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ABSTRACT

It is shown that the laws of particle dynamics can be
formulated in a thermodynamic framework. An important role
is played by an itegrating factor which makes the energy
exchange with the environment a total differential and leads
to the definition of a mechanical entropy. The integrating
factor is shown to be a function of velocity only and an
argument following Caratheodory's proves the existence of
a unique limiting velocity which makes its appearance in
the integrating factor. '

Equilibrium and stability conditions for dynamic systems
are derived and lead to the formulation of dynamics as pro-
cesses in a space-entropy manifold the metric of which is
determined by the nature of the system. The dynamic laws
follow from a variational principle. For the case of isen-
tropic processes and with a particular choice of the inte-
grating factor they are shown to be the laws of special
relativistic mechanics. More general dynamic processes are

discussed.
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I. INTRODUCTION

This study presents a new formulation of general dynamic
systems. This formulation includes both thermodynamic and
mechanistic concepts. It is shown that even relativistic
mechanics with its characteristic occurrence of a limiting
velocity can be described on the basis of thermodynamic
concepts. This approach also sheds light on the role of

entropy in the description of non-conservative mechanical

systems.

Physical theories are proposed for many reasons. One of

these might be to describe, or understand, a familiar phenom-
enon which had no prior description or explanation. Another

might be the discovery of ainew phenomenon, or the results

of a new experiment, which has no explanation within the

B ; scope of existing theories. Still another is to bring the

description of phenomena which at first appear to be unrelated
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together under a uni.fying theory. The motivation, or objective,
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an important role in the philosophical basis upon which the
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theory is developed and, therefore, may become a part of the

ﬁp&wg thecry itself.
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AT The motivation for this investigation arose from a number
i of questions which one could rather naively ask:
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The first concerns the requirement of Lorentz covariance

of all laws of nature. Ample theoretical and experimental
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evidence exists for this requirement when electromagnetic
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forces are considered. Electromagnetic waves are accurately
described by Maxwell's equations and propagate in free space
with the speed ¢ for every inertial observer. But what forces
us. to require Lorentz covariance for all laws of nature, even
those dealing with other than the electromagnetic interactions?
What about the gravitational or the weak interaction? Gravi-
tational waves have been predicted and their detection has
recently been claimed. Could these not travel in free space
with some other velocity b? Are there any other reasons than
aesthetics or the principle of Occams razor, which asks us to
consider only the simplest system of laws, that there is
only one characteristic velocity in nature?

A second question concerns the role of time assymmetry.

The equations of motion in both Newtonian and relativistic

mechanics are time symmetrical. Yet nature displays a direc-
tivity that would not be described by the universal applica-
tion of time symmetrical laws. The most vivid display of
this directivity in nature is in thermodynamics where the
principle of increasing thermodynamic entropy has many uses.
Then should not all dynamics share such a directivity? 1If
so, this directivity would not be seen in time symmetrical
laws of motion.

Dynamics, as described by relatiwvity, has a limiting
value of velocity which is the speed of light. This notion
of a limiting value also appears in thermodynamics in the
absolute zero temperature. This similarity between thermo-

dynamics and relativistic dynamics. the desire to introduce

10
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the possibility of temporal directivity into mechanics, and
the strength and generality of the basic laws of thermody-
namics focused this investigation.

The objective of this investigation was to determine
whether or not the logical structure of classical thermo-
dynamics coulid yield dynamical laws whiéh could be applied
to mechanical systems and produce equations of motion which
would contain existing dynamical theories as limiting, or
special cases, and provide the directivity seen in nature.
The following proposed formulation of a dynamical theoxy is
the result of such an investigation. It should perhaps be
stated here that this formulation does not represent an
attempt to base mechanical dynamics upon thermodynamics
itself but to use the logical formulism of thermodynamics
as a common basis for different branches of dynamics.

The investigatior. is based upon the formulation of three
dynamical laws identical instructure to the three laws of
thermodynamics. The only difference between the develop-
ment presented here up to, and including, stability condi-
tions and the development of thermodynamics is that velogity,
position, and force will be used as thermodynamic variables
instead of temperature, volume and pressure.

It may seem that little is to be gained by simply rewriting
thermodynamics and particle dynamics in this fashion. How-
ever if the possibility exists for thermodynamics and particle

dynamics to result from the application of the same laws,

11
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these laws must be identical with thermodynamic laws when

thermodynamic variables are used. To see the results of

PR

these laws applied to particle dynamics requires the use of

the variables normally used for particle motion description.
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Section II presents the three proposed dynamical laws.

The section also includes the axiomatic development of the

A h T Kl A

LR dynamical second law and determines an integrating factor

which makes the differential energy exchange between the
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system and the environment a perfect differential. The

integrating factor is shown to be a function only of the

velocity. An argument, following Caratheodory's, proves the
existence of a unique limiting velocity. The concept of
mechanical entropy is introduced and the principle of
increasing mechanical entropy ié presented.

In thermodynamics other state functions are defined and
prove very useful in different applications. The same state
functions for the mechanical system should also play similar
useful roles. Section III defines these state functions and

derives the mechanical Maxwell relations based on these

functions.
Section IV derives the equilibrium and stability condi-
tions based on the mechanical state functions. The analysis

results in quadratic forms in various variables which express

the stability conditions. These are the required gquadratic

e

forms.

e e % a2

Up to this point thermodynamic logic has been used exclu-

mae o

sively. But the development has shown the existence of a
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limiting velocity and the existence of the mechanical entropy.
The development also displays the "natural" variables of
particle dynamics. These variables may be seen in the qua-
dratic forms which express the stability conditions. This
is the point where this thesis introduces a new idea.
* The new idea is the adoption of the quadratic forms and
variables that expré%s the staﬁility conditions as the met-
rics and natural variables which govern particle dynamics.
The natural variables that appear in the simplest guadratic
form are the space coordinates and the mechanical entropy.
The metric in relativistic particle dynamics is a metric
involving space and time as the variables. Therefore Section
V deviates from a logical abstract approach, which suggests
the investigation continue on by adopting the metric, by
looking at the most general motion, and showing that in special
cases the allowed motiun is identical with the motion of New-
tonian or relativistic dynamics. This digression demonstrates
the consistency between the proposed thermodynamic description
of a mechanical isentropic system and the description provided
by Newtonian and relativistis mechanics. It provides a measure
of confidence in the abstract approach which is picked up
again in Section VI. Here the arc element and parameteriza-
tion are discussed and the resulting equations of motica are
presented.

Appendices A, B, and C provide proofs and developments

in support of the text. Appendix E briefly discusses a

13
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possible prediction of expanding planetary orbits. Consis-
tency with relativistic particle dynamics is again addressed
in Appendix D where the space-time manifold is shown to be
the result from the application of the principle of increasing
mechanical entropy to the space-entropy manifold. This repre-
sents the completion of the logical progression which formu-
lates the dynamicai laws, deriving the quadratic forms'(which
are taken as the metric), applies the dynamical second law
in the form of the mechanical entropy principle, and shows
that the resulting manifold is a space-time manifold which,
for the special case of a Euclidean manifold, is the Minkowski
space cf special relativity. Appendix F presents a brief
look at the equations of motion which result from two differ-
ent methods of parameterizing the space-entropy manifold.
Figure 1 is a flow chart which indicates the logical
structure of the text and the manner in which the Appendices

fit into this structure.

14
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IT. GENERAL LAWS

A.. CONCEPTS

In the following development physical concepts are neces-
sary, as are symbols for these concepts. Because this devel-
opment will merge certain tﬁermodynamic conceptualizations
into mechanics a notational dilemma must be faced. At the
one hand it is.desired to preserve the thermodynamic concep-
tualization by using familiiar symbols from that théory. On
the other hand it is really mechanical systems for which a
description is sought. The formalism then looks either like
thermodynamics with familiar thermodynamic quantities replaced
by mechanical quantities, or it looks like mechanics into
which thermodynamic quantities introded. Iﬁ either case
there is danger of confusion. Oqe could evade the dilemma
by choosing entirely different symbols for the variables of
the theory. But then the whole takes an artificially abstract
character. Since the purpose of this formulation is to bring
out the power of the thermodynamic conceptualization it was
decided to use the suggestiveness of the thermodynamic or
mechanical symbols whenever convenient and the reader is
asked to keep an open mind and not make premature associaticns
with the sywmbols used.

As an example, in mechanics there are energy concepts
such as "energy of the system", Hamiltonian, Lagrangian,

kinetic energy, etc. In classical thermodynamics there is

16




"internal energy of the system", entropy, enthalpy, and free
energy. If a dynamical theory for mechanical systems is
developed from the logic of thermodynamics the various
thermodynamic energy concepts may be expected to have
analogies applicable in the mechanical system. Thus there
are three types of theoretical energy concepts, with their
associated symbols, involved;

i. mechanical energy concepts (symbols H, L, T, V,

ete.),

ii. thermodynamic energy concepts (symbols u, S, H,

A, G, ete.), and

iii. mechanical concepts analogous to thermodynamic
concepts developed here (symbols to be chosen).
Difficulty may arise with the choice of symbols and the
words used to denote concepts. In particular consider the
thermodynamic "internal energy of the system." The mechani-
cal analoque of this concept will be called "energy of the
system." It is natural to equate this in one's mind with

the Hamiltonian in classical or relativistic mechanics, how-

ever it will be seen that this association is not appropriate
in general. Symbols used are chosen in two ways. One method
is to use a symbol which identifies the concept with its
origin in the thermodynamic logic, thus the script S iden-
tifies the mechanical entropy concept with its analoque,

the thermodynamic entropy S. The other method is to use the
symbol with its mechanical role in mind, here the script F

will be used to denote the concept of a force, however this

17
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force is not the’same as the force, denoted by F, in existing
mechanics theories.

' The reader may also be tempted to seek an immediate
interpretation of a new idea rather than following along
with the development of the abstract logic to a more appro-
priate point to make an interpretation between the abstract
concept and physical reality. A reader with a strong back-
ground in relativity may be thinking in terms of inertial

reference frames and transformations while others may be

thinking of reversibility and irreversibility. Transforma-

tions between inertial reference frames are not considered

in this investigation. Neither is extensive investigation
into reversibility/irreversibility attempted. Therefore
the reader is cautioned not to prematurely apply his knowledge
of another theory in interpreting a concept presented here.

