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ABSTRACT

It is shown that the laws of particle dynamics can be

formulated in a thermodynamic framework. An important role

is played by an itegrating factor which makes the energy

exchange with the environment a total differential and leads

to the definition of a mechanical entropy. The integrating

factor is shown to be a function of velocity only and an

argument following Caratheodory's proves the existence of

a unique limiting velocity which makes its appearance in

the integrating factor.

Equilibrium and stability conditions for dynamic systems

are derived and lead to the formulation of dynamics as pro-

cesses in a space-entropy manifold the metric of which is

determined by the nature of the system. The dynamic laws

follow from a variational principle. For the case of isen-

tropic processes and with a particular choice of the inte-

grating factor they are shown to be the laws of special

relativistic mechanics. More general dynamic processes are

discussed.

44

'4'4



.. - . . <-- 7

TABLE OF CONTENTS

I. INTRODUCTION .............- 9

II. GENERAL LAWS ..................- - - 16

A. CONCEPTS ------------------------------------ 16

B. FIRST LAW------------------------------------ 23

C. SECOND LAW ---------------------------------- 27

1. Transformation Statements --------------- 27

2. Axiomatic Statement --------------------- 27

a. Existence of Constant Energy
Surfaces -------------- 27

b. Integrability of jQ ------------------ 29

c. Absolute Velocity ------------------- 38

d. Concept of Entropy ------------------- 41

D. THIRD LAW ----------------------------------- 46

III. GENERAL MAXWELL AND ENERGY RELATIONS ------------ 48

IV. EQUIPOISE AND STABILI Y------------------------- 52

A. EQUIPOISE CONDITIONS ------------------------ 52

1. AQ = 0 and Constant F -------------------- 53

2. AQ = 0 and Variable F --------------------- 56

3. Variable Q ------------------------------- 58

4. General Equilibrium Conditions ---------- 58

B. STABILITY ----------------------------------- 60

V. ISENTROPIC MECHANICS ---------------------------- 66

A. CLASSICAL MECHANICS --------------------------- 67

B. RELATIVISTIC MECHANICS ---------------------- 70

C. GEOMETRIZATION ------------------------------ 80

5I ____



1. Particular Integrating Factor,
Zero Force F-------------------------- 85

D. GENERAL.ISENTROPIC SYSTEM-------------------- 88

VI., NON-ISENTROPIC SYSTEM---------------------- 90

A. FOUR-DIM4ENSIONAL ARC ELEM4ENT----------------- 90

1. Choosing the Arc Element ---------------- 90

2. Parameterization------------------------- 93

B. EQUATIONS OF MOTION --- -------------- 95

1. Square Qf Momentum ------------------------ 95

2. Lagrangian and Hamiltonian Equations --- 98

3. Principle of Least Action---------------- 100

VII.* CONCLUSION- ---------------------------------------108

- APPENDIX A: Equivalence of Transformation
Statements---------------------------------114

*APPENDIX B: Classical Geometrization------------------ 118

APPENDIX C: Integrating Factor for n Dimensions----121

APPENDIX D: Space-Time Manifold---------------------- 126

APPENDIX E: Expansion of Planetary Orbits ------------ 135

APPENDIX F: Other Methods of Determining
the Coefficients-------------------------- 141

*~ ~ IIBIBLIOGRAPHY------------------------------------------- 152

INITIAL DISTRIBUTION LIST----------------------------- 153

6



LIST OF SYMBOLS

H classical Hamiltonian/thermodynamic enthalpy

L classical Lagrangian

T classical kinetic energy

V classical potential energy

u thermodynamic internal energy

S thermodynamic entropy/general arc length

A thermodynamic Helmholtz energy/classical action

G3 thermodynamic Gibbs energy

S mechanical entropy

F velocity dependent force

F velocity independent force

q generalized coordinate

q generalized velocity

3W element of work

Q non-mechanical energy transferred

U energy of the system

C energy capacity

integrating factor for dQ

H mechanical enthalpy/isentropic Hamiltonian

K mechanical Helmholtz function

G mechanical Gibbs function

A mechanical free energy

L Lagrangian of isentropic system

t kinetic entropy
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V potential entropy

p momentum
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E total relativistic energy

gao coordinate metric elements

hij general line element coefficients
Greek indices may take on values 1, 2, or 3

i Latin indices may take on values 0, 1, 2, or 3

Pi component of momentum in space-entropy manifold

Lagrangian in space-entropy manifold/rate of 4-d
arc length change

H Hamiltonian in space-entropy nManifold

T kinetic energy in space-entropy manifold

4D a scalar potential, (q0 q ,q 2 pq3 l0)

A component of vector potential, A- (q ,q ,q ,q,0

-~ - 0 2 3 0E aB a components of fields, E,(q ,q ,q ,q ,q 0
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$ a scalar potential, $(qq,q 2q 3 )

A( component of vector potential, A (q ,q ,q2,q )

E ,B components of fields, E (q ,q ,q2,q 3)

8



A I. INTRODUCTION

This study presents a new formulation of general dynamic

systems. This formulation includes both thermodynamic and

mechanistic concepts. It is shown that even relativistic

mechanics with its characteristic occurrence of a limiting

velocity can be described on the basis of thermodynamic

concepts. This approach also sheds light on the role of

entropy in the description of non-conservative mechanical

systems.

Physical theories are proposed for many reasons. One of

these might be to describe, or understand, a familiar phenom-

enon which had no prior description or explanation. Another

might be the discovery of wnew phenomenon, or the results

of a new experiment, which has'no explanation within the

scope of existing theories. Still another is to bring the

description of phenomena which at first appear to be unrelated

together under a unifying theory. The motivation, or objective,

involved in the development and proposal of any theory plays

an important role in the philosophical basis upon which the

theory is developed and, therefore, may become a part of the

theory itself.

The motivation for this investigation arose from a number

of questions which one could rather naively ask:

The first concerns the requirement of Lorentz covariance

of all laws of nature. Ample theoretical and experimental

evidence exists for this requirement when electromagnetic



forces are considered. Electromagnetic waves are accurately

described by Maxwell's equations and propagate in free space

with the speed c for every inertial obsezver. But what forces

us to require Lorentz covariance for all laws of nature, even

those dealing with other than the electromagnetic interactions?

What about the gravitational or the weak interaction? Gravi-

tational waves have been predicted and their detection has

recently been claimed. Could these not travel in free space

with some other velocity b? Are there any other reasons than

aesthetics or the principle of Occams razor, which asks us to

consider only the simplest system of laws, that there is

only one characteristic velocity in nature?

A second question concerns the role of time assymmetry.

The equations of motion in both Newtonian and relativistic

mechanics are time symmetrical. Yet nature displays a direc-

tivity that would not be described by the universal applica-

tion of time symmetrical laws. The most vivid display of

this directivity in nature is in thermodynamics where the

principle of increasing thermodynamic entropy has many uses.

Then should not all dynamics share such a directivity? If

so, this directivity would not be seen in time symmetrical.

laws of motion.

Dynamics, as described by relativity, has a limiting

value of velocity which is the speed of light. This notion

of a limiting value also appears in thermodynamics in the

absolute zero temperature. This similarity between thermo--

dynamics and relativistic dynamics! the desire to introduce

10



the possibility of temporal directivity into mechanics, and

the strength and generality of the basic laws of thermody-

namics focused this investigation.

The objective of this investigation was to determine

whether or not the logical structure of classical thermo-

dynamics could yield dynamical laws which could be applied

to mechanical systems and produce equations of motion which

would contain existing dynamical theories as limiting, or

special cases, and provide the directivity seen in nature.

The following proposed formulation of a dynamical theory is

the result of such an investigation. It should perhaps be

stated here that this formulation does not represent an

attempt to base mechanical dynamics upon thermodynamics

itself but to use the logical formulism of thermodynamics

as a common basis for different branches of dynamics.

The investigatior is based upon the formulation of three

dynamical laws identical in structure to the three laws of

thermodynamics. The only difference between the develop-

ment presented here up to, and including, stability condi-

tions and the development of thermodynamics is that velocity,

position, and force will be used as thermodynamic variables

instead of temperature, volume and ptessure.

It may seem that little is to be gained by simply rewriting

thermodynamics and particle dynamics in this fashion. How-

ever if the possibility exists for thermodynamics and particle

dynamics to result from the application of the same laws,

! ii



these laws must be identical with thermodynamic laws when

thermodynamic variables are used. To see the results of

these laws applied to particle dynamics requires the use of

the variables normally used for particle motion description.

Section II presents the three proposed dynamical laws.

The section also includes the axiomatic development of the

dynamical second law and determines an integrating factor

which makes the differential energy exchange between the

system and the environment a perfect differential. The

integrating factor is shown to be a function only of the

velocity. An argument, following Caratheodory's, proves the

existence of a unique limiting velocity. The concept of

mechanical entropy is introduced and the principle of

increasing mechanical entropy is presented.

In thermodynamics other state functions are defined and

prove very useful in different applications. The same state

functions for the mechanical system should also play similar

useful roles. Section III defines these state functions and

derives the mechanical Maxwell relations based on these

functions.

Section IV derives the equilibrium and stability condi-

tions based on the mechanical state functions. The analysis

results in quadratic forms in various variables which express

the stability conditions. These are the required quadratic

forms.

Up to this point thermodynamic logic has been used exclu-

sively. But the development has shown the existence of a

12



limiting velocity and the existence of the mechanical entropy.

The development also displays the "natural" variables of

particle dynamics. These variables may be seen in the qua-

dratic forms which express the stability conditions. This

is the point where this thesis introduces a new idea.

The new idea is the adoption of the quadratic forms and

variables that express the stability conditions as the met-

rics and natural variables which govern particle dynamics.

The natural variables that appear in the simplest quadratic

form are the space coordinates and the mechanical entropy.

The metric in relativistic particle dynamics is a metric

involving space and time as the variables. Therefore Section

V deviates from a logical abstract approach, which suggests

the investigation continue on by adopting the metric, by

looking at the most general motion, and showing that in special

cases the allowed motion is identical with the motion of New-

tonian or relativistic dynamics. This digression demonstrates

the consistency between the proposed thermodynamic description

of a mechanical isentropic system and the description provided

by Newtonian and relativistic mechanics. It provides a measure

of confidence in the abstract approach which is picked up

again in Section VI. Here the arc element and parameteriza-

tion are discussed and the resulting equations of motion are

presented.

Appendices A, B, and C provide proofs and developments

in support of the text. Appendix E briefly discusses a

13



possible prediction of expanding planetary orbits. Consis-

tency with relativistic particle dynamics is again addressed

in Appendix D where the space-time manifold is shown to be

the result from the application of the principle of increasing

mechanical entropy to the space-entropy manifold. This repre-

sents the completion of the logical progression which formu-

lates the dynamical laws, deriving the quadratic forms (which

are taken as the metric), applies the dynamical second law

in the form of the mechanical entropy principle, and shows9 that the resulting manifold is a space-time manifold which,

for the special case of a Euclidean manifold, is the Minkowski

space of special relativity. Appendix F presents a brief

look at the equations of motion which result from two differ-

ent methods of parameterizing the space-entropy manifold.

Figure 1 is a flow chart which indicates the logical

structure of the text and the manner in which the Appendices

fit into this structure.

I.4
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II. GENERAL LAWS

A.. CONCEPTS

In the following development physical concepts are neces-

sary, as are symbols for these concepts. Because this devel-

opment will merge certain thermodynamic conceptualizations

into mechanics a notational dilemma must be faced. At the

one hand it is desired to preserve the thermodynamic concep-

tualization by using fami iar symbols from that theory. On

the other hand it is really mechanical systems for which a

description is sought. The formalism then looks either like

4 thermodynamics with familiar thermodynamic quantities replaced

by mechanical quantities, or it looks like mechanics into

which thermodynamic quantities introded. In either case

there is danger of confusion. One could evade the dilemma

by choosing entirely different symbols for the variables of

the theory. But then the whole takes an artificially abstract

character. Since the purpose of this formulation is to bring

out the power of the thermodynamic conceptualization it was

decided to use the suggestiveness of the thermodynamic or

mechanical symbols whenever convenient and the reader is

asked to keep an open mind and not make premature associations

with the symbols used.

As an example, in mechanics there are energy concepts

such as "energy of the system", Hamiltonian, Lagrangian,

kinetic energy, etc. In classical thermodynamics there is

16



"internal energy of the system", entropy, enthalpy, and free

energy. If a dynamical theory for mechanical systems is

developed from the logic of thermodynamics the various

thermodynamic energy concepts may be expected to have

analogies applicable in the mechanical system. Thus there

are three types of theoretical energy concepts, with their

associated symbols, involved;

i. mechanical energy concepts (symbols H, L, T, V,

etc.),

ii. thermodynamic energy concepts (symbols u, S, H,

A, G, etc.), and

iii. mechanical concepts analogous to thermodynamic

concepts developed here (symbols to be chosen).

Difficulty may arise with the choice of symbols and the

words used to denote concepts. In particular consider the

thermodynamic "internal energy of the system." The mechani-

cal analoque of this concept will be called "energy of the

system." It is natural to equate this in one's mind with

the Hamiltonian in classical or relativistic mechanics, how-

ever it will be seen that this association is not appropriate

in general. Symbols used are chosen in two ways. One method

is to use a symbol which identifies the concept with its

origin in the thermodynamic logic, thus the script S iden-

tifies the mechanical entropy concept with its analoque,

the thermodynamic entropy S. The other method is to use the

symbol with its mechanical role in mind, here the script F

will be used to denote the concept of a force, however this

17



force is not the same as the force, denoted by F, in existing

mechanics theories.

The reader may also be tempted to seek an immediate

interpretation of a new idea rather than following along

with the development of the abstract logic to a more appro-

priate point to make an interpretation between the abstract

concept and physical reality. A reader with a strong back-

ground in relativity may be thinking in terms of inertial

reference frames and transformations while others may be

thinking of reversibility and irreversibility. Transforma-

tions between inertial reference frames are not considered

in this investigation. Neither is extensive investigation

into reversibility/irreversibility attempted. Therefore

the reader is cautioned not to prematurely apply his knowledge

of another theory in interpreting a concept presented here.

