shared routines. A simi
lar mechanism will be available to manage and control access to

related library definitions.

F?. The source language IJJill contain standard

machine-independent interfaces to machine

dependent capabilities, including peripheral

equipment und special hardiJJare.

The convenience, ease of use, and savings in production

and mair.tenance costs resulting from using high-orde~ languages

come from being able to use specialized capabilities without

building them from scratch. Thus, it is essential that high

level capabilities be supplied with the language. The ldea is

98

I
I
1
I
1
J
,.

...

..

1

--~-------------

not to provide all th~ many special cases in the langu&ge, but

to provide a few general cases which will c~ver the special
cases.

There iJ currently little agreement on standard operating

system, I/0, or file system interfaces. This does not preclude

support of one or ~ore forms for the near term. For the pres

ent, the important thing is that one be chosen and nade avail

able as a standard supported library deflnition which the u~er
can use with confidence.

G. CONTROL STRUCTURES

Gl. The language will provide structure~ con

trol mechanisms for sequential, conditional,

iterative, and recursive control. It will

also provide control s~ructures for (pseudo)

p~rallel processing, exception handling, and

asynchronou9 interrupt handling •

These mechanisms, hopefully, ?rovide a spanning set of

control structures. The most appropriate operations in sev
eral of these areas is an open question. For the present, the
choice Will be a spanning set of composable control primitives,
each of wh!ch is easily mapped onto object machines and whic~
does n~t impose run time ch~rges when it is not used. The ob
ject machine determines whether parallel processing is real
(i.e., by multiprocess::ng) or is synthesized on a singl~ se
quent~al processor, but if programs are Wl'itten as if there is
true parallel processing (and no assumption about the relative

speeds of the processors) then the same results will be ob

ta~ned independent of the objecc environment.

It is desirable that the number of primitive control struc
tures in the language be minimized, not by reducing the po·ofJer

of the language, but by selecting a small set of composable prim
itives which can be used to easily build other desired control

99

I

mechanisms within programs. This means that the capabilities

of control mechanisms must be separable~ so that the user need

not pay either program clarity or implementation costs for un

desired specialized capabilities. By these criteria, the ALGOL-

60 for would be undesirable because it imposes the use of a loop

control variable, requires that there be a single terminal con

dition, and that the condition be tested before each iteration.

Consequently, for cannot be composed to build other useful it

erative control structures (e. g., FORTRAN do). The ability to

compose control structures does not imply an ability to define

new control operations, and such an ability is in conflict with

the limited parameter-passing mechanisms of C7.

G2. The source language will provide a go

to operation applicable to progran

labels within its most locaZ scope o!

definition.

The go to is a machine-level capability which is still

needed to fill in any gaps that might remain in the choice of

structured control primitives, t0 provide compatibility for

transliterating programs written in older languages, and be

cause of the wide familiarity of current practitioners with its

use. The language should not, however, impose unnecessary

costs for its presence. The go to will be linited to explicitly

specified program labels at the same scope l~vel. Neither

should the language provide specialized facilities which en

courage its use in dangerous and confusing ~ays. ~witches,

designational expressions, lahel variables~ label parameters

and numeric labels are not desired. Switches here refer to the

unrestricted switches which are genera!i~ations of the go to

and do not refer to case statements which are a general forn

for conditionals (see G3). This requirement should not be in

terpreted to conflict with lhe specialized form of control

~t·ansfer provided by the exception-har.dling control structure

of G7.

100

..
f

I
1
I
J
I
I
J
I
1
...
....

...

..

l

1
1

G3. The conditional control structures will

be fully partitioned and will permit se

lection among alternative computations

based on the value of a Boolean e~pression~

on the subt~pe of a value from a discrimi

nated union, or on a computed choice among

labeled alternatives.

The conditional control operations will be fully parti

tioned (e.g., an else clause must follow each if then) so the

choice is clear and explicit in each case. There will be some
general form of conditional which allows an arbitrary computa
tion to determine the selected situation [e.g., Zahn's device

(Ref. 7) provides a good solution to the general problem].
Special mechanisms are also needed for the more common cases of

the Boolean expression (e.g., if then else) and for value or

type discrimination (e.g., case on one of a set of values or
subtype of a union) .

G4. The iterative control structure r.Jill per

mit the termination condition to appear

anywhere in the loop, will require con-

trol variables to be local to the itera

tive control~ will allow er.try only at the

head of the loop, and r.Ji~Z not impose e~

cessive overhead in clarity or run time e~

ecution costs for co~mon special case termi

nation conditions (e.g., fi:ed number of it

erations or elements of an array e~hausted).

In its most general form, a programmed loop is executed

repetitively until some computed predicate becomes true. There

may be more than one terminating predicate, and they might ap

pear anywhere in the loop. Specialized control structures (e.g.,

While do) have been used for the common situation in which the
termination condition precedes each iteration. The most common

101

case is terr.tination after a fixed number of iterations a"ld a

specialized control structure should be provided for that pur-

pose (e. g., FORTRAN do or ALGOL-60 for). A problem which ar:_;~: ::N•

in many programming languages is that loop control variables

are global to the iterative control, and, thus, will have a

value after loop termination, but that value is usually an ar-..
cident of the implementation. Specifying the meaning of con

trol variables after loop termination in the language defini

tion 1·esol ves the ambiguity, but must t? an c:trti trary decisi:::r.

which will not aid program clarity or correctness, and reay ir~

terfere with the generation of efficient object code~. Loop

control variables are, by definition, variables used to co:1·.:~:.

the repetitive execution of a programmed loop, and, as such,

will be local to the loop body. At loop termination, it wilJ

be possible to pa~s their value (or any other computed value)

out of the loop, conveniently and efficiently.

G5. Recursive as well as nonrecursive routines

will be available in the source language.

It wiZZ not be possible to define proced

ures within the body of a recursive pro

cedure.

Rec~rsion is desirable in many applications because it

contributes directly to their elegance and clarity and simpli

fies proof procedures. Incirectly, it contributes to tte re
liability and maintainability of some progra~s. Recursion is
required to avoid unnecessarily opaque, complex, and confus~~

programs when programs operate on recursive data structures.

Recursion has not been widely used in DoD software because

many programming languages do not provide recursion, pra~ti

tioners are not famiJ iar with its use, and users fear that i-:.:

run time costs are too high. Of these, only the run ti~e co~~

would justify its exclusion from the lane:uage.

102

I
I
I
I
I
I
1
1
1
•·

A major run time cost often attributed to recursion is the

need for the presence of a set of "display" registers which are

used to keep track of the addresses of the various levels of lex
ically-embedded environments and which must be managed and up

dated at run time. The display, however, is necessary only in

programs in which routines access variables which are global to
their own definition, but local to a more global recursive pro

cedure. This possibility can easily be removed by prohibiting

the definition of procedures within the body of a recursive pro
cedure. The utility of such a combination of capabilities is
very questionable, and this single restr~ction will eliminate
all added execution ~osts for nonrecursive procedures in pro
grams which contain recursive procedures.

As with any other facility of the language, routines should
be implemented in the most efficient manner consistent with their

use and the language should be designed so that efficient imple
mentations are possible. In particular, the most effici~nt irr.
plementation for nonrecursi ve routi."les should be possible, re
gardless of whether the language or even the program contains
recursive procedures. When any r1utine makes a procedure call
as its last operation before exi~ (and this is quite common
for recursive routines) the imp).ementat1on might use the same
data area for both routines and do a jump to the head of the
called procedure, thereby saving much of the overhead of a pro
cedure call and eliminating a return. The choice between re
cursive and nonrecursive routines involves trade-offs. Recur
sive routines can aid program clarity when operating on recur
sive data, but can detract from clarity when operating on it
erative data. They can increase execution time when procedure
call overhead is greater than loop overhead and can decrease

execution times whE>n loop overhead is the rr.ore exp€nsive. Fi
nally, program storage for recursive routines is often only a
small fraction of that for a :::orresponding iterative procedure,

103

but the data storage requirements are often much greater be

cause of the simultaneous presence of several activations of
the same procedure.

