UNCLASSIFIED N

\\\\\\\\\\\\\\\

Technical

C

dlstrlbuted by

N
| \\ j Defense Technical Information Center
NS:/ DEFENSE LOGISTICS AGENCY

Cameron Station - Alexan dria, Virginia 22314

UNCLASSIFIED

BBasraTty ar nane

IR =

f
U.S. DEPARTMENT OF COMMERCE
National Te-iviical Information Service
AD-A028 297
A Common Programming Language for
the Department of Defense
Background & Technical Requirements
Institute for Defensz Analyses
Prepared For
Defense Advanced Res. Projects Agency
June 1976
\

reeoR

-

KEEP UP TO DATE

Between the time you orcered this report—
which is only one of the hundreds of thou-
sands in the NTIS information collection avail-
able to you—and the time you are reading
this massage, several new reporis relevant to
your interests praobably have entered the col-
lection.

Subscribe to the Weekly Government
Abstracts series that will bring you sum-
maries of new reports as soon as they are
received by NTIS from the originators of the
research. The WGA’s are an NTIS weekly
newsletter service covering the most recent
research findings in 25 areas of industrial,
technoiogical, and sociofegical interest—
invaluable information for executives and
professionals who must keep up to date.

The executive and professional informa-
tion service provided by NTIS in the Weekly
Government Abstracts newsletters will give
you thorough and comprehensive coverage
\of government-condusted or sponsored re-

search activities. And you'll get this impor-
tant information within two weeks of the time
it's released by orginating agencies.

WGA newsletters are computer produced
and electronically photocomposed to slash
the time gap between the release of a report
and its availability. You can learn about
technical innovatione immediately—and use
them in the most meaningful and productive
ways possible for your organization. Please
request NTIS-PR-205/PCW for more infor-
mation.

The weakly newsletter series will keep you
current. But learn what you have missed in
the past by ordering a computer NTISearch
of all the research reports in your area of
interest, dating as far back as 1964, if you
wish. Please request NTIS-PR-186/PCN for
more information.

WRITE: Managing Editor
§285 Port Royal Road

~

Springfield, VA 22161 /

/

Keep Up Te Date With SRIM

SRIM (Selected Research in Microfiche)
provides you with regular, automatic distri-
bution of the complete texts of NTIS research
reports only in the subject areas you select.
SARIM covers almost all Government re-
search reports by subject area a.d/or the
originating Federal or local government
agency. You may subscribe by any category
or subcategory of our WGA (Weekly Govern-
ment Abstracts) or Governmant Reports
Announcements and Index -ategories, or to
the reports issued by a particular agency
such as the Department of Defense, Federal
Energy Administration, or Environmental
Protection Agency. Other options that wiil
give you greater selectivity are available on
request.

The cost of SRIM service is only 45¢

'\domestic {60¢ foreign) for each complete

microtiched report. Your SRIM service begins
as soon as your order is received and proc-
essed and you will receive biweekly ship-
ments thereafter. if you wish, your service
will be backdated to furnish you microfiche
of reports issued earlier.

Bacause of contractual arrangements with
several Special Technology Groups. not all
NTIS reports are distributed in the SRIM
program. You will receive a notice in your
microfiche shipments identifying the excep-
tionally priced reports not available through
SRIM.

A deposit account with NTIS is required
before this service can be initiated. !f you
ha\ ¢ specific gquestions concerning this serv-
ice, please call {703) 451-1558, or write NTIS,
attention SRIM Product Manager.

~

This information product distributed by

5285 Port Royal Road
Springfield, Virginia 22161

U.S. DEPARTMENT OF COMMERCE

’

t

.~

2’“?'9‘7' |

oo
A | :

L — P

7 A COMMON PROGRAMMING LANGUAGE ..
* FOR THE DEPARTMENT OF DEFENSE - - . ;:
BACKGROUND AND TECHNICAL REQUIREMENTS

PAPER P-1101

-, A Fisher-A

 June 1876 :

INSTITUTE FOR DEFENSE ANALYSES Nt
SCIENCE AND TECHNOLOGY DIVISION R
NATIONAL TECHNICAL Co T
" INFORMATION SERVICE ; L

j U.S. DEPARTMENT OF COMMERCE i
snm..m D, VA. 22161 e

,'wA Len No. HQ 76-18215?
':_Cow_g 5 onsseop..,,,

. oy
o i) .
B T £ o VU U SRV s s Sonsonegs

Y

»

BN 6 owd ™ e Gmd G ed ey Geed Dy Sumg Sy BOn Nnd B Gy DY

[

T A

UNCLASSIFIED

SECURITY CLASMPICATION OF THIs PAGE (Phen Dets Enrered

REPORT DOCUMENTATION PAGE BT R ConiBE b oRM

. SORY nyubIR 3 GOVY ACCRIMICH MO B AICIP18nT's CATALOG wunSEN
Paper P«1191
4. TITLE (and Sudetrie) S Tyeg OF REPORT A PEMOO COVERED
A Coammon Programming Language for the Depart- Final

ment of Defense~—Background and Technical January -December 1975
Requir‘ements 6 FEIRIONMING ORG RRPORTY NuuBEn

P~1191

Y. auTwoale; T ConThatToR ShanY uyudlire)
D.A. Fisher DAHC15 73 C 020V

8. SERTFOMMING ORCANIZATION mant and ADORESE W PROGAAN ELENERY PROIECY Tasx
INSTTTUTE FOR DEFENSE ANALYSES ARERE SORLURMT bunsess -
400 Army-Navy Drive Task T-36

Arlington, Vireinia 22202

1. CONTROLLING OFFICE waAnE anD A00RESS 12 _Aageoat 0alt

Defense Advanced Research Projects Agency June 3

1400 Wilson Boulevard 13 wuMGEN OF PACES
Arlington, Virginia 22209 =8 15¢

TS wONITORING AGRulY nAME & ADOARIN I ertivrant tram Conmatlmg Gihirs) | 18 ’ucwn'v CLASS (o1 e roport)
ODIR&E, Electronics & Physical Sciences UNCLASSIFIED

%0 3:‘55’33:':";‘;}? OOWNRGAADING

16 OISTRIBUTION STATRMENT fut this Report)

Approved for public release; distribution unlimited.

17 OISTRIBUTION STATEMENRT (ol tha sbernac! ontersd 1n Bleshk 29, 11 itiarens am Nowert)

.

None

(3. WPSLEnCuTARY NOVES

N/A

19 MEY SWOROS (Contimue an reveves s1@e 1l nocsssary and idontity by Miock Aumber)

Bmbedded Computer Systems (Common), Programming Languages, Software
Commonality, Real time, Compilers, Software tools, Data types, Machine
representations, Translators, Control Structures, Syntax, Programming
Language Semantics, Programing Language Design Criteria

<0. ABBYRACY (Coniinne on reveves sife i nessceary and 1Sentify by biagh menber)

This paper presents the set of characteristics needed for a common
programning language of embedded computer systems applications in the
ooD. In addition, it describes the backgrourd, purpose, and organization
{ of the DoD Common Programming Language Efforts. It reviews the issues
considered in developing the needed language characteristics, explains
how certain trade-offs and potential conflicts were resolved, and dis-
cusses the criteria used to ensure that any language satislying the

DD ,"53%, 1473 oo or twoves s pesoLET2 UNCI.ASS!"ED

JaN Ty
SECURITY CLASHPICATICY OF TAIS PAGE (When Dete Knrered)

o PRICES SUBJECT TO (HANGE

e s kO, s il

UNCLASSIFIED

SECUMTYY CLASMLZICATION OF Tiit PAGL(When Dote Enrered)

20,

criteria will be suitable for embedaed computer applications, will not
aggravate existing software problems, and will be suitadble for stan-

dardization.

f|

s s S &7
[E g st O
BAANRINED) G-
PRI (T T I SRR
| } R .

liﬂﬁuﬂi!fﬂh,ﬁl‘.;"HEZII'! i 24

MmN /

UNCLASSIFIED

f _L SECURMITY CLASLIFICATION OF THIS PAGEL Nen Data Entered)

b &

—t -

<4

[

!

[LS

4 —

PAPER P-1191

A COMMON PROGRAMMING LANGUAGE
FOR THE DEPARTMENT CF DEFENSE - -
BACKGROUND AND TECHNICAL REQUIREMENTS

D. A. Fisher

june 1976

P~
DA
INSTITUTE FOR DEFENSE ANALYSES

SCIENCE AND TECHNOLOGY DIVISION
400 Army-Navy Drive, Atlington, Virginia 22202

Contract DAHC15 73 C 0200
Task T-36

H

T YA e

vt A e aoa © e e e mmm—— e n JUED VS

ABSTRACT

This paper presents the set of characterist{cs needed for
a common prezramming language of embedded comhuter systé%s
applications in the DoD. 1In addition, it describes the back-
ground, purpose, and organizatiou of tne DoD Commocn Programming
Language efforts. It reviews the lissues considered 1n developing
the needed language characteristics, explains how certain
trade-offs and potential conflicts were resolved, and discusses
the criteria used to ensure that any lenguage satisfying the
criteria will be suitable for embedded computer applications,
will not aggravate existing software problems, and will te suit-
able for standardization.

111

|
i
i
|

oy Gg e Gwi Memd e wemyd aEy S0 Gmy e

rodllh i e Aemd b ded foed K4

ACKNOWLEDGMENT

The author 1s pleased to acknowledge the many valuable con-
tributions and comments from individuals and organizations in-
side and outside th2 Department of Defense. A list of contribu-
ting organizations and individuals is given as the Appendix, with
apologies to those whose names may have been inadvertently omit-
ted. Special thanks are deserved by those who took opposing po-
sitlons and, thereby, exposed fundamental issues.

The author 1s also indebted to Thomas A. Standish and John B.
Toodencugh for their reviews and many valuable comments and sug-
gestions on this paper.

Preceding page blank

v
r— —y p— p— Sa— ——

b amen | L | &Y Laan) -y

1

-
-

cuxilp O Py Bnd Py e ey

PREFACE

This paper was prepared for the Office of the Director of
Defense Research and Engineering (Electronics and Physical
Scienczes) as Part 1, Software Research and Development, of
Task T-36 (revised), "Evaluations of Options in Electronic
Technology". Task T-36 provides independent evaluations of
selected areas of electronic technology where the Services are
pursuing different technical approaches to similar problems.

Portions of this document have appeared in "Programming
Language Commonality in the Department of Defense", by D. A.
Fisher, Defense Management Journal, Vol. 1i, No. U, (October
(1975), pp. 29-33.

vii

Preceding page blank

s B s e e Lo 43

CONTENTS
we Abstract 114
h Acknowledgment v
* Preface o~ Vil
; Summary 1
A. Background 2
.- 1. The DoD Scftware Problem 2
. 2. Character of the DoD Software Envircnment 3
b 3. Programming Languages in the DoD 6
. B. The Common Programming Language Zffort of the DoD T
i 1. Background 7
.- 2. Organization and Method 9
C. Findings 11
{
i I. Introcduction 17
s A. The Problem 138
: 1. Software Costs 18
' 2. Programming JlLanguage 20
. 3. Lack of Commonality 20
i 4. Common Language 23
: 5. Morse Code Experiment 24
B. Purpuse of the Common Frogramming Language 27
i Effort
‘. 1. A Common Programming Language 28
2. High-Order vs. Low-Level Programming 29
. Language
f C. Other Issues 33
. 1. Scope 33
2. Application-Oriented Languages 33
i 3. Effect on Software Expenditures 34
.. 4, Effect on Software and Programming 36
Language R&D
¢ 5 Direct Costs of Common-Language Effort 36
€. Standardization 37
7. A New Language 38
. 8. Size 39
; 9. Priorities Lo
i 10. Consistency 49
11, Committee Desiygn 4o
12. Nontechnical Needs 41

ix

- Preceding page blank

o _—

II.

IIX.

Iv.

Major Conflicts in Criteria and Needed

Characteristics

A. Simplicity vs. Speclalizatlon

B. Ffrogramming Ease vs. Safety from Programming
Errors

C. Object Efficiency vs. Program Clarity and
Correctness

D. Machine Independence vs. Machine Dependence

E. Generality vs. Specificity

The Most{ Pressing Software Problems

A. Responsiveness

B. Rellability

C. Flexibility/Maintainability

D. Excessive Cost

E. Timeliness

F. Trensferability

G. Efficiency

Language Desi~<n Criteria

A.

The

[ORO RO Rl

Criteria to Satisfy Specialized Application
Requirements

Flexibility in Software Design Criteria
Fault-Tolerant Programs
Machine-Dependent Frograms

Real-Time Capability
System-Programming Capahility

Data Base Handling Capability

Numeric Processing Capability

riteria Addressing Existing Software Provlems
Simple Source Language
Readable/Understandable Programs
Correct Translator

Error-Intolerant Translator

Efficient Object Code

Criteria to Assure a Common Programming
Language Product

Complete Source Linguage

. Wide Applicabili‘y

3 Implementable

4., Static Design

5. Reusability

6 A Pedagoglical Language

\nkwNF‘ONO\\ﬁEwND—'

n

Needed Characteristics

Data and Types

Operations

Expressions and Parameters
Variables, Literals, and Constants
Defin?tion Facillitles

X

i
. s

o

F.
G'
H.
I.

J'

Scopes and Libraries

Control Structures

Syntax and Comment Conventions
Defaults, Conditional Compilation, ard
Language Restrictions

Efficient Object Representations and
Machine Dependencies

VI. Characteristics Needed for Other Aspects of the
Common~Language Effort

Al
B‘

C.

Program Environment
Translators
Language Definition, Standards, and Coatrol

References

Appendix

xi

95
99
106
113

117

123

124
127
132
137

A-1

SO

® many

0 et he > —— Fo—
. . . B .

8-

SUMMARY

This document, wnhich reports the work of the author in sup-
port of the DoD Higher Order Language Working Group, 1is intended
to provide the Services with the necessary technical guidelines
to achieve their goal of programming language commenality for
embedded computer applications in the Department of Defense.®
Jt provides background on the software and programming languagze
problems in the DoD, presents the language design/selection
criteria used to gulde evaluation of technical characteristics,
and identifies the characteristics needed for the common language.

The IDA effort provided the background, analysis, and evalu-
ations necessary to reconcile the diverse and sometimes confliict-
ing perceived needs. It included examination of the purpose and
expectations for the Higher Order language effort, review of sev-
eral technical and managerial issues in selecting a common pro-
gramming language, and analysls of some important trade-offs in
the design/selection criteria and in the choice of language char-
acteristics. The selectzd cholces were subjected to intensive
critical reviaw by the language's potential users and others con-
cerned, 1in an attempt to illuminate the issues in a comprehensive
way. This document represents the degree to which this has been
done.

¥An embedded computer system is physically incorporated into a
larger system wnose primary function is not data processing
(e.g., electromechanical system combat weapon system, tactical
system, aircraft, ship, missile, spacecraft, command, control,
and communication sy'stems) 1is integral to that system fronm a
design, prccurement, and operations viewpoint, and gererally
includes Iinformation, control signals and computer data in
its output.

e e ma eamoma e o kem e s aes e L e C o e e = e e i i s it T

A. BACKGROUNL

The problems of digital computer software are complex and

poorly

understood. Although there are many widely recognized

symptoms, the underlying problems are not well delineated and
there are few useful quantitative measures for assessing either
the importance of perceived problems or the effectiveness of
proposed solutions.

1. The DoD Software Problem

Some important software-related problems are listed below.

Each item describes a class of unrealized expectations about the

development or maintenance of DoD software. These "problems"

are unique neither to software nor to the military, but unlike

electronic equipment, software has no inherent physical constraints

to 1limit expectations.

Responsiveness., Computer-based systems often do not meet

user needs. This may reflect poor specification of re-
quirements, poor system performance, or lack of flexibil-
ity in the software.

Rellability. Software often fails. Both the probability

of software raults and errors and the effects of such
errors on system operation must be reduced.

Cost. Software costs are seldom predictable and are often
perceived as excessive. Life-cycle costs are given insuf-
ficlent consideration during software develiopment.
Modifiability. Software maintenance 1is complex, costly,

and error prone, and the difficulty in modirying software
increases the need for duplicative software development.
Timeliness. Software 1s often late and frequently deliv-
ered with less-than-promised capability. There are no
accurate methods for predicting software productlion times.
Transferabllity. Software from one system is seldom used

in another, even when similar functions are required.

- ———

Frmnane g

R s I PN - . - - e e e e+ it = mat e

Pty P —
. . .

e Efficiency. Software development efforts do not make

———

L. optimal use of the resources (processing time and memory
space) involved, esp2cially in embedded ccmputer appli-
}_ catlions with their real time constraints and often lim-

ited hardware resources.

- —

Although the above 1list is consistent with the findings of
many DoD 1n-house and contractor studies cf thg scftware problem
j (Ref. 1), its elements represent only perceptions of the problem,

. and, 1n most cases, are not or cannot be substantiated by quanti-
; tative data. For example, software ccsts are thought to be ex-~
" cessive, but actual software costs are largely unknown and there
{ ' 1s 1ittle evidence that they can be reduced.

Obvious solutions are not necessarilly the best. Efficiency
\ is important, and although any computer program can be rewritten
to run faster or to use less memory space, more optimal coding
: may, in fact, result in higher total costs. There 1is evidence
! that software costs grow expcnentlally with attempts to increase
hardware utilization, while hardware costs for increased speed
H or memory capacity grow linearly, or less. Thus, if the physi-
cal constraints on the hardware can be met, the least costly
solutlions may lle with more capable but underutilized hardware.

————

2. Character of The DoD Software Environment

Software 1s becoming increasingly costly to the DoD. Digi-

»

tal computer software costs in the DoD in 1973 were estimated
(Ref. 2) at $3 billion *o $3.5 billion annually. Between 1968
and 1973, there was a 51 percent increase in total direct cost

of DoD computer systems (including both hardware and software)
reported under the Brooks Bill (Fublic Law 89-30€, October 1965).
These increases occurred even though there were drastic reduc-
tions in both unit and total costs of computer hardware and fewer
systems were rep@rted in 1973. The increased costs of computer
software may reflect a comtination of factors, including (a) the

-
.. 3

trend toward more automation and increased use of computers,

(b) the greater complexity of software resulting from increased
expectations and expanded requirements generated by improved
hardware and software technology, and (c) rising personnel costs.

The major problems of DuD software are assoclated with em-
bedded computer systems. Embedded computer system software in-
cludes all software which is integral to a larger military system
or weapon, including tactical weapons systems, communications,
command and control, avionics, simulation, test equipment, train-
ing, and systems programming applications. It also includes any
coftware which supports the design, development, or maintenance
of such systems. As a general rule, embedded computer software
is software for any DoD computer hardware which is not reported
under the Ceneral Management Category of the Brooks Bill. DoD
software which 1s not in the embedded computer software category
is used primarily in data processing and scieutific applications.

The majority of software costs in the DoD are asscciated
with embedded computer systems (see Fig. 1). Embedded computer
software often is large (50,000 to 100,000 lines and greater),
is long~lived (10 to 15 years), is subject to continuing change
(annual revisions of the same magnitude as the original software
size), aad must conform to physical and real time constraints of
the asso«lated system hardware and requirements. Sclentific ap-
plications require the largest and most visible computers in DoD
and may use a significant portion cf the total computing power,
but they represent only about five percent of software costs.

B

.
.

OTHER
& INDIRECT
SOFTWARE COSTS
20% PROCESSING

19%

EMBEDDED COMPUTER SYSTEMS
56%

6~4-76-8

FIGURE 1. Breakdown of Estimated $3 Billion Annual DoD Computer Software
Costs [Derived from figures in CCIP-85 and in P-1046 (Refs. 1

-and 2)]

3. Programming Lanquages in The DoD

There are at least 450 general-purpose languages and dia-
lects currently used in the DoD, but it 1s not known whether
the actual number 1s 500 or 1500. ith few exceptions, the only
languages used in data processing and sclentific applications
are, respectively, COBOL and FORTRAN. A larger number of pro-

hﬁ‘“~.~hk-~:ramming languages are used 1in embedded computer systems appli-
1&§iQQE; The continued proliferation cf programming languages

for embedaed computer software may reflect an unfounded xpti-
mism that software problems would disappear if only there were
a language better sulted to the task at hand. However, tae
little available evidence indicates that the major payoffs will
come from better programming methods and techniques, more ssft-
ware commonallty, and more useful and easlly accessible soft-
ware tools and alds.

There are a number of widely held perceptions about the 111
effects of the lack of programming language ccmmonality 1in the
DoD. Although these 111 effects can be substantiated only by
examples, and their true extent 1s unknown, they have provided
much of the incentive for the common-language effort. The lack
of programming language ccmmonality 1n DoD embedded computer
applications may:

® Require dupiilcation in training and mairtenance for the
languages, their compllers, thelr assoclated software
support packages, and of all the common functions needed
in the application. '

® Minimize communication among software practitioners and
retard technology transfer.

e Result in support software belng project-unique and tile
software maintenance to the original developer.

® Diffuse expenditures for support and malntenance soft-
ware so only the most primitive software alds are de-
veloped, but repeatedily.

e Limit the applicability of new support software and tech-
niques.

e

—

® Crecate a situation in which the adoption of an existing
language by a new project 1s often r.ore risky and less
cost-effective (at least during development) than de-.
veloping a new programming language speclalized to the
project.

On the other hand, programming languag2s are the primary
means of introducling new programming methods, tools, techniques,
and greater automation into coftware developrent and maintenance
processes. Consequently, there should be periodic review of the
common language(s) for possible upgrading or replacement to ac-
commodate demonstrable and useful advances in software technology
and methods. Also, there 1s no practical way to reimplement
exlsting software, so eaven if all language proliferation were
stopped, it would be 10 to 15 years before the existing languages
could be dropped.

‘B. THE COMMON PROGRAMMING LANGUAGE EFFORT OF THE DoD

. Backqround

During 1974, elements in each of the Military Departments
independently proposed the adoption of a common programming lan-
guage for use in the development of major defense systems within
thelr own departments and undertook efforts to achleve that goal.
Those efforts included the Army "Implementation Language for Real-
Time Systems" study, the Navy CS-4 effort, and the Air Force "High
Order Language Standardization for the Alr Force" study.

In January 1975, the Director, "efense Research and Engl-
neering (DDR&E), in a memo to the Assistant Secretaries of the
Military Departments for R&D, noted the multiple benefits of a
single common language for military applications (Ref. 3). He
requested immediate formulaticn of a joint Service program to
assure maximum useful software commonality in the DoD. A working
group was fcrmed from official representatives of the Military
Departments and chaired by DDR&E. Representatives from OASD-I&L,
OASD-Comptroller, and the Defense Communications Agency, and NASA
also part;cipated. The author acted as technical advisor.

7

A major step in achieving software commonality will be the
adoption of a very few (possible only one*) common programming
languages to be used for the design, development, support, and
maintenarce of all digital computer software for embedded com~-
puter applications in the DoD. Such a language would need to
encompass the speclalized needs of the intended DoD software
applications, be able to support best current software practice,
be complete and unambiguous in 1ts definitlon, and be capable
of supporting enforceable standards. As a short-term effort,
it will have to be practically and efficiently implementable
with existing software technology.

Programming languages are neither the czuse of nor the so-
lution to software problems, but because of the central role
they play in all software activity, they can eicher aggravate o
existing problemns or simplify their solution. Adoption of a
single common language alone, will noct make software more re- .-
sponsive to user needs, reduce software design or programming
errors, make software more reliable, reduce software costs,
simplify test and maintenance, increase programmer productivity,
improve object efficiency, or reduce untimely delivery of soft-
ware,

However, adoption of an appropriate ccmmon programming
language may remove many of the barriers to solving software
problems. It may lessen the communications barriers which pre-
vent new systems from using the experiences of earlier, similar
systems to full advantage. 1t may reduce the burden and delay
of designing, building, and waintaining languages, compilers, -
support software, and software tools for individual projects
and permit them to be concentrated on their applications. It
may remove the dependence on original software vendors and in-
crease competition. It may encourage development of better tools,
both through pooling of costs within the DoD and bty creating a
larger market for independently developed software tools and aids.

®
For convenlence hereafter, we use the singular to refer to the
minimum number of languages needed.

8

http://raaintenar.ee

The scope of the common programming language effort has
been limited to applications subsumed by embedded computer sys-
tems because there are several software problems unique to em-
bedded computer systems, because such systems represent the
majority of software costs in the DoD, hecause they are the malor
application areas in which there 1s no wldely used lianguage
surrently, because they represent the applications with the
mcst pressing software problems, and because they are the only
area 1in which most programming 1is currently done in assembly or
m&achine languages. The diversity of functions perfcrmed ty em-
bedded computer systems, however, guarantees that the most char-
acteristics needed in data processing and sclentific programming
will be included in the requirements for a embedded computer sys-
tem language.