The following list of definitions presents some of the

concepts which will be used in later developments. Just as

the useful but non-operational definition of heat, which is
"Heat is that which is transferred between a system and its.

surroundings as a result of temperature differences only,"

setms vague when first seen some of the following may not

be immediately clear. Later developments and use of the

concept should help to clarify the definition:

a. A "dynamic system" may be any physical system of any

number of parameters, where parameters are considered to

in.clude constants (constants of the motion, integration

constants, and/or universal constants, i.e. gravitational[i 18



constant) and dynamic parameters.

b. "Dynamic parameters" are quantities necessary to

describe the system and include variables such as velocity

q, where q S dq/dt, and position q as well as parameters

such as time, which is thought of here as a parameter of the

motion rather than a coordinate as in relativity theories.

c. A "state" is specified by a set of values of all the

parameters necessary for the description of the system.

d. "Equipoise" prevails when the state of the system

does not change in time. The word "equilibrium" could have

been used here except its use in connection with a mechanical

system will tend to cause the reader to think in terms of

an existing dynamic law, such as Newton's second law, which

makes the definition of mechanical equilibrium more readily

understood. This investigation seeks a dynamic formulation

therefore care must be taken here to avoid premature inter-

pretation. The meaning of equipoise will become clearer

after the conditions for equipoise are discussed and the

dynamical laws are formulated for then the relationship between

equipoise and classical mechanical equilibrium may be seen.

e. The "equation of state" is a functional relationship

among the dynamic parameters for a system. If F, q, and q

are the dynamic parameters of the system, an equation of state

may take the form

f(F,q,q) 0

19



which reduces the number of independent variables of the

system- from three to two, f must be continuous and at least

twice differentiable. It is useful to represent such a

system by a point in the three-dimensional (F,j,q) space

as shown in Figure 2..

q

surface of
equation of state

Fq

Figure 2. Geometrical representation of
the equation of state

The equation of state then denotes a surface in this space.

Any point lying on this surface represents a possible kine-

matic state of the system.

If the system is represented by the nine variables Fi,

F2, F3, qi, q, q3, ql, q, q 3, then the equation of state

defines a hyper-surface in this nine-dimensional space.

f. A "dynamic transformation" is a change of state.

If the initial state is an equilibrium state, the transfor-

mation can be brought about only by changes in the external

constraints, such as forces, on the system. The transforma-

tion is quasi-static if the constraints change so slowly

20
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that at any moment the system is approximately in equilibrium.

It is "reversible" if the transformation retraces its his-

tory in time when the constraints retrace their history in

time. A reversible transformation is quasi-static- but the

converse is not necessarily true. As an example, in thermo-

dynamics a gas that freely expands into successive infini-

tessimal volume elements undergoes a quasi-static transfor-

mation but not a reversible one.

g. The concept of work is the same as in mechanics in

that, when an equation of state exists,

F. dqi1

where the summation convention Fi dq = iFi dq is used.
1

The use of the script F will be to indicate that this varia-

ble, "force", is considered to be a function of the position

and velocity.

h. Numerous energy concepts arise in later developments

and care will be required in notation to minimize confusion.

Therefore, all energy functions introduced in this dynamic

theory will be denoted by script letters while capital let-

ters will be used for energy functions in other theories.

Non-mechanical energy absorbed by the system will be denoted

by Q. If the system is a thermodynamic system Q is the heat

while for an electromagnetic system Q may be radiant energy

absorbed by the system.

21



i. A "reservoir" is a system so large that the gain

or loss of any finite amount of energy does not change its

state.

j. A system is "isolated" if no non-mechanical energy,

Q, is exchanged between it and the external universe. Any

transformation the system can undergo in isolation is called

a "Q-conservative process". The word "Q-conservative" is

used to emphasize that this definition of a conservative

process is more general than the definition of a conserva-

tive system in classical mechanics. The distinction between

a Q-conservative system and the classical conservative

system may be seen later.

The energy of the system, which represents the energy

possessed by the system, is considered to be

U(q, ...,q ,q , ...,q ,c 1 , -.. , cm)

dU will be assumed to be a perfect differential. The reader

is again reminded that this function -an not in general be

equated to the Hamiltonian of classical or relativistic

mechanics. The relationship between the function U and the

energy concepts of classical mechanics can be seen after

equations of motion have been formulated. Therefore to mini-

mize the possibility of confusion the function U will be

referred to as the "system energy."

It will be supposed that functions defining various kinds

of energies depend on a number of parameters. The totality

22I



of the parameters, both dynamic parameters and constants,

need not be unique, but whatever particular choice of a set

of dynamic parameters (variables) is made, it shall be

assumed that they are independent. In some situations the

variables may be determined as functions of a scalar t

(usually time) so that one can regard them as defining a

curve C; xi  x (t), characterizing a certain pro,..ess wher3

the xi indicate the set of independent variables.

B. FIRST LAW

The concept of conservation of energy is fundamental

to all branches of physics and therefore represents a logical

beginning for a generalized theory. Therefore, in terms

of generalized coordinates the notion of wor, or mechanical

energy, is considered linear forms of the type

•WFi( ,,c n i ... ,i ' iCl ,. )d ; (i=i,2,... ,n)

The line integral fFidq then represents the work done
cic

along the path C by the generalized forces.

A system may acquire energy other than mechanical, such

energy acquisition is denoted dQ.

The energy of the system, which represents the energy

'possessed by the system, is considered to be

U(ql,...,qn l...,in,c

23



N S.

DU will be assumed to be a perfect differential.

With these concepts then the generalized law of conserva-

tion of energy has the form

dQ dU -UW

= dU - F dqa ; (a=1,2,3) (II-1)

d [(F ,q) + F dq

where

F q,q) __

Positive dQ is taken as energy added to the system by
means other than mechanical and F is taken as the component

a
of the generalized force acting on the system. Some systems

may not involve forces F (q,q), which are functions only ofmay
position in classical mechanics. It will be seen that when

they do exist the forces F., in the conservation of energy

statement play a role analogous to reactive forces. It will

also be seen that if there are no forces F (q,q), the role

of the forces F is somewhat different from a role analogousa

to reactive forces.

I i In an infinitesimal transformation, the first law is

equivalent to the statement that the differential

24



dU = dQ + F dqa

is exact. That is, there exists a function U whose differ-

ential is dU; or the integral fdU is independent of the path

of the integration and depends only on the limits of integra-

tion. This condition is not shared by UQ or 3W.

As an example a one-dimensional case with the variables

F, q, and q will be considered.

Given a differential of the form df = g(A,B)dA + h(A,B)dB,

the condition that df is exact is To explore some
9B 3A

of the consequences of the exactne3s of dU consider a system

whose parameters are F, q, q. Any pair of these three

parameters may be chosen to be the independent variables

that completely specify the state of the system. The other

parameter is then determined by the equation of state, for
example, consider 1. = U(F,q), then

% (2 U dF + AU
d F q q F

the requirement that dU be exact immediately leads to the

result

q ( )qlF F l aqFq

The following equations, expressing the energy absorbed

by a system during an infinitesimal reversible transformations

25



are easily obtained by successively choosing as independent

variables the pairs (F,q), (F,q) and (j,q);

dQ ()qdF (2- F] dq,

DQ q - F(Bq~d F t.. F

dQ (.!U) dF +dq [+) -F] i -dq.a~l
qa

q 3q

These e&uations are of little practical use in their

present form because the partial derivatives that appear are

unknown. However, from these equations the "energy capacities"

may be defined as

Ic- -
C:A

then from the above 3Q equations the energy capacities are

seen to be

C (L 9)
t10 - Ai q (-qC~qq qq qq

and

CF F =- F(.-)
Aq 3q 3q

26



C. SECOND LAW

1. Transformation Statement

There are processes which satisfy the first law but

which are not observed in nature.. The purpose of the dynamical

second law is to incorporate such experimental facts into

the model of dynamics.

The logic of thermodynamics offers two approaches to

a generalized second law. The first approach consists of two

equivalent generalized statements the first of which, for

the mechanical system, may be stated as;

I I. there exists no dynamic process whose sole effect is

to extract a quantity of energy from a given reservoir

(or source) and to convert it entirely into work.

The second statement is given in Appendix A and is

shown in the Appendix to be equivalent to the first statement.

2. Axiomatic Statement

A second approach to the dynamical second law has

been provided by the Greek mathematician Caratheodory, who

presented an axiomatic development of the second law of

thermodynamics. This development is presented here with the

notion of a mechanical system in mind rather than a thermo-

dynamic system to demonstrate the applicability of the logic

4 to any type of system.

a. Existence of Constant Energy Surfaces.

In the statement of the first law dU is considered

as a perfect differential; however dQ and Fdq are not, in

general, perfect differentials. Therefore consider a process

27



in which the system exchanges energy with its surroundings;

then an axiom analogous to Caratheodory's axiom may be cited;

Axiom: In the neighborhood (however close) of any

equipoise state of a system of any number of

dynamic coordinates, there exist states that

cannot be reached by reversible Q-conservative

(dQ 0 0) processes.

When the variables are thermodynamic variables the Q-conser-

vative processes are known as adiabatic processes.

I A reversible process is one that is performed

in such a way that, at the conclusion of the process, both

the system and the local surroundings may be restored to

their initial states, without producing any change in the

rest of the universe.

Consider a system whose independent coordinates

are a generalized displacement denoted q, a generalized

velocity q (with q = dq/dt), and a generalized force F.

It will be shown that the Q-conservative curve comprising

all equipoise states accessible from the initial state, i,

Q • may be expressed by

a= a(q,q) constant,

where a represents some as yet undetermined function. Curves

corresponding to other initial states would be represented

by different values of the constant.
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Reversible Q-cDnservative curves cannot inter-

sect, for if they did it would be possible, as shown in

Figure 3, to proceed from an initial equipoise state i, at

the point of intersection, to two different final states f

and f2, having the same q, along reversible Q-conservative

paths, which is not allowed by the axiom.

q

i.6

iZ a2

Figure 3. If two reversible Q-conservative curves
could intersect, it would be possible
to violate the axiom by performing the
cycle if 1 f 2 i.

b. Integrability of UQ

When the system can be described with only two

independent variables, such as on the Q-conservative curve,

then if these variables are q and q, and F is a generalized

force,

dQ = dU Fdq . (II-IA)

Regarding U = U(q,q) then
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dQ = q( )_ dq +"[(T) - F] dq, (11-2)3q

where (_ F, and () are functions of q and q.

A Q-conservative process for this system is

dq q + [ ) - F] dq = 0 . (11-3)
q a

Solving for dq/dq yields

dj - - - F]

c~q (a)

The right hand member is a function of q and q, and there-

fore the derivative dq/dq, representing the slope of a Q-

conservative curve on a (q,q) diagram, is known at all points.

Equation (11-3) has therefore a solution consisting of a

family of curves, see Figure 4, and the curve through any

one point may be written

a= O(q,q) = constant.
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q

a a

I/I 1/1 /1II

III III I / I

/1 /1/ I/I

-q

Figure 4. The first law, through equation (11-3)
fills the (4,q) space with slopes
specified at each point. The a curves
represent the solution curves whose
tangents are the required slopes. The
second law requires that these curves
do not intersect.

A set of curves is obtained when different values are assigned

to the constant. The existence of the family of curves

a(q,q) = constant, generated by equation (11-3), representing

reversible Q-conservative processes, follows from the fact

that there are only two independent variables and not from

any law of physics. Thus it can be seen that the first law

may be satisfied by any of these a = constant curves. The

axiom requires that these curves do not intersect. Therefore

the axiom, together with the first law, leads to the conclu-

sion that: through any arbitrary initial-state point, all

reversible Q-conservative processes lie on a curve, and Q-

conservative curves through other initial states determine

a family of non-intersecting curves.
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To see the results of this conclusion consider

a system whose coordinates are the generalized velocity q,

the generalized displacement q and the generalized force F.

The first law is

dQ = dU - Fdq (11-4)

where U and F are functions of q and q. Since the (q,q)

surface is subdivided into a family of non-intersecting Q-

j conservative curves

a(q,q) = constant

where the constant can take on various values a, a 2 '

any point in the surface may be determined by specifying

the value of a along with q so that U, as well as F, may be

regarded as functions of a and q. Then

d U da + U dq (11-5)dU a q (3) a

and

( ) da + ( - F] dqUQ = a q a

Since a and q are independent variables this

equation must be true for all values of do and dq.
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Suppose do =0 and dq 0 0. The provision that

da = 0 is the provision for a Q-conservative process in which

3Q 0. Therefore, the coefficient of dq must vanish. Then,

in order for a and q to be independent and for dQ to be zero

when da is zero, the equation for dQ must reduce to

• U do,- =(-) da
aa q

with

= F

Defining a function A by

aq'

then
SI

dQ = Ada, (-6)

where

I = A(a,q)

Now, in general, an infinitesimal of the type

Pdx + Qdy + Rdz + ...
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known as. a linear differential form, or a Pfaffian expression,

when it involves, three or more independent variables, does

not admit of an integrating factor. It is only because of

the existence of the axiom that the differential form for

dQ referring to a physical system of any number of indepen-

dent coordinates possess an integrating factor.

Two infinitesimally neighboring reversible Q-

conservative curves are shown in Figure 5. One curve is

characterized by a constant value of the .function aA' and

the other by a slightly different value aA +- d = a B* In

any process represented by a displacement along either of

the two Q-conservative curves UQ = 0. When a reversible

process connects the two Q-conservative curves energy dQ =

Xda is transferred.

q

=FJ 0

N -- -%aAd0 B

-~q

Figure 5. Two reversible Q-conservative curves,
infinitesimally close, when the process
is represented by a curve connecting the
Q-conservative curves, energy dQ = Xda
is transferred.

34



The various infinitesimal processes that may be

chosen to connect the two neighboring reversible Q-conserva-

tive curves, shown in Figure 5, involve the same change of a

but take place at different A. In general A is a function

of q and q. However it is obvious that A may be expressed

as a function of a and q. To find the velocity dependence

of A. consider two systems, one and two, such that in the

first system there are two independent coordinates q and q

and the Q-conservative curves are specified by different

values of the function a of q and q. When energy 3Q is

transferred, a changes by da and 9Q = Xda where A is a

function of a and 4.
The second system has two independent coordinates

, and 4 and the Q-conservative curves are specified by

different values of the function a of q and q. When dQ
AA A A A

is transferred, a changes by da and UQ = Ada where A is a

function of a and q.