The following list of definitions presents some of the
concepts which will be used in later developments. Just as
the useful but non-operational definition of heat, which is
"Heat is that which is transferred between a system and its.
surroundings as a result of temperature differences only,"
seums vague when first seen some of the following may not
be immediately clear. Later developments and use of the
concept should help to clarify the definition:

a. A "dynamic system" may be any physical system of any
number of parameters, where parameters are considered to
include constants (constants of the motion, integration

constants, and/or universal constants, i.e. gravitational

18




constant) and dynamic parameters.

b. "Dynamic parameters" are quantities necessary to
describe the system and include variables such as velocity
q, where g = dg/dt, and position g as well as parameters
such as time, which is thought of here as a parameter of the
motion rather than a coordinate as in relativity theories.

c. A "state" is specified by a set of values of all the
parameters necessary for the description of the system.

d. "Equipoise" prevails when the state of the system
does not change in time. The word "equilibrium" could have
been used here except its use in connection with a mechanical
system will tend to cause the reader to think in terms of
an existing dynamic law, such as Newton's second law, which
makes the definition of mechanical equilibrium more readily
understood. This investigation seeks a dynamic formulation
therefore care must be taken here to avoid prematuré inter-
pretation. The meaning of equipoise will become clearer
after the conditions for equipoise are discussed and the
dynamical laws ara formulated for then the relationship between
equipoise and classical mechanical equilibrium may be seen.

e. The "equation of state" is a functional relationship
among the dynamic parameters for a system. If F, é, and g

are the dynamic parameters cf the system, an egquation of state

may take the form

£(F,q,q) = 0

19




which reduces the number of independent ‘variables of the
system from three to two, £ must be continuous and at least
twice differentiable. It is useful to represent such a
system by a point in the three-~dimensional (F,é,q) space

as shown in Figure 2.

gl

surface of
equation of state

*q

Figure 2. Geometrical representation of
the equation of state

The equation of state then denotes a surface in this space.
Any point lying on this surface represents a possible kine-
matic state of the system.

If the system is represented by the nine variables Fl,

F 1l 2 3 1 2 3

For F3e @7, @, @7, @7y 97, g7, then the eguation of state

2!
defines a hyper-surface in this nine-dimensional space.

£f. A "dynamic transformation" is a change of state.
If the initial state is an equilibrium state, the transfor-
mation can be brought about only by changes in the external

censtraints, such as fcrces, on the system. The transforma-

tion is gquasi-static if the constraints change so slowly

20




that at -any moment the system is approximately in equilibrium.
It is "reversible" if the transformation retraces its his-
tory in time when the constraints retrace their history in
time. A reversible transformation is quasi-static, but the
converse is not necessarily true. As an example, in thermo-
dynamics a gas that freely expands into successive infini-
tessimal volume elements undergoés a quasi-static transfor-
mation but not a reversible one.

g. The concept of work is the same as in mechanics in
that, when an equation of state exists,

= B gqt
dw = Fy dq

where the suémation convention Fi dqi = ;Fi dqi is used.
The use of the script F will be to indicate that this varia-
ble, "force", is considered to be a function of the position
and velccity.

h. Numerous energy concepts arise in later developments
and care will be required in notation to minimize confusion.
Therefore, all energy functions introduced in this dynamic
theory will be denoted by script letters while capital let-
ters will be used for energy fgnctions in other theories.
Non-mechanical energy absorbed-by the system will be denoted
by Q. If the system is a thermodynamic system Q is the heat
while for an electromagnetic system Q may be radiant energy

absorbed by the system.

21




i. A "reservoir" is a system so large that the gain

or loss of any finite amount of energy does not change its
state.

j. A system is "isolated" if no non-mechanical energy,
Q, is exchanged between it and the external universe. Any
transformation the system can undergo in isolation is called
a "Q-conservative process". The word "Q-conservative” is
used to emphasize that this definition of a conservative
process is more general than the definition of a conserva-
tive system in classical mechanics. The distinction between
a Q-conservative system and the classical conservative
system may be seen later.

The energy of the system, which represents the energy
possessed by the system, is considered to be .

U(ql: 0-0,qn,él, -.-'énlcll 00y Cm)

dl will be assumed to be a perfect differential. The reader
is again reminded that this function <an not in general be
equated to the Hamiltonian of classical or reslativistic
mechanics. The relationship between the function U and the
enercy concepts of classical mechanics can be seen after
equations of motion have been formulated. Therefore to mini-
mize the possibility of confusion the function U will be
referred to as the "system energy."

It will be supposed that functions defining various kinds

of energies depend on a number of parameters. The totality

22
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of the parameters, both dynamic parameters and constants,
need not be unique, but whatever particular‘éhoice of a set
of dynamic parameters (variables) is made, it shall be
assumed that they are independent. In some situations the
variables may be determined as functions of a scalar t

(usually time) so that one can regard them as defining a

curve C; x- xl(t), characterizing a certain pro.ess wherz

the x* indicate the set of independent variables.

B. FIRST LAW

The concept of conservation of energy is fundamental
to all branches of physics and therefore represents a logical
keginning for a generalized theory. Therefcre, in terms
of generélized coordinates the notion of woran, or mechanical
energy, is considered linear forms of the type

1

'c'l'w = Fi(qlr~..oqnlé .'_,&n'cl,,.,,cm)dql; (i=1,2,...,n)

The line inteéral fFidqi then represents the work done
along the path C by th: generalized forces.

A system may acquire energy other than mechanical, such
energy acquisition is denoted dQ.

The energy of the system, which represents the energy
possessed by the system, is considered to be

1

U(ql,...,qn,é ,...,én,cl,...,cm).

23
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DU will be assumed to be a rerfect differential.
With these concepts then the generalized law of conserva-

tion of energy has the form

dQ = au - aw
=4 - Fadq“ ; (a=1,2,3) (II-1)
= 2 ag® - (F(q,@) + Fldg®
oq
where
. _ Al
Fa(q’q) = .a .
og

Positive dQ is taken as energy added to the system by
means other than mechanical and Fa is taken as the component

of the generalized force acting on the system. Some systems

3

>
R, s P

may not involve forces Fa(é,q), which are functions only of

position in classical mechanics. It will be seen that when

they do exist the forces F_, in the conservation of energy

al

LAY
‘i:—f C

,‘.-’A“" 4"'

statement play a role analogous to reactive forces. It will

.
-,

also be seen that if there are no forces Fa(é,q), the role
i-?%- of the forces Fa is somewhat different from a role analogous
to reactive forces,

In an infinitesimal transformation, the first law is

equivalent to the statement that the differential

O bt
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du = 3 + F aq”

is exact. That is, there exists a function U whose differ-
ential is dlU; or the integral fdU is independent of the path
of the integration and depends only on the limits of integra-
tion. This condition is not shared by dQ or du.

As an example a cne-dimensional case with the variabies
F, é, and q will be considered.

Given a differential of the form df = g(A,B)dA + h(a,B)dB,

the condition that df is exact is %g = %%. To explore some

of the consequences of the exactness of dU consider a system
whose parameters are F, é, q. Any pair of these three
parameters may be chosen to be the independent variables
that completely spacify the state of the system. The other
parameter is then determined by the equation of state, for '

example, consider (! = U(F,q), then

au = (&

al
9F' q dF + (aq)qu !

the requirement that dU be exact immediately leads to the

result

L4 = &l
218D Jr = FED g

The following equations, expressing the energy absorbed

by a system during an infinitesimal reversible transformatioa

25
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are easily obtained by successively choosing as independent

variables the pairs (F,q), (F,q) and (q,9);

= _ .3l _
G = Gh oo + 1D, - Fl aq,
q = 1§y - F(-—‘I)Fldq + [GR - FGR S aF,

<

d= D, e+ 13D - A da

These etjuations are of little practical use in their
present form because the partial derivatives that appear are
unknown. However, from these equations the "energy capacities”

may be defined as

then from the above dQ equations the energy capacities are

gs2en to be

a9, _ (U
q Aé q 3q q

c

and

- ,4Q, _ ,olU
Cp 2 (<D= (=) - F(—‘i),:
q 9q 9q
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C. SECOND LAW

l. Transformation Statement

There are processes which satisfy the first law but
X which are not observed in nature. The purpose of the dynamical
second law is to incorporate such experimental facts into

the model of dynamics.

R e R e N R A AR s

The logic of thermodynamics offers two approaches to
a generalized second law. The fixst approach consists of two

equivalent generalized statements the first of which, for

the mechanical system, may be stated as;

I. there exists no dynamic process whose sole effect is

to extract a quantity of energy from a given reservoir
{or source) and to convert it entirely into work.
. The second statement is given in Appendix A and is
shown in the Appendix to be equivalent to the first statement.

2. Axiomatic Statement

A second approach to the dynamical second law has
been provided by the Greek mathematician Caratheodory, who

presented an axiomatic development of the second law of

thermodynamics. This development is presented here with the
notion of a mechanical system in mind rather than a thermo-

dynamic system to demonstrate the applicability of the logic
to any type of system.

a. Existence of Constant Energy Surfaces.

. M«.
P i
NS g

N

in o In the statement of the first law dU is considered
ﬁl: ! -

§f‘1 as a perfect differential; however dQ and Fdq are not, in

§f general, perfect differentials. Therefore consider a process

%
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in which the system exchanges energy with its surroundings;
then an axiom analogous to Caratheodory's axiom may be cited;
Axiom: In the neighborhood (however close) of any

equipoise state of a system of any number of
dynamic coordinates, there exist states that
cannot be reached by reversible Q-conservative
(dQ = 0) processes.

When the variables are thermodynamic¢ variables the Q-conser-

vative processes are known as adiabatic processes.

A reversible process is one that is performed

in such a way that, at the conclusion of the process, both
the system and the local surroundings may be restored to

their initial states, without producing any change in the

. rest of the universe.
Consider a system whose independent coordinates

. are a generalized displacement denoted q, a generalized
ff;z, velocity g (with q = dg/dt), and a generalized force F.
g o

= It will be shown that the Q-conservative curve comprising
A

i R4

PR all equipoise states accessible from the initial state, i,
prvd may be expressed by
g
j?"'g‘,

W
TR .

Fgt o = 0(q,q) = constant,

e

A{ﬁui s
. where ¢ represents some as yet undetermined function. Curves
= ka2

3 “f . v s
;??‘4 corresponding to other initial states would be represented
= by different values of the constant.

o
s
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Reversible Q-conservative curves cannot inter-—
sect, for if they did it would be possible, as shown in
Figure 3, to proceed from an initial equipoise state i, at
the point of intersection, to two different final states fl
and.fz, having the same g, along reversible Q-conservative

paths, which is not allowed by the axiom.