Embedded computer systems software tends to be large (in-
volving many programmers working together), and to be long-1lived
(with several turnovers of software personnel during its life-
time). Run-time efficiency is important because of real-time
constralnts. Delayed deliveries can be extremely erxpensive 1in
indirect costs from loss in the useful life of the military
systems in which the software is embedded. Programming errors
can have catastrophlc consequences.

2. Organization and Method

The needed language characteristics will be used as quali-
fication criteria for candidate languages. They attempt to ad-~
dress each major issue assoclated with the selection of a com-
mon language, and where there 1s a deflnitlve reason, the char-
acteristic prescribes a resoluticn to the 1ssue. In other cases,
they provide only guidelines or decislon criteria.

The needed characteristics were developed threrugh a 9-month-
lcng feedpack rrocess involving the Working Group, IDA, many
commands and offices within the Military Departments, and several

9

et i s b e

outside organizations. These included all potential users who
could be identified. 1In all, over 200 individuals from 85 DoD
organizations, 26 industrial contractors, 16 universities, and
7 other organizations participated.

The effort to identify the needed technical characteristics
for the common DoD programming language began with a meeting
of technical personnel representing the Military Departments at
IDA on April 4 to 11, 1975. That meeting generated a trial set
of language characteristics which was intentionally vague and
inconsistent, but provided the stimulus which enabled the poten-
tial users to characterize thelr needs for a programming lan-
guage and to point out the factors which affect their choice of
language.

This trial set of characteristics was widely distributed
by the Military Departments with a request that the recipients
submit their own set of language requirements in response. Out-
side contractors, contnacted by the individual offices that deal
with them, responded Joverwhelmingly. The responses were first
sent to Working Group representatives of the individual Depart-
ments for coordination within their ‘departments and on to IDA.

IDA's task was to analyzZe, interpret, and resolve the re-
sponses into s consistent and unambiguous set of needed char-
acteristics. In many cases, thils involved direct consultation
with individual contributors. The result was an extensive docu~
ment which explained some of the implications, noted the trade-
offs which were considered, and, in general, provided the ra-
tionale behind the listed characteristics.

The whole process was then repeated. The revised document
was distributed by the Services and, again, many thoughtful and
helpful responses were received, processed, analysed, and recon-
clled by IDA. A revised version of the characteristics was then
prepared. This set of requirements involved few major changes

10

.-
[,

.
Se e

e i T —

in substance, led to a contraction in the number of needed char-
acteristics through consolidaticn of related items, concentrated
on clarifjication, and led to the elimination or weakening of
requirements, which, although desirable, are not feasiblc with
existing programming language technology. At a session held
December 10-12, 1975, the set of needed technical characteris-
tics for a common DoD programming language undervent several
minor revisions based on the officlal ccordinated inputs of each
Military Department and a detailed review by the Working Group
and representatives of several ilnterested organizations within
the Services. Further changes are not anticipated. We hope

the current set 1s nelther vague nor unnecessarily limiting; it
represents a few compromises, but appears to be technically
sound and achievable with existing technology and is a consen-
sus of the Military Departments which individually approved it
early in 1976.

The resulting characteristics, presented in Chapter V and
VI of this report, are discursive rather than quantitative be-
cause there are few useful guantitative measures of software or
of programming languages. The depth of discussion varies accor-
ding to the characteristic. The relative merit of alternative
approaches, the trade-offs involved, and the raticnale for the
final choice are given in greatest detail for those larguage
characteristics which have greatest impact on the language se~
lection, have several competing approaches, or were resolved in
aprarent conflict with conventional wisdom.

€. Findings

The Higher Order Programming Language Working Group identifiea
78 needed characteristics. Major characteristics, listed below,
were abstracted from that 1list. There 15 no significance in the
order of presentation.

11

B b g G ¢

The common programming language can only achleve its
breadth of appllcation and flexibility of expression
by having a few, general, abstract concepts and struc-
tures which can be applied in many combinations. It
should not be a conglomerate of many special features
of limited application or of features with many special
cases in their abstract definitions.

The common language should have a high dégree of .general-
ity and flexibility at compile time, but should be

static at run time. The language itself should not
require dynamic storage ailocation or the presence of

an operating system in i{its object machine.

The language should require 1its users to specify the
type of data and operations, the range and precision

of numeric data, and the action to be taken under each
alternative condition in its programs. These all rep-
resent information that is known to the programmer and
needed by those whce must maintain software. These kinds
of iInformation can also be helpful to the translator

in producing more optimal code and can aid in testiag
and debugging programs.

The language should require redundant (not duplicate)
specifications in programs so that many program errors

‘¢can be detected automatically. For example, beth for-

mal and actual parameters should be (possibly implicitly:
speclalized by type to permit compatibility checking.

A comblnation of typed data and type independent prec-
edence levels of operators willl ensure that the struc-
ture of expressions can be verified both syntactlically
and semantically.

12

* rec
[

The larguage should permit deflnltion of new data types
and operations, thus allewing specialization to par-
ticular appli-ations without modification of the lan-
guage definit.on, its translator, or its support soft-
ware. Type definitions may also enable its use 1in un-
foreseen applications.

‘'The language should permit its users to distinguish be-

tween the abstract and concrete representatior of data,
between the functional and algorithmic representation

of operations, and between the scope of allocation and
the scope cof access for variables. The ability to sep-
arate specifications of these kinds means that the logi-
cal structure and intent of programs need not be ob-
scured by those aspects which are concerned only with
adherence to physical constraints of the underlying ma-
chine.

The language itself should not be optimized tc any par-
ticular criterion, such as object code speed, object

code size, ease of program modificaticn, program clar-
ity, or ease of programming, but should provide facilities
which permit individual programs to be optimized to any

of these criteria. Optimization criterlia are often
application- or task-dependent.

The language slould provide special facilities to sim-
plify the description and implementation of programs
with real-time constraints and real-time interaction
with multiple peripheral devices.

The language should have a complete and unambiguous defi-
nition and should not be dependent on any particular ob-
Ject machine or operating system structure.

13

e et . — &

lo.

11.

The common language should be composed of existing lan-
guage features, but may not be exactly any existing
language well known to Imnst potential users. Thus far,
no combination of the needed characteristics which 1is
not achievable with existing programming language tech-
nology has been found and, if any were, they would be
interpreted as cause for reducing the needed character-
istics. On the other hand, since no identified language
satisfies all the needed characteristics, som2 modifica-
tion of existing languages will be necessary. Further-
more, regardless of the language selected, the diversity
of languages currently used guarantees that it will be
new to most of its potential users. The characteristics
dictate a language which draws its features in obvious
ways from existing languages and which avoids many
specific recognized deficienciles of currently used
languages.

A major emphasis should be on the support supplied with
the language. Ultimately, the success of the common
language effort will depend on the acceptance of the
language by DoD software developers and, to a large
extent, that will depend c¢n the avallability and acces-
sibility of supported compllers, software aids, and
libraries for the language.

From preliminary analysis, the identified needed technical

characteristics for the Common Higher Order Programming Language
for military applications appear to be self-consistent, to con-
form to the established language design/selection criteria, to

bpe acceptable to the Military Departments, and to be achievable
witn existing software and prograuming language technology. More
analysis 1s required, however, particulairly cn the feasibility

of achieving all the technical requirements simultaneously.

14

U O

[V

[N

oy

e

Detailed examination of existing language features, language
design techniques, and compiler implementation and optimization
methods are needed.

The process of identifying the needed technical character-
istics for a Common Higher Order programming language also un-
covered several possible properties of the programming environment,
translators, and management of the language which the Working
Group thought will be important to the success of the common-
language effort. These properties include the availability of
language-associated software development tools, standard libraries,
translator options, and source language diagnostics. They pro-
hibit superset and subset implementations, recommended multiple-
object-machine translators, and require self-implementation of
the language. Most Zmportantly, they requlire user documentation,
configuration management, standards, control, and support for
both the language and its libraries.

15

4

-4 =

2

L}
—

iy R Gmee e e e deedd

e~ — Y T FUIITIRY

I. IKTRODUCTION

This paper is concerned with criteria and issues that will
have an impact on the needed technical characteristics for a

Common Higher Order Programming Language for military applications.

Chapter I gives an Introduction to the software and pro-
gramming language problems in DoD, the purpose of the common
language effort, and some related issues.

Chapter II presents some conflicts that arise in any lan-
guage design or selection process and describes their resolu-
tion for the common-language effort.

Chapter III reviews some of the major problems affecting
software design, development, maintenance, and use in the DoD.

Chapter IV presents the language design criteria which
helped determine the needed characteristics. These criteria
fall into three major categories: those which satisfy spec-
lalized application requirements, those which address recog-
nized existing software problems, and those which are intenced
to assure that the resulting language ctan serve as a common
language.

Chapter V gives the needed technical characteristics for
the common language, while Chapter VI provides additional re-
quirements related to the programming environment of the re-
sulting language, to its translators, and to a number of man-
agement issues concerning its definition, standards, support,
and control. Many of these 1ssues will have direct or indi-
rect effects on the technical acceptabiilty of candidate lang-
uages.

Preceding page blank

A. THE PROBLEM

As long as there were no machines, pro-
gramming was no problem at all; when we

had a few weak computers, programming be-
eame a mild problem and now that we have
gigantic oomputers, programming has become
an equally gigantic problem. In this sense
the electronic industry has nct solved a
single problem, it has only created them--
it has created the problem of using its
products.)

b

»

E. W. Dijkstra in 1972 Turing
Avard Lecture
The past 25 years of digital computer hardware history

are characterized by orders-of-magnitude increases in compu-
ting speed, memory capacity, and reliability. At the same
time, the physical size, power consumption, and cost of com-
puter hardware have decreased by several orders of magnitude.
These trends have led to inflated expectations and expanded
use of digital computers not only to automate tasks that pre-
viously had been performed manually, but tasks not seriously
considered heretofore.

The burden of 1lncreased expectations for computer systems
has fallen on software. Software 1s the collection of com-
puter programs which give direction to the computer hardwarec,
tallor the computer to serve the needs of the application, and
specify the sequencing of individual actions to be taken by
the computer under prescribed conditions. Demands on the de-
sign, development, and maintenance of computer software are
magnified by increases in the sﬁeed, capacity, and reliability
of computer hardware.

1. Software Costs

Although little reliable information on the costs of soft-
ware in the Department of Defense (DoD) 1s avallable in a
clearly identifiable form, some reasonable estimates have been
reported (Ref. Z). Total annual expenditures for system anal-
ysis, design and programming of software in DoD are estimated

18

P A A Ao e . e —

at $3 to $3.5 billion, divided among the Military Departments
as follows: Army 23 percent, Navy 36 percent, Air Force 36
percent, and other DoD agencles 5 percent, Another study

(Ref. 1) has provided some estimates of the sortware costs by
application, as shown below. If management and logistic in-~
formation systems are taken as primarily data processing, and
if aircraft and missile ergineering and production are taken

as primarily scientific programming, then the remainder, called
embedded computer systems, constitutes 55 to 75 percent of the

- total software cost.

APPLICATION PERCENT
Research, Development, Test, 28
and Evaluation
Intelligence and Communica- 19

tion, Command and Control
Avionics

Aircraft and Missile Engi-
neering and Production

Management Information 14

Systens
Logistic Information Systems 5
Other and Indirect Costs 20
T00

The process of design, implementation, test, documentation,
and maintenance of software can generally be called programming.
Programming activity 1is constrained by the availability of dol-
lars, real time, machine resources, competent programming per-
sonnel, and programming tools. As with any activity in which
expectations exceed the available capability, something must
give. In this case, the symptons appear in the form of soft-
ware which is nonresponsive to user needs, unreliable, inflex-
ible, difficult to maintain, and not reusable. The solution
to the software problem will be cumplex, irnvolving more and
better requirements validation, software design techniques,
design analysis, management visibility, discipline in software

19

development, program validation and testing methods, mainte-
nance documentation, education of programming personnel, and
software tools. Because there are so many aspects to the soft-
ware problem and 1ts solution, improvements in one area are
often difficult to measure and have only indirect impact on

the total problem.

2. Programming Lanquage

The programming language 1s the one software tool which
pervades all software activity from design and development
through maintenance. It 1s a formal notational mechanism with
which the programmer specifies desired computation. The pro-
gramming language provides the set of software building blocks
in the form of variables, data structures, operations, and con-
trol structures. With it, the programmer can

e Design, build, and refine his programs.

e Obtain the feedback enabling him to test, verify, and
debug hls programs.

e Assemble and manage the component parts of a software
system.

Together with its programs, zhe programming language pro-
vides the only complete and accurate documentation of the soft-
ware. 1t is, itself, a computer program in the form of a trans-
lator converting prcgrams of the language into strings of sym-
bols that can be directly interpreted by some object machine.

It defines an abstract machine which associates an interpreta-
tion with each program of the language, independent of any
hardware, and it is a language for communicating procedures,
techniques, and algorithms among software personnel.

3. Lack of Commonaiity

There are a number of wldely held perceptlons about the
111 effects of the lack of programming language commonaiity in
the DoD. Although these can be substantiated only by examples,

20

et i bt dumd e ey Gy e

and their true extent is unknown, they have provided much of
the incentive and generated much of the initiative for the com-
mon-language effort. The lack of programming language common-
ality in DoD embedded computer applications may:

® Require duplication in training and maintenance for the
language, its translators, the associated software sup-
port packages, and all the common functdons needed to
use any language effectively. Programming lankuages are
themselves implemented as computer programs whizh must be
designed, developed, and maintained. The cost and ef-
fort required for implementation, maintenance, and train-
ing increases with the number of languages in active
use.

® Minimize communications among software practitioners
and retards technclogy transfer. The strengths and
weaknesses of the programming language affect the way
one organizes programs, the techniques employed, and the
approaches used in solving computational problems. A
programming language provides much of the technical vo-
cabulary needed to communicate about programs and prob-
lem-solving methods in software. Consequently, diver-
sity in languages establishes artificial boundaries
among software practitioners, complicates communication,
reduces understanding and cooperation, and may lead to
distrust and mutual criticism. A prime example is COBOL.
COBOL is a thoughtfully designed language well suited to
data processing applications, where it 1is used almost
exclusively. 1Its effectiveness 1is demonstrated by the
stability of its design for about 15 years. Yet, those
who have not used COBCL are almost universally critical
of the language. They know little about the language,
except that it 1s diflerent, they find it: appearance
aesthetically displeasing, and are sure they would not
like 1it.

21

® Result in support software being project-unique and.
tie software maintenance to the original developer.
Programming languages are often developed to support
individual projects in DoD. Typically, the language
will be develored as part of the project effort and used
only for that project. Although the language is devel-
oped at government expense, the original software vendor
is both 1ts developer and only user. This tends to tie
maintenance of the application software to that vendor.
Thus, a language can be seen as a handy device to as-
sure a continued flow of business to the contractor over
the life of a system. This tendency is strengthened in
the usual situation in which the translator and support
tools for the language are written 1in ano-her language
which is proprietary to the vendor.

® Diffuse expenditures for support and maintenance soft-
ware so only the most primitive software aids are devel-
oped, but repeatedly. 3Software tools and aids 1. the
form of compilers, interpreters, diagnostic aids, de-
bugging packages, code optimizers, automatic testing
systems, program editing systems, and many more are pro-
gramming-language-dependent, and, consequently, must be
developed for each new language. Projects are, of ne-
cessity, application oriented; their primary goal must
be to develop the application software. Project per-
sonnel have nelther the inclination, time, funds, nor
expertise to develop more powerful or more generally
useful software tools.

e Limit the applicabllity of new support software. Even
if a variety of useful tools were developed for some
language, the benefits would be limited to the users of
that language. Ideally, generally useful software tools
should be independently developed and maintained and made
available to any project, but the diversity of language
guarantees that any such independent development will have
only limited payoff.

B R v e et e

-h

oy

ar

s

e

Py

~

® Create a situation in which the adoption of an existing
language by a new project 1s often more risky and less
cost-effective (at least during development) than devel-
oping a new specialized languige. There must always be
a trade-off between a specialized language tailored to
the application and a more general language whose sup~
port and maintenance costs can be shared across many
projJects. As long as there i1s no common, widely used
programming language for embedded computer applications
which has useful, 1lndependently developed and maintained
off~the-shelf support tools, there is little advantage
to selecting an existing language for a new project.
Developing a new language will not be significantly
more expensive than developing a new compiler for an ex-
isting language and may avoid unnecessary generality
whlle providing features especlally well-suited to the
application.

4. Common Langquage

The intent of the common language effort is to identify a
language for DoD which will eventually supplant all languages in
military applications for which there is cucrently no common lan-
guage. These include weapon systems, command and control, test
equipment, communications, avionics, training, systems prcgramming,
and embedded computer system support software. There 1s no in-
tent to supplant COBOL for data processing applications of FCR-
TRAN for scientific applications. Because weapon systems and
command and control applications include both data processing
and numeric processing functions, however, the resulting com-
mon language should be suited to those applications.

In several ways, COBCL is a model for the common language
effort. It may not be a viable candidate as a common language
for embedded computer systems because it represents the soft-
ware technology and programming practice of 15 years ago, it

23

was designed specifically for data processing, and i% lacks
many of the special capabllities needed in embedded compucter
systems software. Nevertheless, the adoption of standards
early 1In 1ts development, the consistency of design throughout
the language, the early involvement and support by industry,
the uniformity of its implementations, the stability of its de-
sign, and its concern for potential users are all characteris-
tics worth emulating. .

Another successful example of language commonality 18§
CORAL-66. 1In 1970, the United Kingdom Ministry of Defence
formally adopted CORAL-66 as the standard programming language
for real-time systems. The official policy disseminated to
industry included a requirement that all computers used in
weapon systems must have a tested and approved CORAL-66 com-
piler. The result has been not only language commonality
within the United Kingdom military establishment, but wid: ac-
ceptance in the commerclal sector as well.

5. Morse Code Experiment

There are few useful measures of quality, performance, or
cost. There is insufficient data to determine quantitatively the
cuarrent situation in software, let alone predict the effects of
greater software commonality. A recent experiment, however,
contributes to the optimism for better software when existing
software tools are more widely accessible.

There have been claims from the research community that

the combination of powerful and stable software tools (includ-
ing language), proper methodology, and competent personnel can
improve the cost and performance of software by orders of mag-
nitude for large complex problems. The Defense Advanced Pro-
Jects Research Agency (DARPA) recently funded an experiment to
test some of these claims. Researchers at MIT were asked to
bulld a software system to solve a real, nontrivial, ill-defined
problem in an application with which they were unfamiliar but

24

b—ad 4 e & -

43

-y

nt

using tools and methodologles they had developed earlier under
DARPA sponsorship.

The problem was to lmplement a system that could recognize
Morse code generated by a huméh operator in the presence of
transmission noise. The product was impressive in 1t§'ab111ty
to recognize Morse code, but was able only vo operate at one-
half to one-third real time. When thls deficiency was pointed
out, the MIT researchers undertook a two-~week effort which im-
proved response by a factor of 30 to 50. The major claim made
of their approach 1s the ease of making changes, whether for
correctness, to meet new requirements, c¢-> to improve perfor-
mance.

A rule of thumb used in software development says that a
programmer will produce an average of ten debugged instructions
per day. The Morse code project took a grand total of 54 man-
months. The final system consisted of cobject programs, object
program tables, and run-time support software which was devel-
oped independently of the proJect. There were also a number
of object programs developed and later discarded. Some Morse
code support software was developed to help implement the sys-
tem but was not a part of the final system. Depending on which
subsystems are included in the instruction count, the instruc-
tions per man-day range from 139 to 909. The results are de-
tailed in Table 1. The figure of 625 instructions per man-day
is most consistent with usual practice and the figure of 491
is probably the most fair. The RAND CCIP-85 Study (Ref. 1)
pointed out that an increase of from 10 to 11 instructions per
day would, in theory, save the Air Force $100 million per year.

Table 1. Results of Morse Code Experiment

Object Program
Only

Total Codes
Written

Total Codes in
Final System
or its Support

Total Codes Writ-
ten and Not Dis-
carded

Total Codes in
Final System

Total Codes Written,
in Final System, or
in its Support

NO. OF INSTRUC- INSTRUCTIONS
Excluding

Program Including Excluding Including
Tables Tables Tables Tables
158,000 478,000 139 422
559,000 879,000 493 775
383,000 709,000 343 625
237,000 567,000 209 491
210,000 530,000 185 467
711,000 1,031,000 627 909

26

o

—t F—t — —

¥ 4

ey
. .

B. PURPOSE OF THE COMMON PROGRAMMING LANGUAGE EFFORT

And the Lord satd, Behold, the people is one,
and they have all onc language; and this they
beain to do: and now nothing will be restrained
from them, which they have imagined to do.

~=Genegig XI 6

The purpose of the Common Programming Language effort is
to achleve maximum useful software ccmmonality in DoD embedded
computer applications through a reduction in the numbed of
programming languages used.

Reducing the number of programming languages may be a
slow and tedious process, since languages used in existing
systems can be phased out only as the systems become o>bsolete
or go through major upgrades. Incentives in the form of sup-
ported, easily accessible, and easlily used software tools and
alds are needed for the languages whiclk remain. The standards
and stability in the remaining languages should not impede the
use of new software tools and methods, hinder the adoption of
new programming techniques, or stifle innovation. When new
languages are introduced, and they must be to take advantage
of new software and programming language technology, it should
be done in a controlled manner and only when there is expecta-
tion of major benefits and full understanding of the trade-offs.

Software commonality refers to the reuse of computer pro-
grams, software subsystems, or methodologies, either directly
or after minor modification. The value of software commonality
derives not only from reduction in redundant software develop-
ment, but from iower costs for training and maintenance of the
resulting systems, more timely system development, lower risk
in software design and development, and better communication
among software practitioners.

27

The benefits of r2usable software are greatest for support
software, including compilers, verifiers, programming and de-
bugging systems, and optimizers. Supvnort tools are often in-
effective, because they are reinvented and rebuilt for each new
project. There 1s seldom the time or money to perfect the sup-
port tools or to provide any but the most primitive capatili-
tles. If the same software is widely used, costs can be shared
over many projects and each effort can build on its predeces-
S0rs.

1. A Commown Programming Lanquage

Software commonality can be achieved only through the
adoption of a common programning language. The programming
language 1s central to the development of software. Tnhe soft-
ware tools and aids are bullt around specific programming lang-
uages. The compilers and other software tools are themselves
the most widely used computer programs and, as such, can espe-
cially profit from the attendant improvements in reusability,
training, maintenance, timeliness, risk, and communication.

The fewer the programming languages the greater the lev-~
erage assoclated with those that remain. The common-language
effort has as a goal minimization of the number of programming
languages in DoD. The common language is intended to be a sin-
gle or minimal set, of general-purpose programming language that
will eventually replace the many hundreds of general-purpose lan-
guages belng used currently in the DoD. The assumption that a
single general-purpose language will suffice must remain until
specific needs or conflicting language requirements demonstrate
a need for more than one. Neither should general-purpose langu-
ages be confused with application packages, which are sometimes
called, "application-oriented languages". Unlike general-pur-
pose languages, application-oriented languages can be used to
describe computations only in limited application areas, are
designed for use by practitioners in the applfcation and not

28

rd A Smam e Gy e s

by computer programmers, are usually interactive, and are often
nonprocedural. The adoption of a common programining language
should lead to the implementation and support for standard ab-
plication packages. Finally, although a single, general-purrose
language 1s desired, there 1is no intent to impose another lan-
guage where useful language commonality already exists (e.g.,
among COBOL users and in scientific uses of PORTRAN). Neither
is it feasible to rewrite existing programs, regardless of the
merits of a standard language.

Although adoption of a common prcgramming language is nec-
essary to obtain the benefits of software commonality, it is
not sufficlent. There have been many past efforts which merely
attempted tc standaraize on a language's syntax ang semantics
while ignoring performance properties and program development
aids. There must be commonality among language-related supporc
tools, commonality in comgiler performance, and support and
maintenance for the language, for its software development and
maintenance aids, and for its library of application routines.

2. High-Order vs. Low-Level Programming Language

The distinction between high-order and low-level languages
is similar to that between people and machines. Any programming
language should present an analog to the underlying machine in
a form more amenable to human use. Low-level languages are ma-
chine-oriented and simplify the translation process at the ex-
pense of human resources. The higher the level of the language
the more it caters to the neeas of the programmer, the greater
the portion of software development which 1s automated, and the
less visible are the underlylng machine resources. Programming
here, of course, encompasses not Just coding, but the entlre
spectrum of software deslgn, development, and maintenance.