The two systems are related through the coor-

dinate q in that both systems make up a composite system

in which there are three independent coordinates q, q, and

q and the Q-conservative curves are specified by different

values of the function a of these independent variables.c
A A

Since a = a(j,q) and a = a(q,q), using the
A

equations for a and a, ac may be regarded as a function of

Lq, a and a.
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For an infinitesimal process between two neigh-

boring Q-conservative surfaces specified by a and a + da

the energy transferred is dQ = X do where X is also ac c c c
Afunction of q, a, and a. Then

dac a - +dq + d +aa. da (11-7)
D q Da

Now suppose that in a process there is a trans-

fer of energy Qc between the composite system and an external
reservoir with energies UQ and UQ being transferred, respec-

tively, to the first and second systems, then

dQa UQ +dQc

and

A I

X da = Xda + Xda
c c

or

d c Xc (

Comparing equations (11-7) and (11-8) for doc

then

Doc
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A

Therefore ac does not depend on q, but only on a and a.

That is

a (ac

Again comparing the two expressions for dac

Sda d~
Ta C and ;k dc

c C

therefore the two ratios A/Ac and A/Xc are also independent

of q, q and q. These two ratios depend only on the a's, but

each separate X must depend on the velocity as well (for

example, if A depended only on a and on nothing else, the

UQ= Xda would equal f(a) da- which is an exact differential).

In order for each A to depend on the velocity and at the

same time for the ratios of the X's to depend only on the

a's, the X's must have the following structure:

A~~~ =$)f(a)

A A A%

X = *(q) f(a) , (M1-9)

and

Ac = X(q) g(a,a).

$- A

(The quantity A cannot contain q, nor can A contain q, since

A/Xc and A/Ac must be functions of the a's only.)
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Referring now only to the first system as repre-

sentative of any system of any number of independent coor-

dinates, the transferred energy is, from equations (II-9),

= *(q) f(a) da (II-10)

Since f(o)da is an exact differential, the quantity l/ (q)

is an integrating factor for 3Q. It is an extraordinary

circumstance that not only does an integrating factor exist

for the IQ of any system, but this integrating factor is a

function of velocity only and is the same function for all

systems.

The fact that a system of two independent varia-

bles has a &Q which always admits an integrating factor

regardless of the axiom is interesting, but its importance

in physics is not established until it is shown that the

integrating factor is a function of velocity only and that

it is the same function for all systems.

c. The Absolute Velocity

The universal character of (q) makes it possible

to define an absolute velocity. Consider a system of two

independent variables q and q, for which two constant velocity

curves and Q-conservative curves are shown in Figure 6. Sup-

pose there is a constant velocity transfer of energy Q between

the system and an external reservoir at the velocity q, from

a state b, on a Q-conservative curve characterized by the
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q 1  a2

\b \C q =constant

a d q q3 = constant

Figure 6. Two constant velocity energy transfers,
Qat 4from bto cand Q3 at q from

Az ~a to d, between the same two cdnservat ive
curves a 1 and a2.

value a,, to another state c, on another Q-conservative

curve specified by a2. Then since

it is seen that

a2
*Q (q) f f(a)da at constant q. (1-)

Lt 1

I For any constant velocity process between two

other points a to d, at a velocity 43 between the same two

Q-conservative curves the energy transferred is

1 39



q AQ3 = (q3) f() da at constant

al.

Taking the ratio of

AQ-_:(q) = a f.mcticn of the velocity at which AQ is transferred
AQ3  s 3 s fuction of velocity at which AQ3 is transferred-

Then the ratio of these two functions is defined by

AQ(between a, and a2 at q)

(q3) AQ3 (between a1 and a2 at q 3 )

or

AQ3Is: --- cp4)

(q3 )

by choosing some appropriate velocity q3 then it follows
that the energy transferred at constant velocity between two

given Q-conservative curves decreases as O(q) decreases,

or the smaller the value of Q the lower the corresponding

value of O(q). When AQ is zero O(q) is also zero. The

corresponding velocity q0 such that O(q0) is zero is the

"absolute velocity". Therefore, if a system undergoes a

constant velocity process between two Q-conservative curves

without an exchange of energy, the velocity at which this

takes place is called the absolute velocity.
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d. The Concept of Entropy

In a system of two independent variables, all

states accessible from a given initial state by reversible

Q-conservative processes lie on a a(q,q) curve. The entire

(j,q) space may be conceived as being filled by many non-

intersecting curves of this kind, each corresponding to a

different value of a. In a reversible non Q-conservative

process involving a transfer of energy 3Q, a system in a

state represented by a point lying on a surface a will change

until its state point lies on another surface a+da. Then

IQ = Xda,

where 1/X, the integrating factor of EQ, is given by

=i

and therefore

Q= (q)f(a)da

or

3Q - f(a)da

Since a is an actual function of q and q the right-hand member

is an exact differential, which may be denoted by dS; and
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dS = Q  ,(11-12)

*(q)

where S is the mechanical entropy of the system and the

process is a reversible one.

The dynamical second law may be used to prove

equivalent of Clausius' theorem, which is stated here without

proof.

Theorem: In any cyclic transformation throughout which

the velocity is defined, the following inequality holds:

I Q < 0 , I-13)

where the integral extends over one cycle of the transforma-

tion. The equality holds if the cyclic transformation is

reversible. Then for an arbitrary transformation

B -O 
i!lQ

af ---.- < S(B) - S(A) ,

A *(q)

with the equality holding if the transformation is reversible.

The proof of this statement may be seen by letting R and I

denote respectively any reversible and any irreversible path

joining A to B, as shown in Figure 7.

flpl
Figure 7
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For path R the assertion holds by definition of S. Now

consider the cyclic transformation made up of I plus the

reverse of R. From Clausius' theorem

1"3--- / Q < o,
I -R -

or

f 3Q< f Q -S(B) -S(A). (11-15)
I R

Another result of the dynamical second law is

that the mechanical entropy of an isolated (dQ = 0) system

never decreases. This can be seen since an isolated system

cannot exchange energywith the oxternal world since Q = 0

for any transformation. Then by the previous property of

the entropy

S(B) - S(A) > 0

where the equality holds if the transformation is reversible.

One consequence of the second law is that of all

the possible transformations from one state A to another

state B the one defined as the change in the entropy is the

one for which the integral

-- (11-16)
A
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is a maximum. Thus

B
S(B) - S(A) maximum I = max ( d,

A dT

where T is a parameter which indicates position along the

path from A to B, or

B dU F d)
S(B) - S(A) max I ( - dT

A

if

where q = dq /dt, then the change in the entropy is given

by the integral

B
Bs 1 f !dU FA 2a) d-T.

A.S p-T dT
A

The q and q which maximize AS will be denoted as x and x

then, with

U = U(x,x)

(x,x)

: 44



the x and x are given by the solution of the system of

equations

d ,G aG 0
T - 0

(11-17)

d DG -3Ga - "-=x 0
dTx3' ax

where

(.)[U dx x' =x=dx
G a- Tx and x d and x.

Thus the dynamical second law provides an answer to the

question that is not contained within the scope of the first

law: In what direction does a process take place? The

answer is that a process always takes place in suc-h a

direction as to cause an increase of the mechanical entropy

in the universe. In the case of an isolated system, it is

the entropy of the system that tends to increase. To find

out, therefore, the equipoise state of an isolated one

dimensional system, it is necessary merely to express the

entropy as a function of q and q and to apply the usual rules

of calculus to render the function a maximum. When the system

is not isolated there are other entropy changes to be taken

into account. It can be shown (Section IV-A) that there

exists another energy function which refers to the system

' Ialone such that the equilibrium state of a non-isolated

system is found by locating the minimum of this function.
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D. THIRD LAW

The dynamical second law enables the mechanical entropy

of a system to be defined up to an arbitrary additive con-

stant. The definition depends on the existence of a rever-

sible transformation connecting an arbitrarily chosen refer-

ence state 0 to the state under consideration. Such a rever-

sibl'e transformation always exists if both 0 and A lie on

one sheet of the equation of the state surface. If two

different systems are considered the equation of the state

surface may consist of several disjoint sheets. In such

cases the kind of reversible path previously mentioned may

not exist. Therefore the second law does not uniquely deter-

mine the difference in entropy of two states A and B, if A

defines a state of one system and B the state of another.

For this determination a dynamical third law is needed. The

dynamical third law may be stated, "The mechanical entropy

of a system at the absolute velocity is a universal constant,

which may be taken to be zero." In the case of a purely

thermodynamic system the absolute quantity is the absolute

zero temperature, while for a mechanical system the absolute

quantity is the absolute velocity.

The dynamical third law implies that any energy capacity

of a system must vanish at the absolute velocity. To see

this, let R be any reversible path connecting a state of

the system at the absolute velocity q0 to the state A, whose

entropy is to be found. Let CR(j) be the energy capacity

of the system along the path R. Then, by the second law,
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S (A) = C

Cq(O R (q)

But according to the third law,

S (A) +0.

Hence it follows that

C 0 (11-18)

In particular, CR may be Cq or CF
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III. GENERAL MAXWELL AND ENERGY RELATIONS

In thermodynamics a discussion of equilibrium and

stability conditions is best done if the enthalpy, Helm-

holtz's, and Gibb's functions are defined first. Therefore

the mechanical analoques of these functions are defined here.

Each branch of physics such as thermodynamics and parti-

cle dynamics has its own list of developed procedures. If

both branches can be described by the same basic dynamic laws

then the procedures developed in thermodynamics may prove

to be useful in particle dynamics and vice-versa. Once

the mechanical entalpy, mechanical Helmholtz's and mechanical

Gibbs' functions are defined it is then easy to write down

the resulting mechanical Maxwell and mechanical energy capac-

ity relations. Therefore, while these relations are not

used later in this investigation, they are presented here.

To begin the development of the Maxwell relations, the

mechanical entropy was defined as

dS (I1l-l)

then, since dQ = dU - Fdq,

dSdU dq, (111-2)

where
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dUl=$q dS + Faq. (111-3)

Define the mechanical enthalpy as

Hf U -Fq, (Ii-4)

then

.A *(q) aS -qdF, 115

I therefore

= () and -q- (111-6)

The mechanical Helmholtz's function can be defined as

K U - (q)S, (111-7)

-~ and

aK audU ()~ -*q) dS,
dq

or, with

4~' q) d

I'q



dK =-$' (q) dq- Fdq , (111-8)

which leads to

) () and K (q) F. (111-9)
Sqq

The mechanical Gibb's function may be defined as

G - H- (q)S , (III-10)

then

dG -j'(d)Sq + qdF, (III-ll)

so that

(G)F =-'(q)S and (i) q. (111-12)

From the differential equations (111-3), (111-5),

(111-8) and (I1l-11) the Maxwell relations for a mechanical

system may be written:

(q)

( a(q) a = ( ) F (111-13)

qq aq

4 () A)
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The energy capacity at the position q can be defined as

C: E)=a (111-14)
dj

Define the'energy capacity with A constant force as

F dq aqF

then

(C q - CF F 1-~F) ~ (111-16)
4()aq 9i q

and

CF

C V (111-17)
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IV. EQUIPOISE AND STABILITY

This. section derives the equipoise and stability condi-

tions for the mechanical system. These are the conditions

required to satisfy the dynamical laws and lead to quadratic

forms which provide natural metrics in the sense that adoption

of these quadratic forms as the metric for a description

of the system motion ensures that the resulting motion always

satisfies the stability conditions.

The words and symbols used during the derivation of the

equipoise and stability conditions are those used with a

mechanical system. It is not difficult to see that the simple

replacement of those words and symbols with their appropriate

thermodynamic analogues yields the thermodynamic equilibrium

and stability conditions.

A. EQUIPOISE CONDITIONS

To discuss dynamic equilibrium the criteria for an equi-

poise must be established. To establish the criteria for

equipoise consider Clausius' theorem

dQ -

AI AR

or

B - B-f dQ < f -(B) S(A).

AI AR
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For a Q-conservative system dQ = 0, then

AS > o,

or

S(B) > S(A).

Therefore the mechanical entropy tends toward a maximum so

that spontaneous changes in a Q-coservative system will

always be in the direction of increasing mechanical entropy.

The application of this condition for a number of special

cases will be considered next.

1. AQ =0 and Constant F.

The mechanical entropy change must be given by

AS > =0,-V-

if the process is to be a spontaneous one. Now by the first

law

AQ = AU - FAq.

Therefore

AS > AU - FAq,

which is analogous to the Clausius inequality in thermodynamics.
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Now consider a virtual displacement (U ,q)

(U-suq+6q), which implies a variation S -) S+6S away from

equipoise. The restoration of equipoise from the varied

state (U+6U,q+6q) -- (U,q) will then certainly be a spontan-

eous process, and by the Clausius inequality

*(-6S) > -(6U - F6q).

Hence, for variations away from equipoise, the general

S U - F6q - 6S > 0, (IV-l)

must hold. The iiequality sign is reverse(. from the sign

in Clausius' inequality because hypothetical variations 6

away from eguipoise are considered rather than real changes

toward equipoise.

Now consider the special case where 6U = 0 and

Sq - 0, then

(SS) < 0. (TV-2)U,q

Therefore, at equipoise the entropy is a maximum with respect

to all variations which leave the position and energy of the

system constant, which implies that all variations must be

within tiae system.

t ) 54



f1,
If 6S 0 and 6q = 0 then

~/'

(0U)s,q > 0 (IV-3)

or at equipoise the energy of Lhc system is a minimum with

respect to variations at conitant entropy.

Formally the criterion given by equation (IV-3)

follows from equation (IV-I) just as readily as the condi-

tion (IV-2) does. To prove this equivalence suppose equation

(IV-2) were true and equation (IV-3) were not. The violation

of (IV-3) is a variation a such that

SU < 0 when 6S = 0.

Now a subsequent variation can always be found whereby

both U and S increase, simply by letting some pf the absorbed

work dissipate within the system. Thus

SU > 0; 6S8 > 0.