- q

Figure 3. If two reversible Q-conservative curves
could intersect, it would be possible
to violate the axiom by performing the
cycle ifl f.i.

b. Integrability of dQ
When the system can be described with only two
independent variables, such as on the Q-conservative curve,

then if these variables are é and q, and F is a generalized

force,

dQ = dU - Fdg . (II~1A)

Regarding U = U(g,q) then

29
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do =& _dg+ 1&h: - F1 aq, (11-2)
3q @ 3q'q
au 3U , :
: where (=~) , F, and (z=): are functions of q and q.
aq 4 q'q
E - A Q-conservative process for this system is
: B, . 3
; —) . dqg + [(=)* - Fl dg=0 . II-3
(ac} qda*+ l5zx)g - Fl da ( )
.§ Solving for d&/dq yiélds
- 3
N gﬂé - [(‘3&‘ C'I - F]
" dq 4 .
w; 2
‘i The right hand member -is a function of q and q, and there-

fore the derivative dq/dq, representing the slope of a Q-

conservative curve on a (é,q) diagram, is known at all points.
Equation (II-3) has therefore a solution consisting of a

family of curves, see Figure 4, and the curve through any

one point may be written

A
o,
PRI

-~
-

Fotp
i
NS % i

.,"a'h‘;‘

o = c(é,q) = constant.

,}'

- A
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Figure 4. The first law, through equation (II-3)
fills the (q,q) space with slopes
specified at each point. The ¢ curves
represent the solution curves whose
tangents are the required slopes. The

second law requires that these curves
do not intersect.

A set of curves is obtained when different values are assigned
to the constant. The existence of the family of curves .
o(é,q) = constant, generated by equation (II-3), representing
reversible Q-conservative processes, follows from the fact
that there are only two independent variables and not from

any law of physics. Thus it can be seen that the first law

may be satisfied by any of these ¢ = constant curves. The
axiom requires that these curves do not intersect. Therefore
the axiom, together with the first law, leads to the conclu-
sion that: through any arbitrary initial-state point, all
reversible Q-conservative processes lie on a curve, and Q-
conservative curves through other initial states determine

a family of non-intersecting curves.
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To see the results of this conclusion consider

a system whose coordinates are the generalized velocity é,

P PORY o o R 2mIR S Ly T

the generalized displacement g and the generalized force F.
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The first law is

dgQ = du - Fdq (II~-4)

~ - .

where U and F are functions of q and q. Since the (q,q)

surface is subdivided into a family of non-intersecting Q-

conservative curves

o(q,q9) = constant

. where the constant can take on various values 01’ 02, e
any point in the surface may be determined by specifying
the value of o along with q so that U, as well as F, may be

regarded as functions of ¢ and g. Then

_ ol ) ol
au = (E-a)q do + (a—q-)c dq (II-5)
and
=. _ ol ou
dQ = (35)q do + [(331-)0 F]1 dq
L Since ¢ and q are independent variables this
-4
G equation must be true for all values of do and dq.
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Suppose do = 0 and dq # 0. The provision that
do = 0 is the provisicn for a Q-conservative process in which
do

in order for ¢ and q to be independent and for dQ to be zero

0. Therefore, the coefficient of dg must vanish. Then,

when do is zero, the equation for dQ must reduce to

—' au -
aQ = (-56'-)(! dO’I
with
al _
(3&)0 = F.
Defining a function A by
- ol
A ('a—o: q '
then
dQ = A do , (II-6)
where
A= Ao,q) .

Now, in general, an infinitesimal of the type

Pdx + Qdy + Rdz + ... ,
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known as.a linear differential form, or a Pfaffian expression,
when it involves three or more independent variables, does
not admit of an integrating factor. It is only because of
the existence of the axiom that the differential form for
dQ referring to a physical system of any number of indepen-
dent coordinates possess an integrating factor.

Two infinitesimally neighboring reversible Q-
conservative curves are shown in Figure 5. One curve is

characterized by a constant value of the function ¢ and

a’
the other by a slightly different value 9y + do = Ope In
any process represented by a displacement along either of
the two Q-conservative curves dQ = 0. When a reversible
process connects the two Q-conservative curves energy ab =

Ado is transferred.

*>q

Figure 5. Two reversible Q-conservative curves,
infinitesimally close, when the process
is represented by a curve connecting the
Q-conservative curves, energy dQ = Ado
is transferred.
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The various infinitesimal processeé that may be
chosen to connect the two neighboring reversible Q-conserva—

tive curves, shown in Figure 5, involve the same change of ¢

but take place at different A. In general A is a function

of é and q. However it is obvious that A may be expressed
as a function of ¢ and q. To find the velocity dependence

of ) consider two systems, one and two, such that in the

~,

first system there are two independent coordinates é and gq

N M NI A IR R SRS AIE 1200
s A R A e MR T ey A T AR e %

and the Q-cdnservative curves are specified by different

values of the function o of & and q. When energy dQ is

transferred, ¢ changes by do and dQ = Adc where A is a

function of ¢ and é.

The second system has two independent coordinates

Ll S
P

, . )

T T R R

3 ‘I g, -and § and the Q-conservative curves are specified by

§ different values of the function G of é and &. When 36

% is transferred, ¢ changes by do and 36 = 3d6 where ) is a
i, % function of 3 and &.
;éﬁﬁg ; The two systems are related through the coor-
éiﬁ? dinate & in that both systems make up a composite system
égfév in which there are three independent coordinates é, q, and
Ny -
f{%% & and the Q-conservative curves are specified by different
%%}9 values of the function ¢, of these independent variables.
?;: ) Since ¢ = c(é,q) and 8 = 3(é,q), using the
;??‘” equations for o and 3, 0, may be regarded as a function of
‘Ef:; . 4, ¢ and q.
o
S
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For an infinitesimal process between two neigh-

boring Q-conservative surfaces specified by Oc and o, + doc,

c
the energy transferred is Ebc = Acdqc where Ag is also a

function of q, ¢, and g. Then

6, . 90 3oz .
do, = -:2 dq + -a-ofg d +—= do (II-7)
oq L1y

Now suppose that in a process there is a trans-
fer of energy aoc between the composite system and an external
reservoir with energies dQ and dQ being transferred, respec-

tively, to the first and second systems, then

and

AC dO‘c = )\do + Mo )
or

do, = %- do + -Ax_ as . (II-8)

c c
Comparing equations (II-7) and (II-8) for dcc

then

_-a?c = 0.

oq
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Therefore ¢ does not depend on q, but only on ¢ and o.

That is

Oy = oc(c,c) .

Again comparing the two expressions for doc

_)‘_ = dcc and -:):— = —.—.dac
Ac do Ac do '

A

therefore the two ratios A/Ac and A/kc are also independent
of é, q and ;. These two ratios depend only on the ¢'s, but
each separate A must depend on the velocity as well (for
example, if A depended only on ¢ and on nothing else, the
dQ = A\do would equal f£f(o)do which is an exact differential).
In order for each A to depend on the velocity and at the

same time for *the ratios of the A's to depend only on the

o's, the A's must have the following structure:

A= 6(Q) £lo) ,

-~ AA

A= ¢(qQ flo) , (II-9)

and

N

c ¢(CI) 9(0’,0‘).

>
I

A
A

(The quantity A cannot contain q, nor can ) contain g, since

A/Ac and A/xc must be functions of the ¢'s only.)
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Referring now only to tne firs: system as repre-
sentative of any system of any number of independent coor-

dinates, the transferred energy is, from equations (II-9),
dQ = ¢(q) £(0) do (II-10)

Since f(o)do is an exact differential, the quantity l/¢(&)
is an integrating factor for dQ. It is an extraordinar&
circumstance that not only does an integrating factor exist
for the dQ of any system, but this integrating factor is a
function of velocity only and is the same function for all
systems.

The fact that a system of two independent varia-
bles has a dQ which always admits an integrating factor
regardless of the axiom is interesting, but its importance
in physics is not established until it is shown that the
integrating factor is a function of velocity only and that
it is the same function for all systems.

¢. The Absolute Velocity

The universal character of ¢(q) makes it possible
to define an absolute velocity. Consider a system of two
independent variables é and q, for which two constant velocity
curves and Q-conservative curves are shown in Figure 6. Sup-
pose there is a constant velocity transfer of energy Q between
the system and an external reservoir at the velocity é, from

a state b, on a Q-conservative curve characterized by the
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\b \\c & = constant

a\ d\ z.; =g,y = constant

—tre J

Figure 6. Two constant velocity energy transfers,

Q at g from b to ¢ and Q3 at q, from

a to d, between the same™two cgnservative
curves 0, and Oy

value °l' to another state ¢, on another Q-conservative

curve specified by Toe Then since
dq = ¢(q)£(0)do,

it is seen that

g
. 2 .
AQ = ¢(q) /  f£(o)do at constant q. (I1-11)
g
1

For any constant velocity process between twe
other points a to d, at a velocity é3 between the same two

Q-conservative curves the energy transferred is
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AQ(é3) = 4Q5 = @(é3) / £(g) dg at constant éB’
o
1

Taking the ratio of

AQ giél__= a_function of ﬂuavelocityen:whuﬂxAQ is transferred
AQ3 ¢(é ) same function of velocity at which AQ3 1S transterred’
3

Then the ratio of these two functions is defined by

O AQ(between g, and g, at q)

¢(&3) AQ3(between 0y and Oy at é3)

or

AQ
AQ =

¢(c’;)

by choosing some appropriate velocity é3 then it follows
that the energy transferred at constant velocity between two
given Q-conservative curves decreases as ¢(é) decreases,

or the smaller the value of Q the lower the corresponding
value of ¢(é). When AQ is zero ¢(é) is also zero. The
corresponding velocity éo such that ¢(éo) is zero is the
"absolute velocity". Therefore, if a system undergoes a
constant velocity process between two Q-conservative curves
without an exchange of energy, the velocity at which this

takes place is called the absolute velocity.
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d. The Concept of Eﬁtropy

In a system of two independent variables, all
states accessible from a given initial state by reversible
Q-conservative processes lie on a o(é,q) curve. The entire
(é,q) space may be conceived as being filled by many non-
intersecting curves of this kind, each corresponding to a
different value of ¢g. In a reversible non Q-conservative
process involving a transfer of energy dQ, a system in a
state represented by a point lying on a surface ¢ will change

until its state point lies on another surface og+do. Then
EQ = Ado’,

where 1/)\, the integrating factor of dQ, is given by

A= o(Q) E(a),
and therefore
do = ¢(Q)£(a)do

or

do

— = f(o)do .
¢(q)

Since ¢ is an actual function of é and g the right-hand member

is an exact differential, which may be denoted by d4dS; and
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as = 92, (II-12)

where S is the mechanical entropy of the system and the
process is a reversible one.

The dynamical second law may be used to prove
equivalent of Clausius' theorem, which is stated here without
proof.

