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ABSTRACT

Measurements of short-period records from 33 earthquakes show that some

Long Range Seismic Measurement (LRSM) stations have high levels of coda as

compared to maximum motion, and that reverberation between successive coda

is less at stations overlying a low G mantle than at those
high Q mantle. The differences are 0.1-0.2
respectively.

maxima overlying a

» and 0.1 magnitude units

For times greater than 1 or 2 minutes into the coda, minimal

coda levels are typically 0.3 magnitude units less than the maxima, Comparison

with work by Filson shows that use of the maximum coda representation could
lead to a 0.2 m underestimation of the detection capability for mixed events

for times greater than 2 minutes. There seems to be no difference in wcoda

shape measurements made on data recorded at WWSSN or LRSM systems.
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INTRODUCTION

The hide-in-earthquake (HIE) evasion technique has been briefly discussed

{ in congressional testimony by Lukasik (1971) and in the literature by
Blandford et al. (1971), Fink et al. (1971), Blandford and Husted (1973),
Filson (1973), and Jeppsson (1975). To use the HIE technique, the evader
waits for a large earthquake and then detonates his test, relying on the

seismic noise from the earthquake to conceal the signal from the explosion.

In each of the studies cited above, it was necessary to estimate the

earthquake coda shape in order to calculate the probability of the maximum

| of an explosion signal rising above the coda of the earthquake at any time
after the arrival of the earthquake signal. The most exhaustive studies of
earthquake codas have been those carried out at the Seismic Data Analysis

Center (SDAC): Cohen et al. (1972), Sweetser et al. (1973), Cohen and

Lukasik, S., 1971, In Hearings on Status of current technology to identify
seismic events as natural or man-made, before the Joint Committee on

Atomic Energy of the Congress of the United States, October 1971.
GPO No. 69-648.

Blandford, R. R., T. J. Cohen, and H. L, Husted, 1971, Opportunities fcr
foreign nations to hide an underground nuclear test in an earthquake,

Seismic Data Laboratory Report No. 283, Teledyne Geotech, Alexandria,
Virginia,

T e TR R, T e
lieia

Fink, D. R,, L. R. Miamidian, and W. Myers, 1971, Seismic Network Studies (u)
CLASSIFIED, LOG GAC 7157, General Atronics Magnavox, Philadelphia,
Pennsylvania,

technique to include probability of detection (U) CLASSIFIED, Seismic
Data Laboratory Report No. 303, Teledyne Geotech, Alexandria, Virginia.

Filson, J. R., 1973, On estimating the effect of Asian earthquake codas to
the explosion detection capability of LASA, Technical Report 1973-29,
Lincoln Laboratory, Massachusetts Institute of Technology.

Forsvarets Forskningsanstalt, Stockholm, Sweden.

Cohen, T. J., E. T. Sweetser, and T. J. Dutterer, 1972, P and PKP coda decay
characteristics for earthquakes, Seismic Data Laboratory Report No. 301,
Teledyne Geotech, Alexarvria, Virginia,

for earthquakes, Seismic Data Laboratory Report No, 305, Teledyne
Geotech, Alexandria, Virginia.

=P

Jeppsson, Ingvar, 1975, Evasion by hiding in earthquake, FOA Rapport C 20043-T1

Blandford, R. R. and H. L. Husted, 1973, Extension of Hide-In-Earthquake (HIE)

Sweetser, E. I., T. J. Cohen, and M. F. Tillman, 1973, Average P and PKP codas




Sweetser (1973), Sweetser and Cohen (1973), Sweetser and Cohen (1974). These !

workers chose to parameterize the coda by film measurements of the maximum

amplitude near 1 Hz in consecutive time intervals. The time intervals chosen

were 0-5, 5-10 and every 10 seconds out to 1 minute and then at l-minute

intervals to the point where the coda returned to background noise levels. The

SDAC studies have fairly well covered the distance range from 10°-180° and have

treated the problem of false alarms as a function of mixed-
threshold.

event detection

Sweetser and Blandford (1973) obtained distance-amplitude relations
for 4 > 90° o th

at these coda shapes could be properly scaled with distance.

This study also made it possible to discuss counterevasion possibilities

offered by the earthquake core-shadow zone and by the explosion PKP caustic.

Fink et al. (1971) and Jeppsson (1975),

the latter using data from Hagfors
in Sweden (HFS), published coda shapes which fall off much more rapidly than
those of Cohen and Sweetser.