The latter step could be arranged so that the total variations

would be

SU 0+ 0; dS+a > 0,

which contradicts equation (IV-2).
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While inequality (IV-2) identifies the equipoise

of a Q-conservative system as a maximum of entropy, inequal-

ity (IV-3) shows that equipoise is a state of minimum system

energy.

2. AQ = 0 and Variable F.

Suppose now that the force is not held cons t.it but

AQ is still zero. The entropy will still be a maximum at

equipoise, however, there is now a different subsidiary

condition. Not the energy of the system U but U plus a

certain mechanical potential energy representing the coupling

to the surroundings, is to be constant under the variations.

If the coupling is achieved by the force only then this

mechanical potential energy is just the negative of Fq and

hence the mechanical enthalpy

H U -Fq

must be kept constant under virtual displacements. Therefore,

corresponding to equation (IV-2) and (IV-3) are the conditions

(s)H,F <  , (IV-4)

and

(H) > 0. (IV-5)SF
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To prove this formally replace U by H + Fq and use the

difference relations

SU = SH + S(Fq)

5(Fq) = (F + SF) (q + 6q) - Fq (IV-6)

= F~q + q6F + 6F6q.

Inserting the above into equation (IV-l) results inI
I H + F6q + q6F + MF~q - F6q - OSS > 0

or

06S - 6H - q6F 6F6q < 0, (IV-7)

from which inequalities (IV-4) and (IV-5) follow. Thus at

constant force the mechanical entropy is maximum at constant

mechanical enthalpy and the mechanical enthalpy is minimum

at constant mechanical entropy. For systems at constant force

the mechanical enthalpy H plays a role analogous to that of

the system energy U for systems at constant position.

iThe reason for retaining the term 6Fdq is that, although
it does not affect the equipoise conditions (IV-4) and (IV-5),
the variations in Clausius' inequality are not necessarilyI infinitesimal. The stability problem is one instance in

I which this must be remembered (see next section).
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3. Variable Q, 0 = constant

Now consuider a non Q-conservative system %U r ur.

But assume that 0 remains constant. Then for 6q = 0 equation

(IV-l) implies that the mechanical Helmholtz' free energy,

K u Or-#S (IV-8)

is a minimum, since K is then positive for a variation from

equipoise. Similarly, for equipoise at constant force,

equation (IV-7) implies that the mechanical Gibb's free

energy,

G H- S = U -OS - qF (IV-9)

is a minimum. The equipoise conditions may then be written

(6K)4,q > 0 and (6G) ,F > 0, (IV-10)

respectively. K may also be called mechanical "free energy

at the position q", and G the mechanical "free energy at

constant generalized force."

4. General Equipoise Conditions

It was shown in the previous section that the enthalpy

or free energy are a minimum at equipoise. Each condition

is a special case of the general inequality (IV-l). To obtain

a general condition for equipoise consider the inequality a

little further. In a spontaneous process,
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€AS >_ AQRev = AU + work done by the system. (V-l1

The "work" consists of two parts. One part is the work done

by the negative of thc force F. It may be positive or nega-

tive but it is inevitable. Only the rest is free energy,

which is available for some useful work. This latter part

may be written as

A = AQRev - AU + FAq. (IV-12)

The maximum of A according to (IV-ll) is

Amax OAS - AU + FAq, (IV-13)

which is obtained when the process is conducted reversibly.

The least work, SAmin , required for a displace-

ment from equipoise must be exactly equal to the maximum

work in the converse process whereby the system proceeds

spontaneously from the "displaced" state to equipoise

(otherwise a perpetual motion machine may be constructed).

Corresponding to equation (IV-13) then, is

SAmin = 5U - Fq- 06S. (IV-14)

1* All equipoise criteria can therefore be condensed into one:

6 > 0. (IV-15)
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In words: At equipoise the mechanical free energy is a

minimum. Any displacement from this state requires work.

Table 1 is a tabulation of the equipoise condi-

tions for the various special cases and indicates the appli-

cability of the general equipoise conditions to each special

case.

B. STABILITY

First order conditions such as 6S = 0, SK = 0, and so

on are necessary but not sufficient for equipoise. To

decide whether or not an equipoise is stable, the inequality

sign in (IV-i) must be ensured.

1. Stability with q and S as Independent Variables.

Consider the terms of second order in small displace-

ments beginning with the general condition

SU - F~q - 6S > 0. (IV-16)

Choose U = U(q,S), which, because of the identity

dS = dU - dq,

or

dS = dU - Fdq,
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TABLE OF SPECIAL CASES

SPECIAL CASES:

1. AQ = 0; F constant

a. 6U 0; aq = 0 implies (6S) < 0 max.

S at constant U and q.

b. SS = 0; Sq = 0 implies (6U) S q > 0 rain.

SS at constant S and q.

2. AQ = 0; H - U -Fq

a. 6H = 0; 6F = 0 implies (6S)H,F < 0 max.

S at constant H and F.

b. 6S = 0; SF = 0 implies W) S  > 0 min.

.: Hat constant S and F.

3. AQ = 0; K S U - S; G H -

a. aq = 0; implies (6K) q, > 0 min. K at constant q.

b. SF = 0; implies (FG)F > 0 min. G at constant F.

GENERAL EQUIPOISE CONDITION (WA) > 0

6SA SU -F6q - 46S

la. SA = - 4(S> 0 implies (6S) u,q < 0

lb. SA = 6U > 0 implies (U)s, q > 0

2a. 6A = 6H + q6F - 46S = - #6S> 0 implies (S)HF < 0

2b. 6A = 6H > 0 implies ((H) s, F > 0

3a. SA = 6K + S6S - Fdq = 6K > 0 implies (K) q, > 0

3b. SA = 6G + q6F + SS = SG > 0 implies (6G) ,F > 0

Table 1. A tabulation of the equipoise conditions for
various special cases.
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is a natural choice of the independent variables, and expand

6U in powers of 6q and 6S

.22 2 2 2
' = a U 2 )+term of third order+...

(IV-17)

The inequality (IV-l) then shows that in (IV-17)

Second order terms + third order terms + ... > 0. (IV-18)

Retaining only the second order terms, the criterion of

stability is that a quadratic differential form be positive

definite;

2 2 2Ua Sq 2 + 2 a-U 6qs + 62 S 2 > 0. (IV-19)
q aqS as

If this is to hold true for arbitrary variations in Sq and

6S, the coefficients must satisfy the following:

2 0; 2 2 2 2~
> 0; L 0; 2 2 a 2u 2 > 0. (IV-20)2S Dq "qas"

aq as a

2. Stability with q and q as Independent Variables

A quadratic form in 6q and 6q may be found by

considering

K U -2
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so. that

SK =Su -O6s - .saq-i Ss6i.
dq dq

The terms 6s6q cannot be neglected because in Clausius'

inequality, which is the actual stability condition, the

variations are finite, therefore, from equation (IV-16) the

following is obtained:

6K + 6s + d(S + 6s)6 - F~ q - S > 0,dq

6K + 4 + §s1 - F6q > 0.
dq di

Expanding in powers of 6i and 6q

1~~~~ 2 K -2+.
dq aq aq2

4l( * _

6s~ = 6q~+ -F) 6qdq€ aq

aq @q @q @ @q dq

_= F.aq

Therefore
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and

a2K _a_ do U.

3 3 q dq j

then

2~)S~ 2 2 ()2 - 2K
()aaq, (:$+ =a.() - q~q,

and the quadratic form in Sq and Sq is

1 31q 2  + K 2K SqS- +. aK(2 -2 a2 -2_--2 2 a>20I (6q).+ q 2 7d) -2.(S) 4 (Sq2  Z.qq >0

or

*S 2 2~ 2 > 0. (IV- 2 1)

aq a q q

Since (!q) = F then

2

pendent system variables are taken to be other than (q,S)

or (q,q). The quadratic form given as equation (IV-19) demon-

strates that the "natural" variables for the system energy

are space coordinates and mechanical entropy. The quadratic
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form, equation (IV-21), shows that space and velocity are the

"natural" variables for the mechanical Helmholtz function.
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V.- ISENTROPIC MECHANICS

The objective of the investigation is to determine

whether or not the logic structure of classical thermo-

dynamics could yield dynamical laws which would produce

equations of motion containing existing dynamical theories

and in addition provide a directivity. The logical proce-

dure to obtain this objective, given the development up to

the end of Section IV, is to adopt as the metric of the sys-

tem one of the quadratic forms which will ensure the system's

stability. Suppose that the quadratic form, equation (IV-19),

were to be adopted as the metric. This would say that the

system is described in a space-mechanical entropy manifold.

The idea of describing particle dynamics in such a manifold

is not known to have been previously investigatd. The sug-

gestion that particle dynamics be described in a manifold

other than the space-time manifold of relativistic dynamics

immediately raises a number of questions.

These questions prompt a deviation from the logical

procedure. By taking the time here to consider some of the

familiar procedures of classical and relativistic dynamics,

consistency between them and the dynamics proposed here can

be demonstrated. The role of the integrating factor, abso-

lute velocity and the mechanical entropy can also be seen.

The dynamics of both Newtonian and relativistic mechanics

is time symmetrical. This suggests that if the dynamics
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provided by the dynamic laws presented here are to be con-

sistent with these theories then the systems for which this

consistency may exist are reversible isentropic systems.

Therefore only isentropic are considered in this section.,

A. CLASSICAL MECHANICS

Classical mechanics describes the motion of a system,

which cculd be a particle, for which the energy of the sys-

* tem is a constant. The equations of motion may be obtained

using Hamilton's principle. These equations of motion yield

trajectories resulting from the action of forces; they may

also be obtained from the principle of least action. When

the action integral is treated as a variational problem with

variable end points the method of Lagrangian multipliers

yields the same equations as does Hamilton's principle.

However, if the variational problem is transformed to a new

space in which the new variational problem has fixed end

points, then the metric for this space is displayed, and

the equations of motion are geodesics in this space.

In classical mechanics the principle of least action as

* formulated by Lagrange3 has the integral form

P2

A= f m ds. (V-I)
P1

3Sokolnikoff, I.S., Tensor Analysis Theory and Applications
to Geometry and Mechanics of Continua, pp. 230-232,
1964.
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In curvilinear coordinates the integral assumes the form

P2 a d .t(P 2 ) a

A f mg8 d = f mga8 at - dt
pl t(Pl)

or defining

T ~dx0 dx8T E-T gaB dt dt

the integral becomes

t(P2)
A f 2Tdt.

t(pl)

Then the principle of least action may be stated as:

Of all curves C' passing through P1 and P in the

neighborhood of the trajectory C, which are traversed

at a rate such that, for each C', for every value of t,

T + V = F, that one for which the action integral A

is stationary is the trajectory of the particle.

In Appendix B the transformation of variables is carried

" out so that the metric is displayed. The result of this

., transformation is the metric

C2 h aa dxa dxa (B-6)

where

h 2m(E0  V)g
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Suppose that this classical system is associated with

the concepts presented in Section II. The energy of the

system in classical mechanics is a constant of the motion

and therefore the change in kinetic energy is the negative

of the change in potential energy, which may be written

as

dH = dT + dV = 0.

However for conservative forces dH is a perfect differential.

Therefore, for a one-dimensional system the force is a

function of position only.

This suggests the association of the classical energy

of the system, H, with the system energy, U, which is also

a perfect differential. Now if the system is isentropic

then this association leads to the relation

dS=0- Q dU dq.

But if dU = dH = 0, then F must be zero.

Considering the quadratic form, equation (IV-19), for

an isentropic system it can be seen that the only term left

is a space term which is consistent with the space metric

of classical mechanics given by equation (B-6) of Appendix

B. Thus an isentropic system, for which the F is negligible,

is consistent with a classical conservative system. The
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mechanical entropy does not become involved for such a system

because if F is negligible then dQ = dU. Therefore 3Q

must be a perfect differential. If dQ is a perfect differ-

ential there is no need to look for an integrating factor.

B. RELATIVISTIC MECHANICS

In the special theory of relativity Einstein sought to

put Newtonian mechanics into a form which would leave the

speed of light invariant. The resulting dynamics exhibits

the notion of a unique velocity in a similar sense to the

previously defined absolute velocity. The modification

required the motion to be such that

t2  .

f + dt = 0,
t /2

where F is a force which is a function of position only.

The factor 1 i2/c2 displays the qualities required

of the integrating factor *(q). Therefore consider a modi-

fication of Hamilton's principle in terms of the system energy

U, the force F and the integrating factor 4. The modified

statement then would be that the motion be such that

t22 ( U + q) dt = 0.

t1

It can be seen that if (q) = 1 then F must be a function

only of q and classical mechanics results. It will be shown

that if (q) = i - 2/c2 relativistic mechanics is obtained.
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Now for an isentropic system

as o - dUl F=-S Q 0 d dq,

or

B dU BF
f I dq.

A A

This would be the classical work-energy theorem if 1 = .

For any

dU

If the system energy U is taken to be the kinetic energy

and defined as

U m q2  (V-l)

then

mq= F,

or Newton's second law.

This tends to indicate that a modification of Hamilton's

principle would apply to a system for which dS = 0. This

modification would be to assume that for an isentropic system
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the motion is given by the principle:

If a particle is at the point P1 at the time t

and at the point P2 at the time t2 then the motion

of the particle takes place in such a way that

t 2  t 2
f (.- . + - q) dt 6 f L dt = 0,

t(q) *(q) t

where q = q(t) is the generalized coordinate of

the particle along the trajectory and q + 6q is the

coordinate along a varied path beginning at P1 at

the time t1 and ending at P2 at time t2.
The hypothesis of the fundamental lemma of calculus

of variations is that L be a real continuous function,

therefore, the mixed second partial derivatives of L

must be equal, or

;2L 32 L

;qDq aqac

Now

dL (* dq + (1) [- + F1] dq,
*(q) aq(q

so that

2L = 1U and 3L 1 u+F.
q T q
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Then

2 2+ 3F) -- L+ I

Sqac aqaq aqaq

This requires that

a L (2- + F). (V-2)

However, ds is a perfect differential so that

a 2 = a 2 .

aqa4 ,aq

Since

1 aU 1 aU

dSq + T (7q - F) dq

l a~au = 1 ,3~U F _,'au~
aq ag a

a ( U 1 aq aq ) (2- - F),

or

2 _ (a- F). (V-3)

I. xIn order that dS and dL both be perfect differentials

at the same time then
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17 (2-U i F) ~ A-- F).
* aq a q

Therefore

a"

and

jF F

or

1 DF-

~F1-

which is a function of qonly. Then

1 LF F =0,

or

aq

which implies that

F F(q)
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which is a function of q only, and

F = *(q) F(q) (V-4)

for an isentropic system. Thus the factor cancels out of-

the differential expression for change in entropy so that

effectively the force is not velocity dependent.