Theorem: In any cyclic transformation throughout which

the velocity is defined, the following inequality holds:

é

HQ. 0, (II-13)
$(q)

where the integral extends over one cycle of the transforma-
tion. The equality holds if the cyciic transformation is
reversible. Then for an arbitrary transformation

B
r R _ s -sm) ., (I1-14)

A ¢(q)

with the equality holdiné if the transformation is reversible.
The proof of this statement may be seen by letting R and I
denote respectively any reversible and any irreversible path

joining A to B, as shown in Figure 7.
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For path R the assertion holds by definition of §. Now
consider the cyclic transformation made up of I plus the

reverse of R. From Clausius' theorem

r ¢ =g ¢

do d9
If ¢ = Rf o =0
g o
: ;. o5 - sq). (1I-15)

Another result of the dynamical second law is
. that the mechanical entropy of an isolated {dQ = 0) system
never decreases. This can be seen since an isolated system
cannot exchange energy.with the external world since dg =0

for any transformation. Then by the previous property of

the entropy

W Y SO

RN Y

A L
- o8
A

S(B) - S(A) > 0

9\‘0

ey o

g
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A
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where the equality holds if the transformation is reversible.
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jﬁ One consequence of the second law is that of all
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the possible transformations from one state A to another
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. state B the one defined as the change in the entropy is the

one for which the integral

=
13
-

' (II-16)

43

I S S T T SRV, Syt vl -yt ity vt R4 S——— — D Lt e A S Y



S 4 T
S SEIEE A S AN e N g St 2

g

e s Lo

is a maximum. Thus

B
S(B) - 8(A) = maximum I = max [ (i-ag)dT,
A ¢ dt

where t is a parameter which indicates position along the

path from A to B, or

<

B

- - idu _ F dqy,..
S(B) S(a) = max Af (¢ at " ¢ dr)dT’

If
u= U(qulélg%)

where éi-z dql/dt, then the change in the entropy is given

by the integral

B

= ildu _ Fdgq
AS AI (@ It "y dT)d'r.

The é and g which maximize AS will be denoted as x and x
then, with

U= U(x,x)

Fi = Fi(x,x)

¢ = 6(x)
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the x and x are given by the solution of the system of

RS b E A 1T 1) CE o L e RS 1

23 equations

436, 36,

S dr "ax! 3x

i (II-17)
a G

) - 2=

e | ax' ax

S where

1, .aU dx . _ dx . _ dx

b g G = (¢) [aT i HE] and x' = T and x' = It

iﬁ g . Thus the dynamical second law provides an answer to the

f; question that is not contained within .the scope of the first
3‘ law: In what direction does a process take place? The

S

S answer is that a process always takes place in such a

f%‘ direction as to cause an increase of the mechanical entropy
:;’& in the universe. 1In the case of an isolated system, it is
ﬁr\"{

3%42 the entropy of the system that tends to increase. Tc¢ find

7 4

‘i&f‘ out, therefore, the equipoise state of an isolated one

ﬁéiz dimensional system, it is necessary merely to express the

o) .
afit entropy as a function of q and q and to apply the usual rules
i

of calculus to render the function a maximum. When the system

is not isolated there are other entropy changes to be taken
o into account. It can be shown (Section IV-A) that there

y exists another energy function which refers to the system
alone such that the equilibrium state of a non-isolated

system is found by locating the minimum of this function.
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D. THIRD LAW

The dynamical second law enables the mechanical entropy
of a system to be defined up to an arbitrary additive con-
stant. The definition depends on the existence of a rever-
sible transformation connecting an arbitrarily chosen refer-
ence state 0 to the state under consideration. Such a rever-
sible transformation always exists if both 0 and A lie on
one sheet of the equation of the state surface. If two
different systems are considered the equation of the state
surface may consist of several disjoint sheets. In such
cases the kind of reversible path previously mentioned may
not exist. Therefore the second law does not uniquely deter-
mine the difference in entropy of two states A and B, if A
defines a state of one system and B the state of another.

For this determination a dynamical third law is needed. The
dynamical third law may be stated, "The mechanical entropy
of a system at the absolute velocity is a universal constant,
which may be taken to be zero." 1In the case of a purely
thermodynamic system the absolute quantity is the absolute
zero temperature, while for a mechanical system the absolute
quantity is the absolute velocity.

The dynamical third law implies that any energy capacity
of a system must vanish at the absolute velocity. To see
this, let R be any reversible path connecting a state of
the system at the absolute velocity éo to the state A, whose
entropy is to be found. Let CR(é) be the energy capacity

of the system along the path R. Then, by the second law,
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S(a) =, f CR(q)

=l

dq ¢(q)

But according to the third law,

S(a) =+ 0.

qp * 9
Hence it follows that

c#®.+o
q + q,

In particular, C, may be C_ or Cr.

R q
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III. GENERAL MAXWELL AND ENERGY RELATIONS

In thermodynamics a discussion of equilibrium and
stability conditions is best done if the enthalpy, Helm~
holtz's, and Gibb's functions are defined first. Therefore
the mechanical analoques of these functions are defined here.

Each branch of physics such as thermodynamics and parti-
cle dynamics'has its own list of developed procedures. 1If
both branches can be described by the same basic dynamic laws
then the procedures developed in thermodynamics may prove
to be useful in particle dynamics and vice-versa. Once
the mechanical entalpy, mecharical Helmholtz's and mechanical
Gibbs' functions are defined it is then easy to write down
the resulting mechanical Maxwell and mechanical energy capac-
ity relations. Therefore, while these relations are no*:
used later in this investigation, they are presented here.

To begin the development of the Maxwell relations, the

mechanical entropy was defined as

as = 8Q__

ol (III-1)
$(q)
then, since dQ = dU - Fdq,
= au _F -
ds s 3 dq, (I11-2)

where
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du = ¢(q) aS + Fdq. (I1I-3)

Define the mechanical enthalpy as

H=U-~- Fqg, (IT1-4)
then ‘
4 = ¢(q) 4aS - qaf, (III-5)
therefore
Ep=o@ ama  Fhg=-a. . -6

The mechanical Helmholtz's function can be defined as

K=U- ¢(Qs, (III-7)

and
ak = du - 2{ogag - o) as,
dq
or, with

¢'(C.I) = .dﬁ.
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dKk = =S '(q) dgq - Fdq , (I1I-8)

which leads to

(P‘-F)q = -$¢'(c'1) and (g'qf)é = ¢(q) F. (III-9)
g

The mechanical Gibb's function méy be definéd as

6= H-o¢(@$, (III-10)
then
dG= -¢'(qSdq + gdF, (III-11)
so that
(i—(‘:;-)F = -4'(q)$ and (%%)51 = q. (III-12)

From the differential equations (IXII-3), (III-5),

: ek R
LU, ‘
A b Ad il -
< R L

(III-8) and (III-11) the Maxwell relations for a mechanical

3
e
A

= system may be written:
£ 5
= :
4'.“' (o .@.CI = -a-E»
10 o' (@) (s (33)‘1
' (o 3& = - .a_g -
6" (Q) (3?) (3S)F (I1I-13)
iy 38y. - _(&F
o' (@) (5 (aé)q
1 : _8_§ ¢ = ..3.3
o' (q) (aF)q (aé)F
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The energy capacity at the position q can be defined as

_ ,dQ + 38
C.= (==)_=¢lq)(=)_ . (III-14)

Define the energy capacity with a ccnstant force as

C'F = (g'?‘?F = Q(é) (_3_3._) F" (IITI-15)
dg dq
'then
|
(cq - cp = £ 29 26 (111-16)
¢'(q) 3q oq
and

= = —5%~ . (III-17)
g (-a—q-)é )
51




IVv. EQUIPOISE AND STABILITY

This. section derives the equipoise and stability condi-
tions for the mechanical system. These are the conditions
required po satisfy the dynamical laws and lead to quadratic
forms which provide natural metrics in the sense that adoption
of these quadratic forms as the metric for a description
of the system motion ensures that the resulting motion always
satisfies the stability conditions.

The words and symbols used during the derivation of the
equipoise and stability conditions are those used with a
mechanical system. It is not difficult to see that the simple
replacement of those wordg and symbols with their appropriate
thermodynamic analogues yields the thermodynamic equilibrium

and stability conditions.

A. EQUIPOISE CONDITIONS
To discuss dynamic equilibrium the criteria for an equi-
poise must be established. To establish the criteria for

equipoise consider Clausius' theorem

or

; L A omy - 5.
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For a Q-conservative system dQ = 0, then
AS > 0,

or

; S(B) > S(a).

Therefore the mechanical entropy tends toward a meximum so

that spontaneous changes in a Q-coaservative system will

always be in the direction of increasing mechanical entropy.
The application of this condition for a number of special
cases will be considered next.

1. AQ = 0 and Constant F.

The mechanical entropy change must be given by

AS 3_%? =0,

e

2N

if the -process is to be a spontaneous one. Now by the first

"

el o

_; .

<, law
e
iy 0Q = AU - FAQ.
'8
Therefore

$AS > AU - FAqQ,

which is analogous to the Clausius inequality in thermodynamics.
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Now consider a virtual displacement (U,q) -
(U=sU ,q+89) , which implies a variation § + S+8S away from
equipoise. The restoration of equipoise from the varied
state (U+suU,g+8q) - (U,g) will then certainly be a spontan-

eous process, and by the Clausius inequality
¢ (=8S8) > =-(8U - Féq).

Hence, for variations away from equipoise, the general

inequality
dU - Fég - ¢8S > 0, (IV-1)

must hold. The iuequality sign is reverser. from the sign
in Clausius' inequality because hypothetical variations §
away from equipoise are considered rather than real changes A
toward equipoise.

Now consider the special case where §( = 0 and

ég = 0, then
- )
((Ss)u'q < 0. (IV=-2)
Therefore, at equipoise the entropy is a maximum with respect
to all variations which leave the position and energy of the

system constant, which implies that all variations must be

within tue system.
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R If 6S = 0 and 6q = 0 then

/

or at equipoise the energy of lue system is a minimum with
respect to variations at constant entropy.

Formally the criterion given by equation (IV-3)
follows from equation (IV-l) just as readily as the condi-

tion (IV-2) does. To prove this equivalence suppose equation

(IV-~2) were true and equation (IV-3) were not. The violation

of (IV-3) is a variation o such that
U <0 when GS‘ = 0.
Now a subsequent variation R can always be found whereby

both U and S increase, simply by letting some of the absorbed

work dissipate within the system. Thus

su, > 0; 8§, > 0.

The latter step could be arranged so that the total variations

would be

su = 0; éS

o+B > 0,

o+8

which contradicts equation (IV-2).
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While inequalihy (IV-2) identifies the equipoise
of a Q-conservative system as a maximum of entropy, inequal-~
ity (Iv-3) shows that equipoise is a state of minimum system
energy.

