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ABSTRACT

The corrosion rates of various metal alloys in artificial
seawater and artificial seawater-CLOROX solutions was Jdeter-
mined potentiokinetically employing the cathodic overvoltage-
intercept method. The results obtained in the artificial
seawater system agreed quite well with those obtained from
previous ocean Immersion tests. With the exception of an
aluminum alloy, the effect of the addition of CLOROX was the
same for all materials with the corrosion potential becoming

more positive and the alloy less resistant to corrosion.




TABLE OF CONTENTS

I.  INTRODUCTION —==emmeecmecmccmcmmc oo me e 14
A. BACKGROUND =memm e e o e e cm e 1u
B. CORROSION PHENOMENA ==—cmmcmmccoccccmmme e 16
II. EXPERIMENTAL PROCEDURES ===—=-ecmemceceec—cccmce——— 20
A. THE PROBLEM3 OF DIRECT METHODS OF DETERMINING
CORROSION RATES IN SEAWATER ===eecmeemmeaaao—o 20
B. POTENTIOKINETIC DETERMINATION OF CORROSION
CURRENT DENSITY ~ccmmmeme e cmccmcmmeeao oo 21
C. CHOICE OF CORROSIVE MEDIUM ==c--ecemccmeanc—oo— 24
D. METAL ELECTRODES =ms--eemmmmm e mcmccemeec e 26
’ ' E. EQUIPMENT ==---meeeeceece———e;——cce—e———e—e——— e 29
F. EXPERIMENTAL PROCEDURES ====-coemmeemmmcmeeeeo 37
G. PROBLEMS =====e e eme e cmmmmmem e 38
III. PRESENTATION OF DATA ==—===cmmmmm oo oo oo 40
i A. PREPARATION OF DATA FOR ANALYSIS ==-=ceccmceea- 40
; B. DETERMINATION OF CORROSION RATES -==m===—eemee- by |
IV. CONCLUSIONS =-=cecm e e e 71
E A. DETERMINATION OF CORROSION RATES IN
ARTIFICIAL SEAWATER ====rmececcmmccmcccmmcaa—oo 71
B. CORROSIVITY OF THE HYPOCHLORITE ION IN
ARTIFICIAL SEAWATER ==-m=eemccccme—mmm—meacaeo 71
C. CHANGE IN CORROSION POTENTIAL WITH HYPOCHLORITE
ION CONCENTRATION =m=m-meceecccmcceccommene——o 76
) D. SUMMARY —mmee e 76 |
. V.  RECOMMENDATIONS ==wmeee-oemmeoceoom oo mecccaamaoae 77 j
APPENDIX A PREPARATION OF ARTIFICIAL SEAWATER -==e-eea- 79

APPENDIX B COMPOSITION OF METALLIC SAMPLES =<======c===--- 84




APPENDIX C TABLES OF EXPERIMENTAL DATA
LIST OF REFERENCES ~===w--

INITIAL DISTRIBUTION LIST

D - —— - - - — . ——— —— -~ —— - ——

L D - - - - - ——— W * + - —




TABLE
TABLE

TABLE

TABLE

TABLE
TABLE

TABLE

TABLE
TABLE

TABLE

TABLE

TABLE
TABLE

TABLE

TABLE

TABLE
TABLE

I

ITI

IV

VI

VII

VIII
IX

XI

XII
XIII

XIV

XV

XVI
XVIT

LIST OF TABLES

EMF Series memeemcemmm oo m e 19

Summarv of Electrochemical Information for
Experimental Trials =—e--ce-cecemcocacaao 43

Comparison of Corrosion Rates in Seawater
Determined from Present Work with
Previously Measured Values =====eccacecaao- 45

Potentiokinetically Determined Values of _
Corrosion Rates in Artificial Seawater -- %8

Definition of Rabald's Symbols ===ceceeeaoa- 72

Corrosion Resistance of Metals in Hypo-~
chlorite Solutions —==—=-e——e—emmommomao. 73

Suitability of Metals for Use in Hypo-
chlqrite—Seawater Systems ——wecececmecaccea- 75

Formula for 1 kg of Artificial Seawater ---- 81

Comparison of the Composition of Natural

and Artificial Seawaters -------c-ceeccea-a 82
Comparison of pH and Conductivity of

Standard and Artificial Seawaters =------- 83
Chemical Composition, Equivalent Weight

and Density of Metal Samples -=~=cece—ea- 85
Copper in Untreated Seawater =-=-----cccmeeao 87
Copper in Seawater Treated with 2.123 ml

CLOROX <e=wecccccmccm e e so
Copper in Seawater Treated with 4.245 ml

[0} 0} : 1o - QU . 83
Copper in Seawater Treated with 8.u49 ml

0570) ;10 QRS 80
Nickel in Untreated Seawaier --—=----ccacaca- 91

Nickel in Seawater Treated with 2.123 ml
CLOROX ===ecm oo e 82

e i i o




TABLE

TABLE

TABLE
TABLE

TABLE
TABLE

TABLE
TABLE

TABLE

TABLE

TABLE
TABLE

TABLE
TABLE

TABLE

TABLE

R

XVIII

XIX

XX

XXI

XXIT
XXITI

XXIV
XXV

XXVI

XXVIIL

XXVIII

XXIX

XXX

XXXI

XXXIT
XXXIII

Nickel in Seawater Treated with 4.24 ml
CLOROX e~recmccccmaccaaa ——————— e —————

Nickel in Seawater Treated with 8.49 ml
CLOROX wmemcmcmcc e cmcmcem e e

Naval Brass in Untreated Seawater =-——-—-===

Naval Brass in Seawater Treated with
8.49 ml CLOROX wmceccmcccccccccccc came-

Phosphor Bronze in Untreated Seawater =~---

Phosphor Bronze in Seawater Treated with
8.29 ml CLOROX «=ccecemccimccmcccccccaa-

Copper-Nickel Alloy in Untreated Seawater-

Copper-Nickel Alloy in Seawater Treated
with 8.49 ml CLOROX ~we—mcccmccccccccana

K-Monel in Untreated Seawater =——e—ecceecececa-

K-Monel in Seawater Treated with 8.49 ml
CLOROX =me-cccccmcccccccccamccmccea———-

HY-80 Steel Alloy in Untreated Seawater---

HY-80 Steel Alloy in Seawater Treated with
8.49 ml CLOROX =====-=-c—cmeo—ae—aeaax

Stainless Steel in Untreated Seawater ----

Stainless Steel in Seawater Treated with

8.49 ml CLOROX =====e—mc—emamemmemoeee
Aluminum Alloy in Untreated Seawater -----
Aluminum Alloy in Seawater Treated with

8.49 Ml CLOROX ==m—=m—-ecmeecm—c—m—an-

9

93

97

104

105

| ’