G6. The source language ~ill provide a par

allel processing capability. This cap

ability should include the ability to

create and terminate (possibly pseudo)

parallel procecses and for these pro

cesses to gain exclusive use of resourceq

during specified portions of their execu

tion.

A parallel processing capability is essential in embedded

computer applications. Programs must send data to, recieve

data from, and control many devices ~hich are operating in par

allel. Multiprogramming (a form of pseudo-parallel processing)

is necessary so that many programs within a system can m~et

their differing real time constraints. The rarallel processing

capability will minimally provide the ability to define anc call

parallel processes and the ability to gain exclusive use of sys

tem resources in the form of data structures, devices, and pseudo

devices. This latter ability satisfies one of the two needs for

synchronization of parallel processes. The other is required in

conjunction with real time constraints (see G8).

The parallel processing capability will be defined as

true parallel {aJ opposed to coroutine) ~rimitives, but with

the understa~ding that in most implementations the object com

puter will have fewer processors (usually one) than the number

of parallel paths specified in a program. In~erleaved execu

tion in the implementation may be required.

The parallel proce~sing features of the language should

.be selected to eliminate any unnecessary overhead associated

with their use. The costs of parallel processes are primarily

in run time storage management. As with recursive routines,

104

~., ... ~ f -- - ----·· -- ·-·-.

I
I
I
l
I
I
I
1

1
j

1

most accessing and storage-management problems can be elimi

nated by prohibiting complex interactions with other language

facilities where the combination has little, if any, utility.
In particular, it will not be possible to define a parallel
routine within th~ body of a recursive routine and it will not
be possible to define any rou~ine, including parallel routines,
within the body of those parallel routines which can have mul-.-
tiple simultaneous activations. If the language permits sev-

eral simultaneous activations of a given parallel process, then
it might require the user to give an upper bound on the number

which can exist simultaneously. The latter requirement is rea
sonable for parallel processes because it is information known
by the programmer and necessary to the maintainer, because par
allel processes cannot no1~ally be stacked, and because it is
necessary for the compilation of efficient progrims.

G7. The exception-handling con tro Z structure

wiZZ permit the user to ca~se transfer of

con tro Z and data foz• any error or excep

tion situation whi~h might occur in a pro~

grrzm.

It is essential in many applications that there be no
program halts beyond the user's control. The user must be able
to specify the action to be take~ on any exception situation
which might occur within his program. The exception-handling
mechanism will be parameterized so data can be passed to the
recovery point. Exception situations might include arithmetic
overflow, exhaustion of available space, hardware errors, any
user-defined exceptions, and any run-time-detected program~ing
error.

The user will be able to write programs which can get out

of an arbitrary nest of control a~d intercept it at any embed
ding level desired. The exception-handling mechanism will per
mit the user to specify the action to be taken upon the occur
rence of a designated exception within any given access ~cope

105

of the program. The transfers of control will, at the user's

option, be either forward in the program (but never to a nar

rower scope of access or out of a procedure through its lexical
structure) or out of the current procedure through its dynamic
(i.e., calling) structure. The l&tter form requires an excep
tion-handling formal parameter class (see C7).

GB. There LJi l l be source language features

LJhich pe~mit delay on any control path

until :·ome specified time or· s~·tuation

has occurred, LJhich permit specification

of the relative priorities among parallel

control paths, LJhich give access to real

time clocks, and LJhich permit asynchronous

hardLJare interrupts to be treated as ~ny

other e.rception si tuatio.l.

When parallel or rseudo-parallel paths appear in a pro

gram, it must be possible to specify their relative priorities
and to synchronize their executions. Synchronization can be
done either through exclusive access to data (see G6) ~r

through delays terminated by designated situations occurring
within the p1•ogram. These situations should include the elapse
of program-spe~tfied time intervals, occurrence of hardware in
terrupts, and those designated in the program. There will be no
implicit evaluation of program-determined situations. Time de
lays will be program-specifiable for both real and simulated
time:>.

H. SYNTAX AND COMMENT CO~VENTIONS

Hl. The source language LJilZ be free format

LJith an explicit statement deZi-.,iteP,

LJill alloLJ the use of memonically signif

icant identifiersJ LJill be based on con

ventional for~s, LJiZt have a si~pZe, un

iform, and easily parsed gram~ar, LJill

106

l
I
I
I
I
T

' .; .

not provide unique notations for

special cases~ will not permit ab

breviation of identifiers or key

~ords~ and ~ill be syntactically un

ambiguous.

Clarity and readability of programs will be the primary

criteria for selecting a syntax. Each of the above points can

contribute to program clarity. The use of free format, mne

monic identifiers, and conventional forms allous the programmer
to u3e notations wcich have their familiar meanings, to put

down his ideas and intentions in the order and form that hu

mans think about them, and to transfer skills he already has
to the solution of the problem at hand. A simpl·--', uni forrr:
language reduces the number of cases which must be dealt with
by anyone using the language. If programs are difficult for

the translator to parse, they will be difficult for people.

Similar things should use the same notations with the special

case processing reserved for the translator and object machine.
The purpose of mnemonic identifiers and key words is to be in

formative and increase the distance between lexical units of
programs. This does not prevent the use of short identifiers

and short key words.

82. The user ~ill not be able to modify the

source language syntax. Specifically~ he

~ill not be ablE to modify operator hier

archies~ introduce ne~ precedence rules~

define new key word forms~ or define new

operator precedences.

If the user can change the syntax of the language, he can

change the basic character and understanding of the language.

Tte distinction between semantic extensions and syntactic ex
tensions is similar to that between being able to coin new

words in English or being able to move to another natural

107

language. Coining words requires learning those new meanings

before they can be used, but at the same ti·11e increa::;es the

power of the language for some application~. Changing the

grammer, (e.g.~ Franglis, the use of French grammar with in
terspersed English words) however, undermines the oasic under

standing of the language itself, changes the mode"' of expr;ession,

and removes the commonalities which obtain between various

specializations of the language. Growth of a language througn

definition of new data and operations and the introduction uf

new words and ~ymbols to Identify them is desirable, but there

should be no provision for changing the grammatical rules of

the language. This requirement does not conflict with E4 and

does not preclude associating new meaning with existing opera

tors.

HJ. The syntax cf source-language programs

will ~e composab!e from a character set

suitable for publication purposes~ but

no feature of the language will be in

accessible using the 64-character ASCII

subset.

A com~on language should use notations ar.d a character set
convenient fur communicating algorithms, prog.•ams, and program

ming techniques among its users. On the other hand, the langu

age should not require special equipment (e.g .• ~ard readers

and printers) for its use. The use of the 64-character ASCII

subset uill make the language compatible with the federal in

formation processing standard 64-character set, FIPS-1, which

has been adopted by the U.S.A. Standard Code for Information

Interchange (USASCII). The language definition will specify

the translation from the p~blication language into the restricted

character set.

108

I
I
I
I
I
l ...

B4. The language definition will provide

the formation rules f~r identifiers

and literala. These will include lit

erals for numbers and character strings

and a break character for use internal

to identifiers and literals.

Lexical units of the language should be defined in a sim
ple, ~iforrn, ru1d easily understood manner. Some possible

break characters are the space (i.e.~ any number of spaces or

end-of-line), the underline, and the tilde (Refs. 8 and 9).
The space cannot be used if identifiers and user-defined in
fix operators are lexically indistinguishable, but in such a
case, the formal grrufu~ar for the language would be am~iguous
(see Hl). A literal break character contributes to the read
ability of programz and makes the entry of long lit~rals les~

error-prone. With a space as a break character, one can enter
multipart (i.e.~ more than one lexical unit) identifiers such
as REAL TIME CLOCK or long literals, such as, J.14259 26535

89793. Use of a break can also be used to guarantee that mis
sing quote brackets on character literals do not cause error~
which propagate beyond the next end-of-line. The language
should require separate quoting of each line of a long literal:
"This is a long"

"literal string".

H5. There will be no continuation of lexical

units across lines~ but there will be a

way to include object characters such as

end-of-line in literal strings.

Many elementary input errors arise at the e~d of lines.