Suppose that the momentum is defined as

p a ai u (v-5)

and the mass is defined as

_ 2

m a - •(V-6)
aq2

Then

dS = p dq - F(q) dq,

and

dL = p dq + F(q) dq.

The equations or motion would be

d (] 0 (V-7)
d-t ] -
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or

-__ = F(q).
dt aq

If m = constant then p = mq/ and

dL = dq + F(q) dq

while

dS = d -(q) dq.

Then for dS = 0

S = T(g) + V(q); L = T - V(q)

where

F(q) = - V .aq

How then may (q) be determined? The precedence set by

thermodynamics is to determine 4(i) experimentally. Experi-

ments with a charged particle in a magnetic field, such as

a mass spectrometer, show that

= 1 - 2/c2 (V-8)
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This function satisfies the requirements for the integrating

factor with c as the absolute velocity.

If this integrating factor is substituted into the

equations of motion the resulting equations are

d cd [ % m =1 = F (q)
-/ -21c

then

dL mqdq - + F(q) dq,

- 2C 2
1 q /c"V0-

L(q,q) L(q0,q0 ) = - + f F(q) dq

2C

0mc 1- 2cc2 V(q) + V(q
qO

If L(q 0 ,q 0 ) = L(O,o) = 0, then

L(q,q) = mc2 [1 l - c - V(q) (V-9)

With the exception of the additive term mc2 this is the form

of the relativistic Lagrangian when m is interpreted as the

rest mass, and since additive constants in the Lagrangian do

not affect the equations of motion, this Lagrangian yields

equations of motion consistent with the special theory of

relativity.
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The first integral of the equations of motion may be

written as

d [L Ll [L qp]=0,

therefore

L 4 p =constant.

Then define this constant of the motion, which may be called

a "Hamiltonian", by

H qp -L (V- 10)

Since the Lagrangian is given by

L =fpdq -~)

the Hamiltonian becomes

-V~-~IH =qp -fpdq +v(q) = fqdp + v(q).

4i.Then the Hamiltonian equations of motion may be written.as

MH F(q) = H-(V-li)

1 78



For the particular Lagrangian

Lm 2  _(1- _ *2
Smc- q/c V(q)

the Hamiltonian is

.mH _ - mc 2 [l -7f- T q2/c2 ] + V(q)

q 2/C 2
-V

-mc2 (__-_i) + ) + -(q)

or

H mc i 2 (y V )+V(q) (V-12)

where

= 1

- 2 /c 2

M2Then defining E(q) E- mc2( - 1) implies that

E= E02 + (pc) (V-13)
4 0

In the special theory of relativity the Hamiltonian,

which is interpreted as the energy of the system when m is

the rest mass and c is the speed of light, has the same form

79



as equation (V-12). In this dynamic theory, however, the

Hamiltonian is not the energy of the system. The system
energy is U and is given here by U = 12 since =0.

H is a constant of the motion and therefore is at most only

a constant different from the entropy of the system since

the entropy is also a constant in this case.

These relativistic equations are symmetrical in time.

They are the equations for a system with constant entropy

and the time symmetry is consistent with reversibility.

Thus the concepts presented in Section II and a modified

Hamilton's principle may be seen to produce dynamics consistent

with special relativity. The roles of the absolute velocity,

integrating factor, and mechanical entropy are also displayed.

C. GEOMETRIZATION

Transforming the integral of the classical least action

principle to a space in which the variational problem had an

integral with fixed end points displayed the metric. For

an isentropic system this metric was seen to be consistent

with the quadratic form required for stability. Now consider

the metric of the space governed by the modification of

Hamilton's principle in the previous section. It too is

consistent with classical dynamics.

Impose the same requirements as in Section V-B, namely

that dS and dL both be perfect differentials; so that _ = 0.V. aq

Then U is a function of velocity and is the kinetic energy
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U M ~dq-' l 2
U g*idt dt~V

where the summation convention, of tensor analysis is used.

The g are line elemtent coefficients in the chosen coordinate

system. The indices a and take on the values 1, 2, or 3

to correspond to the spatial dimensions.

Since it is desired to expand the dimensionality of the

system at this point it is necessary to discuss the extension

of the argument of Caratheodory's to a higher dimension. For

instance if for each dimension, q a requires a separate inte-I grating factor c =(q ); so that

ds =
OC a

can the differential of the total mechanical entropy be

written as

4.dS Z dS E*Q E Qa?a

The proof that this c~n always be done was developed by

Caratheodory and is presented in Appendix C. Therefore the

mechanical entropy may be written as

mg dq dqa
-gaa dq dd.S = dtT

and in order for dS to be a perfect differential the ratio
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F .I must be a function of position only.. (see the discussion

in Section V-A). The forces F must have the structure

F = 0 fa (q). (V-14)

Then conside: the integral

P2  t(P2) m a 8

p$ dt dtPl aqt(pl) V-5
(v1-15)

and the variational problem of minimizing this integral

subject to the constant entropy requirement

( i. • 2 q3) S
S(q -,,,q, ,q) - S = 0. (V-16)

Xgain the variable limits of integration can be avoided by

a change of variables and since, as noted in Section V-B

the entropy can differ from the relativistic Hamiltonian by

at most a constant, and rezalling equation (V-12), for this

situation

s = -rv2) + ql q 2 ,q 3 ) (V-17)

2where $ is assumed to have the form = #(v2). Then in

principle the first term in equation (V-17) can be sclved for
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the velocity as a function of r4 or

ds 2 4S_ [__)2

dt- dt ; (a,8 = 1,2,3) (V-18)

The ratio m/0 m-,y then be expressed as a function of T also

m/0 G(T). (V-19)

Since the entropy is a constant, equation (V-16) may be

solved for T so that

T=S - u (V-20)

Then

m/0 = G(S0 - u) (V-21)

and

Sa: dt = [f(S 0 - v)] 2. (V-22)

Substituting equations (V-21) and (V-22) into the integral

(V-15) gives a new integral

4This is consistent with the defining equation (V-6)
and the assumption of that section which was that
.-2_ m constant.

qa
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' t t(P2)
2G= tS GS 0 - ] If (S 0 -V] dt, (V-23)

t(pl)

with the integrand independent of the time. The varied paths

can be parameterized so that C: qa = q"(u), Ul u < u2

where P q0 (u I ) and P2 : qa(u 2 ) , and then

ds du,

where g' = dqa/du.

This permits the integral (V-23) to be written in the

form

s2
2 ds

SGS 0-v f(S 0-] "f(S 0 v)

U2

= f G [S0 - v] f (S0 -) dud du (V-24)
u

or

u

0 a$du du4 U1

where

H(S0 -v) [G(S-V) f(S o-V)]2. (V-26)
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Then the trajectories determined by this variational

problem are equivalent to the geodesics in a three-dimensional

Riemannian manifold with the arc element

dS 2 = H(S0-u) go dqa dq "  (V-27)

1. Particular Integrating Factor, Zero Force F

Suppose now that the integrating factor is

Then the action integral, equation (V-15) may be written

t(P2) m q

I = f dt. (V-28)
t(p1 ) - g gaq

c
Now,

2 gae q q

c

or

= 2 ;
mc c
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so that

ds 2 2 2)2(T-) = g q q. 1TM (V-29)

Substituting (V-29) into (V-28) yields

t(P 2 ) C2 [1(T/Mc 2) 2 lat

t(p1 ) 2-1 2
+ (-T/mc)

or

t(P2) mc2 [1 - (1 -/2 2I]d r  (V-30)

t(p I) I - t/mc2

Since on C' T + v - O = 0, then T = S0 - v and

ds2 2 22( )=C [ (1 - T/mc 2 2 ]

or

~dsdt (V-31)

av

c - (1
mc

Putting equation (V-31) into equation (V-30)

S 2 c2 m 1 - (1 0)2] dsI 1= f mc
si S0 -v 2Si (1--T) c2[I (i1 )2

mcmc
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or

sv 2
2 mc ds

SS o-V

mc

S 2 / 1 - 1 ds. (V-32)

= Smc -so-V 2

mc

Parameterizing the varied paths by

ds = g t q'Gq'8

where q'a d , so that on C': qC q3(u) with-du'

uI < u < u2 , then equation (V-32) becomes

U "/ / so-vZ 2 - 1V/ q'q, du (V-33)

mc

Thus this geometrization gives an arc element

ds2 =mc2 1 - g dqa dq8  (V-34)SO-V 2 gaa

mc

This metric is a three-dimensional metric (a,8 = 1,2,3) with

coefficients which are functions of position only since the

g are functions of position and V = V(q q2 q3)
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If the arc element (V-34) es expanded in powers ofso-V
--- then

mc

(SoV) 3

ds2 O[2m(S0-V) + 3 0 + 4 g dqa dq o
c mc

(V-35)

The first term of this arc element expansion is the same as

the arc element in equation (B-6).

Again the metric for this sp.ce, given by equation

(V-34) is consistent with the extension of the stability

quadratic form for an isentropic system, namely the metric

spans only the space dimensions. Thus it can be seen that

the concepts of Section II can be made consistent with the

dynamics of Newtonian and relativistic mechanics if isentropic

systems are considered, the limiting velocity taken as the

speed of light, and the entropy becomes the relativistic

Hamiltonian.

D. GENERAL ISENTROPIC SYSTEM

The arc element, equation (B-6), is the classical arc

element and corresponds, in the dynamic theory, to a system

where it is assumed that forces F (q) exist as a function of

position alone and that the forces F (q,q) are neglibible

or zero. To obtain the arc element (V-34) the forces F

were assumed to be the only forces acting on the system.

These forces were functions of both position and velocity

since the form of these was taken to be
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F = #f (q ,q2,q ).

Although it is not done here, it would be desirable to

find the arc element for a system subject to both types of

forces. For this system

dS dT (F + F)
dT aF +a) adS=T- dq

where the forces F are the forces of the system and

V(q) = - f F dqa,

is the potential energy of the system while the forces F

are the forces which are inevitable. This would include
S au

the possibility that 3qa #. 0. For instance, if

2rgaaq q and the space is not Euclidean then

'kDU 1 (g ad) 0 .
aq aqY q~

89



VI. NON-ISENTROPIC SYSTEM

A. FOUR-DIMENSIONAL ARC ELEMENT

1. Choosing the Arc Element

Chapter V demonstrated that it is possible for the

concepts presented in Chapter II and the proposed dynamic

laws to be consistent with particle dynamics. This section

now returns to the point of development at which the qua-

dratic forms of stability were attained. Up to this point

the development is strictly based upon the three dynamic

laws and therefore these quadratic forms reflect only the

demands of these laws.

Though it is possible to arrive at more than one

quadratic form which contains the stability conditions these

forms would be expressed in terms of different variables.

For instance, the form given by equation (IV-19) is expressed

in a space-entropy manifold while the one given by equation

(IV-21) is in a space-velocity manifold. Since both forms

k 4express the same requirements a choice must be made on the

basis of simplicity of use, variables desired, or some other

priority considerations.

Before a particular manifold is chosen it seems appro-

priate to recall the requirements upon a metric which ensure

that the stability conditions meet these requirements. The

three requirements for a metric are that the "distance"
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2
given by the metric satisfy the following:

i. d(AB) > 0

d(AB) =0 if and only if A =B,

ii. d(AB) = d(B,A), and

iii. d(AB). < d(A,C) + d(CB).

Thus it may be seen that these quadratic forms do define

"natural" metrics for the space of the appropriate function.

Returning to the choice of a particular form, con-

sider a metric in a space-velocity manifold. Geodesics for

this manifold would be third order equations. To see this

consider the quadratic form

dj 2 = A(qq) (d4) 2 + B( ,q) (dq) 2.

If the arc length is used to parameterize the manifold by

choosing do = v0dt, then the geodesics are given by the

Euler equations which makes the arc length an extremum, or

S ( )2 dt = A(qlq) 2 + B(q,q) 2 dt 0.

This represents a variational problem of
- t2
6 f(t,q,q, ) dt- o

t1

which requires a third order Euler equation.

The fact that the geodesic equations for a space-

velocity manifold are third order displays the time assymmetry

2Dettman, John W., Mathematical Methods in Physics and
Engineering, p. 30, 1969.
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desired. However, third order differential equations are

not very nice equations to have, since there is no established

method of obtaining a solution.

Now consider the quadratic form in the space-entropy

manifold. This represents a simplification over the space-

velocity manifold by a reduction of the order of the geodesic

equations. Because of this simplification the quadratic

form in the space-entropy manifold will be adopted as the

metric describing the system for this section.

In order for this metric to be consistent with the

previous section on isentropic systems it must reduce to

the metric of the isentropic system in the event that the

entropy of the system ir a constant. Such a four-dimensional

arc element is

2ids2  h j dq dq3 ; (i,j = 0, 1, 2, 3) (VI-l)

0 Swhere g = so that the fourth coordinate is the entropy

with an appropriate scale factor, f0, with dimensions of a

force for dimensionality correctness.

Separating out the space portion of this arc element

gives

dsh2 00 (dq0)2 + 2haadqodqa + h dqadqo; (c,8 = 1,2,3).

(VI-2)

Thus it can be seen that when the entropy is a constant the

arc element reduces to
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2ds h d dq  dq8  (VI-3)

which has the form of the arc element for the isentropic

systems discussed in the previous chapter when the entropy

was constant.

Then if the h" of the isentropic system are. taken

as the six independent coefficients E the remaining four

coefficients (H0o F0a ) in the four-dimensional arc element

must be found as functions of coordinates and entropy for

non-isentropic systems. If the ten independent coefficients

of the arc element (VI-3) are determined then this arc

element is a general arc element for this dynamic theory.

But this arc element is not the only choice that could be

made. However, the choice of the four-dimensional arc ele-

ment (VI-l) provides the arc element with the fewest inde-

pendent variables which will ensure that the stability condi-

tions are met.