LR VORI

Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

10

11
12

13

14

15
16

17

18

19
20

LIST OF ILLUSTRATIONS

Anodic and Cathodic Polarization Curves —-=--- 22

Specimen, electrode holder, and teflon
washer prior to assembly ==-—==e-—-o---a--- 27

Specimen and dowel assembled for polishing--- 28

Experimental equipment arrangement -~—------- 31
Electrode connections to potentiostat =--=--- 32
Corrosion cell assembly ======eemecmeoecaaa--- 33

Corrosion cell assembly in heating mantle---- 35

Information displays =-=m—eecccecmccceccaana= 36
Potential vs current, nickel in seawater ---- 41
Third order regression analysis, nickel
in seawater —weeceme—cecmmcccccccccace e 42
Copper in untreated seawater -------—=-------- 49
Copper in seawater treated with 34.69
PPM OCl™ ~mmmcccmcmc e e e 50
Copper in_seawater treated witi 56.37
PPM OCl™ ———emmmcm e mmcsmmmmec e 51
Copper in_seawater treated with 89.65
PPM OCl T ~-eecccemmmccccecc e 52
Nickel in untreated seawater ==-=-—==—=—------ 53

Nickel in seawater treated with 26.24

PPM OCl™ mmecccme e e Su
Nicke? in_seawater treated with 53.77

PP OCLl” mmme e 55
Nickel in_seawater treated with 108..46

PPM OCl™ cmecmcccccccccccm e e e 56
Naval brass in untreated seawater =—--eeecac--= 57

Naval brass in seawater treated with 93.29
PPM OCl™ —meemcccccccccceccccccccccc e 58




Figure

Figure

Figure

Figure

Figure

Figure

Tigure

Figure

Figure

Figure

Figure

Figure

21

22

23

24

25
28

27
28

29
30

31

Coppes-nickel (70/30) alloy in untreated
seawatel =—cweccccccce e —a e m e a e e 59

Copper-nickel (7030) alloy in seawater
treated with 102.22 ppm 0Cl™ =m—-ecemee-- 60

K-Monel in untreated seawater -~==—eeeecmana. 61

K-Monel in seawater treated with 88.85

PPM OCl™ e e eee e 62
Phosphor bronze in untreated seawater —------ 63
Phosphor bronze in seawater treated with

108.64 ppm OCl —w-—sc—ecaccccccccmcccee 64
HY-80 steel alloy in untreated seawater ---- 85
EY-80 steel alloy in seawater treated with

108.9 ppm 0Cl —-eccemmcccmmccc e 66
Stainless steel in untreated seawater —-—--- 67

Stainless steel in seawater treated with
99.31 ppm OCl —-—---mcmmemccccc e 68

Aluminum alloy 7075 in untreated seawater--- 69

Aluminum alloy 7075 in seawater treated with
96.82 ppm OCl =meecemccecccmc e mcmcceeee 70




4

230115

| NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

(M

AUG 11 1976

ADA028208

THESIS

B A POTENTIOKINETIC DETERMINATION OF
,‘- ORROSION RATES IN ARTIFICTAL SEAWATER -

HYPOCHLORITE SOLUTIONS

4
!
by
i’ Joseph Maurice Price

June 1976

Thesis Advisor: Richard A. Reinhardt
i y

e
L

Approved for public release; distribution unlimited.

REPRODUCED BY

. NATIONAL TECHNICAL
| INFORMATION SERVICE

; _ DEPARTMENT OF COMMERCE
H v.-$ SPRINGFIELD, VA. 22161

i Sty o MR A o s T

:'
|




®

y] tv1 t
Q
O
2]
o}

O

® g
Lo

.

corr

log
M

n+

mil

pom

R
corr

R
mmpy

R
mpy
SCE

sic
foci™]

0C1

LIST OF SYMBOLS

Tafel slomne
equivalent weight
electron

cell potential (volts)

corrosion potential (volts)

standard electrode potential oxidation half-reaction

standard electrode potertial reduction half-reaction

Faraday's constant (96,500 coulombs)
change in Gibbs Free Energy Function
current density (uA/cmZ)

corrosion current density (uA/cmz)
decimal logarithm

metal

metal ion

.001 inch

normal (equivalent weight/liter)
perts per million (mass ratio)
corrosion rate

corrosion rate in mm/year

corrosion rate in mils/year
saturated calomel electrode

silicon carbide

hypochlorite ion concentration

hypochlorite ion

12




ACKNOWLEDGEMENT

The author wishes to express his appreciation to all
those whose assistance and encouragement made this investi-
gation possible. The number of people who should be thanked
is too great for the space allowed. However, special thanks
are due to ¥en Graham and Roy Edwards for assistance in devel-
oping techniques and providing the necessary guidance in the
use of laboratory equipment; Bob Sanders and Bob Smith for
locating and repairing equipment so the experimental investi-
gation could be assomplished; and to Professor R. A. Reinhardt
and Associate Professor A. J. Perkins for guidance and encour-

agement throughout this investigation.

13




I. INTRODUCTION

A. BACKGROUND

The problems of corrosion and fouling are primary consid-
erations in the design of ships and marine installations.
In the internal seawater systems of ships and marine power
stations, where heat transfer and long service life are crit-
ical, the common anti-fouling and corrosion prevention pro-
cedures, e.g., anti-fouling paints, increased wall thickness
of piping and tubes, corrosion- and fouling-resistant alloys,
etc., may actually reduce the heat transfer capabllities of
the system, and most assuredly will increase the cost of
fabrication. Therefore, if more efficient heat transfer
systems are to be constructed, these corrosion problems will
have to be better understood, thus providing for a more
intelligent selection of materials.

One novel solution proposed for the fouling problem is to
treat the incoming seawater with the hypochlorite ion, either
by the addition of a sodium hypochlorite (NaOCl) solution or

by on-site electrolysis of saline water to produce NaOCl.

Natc1~ + H,0 electrolysis Natoci™ + H, (g)

>

A device to introduce the hypochlorite ion in this latter
manner 1is currently manufactured and marketed by Engelhard
Industrial Division of Engelhard Minerals and Chemical Cor-

poration under the trade name of CHLOROPAC.

1y




It is commonly accepted that 0.5 parts per million (ppm)

of chlorine in the form of the hypochlorite ion (9.7 xlO'6 N)
will control mollusk growth in seawater systems. [1] ,[2].
The recommended opsrating prodecures for the CHLOROPAC are
designed to provide this low concentration (0.5 ppm) in the
areas where fouling is to be controlled; near the generator,
however, the 0Cl~ concentration may be as high as 100 ppm
(2.0x 1073 N) [2].