Programs are input on line-oriented media, but the concept of
end-of-line is foreign to free-format text. Most of the error
prone aspects of end-of-line can be eliminated by not allowing
lexical units to ~ontinue over lines. The sometimes undesirable

109

effects of this restriction can be avoided by permitting iden

tifiei·s and literals to be composed from more than one lexical

unit (see H4) and by evaluating constant expressions at compile
time (see C4).

H6. Key ~ords will be reserved~ will be very

few in number~ will be informativa, and

~iZZ not be usable in contexts ~here an

identifier can be used.

By key words of the language are meant those sy~bols and

strings which have special meaning in the syntax of prograns.

They introduce special syntactic forms, such as are used for

control structures and declarations, or they are used as infix

operators, or as some form of parenthesis. To avoid confusion

a~d ambiguity, key words will be reserved, that is, not used

as identifiers. Key words will be few, because each new key

word introduces another case in the parsing rules, adding to

the complexity of the language, also, too many key words in

convenience and complicate the programmer's task of choosing

informative identifiers. Key word~ should be concise, but it

is more important that they be informative than short. A major

exception is the ke:· word introducing a comment; in this case,
the comment, not its key word, should do the informing. Finally,

there will be no place in a source language program in which a

key word can be used in place of an identifier. That is, func

tional form operations and special data items built into the

language or accessible as a standard extension will not be

treated as key words but will be treated as any other i1enti

fier.

110

, .. ,
r --

I
I
'T
I ...

I
.....

••

. '

...

. ..

H7. Tne source language will have a single,

uniform comment convention. CommP.nts

will be easily distinguishable from

code, will be introauced by one or

pose ib ly t;.Jo language-defined charac

ters, will permit any combination of

chara~ters to appear, will be ablz to

appear at any reasonable point in a pro

gram, will automatically terminate at end

of-line if not oth3rwise terminated, and

will not prohibit automatic reformatting

of programs •

These are all obvious points that will encourage the use
of comments i~l programs and avoid their error-prone features
in some existing languages. Comments at any reasonable point
in a program will not be take~ to mean that they can appear

internally in a lexical unit, such as an identifier, key word,

or between the opening and closing brackets of a character

string. One comment convention which nearly meets these cri

teria is to have a special quote character which be~ins com
ments and with ei the I· the quote or an end-of-line ending each
comment. This allows both embedded and line-oriented comments.

HB. The language will not permit unmatched

parentheses of any kind.

Some programming languages permit closing parentheses to

be omitted. If, for example, a program contained more BEGINs

than ENDs, the tral'lslator might insert enough ENDs at the end

of the program to make up the difference. This makes programs

easier to write because it sometimes saves the programmer wrlt

ing several ENDs at the end of programs and because it elimi
nates all syntax errors for missing ENDs. Failure to require

proper parentheses-ma~ching makes it more difficult to write
:orrect programs. Good programming practice requires that

111

£00 '9Y#¥1AW

matching parentheses be included in programs, whether or not

they are required by the language. UnfortunatP.ly, if they

are not required by the language, there can be no syntax check

to discover where P.rrors were made. The language will require

full parentheses~matching. Thi& does not preclude syntactic

features such as case :c of s 1 ~ s 2 .•• sn end case in which end

is paired with a key word other th~n begin. Nor does it, alone,

prohibit open forms such as if-then-else-.

H9. There ~iZZ be a uniform referent notation.

The distinc~ion between function calls and data reference

is one of representation, not of use. Thus, the1~ will be no

language-imposed syntactic distinction between function calls

and data selection. If, for example, a computed function is

replaced by a lookup table, there should be no need to change

the calling program. This does not preclude the inclusion of

more than one referent notation.

810. No Zanguage-defined cymboZs appearing in

the same context ~iZZ have essentiaZZy

different meanings.

This contributes to the clarity and uniformity of programs,
protects against psychological ambiguity, and avoids some er
ror-prone features of extant languages. In particular, this

would exclude the use of = to imply both assignment and equal
ity, would exclude conventions implying that parenthesized para

meters have special semantics (as with PL/1 subroutines), and

would exclude the use of an assignment operator for other than

assignment (e.g.~ left-hand-side function calls). It would not,

however, require different operator symbols for integer, real,

or even matrix arithmetic, since these are, in fact, special

cases of the same abstract operations, and would allow the use

of generic functions applicable to several data types.

112

,t4ta.z;.aa:so.s k· _, u sao z a ¥¥4+ n;o.x c r«wca.a<.as;::q_w4.. :s sesc. tsw;4ezst.z

r· '~--·---· ----~

.,..

••

T

l
-~

..

..

. ..

' ••

' L

I. DEFAULTS, CONDITIONAL COMPILATION, AND LANGUAGE RESTRICTIONS

Il. There ~ill be no defaults in programs ~hich

affect the program logic. That is~ decisions

~hich affect program logic ~ill be made either

irrevocably ~hen the language is defineJ~ or

explicitly in each program.

The only alternatjve is 1mplementation-dependent defaults,

with ~he translator determining the meaning of programs. What

a program does should l·e clPterminab:ie from the program and the

defining documentation for the programming language. This does

not require that binding of all prcgram properties be local to

each use. Quite the contrary, it would, for example, ~llow au

tomatic defi~itiJn of assignment for all variables or global

specification of precision. What it does require is that each

decision be explicit: in the language definition, global to

some scope, or local to each use. Omission of any selection

which affects the program logic will be treated as an error by

the translator.

I2. Defaults ~ill be provided for special capa

bilities affecting only object representa··

tion and other properties which the program

mer does not kr.ow or care about. Such de

faults ~ill al~ays mean that the programmer

does not care which choice is made. The pro

grammer will be able to override these defaults

when necessary.

The language should provide a high degree of management

control and visibJlity to programs and self-documenting pro

grams, 111ith the programmer required to make his decision ex

plicit. On the other hand, the programmer should not be forced

to overspecify his progra~s and thereby cloud their logic, u~

necessaril_y eliminat~ opportunities for optimization, and mis

represent arbitrary choices as essential to the program log!c.

113

l·

I
i

l

i

l
i

[
l

I
t

Defaults will be allowed, in fact encouraged, in "don't care"

situations. Such defaults will include data representations

(see J4), open vs. closed subroutine call3 (see J5), andre

entrant vs. nonreentrant code generation.

13. The user 1r: l l be able to associate compile

time variables with programs. These will

include variables which specify the object

computer model and other a~pects of the ob

ject machine configuration.

When a language has different host and object machines,

and when its compilers can produce code for several ccnfigura

tions of a given machine, the programmer should be able to

specify the intended object-m~ch1ne configuration. The user

should have control ove~ the compile-time variables used ir.

his program. Typically, they ~auld be associated with the ob

ject computer model; memory size; special hardware options;

operating syst~m, if present; peripheral equipment; or ether

aspects of the object-machine configuration. Compile-tl~e

variables will be set outside the program, but available for

interrogation within the program (see rq and c4).

,;. 4. The source language will perm1: t the use of

conditional statements (e.g., case state

ments) dependent on the object environment

and other compile-time variables. In such

cases, the conditional will be evaluated at

compile time and only the selected path will

be compiled.

An envircnmental inquiry capability permits the writing 0~

common programs and procedures Nhich are spec1 ali zed at com

pile time by the translator as a function of the intended ob

ject-machine configuration or of other comp~le-time variables

(see I3). This requirement is a special case of e~aluation o~

constant expressions at compile tire (see C4). It provides a

general-p~~pose capability for conditional compilation.

114

l
l
I
J
T

J
J

...

1·

IS. The source language will contain a simple,

cZearZy identifiable base which houses all

the power of the language. To the eztent

possible, the base will be minimal, !.Jith

each feature pr~viding a si11g?.c unique

capability not otherwise duplicated in the

base. The choice of the base will not de

tract from the efficiency, safety, or un

derstandability of the languace.