To some extent this appears to be a matter of
data selection. The small samples of Fink et al. and of Jeppsson seem to

have overemphasized the rapidly decaying signals which are often observed.

Also, Fink et al. and Jeppsson applied "

smoothing'" procedures which tend to

eliminate tha "false alarms"

in the coda, but which are not applied to the

rixed event.

The results of these authors do, however, suggest a problem which is
difficult to treat without an elaborate analyst detection experiment similar
to the ones performed by Jeppsson and by Filson (1973) 1in which they buried

explosion signals in earthquake coda. Cohen and Sweetser's coda-measurement

technique 1is based on the hypothesis that an analyst cannot detect an arrival

without an excessive false alarm rate unless the arrival 1is an appreciable

fraction of the maximum in the time intervals which they selected. It seems

Cohen, T. J. and E., I. Sweetser, 1973, False alarm probabilities for mixed
events, SDAC-TR-73-8, Teledyne Geotech, Alexandria, Virginia,

Sweetser, E. I. and T. J. Cohen, 1973, Average P and PKP codas for earthquakes -
(103°-118°), SDAC-TR-73-10, Teledyne Geotech, Alexandria, Virginia.

Sweetser, E. I. and T. J. Cohen, 1974, Average P and PKP codas for earthquakes
(118°-180°), SDAC-TR-74-19, Teledyne Geotech, Alexandria, Virginia.

Sweetser, E. I. and R. R. Blandford, 1973, Seismic distance-amplitude
relations for short-period P, Pyifg» PP and compressional core phases
for 4 > 90°, SDAC-TR-73-9, Teledyne Geotech, Alexandria, Virginia.
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possible that between tne maxima in the coda which are separated by 1 minute
or more; there might be 10-second intervals of substantially lower amplitude;
as such, a signal which might otherwise be masked could be detected with a
low false-alarm rate if it arrived in this time interval. 1In this study we

estimate that the maximum size of such an effect is 0.3 magnitude units.

Filson's (1973) results for Kurile "explosions" in Kurile earthquakes
can be interpreted to support the coda measurement concepts of Cohen ard |
Sweetser for the first one or two minutes. Figure 1 gives the number of )
explosions, set off at 20-second intervals from the start of the earthquake
coda, which are undetected by the LASA-SAAC detection algorithm. The dashed I
line has been drawn by us to give the median number of explosions (length of
hiding time) as a function of the difference between the earthquake and
explosion magnitudes. Filson's single-station false alarm rate (2 out of 34
earthquakes) is comparable to the 1 in 10 established by Cohen and Sweetser
(1973) for a signal to coda detection ratio of 1.5 and is a reasonable rate
for network operations if detecticn and location by 3-4 stations is required;

see Cohen and Sweetser (1973).

We see that for a magnitude difference of 0.5 m s the median number of
explosions hidden is 5, which for the 20-second intervals used by Filson
corresponds to 100 seconds or approximately 2 minutes. This result is con-
sistent with the median Kamchatka-Kuriles coda shapes determined by Cohen
and Sweetser, which typically fall 0.7 m units in 2 minutes, and for which
a signal/coda ratio of 1.5 is required for detection. These results are,
however, inconsistent with coda shapes which fall a full magnitude unit or
more in 2 minutes as determined by Jeppsson. As mentioned above, it appears
that Jeppsson has a biased sample of codas. It is, of course, possible that
HFS has simpler coda shapes than LASA or the WWSSN stations u.ed by Cohen
and Sweetser. At four minutes after first motion Filson's figure gives 1.0 m
units, about the same result as given by Cohen and Sweetser, However, Cohen
and Sweetser require a 1.5 signal-to-coda ratio for detection. This suggests
that for large times, automatic detection can reliably detect loglo(l.S)-O.Z m

below the levels reported by Cohen and Sweetser.
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Other questions which have arisen with respect to coda measurements will

also be treated in this report. It is concelsable that stations in different
tectonic settings could have different coda shapes. For example, signals

received at a station on thick sediments might be expected to have long |
~®verberation tiﬁes while stations on granite might have rapidly-decaying

codas. One might also suspect that stations above low-Q regions of tae

mantle would have upper-mantle reverberations damped out so that in the times

between arrivals of major phases, the coda levels would be low.