29

In commenting on section V.J. of this report, E. W.
Dijkstra said:

I can enlarge on that: 1in the past, when we
used 'low-level language' it was considered
to be the purpose of our programe to instruct
our machines; now, when using ‘'high-order
language', we would like to regard it az the
purpose of our machines to execute our pro-
grams. FRun time efficiency can be viewed as
a migsmatch bztween the program ae stated and
the machinery executing it. The difference
between past and present is that, in the past,
the programmer was always blamed for such a
mismatch: he should have writtem a more
effteient, more ‘cunning’ program! With the
programming discipline acquiring some matur-
ity, with a better understanding of what it
meang to write a program so that the belief
in 1ts correctness can be justified, we tend
to accept such a program as 'a good proaram'
if matchine hardware is thinkable, and <if,
with respect to a given machine, the afor-
mentioned mismatch then occurs, we now tend
to blame that computer as ill-designed, in-
adequate, and unsuitable for proper usgage.
In such a situation, there are omly a few
ways out of the dilemma: (1) aecept the
mésmateh, (2) continue bit pushirng in the
old way, with all the known ill-effects,

and (3) reject the hardware, because it has
been identified as inadequate.

A higher-order language permits automation of the more
repetitive aspects of software development in return for
greater constraints on the programmer. The high-level lang-
uage programmer 1s deprived of dangerous capabllities, such
as beilng able to create self-modifying programs, to do arith-
metic on machine addresses, and to use fixed-polnt operatlions
on floating-point numbers. In return, the programmer is able
to partition his program into logically meaningful parts, is
guaranteed that updating one variable will not affect others,
and is given warning when he violates hils own assumptions and
stated conditions.

30

s ¢ e it A————

The costs in machine resources which must be paid for
greater automation of software development through the use of
high-order programming languages can be paid at compile time
(f.e., the time of translation) or at run time (f{.e., the time
the software is used). Many of the widely used HOLs simplify
the programming task by providing general-purpose mechanisms
and many automatic defaults so that the programmer not only
has the advantage of intuitively meaningful structures andg
notations, but 1s relieved of having to specify his intentions,
assumptions, and the detalled constraints on his programming
problem. Consequently, information availabkle to the program-
mer is hidden from the compller and maintenance personnel and
must be derived dynamically from the program at run time, thus
imposing much greater run time costs than would be associated
with a corresponding program written in machine language.

There are several ways out of this dilemma. For programs
which are to be executed only a few times or for other reasons
have unimportant run time costé, the solution has been to admit
to the greater run time costs, incorporate the run time environ-
ment into the translator to form arn interpreter, and take full
advantage of the machine-independent high-order language. Where
run time costc are important, at least four approaches have been
tried. The most wldely used approach in DcD has been tc allow
portions of the HOL program to be written in machine language.
This permits the programmer to optimize his rrograms to any de-
gree within his capability but defeats the purpose of the HCL.
Another approach used in DoDl, but most popular in the commer-
cial and scientific world, has been the optimizing compiler.
Large, sophisticated compilers have been built to rework the
object code to produce an optimal run time program. Although
these systems imposé considerable compile time costs, they
have seldom been able to produce codes comparable to those of
good machine language programmers. The third approach admits
that a compiler-produced code is not as efficient as handwritten

31

[R

code for small static programs, but points out that programs

in which object code efficlency is important tend to be large
programs which are modified many times. The mass of detail
which must be processed for effective optimization of a large
software package may be too much for even the best programmer,
and when success 1is achieved, it may be very transitory because
assumptions under which the optimizations were made change as
system requirements change.

The fourth approach, and one which seems most reasonable
for the Common HOL effort, emphasizes software reliability,
program maintainability, and run time efficiency in the con-
text of the current programming language model (e.g., ALGOL,
JOVIAL, PL/1 and the like). It gives up some programming ease
by using a language which requires the programmer to make his
assumptions and intentions explicit in his programs and which
prevents hiding information from the compiler and those who
maintain the programs. Greater software reliability results
because more information 1is available to compiler for compile
time error detection, software is more easily maintained and
modified because it 1s more readable and comprehensible, and
execution 1is more efficient because more information is avail-
able to the compiler for optimization and because more deci-
sions are bound at compile time. High-level language programs
should contain a great deal of information of value to the
compiler as well as to those who must maintain the program.
This in no way conflicts with the characterization of the HOL
as beling oriented toward the programmer, human problem solving,
and particular application areas at the exclusion of machine-
dependent characteristics. Precgramming language features which
aid the compiler in the generation of efficient object code
should have a form and meaning which will contribute to the
understandability of the program as well, should be translator
independent, and, to the degree possible, object machine inde-
pendent.

32

. "\\:‘ i

d

b

-y

-

C. OTHER ISSUES

There are a number of important issues and potential prob-
lems associated with the Common DoD Programming Language effort
and with the discovery and use of the needed technical char-
acteristics for such a language. This section discusses some
of these 1issues and gives the resolution where there has been
a decision by the working group.

1. Scope

The Common Higher Order Programming Language effort has been
limited to embedded computer systems applications because (1) the
maJority of software costs in the DoD are assoclated with weap-
ons systems applications, (2) COBOL and FORTRAN already saticsfly
many of the commonallty goals of this effort for data process-
ing and scientific applications, respectively, the two major
areas which have not been included, and (3) the large number
of unique, nonstandard, general-purpose programming languages
used in the DoD are used in embedded systems applications.

The scope of the effort has not been further restricted
within embedded systems applications because (1) specialized
applications within weapons systems have similar software prob-
lems, (2) embedded systems applicatlons are not pure and require
computations in many specialized areas within the same system,
(3) the technical requirements for the individual applications
have proven to be nearly identical, and (4) no conflicting re-
quirements have been found.

2. Application-Oriented Languages

The Common Higher Order Programming Language is intended to
eventually supplant all general-purpose programming languvage usad
in embedded systems applications in the DoD. 1t is not Intended
to replace application-oriented languages. Application-oriented
languages are similar to programming languages in that they en-
able their user to describe a computation which will be carried

33

out by a digital computer. They are unlike general-purpose
languages in that they provide very specialized capabilities
for a restricted problem domain, they are intended for use by
those familiar with the application and usually do not require
specific programming knowledge, they are often nonprocedural,
and 1n many cases are accessible interactively. Any applica-
tion package 1s an example of an application-specific language.
The Common Higher Order Programming Language effort is concerned
with the general-purpose prccedural programning languages used
to implement applications and systems software, and is not in-
tended to replace application-oriented software.

3. Effect on Software Expenditures

The projected overall benefits of any standardization
should exceed its disadvantages. Ideally, there should be a
complete cost-benefit analysls, comparing costs with and with-
out standardization, including life-cycle costs. This 1is not
feasible for software/programming languages, because their cos-s
are diffused throughout weapons systems procurements and are
seldom identifiable. We do know, however, that most costs are
for perasonnel, that there are hundreds of general-purpose
languages in use in DoD, that much software work 1s duplicative
because similar software (particularly system and support soft-
ware) must be redundantly developed for each language, and that
the diversity of programming language has complicated the de-
velopment of widely applicable programming tools and aids which
could alleviate or reduce many of the recognized software prob-

lems.

It is 1likely that adoption of a Common Programming Langu-
age will result in better communicatlon among software practi-
tioners; easier transfer of new software technology to produc-
tion systems; greater software reusabllity; easier transfer of
personnel among projects; greater visibility of underlying soft-
ware problems; lncreased programmer productivity; improved

34

g . o) > ’ I '

e

software quality; and development of better and more applica-
ble software design, development, and maintenance aids. Re-
duced costs might be expected, not just from the adoption of

a common language, but from the prohibition on the development
of other new programming languages. Development costs for other
new programming languages will be eliminated (prior to January
1975, there were typically several at any given time under de-
velopment by elements within each Military Department). Com=-
piler costs will be reduced, even when new'diéital computers
are introduced, because a common language with its machine-in-
dependent portions written in its own language means that a

new computer can be made accessible by reimplementing only the
code-generation portion. Because tools, programming aids, and
other support software will be more widely applicable, the
total cost of its development and maintenance should .e reduced.
Similarly, the training costs for a single widely used langu-
age should be les: than those for the many project-unique lang-
uages. Finally, as with any successful standardization effort,
the common language should encourage competiticn in software
development and give more freedom to change vendors.

It does not follow, however, that total software expendi-
tures in the DoD will be reduced. Benefits of a successful
common-language effort must be limited to new software develop-
ments. A primary impediment to reliable software is change to
existing computer programs. A common language might be used in
new software efforts, but it is seldom eccnomical to reimple-
ment existing systems. More importantly, constantly increasing
personnel costs, more demanding military system requirements,
and continuing budget pressures have led to more and more auto-
mation. Computer software is a major component of electronlc
equipment procurements, so any increase in software productiv-
ity or quality will likely accelerate this trend. Success in
the common-language effort may reduce the cost of software and
increase its quality, but these will likely be accompanied by
increases in software expenditures.

35

o

4. Effect on Software and Programming Language R&D

The adoption of a common language should give greater vis-
ibility to software, should separate the languzge design issues
from the more important software problems, and should provide
a base for comparing software techniques. It should provide a
community of users who can share the design, development, and
maintenance costs of more capable software tools. It should
provide a vehicle for transfer of software technology from re-
search and development to practical use. It skould provide a
bigger market for individual software tools (whkich are often
specific-language oriented) and should, therefore, amplify any
benefits of the National Software Works. The separation of
language issues from other problems of software development may
serve to identify language deficiencles, problems, and needs
for innovation in language design, and thus lead to increased
programming language research and develorment.

All these effects tend to give greater visibility to the
real underlying software problems and to the importance and
benefits of their solution. A common language may give visil-
bility to the sparseness of current software research and de-
velopment efforts, and point out the need for Improved soft-
ware development m:thods, techniques, tools, amd alds. It
will 1likely lead to a. expanded DoD RE&D prograa in software
and in programming languages, but one directed more toward
finding practical solutions to important recognized problems.

5. Direct Costs of Common-Lanjuage Effort

There will also be several costs associated with obtain-
ing a common language. There are the development costs for the
language itself; there are design, development, implementztion,
maintenance costs for its compilers, support software, and re-
lated programming alds; and there are training costs for 1ts
users. In each of these cost areas, however, the adoption of a
common language should result in reduced expenditures, because

36

the common language effort replaces many similar lncal efforts
that would otherwlse have taken place within the Military De-
partments. Even for a single large military system development,
independent development of the programming language, compilers,
and software support tools will remove those efforts from the
application software development and thereby reduce the devel-
opment time for the application software (timeliness is a ma-
Jor indirect cost of software). That one development can be
used by many projects, of course, eliminates many redundant
expenditures. Finally, without speculating on the total cost
of the common language effort, it should be noted that at a
level of $3 million per year, it wculd be less than 0.001 x

the annual DoD software costs and at $10 million (i.e., approx-
imately 100 man-years per year) it would be much less than 1
percent of software costs.

6. Standardization

Standards programs should not be undertaken unless cer-
taln criteria are met. There should be several potential users
of the standard (in this case all new embedded computer ap-
plication in DoD). There should be a mature technology well
in hand (in this case the FORTRAN, COBOL, ALGCL, PL 1-1like
programming language technology). There should be a potential
market large enough to support at lesst one contractor for
several years. The projected overall benefits of standardiza-
tion should exceed its disadvantages (see previous subsection).
And, adoption of the standard language by individual systems
should not be a major problem (in this case, i1t should be no
worse than adopting a nonstandard language, and much easier,
providing the common language 1s widely used and well-supported).

37

7. A New Lanquage

It is most desirable that the selected common language be
an existing language, and if that 1s not feasible, that it be
a modification of an existing language. Given the identified
requirements, it is likely that most features of the selected
language will be familiar to most DoD users, and that it will
not be exactly compatible with any exlsting language implemen-
tation in the DoD. The familiar features are likély because
the requirements dictate a FORTRAN, ALGOL, PL 1-like language
and were selected to be compatible with existing programming
language technology. The incompatibilities of existing imple-
mentations guarantee that it will differ from almost all im-
plementations of languages used currently in the DoD. The se-
lected language will be new to almost all 1ts users because:

® Definitions of existing languages are vague,
incomplete, and ambiguous, resulting in creation
of a new incompatible dialect with each imple-
mentation.

® The selected language 1s to emphasize program
reliability and maintainability orser programming
ease, the traditional goal.

® The requirements encompass the needs of all em-
bedded computer systems applications and not
Just those perceived by programmers on a particu-
lar project.

® The requirements legislate away many of the known
deficlencies (e.g., error-prcne features) of ex-~
isting languages.

® The language will incorporate many of the special
characteristics needed by embedded military system
applications. These have been largely ignored in
the more commonly used languages (which were in-
tended primarily ror scientific and data prccessing
computations).

b)) g Gnmnd Gwed eeed Gy oend e

4

4

e Any attempt to standardize on one precise def- -
inition of any existing language cannot werk,
because its divergent dialects are defined by
their implementations and are therefore machine-
dependent.

A new language name 1s desirable. Even if the language
is a precise definition of some umbrella name lznguage widely
used in DoD, it should be relabeled to distinguish it from
the existing divergent dlalects. The common language should
closely resemble (particularly in semantics) many of t-2 ex-
isting DoD langueages, but which particular one is modified to
obtain the selected common language 1is of little significance.

8. Size

Each of the characteristics described in Chapter V ad-
dresses oné or several related issues in the design of a pro-
gramming language. In several cases, the issues are complex
and the discussion quite involved. This does not, however,
impliy that the selected language must be large or complex.
Each needed characteristic specifies how the design/selection
process will resolve some 1ssue affecting the design, imple-
mentation, or use of the language. Where possible, they avoid
choices of particular language features. Each issue must ul-
timately be resolved; Chapter V provides some of the analysis
and rationale where there 1is reason for a particular resolu-
tion and provides guidelines where no clear resolution is in-
dicated by the application requirements, relevant trade-offs,
or the goals of the common language effort. The number of
issues is, of course, almost independent of the resulting
language and has little, if any, relation to the number of
features or the size of the language.

39

9. Priorities

There 1s no ordering of priorities among the needed char-
acteristics, because (1) the priorities are typically applica-
tion dependent and, therefore, dissimilar for the various po-
tential users in the DoD, (2) priorities are of nc value what-
soever, as long as none of the characteristics are in cornflict
and can be achieved simultaneously, and (3) the establishment
of priorities may unnecessarily serve, in effect, to eliminate
the lower-priority requirements. Priorities should be con-
sidered only if and when compromise becomes necessary.

10. Consistency

It is very important that the needed characteristics be
achievable in combination with low-risk technology. Examples
of existing programming languages which satisfy each indivi-
dual needed characteristic are known, but whether all can be
satisfied together remains a question of judgment, and there
are differing opinions. Any formal demonstration that they
are self-consistent 1s probably still beyond the capability of
computer sclence. A more pragmatic demonstration is required.
Ultimately, the only acceptable proof will be one or several
programming languages that satisfy the requirements. 1If there
are conflicts, they will become apparent in the design/modifi-
cation process and must be resolved at that point.

11. Committee Design

A set of needed language characteristics has been estab-
lished. The modification of an existing language design re-
quires sound engineering and design practice by qualified
people and 1s inappropriate to the compromlse process of com-
mittees. Consequently, the language will be selected from
candidates that have been reviewed by persons knowledgeable in
the intended applications, in the construction of compilers,
and in the design of languages. The Working Group will not de-
sign or modify languages.

49

12. Nontechnical Needs

The success of the Common Higher Order Programming Language
effort ultimately will depend not so much on the technical char-
acteristics of the language selected as on philosophical, manage~
ment support, and procurement issues. Some general approaches
to these 1ssues have been determined by the Working Group and
are reported in Chapter VI. ‘

*

41

-

W e e i —— 4 7

Sy et ey o

— i Gmf Geeed temmd el Gume) ey

)

II. MAJOR CONFLICTS IN CRITERIA AND NEEDED CHARACTERISTICS

Five major conflicts were identified in attempting to find
a consistent and appropriate set of criteria. 1In several cases,
a closer examination of what was actually intended revealed
that seeming conflicts, in fact, did not exist.

A. SIMPLICITY VS. SPECIALIZATION

The common programming language must be useful for many
seemingly diverse applications, each with its own specialized
needs. Suitability of the language for each of the applica-
tions 1s esssntial i1f it is to have wide applicability. This
suggests a need for a large conglomerate language with many
speclalized subsets. At the same time, the single most preva-
lent sympton of the software problem is the complexity of pro-
grams and its adverse effects on the timeliness, reliability,
responsiveness, flexibility, and maintainabflity of software.
Probably tne greatest ccntributcr to unnecessary complexity
in programs is the use of overly elaborate languages with large
numbers of complex features specialized in the hope of provid-
ing every anticipated application with capabilities unique to
that application. The result, in many cases, 1s a grotesque
language, expensive for everyone, understandable to none, and
well-suited to few real problems.

The problem is how to satlsfy simultaneously the need
for simplicity and specialization in the same programming lang-
uage. The only method of which we are aware 1is to achieve
simplicity through the use of a simple, general-purpose language
which has all the power necessary for all the intended applica-
tions, but has not yet specialized that power for any particular

Preceding page blank +3

e

. .._"._‘.
G P 2 B

application. Such a language would have a few general-purpose i
data structures, operations and control structures, each pro- “H
viding a single, w2ll-defined capability, and all composable j
to form more speclalized capabilities needed in particular .j
applications. The language should provide a simple, consis-
tent, and easlly learned semantic and syntactic framework.
There should be definition facilities within the language to
permit definition of new data and operations, but only within
the bullt-in framework, so basic understanding of programs
written in the language would not be undermined by new defini- ,
tions within the language. Such a language alone, nowever, ol
can only provide tne simplicity and the power to bulld data ‘
and operations for specialized applications; it alone will

not make useful definitions available to the software practi-

tioners with the appllications. To be useful, and to satisfy

the specialized needs of the various applications, there must

be a predefined, application-oriented library of definitions

available with the language. These application packages must

have the same support, standardization, and control afforded
the base language. As definitions, they will not, however,
add to the complexity of other applications, need not affect
the implementation, and will be tctally independent and unable
to irncerfere with other application subsets.

Neither should we think that simplicity and uniformity or
even power in language will make programming easy. Intrinsic
complexities which follow from the task will remain. The pur-
pose of a high-order language 1s to remove the unnecessary com-
piexities which arise from weaknesses in the programming lang-
uage, operating system, or underlying computer hardware.

by

et i e Gmeed SEey ey e Beey)

B. PROGRAMMING EASE VS. SAFETY FROM PROGRAMMING ERRORS

There is a clear tradé-off between programming ease and
safety. The more tolerant the programming language and the
less it requires 1in specifications of the intent and assump-
tions of the programmer, the easler the coding task. A lang-
uage which does not require declaration of variables, permits
any type of structure of data to be used anywhere without speci-
fication, allows short cryptic identifiers, has large nurbers
of default conventlons and coercion rules ¢o permit the use of
any operator with acy operand, and 1s capable of assignirng
meaning to most strings of characters presented as a prcgrar,
willl be very easy to use, but also very easy tc abuse. Safe+v
from errcrs 1s enhanced ty redundant specifications, by includ-
ing not only what the program is to do, but what the author's
intenticns and assumptions are. If everything is made explicit
in programs with the language providing few defaults and im-
plicit data conversions, then translators can automatically de-
tect not only syntax errors but a wide variety of semantic and
logic errors. Considering that coding is less than one-sixth
the total programming effort, and that there are majJcr software
reliability and maintenance problems, this trade-off should be
resolved in favor of error avoldance and against programming
ease.

Resclving this trade-~ff in favor of safety at the pro=-
gramming language level 1s important not only for large, long-
lived weapons systems, but for any large long-lived computer
rrcgram, specifically support software, interactive application
packages, and softvare development and maintenance aids. In
specialized application software, the ease with which the user
(an application specialist rather than a computer specialist)
can interface with the application software is of primary inm-
portance, and user requests are often small and short-lived.
The application package 1tself, however, will often be large

us

e e T D XTI S s

and long-lived, and thus should be written and maintalned in

a language which favors program correctness and maintainabil-
ity, even if this costs in terms of programming ease. The
Common Programming Language itself need not be interactive and
should not affect programming ease at the expense of other more
important criteria, but it should be possible within the Com-
mon Programming Language to develop and maintain interactive
application packages with convenient, easy-to-use user inter-
faces.

C. OBJECT EFFICIENCY VS. PROGRAM CLARITY AND CORRECTNESS

Two apparently cpposing views have been suggested. One,
that a simple analysis of either development or life-cycle
costs shows that reliablility, mecdifiability, and maintalnabil-
ity are the mest important factors, and, consequently, clarity
and correctness of programs must be given consideration over
efficiency of the object code, which only increases the cost of
computer hardware (hardware relatively cheap compared to soft-
ware). In fact, if prcgrams need not work correctly they can
easily be implemented with zero cost. The other view points
out real problems and applications within DoD software in which
the machine capability 1s fixed and in which object code effic-
iency 1s of utmost irmportance and nmust be given preference over
other considerations.

These views are not inconsistent with regard to the effect
on programming language selection. In the wvast majority of
cases, claripy and correctness are more important than object
code efficiency and the programming language should do the ut-
most to aid the procgrammer in develcping correct and understand-
able programs within constraints of reasomable object efficiency.
In many cases, language features which Improve clarity do not
adversely affect efficiency. 1In many cases, additional infor-
mation supplied to clarify a rrcgram will permit the compller to

Ir-
n

//,,.

use optimizations not applicable in more general cases.
critical.

remain, however, special situations in which efficiency 1is
need arises.

There
The language should not prohibit access to machine
features necessary to accomplish thcse optimizations when the

Thus, the major criteria in selecting a program-
ming language should be clarity and correctness of programs
within the constraint of allowing generation of extremely ef-
ficient object codes when necessary.

0.

L3

»~

MACHINE INDEPENDENCE VS. MACHINE DEPENDENCE

Object machine dependencies occur in digital computer pro-
grams for at least three reasons.

First, programs are limiced
by the cholce of capability and capacity of the resources avail-
able in the object machine environment.

totally machine-independent.

Programs written for
machines with different memory sizes, different peripheral con-
figurations, and specialized hardware capabilities cannot be

Programming languages can, how-
mitting thelr users to describe the resources needed in their
machine.

ever, treat these inherent limitations in a uniform way by per-
programs and the translator producing dlagnostic messages when

the program requirements exceed the capabilities of the object

Sometimes machine dependencies occur in programs when the
same capability is provided by different mechanisms in the var-
jous object machines.

These machine dependencies cai be avoided
when a higher-order programming language is used.

When evalua-
ting an arithmetic expression, the numter of machine operations,
the form of the operations, and tlLe management of registers and

or general-register architecture.

storage are quite different, depending on whether the object ma-
chine has a single-address, two-address, three-address, stack,

Nevertheless, the programming

language can eliminate these machine dependencies from source
programs by providing a single abstraction of these mechaniza-

tions in the form of algebiralc expressions.

Similarly, real
L7

e L —

time clocks might be provided in the object machine as a
single writable countdown register which interrupts on under-
flow, or as a pair of registers, one of which is a read-only
counter with an interrupt when the register contents are iden-
tical. Although the mechanisms are different, they both pro-
vide the ability to cause an interrupt after (or at) a speci-
fied time. A single programming language feature can make this
capability available to the source language programmer without
imposing a particular object representation.

A third form of machine dependency occurs in programs in
which the programmer knows that certain language constructs,
operations, or programming techniques are particularly effic-
ient or costly on his intended obJect machine. This form of
machine dependency 1s sometimes necessary and is unavoidable
in languages which permit the description not only of what a
program is to do, but how that computation is to be accomplished.
If the source language definition is complete and unambiguous
and the translators implement the source as defined, then this
form of machine dependency will not adversely affect the abil-
ity to correctly compile and run programs on other than the in-
tended object machine.

A machine-independent language 1is one in which any of its
programs can be compiled and will run corr<..ly on any object
machine of the language, provided that the program does not
call for greater capability or more resources than are avall-
able on the particular object machine. This means that the
language must permit the programmer to avoid unnecessary machine
dependencies in his programs. It should permit the user to de-
scribe the ranges, precisions, and types of data and operations
needed in his programs, rather than forcing his concern to the
actual word-sizes, arithmetic type, and internal representations
provided in the object machine. The programming language can
and should be independent of the object machine characteristics

48

]

4

and the compiler. At the same time, 1t should be possible to
write maéhine-dependent programs as described in the [irst and
third paragraphs above. When a program exceeds the capacity or
capahilities of the intended object machine, the error should
be reported by the translator. Even the ill-effects of machine
language insertions and machine-dependent data representations
can be minimized by requiring that they be within the body of

a conditional which 1s dependent on the object machine configu-
ration.

E. GENERALITY VS. SPECIFICITY

A problem which often arises in looking at more detalled
programming language characteristics is the trade-off between
specialized and more general features. General features can
satisfy a greater variety of needs and can be speclialized to
meet many, possibly unforeseen conditions. Specialized capa-
bilities are often more efficient than specialization of gen-
eral capabilities and, therefore, less expensive 1in use. Both
polnts are often true in practice but the latter need not be.
Generality can be achieved by consolldating many diverse cases
into a single general-purpose structure which treats each as
a special case, or it can be achieved by 1ldentifying the prim-
itive building blocks from which more specialized structures
are bullt. The latter approach has several advantages in pro-
gramming languages. First, because all language features ul-
timately must have a representation in terms of computer hard-
ware primitives, composable general-purpose programming langu-
age primitives which have a simple representation in hardware
primitives can te used to compose speclalized language struc-
tures as efficiently as could be done by building them in.
Secondly, general purpose language primitives which emulate
single machine language capabilities, but at the user level,
will obligate the user to pay only for the capabilities he needs.