The capabilities available in any language can be parti

tioned into two p;roups, those definable wHhin the base, and

those providing an essential primitive capability of the lang

uage. The smaller and simpler the base, the easier the lang

uage will be to learn and use. A clearly de!ineated base, with

features not in the base defined ln terms of the base, wlll

improve the ease and efficiency of learning, implementing, and

maintaining the language. Only the base ne~d be implemented to

make the full source-language capability available.

Base features will provide relatively low-leveled general

purpose capabJlities not yet specialized for particular appli

cations. There will be no prohibition on a translator incor
porating specialized optimizations for particular extensions.

Any extension provided by a translator will, however, be de
finable within the base .language, using the built-in definition
facilities. Thus, programs using the exte~sion will be trans

latable by any compiler for the language, but not necessarily

with the same object efficiency.

I6. Language restrictions which are dependent

only on the translator and not on the ob

ject machine will be specified er~Zicitly

in the language definition.

115

Limits on the number of array dimensions, the length of

identifiers, the n~er of nested parentheses levels in expres

sions, or the number of idt~tifiers in programs are determined

by the translator and not by the object machine. Ideally, the

limits should be set so high that no program (save the most

abrasive) encounters the limits. In each case, however, (a)

some limit must be set, (b) whatever the li~it, it ~ill affect

some program and therefore must be known by the users of the

translator, (c) letting each translator set its own lir:1its means

that ,rograms will not be portable, (d) setting the lir:1its very

high requires that the translator be hosted only on large ma

chines, and (e) quite low Hmits do not impose significantly

on either the power of the language or the readability of pro

grams. Thus, the limits should be set as part of the lru1guage

definition. They should be small enough that they do not domi

nate the compiler, and large enough that they do not Jnterfere

with the usefulness of the language. If they were set at, say,

the 99-percent level, based on statistics from existing DoD

computer programs, the limits might be a few hundred for num

bers of identifiers and less than ten in the other cases men

tioned above.

I?. Language res trictio;1s which are in he rent ly

dependent only on the object environment

will not be built into the language defi

nition or any translator.

Limits on the amount of run-time storage, access to spe

cialized peripheral equipment, use of special hardware capa

bilities, and access to real time clocks are dependent on the

object machine and configuration. The translator will report

when a program exceeds the resources or capabilities of the in

tended object machine but will not build in arbitrary lir:1its

of its own.

116

I
I
I
J
J
J
..,..

.J,

....

....

J. EFFICIENT OBJECT REPRESENTATIONS AND MACHINE DEPENDENCIES

Jl. ~'he language and its translators will not

impo~e run time costs for unneeded or un

used generality. They will be capable of

producing efficient code for all programs.

The base language and library definitions might contain

features and capabilities not needed by everyone, or not by

everyone all the time. The language should not force programs
to require greater generality than they need. When a program

does not use a feature or capability, it should pay no run time

cost for the feature being in the language or library. When

the full generality of a feature is not used, only the neces
sary (reduced) cost should be paid. Where possible, language

features (such as automatic and dynamic array allocation, proc
ess scheduling, file management, and I/0 buffering) which re
quire run tir.c support packages should be provided as standard

library definitions and not as part of the base language. The
user will not have to pay t1me and space for support pac~ages

he does not use. Neither will there be automatic movement of
programs or data between main storage and backing storage which

is not under program control (unless the object machine has

virtual memory with underlying management beyond the control
of all jts users). Languag.e features will result in special
efficient object code when their full generality is not used.
A large number of special cases should compile efficiently.
For example, a program performing numeric calculations on un
subscripted real variables should produce code no worse than
FORTRAN. P~rameter-passing for single-argument routines might
be implemented much less expensively than multiple-argument

routines.

On~ way to reduce costs for unneeded capabilities is to

have a base language whose data structures and operations pro

vide a single capability which is composable and has a straight

forward implementation in the object code of conventional

117

architecture machines. If the base language components are

easily composable, they can be used to construct the specialized

structures needed by specific applications, if they are simple

and provide a si~~le capability, they will not force the use of

unneeded capabilities in order to obtain needed capabilities,

and if they are compatible with the features normally found in

sequential uniprocessor digital computers with random access

memory, they will have near-minimum or at least low-cost imple

me~tation on many object machines.

J2. Any optimizations performed by the trans

lator will not change the effect of the

program.

More simply, the translat~r cannot give up program reli

ability and correctness, regardless of the excuse. ~rote that

for most programming languages, there are few known safe opti

mizations and many unsafe one~. The number of applicable safe

optimizations can be increased by making more information avail

able to the compiler and by choosing language construct~ which

allow safe optimizations. This allows optimization by code

motion, providing that motion dces not change the effect of the

program.

J3. The source language will provide encapsu

lated access to machine-dependent hardware

facilities~ including machine language code

insertions.

It is difficult to be enthusiastic about machine language

insertions. They defeat the purpose of machin€ independence;

constrain the implementation techniques; complicate the diag

nostics; impair the safety of type checking; and detract fro~

the reliabllity, readability, and modifiability of programs.

The us~ of machine language insertions is particularly danger

ous in multiprogramning applications, because they impair the

ability to exclude, a priori, a large class of time-dependent

118

I
I
l

J

, ..
I

..

bugs. Rigid enforcement of scope rules by the compiler in

real-time applications is a powerful tool to ensure that one

sequential process will not interfere with others in an uncon

trolled fashion. Similarly, when several independent programs

are executed in an interleaved fashion, the correct execution

of each may depend on the others not improperly ·:tsing machine
language insertions.

Unfortunately, machine language insertions are r.ecessary

for interfacing special-purpose devices, for accessing special

purpose hardware capabilities, and for certain code optimiza
tions on time-critical paths. Here we have an example of

Dijkstra's dilemma (see Chapter I, Section B), in which the

mismatch between high-level language programming and the under

lying hardware is unacceptable and there is no feasible way to
reject the hardware. The only remaining alternative is to
"continue bit pushing in the old way, with all the known,ill

effects". Those ill effects can, however, be constrained to

the smallest possible perimeter, in practice, if not in theory.

The ability to enter machine language should not be used as an

excuse to exclude otherwise-needed facilities from the HOL;
the abstract descr!otion of programs in the HOL should not re
quire the use of machine language insertions. The semantics
of machine language insertions will be determinable from the
HOL definition and the object machine description alone, and
not dependent 0n the translator characteristics. Machine lang
uage insertions will be encapsulated so they can be easily rec
ognized and so that it is clear which variables and program
identifiers are accessed within the insertion. The machine

language insertions will be permitted only within the body of

compile time conditional statements (see I4), which depend on

the object-machine configuration (see I3). They will not be

allowed to be interspersed with executable statements of the

source language.

119

J4. It witt be possible within the soupce

language to specify the object Peppe

eentation of composite data stPuctupes.

These descPiptione witt be optional and

encapsulated and witt be distinct fPom

the logical descPiption. The useP wiZZ

be ab~e to specify the time/space tPade

off to the tpansZatoP. If not specified,

the object Peppesentation ~itt be optimal,

as detePmined by the tpansZatoP.

It is often necessary to give detailed specifications of

the object data representations to obtain ~axirnurn density for

large data files, to meet format requirement~ imposed by the

hardware or peripheral equipment, to allow special optimiza

tions on time-critical paths, or to ensure compatibility when

transferring data between machines.

It will be possible to specify the order of fielas, the

width of fields, the presence of "don't care" fields, and the

position of word boundaries. It will be possible to associate

~ource-language identifiers (data or program) with special ma

chine addresses. The use of machine-dependent characteristics

of the object representation ~ill be restricted, as with na

chine-depe~dent code (see J3). When multiple fields rer w~-d

are specified, the compiler may have to generate some form of

shift and mask operations for source-prograrr. references a~a

assignments to those variables (i.e., field5). As with ma

~h~ne-lar.guage insertions, object da~a ~pecifications should

te used sparingly and the language feature~ for t~eir use must

ue Sparta~.

If the object representation of a co~posite iata object

is not specified in the source program, there will be no spe

cifjc default guaranteed by the translator. The translator

might, for example, attempt to minimize acc~ss time and/or

120

., ~ "~?>~------·

J
I
I
1
J
J

memory space in determining the object representation. It

might, depending on the object-machine characteristics, as-

sign variables and fields of records to full words, but assign

array ele~ents to the smallest of bits, bytes, half words,

words, or exact-multiple words permitted by the logical descrip
tion.