The ability of dilute NaOCl solutions to control the
growth of marine life has been demonstrated in many indus-
trial applications. The CHLOROPAC system was evaluated in
an inservice test by the British Ship Research Association
(BSRA) from May 1973 through September 1973. The BSRA report
concluded that the CHLOROPAC system successfully prevented
the growth of marine fouling with no increase in the corro-
sion of the seawater systems that could be attributed to the
hypochlorite ion concentration [2]. However, during the BSRA
eQaluation, no attempt was made to measure the extent of cor-
rosion or corrosion rate in either the seawater or seawater
hypochlorite environments. A search of the literature re-
sulted in a wide range of reported corrosion rates for the
same metals in natural seawater. These values were deter-
mined in various locations and under various and nonreproduc-
ible conditions.

It is the intent of this thesis to determine by potentio-
dynamic methods the corrosion rate of selected metals with

marine applications in an environment of synthetic seawater

15




and to compare these rates with those obtained in a synthetic

seawater-sodium hypochlorite solution
B. CORROSION PHENOMENA

Any number of paradoxicaixgnd complicated examples of the
corrosion process can be and hé%g been described. U. R. Evans
suggested that "Possibly it is tﬁé strangeness of corrosion
reactions which cause the orthodox physical chemist to regard
the wholie subject with suspicion" [3]. In the language of
the electrochemist or corrosion scien*tist, the anode is often
referred to as the active electrode and the cathode as the
noble alectrode. Corrosion, if defined as metal loss from
the solid state, occurs at anodic areas, which exist at areas
of lower electrode (reduction) potential within the ce11.4
In all cases the oxidation-reduction reactions can be repre-
sented algebraically as:

+ -.:
E :VY MY * ne 0

Y

where vy is the number of formulas (or moles) in the balanced
equation;
MY is the chemical species;
and ne” is the number of free electrons.

Thermodynamics provides information about the feasibility
of a given net electrochemical cell reaction to take place,
from the change in the Gibbs Free Energy Function (AG); the
more negative the value of AG, the greater the tendency for

the reaction to take place [4]. For electrochemical reac-

tions:
16




AG = -nFE°

where n is the number of electrons involved in the reaction;
' is Faraday's Constant, 96500 coulombs/equivalent;
E° is the reversible cell potential.
The cell potential is determined from those for the separate
oxidation and reduction half-cell reactions. For example,

the corrosion of iron (Fe) in aerated seawater is:
++ -
2Fe + 0, + 2H)0 === 2Fe = + 4OH

separating this reaction into its anodic and cathodic half

cell reactions:

2Fe ——3 2Fe’’ + 2e” E, = -.u4l40v

0, + 2H,0 + 4e™ ——3> 4OH™ ER

401V
E°= .401V - .440V = .841V

Since E° is positive, AG is negative and the reaction is
feasible.

Although the change in the Gibbs Function can tell if
corrosion is possible, it cannot predict the corrosion rate
(Rcorr)' The corrosion rate is determined by the current
flowing between the anode and cathode. In accordance with
Ohm's law, this current is equal to the difference between
the anode and cathode potentials divided by the total resis-
tance of the circuit. When current flows between the anode

and cathode, the potentials of both change. This change is

called polarization [6].

17
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The object of polarization experiments is to determine a
steady state corrosion current density (jcorr) and then cal-
culate a corrosion rate assuming uniform or general corrosion.
From Faraday's law the corrosion rate can be determined by

the relationship:

R =
corr corr

where:

p is the density of the metal corroding (g/cm3),

e is the equivalent weight of the metal (g),

j is the corrosion current density(uA/cmz),

corr
k is a constant that includes Faraday's constant
and the conversion factors required to obtain
the desired units of length and time [6].

Therefore:

Rcorr(ln mils/year) = '12871corre/p

and

R (in mm/year) = .003270 j

/o
corr

e
corr

The current accepted units for penetration corrosion rates

are mils/year.

18
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REDUCTION HALF REACTIONS

EMF SERIES [5]

TABLE I

Hg++(aq) + 2e” =

+ 2H,0 + uye~

0, 2

cutt(aq) + 2e”
2H (aq) + 2e”
Ni++(aq) + 2e”
Fe++(aq) + 2e”
Zn++(aq) + 2e”
a1 * *(aq) + 3e”

Na+(aq) + e

2Hg(1)

4LOH

. Cu(s)

Hz(g)
Ni(s)
Fe(s)
Zn(s)
Al(s)

Na(s)

19

STANDARD REDUCTION
POTENTIAL

0.788

0.401

0.337

0.000

-0.250

-0.440

-0.763

-1.662

-2.714




II. EXPERIMENTAL PROCEDURES

A. THE PROBLEMS OF DIRECT METHODS OF DETERMINING CORROSION
RATES IN SEAWATER

Corrosion rates in seawater have commonly been determined
by mounting metal coupons on a wood or metal rack and immers-
ing the rack into the ocean, then measuring the weight loss
or penetration directly [7,8,9,10,11]. This method is time
consuming and expensive. The rack must be designed and con-

structed to avoid the following disturbing factors:

1. Galvanic action between different specimens or
between the rack and specimens.

2. Local shielding of any appreciable area of a
test piece so as to provide an opportunity for concentration
cell corrosion.

3. Non-uniform flow of water past surfaces of d4if-
ferent specimens.

4. Corrosion-accelerating or inhibiting effects of
corrosion products from the rack material.

5. Abrasion of loose specimens due to rubbing against
their supports.

6. Mechanical damage by floating objects.

7. Loss of the specimens due to rack failure.

To further compound the problem, materials to be compared
directly should be exposed for the same length of time, since
the growth of fouling organisms is seasonly dependent and

20




causes seasonal variations in the corrosion rates. The

immersion tests normally take from six months to three years
to perform. In addition to the above complexities, the re-
searcher is unable to control the environment of the test
specimens. Since most test sites are near shore, the compo-
sition of the seawater and local pollutants,and velocity
across the specimens is variable and location dependent. As
a result, corrosion rates obtained in this manner vary con-
siderably from site to site [7]. In an attempt to alleviate
some of these problems, a laboratory potentiokinetic method
of determining corrosion rates was evaluated in this study.
Tae aim was to determine the ability of this method to pre-
dict from laboratory evaluations in artificial seawater the
corrosion rates which would result due to immersion testing

in natural seawater.