49

The trouble with specialized capabilities built into a pro-
gramming language is that they seldom are specialized in pre-
cisely the direction needed for the problem at hand. The
ALGOL-60 for statement is extremely useful and desirable if
one's loop requires a control variable, has a sequence of pessi-
ble terminal conditions affecting different iterations, and
needs to be able to change the terminal value of the index vari-
able from within the lcop body. Seldom are all these eapabil-
ities needed, but all must be paid for in program clarity,
language complexity, and object efficiency. A programming
language should strive to provide a base of simple, single-
purpose, composable primitives and leave the speclalization to
supported application packages and to user programs. The lang-
uage primitives should be machine-independent abstractions of
machine primitives which have an obvious and efficient repre-
sentation in most machines.

Care must be exercised to insure that language structures
which are defined within a language, instead of belng bullt in,
can be implemented efficiently. If the notational mechanism
used to make a definition requires over-specifications which
are not necessary to the intended structure, then the compiler
has no way of knowing that these additional specifications are
unnecessary and it must provide for them. Although it 1is not
currently possible to write programs in an abstract language
which specifies only the essential aspects of defined struc-
tures and then to use a compiler which will find an optimal
concrete representation from that description, it is possible
to separate the abstract and concrete descriptions of defined
features so that the idiosyncrasies and special characteristics
of a particular impiementation do not interfere with the clear
understanding and easy use of tlL> defined feature.

50

j
|

T o T OOy e WSy

+

ITI. THE MOST PRESSING SOFTWARE PROBLEMS*

The problems mentioned below are derived from a variety
of in-house and contractor studies of the software problem in
DoD as well as the Service inputs to the common-language ef-
fort. It should be noted, however, that these problems are
unique neither to the military nor to software.

The cost of software is high and, therefore, its problems
are worth examining in more detail. Software costs in the DoD
are estimated at $3 to $3.5 billion annually. Another $2 to
$3 billion is consumed in the support and operation of digital
computer systems. These compare with computer hardware pro-
curement and maintenance costs estimated at $1 to $1.5 billion
per year. Approximately 70 percent of all computer costs (Z.e.,
computer hardware, software, and operations) are for personnel.
Essentially all software costs are for system design, analysis,
and programming personnel. Of these, 75 percent represent in-
house costs.

That software costs are high does not necessarily mean
taat they are excessive. In some cases, computers are used to
automate previously manual tasks. With rapidly rising person-
nel costs, declining computer hardware costs, and stable or
declining software costs (for given tasks), it is 1likely in
such cases that total costs have been reduced through the use
of computers. In many more cases, the use of computers pro-
vides increased capabllities for tasks in which people are too
slow, inaccurate, or otherwise ill-suited. It 1s difficult to
place dollar values on improved or increased capabilities.

*
Costs reported in this section are taken from kef. 2.

51

A. RESPONSIVENESS

Software is often unresponsive to user needs. The dearth
of techniques for specifying requirements and the complexity of
software systems create a situation in which there is minimal
understanding of the intended user's real requirement by those
who must design and implement the software. By the time the
system 1s sufficiently near ccmpletion for the user to try it,
most decisions are irrevocably built into the design. There
"is an almost universal disregard for the building of prototype
systems to resolve or clarify user requirements. The result,
all too often, is software that is of little value to anyone.
It should be noted that the need for prototyping applies to the
cemmon language effort as it does to other software designs.

B. RELIABILITY

Softwére reliability resembles hardware reliability in
that 1t is possible to measure the mean time between fallures
and in that failures are not always reproducible under seem-
ingly similar circumstances. In reality, however, software
faults are quite different: software does not degrade with
time; all software faults are inherent in its design; once cor-
rected, a software fault will not reoccur; and exactly the same
faults will occur under the same circumstances in multiple de-~
ployment of software. Unreilable software has Just two causes:
incorrect programs and erroneous input data. Incorrect pro-~
grams result from transcription errors, lack of understanding
of the program by 1ts authors, and the use of loglcally incor-
rect algorithms. Software faults from bad data indicete lack
of robustness in the program design, and, more specifically,
failure of the program to validate the input fcr conformity
with the program's input assumptions.

Another difficulty of software reliability 1s that the
problem is often confused with the problems of changing user

52

S Bed B ey

g

requirements and software maintainability. Thus, although a
program might be correct and its correctness 111 not degrade
with time, user needs may change so that the program does not
provide a useful service. Lack of maintalnability and modifi-
ability of programs may impair the ability to repair software
design errors. In some situations, the effects of a change
may be so opaque that there can be no cornfldence that changes
will not introduce as many errors as they correct?

o

Software relliability 1s particularly importart in the
military environment where errors can have catastrophic con-
sequences. It cshould also ve remembered in this regard that
redundant deployment and voting will not reduce or protect
against software faults.

€. FLEXIBILITY/MAINTAINABILITY

Software is inherently flexible, modifiable, and amenable
to change. It 1s soft in the sense that it 1s a collection of
ideas, abstractions, and information without an essential phys-~
ical form. The only rationale for implementing a system with
software instead of hardware is flexibility. Software is used
when the task has a short lifetime and willl scon be supplanved
by another task requiring a different program, when the task
is sufficiently complex that many changes and modifications

will be required to refine it into a workable system, when there

is expectation for growth in the system and continued revision
of the system requirements, and when the system 1s sufficiently
unique that the economies are in specializing a general-purpose
system instead of bullding a hard system.

Unfortunately, software's inherent flexibility 1s seldom
available 1in practice. Software is pure design, with only sym-
bolic form. As such, any change or modification to software is
a change in its design. Design changes are easy only 1f we are
not corncerned with their consequencées. To make desizn changes

53

s S L s

with predictable consequences, we must thoroughly understand
the design, what aspects of the design will be affected by our
changes, and how those plecewise effects will affect the whole.
Thus, purposeful software change and modification and its de-
sign of flexibility are determined by the completeness, cor-
rectness, &nd understandability cof its design and documenta-
tion.

D. EXCESSIVE COST

There are wide variances in scftware productivity, reli-
ability, flexibility, and cost. Programmers purportedly pro-
duce an average of 10 debugged instructions per day, but the
variance 1s at least from 1 tc¢ 100 instructions per day. Soft-
ware systems are not bullt from existing off-the-shelf or re-
usable parts, but from scratch each time, using the prinitives
of the current programming language. Programming tools with
demonstrated software productivity increases of at least two
decimal orders of magnitude for large complex software systems
in researcn environments are unavailable for the military user.
In many DoD applications, assembly languages are still widely
used (ané some would argue, to advantage, over the available
HOLs). Finally, the lack of visibility of software to manage-
ment, inaccessibllity of software costs, and fallure to give
software the same scrutiny as hardware in the development of
military systems creates a situation in which there 1s little
cost accountablility.

Computer resource limitation is probably a large factor in
excessive costs. It 1Is Just as easy to add functions to a sys-
tem that is full as it is to augment cne that has plenty of
slack. One reason that promising tools are not being widely
used, that assembly language use is continuling, etc., is that
computer resource limitations (fixed at the time of software
design) force emphasis on minimum possible code per function.

54

e

Most software customers want the product they buy to be small,
fast, and cheap. They ask, why add extra effort and resources
to provide general capabilities that are not needed for their
particular project?

E. TIMELINESS

Many software projects have gone awry for lack of calendar
ime. The reasons are many: estimating techniques are poorly
developed; effort is often confused with progress in software
development, there is sometimes the false assumption that men
- and months are interchangeable; uncertainty of estimates, which

[This may also account for the dearth of off-the-shelf software.

assures that only the most stubborn software managers will stick
by pessimistic time estimates; lack of engineering discipline

in software development which makes it difficult to monitor
progress; and adding additional manpower when schedule slip-
pages are fecognized.

In many systems, including large military systems, indi-
rect costs from software slippages can far exceed the direct
costs of the software. Deployment of a recent Command and Con-
trol system, with an expected life of 7 years, was delayed 6
months because the software was not ready. Since the total
; system cost was about $1.4 billion, the 6-month loss of system
' capability represents a $100 million indirect cost (Ref. 1).

F. TRANSFERABILITY

Software transferability 1is a special case of flexibility,
but one with obvious economic consequences. Transferable soft-
ware can be borrowed from one project or task and adjusted or
modified to suit another. For the present, a realistic goal of
transferability is that it be less expensive to move software
from one machine to another thar. to write 1t from scratch. The
costs of transferring software cannot be eliminated, and if

‘- - 55

i
ot

——

object efficiency 1s important, cannot be done entirely auto-
matically. Successful reuse of software has been almost ex-
clusively confined to mathematical subroutines in FORTRAN, data
processing applicatlion packages in COBOL, and a few follow-on
systems which borrowed extensively from their predecessors. A
key ingredient in each of these was the use of the same program-
ming language. It may not be possible, or even desirable, to
reuse the top-level structures of applications sof%ware, but
there is little reason why software design, development, test,
and maintenance tools and aids and other support software should
not be reusable. Neilther 1is there reason to believe that lower-
level software building blocks used to compose specific tasks
must be unique to that task and cannot be constructed to ac-
vantage for common use throughout that application area. There
was a time when functional commonality seemed as incredible 1in
sclentific and data processing applications as it now doves to
some in weapons systems, command and control, communications,
and avionics.

G. CEFFICIENCY

In software, efficiency is usually taken to mean the time
and space utilization of a running computer program. Efficliency
in this form is important because in some applications there are
critical paths in the software which do press the available re-
sources to their limit. Some applications (e.g., simulation)
have computational requirements in excess of even the largest
computers, while mobile systems (e.g., avionic, shipboard, and
van-mounted) often have envircnmental requirements limiting
their capability and perfermance. There are situations in which
object code and object data representation are ~ritical. In
a'y case, resources should not be wasted.

There was a time when computer hardware was the major cost
component of computer systems and hardware logle speed the major

56

performance limitation. Today, software costs far exceed hard-
ware costs, and in many applications, the memory, peripheral,
and communications speed are the limiting performance factors.
Software costs increase rapidly as the computer reaches satu-
ration. Major savings may be realized by planning for 50 to

75 percent computer saturation, but the tendency remains to
consider only hardware in the initial design and to assume that
the software will adjust.

If efficiency 1s taken in t'ie broader sense of optimal use
of all resources to minimize total cost (either life-cycle or
initial development only), it becomes clear that there are many
trade-offs, and that coding tricks at the machine level seldom
can make a significant contribution. Real efficiency, even as
measured by execution times, results first from the use of the
most efficient algorithm, independent of its implementation,
and secondly from identifying and improving those small parts
of programs constituting the majority of the executiun costs.

hod emy owi wmq Doy San BN SN 02

IV. LANGUAGE DESIGN CRITERIA

The Common HOL effort is concerned with the selection of
a programming language which is expected to be used in a vari-
ety of applications, particularly those in which there is cur-

rently no widely used language. Impliciait in this effort is
the expectation that a large number of programming language
users will adopt programming language nrnew to them. Any change
involves costs, and can be Justifiled only if the resulting
savings exceed the total costs of the change.

Success in the Common HOL effort depends on the accessi-
bility, utility, and applicabllity of the selected language for
use in individual application areas, on the benefits to be de-
rived from its use, énd on the ability of the language to re-~
mé¢in uniform and stable for an extended perlod. Potential us-
ers of a language will not adopt it if 1t falls to satisfy the
special needs of their aprplication. The help a language pro-
viazs in reducing software problems determines its utility
and the benefits to be derived from its use. Among the majcr
benefits of using a ccmmon language are reduced training costs,
greater personnel mobility, wider use of common tools, and ac~
cess to off-thea-shelf software compcnents. These latter bene-~
fits depend primarily on the stabllity of the larnguage defiri-
tion, the uniformity of its implementation, and an effective
program of awareness of what 1s on the shelf.

Selection of a good or best language to serve as a con-
mon language implies use of value judgments which can have mean-
ing only with reference to criteria. Criteria must be estab-
lished to providé a basis for measuring the suitabllity and ap-
prcpriateness of alternative designs durlng the language selection

Preceding page hlank >

e e e]

Y

process. Criteria tend to be general, imprecise, and not sub-
Ject to quantative measure, but they should be unambiguous and
prcvide a framework, a set of guldelines, which can be used to
derive more specific characteristics that are subject to meas-
urement.

The language-design criteria below reflect the three goals
of (1) satisfying the specialized application requirements, (2)
resolving existing software problems, and {(3) assuring that the
language can become a common language.

A. CRITERIA TO SATISFY SPECIALIZED APPLICATION REQUIREMENTS

1. Flexibility in Software Design Criteria

Software requirements of each system vary, depending upon
the mission. The relative importance of executicn efficiency,
memory utilization, program modifiability, reliability, program
production time, and the many other program design criteria vary
widely from application to application, and even among the com-
ponents of a single system. Ccnsequently, the optimization cri-
teria for software progfams should not be built into the pro-
gramming language. Instead, the language should be sufficiently
robust (at compllation time) to allow the software designer to
optimize his programs according to the criteria of greatest im-
portance to his project. The software optimization criteria
should be bound at program compilation time and not at language
design time.

2. Fault-Tolerant Programs

In many weapons systems and control applicactions, it is es-
sential that the programming language permit the description of
computations which will continue to operate in the presence c¢f
faults, whether in the computer hardware, in input data, in op-
erator procedures, or in cother software. Crucial to fault-tcle-
rant programs is the ablility of the program to specify the ac-
tion to be taken for all run tire exception conditions.

€3

Il o S S

3. Machine-Dependent Programs

There are several hundred models of computers in use in
DoD. 1In many applications, they have unique configurations
not compatible with general-purpose installations. These com-

C T T B

puters may lnterface with sensors or control equipment such as
a radar. There are sometimes specialized computer equipments

]

such as associative memories, real-time clocks, analog devices,

and special-function boxes to aid particular computations.
Programs must have access to these machine-dependent capabili-
1 ties.

4. Real-Time Canability

Some applications require that faces be between the com-
putational solution and equipment or people in real time. The

3 programming language used in these applications must, there-
S fore, give access to a real-time clock, allow specification of
1 the maximum duration for execution of designated parts of the
v computation, and permit the prograrmmer to specify the action

to be taken upon passage of designated time intervals. These
applications include monitoring of sensors; control of equip-
ment; display; and operator input processing in applications
such as avionics, command and control, communications, and
training. Real-time programs mzy require access of time of day
and interval timers, the ability to respond at periodic inter-
vals, to service interrupts within a limited time, and to pre-
! 1 dict computation times accurately. The time guantities which
must be dealt with vary from microseconds for device interface
handling, through milliseconds in senser monitoring, seconds

—

in control applications, to days in report generaticn.

5. oystem-Programming Capability

[

Many applications use dedicated computers because they
cannot afford the overhead and do not require the generality of
general-purpose operating systems. For example, avionics, tac-
tical systems, communications, and process control applications

|
l 6
{

include development of specialized executive systems. System
programming capability is also needed for the development and
maintenance of general-purpose operating systems and other sup-
port software.

6. Data Base Handling Capability

In many applications, including command and control; data
processing; training; and software design’ development, and
maintenance it is necessary to access, manipulat;, and display
large quantities of data. Much of this data is symbolic or

textual rather than numeric, and must be organized in an or-

derly and accessible fashion. Memory space rather than execu-

tion time is often the critical resource in data handling ap-
plications; large peripheral storage devices must be employed,
and programs must be able to process densely packed data.

7. Numeric Processing Capability

Numeric processing capability is essential to many appli-
cations, including simulation, sensor processing, equipment con-
trol, and general-purpose engineering and scientific applica-

tions. In some environments, only fixed-point arithmetic 1is
available on the object computers.

B. CRITERIA ADDRESSING EXISTING SOFTWARE PROBLEMS

1. Simple Source Langquage

The role of unnecessary complexity as the main source of
problems in the use of high-order programming languages cannot
be overemphasized. Simplicity in a programming language means
a small language with few special cases, each feature sicple
in meaning and implementation, uniform syntactic forms =znd
consistent interpretations when several special cases must be
provided. There are conglomerate languages so large, dIverse,
and complex that programmers are not expected to understand

the whole language, but only those subsets applicable to their

62

T T L o g st e e«

|

problems. Partitions between subsets are often not well drawn
and there is little consistency among the subsets, so that when

o d

something goes wrong in a program it may invoke language fea-

tures totally foreign to the authors' understanding. Even if

L the system detects the error, the diagnostic will not be mean-
ingful to the programmer. Ad hoc language designs which have

‘E attempted to satisfy every application by providing specialized
features for each special problem result in languages that are

X difficult to learn, impossible to implement consistently, and

which guarantee unreadable, inflexible, and nontransferable

- software.

Untimely delivery of software 1s primarily the result of
~ an inability to integrate the separate components of a large
v software package. The integration problem is a direct result
- of software interfaces too complex and ill-defined to be fully
.- understood in the same way by all parties using them. Lack of
softwares flexibility and maintainabllity is the unavoidable
consequence of programs and programming languages so complex
that no one can predict the consequences of program changes.
Language complexity contributes to the nontransferablility by
ensuring that few installations will be able to afferd imple-
~ mentation of the full language and that no two installationrs
will implement features with exactly the same semantics. The
result is implementation~dependent progrars incomprehensible
- and unusable anywhere but where written. Software productivity
depends on the abllity to reuse existing software, on design,
coding, and maintenance efficlency, and on the usability of the

[2

software design, development, and maintenance tools. The only

-

hope of significantly improving software prcductivity 1is the
ability to reuse software, particularly support software and

software tcols. This cannot happen as long as programs are in-

— gy

comprehensible, unpredictable, and unmedifiable. Finally,
efficient programs cannot be written in languages that employ
highly specialized complex features which do not themselves
have efficient representations in otject machines.

l
| g
{

This is not to claim that the use of simple programming
languages will solve the software problems. If that were true,
machine languages would be ideal. Rather, the claim is that
the problems cannct be solved with complex languages and that
many of the current problems have been aggravated by the use of
unnecessarily large and complex programming languages.

2. Readable/Understandable Programs

In the development of large software systems which must be
integrated from many separately developed parts or software sub-
systems, have long lifetimes, and must go through many modiflca-
tions to their functional requirements, it is essentlal that the
programs be readable and understandable by their authors and
maintainers. Only when the programmer thoroughly understands his
own programs can he convince himself or anyone else of their éor-
rectness. We cannot accurately predict the effect of a program
if we cannot understand it and we cannot modify, repair, or ex-
tend a program i1f we cannot predict the impact of changes.

3. Correct Translator

The programmer must have confidence in the compiler. The
implementation must be consistent with the language semantics,
it must report errors rather than compile a garbage object code,
it must produce the object code a gcod programmer would expect,
and it should not change the meaning of programs from time to
time. More simply, it should be correct, consistent, and pre-
dictable. The language features it must implement, their form
in the source language, and the quality of the source language
definition affects the ability of the translator to meet these
goals.

4. Error-Intolerant Translator

The issue here 1s, when are programming errors to be de-
tected: during the design, during program development, during

system validation and test, or while the program is in use? In

(o2}
£

s ey

s

many DoD applications, errors discovered in operational use can
have catastrophic consequences. System test and validation is
an ideal time to build confidence In a system and to test the
most commorn. cases. It 1s, however, impossible to test every
case, and there must be confidence that the limited tests em=~
ployed are indicative of the total program reliability. Errors
should be detected during the design and development phases.

The translator can help by reporting all efror; which,it can
detect. The number and importance of these will be small ({.e.,
syntax only) if the source language is only a codling languace.
Reducing the syntactic cholces of the user by restricting the
set of acceptable program strings can increase the distance be-
tween correct programs énd increase the probability that syntax
errors will result in syntactically incorrect programs, but this
is of very limited help. The important errors are semantic and
can be detected by the compiler only if the programming langu-~
age 1s a design and documentation language as well as a coding
language. That 1s, if it allows specification of the program~
mers intent as well as his actions (e.g., range and types of
variables), it allows rcdundant specifications (e.g., types of
formal and actual parameters), it does not violate his inten-
tions (e.g., no implicit type conversions), permits him to iden-
tify the pairts of the program in which a program component will
be used (e.g., scope of access specification), and allows him
to deny access to nonessential properties of hls data and pro-
grams. Each of these provides information which allows the
translator to check the program deslign for semantic consistency
and to verify that the programmer has, in fact, conformed to
his own conventions and stated intent. These same specifica-

A tions will also contribute to the readability and maintainabill-

ity of the program.

The goal, of course, should not be to maximize the number
of detectable errors, but rather to minimize the number of non-
detectable errors, the difference being that the language should

65

be first concerned with the prevention of errors and secondly,
with the detection of errors which cannot be prevented by the
lar.guage. Many errors are prevented, for example, when the
HOL does not permit run time modifications to executable code
or does not permit Boolean operations on floating point values.
In any case, the language design should attempt to minimize

the kinds of errors which can occur and shoulf attempt to maxi-
mize the number of those which are detectable by a translator.
Finally, any translator for the HOL should report all errors
which it can detect.

5. Efficient Object Code

Software should strive to make optimal use of all the re-
sources associated with the design, development, use, and main-
tenance of the software. In some DoD software systems, the ma-
Jor costs are in hardware because of multiple deployment (e.g.,
fire control) or are subject to computer hardware constraints
because of the environment (e.g., avionics). In some control
systems, there are critical time constraints which are diffi-
cult for even machine language programs to meet; in some simu-
lation problems, the full job is still beyond the capabilities
of even the largest computers, and in some data processing ap-
plications, limited memory resources require shuffling of large
quantities of data between main and peripheral memories and
create a bottleneck at the I/0 interface. In all these appli-
cations, the efficiency of program and/or data object represen-
tations can be very 1lmportant. Optimal program design, of
course, must be relative to -some design criteria which are meas-
ured in terms of some resource, such as time, space, manpower,
or dollars. Optimal program design does not imply, for example,
that compile time resources should be wasted in squeezing out
unneeded object efficlency.

£6

PN e e e
HEAR - —— e

e~+ 4 &4

av
~

.
¥

C. CRITERIA TO ASSURE A COMMUN PROGRAMMING LANGUAGE PRODUCT

1. Complete Source Language

Every user level aspect of the language should be speci-
fled in its defining documentation. None should be left to be
made arbitrariiy and uniquely by each translator, operating
system, and object machine. The language proliferation prob-
lem stems primarily from development of evermore new incompat-
ible versions of existing languages. In many cases, new lang-
uages are developed for sound reasons, but the effect is the
same. In some cases, the new language 1s given a new name, in
others, it retains the o0ld name and becomes incompatible dia-
lect. In many instances, it 1s not so much that the new ver-
sion violates previous standards, but that the standards are so
incomplete and ambiguous that commonality 1s impossible. Even
worse, many programming language definitions and standards in-
tentionally leave portions of the semantic¢s unspecified with
the intent that they will be provided by the translator. This
may be necessary for the appearance of commonality when incom-
patible complilers for a language already exist, but certainly
not for a new language. Commonality, in more than name, re-
quires that the language specification be complete. Every de-
cision made 11 the programming process should be made irrevecc-
ably in the language design or the choice should be given ex-
plicitly to the programmer.

This does not mean that a program must be implemented in
the same way on all object machines, only that the resulting
semantics be the same in all ways important to the program
logic. The user should not have to overspecify his programs;
he should be able to leave don't care and don't-care-within-
limits conditions tc¢ the translator. For examble, he might be
able to specify the minimal numeric precision required by his
program with the exact implementation determined by the trans-
lator and obJject machine. The order of evaluation of terms in

67

an expression or of the operators in a sequence of associative
operators should be left to the translator when it does not
affect the computation.

2. MWide Applicability

The wide use of a very small number of programming langu-
ages is desirable for many reasons. Tralning costs are reduced
and personnel become more versatile. Project costs should be
less, because existing software can be reused. Pfogrammigg'
costs should be lower because funds can be expended on iﬁprov~
ing existing software tools and buillding more powerful tools.
Increasingly, applications are nct pure; they may be primarily
numerical computation, report generatlon, sensor processing,
process control, file searching, etc., but each has ingredients
of several other applications. Special-purpose, problem-ori-
ented languages lack the generality and adaptability to grow
with the applications. Confidence that the next project or
assignment will use the same language creates incentives at
both the management and programmer level to develop flexible
and reusable software.

3. Implementable

A programming language will be wldely used only if it 1s
capable of inexpensive translation into object computer pro-
grams, If the language is simple and easy to implement, the
cost of 1l.plementation will be lower and translators will be
more widely available, Potential users will 1like it and want
to use 1t only if the cost in machlne resources and elapsed
time for translation is reasonable. The smaller the transla-
tor and the smaller the machines which can host the translator,
the larger the number of users.