JS. The programmer will be able to specify

whether calls on a routine are to have

an open or ~losed implementation. An

open and a closed routine of the same

description will have identical seman

tics.

The use of inline open procedures can reduce the run tine

execution costs significantly in some cases. There are the

obvious advantages in eliminating the parameter passing, in

avoiding the saving of return marks, and in not having to pass

ar~uments to and from the routine. A less obvious, but often

more important, advantage in saving run time costs is the abil

ity to execute constant portions of routines at co~pile tirr.e

and, thereby, eliminate time and space for those portions of

the procedure body at run time. Open routine capability is

especially important for machine-language insertions.

The distinction between open and c:osed implenentation

of a routine is an efficiency consideration and should not af

fect the function of the rout1ne. Thus, an open routine will

differ from a syntax macro in that (a) its global environment

is that of its definition and not that of its call and (b)

multiple occurrences of a formal value (i.e., read only) para

meter in the body have the same value. If a routine is not

specified as either open or closed, the choice will be optinal

(with respect to space or time) as determined by the translator.

121

l
I
I
.J

1
l
J
]

..

,

VI. CHARACTERISTICS NEEDED FOR OTHER ASPECTS
OF THE COMMON-LANGUAGE EFFORT

••
The material reported in this chapter was generated by the

Services at the same time as the technical characteristics

described in the preceding Chapter but is conc@rned ~ith the

trru1slators, support software, documentation, training, stand

ards, application libraries, management policy, and procure

ment practices for the common language and its use. These is

sues are important, while mistakes and oversights in the tech

nical characteristics can guarantee failure of the common-lang

uage effort, success is not guaranteed, no matter how techr;i

cally meritorious the resulting language. Success can only be

guaranteed by close attention to a variety of nontechnical is

sues, including those considered below.

Several of thes~ issues, including those of implement.ltion,

documentation, and support will either directly or indlrect:y
affect the acceptability of candidate languages. As with th~

needed tP-chnical characteristics for the cow~on language, th~·

issues raised here are often not resolved at the most detailed
level. Until more detailed characteristics of the language come

into focus, there is no rationale with which to resolve all these

issues in detail.

Preceding page ~lank 123

A. PROGRAM ENVIRONMENT

Kl. The Z.anguage wi l Z. not :r>equi:r>e that the

object machine have an ope:r>ating system.

When the object machine does have an op

e:r>ating system o:r> executive p:r>og:r>am~ the

ha:r>dwa:r>e/ope:r>ating system combination will

be inte:r>p:r>eted as defining an abst:r>act ma

chine which acts as the object machine fo:r>

the t:r>ans Z.a to:r>.

A language definition cannot dictate the architecture of

existing object machines, whether defined entirely in hardware

or in a hardware/software combination. It can provide a source

language representation of all the needed capabilities and ~t

tempt to choose these so they have an obvious and efficient

translation in the object machines.

K2. The language will suppo:r>t the integ:r>ation

of sepa:r>ately W:r>itten modules into an op

e:r>atior.al p:r>og:r>am.

Separately written modules in the .form of routines and

type definitions are necessary for the management of large

software efforts and for effective use of libraries. The

user will be able t0 cause any~hin~ in an7 accessible library

to be inserted into his ~rogram. This is a requirement for

separate definition but not necessarily fo'Ir' separate compila

tion. The decision as to whether separat€ny defined pro~ram

modules are to be maintained in source or ~ject lar.guage form

is a question of implementa~ion efficiency~ will be a local

managenent option and will not be imposed ~ the language defi

nition. The trade-offs involved are complli~ted by other re

quirements for type checking of paramete~s «see C6), for open

subroutines (see JS), for efficient cbjeet :rrepresentations

(see Jl), and for constant expression evaliuation at compile

ti~~ (see C4). In general, separate compi]ation increased the

124

I
I
I
I

]

J
,.
I

.,),

diffic~lty and expense of the interface validations needed for

progl'am safet~· and reliability and detracts from object pro

g~ru~ ~fficicncy by removing many of the optimizations otherwise

possible at the interfaces, but at the same time it reduces the
cost and co.,.plexity of compilation.

K3. A famiLy of programming tooLs and aids in

th~ f~rm of support packages inu!uding

Linkers, loaders, ar.d debugging systems

~ill be made avaiLable with the language

and its transZators. There wiU be a con

sistent, easiZy used user interfac~ fer

these tooZs.

No longer can a programming language be considered sep

arately from its programming environment. The availability of

programming tools which need not be developed or supported by

individual projects is a major factor in the acceptability of
a language. There is no need to restrict the kinds or form '=>f

support software available in the programming environment, and
continued development of new tools should be encouraged and

made available in a competitive market. It is, however, desir
able that tools be developed in their own source language to
simplify t~eir portability and maintainability.

K4. A variety of usefuZ options to aid gene

ration, testj aocumentation, and modifi

cation of programs wiZZ be provided as

support software avaiZabZe with the Zang

uage or as translator options. As a mini

mum, these wiZl incZude program editing,

post-mortem anaZysis and diagnostics, pro

gram reformatting for standard identations,

and cross-reference generation.

There will be special facilities to aid the generation,

test, documentation, and modification of programs. The "best"

125

--......

set of capabilities and their proper form is not currently

known. Since nonstandard translator options and availability

of nonstandard software tools and aids do not adversely affect

software commonality, the language definition and standards

will not dictate arbitrary choices. Instead, the development

of language-associated tools and aids will be encouraged within .-the constraint of implementing and supporting the source langu·-

age, as defined. Tools and debugging aids will be source-lang

uage oriented.

Some of the translator options which have been suggested

and may be useful include the following. Code might be com

piled for assertions which would give run time warnings when

the value of the assertion predicate is false. It might pro

vide run-time tracing of specified program variables. Dimen

sional analysis might be done on units-of-measure specifica

tions. Special optimizations might be invoked. There might

be capability for timing analysis and gathering run-time sta

tistics. There might be translator-supplied feedback to pro

vide management visibility regarding progress and conformity

with local conventions. The user might be able to inhibit code

generation. There might be facilities for compiling program
patches and for controlling access to language features. The

translator might provide a listing of the number of instruc

tions generated against corresponding source inputs or an es

timate of their execution times. It might provide a variety

of listing options.

K5. The source language will permit inclusion

of assertions, assumptions, axiomatic defi

nitions of data types, debugging specifica

tions, and units of measure in programs.

Because many assertional methods are not yet

powerful enough for practical use, nor suf

ficiently well developed for standardization,

they will have the status of comments.

126

£""""' ,............ .,... ' l :::_, 4.. d. c .

l
I
l
J
1
I
1

..

Tt:ere are many opinions on the desirability, usefulness,

and proper form for each of these specifications. Better pro

gram documentation is needed and specifications of these kinds

may help. Specifications also introduce the possibility of

automated testing, run-time verification of predicates, for

mal program proofs, and dimensional analysis. The language

will not prohibit in~lusion of these forms of specification if

and when they become available for practical use in programs.

Assertions, assumptions, axiomatic definltions, and units of

measure in source-language programs should be enclosed in

special brackets and treated as interpreted cornments -- com

ments delimited by special-comment brackets and which may be

i!1terpreted durir,~?; translation or debugging to provide units

analysis, verificat-ion of assertlons and assumption::;, etc. -

but whose interpretation would be optional to translator i~

plementations .

8. TRANS LA TORS

Ll. No implementatio~ of the language will con

tain source~language features which are not

defined in the l~nguage standard. Any inter

pretation of a language feature not explicitly

permitted by the language definition will be

forbidden.

This guarantees that use of programs and software sub

systems will not be restricted to a particular site by virtue

of using their unique version of the language. It also rep
resents a commitment to freezing the source language, inhibit

ing innovations and growth in the form of the source language,

and ccnfining the base language to the current state of the

art in return for :::;tability, wider applicability of software

tools, reusable software, greater software visibility, and in

creased payoff for tool-building efforts. It does not, however,

disallow library definition opti~izat1ons which are translator

unique.
127

L2. Every translator for the language will

impl-ement the entire base language. There

will be no subset implementations of the

base language.