One might also question whether tle analysts measuring the codas have
been succes ;ful in measuring, on the WWSSN short-period systems, amplitudes
for periods close to 1.0 Hz. 1t seems possible that the coda shapes could
differ if measured on LRSM systems, which peak at shorter periods. We shall

investigate this question in this report.

The problem of regionalization, picking out areas where coda shapes
offer 1ittle opportunities for evasion by HIE or sho: arrays, has recently
been discussed with respect to LASA recordings of Kamchatka data by
Blandford and Clark (1975).

Blandford, R. R. and D. Clark, 1975, Variability of seismic waveforms at
LASA from small subregions of Kamchatka, SDAC-TR-75-12, Teledyne
Geotech, Alexandria, Virginia.
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DATA SELECTION

Table I lists the stations which provided duta for this report. They
were selected after reference to Figure 2, taken from Evernden and Clark
(1970b). Stations at the extremes of the plotted distribution were selected |
together with station BRPA, Evernden and Clark's reference station, located
at 0.0 relative signal amplitude and 10 mp noise level. Stations PIWY, PI2WY
and TFO were also included. Note that PIWY and PI2WY, although close to each

other geographically are located on substantially different types of rock.

Table II gives the events examined in the study. The first seven events
were taken from Table Ib of Evernden and Clark (1970a). Only seven events
were chosen for an initial study since we required that signals had to be
readable at PIWY, the reference station, and at several of the other stations
of interest. Further we required that the events chosen could not be too
close or too far from the United States in order that the signals would arrive

at all the stations of intcrest in the teleseismic distance range.

After performing preliminary studies with the first seven events in
Table II, we found that more data were required. We decided to make an
intensive investigation of stations BRPA, CPCL, PIWY, PI2WY, and RYND.
Station TFO was selected as a reference since it was in operation continuously
during the operation of all the other stations, and since both high- and
low-gain films at TFO made almost all events readable at this station. All
National Earthquakg Information Service (NEIS) events in the following
categories were examined for the time iaterval 1 January 1963 - 31 December
1965: Alaska, the Aleutian Islands, and South and Central America (Seismic
Regions 1, 6, 8), my > 5.6; and the Kurile Islands (Seismic Region 19),

m > 5.3. Since all but one of the initial seven events were deep, we
required that the new events selected have depths < 70 km. The requirement
that the event be readable, and in the teleseismic P range at TFO and at one
other station, then permitted the selection of the remaining 26 events in
Table 1I.

Evernden, J. F. and D. Clark, 1970b, Study of teleseismic P...II amplitude
data, Phys. Earth Planet. Interiors, 4, 24-31.

Evernden, J. F. and D. Clark, 1970a, Study of teleseismic P...l travel-iime
data, Phys. Earth Planet. Interiors, 4, 1-23,
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SHORT-PERIOD CODA SHAPE DIFFERENCES
AS A FUNCTION OF GEOLOGY

Tcble III gives the Table IIb event maximum-amplitude coda data used in
this report for stations PIWY, P12WY, TFO, and BRPA. The daia uie reported

as the log10 of the coda percentage of maximum motion,

Differences in coda shape are determined by calculating the differences
in the logarithms at two stations for a set of common events, and by averaging
the differences over the events. When this had been accomplished, inspection
of the data at times beyond 30 seconds revealed that one cannot usually reject ﬁ

the hypothesis that the mean difference is constant with time. Therefore,

in Table IV we summarize coda shape differences between station pairs averaged
over events. The first number reported is the average difference in the first
10 seconds, and the second number is the average differance after 30 seconds.
The averaging after 30 seconds is carried out to times Tall such that both
stations are still reporting for all events. This avoids blasing the averages

with slowly decaying events which continue to be detected for long times.