B. POTENTIOKINETIC DETERMINATION OF CORROSION CURRENT DENSITY

Faraday's Law shows that the rate of metal converted to
metal ion is proportional to the current transferred within
a corrosion cell. Therefore, the determination of a general
or uniform corrosion rate rests upon determining the current
density associated with the corrosion potential. If the
electrolyte is sufficiently stirred to prevent concentration
polarization and the distance between the working and refer-
ence electrodes is small or the current is small so that the
IR drop between these electrodes is insignificant, then the

potential can be related to the current density by the Tafel

21
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Law [4,12]. The Tafel Law can be expressed either by:

E=oa+ B8 log(j)
or

E - Eoopp = 8 108(3/3 oy

where B is the anodic or cathodic Tafel slope and like Ecor”

and j is dependent upcn the nature of the electrcae and

corr
its environment. Ideally when potential vs current density

is plotted semilogarithmically for various values of E and j,
the anodic and cathodic curves will obey the Tafel relation-

ship at a distance fvom E and become curved and asympt>-

corr

tic to E as E approaches E

corr (Figure 1). Then by ex-

corr
tending the Tafel slopes to intersect the horizontal repre-

senting E it should be possible to cetermine the corrosion

corr’
current density. This method is referred to as the overvolt-
age-intercept method [13,14]. As can be seen from Figures
11 through 32, the actual experimental curves obtained do not
always have a readily identifiable Tafel slope. This was

particularly true for the anodic curves in this study. The

cathodic slope was determined in the region [14]:

Ecorr - 0.05V ¢ E g Ecorr -0.20V.

Experimentally it has been determined that the best value for
the corrosion current density can be obtained by extending
the cathodic slope to intersect with the corrosion potential
[13,14]. This apparent discrepancy can be partially attrib-
uted to the fact that the anodic reactions are not uniformly

distributed over the surface of the specimen, therefore the

23
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area used in calculation of j may be in error [13].

anodic
It is also conceivable that a number of oxidation-reduction

reactions are occurring at potentials above E opp® Whereas, !
at lower potentials the reduction of oxygen predominates [12]. A
In any case, the cathodic overvoltage-intercept method was
applied in this study because the expense in setting up the

experiments was minimal and results could be obtained in a

matter of hours vice months.
C. CHOICE OF CORROSIVE MEDIUM !

Seawater is a complex, delicately balanced solution of
many salts containing living matter, suspended silt, dissolved
gases, and decaying organic matter. An individual effect of

each of these components affecting the corrosion behavior of

the system is not readily separated. The major factors which

can be identified as effecting corrosion rates are:

1. Dissolved oxygen content

2. Biological activity

3. Temperature

4. Velocity

5. Salinity

6. pH

7. Chemical composition [16].

In order to develop a standard procedure and reduce the

number of uncontrollable factors, a standard electrolyte was
necessary. To avoid the effects of organic matter and bio-

logical activity, local Monterey Bay water was not used.

24
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Standard seawater from the IAPSO Standard Sea-Water Service,
Charlottenlund, Denmark, was not used because the quantity
required was éost—prohibitive. Therefore, a laboratory sub-
stitute was desirable. Initially, a .6N solution of sodium
chloride was considered. However, a search of the literature
showed that where this solution was substituted for seawater,
the resulting corrosion rates were generally higher than
those obtained in seawater and that the disparity was time
dependent [17]. The gltimate choice of electrolyte was the
formula and procedure developed by Kester, et al [18] and
described in Appendix A. This formula closely reproduces the
composition of standard seawater and could be made relatively
inexpensiveiy in the quantity required. After the artificial
seawater was prepared, its conductivity and pH were compared
with a standard sample.

The desired hypochlorite ion concentration was obtained
using CLOROX additions. A new bottle of CLOROX was first
standardized by iodimetry and the hypochlorite ion concentra-
tion determined to be 0.45807N [19]. The desired concentra-
tion of the hypochlorite ion was then calculated in terms of
a volume of CLOROX and added to the measured amount of sea-
water. For example, in order to obtain a hypochlorite con-
centration of 100 ppm in 2kg of seawater, the following cal-
culations were required:

1. 100 ppm [0C17] = .2g '0Cl™/2kg seawater

2. Molecular weight of 0C1l~

3. Number of moles required .2g/51.457g/mole =
3.887 mmoles
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4. Volume of CLOROX to be added to 2kg seawater

3.887 mmoles/.45807 moles/liter
8.4856ml.

Therefore, 8.49ml of CLOROX was pipetted into 2kg of seawater

to produce a hypochlorite concentration of approximately 100

ppm.

D. METAL ELECTRODES

The metal alloy samples from which the electrodes were
manufactured were provided by Mare Island Naval Shipyard,
Laboratory Division, and are representative of the alloys
used in ship construction. The chemical composition of the
samples, their density and equivalent weights are given in
Appendix B.

The samples were cut and machined to 0.500 in (1.27 cm)
diameter and cut to a length of .375 in (0.95 cm). Each
electrode was drilled and tapped to facilitate mounting on
an electrode holder (Figure 2). Before being mounted on the
electrode holder, the specimens were first mounted on a short
length of 1/2 inch wood doweling with sealing wax (Figure 3)
and polished on a lathe with various grades of SiC paper,
finishing with 600 grit SiC paper. The samples were then
placed in a test tube, covered with benzene, and placed in
an ultrasonic bath for approximately ten minutes to clean
the surfaces. The samples remained in the benzene until just
prior to mounting, but no longer than three hours. Before
assembling the working electrode, the specimen was placed in

a 50 ml erlenmeyer flask filled with distilled water, stoppered
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Figure 2.

Specimens, electrode holder
and teflon washer prior to assembly.
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Figure 3. Specimen and dowel
assembled for polishing.
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and returned to the ultrasonic bath and rinsed for about one

minute. The sample was then dried, the top coated lightly
with stopcock grease and threaded on the electrcde holder.
The teflon washer spaced between the sample and the glass
tubing sealed the end of the tube and was cut in such a man-
ner to position the salt bridge probe 1.778 mm from the
sample. The area of the corroding surface was approximately
5 cmz.

Two platinum auxiliary electrodes were prepared from high
purity sheet stock with dimensions 1.28 cm by 1.768 cm for a
surface area of 4.53 cm2. The platinum electrodes were then
platinized and stored in distilled water until required for
use. Frequent cleaning and replatinizing of the surfaces

were required during the period of the experiment.
E. EQUIPMENT

The equipment used to determine the corrosion current
densitieé was:
1. TRW Instruments Model 200A Research Potentiostat
2. Hewlett-Packard Mosely 136A X-Y Recorder
3. Precision Scientific Co. Magnamix magnetic
stirrer and stirring bar
4. 2 liter resin kettle heating mantle
S5. 2 liter reaction flask (resin kettle) and cover
6. 100 ml three necked flask
7. Heating mantle for a round bottom flask
8. Saturated calomel electrode (SCE)

§. Salt bridge
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10. Thermometers; Of to 50 °C range, 2

1l1. General Radio Company Variac Autotransformers, 2
12. Weston Model 1240 Digital Multimeter

13. Seven (7) receptacle outlet box

14. Constant voltage isolation transformer

15. Leeds and Northrup Company Temperature Potentio-
meter

16. Platinum auxiliary electrode

17. Metal sample working electrode
The complete experimental arrangement is shown in Figure 4.
The three electrodes were connected to the potentiostat in
accordance with the technical manual and illustrated in Fig-
ure 5. The grounds were lifted on the recorder, multimeter
and stirrer before these units were connected to the outlet
box. This was necessary to avoid introducing stray currents
into the potentiostat. The potentiostat and resin kettle
heating mantle Variac were also connected to the outlet box,
and the outlet box was connected to the isolation transformer.
The heating mantle for the reference cell was connected di-
rectly to the bench electrical supply.