If individual compilers 1mplement only a subset of the

language~ then there is no chance for software commonality.

If a translator does not implement the ent!re language, it

cannot give its users access to standard supported libraries

or to application programs implemented on sc~e other trar.sla

tor. Requiring that the full language be iMplemented \'lill be

expensive only if the base language is large, complex, and non

uniform. The intended source language product from this ef

fort is a small, simple, uniform base lanauage \-:ith the spe

cialized features~ support packages, and comp~ex features rel

egated to library routines not requirin~ ~:rect trarslator

support. If simple, low-cost trc...1slators are not fe8.sible for

the selected language, then the language is too large and com

plex to be standardized and the goal of langu3ge conmonality

will not be achievable.

L3. The translator wi H minimize compile time

costs. A goal of any translator fer the

language will be low-cost translation,

(when optimization ic disabled).

Where practical and beneficial, the user will have con

trol ~ver the level of optimization appl~ed to his programs.

The programmer will l:ave control over the trade-offs between

compile-time and run-time costs. The desire for small, e~fi

cient translators that can be hosted by machines with limited

size and capability should influence the design of the base

language against inclusion of unnecPssary features and towards

systematic treatment of features which are included. The goal

will be effective use of the available machines, both in ob-

ject execution and translation, and not maximal speed of trans

lation.
128

_,.

I
I
I
I

1
l
J

Translation costs depe:1d not only on the compiler but the

language design. Both the translator an.d the language design

will emphasize low-cost translation, but in an environment of

large and long-lived software products. this will be secondary

to requir~ments for reliability and maintainability. Language

features will be chosen to ensure that they do not impose costs

for unneeded generality and that needed capabilities can be

translated into efficient object representations. This means

that the inherent costs of specific language features in the

context ~f the t~tal language must be understood by the de

sibners, implementers, and users of the language. One conse

quence sh::>uld be that trivial programs compile and run in triv-·

ial time. On the other hand, significant optimization is not

expected from a minimal cost translation.

L4. T1'anslato1's will be able to p1'oduce code fo1'

a Va1'iety of objeat ~achines. The machine

independent parts of t1'anslators might be

built independently of the code gene1'ato1'B.

There is currently no common, widely used computer in the

DoD. There are at least 250 different models of commercial

machines in use, along with many specialized machines. A com

mon language must te applicable to a vide variety of models

and sjzes of machines. Translators might be written so they

can produce object code for several machines. This reduces

the proliferation of translators and ~aKes the full power of

an existing translator available at the cost of producing an

additional code generator.

L5. The t1'anslatc1' need not be able to 1'Un on

all the object machines. Self-hosting· is

not 1'equi 1'ed, bz..t is often desi1'able.

The DoD operational programm::ng environment includes many

small machines which are unable to support adequately the de

sign, documentation, test, and debugging aids necessary for the

129

development of timely, reliable, or efficiPnt software. Large

machine users should ~ot te penalized for t~P restrictions of

small machines when a co~mon language is usPd. On the other

hand, the size of machines which can host trbnslators should

be kept as small as possible by avoidin~ unnecessary general

ity in the langua~e.

L6. 'Ihe tra•tsZa~or r..1ill do full syr:ta.r cheokt:n.g~

!Jill ~1zec'K a:~ operatimzs a~:d rc:r•,;r:.·tt:rs fer

type co"l"lpa~n,Uity. m:d will vo•:':·:, tha~ aZZ

language-iw;ro.c~cJ semar.tic roestr~~e:1'o•zs c•t the

source pr~r"l'~r:s aPe met. It ~ill ~o~ auto.,a:-

The purrosc or :ource lan~ua~e redu~d3ncy and avoidance

cr error-rrone lanru~re f0arures is reliati~ity. The price i~

raid in prOframr.:er inccn'.'Cnience in havinf ~C ::r-ecify his in

tent in greater detail. The payo~f comes when the translator

checks that the sourcP rro;rare is intern3lly consistent and

adheres to its authors' stated intentions. ;here is a clear

trade-off between error avoidance and prograrnning ease; sur

veys conducted by the Services show that the programmers as

well as manaGers will opt fer error avoida~ce over ease when

rjven the choice. The sa~e choice is dictated ty the need for

l'i•~ll-documented, r.,ainta1nable sofr.ware.

L7. The translator' ~ill pPoduce compile time

exp Zan a tor;' .-:!7: a;::n os tic e rpor and :.Jarw~r. g

m~ssaaes. ~ s~aaestcd set of Error ar.a
~ ..

warning situa~ions wiZZ be provided as

part of the language definition.

The translator will attempt to provide the maxireal use-

ful feedback to its u~er. Diarnostic messaGeS will not be

coded, but will be exrlanatory and in source-lanfua~e terms.

TranslE~ors will continue processing and checking after errors

have been found, but should be careful not to generate erroneous

l3J

http://reliari2.it;.-

T
t ,.

I
J
,
J

messages because of translator confusion. The translator w11:

always produce correct code; when source program errors are er~

countered by the translator or referenced program structures

omitted, the compiler will produce code to cause a run-time

exception condition upon any attempt to execute those parts cf

the program. Warnings will be generate~ when a source-lang~

age co;1struct is exceptionally expensive to imp~ement on the

specified object machine. A suggested set of diagnostic mes

sages, provided as part of the language definition, contribu:er

to commonality in the implementation and use of the language.

The discipline of designing diagnostic m=ssages keyed to the

design may also uncover pitfalls in the language design and

thereby contribute to a more precise and better-understood

language description.

LB. The cha'!'acte'l'istics of t'l'anslato'l' imple

mentations will not be dictated by the

language definition O'l' standa'l'ds.

The adoption of a common language is a commitment to the

current state of the art for programming language design for

some duration. It does not, however, prevent access to new

software and hardware technology, new techniques, and new rnar;

agement strategies which do not have an impact on the source

language definition. In part~cular, innovation should be en

couraged in the development of translators for a common lang

uage, providing they implement exactly the so~rce language as

defined. Translators, like all computer programs, should be

written in expectation of change.

L9. T'l'ana lato'l's for' the language will be

W'l'ittbn in their' own sou'!'ce language.

There will be at least one implementation of the transla

tor in its own language \.rhich does all parsing and corr.pile-t~::-E

checking and produces an outpt..t suitable for easy translat:o~

131

to specific object machines. If the langu~~e is well-defined

and uniform in structur~, a self-description will contribute

to understanding of the language. The availability of the

machine-independent portion of a translator will make the full

power of the language available to any object machine at the

cost of producing an additional c0de generator (whose cost ~ay

be high) and it reduces the likelihood of incompatible !~ple

mentations. Trat~slators written in their own source lan;:ua'"e

are automatically available on any of their object machines,

providing the object nachine has sufficient resources to sur

port a compiler.

C. LANGUAGE DEFINITION, STANDARDS, AND CONTROL

Ml. The language L.'i l Z be composed f1'o..., fea

tu1'es ~hich are uithin the state of the

a1't and any design or 1'edesign ~hi~h is

necessa1'y to ach~eve the needed charac

teristics ~iZZ be cond~cted as an e~gi

neering design effort and not as a re

search project.

The adoption of a common lan~uag:e can be successful only

if it makes available a modern programMing la~~uage cor.rati-

b le with the latest soft\-:are technology and \-:ith "best" cur
rent programming practic~, but the design and implementation

of the language should not require additional research or ~~e

of untried ideas. State of the art cannot, however, be taker.

to mean that a feature has been incorporated 1n an operational

DoD language and used for an extended period, or DoD will be

forever tied to the technology of FORTRAN-like languag:es; but

there must be some assuran~es through analysis and use that

its benefits and deficiencies are known. The larger and ~ore

complex the structure, the more analysis and use that should

be required. Language desi5n should parallel other engineer

ing design efforts in that it is a task of consol~dation

132

I
I
1
I
1
I
....
I

.!