In the first part of Table IV, utilizir; the preliminary seven events
from Evernden and Clark (1970a), PIWY is rhe reference station; in the second
part, TFO is the reference station. Exanination of both parts of Table IV
shows that station PIWY, but not PI2WY, is in . class by itself in having coda
on the order of 0.2 magnitude units larger than the other stations. Stations
HLID is 0.1 magnitude units lower, FRMA and DRCO somewhat lower still. Theve
is no obvious correlation with region or type of station bedrock, and we
therefore have no explanation for the observed facts. It seems possible,
however, that structural complexities may break up the initial pulse at

PIWY so that the remaining signal seems larger by comparison,

In Figure 3 we see the short-period vertical waveforms for the 16 March
1964 event at PIWY and BRPA; we can see directly that the coda decays more
slowly at PIWY,

=17
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Summary Table of Coda Shape Differences

Station

RYND
FRMA
GIMA
HLID
BRPA
TFO

GVTX
DRCO
CPCL
HHND

CPCL
BRPA
RY"v
FLWY
PI2WY

TABLE IV

Max(station) - Max (PIWY)

(0~10)sec

.06
.01
.05
.03
-.08
-.01
-.02
-.02
+.01
-.09

(30+Ta11)sec

-.21+.05
-.13+.03
-.27+.03
-.09+.02
-.23+.01
-.15+.02
~.15+.004
-.11+.01
-.17+.02
-.26%.04

Max(station) - Max(TFO)

.00 +.05+.01
.02 -.05+.01
.u9 -.04+.02
.04 .24+.03
+.07 .04+.05
=19~



"ONXY PU®B 704D 3IB IUIAd €967 IsSn3ny 7 a4l jo pue yJid Pu® AMId
3B JUBAd %961 Yd1eN 9T 3yl JO swiojdAaem Ted¥3II1aA pojiad-jioys °*f aandyg

. » o' N v i ¥ N (] *
Rl e el hry TR | gt ! A 1 _,._. ] A LA 1 im 8E Ew
| P e i ey iy gl R _
S8 T

€9 9NV 6Z ON-AH

148
H18 .7

€9 9nv 62 14D

[ e

S g

"9 HVYN 81 AM-Id

[

A L e e A et e g el P AN
'

'
PL

|

L8 2 Q
79 HYN 91 va-48

=7y




e ettt e e e

SHORT-PERIOD REVERBERATION DIFFERENCES BETWEEN STATIONS

In the Introduction we discussed the possibility that detections might
be made in short, quiet, 10-second intervals between the large maxima in each
minute of the coda. To examine this possibility we examined each of the
second set of events (the latter 26) in Table II at stations TFO, PIWY, PIZWY,
BRPA, CPCL, ard RYND in the following way. The coda intervals 0-20, 20-40, {
40-60 seconds, and every minute thereafter were examined to find the 10-second
interval with the smallest maximum. The log10 of this maximum in percent was
then recorded as the minimum coda level for the time interval. The technique
is 1llustrated in Figure 4. The complete minimum coda level data derived in
this manner are given in Table V for stations PIWY, PI2WY, TFO, and BRPA,

The minimum coda-level values were then subtracted from the maximum in
the interval and the differences tabulated as (max-min) for each time interrval,
event, and station. Using TFO as a reference and for a given station, say
cver all event pairs for

PIWY, we than averaged (max-min) - (max-min)

PIWY TFO
all times. By choosing paired events we attempted to suppress the effects of
varyiag epicentral distance. The results, together with their standard
deviations, are given in Table VI. By examining the differences for t > 1
minute, so long as data is available for every even., we find some indication
that thore are two sets of stations: averaged for all events TFO and CPCL
have equal values of (max-min) and PIWY, PI2WY, BRPA, and RYND have values
.06 to .13 magnitude units smaller. The differences are not large enough to
reject the hypothesis that the difference is zero. However, the sign of the
difference is in agreement with the idea that a low-Q mantle will reduce
reverberation., The data are rather sparse for PIWY and PI2WY, and one cannot
reject the hypothesis that there is no significant difference between them.
In Figure 3 we see wavetorms of the 29 August 1963 event at CYCL and RYND
which explicitly 1llustrate the fact that CPCL is relatively quieter between
maxima than is RYND. There seems to be little effect due to type of station

bedrock.,

To investigats whether there is a variation in the quantity (max-min)

as a function of distance, we have grouped "PCL and TFO together and PIWY,

=2]=




e

. e ——— b — -

CODA MEASUREMENT TECHNIQUES

TIME (SECONDS)

Figure 4. Schematic 11lustration of method of me

asuring minimum short-
period coda levels. Arrows indicate peak-

lines. Asterisks indicate the maximum in
value selected as the coda minimum in the

I the maximum is about three times the min
are about the same.

each interval and the peak-to-peak
interval. Note that in interval
imum, while in interval II they