4, Static Design

There can be no commonality if the programming languages,
are constantly changing. ProJects often develop thelr own

68

¥

fmd

A o

.

O e e e e

compllers. These compllers do not implement exactly some ex-~
isting source language, but are extended subsets which attempt
to incorporate the latest software technology and special fea-
tures useful to their project while omitting seldom-used fea-
tures. This approach, while providing specialized tools sone-
times well-suited to the task at hand, increases the research
content, risk, and cost of the project. The alternative 1is to
draw a distinct line between research in programming languages
and engineering development of a language. A language can be
built as an engineering development, incorporating the current
state of the art but not goling beyond it; its design can be
frozen and the language used in that form for an extended period.
A willingness to freeze languages and to accept the best tech-
nology of some past moment is essential to obtaln the benefits
of commonality. Research on software technology, management,
language features, and language design should continue in par-
allel with use of a common language. Growth and improvement

in production programming languages should be limited to dis-
crete, clearly defined points when there are major improvements
to be incorporated rather than on a continuous basis,

A static design cannot be maintalned without controls.
Both implicit and explicit controls will probably be needed.
Explicit controls might include language standards, configura-
tion management of language implementations, and policy requir-
ing use of the common language. Implicit controls are at least
as important. They might include economic Incentives, such as
low cost access to exlsting support software, software develop-
ment alds and appllication packages, lower-risk developments,
and greater availabllity of trained programming personnel.

69

5. Reusability

A common language alone, even if it has easily accessible,
compatible, and efficient implementations, is insufficient to
encourage the development of flexible and reusable software.
Reusability does not result merely from the use of a common
language. A major problem in writing reusable software is
that the generality required for reusability precludes it
from being acceptably efficient in many applications. General-
purpose routines will be widely used only if it i1s easy to
tailor them to efficient, special-purpose variants. Most desir-
ably, these specializations would be made automatically by the
compiler when constant arguments are used, or semiautomatically,
as when the programmer specifies that a call is to be compiled
as an open, rather than closed, subroutine. Language features
should be chosen to enccurage the development and use of reus-
able software.

6. A Pedagogical Lanquage

A good pedagogical programming language is one which 1is
easy to learn and well sulted to teaching programming method-
ology and techniques. In applications for which there is cur-
rently no common language, selection of a common easy-to-learn
language will reduce the difficulty and cost of adopting a com-
mon language. A language well-sulted for teaching and learning
programming methodology and techniques is, of course, also well-
suited for applying those methods and techniques.

Already, in the short time of this effort, unsolicited in-
terest in using a common DoD language has been shown by univer-
sities. They not only need a modern pedagogical language, but
alsc one which has many users outside the academic community.
Few, 1f any, of the commercial and academic programming languages
satisfy both requirements.

70

—i b

—4 b By

b

4

V. THE NEEDED CHARACTERISTICS

The set of characteristics prescribed below represents a
synthesis of the requirements submitted by the yilitary Depart-
ments and 1s intended to be consistent with the language cri-
teria of Section IV, self-consistent, and achievable with ex-
isting computer software and hardware technology. The needed
characteristics are the requirements to be satisfied by an ex-
isting, modified, or new language selected as a common language.
The characteristics prescribe capabilities and properties which
a common DoD language should possess, but are not intended to
impose any particular language features or mechanization of
those capabilities.

The large number of characteristics reflects an attempt at
thoroughness in dealing with the relevant 1ssues. Similarly,
the length of the discussion for many items reflects the need
to resolve the ambiguities, examine the implications, and demon-
strate the feasibllity of the compendlous statement introducing
that characteristic. Because the characteristics address issues
in the design, implementation, and use of the language and prop-
erties of the resulting product, there should be no correlation
between the number of characteristics discussed here and the
number of features in a language whilch satisfies these character-
istics. Many of the characteristics will influence the choice
of many features, and every feature will be influenced by many
of the needed characteristics that good longuage design is 2
unification process. Any language that satisfies these character-
1stics must be smaller and simpler than the set of issues un-
derlying its choice.

71

The header of each 1ltem gives a general description of the
needed language characteristic, while the subsequent paragraph(s)
of its body provide clarification, discuss some of the implica-
tions and problems, provide the rationale behind its inclusion,
and further detall the requirement. The entire text, not Jjust
the headers, constitutes the requirements.

A. DATA AND TYPES

Al. The language will be typed. The type (or
mode) of all variables, components of com-
pogite data structures, expressions, opera-
tions, and parameters will be determinable
at compile time and unalterable at run time.
The language will require that the type of
each variable and component of composite
data structures be explicitly specified in

the source programs.

By the type of a data object is meant the set of objects
themselves, the essential properties of those objects, and the
set of operations which give access to and take advantage of
those properties. The author of any correct program in any
programming language must, of course, know the types of all data
and variables used in his programs. If the program is to be
maintainable, modifiable, and comprehensible by someone other
than 1ts author, then the types of variables, operations, and
expressions should be easily determined from the source program.
Type specifications 1in programs provide the redundancy necessary
to verify automatically that the programmer has adhered to his
own type conventions. Static-type definitions alsoc provide in-
formation at compile time necessary for production of efficient
object code. Complle time determination of types does not pre-
clude the inclusion of language structures for dynamic discrim-
ination among alternative record formats (see A7) or among com-
ponents of a union type (see E6). Where the subtype or record

72

structure cannot be determined until run time, it should still
be fully disc¢riminated in the program text so that all the type
checks can be completed at compile time.

A2. The language will provide data types for in-
teger, real (floating point and fized point),

. Boolean, and character, and as type generators,
will provide arrays (i.e., composite data v
structures with indexable components of homo-
geneous type) and records (i.e., compogite
data structures with labeled components of
heterogeneous typel.

These are the common dcta types and type generators of
most programming languages and object machines. They are suf-
ficient, when used with a data definition facility (see D6, E6,
and J1), to mechanize other desired types (e.g ., complex or
vector) efficiently.

A3. The source language will require globel (to a
scope) specification of the precision for float-
ing~-point aritametic and will permit the global
precision to be overridden by precigion speci-
ftection for individual variables. These speci-
fications will be interpreted as the maxirum
precision required by the program logic and the
minimum precision to be supported by the object
code.

This 1s a specification of what tne program needs, not
what the hardware prcvides. Machine indepencence, in the use
of approximate value numbers (usually with floating-point
representaticn}), can be achieved only if the user can place
constraints on the translator and object machinz without forc-
ing a specific mechanization of the arithmetic. Precision
specifications, as the maximum required by tre object code,
provicde all the power and guarantees needed vy the programmer,

without unnecessarily constraining the object machine realization.

73

L . o v s A . VT b

b tn

Precision specifications will not change the type of reals or
the set of applicable operations. Precision specifications
apply to arithmetic operaticns as well as to the data, and
therefor- should be specified once for a designated scope. This
permits zifferent precisions to be used in different parts of

& yroyrar. Specification of the precision will also contribute
to the legibility and implementability of programs.

A4. Firxed-point numbers will be treated as ezact
quantities which have a range ard a fractional
step size determined by the user at comptile
time. Scale-factor managemevt will be done

by the compiler.

Scaled integers are useful approximations to real numbers
when dealing with exact quantity fractioral values, when the
object machine does not have floating-point hardware, and when
greater precision is required than is available with the float-
ing-point hardware. Integers will also be treated as exact
quantities, with a step size equal to one.

AS. Character sete will be treated as any other

Lriumeration tuype.

@ any other dzta tyre defined by enurmeraticn (see EO),
it srould be possible to specify the order of characters and
thefr 1Iteral fornmn to be used in precgrams. These properties
of = character set would be urialterable at run time. The def-
Ir77icn of a character set should reflect on the ranner It 1is
used within a program and not necessarily on the print repre-
sentaticn a particular rhysical device associates with a bit

pattern at run time. In general, uniess all devices use the

same char »r cod2, run-time translation between character
sets wil’ required. Widely used character sets, such as
USASCIZ *2DIC will be availat.l. in a standard iilbrary.
Note thz- & :ss to a linear array filled with the characters

of an alr-nav+t, A, and indexed by an alphabet, B, will con-
vert strings cf chiaracters from B to A.

T4

T Y ey — . -

A6. The language will require user specifica-
tion of the number of array dimensions,
the range of subscript values for each ar-
ray dimension, and the type of each array
component. The number of dimensions, the
type, and the lover subscript bound will
be determinable at compile time. The up-

per subseript bound will be determinable

-y Gaag W g S A

at entry to the array allocation scope.

This 1is general enough to permit both arrays which can
be allocated at compile or load time and arrays which can te
allocated at scope entry, but does not permit dynamic change
to the size of constructed arrays. It 1s sufficient to rermit
1 allocation of space pools which the user can manage for allc~-

cation of more complex data structures, including dynamic ar-
rays. The range of subscript values for any given dimensicn
l will be a contiguous subsequencé of values from an enumeraticn
type (including integers). The preferable lower tound or. the
i subscript range will be the initial element cof an enureration
- . trpe or zero, because 1t often contributes to precgramn effic-
' v iency and clarity.

o+
3
A
Q
o]
"3
n,
]
ot
o)

' A?. The language will perm:
alternative structures, €a

- fizxed at compile time. The name and ture

) of each record component will ke speci®ic

bty the user at compile time.

This provides all that is safe to ure iIn CMS-2 and JCVIAL

OVERLAY and in FCRTRAN EQUIVALENCE., It vermits hierarchically

. structured data of hetercgenecus tyre, prer-its records to have
- alternative structures, as lcng as each structure is fixed at

compile time and the choice is fully discrimirated at rurn time,
but it does not permit arbitrary references to remory or the

http://perr.it

dropping of type checking when handling overlayed structures.
The discrimination conditicn will not be restricted to a field
of the record, but should te any Boolean expression.

B. OPERATIONS

Bl. Assignment and reference cperations will
be automatically defined for all data types
which do not manage their data sgorage. ,~The
assignment operation will permit any vclue of
a given type to be assigned to a varicble, ar-
ray or record component of that type or of a
union type containing that type. Feference

will retrieve the lasat assigned value.

The user will be able to declare variables for all data
types. Varlables are useful only when there are corresponding
access and assignment cperatlions. The user will be permitted
to define assignment and access cperations as part cf encarsu-
lated type definitions (see Ef). Otherwise, they will be au-
tomatically defined for types which do not manage the storage
for their data. (See D6 for further discussion.)

EZ. The source language will have a tuilt-in op-
eraticn whieh can be used to compare any two
data objects (reaardless of tupel) for idemtity.

Equivalence 1s an essential universal operation which
£: 2uld not be subject to restriction on its use. There are

rany useful equivalence operarions for some types, and a lang-

w
3

(8]

definitlion cannct foresee all thecse for user-defined tyres.
Zyulvei-vce, meaning logical identity, and not bit-by-bit com-
parison on the internal data representation, however, is re-
quired for all data tyres. Proper semantic interpretation of
identity requires that equality and fdentity be the same for
atomic data (7{.e., numbers, characters, Boolean values, and
types defined by enumeraticn) and that elements of disjoint

76

T TN RV o v e

ey mwg Gey v TN G

types never be identical. Consequently, its usefulness at run
time is restricted to data of the same type or to types with
nonempty intersections. For floating-point numbers, identity
will be defined as the same within the specified (minimum) pre-
cision.

B3. Relattonal operations will be automati-
ecally defined jor numeric data and all

types defined by enumeration.

Numbers and types defined by enumeration have an obvious
ordering which should be available through relational opera-
tions. All six relational operations will be included. It
will be possible to inhibit ordering definitions when unor-
dered sets are intended.

B4. The built-in arithmetic operations will
include: addition, subtraction, mulii-
plication, division (with a real result),
exponentiation, integer division (with
integer or fizxed-point arguments ard re-

mainder), and negation.

These are the most widely used numeric cperations and are
available as hardware operations in most machines. Floating-
point operations will be precise to at least the specified

precision.

BS. Arithmetic and assignment cperaticms orn
data which are within the range speeifi-
catione of the program will never trun-
cate the mcst significant digits of a
numeric quantity. Truncation and round-
ing will always be on the least-signifi-
ecant digits and will never be implicit for
integers and fixed-point numbers. Implicit
rounding beyond the specified precigion will

be allowed for floating-point numbers.

117

These requirements seem obvious, particularly feor float-
ing-pcint numbers, and yet many of our existing languages trun-
cate the most significant mantissa digits in some mixed and
floating-point operations.

B6. The built-in Boolean operations will in-
elude and, or, not, and xor. Operations
such as and and or on scalars will be

evaluated in short-ceircuit mode.

Short-circuit mode as used here 1s a semantic rather than
an implementation distinction and means that and and or are,
in fact, control operations which do not evaluate side effects
of thelr second argument if the value of the first argument 1is
false or true, respectively. Short-circuit evaluation has no
disadvantages over the corresponding computational operations,
sometimes produces faster executing code in languages where
the user can rely on the short-circuit execution, and improves
the clarity and maintainability of prograrms by permitting ex-
pressions such as, ¢ <7 & A[i] >z, which cculd be erroneous
vwere shcrt-circuit execution not intended. DMNote that the eguiv-
alence and nonequivalence operations (see B2) are the same as
logical ecuivalence and exclusive-or, respectively.

F/7. The source language will permit scalar
operations and assignrent on confcrmable
arrays and will permit data transfere be-
tween records or arraus of itdentical logi-

cal structure.

Conformability will require exactly the sare numkter cf
components (although a scalar can be considered compatible
with any zrray) and one-for-one compatibility in type. Cor-
respondence will be by positiorn iIn similarly shaped arrays.

In many situations, componant-by~component creraticns are done
on array elements. In fact, a primary reason for‘having ar-

rays is to permit large numbers of similarly treated objects to

78

-y o=y eug Wl m

R

have a uniform notation. Operations on large data aggregates
available directly in the source language hide the details of
the sequencing and, thereby, simplify the program and make

more optimizations avallable. 1In addition, they permit simul-
taneous execution on machines with parallel processing hard-
ware. Although component-by-component operations will be
available for built-in composite data structures which are

used to define application-oriented structures, that capability
will not be automatically inherited by defined data structures.
A matrlx might be defined using an array, but it will not in-
herit the array operations automatically. Multiplication for
matrices would, for example, be unnatural, confusing, and incon-
venient 1f the product operator for matrices were interpreted as
a component-py-component operation instead of cross product of
corresponding row and column vectors. Component-by-component
operations also allow operations on character strings repre-
sented as vectors of charzcters and allow efficient Boolean
vector operations.

Transfers between arrays or records of identical logical
structure are necessary to pernit efficient run time conver-
sion from one object representation to another, as might be
done when data is packed to reduce peripheral stcrage require-
ments and I/0 transfer times, but need to be unpacked locally
to minimize processing costs.

B8. There will be nmo implicit type conver-
stons, but nc conversion operation will
be required when the tupe of an actual
parameter 18 a constituent of a union
type which is the formal parameter. The
language will provide explicit conversion
operations among integer, fired-point, and
floating-point data, between the object
representation of numbers and their repre-
gentations as characters, and between fired-

point acale factore.

79

Implicit-type conversions, which represent changes in the
value of data items without an explicit indicator in the pro-

gram, are not only error prone but can lead to unexpected run
time overhead.

B9. Explicit conversion operations will not be
required between numeric ranges. There will
be a run time exception condition when any

integer or fixed-point value is truncated.

Because ranges do not form closed systems, range valida-
tion is not possible at compile time (e.g., T:=I+1 may be a
range error). At best, the compiler might point out likely
range errors. (This requirement is optional for hardware
installations which do not have overflow detection.)

B10. The base language will provide operations
allowing programe to interact with files,
channels, or devices, including terminals.
These operations will permit sending and
receiving both data and ccntrol informa-
tion, will enable programs to assign and
reassign I/0 devices dynamically, wtll
provide user conctrol for erxception condi-
tiong, and will not te installation-depen-
dent.

Whether the referenced "files" are real or virtual and
whether they are hardware devices, I/0 channels, or lcgical
files,'depends on the object machine configuration and on the
detalls of its operating system, if present. 1In any program-
ming system, I/0C operations ultimately reduce to sending or
receiving data or control information to a file or to a de-
vice controller. These can be made accessible in an HCL 1in
an abstract form through a small set of generic I/0 operations
(l1ike read and write, with appropriate device and exception
parameters). Note that devices and files are similar in many

R0

4

respects to types, so additiocnal language features may not be
required to satisfy this requirement. This requirement, in
conjunction with requirement El, permits user definition of
unique equlipment and its assoclated I/C operations as data
types within the syntactic and semantic framework provided bz
the generlic operations.

B11. The language wtll provide operations on
data types defined as power sets of enumer-
ation types (see E6). These operations will
include union, intersection, difference, com-

plement, and an element predicate.

As with any data type, power sets will be useful only If
there are operations which can create, select, and interrogate
them. Note that this provides only a very special class of
sets, but one which is very usefuvl for computations on sets of
indicators, flags, and similar devices in monitoring and con-
trol applications. More general sets, 1f desired, must be ce-
fined, using the type definltion rfacilities.

C. EXPRESSIONS AND PARAMETERS

C1. Side effecte which are dependent on the
evaluation order among the arguments of
an expression will be evcluated lz2ft-to-

right.

This 1s a semantic restri:tion on the evaluation order c?
erzuments to expressions. ! provides an explicit rule ({.e..
left-~to-right) for order of argument evaluation, but allows <th-
impl.mentations to alter the actual order in any way which dces
not change the effect. 71.is provides the user with a simple
rule for determining the effects of Interactlons among argument
evaluations witrou* .mposing a strict rule on compllers which
are sophisticated e...uh to detect potential side-effects and
optimize through 1.o-lering of arguments when the evaluatlon

81

order does not affect the result. Control operations (e.g.,
conditional and 1terative control structures), of course, must
be exceptlons to thils general rule, since control operations
are, in fact, those operaticns which specify the sequerncing
and evaluation rules for their arguments.

C2. Which parts of an expression constitute the
operands to each operation within that ex-
pression should be otvious to the reader. »
There will be few levels of operator hier-
archy and they will be widely reccgnized.

The operator/operand structure cf expressioas must not be
psychclogically ambiguous (7Z.e., to guarantee that the parse
implemented by the language 1s the same as intended by the pro-
grammer and understood by those reading the program). This
kind of problem can be minimized by having feu precedence levels
and parsing rules, by allowing explicit parentheses to specify
the intended execution order, and by requiring expliclt paren-
theses when the execution order is of significance to the re-
sult within the same precedence level (e.g., Y+Y+Z and X+YxZ).
The user will not be able to define new operator precedernce
rules nor change the precedence of existing operators.

C3. Expressiona of a given type will bLe per-
mitted anuywhere in scurce programs where
both constants and references tc vartables

of that tuve are allowed.

This is an example of not imposing arbitrary restrictions
and special case rules on the user of the source language.
Special mention is made here only because so many languages do
restrict the form of expressions. FORTRAN, for example, has
a list of seven different syntactic forms for subscript ex-
pressions, instead of allowing all forms of arithretic expres-
sions.

82

-4

C4. Constant expreseiong will be allowed in
programs wherever congtants are allowed,
and constant expressions will be evalu-

ated before run time.

The abllity to write constant expressions in programs has
proven valuable in languages with thls capability, particularly
with regard to program readability and in avoiding programmer
error in externally evaluating and transcribing constant ex-
pressions. They are most often used 1n declarations. There
1s no need, however, for constant expressions to impose run
time costs fer their evaluation. They can be evaluated once
at complle time, or if thls 1s inconvenient because of incom-
patibilities between the host and oblect machlines, the compller
can generaté a code for their evaluation at load time. In any
case, the resulting value should bte the same (at least within
the stated precision), regardless of the object machine (see
D2). Allowing constant expressicns in plare of constants can
improve the clarity, correctness, and maintalnability cf pro-
grams, and does not impose any run-time costs.

C5. There will be a congistent get of rules
applicable to all rarareters, whether
they be for procedures, types, exception
handling, rarallel processes, declaratiors,
or built-in operations. There will be no
special operations (e.g., array substruct-

urivg) applicable only to parameters.

Uniformity and consistency contribute to ease of learning,
implementing, and using a language; allow the user to concen-
trate on the programming task instead of the langvage; and lead
to more readable, understandable, and predictab}e pregrams.

83

C6. Formal and actual parameters will always
agree in type. The number of dimensions
for array parameters will be determinable
at compile time. The size and subecript
range for array parameters meed not be
determinable at compile time, but can

be passed as part of the parameter.

Type transfers hidden in procedure calls with incompati-
ble formal and actual parameters, whether intentional or ac-
cidental, have long been a source of program errors and of
programs which are difficult to maintain. On the other hand,
there is no reason why the subscript ranges for arrays cannot
be passed as part of the arguments. Some notations permit
such parameters to be implicit on the call side. Formal para-
meters of a union type will be considered conformable to actual
parameters of any of the component *“ypes.

C7?. There will be only four classes of formal
parameters. Fer data, there will be those
which act as constants, representing the
actual parameter value at the time of call,
and those which rename the actual parameter,
which must be a variable. In addition, there
will be a formal parameter class for specifu-
ing the control action when exception cond’-
tions occur and there will be a clase for

procedure rarameters.

The first class of data parameter acts as a constant within
the procedure body. Assignments cannot be made to these para-
meters and they cannot be changed during execuvtion of the pro-
cedure. Their corresponding actual parameter may be any legal
expression of the desired type and will be evaluated once at
the time of call. The second class of data parameter renames

84

s e ey dem S

—d

w

the actual parameter which must be 2 variable. The address of
the actual parameter variaole will be determined by (or at)

the time of call and will be unalterable during e¢xecution of
the procedure. Assignment (or rei.rence) to the formal para-
meter name will assign (or access) the variable which is the
actual parameter. These are the only two widely used para-
meter-passing mechanisms for data. The many alternatives (at
least 10 have been suggested) add complexity and cost to a
language without sufficiently increasing its clarity or poWer.
A language with exception-handling capability must have a way
to pass control and relested data through procedure-call inter-
faces. Exception-handliag control parameters will be specified
on the call side only when needed. Actual procedure parameters
wlll be restricted to those of similar (explicit or implicit)
specification parts.

C8. Specification of the type, range, precistion,
dimension, scale, and format of parameters
will be optional on the formal side (i.e.,
in the procedure declaration). None of them

will be alterable at run time.

Optional formal parameter specification permits the writ-
ing of generic procedures which are instantiated at compile
time by the characteristics of their actual parameters. It
eliminates the need for compile time type parameters. This
generic procedure capability, for example, allows the defini-
tion of stacks and queues and ithejr assoclated operations on
data of any glven type, without knowing the data type when the
operations are defined. This does not conTlict with the re-
quirement for compille-time-determinable type determination (Al),
because the language permits union types (see E6) and complle
time evaluation of constai.t expressions (see Ci}, including

type tecting expressions.

85

C9. There will be provision for variable
numbers of arguments, but in such cases
all but a constant number of them must
be of the same type. Whether a routine
can have a variable number of arguments
must be determinable from its descrip-
tion, and the number of arguments for
any call will be detérminable at com-

pile time.

There are many useful purposes for procedures with vari-
able numbers of arguments. These include Intrinsic functions
such as print, generalizations of operations which are both
commutative and assoclatlive, such as max and min, and repeti-
tivse application of the same blnary operation such as the Lisp
Iist operation. The use of operations with variable numbers
of arguments need not and will not cause relaxation cof any
complle-time checks, require use of multiple-entry Drccedurés,
allow the number of actual parameters tc vary at run time, or
require special calling mechanisms. If the parameters which
can vary are limited to a program-specified typeitreated as any
other argument on the call side and as elements of an array
within the procedure definition, full type checking can te dene
at complle time. There will be no prohibition on writing a
special case of a procedure for a particular number of argu-
nents,

D. VARIABLES, LITERALS, AND CONSTANTS

D1. The user will have the ability to associate
congtant values of any type with identti-

fiers.

The use of identifiers to represent constant values has
often made programs more readable, more easily modifiable, and
less prone to error when the value of a constant is changed.

&5

Assoclating constant values with an ldentifier 1s preferable

to a.zigning the value to a variable, because it 1s then clearly
marked in the program as a constant, can be automaticaily checked
for unintentional changes, and cften can have a more efficient
object representation.

D2. The language will provide a cyntax end a con-
sistent interpretaiion for constants of built-
in data types. Numeric ccnstanis will have the
same value f(withim the specified precision) in
both programs and data (input or ouiput).

Constants are needed for all atomic data types and should
be provided as part of the language definition for built-in
types. Regardless of the source of the data and of the cbject
machine, the value of constants should be the same. For inte-~
gers, 1t should be exact, and for reals it should be the sane,
within the specified precision. Complier writers, however,
would disagree. They object to this requirement on twc grounds:
that 1t 1s too costly 1f the host and object machines are dif-
ferent, and that it 1is unnecessary 1f they are the sam:. In
fact, all costs are at compile time and must be 1Insignificant
compared to the life-time costs resulting from object codes
containing the wrong constant values. As for being unnezesrcary,
there have been all too many cases of diffcrent values from
program and data literals on the same machine because the com~
plle time and run time conversion packages were di.fferent and
imprecise.