2. Parameterization

Thus far in the discussion the variable t has appeared

in the notion of velocity by specifying velocity as a function

of t and as a parameter in the equations of motion. The

manner in which t has been used gave it the same absolute

.L quality as time in Newtonian mechanics and it may be defined

and measured in any appropriate manner. In the second

dynamical law time and space are coupled through the integrating

factor in terms of the absolute velocity.
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In a geodesic approach. to dynamics it is convenient

to parameterize the space in a particular manner. For

instance, if the metric properties of the manifold are

determined by

2-
ds = hj dq dqj ; (i,j = 0,1,2,3)

the length of the curve C, represented in R4 by equation C:

qi = q i(t), t1 < t < t2, is given by

t2
s= f ij dt. (VI-4)

tI J

The element of the functional (VI-4) are the geodesics
in Rs. Since d = - i i ,carrying out the indicated

4 hdq

differentiation required by Euler's equations to determine

5
an extremum of the functional (VI-4) results in the equations,

2 2
hijq + [ik,j] i k = i ds/dt-' q j qi ds/dt (VI-5)

as the desired equations of geodesics. These equations may

be simplified by a choice of the parameter t that sets the

right hand side equal to zero. The choice of the parameter-

ization which does this is

5Sokolnikoff, I.S., Tensor Analysis Theory and Applications
to Geometry and Mechanics of Continua, p. 158, 1964.
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=d ij j = constant =0

which has the dimensions of a velocity.

In the thermodynamic development of the second law

an absolute velocity was defined. If the manifold is para-

meterized using this velocity the results will yield a time

consistently defined by the laws of dynamics. Therefore,

if this absolute velocity is defined as c, the space may

6be parameterized by

q C. (VI-6)

B. EQUATIONS OF MOTION

1. Sqjuare of Momentum

Just as in classical mechanics, several forms of

equations of motion are possible, therefore, it may be

beneficial to present sevcral different approaches here in

order to help interpret the metric coefficients. One approach

would be to empirically determine the metric coefficients

which seem to correspond to reality, while another would be

to seek equations or ralations that the coefficients must

satisfy.

The limitation imposed by the number of symbols
~available requires a comment on notation. First, the

Smetric coefficients corresponding to spatial coordinates
alone will ba denoted by g,,; (, = 1,2,3) as previously

6See Appendix F.
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used and are determined by the choice of spatial coordinate

system (i.e. rectangular, cylindrical, etc.). The metric

coefficients hi. will be used to denote the coefficients

in the Riemannianr space determined by geometrizing the dynamic

system. Latin indices will be used when the indices may

assume any of the four values 0,i,2,3 while Greek indices

may assume only- the values' 1,2,3. The coefficients__.j
1]

22
correspond to the arc element (ds)2 , as the g aa corresponded

to the arc element (ds)2 in the isentropic systems. The

hij are the coefficients of the arc element (dS)2 which are

the potential functions which geometrize the space, as the

h 2m(h-V)g did in the isentropic systems, see Table

2. Concepts such as momentum, "Lagrangian", and "Hamiltonian"

in the four dimensional manifold will be denoted by Pi'

L, or H to avoid confusion with their three-dimensional

definitions. Note the manifold considered here is three-

space with entropy as the fourth dimension.

COEFFICIENTS

(ds) (dS) 2

(3 dimensional) Isentropic gh = 2m(h-V)g 0

(4 dimensional) Non-isentropic hij hij

INJ
Table 2. Metric Coefficients
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Now consider the definition, with previously chosen

parameterization

2 ds 2
d mc m = m hi ; (i,j 0,1,2,3) (VI-7)

and define the four-dimensional canonical momentum

?i =  = m hj qJ (VI-8)

Then the contravariant four-dimensional canonical momentum

is given by

;i hij h hij m h jk (VI-9)

*P

so that

=i h ijmh =kh,, m2  ik iZ
q h

but

2 *mc2 = mhi qiql

therefore

PIP. =mc 2  (VI-10)
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Equation (VI-0) should play an analogous role in

the.R4 manifold as equation (V-13) does in the three-

dimensional space of an isentropic system.

2. Lagrangian and Hamiltonian Equations

Again consider the definitions (VI-7) and (VI-8)

and the additional definition

1. 3q3  3q 3

The equations of geodesics are then

d [L] - L= 0 (VI-12)

or

d (Pi] = Fi (VI-13)

Equation (VI-12) may be written as

(- L - q3 Pi = 0

so that integration yields

L - . = constant.

Again define this constant as
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and write L as

L f1' dq f' FP dq

Then H, where the integrals are taken along the trajectory,

is, given by

H ii Pi fpi i fidq MV-15)

The first two terms of equation (VI-15) may be integrated by

parts so that H becomes

H = H fg dP~- fF dq .. (VI-lE)

Differentiating equation (VI-16) and recalling

equation (VI-13) the Hamiltonian form of the equations

of motion may be written as

.eA ~ i aH= - - dP.

q~ -i __= d
Bpi
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The form of the equations of motion remain the same

as the three-dimensional form and therefore reduce to the

same equations when the entropy is a constant and the h

are the h for an isentropic system.

3. Principle of Least "Action"

Geometrization, for the isentropic system, was

achieved by considering a change of variables in the prin-

ciple of least action which converted the variational problem

from one with variable end points to a problem with fixed

end points. In order to help interpret the ten coefficients

in the four-dimensional arc element for the non-isentropic

system the same approach may be followed.

In the isentropic system the principle of least

action involved the functional

t(P 2 )
A 2Tdt

t(p I )

where

T- 2m t t (ct,0 = 1,2,3)

and the g were to be determined by the choice of coordinate

system.

For the non-isentropic system the analogous functional

would be
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t(P 2 ) ~
S 2T dt (VI-20)

t(p 1 )

where

J

hiE (i#J 0,1l,2',3) (VI-21)ii t

and the Ii are to be determined by the choice of coordinateij
system. In the event that the entropy is a constant then

this functional should reduce to the functional for the

isentropic system, therefore the six coefficients h must

satisfy the relations

The statement "the hi are to be determined by the

choice of coordinate system" raises a question about whether

or not the freedom of choice exists. It seems appropriate

here to discuss the types of geometric theories. Two types

of geometric theories are:

i) Theories with absolute elements: In these

theories the geometry is predetermined. The

events and the dynamical laws are embedded into

this geometrical framework. The metric represents

"absolute elements" injected into the theory.

ii) True geometric theories: Here the metric itself

becomes the dynamic element and is determined by

certain dynamic laws, as in Einstein's theory.
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The approach here is i) as far as ij is concerned,

but the hi must be determined by physical laws. Thus the

choice of the hi may be made but the hi. are to be

determined.

The constraint associated with the variational

problem in the isentropic system case, which made the

resulting Euler's equations equivalent to the Lagrangian

equations of motion, was that the Hamiltonian was a constant.

For the non-isentropic system this constant is given by the

equations (VI-14) and (VI-16) or

H 1 _ d q  (vI-22)

where P was defined to be

Pi- m h q

Then the statement of the principle of least action

for the non-isentropic (four-dimensional) system becomes:

Of all curves C' passing through P1 and P2 in the

neighborhood of the trajectory C, which are traversed

at a rate such that, for each C', for every value of t,

H - H 0 = 0, that one for which the action integral A

(equation (VI-20)) is stationary is the trajectory of

the particle.
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Then if the following definitions are made

-0 3 0 .. i ii -~

(VI-23)

V(q 0r.*q 3 -,fF_ dq I

the function H may be written as

H K + V. (VI-24)

If H - H0 -0so that

K + V-H 0  0, (VI-25)

in principle, the first term in equation (VI-25) may be

solved for the four-dimensional velocity

ds 2 de gtt 3Z (VI-26)
dt; ijdt dt m

as a function of K or

ds 2 ]2
(-) = [f(K) 2

But K =H 0 -V then

__ 2j at dt ]  [f(Ho- V) ]  (VI-27)
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Substituting equations MV-26) and (VI-27) into

the integral (VI-20)'yields
4:"

s S 2 m - V)M 2 ds

2> A f
f (H0  V)

or

A !~fH 0 V) ds .(VI-28)

The varied paths can be parameterized so that C:

( ~ u), u 1  u < u 2 where P: q i(u) and P2  q 1(u2).

then

ds h. rqJdu

where

q"
du

T Then equation MV-28) becomes

u 2A= f mf(H 0 -V) - qij qtJ du

or
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u 2  .. ..-

A = ." H(H0o- v) h.. qt" q'J du (v--9)
u1

where

H(H0 -V) [mf(H 0 -

The trajectories determined by this variational

problem are equivalent to the geodesics in a four-dimensional

Riemannian manifold with the arc element

(dS) 2 h dqi dqj  (VI-30)

where

h = H( 0 - V) hi.

If the entropy is a constant then this arc element

should reduce to the arc element of the isentropic system

so that the six coefficients h must reduce to

1 2 32m(h-V(q,q ,q))g

if V 0 0; V = 0,
- H[Ho( 12 3 =

m2c2 1 g

So-Vmc-- )2

mc

if V=O; V#O and
.=4l1u2/c2
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The equations of motion presented here describes the

motion provided the coefficients in the arc element are known.

It is at this point where the abstract formulism must yield

to empirical facts. For if these equations are to describe

a real system the equation of state must be known for the

system. In thermodynamics an equation of state may have: a form

such as PV - nRT. For Newtonian mechanics force laws are

needed. Electrodynamics obtain the force laws from Maxwell

equations which contain the empirical facts. General rela-

tivity offers a system of differential equations which may

be solved to find the metric coefficients in a space-time

manifold. The determination of the coefficients is not

addressed here, however, in Appendix F the manner in which

some of the coefficients appear in forces may be seen.

The space-entropy manifold with its equations does

not readily display consistency with Newtonian and relati-

vistic dynamics. Section V demonstrated the desired consis-

tency for an isentropic, Q-conservative system. But the

procedure of Section V does not show that Newtonian and rela-

tivistic dynamics can be logically derived from the three

proposed dynamical laws. To show that they do i ideed follow

from the three laws consider a Q-conservative system des-

cribed in the space-entropy manifold. For this system the
mechanical entropy principle must hold. Appendix D shows

that this system is governed by an arc element in a space-

time manifold which becomes the Minkowski space of relativistic
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dynamics when the space-entropy ma-nifold is Euclidean. Thus
relativistic dynamics, and hence, in the low velocity limit,
Newtonian dynamics, follows from the application of the

three dynamical laws for a Q-conservative system.

4

0
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VII. CONCLUSIONS

This investigation was motivated by a number of questions

which were presented in the introduction. Some answers

provided by the results of the investigation can now be

stated:

a. The first question was whether or not the speed of

light was the only characteristic velocity in nature. The

answer is provided by the axiomatic development of the second

law. The axiomatic development produced an integrating

factor for the differential statement of the first law. A

characteristic velocity was shown to exist in the definition

of the absolute velocity. That absolute velocity is given

by a constant velocity process at which the integrating

factor is zero. The important point in the development which

provides the answer to the uniqueness of this velocity is

the proof that the integrating factor is independent of the

nature of the force. Therefore if the absolute velocity

is independent of the force it must be applicable to all

forces and hence unique.

Since y definition the absolute velocity is a

constant in one reference frame it must also be a constant

in any other reference frame moving with a constant velocity

relative to the first. Thus the absolute velocity must be

unique and a constant in all reference frames moving with

constant relative velocities. The experimental and
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theoretical evidence of electromagnetism requires that this

absolute velocity be the same value in all these reference

frames. This requirement leads to the principle of Lorentz

covariance.. Then all laws of nature must be Lorentz covari-

ant whether electromagnetic, gravitational or weak interactions

since the absolute velocity is unique and independent of

the force.

b. The second question was whether all dynamics should

share time assymmetry. The question of "should" is not

answered here. The formulation has introduced a directivity

into the dynamics as evidenced by equation (11-15) which is

the mechanical equivalent of the thermodynamic principle of

increasing entropy. This principle is the basis for the

qualitative prediction of expanding planetary orbits in

Appendix E.

c. Another question which motivated this investigation

but was not presented in the introduction involves effective

mass as a function of velocity and/or force as a function

of velocity. Suppose that the theory of relativity had not

yet been proposed so that Newton's dynamical equations were

not yet required tobe Lorentz covariant. Then suppose that

an experiment were conducted which required the introduction

of a velocity dependence into Newton's second law in order

to describe the motion. What would be the difference in

assuming that the force was velocity dependent or assuming an

effective mass that was velocity dependent?" Then the question

is whether or not the proper modification of Newton's second
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law may be obtained by an approach other than by the special.

theory of relativity. This question is answered in Section

V where it was shown that the integrating factor 1- q2/c

yields relativistic equations.

This formulization of dynamics allows some further

conclusions to be drawn about the velocity dependence of

mass and force. The differential expression for the energy

exchange from Section V is

--mqdq V /c 2 F(q)dq

while the differential expression for the entropy was

dS -F(q) dq.

The expression for 3Q is the statement of the first law,

however the integral of this expression is dependent upon

the path. The expression for dS is a modification of the

first law whose integral is path independent. Both expressions

may be considered as representing the systems' dynamics.

If ZQ is considered the "real" energy transfer then dS might

be interpreted as the "effective" energy transfer. Following

this interpretation then m is the "real" mass and

Vl - F(q) is the "real" force while m and

F 2q/
F(q) becomes the "effective" mass and "effective /C

force respectively. In this interpretation the "real" mass
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is independent of the velocity and the "real" force is,

velocity dependent. However the difficulty of working with

a path dependent integral can be avoided by using the

"effective" differential expression with "effective" mass

and force. This represents a change in viewpoint but not

necessarily a change in the mathematical expression used.

This can be seen by considering that in special relativistic

mechanics only motion for which the relativistic Hamiltonian

remains constant is considered. In the theory given here,

motion for which the entropy, whose mathematical form is

the same as the relativistic Hamiltonian, is a constant,

represents only a special case of all possible motion, namely

isentropic motion.

It is not possible to say that this investigation

supports the conclusion that the iaws formulated bere pro-

duce equations which contain all existing dynamical theories.

One reason is that a quantum description was not even mentioned.