2. AQ = 0 and Variable F.

Suppose now that the force is not held constcut but
AQ is still zero. The entropy will still be a maximum at
equipoise, however, there is now a different subsidiary
condition. Not the energy of the system U but U plus a
certain mechanical potential energy represeating the coupling
to ﬁhe surroundings, is to be constant under the variations.
If the coupling is achieved by the force only then this
mechanical potential energy is just the negative of Fg and

hence the mechanical enthalpy
H=1U-+-Fq

must be kept constant under virtual displacements. Therefore,

corresponding to equation (IV-2) and (IV-3) are the conditions
(68)“’F < 0, (IV-4)
and

(6H)S,F > 0, (IV-5)
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To prove this formally replace U by A + Fg and use the

difference relations

SU = 8H + &(Fq)

8(Fq) = (F + §F)(q + 8q) - Fq (IV=-6)

= F8q + qdéF + §Féq.
Inserting the above into equation (IV-1l) results in
8H + F6Q + g8F + 8F8Q =~ F8q =~ ¢6S > O

or

$8S —~ 6H - 46F - 8F8q < O, (IV=-7)
from which inequalities (IV-4) and (IV-5) follow.l Thus at
constant force the mechanical entropy is maximum at constant
mechanical enthalpy and the mechanical enthalpy is minimum
at constant mechanical entropy. For systems at constant force

the mechanical enthalpy H plays a role analogous to that of

the system energy U for systems at constant position.

e

lThe reason for retaining the term 6F8q is that, although
it does not affect the equipoise conditions (IV-4) and (IV-5),
the variations in Clausius' inequality are not necessarily
infinitesimal. The stability problem is one instance in
which this must be remembered (see next section).
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But assume that ¢ remains constant. Then for dq = 0 equation

(IVv-1) implies that the mechanical Helmholtz' free energy,
K=Uu - ¢S, (Iv-8)

is a minimum, since K is then positive for a variation from
equipoise. Similarly, for equipoise at constant force,
equation (IV-7) implies that the mechanical Gibb's free

energy,

G=H~-¢S =U=- ¢S - gF (Iv-9)

is a minimum. The equipoise conditions may then be written

¢,q >
respectively. K may also be called mechanical "free energy
at the position q", and G the mechanical "free energy at
constant generalized force."
4. General Equipoise Conditions

It was shown in the previous section that the enthalpy
or free energy are a minimum at equipoise. Each condition
is a special case of the general inequality (IV-1). To obtain
a general condition for equipoise consider the inequality a

little further. 1In a spontaneous process,
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oAS > AQRev = Ay + work done by the system. (IV-11)

The "work" consists of two parts. One part is the work done
by the negative of the force F. It may be positive or nega-
tive but it is inevitable. Only the rest is free energy,
which is available for some useful work. This latter part
may be written as

A = AQ - AU + FAq. (Iv-12)

Rev

The maximum of A according to (IV-1ll) is

Apax ~ $AS = AU + FAq, (IV-13)
which is obtained when the process is conducted reversibly.
The least work, GAmin' required for a displace-

ment from equipoise must be exactly equal to the maximum

.work in the converse process whereby the system proceeds

spontaneously from the "displaced" state to equipoise
(otherwise a perpetual motion machine may be constructed).

Corresponding to equation (IV-13) then, is

A . = &U - Féq - ¢4S. (Iv-14)

min

All equipoise criteria can therefore be condensed into one:

SA_._ > 0. (IV-15)
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In words: At equipoise the mechanical free energy is a.
minimum. Any displacement from this state requires work.
Table 1 is a tabulation of the equipoise condi-
tions for the various special cases and indicates the appli-
cability of the general equipoise conditions to each special

case.

B. STABILITY
First order conditions such as ¢S = 0, 6K = 0, and so
on are necessary but not sufficient for equipoise. To
decide whether or not an equipoise is stable, the inequality
sign in (IV-1l) must be ensured.
1. Stability with q and S as Independent Variables.
Consider the terms oﬁ second order in small displace~

ments beginning with the general condition
U - Féq - ¢68 > 0. (Iv-16)

Choose U = U(qg,S), which, because of the identity

=& _F
das 3 3 dq,

or

¢dS = dU - Fdq,
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TABLE OF SPECIAL CASES

SPECIAL CASES:

constant

]

l. AQ=0; F
a. 86U = 0; 8§ = 0 implies (Gs)u q < 0 max.
14
S at constant {{ and q.

b. 88 = 0; g = 9 implies (éu)S q > 0 min.
’

%} § at constant S and q.

k. 2, AQ=0; H=U-Fq

A

8H = 0; 6F = 0 implies ((SS)H'F 0 max.

constant H and F.

b. 88 = 0; 6F = 0 implies (5H)3 g > 0 min.
[4

¥
wna;mmm
o
.
(7]
o]
ct

‘t3 *:H 'at constant S and F.
b 3. M =0; K= U-¢S;i G =H - ¢S;
ﬁg , a. §8gq = 0; implies (GK)q b’ 0 min. K at constant q.
AR 14
P
s b. 6F = 0; implies (GG)F 6 > 0 min. G at constant F.
" ’ .
Ei-w
lr“i GENERAL EQUIPOISE CONDITION (S8A) > O
gL .
s SA = 8U - F8q - ¢48S
Y .
m‘; la. G8A = - ¢6S> 0 implies ((SS)U,q <0
G lb. 6A = 86U > 0 implies (SU) >0
‘-ffs'“x% $.q
£ 2a. 8A = §H + qSF = ¢6S = - ¢6S> 0 implies (8S)y < 0
::;;3‘; 2b. 6A = 6H >0 implies (§H)g p > O
3 14
A . .
P 3a. S8A = 8K + S8¢ - Fégq = 86K > 0 implies ((SK)q o >0
-3 !
A 3b. §A =86+ asF + S8¢ = 66 > 0 implies (86), ;> 0
SO . 4
ke Table 1. A tabulation of the equipoise conditions for
various special cases.
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is a natural choice of the independent variables, and expand
§U in powers of §q and §S
1 32
u = ¢ss+r<sq+5(a—q%5q +255g-§eqss+ “’2‘55 %)+terms of third ardert..
(IV=-17)
The inequality (IV-1) then shows that in (IV-17)

<

Second order terms + third order terms + ... > 0. (IV-18)

Retaining only the second order terms, the criterion of
stability is that a quadratic differential form be positive

definite;

2 2 2
au AU +.2 -
6q + 2 3955 §g8s + — §s® > 0. (IV-19)

oS

[+ ¥

aq

If this is to hold true for arbitrary variations in §q and

§S, the coefficients must satisfy the following:

2 2 2 2 2
3 U 5 o; ——‘i 0; Q—Lz-‘--a-—g- - (gqgs)z > 0. (IV-20)
39 35> 3s° aq

2. Stability with q and q as Independent Variables
A quadratic form in 8q and 6& may be found by

considering

K=U-= ¢S
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so. that

sk = ou - 663 -~ X g5q - X sg6q.
dq dg

The terms 535& cannot be neglected because in Clausius'
inequality, which is the actual stability condition, the
variations are finite, therefore, from equation (IV-16) the

following is obtained:

8K * ¢ds + g%(s + §8)6Q ~ F&q - ¢8s > 0,
q

sk + Hosq + 5558 - Foq > 0.
dg dg

Expanding in powers of §q and §q

2 2 2
= Féq - —isaq + 5 2 hsq® + 2hosqsq + 3 2Ksq? + ...
2q 393G 3G

g6 = = Usq? + AU - 5 sqsq

¥ aq ¢99
R R R il
3¢ s aq ®oq dq
Therefore

——K— 3 - - 28l au g,
3q3q  aq aq ¢ 2
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and

2 2
a-.é- = - ) - s - -gg(%) .a-%l-;
g aq dgq g

then

i 2, 42 2 .
32)558q = ~(23s + -_§)(aq) - 2K sqsq,
aq 3q 3qaq

and the quadratic form in 6& and §q is

2 2

2 : Ly 52
13K a2 + 25 sasq + $ L5692 - 3.’;(@2 ‘1-§s<aq> —-6q6q > 0,
| 3
orx
2 2 2 .
Aha? - A5+ 2 Ldsys)? > 0. (1v-21)
9q 9q q
T
Since (3§)q = F then
2
a2k _ oF,. -
;gz = (sa'q > 0. (IV-22)

Another quadratic form may be obtained when the inde-
pendent system variables are taken to be other than (q,S)
or (é,g). The quadratic form given as equation (IV-19) demon-
strates that the "natural" variables for the system energy

are space coordinates and mechanical entropy. The quadratic
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form, equation (IV-21), shows that space and velocity are the
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"natural" variables for the mechanical Helmholtz function.

T .
3
b
Aea]
7
EA
.

65




V. ISENTROPIC MECHANICS

The objective of the investigation is to determine
whether or not the logic structure of classical thermo-
dynamics could yield dynamical laws which would produce
equations of motion containing existing dynamical theories
and in addition provide a directivity. The logical proce-~
dure to obtain this cbjective, given the development up to
the end of Section IV, is to adopt as the metric of the sys-
tem one of the quadratic forms which will ensure the system's
stability. Suppose that the quadratic form, equation (IV-1Y),
were to be adopted as the metric. This would say that the
system is described in a space-mechanical entropy manifold.
The idea of describing particle dynamics in such a manifold
is not known to have been previously investigat.i. The sug-
gestion that particle dynamics be described in a manifold
other than the space-~time manifold of relativistic dynamics
immediately raises a number of gquestions.

These questions prompt a deviation from the logical
procedure. By taking the time here to consider some of the
familiar procedures of classical and relativistic dynamics,
consistency between them and the dynamics proposed here can
be demonstrated. The role of the integrating factor, abso-
lute velocity and the mechanical entropy can also be seen.

The dynamics of both Newtonian and relativistic mechanics

is time symmetrical. This suggests that if the dynamics
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provided by the dynamic laws presented here are to ke con-
sistent with these theories then the systems for which this
consistency may exist are reversible isentropic systems.

Therefore only isentropic are considered in this section.

A. CLASSICAL MECHANICS

Flassical mechanics describes the motion of a sys*em,
which cculd be a particle, for which the energy of the sys-
tem is a constant. The equations of métion may be chtained
uéing Hamilton's principle. These equations of motion yield
trajectories resulting from the action of forces; they may
also be obtained from the principle of least action. When
the action integral is treated as a variational problem with
variable end points the method of Lagrangian multipliers
yields the same equations as does Hamilton's principle.
However, if the variational problem is transformed to a new
space in which the new variational problem has fixed end
points, then the metric for this space is displayed, and
the equations of motion are geodesics in this space.

In classical mechanics the principle of least action as

3

formulated by Lagrange~ has the integral torm

A= [ mv-ds. (V=-1)

3Sokolnikoff, I.S., Tensor Analysis Theory and Applications
to Geometry and Mechanics of Continua, pp. 230-232,

1964.
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In curvilinear coordinates the integral assumes the form

p t(p,)
2 o 2 o B
dx g _. dx” dx
A= / mg _—dx” = I mg e dt
t
By af 4 t(pl) o dt dt
or defining
m ax® de

T 2 39 dt ac

the integral becomes

t(py)
A= ) 2Tdt.
t(pl)

Then the principle of least action may be stated as:

Of all curves C' passing through Py and P in the

neighborhood of the trajectory C, which are traversed

at a rate such that, for each C', for every value of t,

T + V = F, that one for which the action integral A

is stationary is the trajectory of the particle.