The corrosion cell consisted of a two-liter reaction
flask which contained two kilograms of artificial seawater
and the required amount of CLOROX. The electrodes, salt
bridge probe and thermometer were arranged as shown in Fig-
ure 6. The salt bridge probe was positioned to "look" at the
working electrode without blocking the current path from the
platinum auxiliary electrode. The salt bridge probe was

maintained at a distance of 1.778 mm from the working

30

S )




Figure 4. Experiment Equipment Arrangement

Potentiostat corrosion cell

X-Y Recorder Magnetic stirrer

Digital multimeter Reference cell
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Figure S. Electrode connections to
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Figure 6. Corrosion cell assembly

(1) Reference electrode
(2) Working electrode
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electrode surface by fitting the tip of the probe into a
notch cut into the teflon washer and adjusting a screw type
hose clamp located above the rubber stopper and between the
working electrode and the salt bridge probe. A magnetic
stirring bar was placed in the cell and the cell placed with-
in the resin kettle heating mantle (Figure 7).

The reference cell consisted of a 100 ml three-necked
flask filled with saturated potassium chloride (KCl) solu-
tion with a saturated calomel electrode (SCE) fitted in the
center neck. The salt bridge probe and thermometer were
fitted into the remaining necks.

The salt bridge was constructed from two disposable Pas-
teur pipettes with the tips bent at right angles and cut to
the desired length. These probes were then filled with a
hot saturated KCl-Agar solution and cooled. The two probes
were connected with Tygon tubing and a glass "T". The tub-
ing was then filled with saturated KCl through the "T" and
the "T" then stoppered. This arrangement allowed the salt
bridge to flex as required during the replacement of elec-
trodes and electrolyte.

The current and potential measuring outputs of the poten-
tiostat were connected to the X and Y axes respectively.

The X axis of the recorder was scaled by the output of the
Leeds and Northrup temperature potentiometer. The Y axis
was scaled with the potential output of the potentiostat.
The calibration of the recorder was checked frequently dur-

ing the experiment and the recording annotated with the
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Figure 8.

(1)
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(3)
()
(5)

Information displays

Digital multimeter (potential)
Voltmeter

Potential meter

Current meter

X-Y recorder (potential vs current)
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with the meter values. The potential setting was monitored
with the Weston digital multimeter which allowed accurate
- determination of the potential to within one millivolt (Fig-

ure 8).
F. EXPERIMENTAL PROCEDURES

The operation of the potentiostat was in accordance with
the procedures contained in the technical manual. The ref-

erence cell and corrosion cell were first brought up to the

temperature of 25 °C. The corrosion cell Variac was de-ener-
gized after the cell reached 25 °C to reduce electrical

interference. The resin kettle heating mantle nearly envel-

oped the corrosion cell and was able to maintain the tempera-
ture for over one hour, Tﬁe mantle also partially screened‘
the cell from electrical interference. The equipment was so
sensitive to electrical interference that before measurements
were begun, all fluorescent lamps in the vicinity were extin-
guished. Then the calculated volume of CLOROX was added to
the cell and the electrolyte solution was stirred. The work-
ing electrode was assembled and immersed into the electro-
lyte and the cell allowed to stand on open circuit for fif-
teen minutes. During this period the hypochlorite ion
concentration was determined by iodimetry. For runs with-
out the addition of hypochlorite, 0.1 g of sodium thiosul-
fate per 2 kg seawater was added to prevent the formation
of hypochlorite ion by the electrolysis in the seawater.
After the fifteen minute time period, the open circuit

potential was measured, the cell potential was then preset
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0.6 V below the open circuit potential and the cell was

energized. The cell potential was then manually scanned at
a rate of 1 mV/sec in the noble direction until the indicated
cell potential was .5 V above the measured corrosion poten-
tial. Upon completion of one scan, the working electrode
was exchanged and the process repeated. At the end of the
second scan the cell was removed from the mantle and the
electrolyte hypochlorite ion concentration was determined.
The electrolyte was renewed after every other scan. The

corroded surface area was measured by a d¥al caliper.

G. PROBLEMS

As with any piece of equipment that has not been exer-
cised for any period of time, the potentiostat required
extensive rehabilitation and realignment. All power tran-
sistors and many resistors of the heat sink requi.ad replac-
ing before the potentiostat would operate. Then, in order
to align the unit, all vacuum tubes on the current amplifier
board was replaced. During the experiment, these same tubes
werz replaced twice again.

Initially, it was intended to plot log (current) versus
potential. However, the logarithmic amplifier was not com-
patable with the potentiostat and had to be disconnected
from the system.

The early trials showed a great disparity in the corro-
sion potential and current densities obtained in successive
gcans in the same electrolyte. It was then determined that

the electrolysis of the electrolyte was producing a
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significant concentration of hypochlorite ion. It was empir-
ically determined that 0.1 g of the reducing agent, sodium
thiosulfate, precluded the development of a measurable con-
centration of the hypochlorite ion for at least three suc-
cessive scans. To insure that the hypochlorite ion concen-
tration increase would not be a significant problem, only

two scans were made in the electrolyte before renewal. Simi-
lar considerations limited the use of the hypochlorite-sea-
water systems to two successive scans.

An additional and uncontrollable complication was the
interference in the system caused by stray high frequency
electrical noise, especially a tone associated with the IBM
terminal located on the second deck of Spanagel Hall. When
this tone was generated, the recorder circuit was saturated
and the otentiostat was de-energized. If the duration of
the noise was long enough, the trial was abandoned, causing
a loss of time and materials. Most of the 60 Hz electrical
noise was, however, effectively screened out by t+he isola-
tion transformer and the heating mantle.

Finally, during the last week of experimentation, the
Model 136A recorder failed and was replaced with the Mecdel

7035B recorder.




ITI. PRESENTATION OF DATA

A. PREPARATION OF DATA FOR ANALYSIS

The data generated during each experimental run were re-
corded directly as potential vs current (Figure 9) on a Hew-
lett-Packard X~Y recorder. Because of the range of current
required to reach and maintain the desired potentials, the
potentiostat current range scale was shifted at each decade
to provide greater precision in determining the current asso-
ciated with a particular potential. Next, a convenient inter-
val was chosen on the potential axis and the associated cur-
rent value identified. The area of the corroded surface of
the sample was measured and the current density then computed.
A summéry of data is presented in Appendix C.