D3. The language will permit the user to spectfy
the initial values of individual variables
as part of their declaration., Such varigblee
will be initialized at the time of their appar-
ent allocation (i.e., at entry to allocation

scope). There will be no defauit initiai values.

&7

o e 04 e A 8l T

e

st s e 8 =k e

The abllity to initialize variables at the time of their
allocation will contribute to rrogram clarity, but a require-
ment to do so would be an arbitrary and sometimes costly de-
cision. Default initial values, on the other hand. contribute
to nelther program clarity nor correctness and can be even
more costly at run time. 1t 1is usually a programming error ir
a variable 1s accessed before it 1is initialized. It is desir-
able that the translator give a warning when a path between
the declaration and use of a variable omits initialization.
Whether a variable will be assigned is, in general, an unsoiv-
able problem, but 1t 1is sometimes determinable whether assign-
ments occur on potential paths. 1In the case of arrays, it Is
possible at compile time only to determine that some componentc
(but not necessarily which) have been initialized. There will
be provision {(at user option) for run time testing for initifali- -
zation.

D4. The gource language will require its users
to specify individually the range of all
numeric vartables and the step size for
fized-point variables. The range speci-
fieations will be interpreted as the maxi-
mal range of values which wtll be assigned
to a variable and the minimal range which
must be supported by the object code. Range
and step-size specifications will not be in-

terpreted as defining new types. .

Range specifications are a special form of assertion.
They aid in understanding and determining the correctness of
programs. They can also be used as additional informaticn ty
the compiler in deciding what storage and allocation to use
(e.g., half words might be more efficient for integers in the
range 0 to 1000). Range specifications also offer the oppcr-
; tunity for the translator to insert range tests automaticaily

88

BERRL P 2 N . - - . o mm = e e imain M e e e

e B B o |

+—

for run time or debug time valldation of the program logic.
With the ranges of variables specified in the program, it be-
comes possible to perform many subscript tounds checks at com-
plle time. These bounds checks, however, can be only as valid
as the range specifications, which cannot, in general, be vali-
dated at complle time. Range specifications on approximate
valued variables (usually with floating-point implementation)
also offer the possibility of their implementation using fixed-
point hardware.

D5. The range of values which can be associated
with a variable, array, or record component
will be any built-in type, any defined type,
or a contiguous subsequence of any enumera-

tion type.

There should not be any arbitrary restrictions on tne
structure of data. This permits arrays to be components of
records or arrays and permits records to be components of ar-
rays.

D6. The language will provide a pointer mech-
aniasm which can be used to build data with
shared and/or recursive substructure. The
pointer property will only affect the use
of variables (inecluding array and record
components) of some data types. Pointesr
variables will be as safe in their use as

are any other variables.

Depending on the data type, variables of that type will
hold values which either can be shared or must be unique to
that variable. Assignment to a variable of a shared value type
will mean that the variable's name is to act as an additional
label (or reference) on the datum being assigned. Assignment
to a variable of a unigue value type will mean that the vari-
able's name is to labkel a copy of the object beiupr assigned.

83

For data without alterable component values, there is no func-
tlional difference between reference to multiple copies and mul-
tiple references to a single copy. Consequently, whether values
are shared or coples 1s meaningful only for composite types and
for arrays and records with composite componemts. Whether a
composite type has shared or copled values will be specifled as
part of the type definitlon. The use of pointers (i.e¢., shared
values) will be kept safe by prohibiting variables from holding
values whose allocation scopes are narrower than that of the
variable. Such a restriction 1s easily enforced at compile
time using hierarchical scope rules, providing there 1s no way
to dynamically create new Instances of the data type. 1In the
latter case, the dynamically created data can be allocated with
full safety, using a (user or iibrary-defined} space pool which
is either local (Z.e., own) or global to the type definition.
If variatles of a type are not shared, dynamic storage alloca-
tion willl be required for asslgnment unless thelr size 1s con-
stant and known at the time of varlable alloecation. Thus,
copled variables will be permitted only for types (a) whes:
data have a structure and size which 1s constant in the type
definition, or (b) which manage the storage for their data as
part of the type defilnition. Because shared values are often
less expensive at run time than copled values and are subject
to fewer restrictions, the specification of ceopled values will
be explicit in programs (this i1s similar to the ALGOL-fC 1ssue
concerning the explicit specification of value (i.e., coplzd)
and name (i.e., shared). The need for pointers 1s obvious 1in
building data structures with shared or recursive substructures,
such as, directed graphs, stacks, queues, ard list structures.
Providing pointers as absolute address types, however, produces
gaps in the type checkling and scope mechanisms. Type- and ac-
cess-restricted pointers will provide the power of general
pointers, without their undesirable characteristics.

90

E. DEFINITION FACILITIES

El. The uger of the language will be able to
define new data *ypea and operations with-
in programs.

The number of specialized capabilities needed for a com-
mon language 1s large and diverse. In many cases, thtre is no
consensus as to the form these copabilities should take in a
programming language. The operational requirements dictatirg
specific speclalized language capabllities are volatile, and
future needs cannot always be foreseen. No language can make
avallable all the features useful to the broad spectrum of mil-
itary applications, anticipate future applications and require-
ments, or even prcvide a uriversally "best" capability in sup-~
port of a single a2_plicaiiua area. A common language needs
capabllity for growth. It should contain all the power neces-
sary to sttisfy all the applications and the ability to spe-
clalize that power to the particular application task. A lang-
unage with defining faclilities for data and operations often
makes 1t possible to add new application-oriented structures
and to use new programming techniques and mechanisms through
descriptions written entirely within the language. Definiticens
will have the appearance and costs of features bullt into the
language while they are actually catalogued as application pack-
ages. The operation definition facility will include the abil-
ity to define rew infix and prefix operators (but see H2 for
restrictions). No programming language can be all things to
2ll people, but a language with data and operation definition
facilities can be adapted to meet changing requirements in a
variety of areas.

The abllity to deflne data and operations is well within
the state of the art. Operatlion definition facilities in the
form of subroutines have been available in all general-purpose
programming languages since at least the time of early FORTRANs.

91

http://th.it

Data definition facilities have been available in a variety

of programming languages for almost 10 yecars and reached their
peak with more than 30 extensible languages in 1968 and shortly
thereafter (Ref. 4). A trend toward more abstract and less
machine-oriented data specification mechanisms has appuered
more recently in PASCAL (Ref. 5). Data type definitions, with
operations and data defined together, are used in several lang-
uages, including SIMULA-67 (Ref. 6). On the other hand, there
is currently .nuch ferment as to what is the proper function and
form of data type definitions.

E2. The use of defined types will be indis-
tinguishable from built-in types:.

Whether a type is bullt-in or defined within the base will
not be determinable from its syntactic and semantic properties.
There will be no ad hoe special cases or inconsistent rules to
interfere with and complicate learning, using, and implementing
the language. If built-in features and user-defined data struc-
tures and operations are treated in the same way throughout thez
language, so that the base language, standard application 1li-
braries, and application programs are treated in a uniform man-
ner by the user and by the translator, then these distinctions
will grow dim, to everione's advantage. To achleve these goals,
full encapsulation capabilities are needed, as well as ways to
specify special selection, printing, and storage management
policies for underlying representations. When the language
contains all tne essential power, when few can tell the dif-
ference between the tase language and library definitiors, and
when the introduction of new data types and routines does not
have an impact on the complier and the language standards, then
there 1s little incentive to proliferate languages. Similarly,
if type definitions are processed entirely at compile time and
the language allows full program specification of the internal
representation, there need be no penalty to run time efficiency
for using defined types.

ge

R e el e e . .. G e s e e s W ey L o v nn o e m e+

o

B A-J dhmrend amy

—_—

L2

-

an

E3. Eaech program component will be defined
in the base language, in a library, or
in the program. There will be no de-
fault declarations.

As programmers, we should not expect the translator to
write our programs for us (at least in the immediate future).
If we somehow know that the translator's default convertion s
compatible with our needs for the case at hand, we should still
docunent the choice so others can understand and maintain our
programs. Neither should we be able to delay definitions (poc-
sibly forget them) until they cause trouble in the operational
system. This 1s a special case of requirement Il.

E4. The user will be able, within the source
language, to extend exzisting operctors

to new d-ta types.

When an operation is an abstraction of an existing opera-
tion for a new type or is a generalization of an existing op-
eration, it is inconvenient, confusing, and misleading to use
any but the existing operator symbol cr function name. The
translator will not assume that commutativity of built-in op-
erations 1s preserved by extenslions, and any assumptions about
the associativity of built-in or extended orerations will be
ignored by the translator when explicit parenthesés are pro-
vided in an expression.

ES. Type definitions in the source language will
permit definition o; both the nlass of data
objects comprising the type and the set of
operaticne applicable to that class. A de-
fined type will not automatically inherit
the operatione of the data with which it is

represented.

93

Types define abstract data objects with special properties.
The data objects are given a representation in terms of exis-
ting data structures, but they asre of little value intil opera-
tions are available to take advantage of their special proper-
ties. Wher one obtains access to a type, he needs its opera-
tions as well as its data. Numeric data is neaded in many ap-
plications, but 1s of little value without arithmetic o;era—
tions. The definable operatfons will include constructors, se-
lectors, predicates, and type conversions.

E6. The data objects comprising a defined type
will be definable by enumeration of their
literal names, as Cartesian products of ex-
i8ting types (i.e., as array and record
classes), by discriminated union (i.e., as
the union of disjoint types) and as the
powver set of an enumeration type. These
definitions will be processed entirely at

compile time.

The above list comprises a currently known set of useful
definitional mechanisms for data types which do not require
run time suppo:rt, as do garbage collection and dynamic storage
aliocation. In conjunction with pointers (see D6), they pro-
vide many of the mechanisms necessary to define recursive data
structures, and efficient sparse data structures.

E?7. Type definitions by foca union (i.e., union of
non~disjoint types) and subsetiing are not

desired.

Free union adds no new power not provided by discriminated
union, but does require giving up the security of types in re-
tarn for programmer freedom. Range £nd subset specifications
on -~ ariables are useful documentation and debugging aids, but
will not be construed as types. Subsets do not introduce new
properties or operations not available to the superset and

94

e} Gmmed S fmend el deem) e

w —— C— ey 3

often do not form a closed system under the superset operations.
Lalike types, membership in subsets can be determined only at
run time.

E8. When defining a type, the user will be able
to specify the initialization and finaliza-
tion procedures for the type and the actions
to be taken at the time of allocation and

deallocation of variables of that type.

It 1s often necessary to do bookkeeping or to take other
special action when variables of a given type are allocated or
deallocated. The language will not 1limit the class of definable
typ2?s by withholding the ability to define those actions. Init-
ialization might take place once when the type is allocated
(i.e., in its allocation scope)} and would be used to set up the
procedures and initialize the variables which are local to the
type definition. These operations will be definable in the en-
capsulation housing the rest of the type definition.

F. SCOPES AND LIBRARIES

P1. The language will allow the user to dis-
tinguish between scope of allocation and

sccpe of access.

The scope of allocation or lifetime of a program structure
is that region of the program for which the object representa-
tion of the structure should be present. The allocation scope
defines the program scope for which own variables of the struc-
ture must be maintained and identifies the time for initializa-
tion of the structure. The access scope defines the regions of
the program in which the allocated structure 1s accessible to
the program and will never be'wider than the allocation scope.
In some cases, the user may desire that each use of a defined
program structure be independent (i.e., the allocation and
accessing scopes would be identical). 1In other cases, the
various accessing scopes might share a common allocation of the

structure.
95

F2. The ability to limit access to separately
defined structures will be available both
where the structure is defined and where
it is8 used. It will be possible to as-
soctiate new local names with separately

defined program components.

Limited access specified in a type definition is necessary
to guarantee that changes to data representations and to man-
agement routines which purportedly do not affect the calling
programs, are, ln fact, safe. By rigorously controlling the
set of operations applicable to a defined type, the type defi-
nition guarantees that no external use of the type can acci-
dentallv or intentionally use hidden nonessential properties
of Lile type. Renaming separately defined programming ~ompo-
nents 1is necessary to avoid naming conflicts when they are
used.

Limited access on the call side provides a high degree of
safety and eliminates nonessential naming conflicts without
limiting the degree of accessibility which can be built into
programs. The alternative notion, that all declarations which
are external to a program segment should have the same scope,
is inconvenient ard costly in creating large systems which are
composed of many subsystems, because it forces global access
scopes and the attendant naming conflicts on subsystems not
using the defined items.

F3. The scope of identifiers will be wholly

‘determined at compile time.

Identifiers will *e declared at the beginning of their
scope, and multiple use of variable names wiil not be allowed
in the same scope. Except as otherwise explicitly spscified
in programs, access scopes will be lexically embedded, with the
most local definition applying when the same 1dentifer appears

A e Y i " DppYTRs A T T N T IS T T b R S T R e I e e G T sttt it ar g o

T rpe—— e e e e e e e e e me e e

l,'

I
at several levels. The language wili use the above lexically
lv embedded scope rules for declarations and other definitions of
identifiers to make them easy to recognize and to avoid errors
1 and ambiguities from multiple use of identifiers in a single
scope.

I

I

P4. A variety of application-oriented data and *°
operations will be available in libraries
and easily accessible in the language.

A simple base alone is not sufficient for a common lang-
uage. Even though, in theory, such a language provides the
necessary power and the capability for specialization to par-
ticular applications, the users of the langusage cannot be ex-
pected to develop and support common libraries under individual
projects. There will be Lrcecad support for libraries common to
. users of well-recognized application areas. Appllecation 1li-

- braries will be developed as early as possible.

FS5. Program components not defined within the
" current program and not in the base lang-
. uage will be maintained in libraries ac-
-- cessible at compile time. The libraries
will be capable of holding anything de-
finable in the language and will not ex-
clude routines whose bodies are written

in other source languages.

The usefulness of a language derives primarily from the
existence and accessibility of specialized application-oriented
data and operations. Whether a library should contain source
or object codes is a question of implementation erficiency and
) should not be specified in the definition of the source lang-

uage, but the source language description will always be avail-
.- able. It should be remembered, however, that interfaces can-
o not be validated at program assembly time without some equiv-
alent of their source language interface specificatlons, that

97

— oy e - e T A S TR § T R T b VAT ST PP TR O

object modules are machine-dependent and, therefore, not port-
able, that source code is often more compact than object code,
and that compilers for simple languages can sometimes compile
faster than a loader can load from relocatable object programs.
Library routines written in other languages will not be pro-
hibited, provided the foreign routine has object codes compati-
ble with the calling mechanisms used in the Common HOL and pro-
viding sufficient header information (e.g., parameter types,
form, and number) is given with the routine in Common HOL form
to permit the required compile time checks at the interface.

F6. Libraries and Compools will be indistin-
gutshable. They will be capable of holding
anything definable in the language, and it
will be possible to associate them wilh any
level of programming activity frem systems,
through projects, to individual programs.
There will be many specialized compools or
libraries, any user-specified subset of which
is immediately accessible from a given pro-

gram.

Compools have proven very useful in organizing and con-
trolling shared data structures and shared routines. A simi-
lar mechanism will be available to manage and control access to
related library definitions.

F?. The source language will contain standard
machine-independent interfaces to machine-
dependent capabilities, including peripheral

equipment and special hardware.

The convenience, ease of use, and savings in production
and maintenance costs resulting from using high-order languages
come from being able to use specialized capabilities without
building them from scratch. Thus, 1t 1s essential that high-
level capabilities be supplied with the language. The idea 1is

98

ey d S Gomd e}

-

¥ -4

not to provide all the many speclal cases 1n the language, but
to provide a few general cases which will ccver the special
cases.

There 1s currently little agreement on standard operating
system, I/0, or file system interfaces. This does not preclude
support of one or more forms for the near term. For the pres-
ent, the important thing i1s that one be chosen and made avail-
able as a standard supported library definition which the ucer
can use with confidence.

G. CONTROL STRUCTURES

G1. The language will provide structured con-
trol mechanisme for sequential, conditicnal,
iterative, and recursive control. It will
also provide control structures for (pseudo)
parallel processing, exception handling, and

asynchronous interrupt handling.

These mechanisms, hopefully, provide a spanning set of
control structures. The most appropriate operations in sev-
eral of these areas 1s an open question. For the present, the
choice will be a spanning set of composable control primitives,
each of which 1is easily mapped onto object machines and which
does not impose run time charges when it 1s not used. The ob-
Jject machine determines whether parallel processing 1s real
(i.e., by multiprocessing) or 1s synthesized on a single se-
quential processor, but 1f programs are written as if there 1s
true parallel processing (and no assumption about the relative
speeds of the processors) then the same results will be ob-
tained independent of the objecc environment.

It 1s desirable that the number of primitive control struc-
tures in the language be minimized, not by reducing the power
of the language, but by selecting a small set of composable prim-
itives which can be used to easily builld other desired control

99

oLt

mechanisms within programs. This means that the capabilities

of control mechanisms must be separable, so that the user need
not pay elther program clarity or implementation costs for un-
desired specialized capabllities. By these criteria, the ALGOL-
60 for would be undesirable because it imposes the use of a loop
control variable, requires that there be a single terminal con-
dition, and that the condition be tested before each iteration.
Consequently, for cannot be composed to build other useful it-
erative control structures (e.g., FORTRAN do). The ability to
compose control structures does not imply an abllity to define
new control operations, and such an ability is in conflict with
the limited parameter-passing mechanisms of C7.

G2. The source language will provide a go-
to operation applicable to program
labels within its most local scope of
definition.

The go to 1s a machine-level capability which 1s still
needed to fill in any gaps that might remain in the choice of
structured control primitives, te provide compatibility for
transliterating programs written in older languages, and be-
cause of the wide familiarity of current practitioners with its
use. The language should not, however, impose unnecessary
costs for its presence. The go to will be limited to explicitly
specified program labels at the same scope level. Neither
should the language provide specialized facilities which en-
courage its use in cdangerous and confusing ways. Switches,
designational expressions, label variables, label parameters
and numeric labels are not desired. Switches here refer to the
unrestricted switches which are generalications of the go to
and do not refer to case statements which are a general forn
for conditionals {see G3). This requirement should not be in-
terpreted to conflict with Lhe speciaiized form of control
cransfer provided by the exception-hanrdling control structure
of GT7.

100

U

ed g e} e G

PO S S S S S S

-

-

[WSS |

]

4 -

—_— — -

G3. The conditional control structures will
be fully partitioned and will permit se-
lection among alternative computations
based on the value of a Boolean expression,
on the subtype of a value from a discrimi-
nated unton, or on a computed chotce among

labeled alternatives.

The conditional control operatlions will be fully parti-
tioned (e.g., an else clause must follow each if then) so the
choice is clear and explicit in each case. There will be some
general form of conditional which allows an arbitrary computa-
tion to determine the selected situation [e.g., Zahn's device
(Ref. 7) provides a good solution to the general problem].
Special mechanisms are also needed for the more common cases of
the Boolean expression (e.g., if then else) and for value or
type discrimination (e.g., case on one of a set of values or
subtype of a union).

G4. The iterative control structure will per-
mit the termination condition to appear
anywhere in the loop, will require con-
trol variables to be local to the itera-
tive control, will allow entry only at the
head of the loop, and will not imposge ex-
cegsive overhead in clarity or run time ex-
ecution costs for common special case termi-
nation conditions (e.g., fized number of it-

erationg or elements of an array exhausted).

In its most gereral form, a programmed loop 1s executed
repetitively until some computed predicate becomes true. There
may be more than one terminating predicate, and they might ap-
pear anywhere in the loop. Specialized control structures (e.g.,
While do) have been used for the common situation 1n which the
termination condition precedes each‘fferation. The most common

101

a——

case is termination after a fixed number of iterations and a
specialized control structure should be provided for that pu-

pose (e.g., FORTRAN do or ALGOL-60 for). A problem which arizs:

in many programming languages is that loop control variables
are global to the 1terative control, and, thus, will have a
value after loop termination, but that yalue is usually an ar-
cident of the implementation. Specifying the meaning of con-
trol variables after loop termination in the language defini-
tion resolves the ambiguity, but must te an artitrary decisi=m
which will not ald program clarity or correctness, and may ir—
terfere with the generation of efficient objJect codes. Loop
control variables are, by definition, variables used to contrz_
the repetitive execution of a programmed loop, and, as such,
will be local to the loop body. At loop termination, it will
be possible to pass their value (or any other computed value;
out of the loop, conveniently and efficiently.

GS. Recursive as well as nonrecursive routines
will be auvailcbie in the source language.
It will not be possible to define proced-
ures within tke body of a recursive pro-

cedure.

Recursion is desirable in many applications because it
contributes directly to their elegance and clarity and simpli-
fies proof procedures. Incdirectly, it contributes to the re-
11ability and maintainability of some programs. Recursion is
required to avoid unnecessarily opaque, complex, and confusins
programs when programs operate on recursive data structures.
Recursion has not been widely used in DoD software because
many programming languages do not provide recursion, practi-
tioners are not familiar with its use, and users fear that it
run time costs are too high. Of these, only the run time corsi:
would Justify its exclusion from the language.

102

f

S

A major run time cost often attributed to recursion is the
need for the presence of a set of "display" registers which are
used to keep track of the addresses of the various levels of lex-
ically-embedded environments and which must be managed and up-
dated at run time. The display, however, is necessary only in
programs in which routines access variables which are global to
their own definition, but local to a more global recursive pro-
cedure. This pessibility can easily be removed by prohibiting
the definition of procedures within the body of a recursive pro-
cedure. The utility of such a combination of capabilities is
very questionable, andAthis single restriction will eliminate
all added execution costs for nonrecursive procedures in pro-
grams which contain recursive procedures.

As with any other facility of the language, routines should
be implemented in the most efficient manner consistent with thelir
use and the language should be designed so that efficlent imple-
mentations are possible. In particular, the most efficiant im-
plementation for nonrecursive routines should be possible, re-
gardless of whether the language or even the program contalns
recursive prccedures. When any rhutine makes a procedure call
as its last operation before exit {(anéd this is quite common
for recursive routines) the implementation might use the same
data area for both routines and do a jump to the head of the
called procedure, thereby saving much of the overhead of a pro=-
cedure call and eliminating a return. The cholce between re-
cursive and nonrecursive routines involves trade-offs. Recur-
sive routines can aid program clarity when operating on recur-
sive data, but can detract from clarity when operating on it-
erative data. They can increase execution time when procedure
call overhead 1s greater than loop overhead and can decrease
execution times when loop overhead is the more expensive. Fi-
nally, program storage for recursive routines is often only a
small fraction of that for a zorresponding iterative procedure,

103

S s dm e e i = s e L at 5 f e - e e ——e— A ¢

but the data storage requirements are often much greater be-
cause of the simultaneous presence of several activations of
the same procedure.

G6. The source language will provide a par-
allel processing capability. This cap-
ability should include the ability to
create and terminate (possibly pseudo)
parallel processes and for these pro-
cesses to gain exclusive use of resources
during spectfied portions of their execu-

tion.

A parallel processing capablility is essential in embedded
computer applications. Programs must send data to, recileve
data from, and control many devices which are operating in par-
allel. Multiprogramming (a form of pseudo-parallel processing)
is necessary so that many programs within a system can meet
their differing real time constraints. The parallel processing
capability will minimally provide the ability to define and call
parallel processes and the ability to gain exclusive use of sys-
tem resources in the form of data structures, devices, and pseudo
devices. This latter ability satisfles one of the two needs for
synchronization of parallel processes. The other is required in
conjunction with real time constraints (see G8).

The parallel processing capability will be defined as
true parallel (as opposed to coroutine) primitives, but with
the understarding that in most implementations the object com-
puter will have fewer processors (usually one) than the number
of parallel paths specified in a program. In‘erleaved execu-
tion in the implementation may be required. ’

The parallel processing features of the language should
be selected to eliminate any unnecessary overhead assoclated
with thelr use. The costs of parallel processes are primarily
in run time storage management. As with recursive routines,

104

S s

——ié teemi e Smme) Gemmd e B

P

we

most accessing and storage-management problems can be elimi-
nated by prohibiting complex interactions with other language
facilities where the combination has 1little, if any, utility.
In particular, it will not be possible to define a parallel
routine within the body of a recursive routine and it will not
be possible to define any routine, including parallel routines,
within the body of those parallel routines which can have mul-
tiple simultaneous activations. If the language permiés sev-~
eral simultaneous activations of a given parallel process, then
it might require the user to give an upper bound on the number
which can exist simultaneously. The latter requirement 1is rea-
sonable for parallel processes because it is information known
by the programmer and necessary to the maintainer, because par-
allel processes cannot noimally be stacked, and because it 1is
necessary for the cecmpllatiocn of efficient programs.