However, in Chapter V consistency with the special theory of

relativity was displayed in the equations obtained for the

case of an isentropic system. Consistency with Newtonian

mechanics was shown for an isentropic system as the low

velocity limit of the relativistic equations. It is more

difficult to determine the consistency between this theory

and General Relativity theory though Appendix D gives some

indication of their relationship.
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7 Appendix D contains the derivation of the MinkowskiI. space-time arc element for a Q-conservative system. Thus

V. it may be concluded that relativistic dynamics does indeed

follow from the three dynamical laws when Q-conservative

systems are considered.

Further theoretical and experimental investigation is

necessary before a definite conclusion can be made about
!I the prediction of expanding orbits. Several questions must

be answered, such as: is it possible to find an expression

of orbital motion allowing both a rotation of perihelion

and a change in the semi-major axis which would represent

an approximation to the solution of the equations of motion,

how closely does planetary motion approximate an isolated

system, is the motion really irreversible, etc.?

As any newly proposed theory which is offered to answer

a particular question, this proposed formulation of dynamics

leads to numerous new questions. Some of these questions

could be: What does the principle of increasing entropy

mean? Might not the planets be in slowly increasing orbits

as a result of following irreversible trajectories? Could

this irreversibility (directivity) be the origin of the

expansion of the universe? From equation (D-10) in Appendix

D it can be seen that for a Euclidean space

* =dt - v/c 2
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where dq = -, is it not possible then to interpret the
h

entropy as a mesure of "time" for the system? Would this

not lead to the interpretation that the principle of increas-

ing entropy requires that a system evolve in "time" or get

"older"?
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APPENDIX A

EQUIVALENCE OF THE TRANSFORMATION STATEMENTS OF THE SECOND LAW

This appendix provides the proof of the equivalence of

the two transformation statements of the second law and the

developm9nt necessary for stating the generalized "Carnot"

theorem for mechanical systems.

The two transformation statements are restated here as:

I. There exists no dynamic transformation whose sole

effect is to extract a quantity of energy from a given

reservoir (or source) and to convert it entirely into

work.

II. There exists no dynamic transformation whose sole

effect is to extract a quantity of energy from a

reservoir while the system is at one velocity and

deliver this energy to another reservoir while at

a higher velocity.

To show the equivalence of these two statements, first

assume I is false and show II must be false, then reverse

the roles.

Suppose I is false. Then energy may be extracted from a

reservoir while the system is at a velocity q1 and converted

entirely into work, with no other effect. This work can

then be converted into energy and delivered to a reservoir

while the system is at q2 > ql with no other effect. The

net result of this two-step process is the transfer of
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energy obtained by the system from one reservoir while at

one velocity to another reservoir while at a higher velocity

with no other effect. Hence II is false.

Here the importance of the words "sole effect" and "no

other effect" becomes more visible. For example, an electron

cannot absorb energy from an electric field, thereby increas-

ing its velocity, then pass that acquired energy to another

reservoir through collision or some other means without

radiating. The radiation is then the "other effect."

I To complete the proof of the equivalence to the two

statements of the second law, first define an "engine" to

be a system that can undergo a cyclic transformation in

which the system does the following things, and only the

following things:

a. absorbs an amount of energy Q2 > 0 while at qa2;

b. rejects an amount of energy Q1 > 0 while at ql' with

I c. performs an amount of work W > 0.

Now suppose II is false. Extract Q2 at ql and reject it at

ii q2'with q2 > i Operate an engine between q2 and ql for

one cycle, and arrange the engine so that the amount of

energy extracted by the engine at q2 is exactly Q2 " The net

result is that an amount of energy is extracted at ql and

entirely converted into work, with no other effect. Hence

I is false. Therefore the statements are equivalent.
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With this statement of the second law a special rever-

sible process called a mechanical "Carnot" engine may be

defined. A Carnot engine is one that makes. a complete cyclic

transformation in a completely reversible way. The cyclic

process of a Carnot engine is, illustrated in Figure Al

where ab is a constant velocity process at velocity q2'

during which the system absorbs energy Q2 : 'bc is conserva-

tive; cd is a constant velocity process at velocity ql,

withql < q2. during which the system rejects energy

and da is conservative. The work done by the system in

one cycle is, according to the first law,

2- Q1

since AU 0 in any cyclic transformation. The efficiency

of the engine is defined to be

~Q1

N -O 1_ 1Q2 Q2

F

a Q

\ q2

ad

C q

_-q

FIGURE Al. Carnot Engine
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. .The conclusion can then be made that, if W > 0, then

* °Q1 > 0 and > 0. This conclusion may be reached as follows.

Q, must not be zero for if it were the system would be capa-

ble of absorbing the energy Q2 and converting this energy

completely into work which is a violation of statement I.

Suppose Q1 < 0. This means that the engine absorbs the

amount of energy Q2 at velocity q2 and the amount of energy -

at ql and converts the net amount of energy Q2 - Q, into

work. This amount of work, which by assumption is positive,

may be converted into energy and delivered to the reservoir

at q2' with no other effect. The net result is the transfer

of the positive amount of energy -Q1 from q to q2 with no

other effect. Since q2 > ql by assumption, this is impossible

by statement II. Therefore Q > 0. From W = Q2 - Q1

andW > 0 it follows that Q > 0.
2

The same procedure can be used to show that if W < 0,

then Q1 < 0 and Q2 < 0.

Then a generalized Carnot theorem may be proven but

is stated here without proof:

Theorem: No process operating between two given velocities

is more efficient than a Carnot process.

Corollary- All Carnot processes operating between two

velocities have the same efficiency.

117



APPENDIX B

CLASSICAL GEOMETRIZATION

The geometrization of classical dynamics is provided

by the principle of least action. Therefore a review of

this principle may prove beneficial in the geometrization

of dynamics governed by the three dynamic laws.

The principle of least action: Of all curves C' passing

through P1 and P2 in the neighborhood of the trajectory C,

which are traversed at a rate such that, for each C', for

every value of t, T + V = h, that one for which the action

A is stationary is the trajectory of the particle.

When stated in the form of the variational equation,

this principle reads

t(P 2 )

S 2T dt= 0, (B-l)
t(p l )

with the auxillary condition

T + V- E= 0, (B-2)

where h is a constant.

It is important to recognize that in this instance the

extremals of the action integral cannot be determined by

setting the function in Euler's equations equal to 2T be-

cause of the auxillary condition. Since T is a function
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of the velocity v, and V is a function of position x alone,

the times t(P 2 ) - t(P 1 ) required to traverse the varied

paths C' will differ in general. Thus the upper limit in

the integral (B-1) is not fixed. One approach to the

solution is to consider a change of variables. Since

the kinetic energy

T dxc dx m ds 2

dt =M ds,

"\ (_E__ ds. (B-3)=~2E V)

Consequently the action integral can be written

%~s 2

A f 2m(Eo - V) ds, (B-4)

since along all admissable paths T = E- V. The integrand
in the preceding integral is clearly independent .of t. The

a~ a

varied paths can be parametrized so that C: x= x (u),

SU1  u < u2 , where P 1  x (ul) and P2: x (u2) and write

ds= 0 x1 du,

where

, =dx
x du
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This permits the action integral to be written in the form

u2

A = f (E0 - V) g x du, (B-5)
u1

and since the limits of integration in (B-5) are fixed, the

determination of the trajectories is equivalent to finding

geodesics in a three-dimensional Riemannian manifold with

arc element

2
ds =2m(E0 -V) g dxm dx. (B-6)

The Euler equations may be formed so that

xC du x,a =

with

G 2(E 0 - V) g 8 x

and recall that

mga x' x,
dt d 2(h - V)

which leads to the Lagrangian equations of motion

d , LT ) T aV ,1(2 , 3 ) .

x 3 ax axa
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APPENDIX C

Integrating Factor for n Dimensions

In the development of the integrating factor the dis-

cussion was limited to a one-dimensional system for simplici-

ty. It now becomes necessary to. consider the extension to

systems with greater dimensionality, particularly the three-

dimensional space of classical dynamics.

In one dimension the differential of the entropy was

written as

dS aQ  f(a) da.

Then if for each dimension the exchange of energy is denotfl

to be EQi' then

dsi i f doi'

where there is no summation intended for fidai. Since each

dSi is a perfect differential then the total change in

mechanical entropy may be written as

dS =dS i =Z -E - E fida.i i i il

However, the question which arises is whether there exists

a single integrating factor 0 such that
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dS= = E i E f.da.

To see this consider the element of work considered

before as

i i3W Z F. dq1  i

Since each dUi is in itself a perfect differential then

du= Z dUi so that
i .ii

30 EU F. dq 1 (dU F dq'

or,

Q2.

If the system is total Q-conservative in the sense that

dQ Z dQ. of0

then dQ = 0 is a Pfiffian differential equation. This equa-

tion is integrable and has an integrating factor *. The

integrability is guaranteed by the dynamical second law since

it is impossible to go from one initial state to any neigh-

boring state. Then, just as in the one-dimensional case,

the perfect differential follows
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But since

dQ~= f da

then

d* Ei fi daidS=Z ~ 1

i

Now following the same argument presented in Section II

concerning the composite system,

= da

where a is a function of all the a. and the q . Therefore

since

dQi = xi dai

then

Q= i Ei-X da + dai}

Now
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u-' Da da)i q 2.

so that

i

or

X Ada Z X. da.

and

da E .da~i-x

It follows then that the . = 0 and that the ratios

x./X are also independent of the q.. Therefore the A's

have the form

A.i= * f.

A - F(a 1l, 2 , ... , a)

and also

A. A da.

Q F da = E F - doi = Z .

= E fi doi"

i
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., 1 , K'.\ .

The right hand side is a perfect differential and therefore

so is the left.

Since Xi/fi is an integrating factor and A/F is also
111

an integrating factor it follows that 4( ,2, ..., in)

is. an integrating factor for the aQ as well as for
1

0= Z aQ.. Therefore
1

dS -Q "
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APPENDIX D

SPACE-TIME MANIFOLD

This investigation has not attempted transformations

from one coordinate system to other coordinate systems. It

is natural then to have certain reservations, or questions,

about the theory that can be removed, or answered, only by

a discussion within this theoretical framework of coordinate

transformations. If such a discussion of transformations

exposes a transformation requirement differing from the

Lorentz transformations of relativistic theory then the

validity and/or utility of the theory should be questioned

because transformation and symmetry arguments have yielded

a lonq list of experimentally verified theoretical predic-

tions, especially in the fields of atomic and nuclear physics.

On the other hand if Lorentz transformations are shown to be

a subset of the most general transformations allowed within

the theory then consideration must be given to the possibility

that the theory is a more general theory with special rela-

tivity representing a portion of the theory.

Though the equations of motion obtained in Section V

were shown to be consistent with the equations of the special

theory of relativity, this Appendix will attempt to provide

a more geometric point of view in order to better display

the transformation requirements.
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Again consider the four-dimensional line element of

Section VI given by equation (VI-30) as

(dS) 2 = h.. dqi dqJ; i:j = 0,1,2,3. (VI-30)

where dq0 = dS is the scaled entropy. The parameterization
0

may be chosen as discussed in-Section VI-A-2 so that

(dS) 2 c 2 (dt) 2 = h (dq) 2 + h0 dq 0 dqa + h dqadqg;

= 1,2,3 (D-l)

when the line element is expanded in the fourth dimension.
Now since the h.. are not functions of dq0 equation (D-1)

0.

may be used to find a solution of dq in terms of the other

parameters. To do this consider the following definitions:

A -h00; B B h Oa dqL

D h a dqa dq8 ; and E c2 dt2.

Then equation (D-1) may be written as

0 2 0A(dq0) + 2B(dq0) + D= E. (D-2)

2
Dividing by A and adding (B/A) yields

(dq0 2 + 2(B/A)(dq 0) + (B/A) 2 (E- D) + (B/A)2
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'. - '
-.

from which the solution for (dq0) may be seen to be

0 ED2(dq) =- (B/A) ± ) + (B/A) '  . (D-3)

Squaring equation (D-3) yields

(dq + a(B/A) 2 2(B/A) ED) + (B/A)

or collecting terms

(dq0) A- ( + 2(B/A)f (B/A)_ (- AD)+ (B/A)2 }

(D-4)

Substituting the expressions of the defined quantities

into equation (D-4) gives

_0 2 c c2 dt2

2hoetdqdu dq
+~ ~ I0 h 00 

0 0)

p~~~ 2 -

0 0

(D-5)

Factoring a dt out of the term in the brackets and using

q = dq/dt, then equation (D-5) becomes

0 2 c 2dt 2  2h 0. hO0 dqy /c 2dt 2 h YSdi~dqi (h OYdqy)2
Cdq + 0  +2

00 00 00 (h00)

h
dt dqa - 0 dqc dq [. (D-6)

h02
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One result of the second law was that a Q-conservative

system in equilibrium was at a maximum. of the entropy. This

was expressed in the variational problem of equation (11-16)

as

as f (dq0/dT )2 dT =0. (D-7)

now consider a system which is describable by a Euclidean

line element, equation (VI-30). For this system the hij are

I constants and the h0 may be considered to be zero, since

a suitable coordinate transformation may be found for which

ho, are zero. Hence equation (D-6) reduces to

(dq0)2  () c2dt - h dqa dqO]. (D-8)
00

Since h00 is a constant for this system it may be factored

out of the Euler equations which yield the trajectories

satisfying the variational problem of equation (D-7);

hence the problem is equivalent to finding geodesics in

the space whose line element is

(ds) 2 = c2 dt 2 - h dq" dqB, (D-9)

where ds 2 = h 00(dq0) 2. When the h a are the coordinate

coefficients ge of Euclidean space then equation (D-9) may

be written as
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2 2 2 (-(ds) = c dt g dq" dq, (D-10)

-4,

which is the line element of the Minkowski space of special

relativity. The Lorentz-Einstein transformation equations

which leave equation (D-10) invariant are well known.