The E vs log(j) points were plotted on the WANG 720C Com-
puter. A third-order curve was drawn separately through the
anodic and cathodic points in an effort to assist in identi-
fying the Tafel (linear) region of each curve (Figure 10)
With the aid of these curves, the anodic and cathodic Tafel
slopes were extended to intersect the measured corrosion
potential. The intersection of the cathodic Tafel slope and
Eeopp determined the corrosion current density (jcorr)‘ Fig-
ures 11 through 32 illustrate this procedure. Table II lists
the corrosion current density and corrosion potential for

each trial.
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SUMMARY OF ELECTROCHEMICAL INFORMATION

TABLE II

Specimen

Copper

Nickel

Naval Brass
QQ-B-~-637
Phosphor Bronze
QQ-B-750

Copper Nickel
Mil-C-15726E
K-Monel

Alloy K-500
Steel Alloy
HY-80

Stainless Steel
Alloy 30u4
Aluminum

Alloy 7075

FOR EXPERIMENTAL TRIALS

[oc1™] (ppm)

33.69
56.38
89.65

26,24
53.78
108.5

93.28

108.5

102.2

88,85

104.5

99.31

96.82
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} corr

(HA/cm?)

5.75

64.56
457.8
239.9

3.311
66.07
93.33
31.62

7.762
66.07
10.96

120.2

3.020

100.0

5.495
26.92
83.18

354.8
4365

4.073
58.88
12.59

ECOI‘I‘

(V vs SCE)

-.266
-.174
-.101
-.059

-.338
.062
.009
.033

-.287
-.132
-.236
.071

.288

-.010
-.300

.077
-.520
-.335
-.211
.125
.793

-.757

RS




B. DETERMINATION OF CORROSION RATES

Table III gives the corrosion rates in millimeter/year

(R Py) and mils/year (Rmpy) determined from

o

These are compared to the values for Rmpy found in the liter-
ature for the metal specimens in seawater. The values quoted
in the literature are for metal coupons completely immersed
in the oceans at various depths. The values for Rmpy deter-
mined from the present work fall within the upper range of
the reported values, with the exception of those determined
for phosphor bronze, aluminum alloy 7075 and steel alloy HY-
80.

The experimentally determined corrosion current densities
in artificial seawater and hypochlorite ion solution and the
resulting corrosion rates are given in Table IV.

With the exception of Aluminum Alloy 7075, all corrosion
rates increased at least one order of magnitude with the addi-
tion of approximately 100 ppm OCl~ to the artificial seawater.
The corrosion rate for Aluminum Alloy 7075 decreased to
approximately one quarter of the corrosion rate in the un-
treated seawater.

The following symbols are used in Figures 11 through 32:

(1) +-+ representing the mean value and standard
deviation for those trials with four or more runs.

(2) 0,X for those trials consisting of duplicate

runs, 0 represents the first run and X the second.
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TABLE III

COMPARISON OF CORROSION RATES IN SEAWATER

.~

! - DETERMINED FROM PRESENT WORK WITH PREVIOUSLY MEASURED VALUES
Metal Location Rm
1. COPPER
-2
Present work R = 6.69 .
byl or mmpy x 10 2.63
Reinhart, et al Port Hueneme, Ca 0.9
(8] 1.1
1.2
. NRL [11] Key West, Fla 0.37
Uhlig [7] Bristol Channel 2.8
2.7
Bridgeport, Ct 2.4
2.0
Eastport, Me 0.4
- San Francisco, Ca 4.0
Kure Beach, N.C. 1.4
1.5
1.6
] 1.7
2. NICKEL
=2
P t k = 3.5 4
resent wor Rmmpy 3.59 x 10 1l.41
Reinhart, et al Port Hueneme, Ca 6.9
[8] 4.5
1.9
3 1.5
Fontana and Greene 1.0
(s]
us

- disorafatlf

O |




Table IIT Nickel (Cont.)

Uhlig [7]

3. NAVAL BRASS

Present Work
NRL [11]
Uhlig [7]

4. PHOSPHOR BRONZE

Present Work

Reinhart, et al
(8]

Uhlig [7]

5. COPPER NICKEL

Present Work

Reinhart, et al
[8]

NRL [11]
Uhlig [7]

6. K-MONEL

Present Work

Bridgeport, Ct
Bristol Channel
San Francisco, Ca

Kure Beach, N.C.

-2
R = 9.

mmpy 89 x 10
Key West, Fla

Bristol Channel

R = .
mmpy 133

Port Hueneme, Ca

Kure Beach, N.C.

- -2
Rmmpy = 3,49 x 10

Port Hueneme, Ca

Key West, Fla
Kill-van-Kull, N.J.
Cape May, N. J.

Kure Beach, N.C.

Rmmpy = 6.12 x 10

46
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Table III K-Monel (Cont.)

Reinhart, et al
[s]

Unhlig (7]

7. HY-80 STEEL

Present Work
Schreir [12]

8. STAINLESS STEEL

Present Work

Reinhart, et al
[8]

NRL [9]

9. ALUMINUM 7075

Present Work

NRL [10]

Port Hueneme, Ca

Eastport, Me

San Francisco, Ca
Kill-van-Kull, N.J.
Cape May, N.J.

Kure Beach, N.C.

R .960

mmpy

Approximate value

R = 4.78 x 103

mmpy

Port Hueneme, Ca

Tongue of the Ocean

R = 757
mmpy

Key West, Fla
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TABLE IV

POTENTIOKINETICALLY DETERMINED VALUES OF CORROSION

RATES IN ARTIFICIAL SEAWATER

- . 2
Metal [oc1™] ppm aopp(WA/cm®) Rmpy RmmEy
Copper 0 §.75 2.63 6.69 x
34.69 64.56 29.5 .752
56.37 457.8 210.0 5.32
89.65 239.9 110.0 2.79
Nickel 0 3.311 1.u41 3.59 x
26.24 66.07 28.2 .716
53,717 93,33 39.79 1.01
108.5 31.62 13.u48 . 342
Naval Brass 0 7.762 3.89 9.89 x
93.29 66.07 33.1 .842
Phosphor Bronze 0 10.96 5.25 .133
108.5 120.2 57.86 1.46
Copper-Nickel 0 3.020 1.37 3.49 x
102.2 100.0 45.41 1.15
K=Monel 0 5.495 2.41 6.12 x
88.85 26.92 11.8 . 300
HY-80 Steel 0 83.18 37.8 .960
104.5 354.8 161.2 4.09
Stainless 0 .4365 .188 4.78 x
Steel 99.31 4.073 1.75  4.u45 x
Aluminum 7075 O 58.88 29.8 .757
96.82 12.59 6.37 .162
48
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IV. CONCLUSIONS