TABLE V
Minimus 10-Secornd Code Levels for PIWY. PI2WY, TFO, BRFA
Zvent No.
NOAA from
DATE LW A% __Table 1lb 0-20 20-4> 40-60 1-2 2-3 34 45 56 _6-7 7-8 8-9 9-10 10-11 11-12 ]2-13 13-14

PIWY (P12WY) |
05 Feb 64 5.4 78.2° 7 .54 24 . 34 .33 46,30 L33 '
22 Feb 64 5.3 62.7° 8 31,02 .27 .26 .23
31 Mar 64 5.3 66,7° 9 .25 .16 .03 27 .30 .19 .20 22
08 Apr 64 5.5 66.5° 10 .29 .10 .03 .34 .20 .26 .30
18 Apr 64 5.3 66.6° 11 Jda4 .09 .19 21 .12 .
22 Mar 65 6.0 84,4° 20 el 04 .03 $30 L4424 .25 15 .37 .25 .40 L35
28 Mar 65 5.9 55,5° 21 .33 «05 .17 .36 .36 .10 .07 .30
29 Mar 65 6.1 74,2° 22 .19 .19 .7 240 .19 .50 .23 .26 .20 .15 .15
30 Mar 65 5.7 74.1° 23 .52 .16 .04 o 14
06 Apr 65 5.7 79.3° 24 W24 L16 .19 45 W26 L1019
19 Apr 65 5.6 8i.1° 25 .28 24 021 36,22 .18 .18
20 Apr 65 5.3 56.1° 26 .28 .03 .19 .33 .20
TFO
10 May 63} 5.8 48,2" 1 .05 .08 04 $23 .23 .25 .39 .29 .35 .43 .42 .45 .4l .30 15
22 May 63 6.4 67.3° 2 o4 .02 .23 .36 .04 .35 .10 .3
26 Jun 63 6.0 38,2° 3 Y .14 .13 W34 52 W42 ,22 .30 40 .0
28 Jun 63 6.2 69,1° 4 .28 .16 .07 39 .55 .35 .28 .30 .15
29 Aug 63 6.1 50.0° 5 14 .06 .08 W47 45 40 .37 L47 .55 .52 12 .48 55
03 Nov 63} 6.0 49,2° 6 021 .04 012 W47 .37 .39 .33 .54 .61 L12 .12 .30 <30 .30 .48 .48
05 Feb 64 5.4 82.4° 7 .62 .10 .20 L70 .38 .04 .19
22 Feb 64 5.3 67.3° 8 49 .13 .08 .32 .07
31 Mar 64 5.3 71.2° 9 .23 22, .12 A2 .64 33
08 Apr 54 5.5 71.1° 10 37 .19 .25 50 .34 .33 .20 56
18 Apr 64 5.3 71.0° 11 .16 .23 .13 .37 .28
07 May 64 6.2 81.2° 12 .09 W42 .23 248 .10 .46 .30 .65 .48 .30 .60 .60 40 .48 .48 48
07 May 64 5.9 81.1° 13 .12 .10 .18 43 .33 .52 .40 .18 ,30
24 Jul 64 5.9 68,7° 14 .08 .33 .07 22 .35 44,22 ,12
24 Jul 64 5.9 68.6° 15 .38 .27 .02 .62 .38 .42 .40 ,28
24 Jul 64 5.8 68,7° 16 .26 .10 .13 A7 56 17 .42 L,26
25 Jul 64 6.1 73.0° 17 .08 .03 .09 6 .32 .46 ,26 .31 ,30
30 Jul 64 5.7 32.5° 18 b7 .35 .10 «37 .76 .35 .40 .25 .63 .37 12
08 Aug 6/, 5.8 30.5° 19 36 .10 .20 b4 L18 .82 44 .33 .95 ,31 .30
22 Mar 65 6.0 76.0° 20 ohd .22 23 W14 23 .46 .42 L34 45,20 44
28 Mar 65 5.9 60.7° 21 43 .07 «29 .38 .41 .25 .35 10
29 Mar 65 6.1 8.7° 22 .37 14 34 W40 L6R 42 40 L3I0 .52 47 .55 47 63 .25
30 Mar 65 5.7 78.6° 23 W34 .08 .00 =) (NN
06 Apr 65 5.7 83.5° 24 .38 .18 .10 23 W 42
19 Apr 65 5.6 85.3° 25 37 14 W11 W43 .43 46,21
20 Apr 65 5.3 61.2° 26 .02 .07 .16 26 .30 &l
BRPA
10 May 63 5.8 42,0° 1 .13 .19 03 16 .31 .17 .39 .25 .16 .19 .33 .15
22 May 63 6.4 79.5° 2 .52 .18 .10 W25 .26 41,25
26 Jun 63 6.0 33.1° 3 031 .23 .19 .35 .30 .17 .17
28 Jun 63 6,2 81.7° 4 .10 .15 .17 41,28 .38 .35 L4l
03 Nov 63 6.0 43, 4° 6 <06 .07 .12 36 44 33,20 ,30 58 L35
31 Mar 64 5.3 81.5° 9 40 .09 .26 .21
08 Apr 64 5.5 84,3° 10 39 .25 .01 .26
07 May 64 6.2 32,6° 12 .08 .19 .11 .34 .18 .26 .38 ,28
07 May 64 5.9 92,5° 13 .08 .23 «10 A7 .14
24 Jul 64 5.9 81.3° 14 .09 .13 o11 «32 .25
24 Jul 64 5.9 81.1° 15 1% .08 04 «33 .27 .20 ,31
24 Jul 64 5.8 81.2° 18 1) 32 «20 «35
25 Jul 64 6.1 68.0° 17 +40 .18 .07 <26 .36 .23 .13
30 Jul 64 5.7 29.5° 18 IS ) ] .03 23 W34 .30 .25 .25 .22
08 Aug 64 5.8 28.5° 19 .38 .05 .26 48 .23 .26 .10 .30 .26
22 Mar 65 6.0 72.1° 20 30 .19 .12 24,2 A8 .21 .26 .26
28 Mar 65 5.9 71.7¢ 21 27 .12 .09 .30 .15
29 Mar 65 6.1 90.8° 22 37 .13 .13 .32
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over all events for several distance ranges. Examinatior .f graphs of these
data leads to the conclusion that one cannot reject the hypothesis that there
i1s no difference in the quantity (max-min) as a function of epicentral
distance. We have, therefore, cverage (max-min) over all distance ranges