Since the Minkowski arc element ds was scaled to the

differential change of entropy dq0 by ds = dq0/V00 a

question of interpretation may arise. From equation (E-10)

the proper time is seen to be

22 2 2 2 2 2(ds) =c (dT) C (dt) (l- v2/c)

where v2  $ d _ The entropy may then be seen to be

associated with the proper time by

ds -c dT -dq0/-00

or

dq0  c-VhOO d cdtVTv7/

The Minkowski length s is a measure of the "length" of

the world line of a trajectory in Minkowski space. In Min-

kowski space, where there are no forces, a particle with an

initial velocity will have a world line which increases its

length indefinitely. If the entropy is proportional to the
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inkowski length then it too must increase indefinitely.

Why should the entropy increase if there are no forces?

Consider a thermodynamic system consisting of an ideal

gas at an initial pressure. If. the pressure is completely

removed the gas will expand freely and the entropy of the

gas will increase indefinitely. Comparing this thermodynamic

system to the free particle in Minkowski space it is consis-

tent to expect the entropy of the free particle to increase

with the Minkowski length.

* Thus within this theory a Q-conservative syzteia which is

describable by a Euclidean line element must be described

in Minkowski space when the system is in equilibrium at

maximum entropy. This is not a new result because relativistic

equations were arrived at in the section on isentropic systems

but here the relationship between Minkowski space and the

most general allowable space is more readily displayed and

the transformation requirements are more easily seen.

Note that in Minkowski space ds = 0 for a light pulse.

This corresponds to dq = 0. It is an isentropic process

and is consistent with the interpretation of light trans-

mission as an isentropic process whose entropy is zero as

required by the third law.

If a more general Riemannian space is considered the

metric for an isolated system is no longer a Minkowski space.

As an example consider the slightly more general space where

ha and h00 are functions of the space coordinates but the

h0a are zero. Then equation (D-6) reduces to
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0 2 c dt h 8h00 h d qa dq "  (D-11)

h0 00

again but now the remaining line element coefficients are

functions of the space coordinates and the similarities

between equation (D-11) and the Schwarzchild line element

of general relativity may be seen. However, within this

t eory equation (D-6) represents only a portion'of the allowed

motion for though it is & general line element the variational

problem of equation (D-7) may be used only for Q-conservative

systems in equipoise. Other systems must use the line element

and equations of Section VI.

A more general case than the two preceding examples

would involve the mixed terms dt dq0 . These terms are

non-linear in the h0 . and are dependent upon the velocities

adq /dt. When one or more of the h0a are non-zero then one

or more of these mixed terms appear in the line element for

the Q-conservative system. An approximation of these terms

may be made by expanding the square root factor. Since

h0a 0, then
IOa

2 ho6q q h = h ho 2
oo hh, 0  th -h 6q q)
00 00 +( ) 200 00(D12

v (D-12)

& ~~(ds 2 c ~ .q-t c h- 6 Y i

the right hand side of equation (D-12) may be written as
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h0 q + 00  ds 2

00 (h0 4)

(h0 q

00 0  ds2 2 ~
then i + -y)( ) 1ti [ay hbe aprxmtd2y

(hY)0

02~~ ~~ cd 0 s 2 dtc
0h h00  00Q~ 2 00qY)2T

0 - c dt h 1 hdq ds h h d A2
h 0  2 }h0 dqc)2 - dtdq

h 00 h ds 2 l (h 0 qoo
00 OY

102 (s 2 h(D-13) O (s)

00q (h h00

Bycmaigeutoor13 iheuto Dl)i

is posbet e o h mie( emsihh in lmn
d- afec thdsoae lin eleen (Dl)
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This Appendix does not attempt to answer all questions

concerning transformation reqTirements, and is presented

with the hope that the reader may see that this theory does

not require a rework of previous accomplishments of physics,

but rather includes them while providing a framework which

may include others as well.

Rec&Ul that in Chapter V the ard element was only

three-dimensional. The three-dimensional arc element of

that chapter describes an isentropic, Q-conservative system.

The system in this Appendix in only Q-conservative and thus

is four-dimensional since the mechanical entropy is not

required to remain constant.
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APPENDIX E

EXPANSION OF PLANETARY ORBITS

There is considerable demand on any newly proposed theory

to predict some new phenomenon. This demand may stem from

the desire to create a. crucial experiment to help determine

the theory's validity, or it may arise from the desire to

demonstrate an expansion of scope, or increase of generality,

, over prior theories.

During this investigation the time was primarily spent

in the basic formulation of the dynamic laws an6. invest.ga-

ting the possible consistency. However, a recent article

7in Scientific American discussed the necessity of a changing

gravitational constant to account for an observed expansion

of the moon's orbit that was not attributable to known effects.

It then became interesting to consider what, if anything,

the proposed theory would predict concerning changing orbit

size.

Recalling the classical problem in electrodynamics of

calculating the time it would take for an electron to spiral

down and into a proton, it is natural to assume that if

energy is radiated away from this system that the orbit size

should decrease. The electron-proton problem immediately

7
Van Flandern, T.C., "Is Gravity Getting Weaker?"

Scientic American, v. 234, #2, p. 44-52, February 1976.
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brings decreasing planetary orbits .to 'Mind. This notion

involves the idea of energy being radiated away. Figure El

illustrates how radiation of energy results in a decrease

of the orbit for the electron-proton problem.

E

r2  1

E2-- ---------

r-

Figure El. The decrease in energy E 2  E 1 results
in the decrease in radius r2 - r .

Now a 0-conservative system does not radiate any energy

because Q=0. If the simplified two-body system is con-

sidered to be the entire universe it must of necessity be

Q-conservative. Recalling that one result of the second

law, seen through Clausius' theorem, equation (11-13), was

that the entropy of an isolated system never decreases and

remains constant only for reversible processes, in particular,

recall equation (11-15)

iU- RUQ S(B) -S(A). (1I-15)

I R
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Now if the motion of the system is considered to be a

reversible process then, since it is Q-conservative, it

must also be isentropic and should be describable by isen-

tropic equations. If the system is not describable by

isentropic equations but is Q-conservative then the process

must be an irreversible one and the entropy of the'system

must be increasing.

In Section V the isentropic equations of motion yield

the relativistic Hamiltonian, equation (V-12) as a constant

of the motion. Then since the Hamiltonian and the entropy

are both constants of the motion for an isentropic system

they can differ by at most a constant. Then taking the

Hamiltonian and the entropy to be the same value, equation

(V-12) bacomes

0 imc 2 [ .. - 1] + V(ql,q 2 ,q3 ) (E-I)
1 - V2/C 2

If V(q ,q ,q 3 ) is taken as the Newtonian gravitation potential

in spherical coordinates, equation (E-l) becomes

_____2_-_1_r (E-2)
0 7T /c 2

where k = -GMm. Equation (E-2) is the energy of the system

in special relativity and does not quite describe planetary

motion. Special relativity accounts for only one-sixth of

the Perihelion motion which is not already explained by
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planet perturbations. Then if the system is Q-conservative

and the isentropic equation (E-2) does not describe the

motion the process must be irreversible and the entropy must

be increasing.

If the entropy is increasing very slowly equation (E-2)

gives a close approximation to the motion. However, using

Figure E2 and equation (E-2) the situation may be seen to

be the reverse of the electron-proton problem.

S

r 2 r11 ' I -r

S1  ...... - - - -

2

Figure E2. The increase in entropy S2 - S1 results

in the increase in radius r2 - r1 .
2 Vf

In the low velocity limit equation (E-2) becomes the

Newtonian energy of the system

1 2iti
SO = E = my 2 + k/r (E-3)
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and an increase of entropy in the low velocity limit corres-

ponds to an increase in system energy which implies work,

Q # 0, has been done on the system. How can an increase

of entropy be consistent with a Q-conservative system where

Q= 0?

Recall that, from Section V,

- d -VI- v2/c dq

while

dS - dq

since dS = - . In the low velocity limit

1- V2/c
2

dS - 3Q. If dS = 3Q then 3Q would be a perfect differential

and the integrating factor would not have been needed. It

is because of the existence of the integrating factor that

the difference between dS and UQ exists, and it is this

difference which allows a system to remain Q-conservative,

dQ = 0, while the entropy increases. The relationship between

V and Y is governed by the conservation of angular momentum.

This relationship determines how total entropy is split

between kinetic and potential entropy, just as classically

the angular momentum in the central force problem determines

the split between 'he kinetic and potential energy.
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Thus, even though this increase in orbit size must be

very slow if it is to correspond to. experimental reality,

it is a reasonable qualitative prediction of the theory

provided the orbit motion is considered to be an irreversible

process of a Q-conservative system.
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APPENDIX F

OTHER METHODS OF DETERMINING THE COEFFICIENTS

The element on classical thermodynamics which makes the

theoretical logic consistent with experimental results is

the equation of state, while in Newtonian mechanics it is

the force law. In general in the application of this dynamic

theory, in the non-isentropic case, correspondence between

theory and reality has to be made by the choice of the metric

coefficients. Then to apply the theory to any physical

situation it is necessary to determine the applicable coeffi-

cients. But how may they be determined for the differe.t

situations?

In order to investigate the possibility of methods of

determining the coefficients other than the assumption of

equations involving Einstein's tensor equation, for instance

consider the four-dimensional line element given by equation

(VI-30)

2 i(ds) hij dq dqj ; i,j = 0,1,2,3, (F-1)

where q0 = S/F is the entropy. There is more than one

method of determining equations of motion for this system.

A. ARC LENGTH AS THE PARAMETER

Therefore suppose, as the first approach, the parameter

is chosen to be the arc length by the choice
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ds c dt. (F-2)

Then equation (F-I) may be written
ds *

o = !)2 = h (q 0 , +2h 0 o(qO 0ct + h %_q (F-3)

where q = dqi/dt. Then define

1 2 -O O 022 + *4 Oaa aia-
L mc =- (q qm0 ~ +~-q (F-4)

where m is a constant. Now define

S h0 0 (qo) 2  (F-5)

A .A -hoa€ ° , F-6)

and

K t -= 8 (F-7)

so that equation (F-4) may be written as

- mA

z = i + a qa + K (F-8)

The geodesics are then given by the four equations
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a-Elai L] ai L 0; i =0,1,2,3, (F-9)

where

aq

The equation for i =0 is then

d (-ma 0  + CL0((4) a0 L 0, (F-10)

while the three spacial equationsare

d I L 0; a=1,2,3. (F-li)

By defining

- - mA

equation (F-8) can be rewritten as

L =K -V. (F-i2)

Zquation (F-1l) becomes

L= dtaK -t - V. (F-1.3)
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Note that here the metric coefficients are predetermined

by some physical law, equation of state, or empirically.

However when the hij are known then equation (F-10) may be
solved for q0 and equations (F-13) yield the qa.

Define the right hand side of equation (F-13) as the

force

Note that

m
a ca

• then

d ~ m ~ "
Ut -5 v V - 30 A + a 0 A a  o

and

ae V=n a c - e A8 q3

Substituting these expressions into the force (F-14) yields

f= -mA mOA aq0 - W a + -aa a A q

or
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__ _ m m Z*O -S
f -ma1 O o ° + a(

Define

E a 0 - (F-16)M a

and

B V x A , (F-17)

so that the force may be written as

- mf =mE +-(V x)
a a C

where

~V

or as a vectoral equation

= nE + m(V x W). (F-18)

It has been shown here that forces resulting from the

four metric coefficients hOa and h00 can be brought into the

form of a Lorentz force and that this way it is shown how, for

145



electromagnetic forces, the electromagnetic forces, the

electromagnetic potentials are connected with the metric.

There are two questions which may be posed here. Suppose

the potentials defined here are the electromagnetic poten-

tials. Then the electrostatic potential would be a function

of the square of the rate of entropy change while the com-

ponents of the vector potential would be proportional to

the rate of entropy change. What would be the physical

significance of this relationship? If the h are to corres-

pond to the isentropic metric elements there may be.a force

involved with them (see equations (B-6) and (V-27)). What

then is the physical relationship between these forces and

the Lorentz-like forces of equation (F-18)? If the Lorentz-

like forces are in fact the electromagnetic forces, what

type of force must the others be?

B. ENTROPY AS THE PARAMETER

A second approach might be to c±oVse one coordinate as

the parameter, such as choosing

dq c dT. (F-19)

For this choice of parameter the line element becomes

ds 2 c 2 h + 2c a+h q q]-) 00 hOqa + q ,
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where

q'ct dq /d .

The geodesics are then found as the solution to the

variational problem

6 f17 /dTT2 dc =0 (F-20)

or defining

m ds 2 q, 2 8
L (s 2 -ho0 + mc ho. q' + h qct q' kF-2-)

and

K haql q'a (F-22)

with the additional definitions

-- 23

Aa

c h0o, (F-24)

V m -- A q ,t (F-25)

then
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L -m(d5) 2 K V(F-26)
4 2 ~

The integrand in the variational problem, equation

(F-20) is a function of 'r, q~ and qI I therefore there

are only three-equations of motion. To obtain these equations

consider

then

I~~~ I' F = L('K-at V),

and

F L~

Euler's equations then become

d 2,a
~ a~K- ~V)] -L (D K - D V) =0. (F-27)

Carrying out the differentiation of one of the terms of the

product and rearranging terms leads to

.('K] -a K d (a' VI - V + fD (F-28)
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where

f (~l K ac V (A Lt + a~ L q'l +- 3 L.

(F-29)

But from equations (F-23) , (F-24), and (F-25)

3' V m

and

3 V ma AO q--ma- c q'

so that

d m1

4'-] ,]

where

Then equation (F-28) may be written as

aK] - K = - ma - MTA + M[a A ' A

(F-30)

The definitions
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= 11

E A(F-31.)
_a a C T.M

and

-- V xX (F-32)

may be made so that equation (F-30) can be expressed as

d - D (F-33)
a

where>1y
m= t M(~ x 9), (F-34)

with

_a

These two approaches may be applied to any four-dimensional

metric, the difference being that in the first case, where

the arc length was considered as the parameter, four equations

of motion were obtained which would describe the motion as

geodesics. In the second case there are only three equations

of motion from the variational principle. Given the coeffi-

cients hi.. which correspond to the physical situation either

procedure migat be used to obtain the motion.
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The coefficients h0a and h00 are the coefficients which

describe the deviation from an isentropic system and the

potentials defined from these coefficients lead to a force

(i or ) similar in form to the Lorentz forces in electro-

magnetism. This suggests that the description of "radiation"

of entropy is provided by these coefficients.
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