In Appendix B the transformation of variables is carried
out so that the metric is displayed. The result of this

transformation is the metric
2 _ o B -
as haB dx~ dx (B~6)

where

o
|

w8 = 2m(EO - V)gaB‘
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Suppose that this classical system is associated with
the concepts presented in Section II. The energy of the
system in classical mechanics is a constant of the motion
and therefore the change in kinetic energy is the negative

of the change in potential energy, which may be written

as
dH = 4T + dv = 0.

However for conservative forces dH is a perfect differential.

Therefore, for a one-dimensional system the force is a

function of position only.

This suggests the association of the classical energy
of the system, H, with thé system energy, U, which is also
a perfect differential. Now if the system is isentropic

then this association leads to the relation

But if dU = dH = 0, then F must be zero.
Considering the quadratic form, equation (IV-19), for

an isentropic system it can be seen that the only term left

is a space term which is consistent with the space metric

of classical mechanics given by equation (B-6) of Appendix

B. Thus an isentropic system, for which the F is negligible,

is consistent with a classical conservative system. The
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mechanical entropy does not become involved for such a system

S ite SEA Ly
SR

because if F is negligible then dQ = d(y. Therefore dQ

M i
S

a : must be a perfect differential. If dQ is a perfect differ-

i ential there is no need to look for an integrating factor.

B. RELATIVISTIC MECHANICS

. In the special theory of relativity E;nstein sought to
é . put Newtonian mechanics into a form which would leave the
“1~: . speed of light invariant. The resulting dynamics exhibits
the notion of a unique vélocity in a similar sense to the

previously defined absolute velocity. The modification

s required the motion to be such that
5 O
% t2 LI
;o (L + Fsq) dt = 0,

A 5 \/l--f'iz/cz2

where F is a force which is a function of position only.

A s

The factor 1 - <';2/c2 displays the qualities required

Fs

of the integrating factor ¢(é). Therefore consider a modi-

)
JRP)
by Y

fication of Hamilton's principle in terms of the system energy

o RS
LS
AN

Fru

#,
«
-

-

(O3g T (.
5 s
e é;«f
t By .
) ‘~'§: [ “n
oy LA e
.

U, the force F and the integrating factor ¢. The modified

statement then would be that the motion be such that

% 4 t

5 3 2 &u ., F

Po & r &y Eg) oae =0,

Py t o ¢

SN 1

4 It can be seen that if ¢(g) = 1 then F must be a function
o

only of q and classical mechanics results. It will be shown

- 1 that if ¢(é) = \/l - c.zz/c2 relativistic mechanics is obtained.
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Now for an isentropic system

=90 _,_au_F
d3—¢-0 ¢ ¢dql

or 7
B B
dau F
[ == | < dq.
a ¢ A ¢

This would be the classical work-energy theorem if ¢ = 1.

For any ¢

If the system energy U is taken to be the kinetic energy

and defined as
us3ma®, (v-1)
then
ng = F,
or Newton's second law.
This tends to indicate that a modification of Hamilton's

principle would apply to a system for which d4S = 0. This

modification would be to assume that for an isentropic system
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the motion is given by the principle:

If a particle is at the point Pl at the tinme tl

and at the point P, at the time t2 then the motion

of the particle takes place in such a way that

t, t
oo E o sq)yatzs s Lat=o,
ty ¢(q)  ¢(q) ty

where q = q(t) is the generalized coordinate of

the particle along the trajectory and q + 8q is the

coordinate along a varied path beginning at P, at

the time t; and ending at P, at time t,.

The hypothesis of the fundamental lemma of calculus
of variaticns is that | be a real continuous function,
therefore, the mixed second partiai derivatives of |

must be equal, or

2L _ 3%
3939 3gdq
Now
aL = —+— M qq + L [%% + F] dg,
¢(q) 9q ¢ (q)
so that
3L _ 1 au aL _ 1 .aU
—_ = = = and — == + FJ.
aq ¢ ag 37 ¢ 0q
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Then'
2L olafu 1l L eF) _erpu gy
3¢ ¢ awa ¢ amaq g ¢° %9

This requires that

aF - oL AU -
il (Sg * F)e (v-2)

However, dSs is a perfect differential so that

2% _ 3%

3939 3939

Since
Sl . 13U _
ds ¥ o dgq + 3 (aq F) dq
1% _1 3% _ aF, _ ' 3l _
Lol o2 a0 e gl
3939 395 99
or
Ao - p. (V=3)
3

In order that dS and dL both be perfect differentials

at the same time then
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which is a function of g only, and

F=¢(q F(q (V-4)

for an isentropic system. Thus the factor ¢ cancels out of
the differential expression for change in entropy so that
effectively the force is not velocity dependent.

Suppose that the momentum is defined as

gé—‘:—:%-a—l‘.‘-' (V"S)
oq 9g=

and the mass is defined as

2
ms &4 (V=6)
3q
Then
ds = p dqg - F(q) dq,
and

dL = p dg + F(q) dq.

The equations or motion would be

ol

d 9
g5 [ - 52 =0, (v=17)
dt 3q q
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g—B:é—‘.‘-:F(q).

dt q
If m = constant then p = mq/¢ and

m

aL = dq + F(q) dq

8.

while

as = i“a‘i dq - F(q) dq.

Then for 4S = 0

How then may ¢(g) be determined? The precedence set by
thermodynamics is to determine ¢(q) experimentally. Experi-

ments with a charged particle in a magnetic field, such as

$(@) =\[1 - q%/* . (V-8)

R

" S =1(q) + V(q); L=1(q) - V(a)
A

e

5 where

S

Y L3 !

Py

L

Sy 3V (c
a;;{z e F(q) = - _.aﬁl..
v‘i'is q
2L

]

‘ate.a‘u?

3%%3

IR

;ﬁh%

\}44!

A

i‘*,;(fg' )

AN

e a mass spectrometer, show that
‘:E‘A
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This function satisfies the requirements for the integrating
factor with c as the absolute velocity.
If this integrating factor is substituted into the

equations of motion the resulting equations are

-

d
> [Vm—w] = F(q),
dt 1 - g*/c

then
mgdq
dL = + F(q) dq,
L - /e
. . q L lad q
L@, - Llggay =, 5 —224d + { Fla) 4

T A\/1-4%P
= mczw/l - &z/c2
If L(qg,qy) = L(0,®) = 0, then

L@@ =me?(l -\/1 - ¢%e2 1 - v . (V=-9)

With the exception of the additive term mc2 this is the form

. - V(Q) + V(qo)'
9

of the relativistic Lagrangian when m is interpreted as the
rest mass, and since additive constants in the Lagrangian do
not affect the equations of motion, this Lagrangian yields
equations of motion consistent with the special theory of

relativity.
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The first integral of the equations of motion may be

written as

Q-5 L -G =o0

dt q ao dt qp 14
q

therefore

L - ép = constant.

Then define this constant of the motion, which may be called

a "Hamiltonian", by

b= 4
1]

ap - L. (v-10)

Since the Lagrangian is given by

L= fpdé i ACIE

the Hamiltonian becomes

H=qp - /pdq + v(q) = fqdp + v(Q).
Then the Hamiltonian equations of motion may be written. as

oH _

= - F(q) = - oH _

&L= g, (V=11)
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For the particular Lagrangian

L=me? (1 -/1-a% 1 - v,

the Hamiltonian is

H==0 " . n?n -'\/1 - 4%/c2 1 + V(g
1 2,2
l1-g®/c

= me? (——2 - 1) + V(q)
W/l - éz/cz
or
H=me? (y = 1) + V(q) (V-12)
where

1
/1 - §%/c

Then defining E(Q) - E, = me’(y - 1) implies that

Y =

2 02 + (pc)z. (V-13)

In the special theory of relativity the Hamiltonian,

which is interpreted as the energy of the system when m is

the rest mass and c¢ is the speed of light, has the same form
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as equation (V-12). In this dynamic theory, however, the
Hamiltonian is not the energy of the system. The system
energy is U and is given here by U = %m&z since %%-= 0.

H is a constant of the motion and therefore is at most only
a constant different from the entropy of the system since
the entropy is also a constant in this case.

These relativistic equations are symmetrical in time.
They are the equations for a system with constant entropy
and the time symmetxry is consistent with reversibility.

Thus the concepts presented in Section II and a modified
Hamilton's principle may be seen to produce dynamics consistent

with special relativity. The roles of the absolute velocity,

integrating factor, and mechanical entropy are also displayed.

C. GEOMETRIZATION

Transforming the integral of the classical least action
principle to a space in which the variational problem had an
integral with fixed end points displayed the metric. For
an isentropic system this metric was seen to be consistent
with the guadratic form required for stability. Now consider
the metric of the space governed by the modification of
Hamilton's principle in the previous section. It too is
consistent with classical dynamics.

Impose the same requirements as in Section V-B, namely
that 4§ and dL both be perfect differentials; so that %% = 0.

Then U is a function of velocity and is the kinetic energy
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u=;§gdsg%ﬁgg;§%m2
where the summation convention of tensor analysis is used.
The 9.8 aTre line elenient coefficients in the chosen coordinate
system. The indices a and 8 take on the values 1, 2, or 3
to correspond to the spatial dimensions.