and all events for the two groups and produced Figure 5. This suggests that
there 1s little difference in (max~min) between the low-Q and high-Q stations
until approximately a minute after the P arrival, whereupon the low-(Q
stations begin to have about 0.35 magnitude units quieter 10-second minima
between l-minute maxima, while the high-Q stations have minima only 0.25
magnitude units quieter., If CPCL and TFO are selected a-priori as 1low-Q
stations, and if the others are high-Q, one can reject the hypothesis that

(max-min) is the same for both groups for t > 1.0.

In the first 20 seconds of the coda there is a 10-second interval which
is typically 0.3 m units quieter than the maximum in this time interval.
This is only to be expected for a sharp arrival and is reflected in the fact
that the smallest teleseismic coda level in the first 20 seconds of codas
measured by Cohen et al. (1972) and Sweetser et al. (1973) is typically 60%

of maximum,

In summary, on two counts the stations TFO and CPCL would be excellent
for counterevasion. Not only are the later coda amplitudes smaller by about
0.2 m units than the amplitudes at some other stations, e.g. PIWY, but also

the Ginuma between maxima are 0.1 magnitude units lower.

-24-

PI12WY, BRPA, and RYND together and produced Table VII giving (max-min) averaged
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CODA SHAPE DIFFERENCES FOR WWSSN AND LRSM STATIONS

It seems possible that the differing responses of the short-period WWSSN
and LRSM Systems, Figure 6, could result in different coda shapes, despite
the fact that during analysis an effort is made to pick coda amplitudes with
pPeriods near 1 Hz. Inp order to check this hypothesis, events whose coda
were measured at WWSSN stations in the United States and Canada, which were
reported by Cohen et al. (1972) and by Sweetser et al. (1973), and which were
al least 2 minutes long, were also read at nearby LRSM stations. We required
that the distances to the two stations of a pair be in the same distance
range. The set of distance ranges was established by Cohen et al,. (1972) to
ensure that PP and PcP would fail in the same time window for all distances
in the range. Many events were not usable because the gain at the appropriate
LRSM station was either too high or too 1low. The resulting set of stations
used is given in Table VIII, the events used are listed in Table IX, and the
individual loglo (percentage) differences are given in Table X. Three
different averages over events were taken, and are glver at the bottom of
Table X: an average over all event-station differences, an average over all
event-station differences in the distance range 84°-98°, and an average of
the longest duration event-station data set for each event. In each case we
found the LRSM long-time coda to be +05-.1 magnitude units larger than the
WWSSN. At first glance the difference, although operationally unimnortant,
Seems statistically significant since it i8 so stable with time. However,
we must reflect that due to the normalization to maximum amplitude the long-
time values will have a bias. Jor example, if the coda are identical, except
that the maximum of one is larger than the other, then there will be no
difference at the maximum, and a bias everywhere else. Thus the consistent
mean difference with respect to time reflects a difference at the maxima,
and since ,05-.1 magnitude differences are well within the range of the
calculated standard deviations of the mean for a single time interval, one