---·-··---.. ·-·----------·· -~

and not innovation. The ianguage designer should he familiar

with the many choices in semantic and syntactic features of

language and should strive to compose the best of these into

a consistent st~ucture congruous with the needed characteris

tics. The la~guage should be composed from known semantic

features and familiar notations, but the use of a proven fea

ture should not necessarily impose that notation. The lang

uage must not just be a combination of existing features which

satisfy the individual requirements, but must be held together

by a consistent and uniform structure wnich acts to minimize

the number of concepts, consolidates divergent features, and

simplifies the whole.

M2. The semantics of the language ~iZZ be de

fined unambiguously and cZeaPZy. To the

extent a foPmaZ definition assists in at

taining these objectives~ the language's

semantics ~iZZ be specified foPmaZZy.

A complete and unambiguous definition of a common langu

age is essential. Otherwise, each translator will resolve the

ambiguities and fill in the gaps in its own unique way. There

are currently a variety of methods for formal specificatjon

of programming language semantics, but it remains a major ef
fort to produce a rigorous, formal description, and the re
sulting products are of questionable practical value. The

real value in attempting a formal definition is that it re
veals incomplete and ambiguous specifications. An attempt will

be made to provide a formal definition of any language selected,

but success in that effort should not be requisite to its se

lection. Formal specification of the language might take the

form of an axiomatic definition, use of the Vienna Definition

Language, or use of some other formal semantic system.

133

M3. The use~ documentation of the lcr.gu

age ~ill be complete and ~ill include

both a tuto~ial int~oducto~y desc~ip

tion and a fo~mal in-depth desc~iption.

The language ~ill be defined as if it

~e~e the machine-level language of an

abst~act digital compute~. ••

The language should be intuitively correct and easily

learned and understood by its potential users. The language

definition might include an Algol-60-like description (Ref. lC)

with the source language syntax given in BNF or some other

easily understood metalanguage and the corresponding semantics

given in English. As with the descriptions of digital compu

ter hardware, the semantics and syntax of e2ch feature must be

defined precisely and unambiguously. The action of any lega1

program will be determinable from the program ard the language

description alone. Any computation which can be described in

the language will ultimately draw only on capabilities built·

into the language. No characteristics of the source language

will be dependent on the idiosyncrasies of its translators.

The language documentation will include syntax, semantics,

and examp~es of each lang~age construct, listings of all key

words and language-defined defaults. Examples shall be includ0d

to show the intended use of lan~uage features and to illustrate

proper use of the language. Particularly expensive and inexpen

sive constructs will be pointed 011t. Each document will iden

tify its purpose and prerequisite3 for its use.

M4. The l~nguage will be configu~ation-man

aged th~oughout its total Zife cycle and

will be cont~olled at the DoD level to

ensu~e that the~e is only one ve~sior. of

the eou~ce language and that all t~ansla

to~s confo~m to that standa~d.

134

I
J
1
1

Without controls, a comnon language may become another

umbrella under which new languages proliferate while retain

ing the common language's name. All compilers will be tested

and certified for conformity to the standard specification and

freedom from known err~rs prior to their release for use in

production projects. The language manager will be on the OSD

staff, but a group within the Military Departments or Agenci~s

might act as the executive agent. A configuration control

board will be instituted ~ith user representation and chaired

by a member of the OSD staff.

M5. There !.Jill be identified support agent(s)

responsible for m~intaining the translators

and for associated design, development, de

bugging, and maintenance aids.

Language commonality is an essential step in achieving

software commonality, but the real benefits accrue when pro

jects and contractors can draw on existing software with as

surance that it will be supported, when systems can build from

off-t:Je-shelf corr1ponent:;, or at least with common tools, and

when efforts can be expended in exp~nding existing capabilit

ies instead of building from scratch. Support of common, widely

used tools and aids should be provided independently of pro
jects if cor.1I!Ion software is to be widely used. Support should

be on a DoD-wide basis, with final responsibility resting with
a stable group or groups of qualified in-house personnel.

f.!6. There l.Ji l l be s tanda2•ds and support agents

for common libraries, i~cluding applicatior.

oriented libraries.

In a given application of a programming language, three

levels of the system must be learned and used: the base lang

uage, the standard library definitions used in that application

area, and the local application pr~grams. Users are responsi

ble for the local application programs and local definitions,

135

but not fvr tlH' lanr.uar:-:<"' ;tr:d :!.t:: librarh-s, \ihich ~1re u::ed ~;:

many projects :-~nd sit~::-.. :\ princ~ral t::>Pr r~rht :-1ct as af':t:·r.:

for an entire nprlicA.tion nr(·a.

l)·.

I
I
I
I
I
.l

J
..

.... ,._ __ , __ ..

REFERENCES

1. Space and Missile Systems Organization, AFSC,
Info~mation Processing/Data Automation Impli
aations of Air Force Command and Cont~ol Re
quirements in the 1980s (CCIP-85), Vol. IV,
Teahnotogy Trends: Soft~are, October 1973,
AD 919267L.

2. David A. Fisher, "Automatic Data Processing
Costs in the Defense Department", Institute
fer Defense Analyses Paper P-1046, October
1974.

3. Malcolm R. Currie, Director, De fens•: Research
and Engineering, in Memorandum to the Assis
tant Secretaries of the Military Departnents
(R&D), Subject: DoD Higher Order Prograrr.ming
Language, January 28, 1975.

4. Stephen A. Schuman (Ed.) Proceedings of the
Inte~nationaL Symposium on Extensibte Lang
uages, SIGPLAN Notices, Vol. 6, No. 12,
December 1971. Also, c. Christensen and C.
J. Shaw (Ed.), Proceedings of the ExtensibLe
Language Symposiu~, SIGPLAN Notices 4, August
1969. .

5. Niklaus Wirth, "An Assessment of the Program
ming Language P.ll.SCAL," Proaeedings of the In
ternationaL Conference on Reliable Soft~are,
21-23 April 1973, pp. 23-30.

u. Jacob Palme, "SIMULA as a Tool for EYtensible
Program Prod-:..tcts", SIGPLAN NOTICES, Vol. 9,
No. 4, February 1974.

7. Donald E. Knuth, "St.ructured Programming with
go to Statements," ACM Computer Surveys, Vol.
6, llo. 4, December 1974.

137

...

8. E. W. Dijkstra, coding exa~ples in Chapt~r I,
"Notes in Structured ?rogra:nmin~;," 1r. St"f'uc
tz.cred Programnh:p by 0-J. Dahl, E.\\'. r~.li-:~tr:1
and C. A. R. Hoare, Academic froess, 1c7 ..

9. Thomas A. Standish, "A Structured Prnrrn:-:-: to
Flay Tic-Tac-Toe," notes for InforFn:1n~ a~rt
Computer Scien~e 3 cour;.>e at llniverdty of
California-Irvine, October 1974.

10. ?. Naur (Ed.), "Revised Report on the Algor
ithmic Langua~e Algol-60," Comnu~i~ation c!
the A.C.f.f. Vol. 6, No. 1, January 11(3, rr-·.
1-17.

138

~-~'

I
l
J
I
1
I
I
l
]"

I
I
I
I
I
I
I
I
I
-

---,~----- -- -·--· ~ -- -

I.PPENDIX

Organizations and Individuals Contributing to the
Common language Requirements Effort

A-1

· ..

I

ARMY

APPENDIX

Organizations and Individuals Contributing to the
Common Language Requirements Effort

U.S. Army Aviation Syste~s Command
St. Louis, MO

U.S. Army B. R.I.