Since it is desired to expand the dimensionality of the
system at this point it is necessary to discuss the extension
of the argument of'Caratheodory's to a higher dimension. For
instance if for each dimension, Iy requires a separate inte-

grating factor ¢a = ¢(qa); so that

can the differential of the total mechanical entropy be

written as

l —
dg =rdg =1 2=%Q_1:;39>
Q, o aq)a ¢ ¢(! o

The proof that this can always be done was developed by
Caratheodory and is presented in Apperdix C. Therefore the

mechanical entropy may be written as

and in order for dS to be a perfect differential the ratio
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Fa/¢ must be a function of position only.(see the discussion

in Section V-A). The forces Fa must have the structure
Fa = ¢ fa(q). (v=14)

Then consider the integral

*2 55 o R dq® dgf
1= olmes F 9o 3~ 3 9%
"1 : HE) (V-15)

and the variational problem of minimizing this integral
subject to the constant entropy requirement

L . « 2
s(qqugqulqqu rq3) - SO = 0. (v=-16)

Again the variable limits of integration can be avoided by
a change of variables and since, as noted in Section V-B
the entropy can differ from the relativistic Hamiltonian by
at most a constant, and recalling equation (V-12), for this

situation

s =t0vd + atdt.gd (V-17)

where ¢ is assumed to have the form ¢ = ¢(v2). Then in

principle the first term in equation (V-17) can be sclved for
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the velocity as a function of 14 or

ds,2 _ _  daq* ad® _ 2, -
G ° = 9, 5 g = [F@1% (a8 =1,2,3) (V-18)

The ratio m/¢ m.y then be expressed as a function of Tt also
m/¢ = G(1). (Vv-19)

Since the entropy is a constant, equation (V-16) may be

solved for T so that

T = 30 -V : (Vv=20)
Then
m/¢ = G(S0 - v) . (v-21)
and
ag® ag® _ 2
gaB dt dt - [f(so - V)] . (V"22)

Substituting equations (V-21l) and (V-22) into the integral

(Vv-15) gives a new integral

4This is consistent with the defining equation (V-6)
and the assumption of that section which was that

a"u
tle(

m = constant.
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t(p,)

I = ! Gls,~ 11£(3,~v1? at, (V=-23)

t(py)

with the integrand independent of the time. The varied paths
can be parameterized so that C: g% = q%(u), U LU U,

where P, : q“(ul) and P,: q“(u,), and then

ds =-\/gde q'ag'g Qu,

where g¢'%* = dq%/du.

This permits the integral (V-23) to be written in the

form
2
I= G[SO'V] [f(So‘V]2 Tﬂ%%j—]-
sy 0 Y
& /5 o dof
= . i) G[So-v]f(so‘v) gaB 3o du du (V-=24)
1
or
u
2 V] B8
= - 49 dq- -
I N / -\/H(S0 V) gaB To~ au du, (V=-25)
1
where
H(Sy~w = [G(Sy=v) £(Sy-u1°. (V-26)
g 84
9
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Then the trajectories determined by this variational
problem are equivalént to the geodesics in a three-dimensional
Riemannian manifold with the arc element
SZ

ds” = H(SO-U) gaB dq“ qu. (Vv=27)

1. Particular Integrating Factor, Zero Force F

Suppose now that the integrating factor is

.a .B
9y 3 4
c

p =\ [1 - g,

Then the action integral, equation (V-15) may be written

t(p,) m Gy & ;IB
I= i) dt. (v-28)
t(p,)
Now,
o B
g 9 g
t = me?[l - /1 - —E§~7—-—— 1,
c
or
.a.B
_e 9up I T
1-Tn%=1--28
mc c
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so that

ds, 2 _
(a{) = gaB q

a B
§ =c%1 - (1 - t/me?)?.
Substituting (V-29) into (V-28) yields

t(p,) 2

I = ! mc“ [l - (1 - T/mcz)zldt .

t(py) \/1 =1+ (1-¢/me??

or

t(p,)
L - ;2w - - ame®liae

t(p,) I = 1/mc?

Since on C' 7 + v - Sg = 0, then ¢ = Sg =~ v and
(@2 =cfn-a-umdi,
or

dt = ds

Sa=V
'\/cz[l - -2y

mc

Putting equation (V-31) into equation (V-30)

S .-V

S, mcz[l - (1 -—97—)2] ds
mc

S Sa—vV SA-V
1 - —97-)\/&[1 - 1= 23

mc me
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or

| So7V. 2
s, mc 1 -(1 --—~2-)
mc

I =
. f SO'V ds
1l (1 - —2—)
mc
82 T
=/ me -1 ds. (v-32)
s S~V 2
1 (1 - )
mc

Parameterizing the varied paths by

ds 3'\/§ae q'%q'P

o
where q'% = g%— , so that on C': q%* = q%(u) with :

< U < u,, then equation (V-32) becomes

1
u
I= ’ L -14/9., a'%'® au (V-33)
SO-V 2 oB -
o

u

i | (1 - )
mnc

Thus this geometrization gives an arc element

2 2.2

ds® = m“¢”[ 1

So~V
- =)

mc

- G B8 -
; 1] gaB dg™ dg (V-34)

(1
This metric is a three-dimensional metric¢ (a,8 = 1,2,3) with
coefficients which are functions of position only since the

908 are functions of position and | = V(ql,qz,q3).
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If the arc element (V-34) es expanded in powers of

Sy~
(-—7—) then
nc
’SO—U) (S -—V) - 5
= [2m(S,-V) + 3 — + 4 "T *ooel g0 daq®* dq
(V-35)

The first term of this arc element expansion is the same as
the arc element in equation (B-6).

Again the metric for this space, given by equation
(V-34) is consistent with the extension of the stability
quadratic form for an isentropic system, namely the metric
spans only the space dimensions. Thus it can be seen that
the concepts of Section II can be made consistent with the
dynamics of Newtonian and relativistic mechanics if isentropic
systems are considered, the limiting velocity taken as the
speed of light, and the entropy becomes the relativistic

Hamiltonian.

D. GENERAL ISENTRCPIC SYSTEM

The arc element, équation (B-6), is the classical arc
element and corresponds, in the dynamic theory, to a system
where it is assumed that forces Fa(q) exist as a function of
position alone and that the forces Fa(é,q) are neglibible
or zero. To obtain the arc element (V-34) the forces Fa
were assumed to be the only forces acting on the system.
These forces were functions of both position and velocity

since the form of these was taken to be
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_ 1
Fa = ¢fa(q A

Although it is not done here, it would be desirable to
find the arc element for a system subject to both types of
forces. For this system

(F, + F,)

[0 ]
K3 R

where the forces Fa are the forces of the system and
is the potential energy of the system while the forces Fa

are the forces which are inevitable. This would include

the possibility that éﬂa # 0. PFor instance, if

oo 9q
U= %mgasqaqsvand the space is not Euclidean then
u (g ) . .
-a—._. = %—'m $B qan # 0.
3q 3q
89
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VI. NON-ISENTROPIC SYSTEM

A. FOUR-DIMENSIONAL ARC ELEMENT

1. Choosing the Arc Element

Chapter V demonstrated that it is possible for the
concepts presented in Chapter II and the proposed dynamic
laws to be consistent with particle dynamics. This section
now returns to the point of development at which the qua-
dratic forms of stability were attained. Up to thi§ point
the development is strictly based upon the thrze dynamic
laws and therefore these quadratic forms reflect only the
demands of these laws.

Though it is possible to arrive at more than one
quadratic form which contains the stability conditions these
forms would be expressed in terms of different variables.
For instance, the form given by equation (IV-19) is expressed
in a space-entropy manifold while the one given by equation
(IVv-21) is in a space-velocity manifold. Since both forms
express the same requirements a choice mus+ be made on the
basis of simplicity of use, variables desired, or some other
priority considerations.

Before a particular manifold is chosen it seems appro-
priate to recall the requirements upon a metric which ensure
that the stability conditions meet these requirements. The

three requirements for a metric are that the "distance"
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given by the metric satisfy the following:2
i. d4(a,B) >0
d(A,B) = 0 if and only if A = B,
ii. d4(a,B) = d4(B,A), and
iii. d(a,B). < d(a,Cc) + d4(C,B).
Thus it may be seen that these quadratic forms do define
"natural" metrics for the sgace of the appropriate function.
Returning to the choice of a particular form, con-
sider a metric in a space-velocity manifold. Geodesics for
this manifold would be third orxrder equations. To see this

consider the quadratic form

9% = a(4,q) (d@)2 + B(g,q) (dq) 2.

If the arc length is used to parameterize the manifold by .
choousing d¢ = vodt, then the geodesics are given by the

Euler equations which makes the arc length an extremum, or

ty t, ,
§ [ (%E)Z at = J A(q,q)éiz + B(q.q)ét2 dt = 0.
5! Y
This represents a variational problem of
S -
2 .
) I £f(t,q,9,9) dt =0
21

which requires a third order Euler equation.

The fact that the geodesic equations for a space-

velocity manifold are third order displays the time assymmetry

2Dettman, John W., Mathematical Methods in Physics and
Engineering, p. 30, 1969,
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desired. However, third order differential equations are
not very nice equations to have, since there is no established
method of obtaining a solution.

Now consider the quadratic form in the space-entropy
manifold. This represents a simplification over the space~
velocity manifold by a reduction of the order of the geodesic
equations. Because of this simplification the gquadratic
form in the space-entropy manifold will be adopted as the
metric describing the system for this section.

In order for this metric to be consistent with the
previous section on isentropic systems it must reduce to
the metric of the isentropic system in the event that the
entropy of the system is a constant. Such a four-dimensional

arc element is

as® = Eij dq” dg? ; (i,3 =0, 1, 2, 3) (Vi-1)
where gO = éi so that the fourth coordinate is the entropy
0

with an appropriate scale factor, fo, with dimensions of a
force for dimensionality correctness.
Separating out the space portion of this arc element

gives

2 0

- 0.2 - - -
as® = Byytaqh? + 2By dq°3q® + haquaqu; (a, = 1,2,3).

(VI-2)

Thus it can be seen that when the entropy is a constant the

arc element reduces to
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ds2 = E;B aq* qu (VI-3)

which has the form of the arc element for the isentropic
systems discussed in the previous chapter when the entropy
was constant.

Then if the HQB of the isentropic system are. taken
as the six independent coefficients H&B the remaining four
coefficients (Hbo, Eba) in the four-dimensional arc element

must be found as functions of coordinates and entropy for

non~-isentropic systems. If the ten independent coefficients

of the arc element (VI-3) are determined then this arc

element is a general arc element for this dynamic theory.
But this arc element is not the only choice that could be

made. However, the choice of the four-~-dimensional arc ele-

ment (VI-1l) provides the arc element with the fewest inde-

';g , pendent variables which will ensure that the stability condi-
LS,

Y tions are met.

f%;% 2. Parameterization

Egﬁ“ Thus far in the discussion the variable t has appeared
I

'~

o

.
o AR
. s
[T eee

A
X
s
xS
B "H g M
E,E i.

in the notion of velocity by specifying velocity as a function

of t and as a parameter in the equations of motion. The

o
LR

e ¥ o
% 3
*

. Y
s ¥,

i“(e manner in which t has been used gave it the same absolute

yéf?i quality as time in Newtonian mechanics and it may be defined
fg?j; and measured in any appropriate manner. In the second

:?h dynamical law time and space are coupled through the integrating
i,

Fa

} factor in terms of the absolute velocity.