cannot reject the hypothesis of no difference between LRSM and WWSSN measure-

ments,
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. Figure 6. WWSSN and LRSM short-period system responses.
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TABLE VIII

Station Information

STATION LATITUDE LONGITUDE ELEVATION
DESIGNATOR LOCATION Deg Min Sec Deg Min Sec (Meters)
BOZ Bozeman, Montana 45 36 o N 111 38 oo w 1575
BR=PA Berlin, Pennsylvania 39 55 27 N 78 50 41w 665
CMC Coppermine, N.W.T., Canada 67 50 00 N 115 05 oo w 31
DAL Dallas, Texas 32 50 46 N 96 47 02 w 187
DH-NY Delhi, New York 42 14 39 x 74 53 18 w 652
FO-TX Fort Stockton, Texas 30 54 06 N 102 41 52 880
FR-MA Fcrsyth, Montana 46 06 00N 106 26 25 W 823
GI-MA Glendive, Montana 47 11 34N 104 13 10 W 732
GV-TX Grapevine, Texas 32 53 09 N 96 59 54 W 152
HE-TX Hempstead, Texas 30 11 59 N 96 05 31w 67
HL-ID Halley, Idaho 43 38 50N 114 15 02 w 1890
HL2ID Hailey, 1daho 43 33 4ON 114 25 08 w 1829
HN=-ME Houlton, Maine 46 09 43 N 67 59 09 W 213
JE-LA Jena, Louisiana 31 47 OS5 N 92 00 55w 46
LS-NH Lisbon, New Hempshire 44 14 18 N L 55 21 M 287
NP~NT Mould Bay, Canada 76 15 08 N 119 22 18 W 59
PG-BC Prince George, B.C., Canada 53 59 59 B 12 3. 23w 914
RG=-SD Redig, South Dakota 45 12 59N 103 32 05 w 945
WES Weston, Massachusetts 42 23 05 N 7. 19 20w 60
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SUMMARY

We have found evidence that there are a few stations, e.g. PIWY (but

not PI2WY, only 20-30 km distant) and HLID which have relative asymptotic

coda amplitudes 0.1-0.2 magnitude units larger than other stations. A
possible explanation for this is that the single sharp first arrival is

broken up for these stat_.ons, perhaps by complicated tectonic structures,

o There seem to be differeaces in the degree of reverberation between

‘ stations in high-Q and low-Q tectonic regions. The quiet periods between
| ¢ coda maxima at times greater than 1-2 minutes into the coda are 0.1 m
quieter at the low-Q stations. This is in qualitative agreement with what
one would expect if some of this reverberation were generated in the upper

mantle and had to pass once or twice through the low-velocity channel.

The above results suggest the counter-HIE stations should be located in

low-Q regions where the tectonic structure is simple,

Beyond 1 minute into the coda, the minimum 10-second interval maximum

is about 0.3 magnitude units below the maximum in the surrounding minute.
{ This might suggest that the coda published by the Cohen and Sweetser over-
1 estimate the hiding potential of earthquake coda for times greater than 1
minute by some amount less than 0.3 magnitude units. Comparison with the
work of Filson (1973) suggests that tb . coda of Cohen and Sweetser are
accurate up to 2 minutes, but that then the detectibility of a mixed signal
is indeed underestimated by about 0.2 m units,

Both the results of Filson (1973) and this study find slower coda decay
in the first minute than did Jeppsson (1975) and Fink et al. (1971) who

\ apparently selected a biased sample of rapidly decaying coda.

There seems to be no difference in coda estimates made using WWSSN or

LRSM records.
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