A. DETERMINATION OF CORROSION RATES IN ARTIFICIAL SEAWATER

It has been reported that the instantaneous corrosion
rates produced by potentiokinetic methods may differ by as
much as two orders of magnitude from the average corrosion
rates obtained by immersion tests [20]. The results obtained
from this research, on the other hand, agreed quite well with
those obtained by the immersion tests. Only in the cases of
phosphor bronze, HY-80 steel and aluminum alloy 7075 did the
measured corrosion rates fall outside the range of previously
reported values, and even for the latter, the measured cor-
rosion rates were of the correct order of magnitude. This
close correlation corroborated that the cathodic overvoltage-
intercept method could produce reasonable results, and that
the artificial seawater-sodium thiosulfate system closely

approximated natural seawater.
B. CORROSIVITY OF THE HYPOCHLORITE ION IN ARTIFICIAL SEAWATER

The addition of 100 ppm hypochlorite ion to artificial
seawater increased the corrosion rate by two orders of mag-
nitude for the copper and copper-nickel (70/30) alloy samples.
The corrosion rates of nickel, naval brass, phosphor bronze,
K~Monel, HY-80 stee¢l and stainless steel were increased by a
single order of magnitude. The corrosion rate of aluminum

alloy 7075 decreased in the hypochlorite-seawater system.
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The results obtained show some similarity to the qualitative

values of corrosion resistance which Rabald has reported [21]

for more concentrated sodium hypochlorite solutions. Rabald's

remarks and comments, based on current research, are given in
Table VI. Rabald uses the following symbology in the Table
to describe the usefulness of the individual materials under

ordinary conditions of pressure and temperature:

+ resistant
(+) fairly resistant
(=) not particularly resistant

- unusable.

These symbols can also be considered as upper limits of

acceptable corrosion rates as given in Table V.

TABLE V

DEFINITION OF RABALD'S SYMBOLS

Maximum corrosion rates (mm/year)
Symbol Al Fe Cu Ni
+ 0.11 0.11 .0as8 0.10
(+) 1.08 1.12 0.98 1.00

Rabald also provides a classification system for mate-
rials based upon general cost considerations and corrosion
resistance. Using his guidelines, Tabie VII was constructed

from the corrosion rates of the present work.
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TABLE VI

CORROSION RESISTANCE QF METALS IN
SODIUM HYPOCHLORITE SOLUTIONS

Aluminum alloys (without copper)

+ to -~ Room temp., solution up to 3% (20740 ppm)

Comment - Al'minum alloy 7075 experimentally shows
increased resistance to corrosion in the 100 ppm 0Cl~ -
seawater solution. It could be rated (+) using this
criterion.

Bronze

(+) to (=) Room temp., solutions with 3% (20740 ppm)
active chlorine.

Comment - The corrosion rate for phosphor bronze falls
within the definition by Rabald as not particularly
resistant (-).

Copper, Brass (60-90% copper)

+ Room temp., solution under 2% (13830 ppm).
Copper ions catalytically increase the
decomposition NaOCl solution.

Comment - The corrosion rates determined for copper
and naval brass in 100 ppm OCl -seawater solution clas-
sify copper as (-) and naval brass as (+).

Copper-Nickel alloys

+ Room temp., 2% (13830 ppm) solution.

Comment - The corrosion rate determined for copper-
nickel (70/30) alloy in 100 ppm OCl -seawater solution
classify copper-nickel as (=) to -.
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TABLE VI (Cont)

Iron, Cast Iron, and Steel

- Room temp., 0.1% (691 ppm) solution. Iron ions
catalytically increase the decomposition of
NaOCl.

Comment - The corrosion rate for HY-80 steel is well
within the unusable region.

Austenitic chromium-nickel steels (18-20% Cr, 8-~11% Ni,
Stabilized)

(+) to (-) Room temp., 5% (34570 ppm) solutions.

Corrosion less than 1.1 mm/year. Severe pitting.

Comment - Stainless steel 1s resistant to corrosion
in 100 ppm OCl ~seawater solution.
Nickel

+ to - Room temp., .1 g/l (69.1 ppm) solution. Pene-
tration 0.10 mm/year.

Comment - Corrosion rate determined for nickel in
§3.77 ppm OCl™ -seawater solution was 1.0l mm/year.
This classifies nickel as (-).

Monel metal

+ to - Room temp., 0.1 g/l (69.1 ppm) solution.
Penetration 0.01 mm/year.

Comment - The corrosion rate determined for Monel in
100 ppm OCl -seawater solution is .300 mm/year, which
classifies Monel at (+).
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SUITABILITY OF METALS FOR USE IN

TABLE VII

R ey

HYPOCHLORITE-SEAWATER SYSTEMS

Metal

Copper

Nickel

Naval brass

Phosphor bronze

Copper-nickel

K=Monel

HY-80 steel

Stainless steel

Aluminum 7075

Observed

[oci-] ppm

0
34+

26+

93.29

108.5

102.2

88.85

104.5

99.31

96.82

Economic
Performance Rating

Satisfactory
Do not use

Satisfactory
Do not use

Satisfactory

Use only under special
conditions for short
exposure

Use with caution

Do not use

Satisfactory
Do not use

Satisfactory
Use with caution
Use only under special

conditions for short expo-
sure

Do not use

Satisfactory
Satisfactory

Do not use
Use with caution




C. CHANGE IN CORROSION POTENTIAL WITH HYPOCHLORITE ION
CONCENTRATION

Another interesting phenomenon observed during the exper-
imentation was the change in corrosion potential with the
change in hypochlorite ion concentration. The exact rela-
tionship between the hypochlorite ion concentration and

corrosion potential was not determined in this study.
D. SUMMARY

With the exception of the aluminum alloy, the effect of
the addition of hypochlorite ion was the same for all mate-
rials evaluated, with the corrosion potential becoming more
positive and the metal less resistant to corrosion. No
attempt was made to extrapolate corrosion rates from higher
hypochlorite ion concentrations to those lower concentrations
at which the shipboard seawater systems are expected to oner-
ate, and the equipment precluded making accurate measurements
at these lower (0.5 ppm) concentrations. However, if the
changes in corrosion rate with hypochlorite ion concentra-
tion noted for copper and nickel are representative, then a
noticeable increase in corrosion should occur in the sea-

water systems even with the 0.5 ppm concentration.
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V. RECOMMENDATIONS

Current literature contains little inforiration about
potentiokinetic studies of corrosion in seawater systems.
The determination of the general resistance to corrosion,
the types of corrosion, and the corrosion products devel-
oped in a marine environment are of great interest. Further
research in this area, therefore, could be conducted using
the present equipment with minimal expense, but with a great
deal of patience and imagination to improve the equipment's
performance and to extend the procedures. Among the changes
recommended are:

(1) The overhaul or replacement of the potentiostat.