U.S. Army Ccmmunications Command
Ft. Huachuca, AZ 85613

U.S. Army Computer Systems Command
Ft. Belvoir, VA 22060

U.S. Army Electronics Command
Ft. Monmouth, NJ 07703

Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002

Comm/Int Tech. Area El.~ Lab

Computer Hard\'l'are Tech Area

· Electronics Tech and Devices Lab

Night Vision Laboratory
Ft. Belvoir, VA 2206C

Radar Tech Area CS&TA Lab

Systems and Programming Division

Switching Tech Area

U.S. Army Force Develop~er.t Command
Ft. McPherson, GA 30330

U.S. Army Intelligence Center and School
Ft. Huachuca, AZ 85613

U.S. Army Material Command
Ft. Monmouth, NJ 07703

Preceding page blank
A-3

Army Tactical Communications Systems

Army Tactical Data Syst~ms

Navigation/Control Systems

Remotely M0nitored Battlefield Sensor System

U.S. Army Mobility Equipment Research and Development Center
Ft. Belvoir, VA 22060

U.S. Army Tank-Automotive Command
Warren, MI 48090

U.S. Army Test and Evaluation Command
Aberdeen Proving Grounds, MD 21005

U.S. Army Training and Doctrine Command
Ft. Monroe, VA 23651

U.S. Army Training Support Activity
Ft. Eustis, VA 23604

U.S. Army Troop Support Command
4300 Goodfellow Blvd
St. Louis, MO 63166

..
- "

\ U.S. ~rmy Security Agency, Management Information Systems
Arlington Hall Sta~ion
Arlington, VA 22212

U.S. Army White Sands Missile Range
White Sands Missile Range, NM 88002

Ballistic Missil~ Defense Project Office
1300 Wilson Blvd
Arlington, VA 22209

Frankford Arsenal
Philadelphia, PA 19137

Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

Modern Army Selected Systems Test Evaluaticn and Review
Ft. Hood, TX 76544

Office of Chief of Engi~eers
Washington, DC 203l4

A-4

Office of Chief of Staff
Washington, DC 20314

Office of Chief of Staff for Intelligence
Washington) DC 20310

Office of the Surgeon General
Washington, DC 2G310

Picatinny Arsenal
Dover, NJ 07801

Redstone Arsenal
Redstone Arsenal, AL 358on

NAVY

Naval Air Development Center
Warminister, PA 18974

Naval Air Systems Co~~and
Washington, DC

Naval Air Engineering Center
Lakehurst, NJ

Naval Air Test Center
Patuxent River, MD 20670

Naval Electronic Systems Test and Evaluation Detachment
Patuxent River, MD 2J670

Office of the Oceanographer of the Navy
Alexandria, VA 22332

ASW Systems Project Office
National Center Bldg #1
Arlington, VA

United States Naval Academy
Annapolis, MD 21402

.. Na..ral Undcr··water Systems Center
New London, CT 06320

Naval Unde1~ater Systems Center Headquarters
Newport, RI 02840

Naval Undersea Center
San Diego, CA 92132

A-5

4 - ••- 'l$i_u, diii ,

····--···-········· l
l
l

\,

\

Naval Surface Weapons Center Headquarters
White Oak, Silver Spring, MD 20910

Naval Surface \-.'eapons Center, Dahlgren Laboratory
Dahlgren, VA

David w. Taylor Naval Ship R&D Center
Naval Ship Research and Developnent Center HQS.
Bethesda, MD 20034

Naval Sea Systems Command
Washington, DC 20362

Fleet Combat Direct!on Systems Support Activity
Virginia Beac~, VA 23461

Fleet Combat Direction Systems S~pport Activity
San Diego, CA 92147

Naval l\1aterial Comr:1and

Naval Electronics Laboratory Center
San Diego, CA

Naval Intelligence Corni'Iand

Naval Postgraduate School
Monterey, CA

Naval Research La~~ratory
Washingtor~, DC

Naval Weapons Center
China Lake, CA

AIR FORCE

Aerospace Defense Command
Ent AFB, CO 80912

Air Force Accounting and Finance Center
Denver, CO 80205

Air Perce Audit Agency
Norton A~B, CA 92409

Air Force Communications Service
Richards Gebaur AFB, MO 64030

Air Force Data Automation Agency
Gunter AFB, AL 36114

.-.- ~

Air Force Intelliger,;::e Service
Washington, DC 20330

Air Force Lcgistics Command
Wright-Patterson AFB, OH 45433

Air Force Military Personnel Center
Randolph AFB, T~ 78148

Air Force Systems Command
Andrews AFB, Washington, DC

Aeronautical Systems Division ASD/RWSV
Wright-Patterson AFB, OH 45433

Air Force Avionics Labcratory
Wright-Patterson AFB, OH 45433

Armament Development and Test ADTC/TSX Center
Eglin AFB, FL 32542

Directorate of Computer Resource Development,
Policy & Planning

AFSC/XRF
Andrews AFB, Washington, DC

Electronic Systems Divisicn
ESD/r~cr
L. G. Hanscom AFB, MA 01730

Rome Air Development Center
RADC/I3I
Griffiss AFB, NY 13441

Space and ~Hssile Systems Organization
SAr·:SO/DYVC
Los Angeles, CA 90009

Air Force Test and Evaluation Center
Kirtland AFB, NM 87115

Air Training Co~~and
Randolph AFB, TX 78148

Air University
Maxwell AFB, AL 36112

Alaskan Air Command
APO Seattle, WA 98742

A-7

\

f.iilitary Airlift Command
:cott AFB, IL 62225

Strategic Air Command
Offutt AFB, NE 68113

Tactical Air Co~nand
Langley AFB, VA 23665

United States Air Force Academy
USAF Academy, CO 80840

United States Air Force Security Service
~an Antonio, TX 78243

:J:JDUSTRY

Aerospace Corporation

?0ein~ Aerospace Company

Bolt, Beranek, and Newman, Inc.

Burroughs Corporation

Charles Stark Draper Laboratory, Inc.

Computer Sciences Corporation

General Electric Company

Gru~.an Aerospace Corporation

llur>:hes Aircraft Company

lntermetrics, Inc.

International Business ~achines Corporation

Litton .Syst.ems, Inc.

Massachusetts :omputer Associates, Inc.

~:cDonnell Dor.glas Astronautics Company

rl:ellani cs

Research and Consultin~, Inc.

Rolm Corporation

A-3

,.

•

Scientific Applications, Inc.

Singer Gompa:ty

Sof Tech

Sperry Univac

Systems Control, Inc.

Texas Instrument Company

TRW Systems Group

Westinghouse Defense and Electronics Systems Genter

Xerox Palo Alto Research Center

OTP.iR ORGA!liZA~IONS AND INDIVIDUALS

Defense Advanced Research Projects Agency
Washington, DC

Defense Comnunications Abency
Washington, DC

Lawrence Livermore Laboratory
University of California
Livermore, CA

National Aeronautics And Space Administration
Washington, DC

James J. Besemer
Purdue University
West Lafayette, IN

Thomas E. Cheatham, Jr.
Harvard University
Cambridge, r·:A

Richard A. DeMille
University of Wisconsin-Milwaukee
Milwaukee, WI

Edsger W. Dijkstra
Nuenen, The Netherlands

Philip H. Enslow
Georgia Institute of Technology
Atlanta, GA

A-9

•

David Gries
Cornell University
Ithica, NY

r..A.R. Hoare
Queen's University of Belfast
Belfast, Northern Ireland

Rtchard A. Karp
"'~-- nford tTni versity
.. ::.anford, CA

rcter T. Kirstein
University College Lcndon
London, England

Henry F. Ledgard
llni versi ty of ~1asso.chusetts
A~he rs t , fi~A

Ralph L. London
Information Sciences Institute
University of California
Marina del Ray, CA

Stuart Madnick and Leonard Goodman
.Sloan School, Nassachusetts Institute of Technolo~y
Cambridge, r•TA

John r~cCarthy
At·tificial Intelligence Laboratory
Stanford University
~tar.ford, CA

Jacob Palne
.Swedish National Defense Research Institute
.Stockholm, Sweden

Ian C. Pyle
[;niversity of York
Heslingtonl York, England

Thomas A. Standish
University of California-Irvine
Irvine, CA

J.T. v!ebb
Royal Radar Establishment
Malvern, Great Britain

.:>.-lJ

"

..

~.A. Wichmann
;ational Physics Laboratory
~eddington, Middlesex, United Kingdom

William A. Wulf
Carnegie Mellon University
Pittsburgh, PA

A-ll

••

•