G?. The exception-handling control structure
will permit the user to cavse transfer of
econtrol and data'for any error or excep-
tion situation which might occur in a pro-

gram.

It is essential in many applications that there be no
program halts beyond the user's control. The user must be able
to specify the action to be taker. on any exception situation
which might occur within his program. The exception-handling
mechanism will be parameterized so data can be passed to the
recovery point. Exception situations might include arithmetic
overflow, exhaustion of available space, hardware errors, any
user-defined exceptions, and any run-time-detected programming
error.

The user willl be able to write programs which can get out
of an arbitrary nest of control and intercept 1£ at any embed-
ding level desired. The exception-handling mechanism will per-
mit the user to specify the action to be taken upon the occur-
rence of a designated exception within any given access ucope

105

- e . C e anm v s % ees i e e e e T P 7 MY Y~ g

of the program. The transfers of control will, at the user's
option, be either forward in the program (but never to a nar-
rower scope of access or out of a procedure through its lexical
structure) or out of the current procedure through its dynamic
(t.e., calling) structure. The latter form requires an excep~-
tion-handling formal parameter class (see CT7).

G8. There will be source language features
which peemit delay on ony control path
until come specified time or situation
has occurred, which permit specification
of the relative priorities among parallel
control paths, which give access to real
time clocks, and which permit asynchronmous
hardvare interrupts to be treated as uny

other exception situatioa.

When parallel or prseudo-parallel paths appear in a pro-
gram, it must be possible to specify their relative priorities
and to synchronize their executions. Synchronization can be
done either through exclusive access to data (see G6) or
through delays terminated by designated situations occurring
within the program. These situations should include the elapse
of program-specified time intervals, occurrence of hardware in-
terrupts, and those designated in the program. There will te no
implicit evaluation of program-determined situations. Time de-
lays will be program-specifiable for both real and simulated
times.

H. SYNTAX AND COMMENT COWVENTIONS

H1. The source language will be free format
with an explicit statement delimiter,
will allow the use of memonically signif-
icant identifiers, will be based on con-
ventional forms, wiil have a simple, un-

iform, and easily parsed grammar, will

106

D e e T I

o ey

not provide unique notations for
spectal cases, will not permit ab-
breviation of identifiers or key
words, and will be syntactically un-

ambiguous.

Clarity and readability of programs will be the primary
criteria for selecting a syntax. Each of the above points can
contribute to program clarity. The use of free format, mne-
monic identifiers, and conventional forms allows the programmer
to use nctations which have their familiar meanings, to put
down his i1deas and intentions in the order and form that hu-
mans think about them, and to transfer skllls he already has
to the solution of the problem at hand. A simple, uniform
language reduces the number of cases which must be dealt with
by anyone using the language. If programs are difficult for
the translator to parse, they will be difficult for people.
Similar things should use the same notations with the special-
case processing reserved for the translator and objJect machine.
The purpose of mnemonic identifiers and key words is to be in-
formative and increase the distance between lexical units of
programs. Thils does not prevent the use of short identifiers
and short key words.

H2., The user will not be able to modify the
source language 8syntax. Specifically, he
will not be able to modify operator hier-
archies, introcuce new precedence rules,
de fine new key word forms, or define new

operator precedences.

If the user can change the syntax of the language, he can
change the basic character and understanding of the language.
Tr.e distinction between semantic extensions and syntactic ex-
tensions 1s similar to that between being able to coin new
words in English or being able to move to another natural

167

S ——

language. Coining words requires learning those new meanings
before they can be used, but at the same timne increases the
power of the language for some applicatiens. Changing the
grammer, (e.g., Franglis, the use of French grammar with in-
terspersed English words) however, undermines the vasic under-
standing of the language itself, changes the mode of expression,
and removes the commonalities which obtain between various
speclalizations of the language. Growth of a language througn
definition of new data and operations and the introduction uf
new words and symbols to ildentify them is desirable, but there
should be no provision for changing the grammatical rules of
the language. This requirement does not conflict with EU and
does not preclude associating new meaning with existing opera-
tors.

H3. The syntax cf source-language programs
will >e composable from a character set
suitable for publication purposes, but
no feature of the language will be in-
accessible using the 64-character ASCiI

subset.

A common language should use notations ard a character set
convenient for communicating algorithms, prog.,ams, and program-
ming techniques among its users. On the other hand, the langu-
age should not reauire special equipment (e.g., card readers
and printers) for its use. The use of the 6ld-character ASCII
subset will make the language compatible with the federal in-
formation processing standard 64-character set, FIPS-1, which
has been adopted by the U.S.A. Standard Code for Information
Interchange (USASCII). The language definition will specify
the translation from the publication language into the restricted
character set.

108

B RS

B4. The language definition will provide
the formation rules for identifiers
and literals. These will include 11t~
erals for numbers and character strings
and a break character for use internal
to identifiers and literals.

Lexical units of the language should be defined in a sim-
ple, uniform, and easily understood manner. Some possible
break characters are the space (i.e., any number of spaces or
end-of-line), the underline, and the tilde (Refs. & and 9).
The space cannot be used if identifiers and user-defined in-
fix operators are lexically indistinguishable, but in such a
case, the formal grammar for the language would be amhiguous
(see Hl). A literal break character contributes to the read-
ability of programc and makes the entry of long litcrals less
error-prone. With a space as a break character, one can enter
multipart (Z.e., more than one lexical unit) identifiers such
as REAL TIME CLOCK or long literals, such as, 2.14259 26535
89733. Use of a break can also be used to guarantee that mis-
sing quote brackets on character literals do not cause error:
which propagate beyond the next end-of-line. The language
should require separate quoting of each line of a long literal:
"This 18 a long"”

"literal string"”.

H5. There will be no continuation of lexical
units qeross lines, but there will be a
way tc include object characters such as
end-of-1line in literal strings.

Many elementary input errors arise at the end of lines.
Programs are input on line-oriented media, but the concept of
end-of-1ine is foreign to free-format text. Most of the error-
prone aspects of end-of-line can be eliminated by not allowing
lexical units to continue over lines. The sometimes undesirable

109

B i M N et LRI R RO IR TR S I T T AT e e e e T s s e LR e oo T

effects of this restriction can be avoided by permitting iden-
tifiers and literals to be composed from more than one lexical

unit (see HU4) and by evaluating constant expressions at compile
time (see Cl).

H6. Key wvords will be reserved, will be very
few in number, will be informative, and
will not be usable in contexts where an

identifier can be used.

By key words of the language are meant those symbols and
strings which have special meaning in the syntax of programs.
They introduce speclal syntactic forms, such as are used for
control structures and declarations, or they are used as infix
operators, or as some form of parenthesis. To avoild confusion
and ambiguity, key words will be reserved, that is, not used
as identifiers. Key words will be few, because each new key
word introduces another case 1n the parsing rules, adding to
the complexity of the language, also, too many key words in-
convenience and complicate the programmer's task of choosing
informative identifiers. Key words should be concise, but it
is more important that they be informative than short. A major
exception 1s the kev word introducing a comment; in this case,
the comment, not its key word, should do the informing. Finally,
there will be no place in a source language program in which a
key word can be used in place of an identifier. That 1is, func-
tional form operations and special data items built into the
language or accessible as a standard extension will not be
treated as key words but will be treated as any other 1ldenti-
fier.

110

Bt Tl SV — Y

—i &

-4

<<

BE7?. The source language will have a single,
uni form comment convention., Comments
will be easily distinguishable from
code, will be introauced by one or
possibly two language-defined charac-
ters, wtll permit any combination of »
characters to appear, will be ablz to
appear at any reasonable point in a pro-
gram, will automatically terminate at end-
of-line if not othzrwise terminated, and
will not prohibit automatic reformatting
of programs.

These are all obvious polnts that will encourage the use
of comments in programs and avold thelr error-prone features
in some exlsting languages. Comments at any reasonable point
in a program will not be taker to mean that they can appear
internally in a lexlcal unit, such as an identifier, key word,
or between the opening and closing brackets of a character
string. One comment convention which nearly meets these cri-
teria is to have a special quote character which begins com-
ments and with either the quote or an end-of-line ending each
comment. This allows both embedded and line-oriented comments.

H8. The language will not permit unmatched
parentheses of any kind.

Some programming languages permit closing parentheses to
be omitted. If, for example, a program contained more BEGINs
than ENDs, the translator might insert enough ENDs at the end
of the program to make up the dirference. This makes programs
easier to write because it sometimes saves the programmer writ-
ing several ENDs 2t the end of programs and because it elimi-
nates all syntax errors for missing ENDs. Fallure to require
proper parentheses-matching makes it more difficult to write
rorrect programs. Good programming practice reguires that

111

matching parentheses be included in programs, whether or not
they are required by the language. 'Unfortunately, if they

are not required by the language, there can be no syntax check
to discover where errors were made. The language will require
full parentheses;matching. This does not preclude syntactic
features such as case z of 815 Bge0e8 end case in which end

is paired with a key woré other than begin. Nor does it, alone,
prohibit open forms such as ij-then-else-.

H9. There will be a uniform referent notation.

The distinection between functicn calls and data referernce
is one of representation, not of use. Thus, there will be no
language-imposed syntactic distinction between function calls
and data selection. If, for example, a computed function is
replaced by a lookup table, there should be no need to change
the calling program. This does not preclude the inclusion of
more than one referent notation.

H10. No language-defined symbols appearing in
the same context will have essentially
different meanings.

This contributes to the clarity and uniformity of programs,
protects against psychological ambiguity, and avoids some er-
ror-prone features of extant languages. In particular, this
would exclude the use of = to imply both assignment and equal-
ity, would exclude conventions implying that parenthesized para-
meters have special semantics (as with PL/1 subroutines), and
would exclude the use of an assignment operator for other than
assignment (e.g., left-hand-side function calls). It would not,
however, require different operator symbols for integer, real,
or even matrix arithmetic, since these are, in fact, special
cases of the same abstract operations, and would allow the use

of generic functions applicable to several data types.

112

i i PERT T T O

T h s ety t—— — 3 T U VO S

I. DEFAULTS, CONDITIONAL COMPILATIGON, AND LANGUAGE RESTRICTIONS :

I1., There will be no defaults in programs which
affect the program logic. That is, decisions
which affect program logic will be made eitner
irrevocably when the language ig defined, or
explicitly in each program.

The only alternative is implementation-dependent defaults,
with the translator determining ths meaning of programs. What
a program does should te determinabie from the program and the
defining documentation for the programming language. This does
not reauvire that binding of all prcgram properties be local to
each use. Quite the contrary, it would, for example, allow au-
tomatic definltion of assignment for all variables or global
specification of precision. What it does require is that each
decision be expliclt: 1in the language definition, glcbal to
some scope, or 1ocal to each use. Omission of any selection
which affects the program logic will be treated as an error by
the translator. H

I2. Defaults will be provided for special capa- i
bilities affecting only object representa--
tion and other properties which the program-
mer does not krow or care about. Such de-
faults will always mean that the programmer
does not care which choice i8 made. The pro-
grammer will be able to override these defaults

when necessary.

The language should provide a high degree of management
control and visibllity to programs and seif-documenting pro-
grams, with the programmer required to make his decision ex-
plicit. On the other hand, the programmer should not be forced
to overspecify his programs and thereby cloud their logic, un-
necessarily eliminate opportunities for optimization, and mis-
represent arbitrary choices as essential to the program logic.

113

- 3 - ——

e ——

Defaults will be allowed, in fact encouraged, in "don't care"
situations. Such defaults will include data representations

(see JU), open vs. closed subroutine calls (see J5), and re-

entrant vs. nonreentrant code generation.

I3. The user will be able to assceiate compile-
time variables with programs. These will
include variables which specify the object
computer model and other aspects of the ob-

Ject machine configuration.

When a language has different host and object machines,
and when its compllers can produce code for several ccnfigura-
tions of a given machine, the programmer should be able to
specify the intended objJect-machine configuration. The user
should have control ovex the compile-time variables used in
his program. Typically, they would be associated with the ob-
Ject computer model; memory size; special hardware options;
operating syst-m, if present; peripheral equipment; or cther
aspects of the object-machine configuration. Compile-tire
variables will be set outside the program, but available for
interrogation within the program (see Id and C4).

i4. The source language will permit the use of
conditional statements (e.g., case state-
ments) dependent on the objeet environment
and other compile-time variables. In such
cases, the conditional will be evaluated at
compile time and only the selected path will
be ecompiled.

An envircnmental inquiry capability permits the writing ¢f
common prograns and procedures which are specialized at com-
pile time by the translator as a function of the intended ob-
Ject-machine configuration or of other compile-time variables
(see I3). This requirement 1is a special case of evaluation of
constant expressions at compile time (see C4). It provides a
general-purpose capability for conditional compilation.

114

»r

T W e e e e+

I5. The source language will contain a simple,
clearly identificble base which houses all
the power of the language. To the extent
possible, the base will be minimal, with
each feature providing a eingle unique
capability not otherwise duplicated in the
base. The chotce of the base will not de-
tract from the effictency, safety, or un-

derstandability of the languace.

The capabilities available in any language can be parti-
tioned into two groups, those definable within the base, and
those providing an essential primitive capability of the lang-
uage. The smaller and simpler the base, the easier the lang-
uage will be to learn and use. A clearly delineated base, with
features not in the base defined in terms of the base, will
improve the ease and efficiency of learning, implementing, and
maintaining the language. Only the base need be implemented to
make the full source-language capability available.

Base features will provide relatively low-leveled general-
purpose capabilities not yet specialized for particular appli-
cations. There will be no prohibition on a translator incor-
porating specialized optimizations for particular extensions.
Any extension provided by a translator will, however, be de-
finable within the base language, using the built-in definition
facilities. Thus, programs using the extension will be trans-
latable by any compiler fer the language, but not necessarily
with the same object efficiency.

I6. Language restrictions which are dependent
only on the translator and not on the ob-
jeet machine will be specified exniicitly

in the language definition.

115

Limits on the number of array dimensions, the length of
identifiers, the nymger of nested parentheses levels in expres-
sions, or the number of identifiers in programs are determined
by the translator and not by the object machine. 1Ideally, the
limits should be set so high that no program (save the most
abrasive) encounters the limits. In each case, however, (a)
some 1imit must be set, (b) whatever the 1limit, it will affect
some program and therefore must be known by the users of the
translator, (c) letting each translator set its own limits means
that programs will not be portable, (d) setting the limits very
high requires that the translator be hosted only on large ma-
chines, and (e) quite low limits do not impose significantly
on elther the pcwer of the language or the readability of pro-
grams. Thus, the limits should be set as part of the language
definition. They should be small enough that they do not domi-
nate the compiler, and large enough that they do not interfere
with the usefulness of the language. If they were set at, say,
the G§9-percent level, based on statistics from existing DoD
computer programs, the limits might be a few hundred for num-
bers of identifiers and less than ten in the other cases men-
tioned above.

I?. Language restrictious which are inherently
dependent only on tne object environment
will not be built into the language defi-

nition or any translator.

Limits on the amount of run-time storage, access to spe-
cialized peripheral equipment, use of special hardware capa-
bilities, and access to real time clocks are dependent on the
object machine and configuration. The translator will report
when a program exceeds the resources or capabilities of the in-
tended object machine but will not build in arbitrary limits
of 1ts own.

4

L

wh

PR

J. EFFICIENT OBJECT REPRESENTATIONS AND MACHINE DEPENDENCIES

J1. The language and its translators will not
impoee run time costs for unneeded or un-
used generality. They will be eapable of

producing efficient code for all programs.

The base language and library definitions might contain
features and capabilities not needed by everyone, or not by
everyone all the time. The language should not force programs
to require greater generality than they need. When a program
does not use a feature or capability, it should pay no run time
cost for the feature being in the language or library. When
the full generality of a feature is not used, only the neces-
sary (reduced) cost should be paid. Where possible, language
features (such as automatic and dynamic array allocation, proc-
ess scheduling, file management, and I/0 buffering) which re-
quire run time support packages should be provided as standard
library definitions and not as part of the base language. The
user will not have to pay time and space for supoort packages
he does not use. Neither will there be automatic movement of
programs or data between main storage and backing storage which
is not under program control (unless the objJect machine has
virtual memory with underlyling management beyond the control
of all its users). Language features will result in special
efficient object code when thelir full generality is not used.

A large number of special cases should compile efficiently.
For example, a program performing numeric calculations on un-
subscripted real variables should produce code no worse than
FORTRAN. Parameter-passing for single-argument routines might
be implemented much less expensively than multiple-argument
routines.

One way tc reduce costs for unneeded capabilities is to
have a base language whose data structures and operations pro-
vide a single capability which 1s composable and has a straight-
forward implementation in the object code of conventional

117

.

architecture machines. If the base language components are
easily composable, they can be used to construct the specialized
structures needed by specific applications, if they are simple
and provide a sirngle capability, they will not force the use of
unneeded capabllities in order to obtain needed capabilities,
and if they are compatible with the features normally found in
sequential uniprocessor digital computers with random access
memory, they will have near-minimum or at least low-cost imple-
mentation on many objJect machines.

J2. Any optimizations performed by the trans-
lator will not change the effect of the
program.

More simply, the translator cannot give up program reli-
ability and correctness, regardless of the excuse. MNote that
for most programming languages, there are few known safe opti-
mizations and many unsafe ones. The number of applicable safe
optimizations can be increased by making more information avail-
able to the compiler and by choosing language constructs which
allow safe optimizations. This allows optimization by code
motion, providing that mction dces rot change the effect of the
program.

J3. The source language will provide encapsu-
lated access to muchine-dependent hardware
facilities, including machine language code

insertions.

It 1s difficult to be enthusiastic about machine language
insertions. They defeat the purpose of machine independence;
constrain the implementation techniques; complicate the diag-
nostics; impair the safety of type checking; and detract from
the reliability, readability, and modifiability of programs.
The use of machine language insertions 1s particularly danger-
ous in multiprogramning applications, because they impair the
ability to exclude, a priori, a large class of time-dependent

118

T Tt ¢ it

bugs. Rigid enforcement of scope rules by the compiler in
real-time applications is a powerful tool to ensure that one
sequential process will not 1lnterfere with others in an uncon-
trolled fashion. Similarly, when several independent programs
are executed in an interleaved fashlion, the correct execution
of each may depend on the others not improperly sing machine
language insertions. >

Unfortunately, machine language insertions are necessary
for interfacing special-purpose devices, for accessing special-
purpose hardware capabilities, and for certain code optimiza-
tions on time-critical paths. Here we have an example of
Dijkstra's dilemma (see Chapter I, Section B), in which the
mismatch between high-level language programming and the under-
lying hardware 1is unacceptable and there 1s no feasible way to
reject the hardware. The only remaining alternative 1is to
"continue bit pushing in the old way, with all the known 111
effects". Those 111 effects can, however, be constrained to
the smallest possible perimeter, in practice, if not in theory.
The ability to enter machine language should not be used as an
excuse to exclude otherwise-needed facilities from the HOL;
the aostract desciiotion of programs in the HOL should not re-
quire the use of machine language insertions. The semantics
of machine language insertions will be determinable from the
HOL definition and the object machine description alone, and
not dependent con the translator characteristics. Machine lang-
uage insertions will be encapsulated so they can be easily rec-
ognized and so that it 1s clear which variables and program
identifiers are accessed within the insertion. The machine-
language insertions will te permitted only within the body of
compilie time conditional statements (see I4), which depend on
the object-machine configuration (see I3). They will not be
allowed to be interspersed with executable statements of the

source language.

119

Je4. It will be possible within the source
language to specify the object repre-
gentation of composite data structures.
These descriptiong will be optional and
encapsulated and will be distinect from
the logical description. The user will
be able to specify the time/space trade-
off to the translator. If not specified,
the object representation will be optimal,

as determined by the translator.

It is often necessary to give detailed specifications of
the object data representations to cbtain maximum density for
large data files, to meet format requiremen:ts imposed by tne
hardware or peripheral equipment, to allow special optimiza-
tions on time-critical paths, or to ensure compatibility when
transferring data between machines.

It will be possible to specify the order of fielas, the
width of fields, the presence of "don't care" flelds, and the
position of word boundaries. It will be possible to associzate
3ource~language identifiers (data or program) with special ma-
chine addresses. The use of machine-dependent characteristics
of the object representation will be restricted, as with ma-
chine-deperdent code (see J3). When multiple fields per womd
are specified, the compiler may have to generate some {orm of
shift and mask operations for source-program references and
assignments to those variables (f.e., flelds). As with ra-
chine-lanrguage insertions, object da*a specifications should
bte used sparingly and the language features for thelr use must
ve Spartan.

If the object representation of a composite ilata object
is not specified in the source program, there will be rno spe-
cific default guaranteed by the translator. The trahslator
might, for example, attempt to minimize access time and/or

120

—d [SSEY [oy [T R By

e i et e

memory space in determining the cbject representation. It
might, depending on the object-machine characteristics, as-

sign variables and fields of records tc full words, but assign
array elements to the smallest of bits, bytes, half words,
words, or exact-multiple words permitted by the logical descrip-
tion.

JS5. The programmer will be able to specify
whether calls on a routine are to have
an open or closed implementation. An
open and a closed routineg of the same
description will have identical seman-

ties.

The use of inline open procedures can reduce the run time
execution costs significantly in some cases. There are the
obvious advantages in eliminating the parameter passing, in
avoiding the saving of return marks, and in not having to pass
arguments to and from the routine. A less obvious, but often
more important, advantage in saving run time costs is the abil-
ity to execute constant portions of routines at compile time
and, thereby, eliminate time and space for those portions of
the procedure body at run time. Open routine capablility is
especlally important for machine-language insertions.

The distinction between open and closed implementation
of a routine is an effliciency consideration and should not af-
fect the flunction of the routine. Thus, an open routine will
differ from a syntax macro in that (a) its global environment
is that of its definition and not that of its call and (b)
multiple occurrences of a formal value (f.e., read only) para-
meter in the body have the same value. If a routine is not
specified as either open or closed, the choice will be optimal
(with respect to space or time) as determined by the translator.

121

B N B P AW ——_———n . - T e A OO D Ay

ey e Gmmei dwmd and Gmed Shwemy

e

VI. CHARACTERISTICS NEEDED FOR OTHER ASPECTS
OF THE COMMON-LANGUAGE EFFORT
. : »"

The material reported in this chapter was generated by the
Services at the same time as the technical characteristics
described in the preceding Chapter but is concerned with the
translators, support software, documentation, training, stand-
ards, application libraries, management policy, and procure-
ment practices for the common language and its use. These is-
sues are important, while mistakes and oversights in the tech-
nical characteristics can guarantee failure of the common-lang-
uage effort, success is not guaranteed, no matter how techri-
cally meritorious the resulting language. Success can only be
guaranteed by close attention to a variety of nontechnical is-
sues, including those considered below.

Several of these 1ssues, including those of implementation,
documentation, and support will either directly or indirectly
affect the acceptability of candidate languages. As with the
needed technical characteristics for the common language, the
issues raised here are often not resolved at the most detailed
level. Until more detalled characteristics of the language come
into focus, there is no rationale with which to resolve all these
issues in detail.

Preceding page blank 123

A. PROGRAM ENVIRONMENT

K1, The language will not require that the
object machine have an operating system.
When the object machine does have an op-
erating system or executive program, the
hardware/operating system combination will
be interpreted as defining an abstract ma-
chine which acts as the objeet machine for

the translator.

A language definition cannot dictate the architecture of
existing object machines, whether defined entirely in hardware
or in a hardware/software combination. It can provide a source-
language representation of all the needed capabilities and =2t-
tempt to choose these so they have an obvious and efficient
translation in the object machines.

K2, The language will support the integration
of separatzly written modules into an op-

eratioral program.

Separately written modules in the form of routines and
type definitions are necessary for the management of large
software efforts and for effective use of Iibraries. The
user will be able to cause anything in any accessible library
to be inserted into his program. This i1s a requirement for
separate definition but not necessarily for separate compila-
tion. The decision as to whether separately defined program
modules are to be maintained in source or aotject larnguage form
is a question of implementation efficiency, will be a local
managenent option and will not be imposed ity the language defi-
nition. The trade-offs involved are complicated by other re-
quirements for type checking of parameters (see C6), for open
subroutines (see J5), for efficient cbject representations
(see J1), and for constant expression evaluation at compile
time (see CU4). 1In general, separate compilation increased the

124

ey wmag ey - L . Cee . . - PR . N PP P . . [

TN O e v—— o

A - ¢ ®Somg Nme

-

difficulty and expense of the interface validations needed for
program safety and rellabllity and detracts from object pro-
granm «friclency by removing many of the optimizations otherwise
possible st the interfaces, but at the same time it reduces the
cost and corplexity of compilation.

K3. A family of programming tools and aids in
the form of support packages inuluding
linkers, loaders, ard debugging systems
will be made available with the language
and its translators. There will be a con-
sigtent, easily used user interfacc fer

these tools.