(2) The procurement of a linear scan device to drive
the potentiostat through the desired range at the desired
rate.

(3) The procurement or modification of a logarithmic
amplifier to facilitate the recording of data directly on a
semi-logarithmic plot.

(4) The development and verification of a fast scan
procedure, many of which are discussed in current literature.
The subjects recommended for investigation are:

(1) Verification of the result of this research.

(2) Determination of corrosion rates and potentials
at lower hypochlorite ion concentrations.

(3) Extension of this research to other materials
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with marine significance.

(4) Determination of type products and rate of
corrosion with the additional use of the scanning electron
microscope.

There are many other procedures advanced in the litera-
ture based on optical methods which allow measurements of
the corrosion process without the introduction of an exter-
nally applied current. These methods could also be evaluated
using equipment already on hand at the sehool.

A better understanding of the corrosion resistance of
construction materials is necessary for the more efficient
allocation of resources within the navy and civilian commun-
ity. The sachool has the capability to make a contribution

in this area with existing resources.
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APPENDIX A

PREPARATION OF ARTIFICIAL SEAWATER

The formula and procedure developed by Kester, et al,
were used in producing the quantity of synthetic standard
seawater required. The seawater was manufactured in 36 kg
amounts. This amount of water was normally consumed in ten
working days.

The formula for 1 kg of artificial seawater given in
Table VIII is designed to bring the composition of the arti-
ficial seawater to within 1 mg/kg of the major components in
natural seawater. The impurities in reagent grade salts will
not change the composition of artificial seawater by more
than 1 mg/kg, but may cause great deviation from the compo-
sition with respect to the minor constituents. A comparison
of the composition of standard natural seawater and artifi-
cial seawater is given in Table IX.

The solutions of the volumetric salts were initially
prepared at 2.5 times greater concentration using new chem-
ical stock, were diluted to the desired concentration and
densities were checked prior to mixing in the final solution.

To avoid precipitation of insoluble compounds, the
gravimetric salts were weighed and added to distilled water
equivalent to 40% of the mass of the complete solution, the
system was stirred and more distilled water was added to

bring the total mass to 70% of the mass of the complete
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solution. The volumetric salts were mixed in a separate !
container and distilled water added to bring the total mass ;
to 30% of the complete solution. The two resulting solutions
were added together and stirred overnight.

The pH and conductivity were measured and checked with

standard seawater procured from I.A.S.P.0. Standard Seawater

T TR TR T R T TR

Service, Charlottenlund Slot, DK~2920, Charlottenlund, Den-

mark. The results of the comparisons are shown in Table X.
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cC.

TABLE VIII

FORMULA FOR 1 kg OF ARTIFICIAL SEAWATER

Gravimetric Salts

Salt

NaCl
NaZSOu(anhydrous)
KC1
NaHCO3
KBr
H3BO3
NaF

Volumetric Salts

Salt Conc M/1
MgClz-SHZO 1.000
CaClz'ZHQO 1.000
SrClz-GHZO 0.100

g/kg of solution

23.926
4.008
0.677
0.186
0.098
0.026
0.003

ml/kg of solution

$3.27
10.33
0.90

Distilled water to bring total weight to 1 kg

The resulting pH should be between 7.9 and 8.3
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TABLE IX

COMPARISON OF THE COMPOSITION OF
NATURAL AND ARTIFICIAL SEAWATERS

Natural Artificial Difference

seawater seawater %
(g/kg) (g/kg)

19.353 19.353 0.0
10.760 10.765 0.046
2.712 2.711 0.037
1.294 1.295 0.077
0.u413 0.u414 0.24
0.387 0.387 0.0
0.142 0.1u42 0.0
0.067 0.066 1.5
0.008 0.008 0.0
0.026 0.026 0.0
0.001 0.001 0.0
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TABLE X

COMPARISON OF pH AND CONDUCTIVITY
OF STANDARD AND ARTIFICIAL SEAWATERS

Date Temp °C Standard Seawater Artificial Seawater
pH Cond (mmho/cm) pH Cond (mmho/cm)

1/13/76 23 8.3 39.93 8.3 39.83

2/25/76 20 8.3 40.02 8.3 39.67

3/11/76 13 8.2 39.57 8.15 40.76

3/30/76 13.8 8.3 40.21 8.1 39.29

4/20/786 24 8§.32 39.57 8.28 40.85
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APPENDIX B

COMPOSITION OF METALLIC SAMPLES

With the exception of the pure metals, the samples used
to manufacture the electrodes were provided by the Metallurgy
Laboratory, Mare Island Naval Shipyard (MINSY), Vallejo,
California, with the chemical assay reports. The pure metals
were provided by the Department of Mechanicai Engineering,
Naval Postgraduate School, and were considered to be 99.99%
pure.

The density of each specimen was determined in the

laboratory. The gram-equivalent weight (e) for the alloys

was determined from the following formula:

o XA,
e
45

i=1

where:
Xi is the mass fraction of the metal component
Ai is the gram molecular weight of the metal component
Zi is the oxidation state of the predominant form
of the natural occurring oxides of the metal

component.

A summary of the above properties for each sample is

given in Table XI.
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APPENDIX C

TABLES OF EXPERIMENTAL DATA

The form in which experimental data were collected (Fig-
ure 9) was not suitable for inclusion within this paper.
The tables which are included in this Appendix will allow
the polarization curves of Figures 11 through 32 to be re-
produced and the resulting values for the corrosion current
density to be verified.

With the exception of the trials involving:

Steel alloy Hy-80, both trials;

Copper in seawater treated with 2.123 ml and
4.245 ml CLOROX;

Nickel in seawater treated with 2.123 ml and
4.245 ml CLOROX;

all data represent the summary of a minimum of four runs.
With the exception of the six enumerated tria’s, the data
are presented as the mean and standard deviation (std. dev.).
The six enumerated trials were duplicate runs only, and the
data for each run are presented.

The values recorded for Potential and Ecorr are valid to
three significant digits, the values recorded for Current

Density and OCl~ are valid to four significant digits. The

data were prepared for presentation by a WANG 720C Computer.
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TABLE XIT

COPPER IN UNTREATED SEAWATER
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TABLE XIV

COPPER IN SEAWATER TREATED WITH 4.25 ml CLOROX
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TABLE XV

COPPER IN SEAWATER TREATED WITH 8.u49 ml CLOROX
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Run 2

Current Density (uA/cm
Run 1

TABLE XVII

Potential
(V vs SCE)

NICKEL IN SEAWATER TREATED WITH 2.123 ml CLOROX
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