No longer can a programming language be considered sep-
arately from its programming environment. The availability of
programming tools which need not be developed or supﬁorted by
individual projJects is a major factor in the acceptability of
a language. There 1s no need to restrict the kinds or form of
support software avalilable in the programming environment, and
continued development of new tools should be encouraged and
made available in a competitive market. It is, however, desir-
able that tools be developed in their own source language to
simplify treir portability and maintainability.

K4. A variety of useful options to aid gene-
ration, test, documentation, and modifi-
cation of programs will be provided as
support software available with the lang-
uage or as translator options. As a mini-
mum, these will include program editing,
post-mortem aralysis and diagnostiecs, pro-
gram reformatting for standard identations,

and cross-reference generation.

There will be special facilities to ald the generation,
test, documentation, and modification of programs. The "best"

125

I BT TIPS, R S A N S e T S T

it i g Y 8 R T NS S S L W A R L T P R

set of capabilities and f£heir proper form is not currently
known. Since nonstandard translator options and availability
of nonstandard software tcols and aids do not adversely affect
software commonality, the language definition and standards
will not dictate arbitrary choices. Instead, the development
of language-associated tools and aids will be enccuraged within
the constraint of implementing and supporting the source ﬁanguw
age, as defined. Tools and debugging aids will be source-lang-
uage oriented.

Some of the translator options which have been suggested
and may be useful include the following. Code might be com-
pliled for assertions which would give run time warnings when
the value of the assertion predicate is false. It might pro-
vide run-time tracing of specified program variables. Dimen-
sional anralysis might be done on units-of-measure specifica-
tions. Special optimizations might be invoked. There might
be capability for timing anralysis and gathering run-time sta-
tistics. There might be translator-supplied feedback to pro-
vide management visibility regarding progress and conformity
with local conventions. The user might be able to inhibit code
generation. There might be facilities for compiling program
patches and for controlling access to language features. The
translator might provide a listing of the number of instruc-
tions generated against corresponding source inputs or an es-
timate of their execution times. It might provide a variety
of listing options.

K5. The source language will permit inclusion
of assertions, assumptions, axiomatic defi-
nitions of data types, debugging specifica-
tione, and units of measure in programs.
Because many assertional methods are not yet
powerful enough for practical use, nor suf-
fieciently well developed for standardization,

they will have the status of comments.

126

e Sl

i

1
]
4

RS Laap b at e VMY, v T T - Apen

7

§
{
1

-t

Tr.ere are many opinions on the desirability, usefulness,
and proper form for each of these specifications. Better pro-
gram documéntation 1s needed and specifications of these kinds
may help. Specifications also introduce the possibility of
automated testing, run-time verification of predicates, for-
mal program proofs, and dimensional analysis. The language
will not prohibit inclusion of these forms of specification 1if
and when they become available for practical use in programs.
Assertions, assumptions, axiomatic definitions, and units of
measure in source-language programs should be enclosed in
special brackets and treated as interpreted comments -- com-
ments delimited by special-comment brackets and which may be
interpreted during translation or debugging to provide units
analysis, verification of assertions and assumptions, ete. --
but whose interpretation would be optional to translator im-
plementations.

B. TRANSLATORS

L1. No implementation of the language will con-
tain source-language features which are not
defined in the language standard. 4ny inter-
pretation of a language feature not explicitly
permitted by the language definition will be

~forbidden.

This guarantees that use of programs and software sub-
systems will not be restricted to a particular site by virtue
of using their unique version of the language. It also rep-
resents a commitment to freezing the source language, inhibit-
ing innovations and growth-in the form of the source language,
and ccnfining the base language to the current state of the
art in return for stability, wider applicability of software
tools, reusable software, greater software visibility, and in-

creased payoff for tool-building efforts. It does not, however,

disallow library definition optimizations which are translator-

unique.
127

L2. Every translator for the language will
implement the entire base language. There
will be no subset implementations of the
base language.

If individual compilers amplement only a subset of the
language, then there 1s no chance for software commcnality.
If a translator does not implement the entire language, it
cannot give its users access to standard supported libraries
or to application programs implemented on scre other transla-
tor. Requiring that the full language be implemented will be
expensive only i1f the base language is large, complex, and non-
uniform. The intended source language product from this ef-
fort 1s a small, simple, uniform base lanauage with the spe-
clalized features, support packages, and complex features rel-
egated to library routines not reguiring <direct trarslator
support. If simple, low-cost triaslators are not fezasible for
the selected language, then the language 1is too large and ccm-
plex to be standardized and the gcal of language commonality
will not be achlevable.

L3. The translator will minimize compile time
costs. A goal of any translator fcr the
language will be low-cost translation,

(when optimization 15 disabled).

Where practical and beneficial, the user will have con-
trol over the level of optimization applied to his programs.
The programmer will have control over the trade-offs between
compile-time and run-time costs. The desire for small, effi-
clent translators that can be hosted by machines with limited
size and capability should influence the design of the base
language against inclusion of unnecessary features and towards
systematic treatment of features which are included. The gocal
will be effective use of the available machines, both in ob-
Ject execution and translation, and not maximal speed of trans-

lation.
128

= ‘ . ran— ' u - ~ u

Translation costs depend not only on the compiler but the
language deslign. Both the translator and the language design
will emphasize low-cost translation, bot in an environment of
large and long-~lived software products, this will be secondary
to requirements for rellabllity and maintainability. Language
features will be chosen to ensure that they do not impose costs
for unneeded generality and that needed capabilities can be
translated into efficient object representations. This means
that the inherent costs of specific language features in the
context »f the total language must be understood by the de-
signers, implementers, and users of the language. One conse-
quence should be that trivial programs eompile and run in triv-
ial time. On the other hand, significant optimization is nct

expected from a minimal cost translaticn.

L4. Translators will be able to produce code for
a variety of object machines., The machine-
independent parts of translators might be

built independently of the code generators.

There is currently no common, widely used computer in the
DoD. There are at least 250 different models of commercial
machines in use, along with many specialized machines. A com-
mon language must te applicable to a wide variety cof models
and sizes of machines. Translators might be written so they
can produce object code for several machines. This reduces
the proliferation of translators and rmakes the full power of
an existing translator avallable at the cost of producing an
additional code generator.

L5. The translatcr need not be able to run on
all the object machines. Self-nosting is

not required, but is often desirable.

The DoD operational programming environment includes many
small machines which are unable to support adequately the de-
sign, documentation, test, and debugging alds necessary for the

1235

development of timely, reliable, or efficient software. Large
machine users should rnot bte penalized for the restrictions of
small machlnes when a common language is used. On the other
hand, the size of machines which can host translators should
be kept as small as possible by avoiding unnecessary general-
ity in the language.

LE. The translator will do full syrniax checking,
will check all operations and rarcrcters for
type compatibility, and will veriy that ail
language-i=reoscd semantic restrictions on the
source progruams are met. It will »not automai-
teally correct errors detcoted at ~c=rile tire.

The purpose of cource language redundancy and avoidance

<

. :

cf error-prone languace {eoatures is rellabtility. The price is
rald in programrmer inconvenience in having tc crecify his in-
tent in greater detall. The payoff comes when the translator
checks that the source prosram ic internally coensistent and
adheres to 1ts authors' stated intentions. There is a clear
trade-off between error avoldance and prograrmming ease; sur-
veys conducted by the Services show that the programmers as
well as managers will opt for error avoidarnce over case when
~iven the choice. The sare cheoice is dictated ty the need for

well-documented, raintazinable software.

o

L7. The trarslator vill produce compile time
explanatory diagnostic error and warning
messages. 4 sucgested sct of error and
warning situaions wilc be provided as

rart of the language definition,

The translater will attempt to provide the maximal use-
ful feedback to its user. Diagnostic messages will no%t be
coded, but will be exrlanatory and in source-language terms.
Transl:iors will continue processing and checking after errors
have been found, but should be careful not to generate erroneous

130

http://reliari2.it;.-

£ -

— A=y

A od

messages because of translator confusion. The translator wil:
always produce correct code; when source program errors are er~
countered by the translator or referenced program structures
omitted, the compiler will produce code to cause a run-time
exception condition upon any attempt to execute those parts cf
the program. Warnings will be generated, when a source-langu-
age construct is exceptionally expensive to implement on the
specified object machine. A suggested set of diagnostic mes-
sages, provided as part of the language definition, contribuzs:
to commonality in the implementation and use of the language.
The discipline of designing dlagnostic m=ssages keyed to the
design may also uncover pitfalls in the language design and
thereby contribute to a more precise and better-understood
language description.

L8. The characteristics of translator imple-
mentations will not be dictated by the

language definition or standards.

The adoption of a common language is a commitment tc the
current state of the art for programming language design for
some duration. It does not, however, prevent access to new
software and hardware technology, new techniques, and new man-
agement strategies which do not have an impact on the source
language definition. 1In part*cular, innovation should be en-
couraged in the development of translators for a common lang-
uage, providing they implement exactly the source language as
defined. Translators, like all computer programs, should be
written in expectation of change.

L9. Translators for the language will be

written in their own source language.

There will be at least one implementation of the transla-
tor in its own language which does all parsing and compile-tinme
checking and produces an output suitable for easy translation

131

to specific object machines. If the languzpe is well-defined
and uniform in structure, a self-description will contribute
to understanding of the language. The avallability of the
machine-independent portion of a translator will make the full
power of the language available to any object machine at the
cost of producing an additional coude generator (whose cost may
be high) and it reduces the likelihood of incompatible imple-
mentations. Translators written in their own source languare
are automatically available on any of their cbject machires,
providing the objJect machine has sufficient resources to sup-
port a compiler.

C. LANGUAGE DEFINITION, STANDARDS, AND CONTROL

M1. The language vill be compesed from fea-
tures which are within the stute of the
art and arny design or redesiagn which is
necessary to achZeve the needed charac-
teristics wtll be conducted as an engi-
neering design effort and not as a re-

search project.

The adoption of a common language can be successful only
if it makes avalilable a modern programming lanpuage compati-
ble with the latest software technology and with "best" cur-
rent programming practice, but the design and implementatiocn
of the language should not require additional research or use
of untried ideas. State of the art cannot, however, be taken
to mean that a feature has been incorporated in an operational
DoD language and used for an extended period, or DoD will be
forever tied to the technology of FORTRAN-1like languapes; but
there must be some assurances through analysis and use that
its benefits and deficlencies are known. The larger and more
complex the structure, the more analysis and use that should
be required. Language design should parallel other engineer-
ing design efforts in that it is a task of conrsolidation

132

e e e e e .]

S

v T Y PO r—r—— S —————— - e« e e e e e e e e e — o e AT—— T W 1 5 h3

and not innovation. The language designer should bhe familiar
with the many cholces in semantic and syntactic features of
language and should strive to compose the best of these into

a consistent st—-ucture congruous with the needed characteris-~
tics. The language should be ccmposed from known semantic
features and familiar notations, but the use of a proven fea-~
ture should not necessarily impose that notation. The lang-
uage must not just be a combination of existing features which
satisfy the individual requirements, but must be held together
by a consistent and uniform structure which acts to minimize
the number of concepts, consolidates divergent features, and
simplifies the whole.

M2. The semantics cf the language will be de-
fined unambiguously and clearly. To the
extent a formal definition assists in at-
tatning these objectives, the language's

semantics will be specified formalily.

A complete and unambiguous definition of a common langu-
age 1s essential. Otherwise, each translator will resolve the
ambiguities and f1ll in the gaps in its own unique way. There
are currently a variety of methods for formal specification
of programming language semantics, but it remains a major ef-
fort to produce a rigorous, formal description, and the re-
sulting products are of questionable practical value. The
real value in attempting a formal definition 1s that it re-
veals incomplete and ambiguous specifications. An attempt will
be made to provide a formal definition of any language selected,
but success in that effort should not be requisite to 1ts se-
lection. Formal specification of the language might take the
form of an axicmatic definition, use of the Vienna Definition

Language, or use of some cther formal semantic system.

133

M3. The user documentation of the lungu-
age will be complete and will include
both a tutorial introductory descrip-
tion and a formal in-depth desecription.
The language will be defined as if it
were the machine-level language of an

abstract digital computer. ' e

The language should be intuitively correct and easily
learned and understood by its potential users. The language
definition might include an Algol-60-like description (Ref. 1C)
with the source language syntax glven in BNF or some other
easlly understood metalanguage and the corresponding semantics
given in English. As with the descriptions of digital compu-
ter hardware, the semantics and syntax of each feature must be
defined precisely and unambiguously. The action of any legal
program will be determinable from the program ard the language
description alone. Any computation which can be described in
the language will ultimately draw only on capabilities built-
into the language. No characteristics of the source language
will be dependent on the idiosyncrasies of its translators.

The language documentation will include syntax, semantics,
and examplies of each language construct, listings of all key
words and language-defined defaults. Examples shall be includ2d
to show the intended use of language features and to illustrate
proper use of the language. Particularly expensive and inexpen-
sive constructs will be pointed out. Each document will iden-
tify its purpose and prerequisites for its use.

M4. The language will be configuration-man-
aged throughout its total life cycle and
will be controlled at the DoD level to
ensure that there ie only one version of
the eource language and that all transla-

tors conform to that standard.

134

i i e)

-—

R U

Without controls, a common language may become ancther
umbrella under which new languages proliferate while retain-
ing the common language's name. All compilers will be tested
and certified for conformity to the standard specification and
freedom from known errirs prior to their release for use in
production projects. The language manager will be on the 0SD
staff, but a group within the Military Departments or Agencies
might act as the executive agent. A configuration control
board will be instituted with user representation and chaired
by a member of the 0SD staff.

M5. There will be identified support agent(g)
responsible for maintaining the translators
and for associated design, development, de-

bugging, and maintenance atids.

Language commonality 1s an essentlal step in achieving
software commonality, but the real benefits accrue when pro-
Jects and contractors can draw on existing software with as-
surance that it will te supported, when systems can builld from
off-tiie-shelf component:s, or at least with common tools, and
when efforts can be expended 1In expanding existing capabilit-
les instead of building from scratch. Support of common, widely
used tools and aids should be provided independently of proc-
Jects 1if common software is to be widely used. Support should
be on a DoD-wide basis, with final responsibility resting with
a stable group or groups of qualified in-house personnel.

M6. There will be standards and support agents
for common libraries, including application-

oriented libraries.

In a given application of a programming language, three
levels of the system must be learned and used: the base lang-
uage, the standard library definitions used in that application
area, and the local application programs. Users are responsi-
ble for the local application programs and local definitions,

135

but not for the lanruare aund itz librarles, which are used iy
ladl ohe

many projectc and sltes., A princlpal user rlrht et as &

r
for an entire application arca.

-
tat

— e —

T e oy, e

REFERENCES

»

Space and Missile Systems Organization, AFSC,
Information Processing/Data Automation Impli-
eationg of Air Force Command and Control Re-
quirements in the 1980s (CCIP-85), Vol. IV,
Technology Trends: Software, October 1973,

AD 919267L.

David A. Fisher, "Automatic Data Processing
Costs in the Defense Department™, Institute
foruDefense Analyses Paper P-1046, October
1974. '

Malcolm R. Currie, Director, Defens.: Research
and Englneering, in Memorandum to the Assis-
tant Secretaries of the Military Departments
(R&D), Subject: DoD Higher Order Programming
Language, January 28, 1975.

Stephen A. Schuman (Ed.) Proceedings cf the
International Symposium on Extensible Lang-
uages, SIGPLAN Notices, Vol. 6, No. 12,
December 1971. Also, C. Christensen and C.
J. Shaw (Ed.), Proceedings of the Extensible
Lagguage Sympostiumn, SIGPLAN Notices ¢, August
1969. '

Niklaus Wirth, "An Assessment of the Program-
ming Language PASCAL," Proceedings of the In-
ternational Conference on Reliable Software,
21-23 April 1973, pp. 23-30.

Jacob Palme, "SIMULA as a Tool for Extensible
Program Products", SIGPLAN NOTICES, Vol. 9,
No. Y4, February 1974.

Donald E. Knuth, "Structured Programming with

go to Statements," ACM Computer Surveys, Vol.
6, No. 4, December 1974.

137

w0
.

10.

E. W. Dijkstra, coding examples in Chapter I,
"Notes in Structured Frogramming,”" ir Strue-
tured Programmivug by O-J. Dahl, E, W. I'ilkstra

and C. A. R. Hcare, Academic Tress, 1¢7..

Thomas A. Standish, "A Structured Prefram to
Flay Tic-Tac-Toe," notes for Inforration ard
Ccmputer Sclence 3 course at linivercity of
California-Irvine, October 1974,

P. Naur (Ed.), "Revised Report on the Algor-
ithmic Languarme Algol-00," Communiczation cf
the A.C.M. Vol. 6, No. 1, January 15¢3, rr.
1-17.

1368

APPENDIX

Organizations and Individuals Contributing to the
Common Language Requirements Effort

S

-

P T e e g g e T

APPENDIX

Organizations and Individuals Contributing to the
Common Language Requirements Effort

»
PR

ARMY

U.S. Army Aviation Systems Command
St. Louls, MO

U.S. Army B.R.I.

U.S. Army Communications Command
Ft. Huachuca, AZ 85613

U.S. Army Computer Systems Command
Ft. Belvoir, VA 22060

U.S. Army Electronics Command
Ft. Monmouth, NJ 07703

Atmospheric Sciences Laboratory
White Sands Missile Range, NM 88002

Comm/Int Tech. Area EW Lab
Computer Hardware Tech Area
-Electronics Tech and Devices Lab

Night Vision Laboratory
Ft. Beivoir, VA 22060C

Radar Tech Area CS&TA Lab
Systems and Programming Division
Switching Tech Area

U.S. Army Force Development Command
Ft. McPherson, GA 30330

U.S. Army Intelligence Center and School
Ft. Huachuca, AZ 85613

U.S. Army Material Command
Ft. Monmouth, NJ 07703

Preceding page blank

i e o e o Ty

L ALt L T O

Army Tactical Communications Systems

Army Tactical Data Systems
Navigation/Control Systems

Remotely Mcnitored Battlefleld Sensor System

U.S. Army Mobility Equipment Research and Development Center
Ft. Belvoir, VA 22060

U.S. Army Tank-Automotive Command
Warren, MI 48090

U.S. Army Test and Evaluation Command
Aberdeen Proving Grounds, MD 21005

U.S. Army Training and Doctrine Command
Ft. Monroe, VA 23651

U.S. Army Training Support Activity
Ft. Eustis, VA 23604

U.S. Army Troop Support Command g
4300 Goodfellow Blvd
St. Louis, MO 63166

U.S. ery Security Agency, Management Information Systems
Arlington Hall Station
Arlington, VA 22212

U.S. Army White Sands Missile Range
White Sands Missile Range, NM 88002

BPallistic Missile Defense Project QOffice
1300 Wilson Blvd
Arlington, VA 22209

Frankford Arsenal
Philadelphia, PA 19137

Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, MD 20783

Modern Army Selected Systems Test Evaluaticn and Review
Ft. Hood, TX 76544

Office of Chief of Engineers
Washington, DC 20314

A-4

Office of Chief of Staff
Washington, DC 20314

Office of Chief of Staff for Intelligence
Washington, DC 20310

Office of the Surgeon General
Washington, DC 20310

Picatinny Arsenal
Dover, NJ 07801

Redstone Arsenal
Redstone Arsenal, AL 35807

NAVY

Naval Air Development Center
Warminister, PA 18974

Naval Air Systems Command
Washington, DC

Naval Air Engineering Center
Lakehurst, NJ

Naval Air Test Center
Patuxent River, MD 20670

Naval Electronic Systems Test and Evaluation Detachment
Patuxent River, MD 22€70

Office of the Occanographer of the Navy .
Alexandria, VA 22332

ASW Systems Prcject Office
National Center Bldg #1
Arlington, VA

United States Naval Acadeny
Annapolis, MD 21402

“Naval Undcrwater Systems Center
New London, CT 063220

Naval Underwater Systems Center Headquarters
Newport, RI 02840

Naval Undersea Center
San Diego, CA 92132

A-5

o

.

Naval Surface Weapcns Center Headquarters
White Oak, Silver Spring, MD 20910

Naval Surface Weapons Center, Dahlgren Laboratory

Dahlgren, VA :

David W. Taylor Naval Ship R&D Center
Naval Ship Research and Development Center HQS.
Bethesda, MD 20034

Naval Sea Systems Command
Washington, DC 20362

Fleet Combat Direction Systems Support Activity
Virginia Beaca, VA 23461

Fleet Combat Direction Systems Support Activity
San Diego, CA 92147

‘Naval Material Command

Naval Electronics Laboratory Centér
San Diego, CA

Naval Intelligence Command

Naval Postgraduate School
Monterey, CA

Naval Research Labcratory
Washingtor., DC

Naval Weapons Center
China Lake, CA

AIR FORCE

Aerospace Defense Command
Ent AFB, CO 80912

Air Force Accounting and Finance Center
Denver, CO 80205

Air Torce Audit Agency
Norton AFB, CA 92409

Air Force Comnunications Service
Richards Gebaur AFBR, MO 64030

Air Force Data Automation Agency
Gunter AFB, AL 36114

Alr Force Intelligence Service
Washington, DC 20330

Alr Force Legistics Command
Wright-Patterson AFB, OH 45433

Alr Force Military Personnel Center
Randolph AFB, TX 78148

Alr Force Systems Command
Andrews AFB, Washington, DC

Aeronautical Systems Division ASD/RWSV
Wright-Patterson AFB, OH 45433

Alr Force Avionics Labcratory
Wright-Patterson AFB, OH 45433

Armament Development and Test ADTC/TSX Center
Eglin AFB, FL 32542

Directorate of Computer Resource Development,
Policy & Flanning

AFSC/XRF

Andrews AFB, Washington, DC

Electronic Systems Divisicn
ESD/IMCI
L. G. Hanscom AFB, MA 01730

Rome Alr Development Center
RADC/IZI
Griffiss AFB, NY 13441

Space and Missile Systems Organization
SAMSO/DYVC
Los Angeles, CA 90009

Air Force Test and Evaluation Center
Kirtland AFB, NM 8711%

Alr Training Command
Randolph AFB, TX 78148

Alr University
ttaxwell AFB, AL 36112

Alaskan Alr Command
APO Seattle, WA 98742

Military Airlift Command
Ccott AFB, IL 62225

Strategic Alr Command
Offutt AFB, NE 68113

Tactical Alr Command
Langley AFB, VA 23665

United States Ailr Force Academy
USAF Acadery, CO 80840

United States Alr Force Security Service
Can Antonic, TX 78243

INDUSTRY

Aerospace Corporatilon

Roelng Aercspace Company

Bolt, Beranek, and Newman, Inc.
Burroughs Corporation

Charles Stark Draper Laboratory, Inc.
Computer Sciences Corporation

General Electric Company

Grumman Aerospace Corporation

tlughes Alrcraft Company

intermetrics, Inc.

International Buslness Machines Corporation
I.Litton Systems, Inc.

Massachusetts ’Computer Assoclates, Inc.
McDonnell Douglas Astronautics Company
Mellanics

Research and Consulting, Inc.

Rolm Corporation

A#=8

Scientific Applications, Inc.

Singer Company

Sof Tech

Sperry Unilvac

Systems Control, Inc.

Texas Instrument Company

TRW Systems Group

Westinghouse Defense and Electronics Systems Center
Xerox Palo Alto Research Center

OTEZR ORGANIZATIONS AND INDIVIDUALS

Defense Advanced Research Projects Agency
Washington, DC

Defense Communications Arency
Washington, DC

Lawrence Livermore Laboratory
University of California
Livermore, CA

National Aeronautics And Space Administration
Washington, DC

James J. Besemer
Purdue University
West Lafayette, IN

Thomas E. Cheatham, Jr.
Harvard University
Cambridge, NA

Richard A. DeMillo
University of Wisconsin-Milwaukee
Milwaukee, WI

Edsger W. Dijkstra
Nuenen, The Netherlands

Philip H. Enslow
Georgia Institute of Technology
Atlanta, GA

A-9

David Gries
Cornell University
Ithlca, NY

C.A.R. Hoare
Queen's University of Belfast
Belfast, Northern Ireland

Richard A. Karp
“t.nford University
<-anford, CA

Feter T, Kirstein
University College Lcndon
London, England

Henry F. Ledgard ~
University of Massachusetts
Amherst, MA

Ralph L. London

Information Sciences Institute
University of California
Marina del Ray, CA

Stuart Madnick ancé Leonard Goodman
Sloan School, Massachusetts Institute of Technology
Cambridge, MA

John McCarthy

Artificial Intelligence Laboratory
Stanford University

Stanford, CA

Jacob Palme
Swedish National Defense Research Institute
Stockholm, Sweden

Ian C. Pyle
niversity of York
Heslington, York, England

Thomas A. Standish
University. of California-Irvine
Irvine, CA

J.T. Vebb
Royal Radar Establishment
Malvern, Great Britain

R,A. Wichmann
.ational Physics Laboratory
~eddington, Middlesex, United Kingdom

Willliam A, Wulf
Carneglie Mellon University
Pittsburgh, PA