1 3
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In a geodesic approach to dynamics it is convenient
to parameterize the space in a particular manner. For
instance, if the metric properties of the manifold are
determined by

as? = Ry dataqd ¢ (4,3 =0,1,2,3)
the length of the curve C, represented in R4 by equation C:

qat =g (t), t; £t 2ty is given by
s= [ /R a* 3 at. (VI-4)

The element of the functional (VI-4) are the geodesics

in R,. Since %% = Hij él éj , carrying out the indicated

differentiation required by Euler's equations to determine

an extremum of the functional (VI-4) results in the equations,5

. . . 22 2
= wi o . L.y itk _ = i d°s/dt _

as the desired equations of geodesics. These equations may
be simplified by a choice of the parameter t that sets the
right hand side equal to zero. The choice of the parameter-

ization which does this is

5Sokolnikoff, I.S., Tensor Analysis Theory and Applications

to Geometry and Mechanics of Continua, p. 158, 1964.
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aE - hij g~ q° = constant S,

,...,
B¥ oAt

which has the dimensions of a velocity.

. In the thermodynamic development of the second law
an absolute velocity was defined. If the manifold is para-
meterized using this velocity the results will yield a time
consistently defined by the laws of dynamics. Thererore,
if this absolute velocity is defined as ¢, the space may

be parameterized by6

_q._%: g °i 'j — -
3t nij qg- g’ = c. (VI-6)

B
4 .- - SRY A il
H ;
' *
e T o e e

B. EQUATIONS OF MOTION

1. Syuare of Momentum

Just as in classical mechanics, several forms of
equations of motion are possible, therefore, it may be
beneficial to present sevcral different approaches here in
order to help interpret the metric coefficients. One approach

would be to empirically determine the metric coefficients

which seem to correspond to reality, while another would be
to seek equations or rzlations that the coefficients must
satisfy.

The limitation imposed by the number of symﬁols
available requires a comment on notation. First, the
metric coefficients corresponding to spatial coordinates

aione will b= denoted by =Y (¢,8 = 1,2,3) as previously

bSee Appendix F.

95

DE . e




used and are determined by the choice of spatial coordinate
system (i.e. rectangular, cylindrical, etc.). The metric
coefficients hij will be used to denote the coefficients

in the Riemannian space determined by geometrizing the dynamic
system. Latin indices will be used when the indices may
assume any of the four values 0,1,2,3 while Greek indices

may assume only‘the values' 1,2,3. The coefficients Hij
correspond to the arc element (ds)z, as the 908 corresponded .
to the arc element (ds)2 in the isentropic systems. The

hij are the coefficients of the arc element (dS)2 which are
the potential functions which geometrize the space, as the
haB = Zm(h-v)g’mB did in the isentropic systems, see Table

2. Concepts such as momentum, "Lagrangian", and "Hamiltonian"
in the four dimensional manifold will be dénoted by ;i’

Z, or H to avoid confusion with their three-dimensional
definitions. Wote the manifold considered here is three-

space with entropy as the fourth dimension.

COEFFICIENTS
(ds) 2 (as) 2
(3 dimensional) Isentropic 908 haB = 2m(h-V)gaB

(4 dimensional) Non-isentropic Eij hij

Table 2. Metric Coefficients
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Now consider the definigion, with previously chosen

parameterization

2 _ 2

Leme® z=m (% =nn.atd: Wi=0,1,2,3 (vr-7

and define the four-dimensional canonical momentum

v - v

~

~ = .j -
Py 335 m hij o (vi-8)

Then the contravariant four-dimensional canonical momentum

is given by

Pt = nid Py = b mny o (VI-9)
so that

;’i;’é = hlj“‘hg1<‘5'-k“‘hiy_éi2 m?s 4,4 h ,4¢

= m(mhiz.iéz)

but

m02 = mhizéléz
therefore

;i;3 = mzc2 (Vvi-10)
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Equation (VI-10) should play an analogous role in

the..R.4 manifold as equation (V-13) does in the three-
dimensional space of an isentropic system.

2. Lagrangian and Hamiltonian Equations

Again consider the definitions (VI-7) and (VI-8)
and the additional definition

~

~ T dh,, .. . .5 9P,
Fi = 3Li =m gk qJ qk = qj ——% (VI-11)
3q dq aq

The equations of geodesics are then

.a% [.3.!.'_,.] - 2.!'_{ = Q (VI-12)
9q 3q
or
L p1=F (VI-13)
dt " i i

Equation (VI-12) may be written as

Again define this constant as
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x?
n
Qe

and write Z as
- *i pe i
L = fpi dq + fFi dq .

Then {, where the integrals are taken along the trajectory,

is given by

-~

H= él Pi - fpi déi - IFi dql . (VI-IS)

The first two terms of equation (VI-15) may be integrated by

parts so that ﬁ becomes
W= rqt ap, - sF; aqt. (VI-16)

Differentiating equation (VI-16) and recalling
equation (VI-13) the Hamiltonian form of the equations

of motion may be written as

T I IR O
3Pi aql i dt
or
~ y . dé.
M - gt éﬂI = - dtl (VI-17)
3P 3q
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The form of the equations of motion remain the same

as the three~dimensional form and therefore reduce to the
same- equations when the entropy is a constant and the haB
are the hae for an isentropic system.

3. Principle of Least "Action"

Geometrization, for the isentropic system, was
achieved by considering a change of variables in the prin-
ciple of least action which converted the variational problem
from one with variable end points to a probleﬁ with fixed
end points. In order to help interpret the ten coefficients
in the four-dimensional arc element for the non-isentropic
system the same approach may be followed.

In the isentropic system the principle of least
action ihvolved the functional

t(p,)

A= ! 27 at
t(p;)

where

{a/B =1,2,3)

-

and the 908 were to be determined by the choice of coordinate
system.
For the non-isentropic system the analogous functional

would be
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A= s 2 Tadt , (VI-20)

where

a2
113

- L g4
nby 5 wi=oL23 (VI-21)
and the Hij are to be determined by the choice of coordinate
system. In the event that the entropy is a constant then
this functional should reduce to the functional for the
isentropic system, therefore the six coefficients HﬁB must

satisfy the relations

a - a8

The statement "the Eij are to be determined by the
choice of coordinate system" raises a question about whether
or not the freedom of choice exists. It seems appropriate
here to discuss the types of geometric theories. Two types

of geometric theories are:

i) Theories with absolute elements: In these
theories the geometry is predetermined. The
events and the dynamical laws are embedded into
this geometrical framework. The metric represents
"absolute elements" injected into the theory.

ii) True geometric theories: Here the metric itself

becomes the dynamic element and is determined by

certain dynamic laws, as in Einstein's theory.
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The approach here is ‘i) as far as Hij is concerned,

but the hij must be determined by physical laws. Thus the

choice of the Hi may be made but the h,

j i3 are to be
determined.

The constraint associated with the variational
problem in the isentropic system case, which made the
resulting Euler's equaticns equivalent to the Lagrangian
equations of motion, was that the Hamiltonian was a constant.
For the non-isentropic system this constant is given by the

equations (VI-14) and (VI-16) or
u i 7 - i
H= /g dPi - fFi dq (VI-22)

where Pi was defined to be

P q’ .

m hij .

i
Then the statement of the principle of least action

for the non-isentropic (four-dimensional) system becomes:
0f all curves C' passing through P1 and P, in the
neighborhood of the trajectory C, which are traversed
at a rate such that, for each C', for every value of t,
ﬁ - ﬁo = 0, that one for which the action integral A
(equation (VI-20)) is stationary is the trajectory of

the particle.
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Then if the following definitions are made

~ . 03 * 9 ~
K(qon-nq3:q0.---,q ) = fql dPi
(VI-23)
vid,...dd = =Ry g,
the function ; may be written as
f; = E + ; (VI-24)
If E - go = 0 so that
K+y - Ho = 0, (VI-25)

l’ )

in principle, the first term in equation (VI~25) may be

solved for the four-dimensional velocity

ds;2 _ 5 datagd |21 -
FE *his T " w (VI~26)

as a function of g or

ds, 2 _ 2
€2 = 1201
But g = &0 - Yy then
- agtagdd _ .- 2
w888 tediy - 3 -2
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Substituting equations (VI-26) and (VI-27) into

the integral (VI-20) yields

Sa2 m[f(;l0 - V)]2 ds

A= [

sy f(H0 - V)

or

A= J :af(f"fo - V) ds . (VI-28)
51

The varied paths can be parameterized so that C:

ql = ql(u), uy fugu, where Pl: ql(ul) and Py: ql(uz),
then
-\ [E,. 4
ds hij giTyg’? du
where
q'iz_d_g_.
du
Then equation (VI-28) becomes
2 . ~ T
A= mf(Ho-vr\/hi,. 't gl au
u ]
1
or
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A= 1 A\[HUy =V Biya't g’ au (VI-29)

where
~ -~ 2
HiHy = V) = [mEH, = V)1°,

The trajectories determined by this variational
problem are equivalent to the geodesics in a four-dimensional

Riemannian manifold with the arc element
(as)? = by dqt ag? (VI-30)
where

If the entropy is a constant then this arc element
should reduce to the arc element of the isentropic system

so that the six coefficients ha must reduce to

8
( 1 2 3
2m(h-vV(q™~,9",q ))qas;
ifV#0; V=020,
. o owrh o 1 2 3.,
hog i, HIHg=V(dg,q™/a"ra7)] = ¢
2 2 1
mc S~V 5 "1 948
(l- 2 )
me

if y=0; V#0 and
\ ¢=\/l-u2/c2 .
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The equations of motion presented here describes the
motion provided the coefficients in the arc element are known.
It is at this point where the abstract formulism must yield
to empirical facts. For if these equations are to describe
a real system the equation of state must be known for the
system. In thermodynamics an equation of state may have a form
such as PV = nRT. For Newtonian mechanics force laws axe
needed. Electrodynamics obtain the force laws from Maxwell
equations which contain the empirical facts. General rela-
tivity offers a system of differential equations which may
be solved to find the metric coefficients in a space-time
manifold. The determination of the coefficients is not
addressed here, however, in Appendix F the manner in which
some of the coefficients appear in forces may be seen.

The space-entropy manifold with its equations does
not readily display consistency with Newtonian and relati-
vistic dynamics. Section V demonstrated the desired consis-
tency for an isentropic, Q-conservative system. But the
procedure of Section V does not show that Newtonian and rela-
tivistic dynamics can be logically derived from the three
proposed dynamical laws. To show that they do iideed follow
from the three laws consider a Q-conservative system des-
cribed in the space-entropy manifold. For this system the
mechanical entropy principle must hold. 2ppendix D shows
that this system is governed by an arc element in a space-

time manifold which becomes the Minkowski space of relativistic
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dynamics- when the space-entropy manifold is Euclidean. Thus
relativistic dynamics, and hence, in the low velocity limit,
Newtonian dynamics, follows from the application of the

three dynamical laws for a Q-conservative gystem.
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VII. CONCLUSIONS

This investigation was motivated by a number of questions
. which were presented in the introduction. Some answers
provided by the results of the investigation can now be
stated:
a. The first question was whether or not the speed of
light was the only characteristic velocity in nature. The
answer is provided by the axiomatic development of the second

law. The axiomatic development pi'oduced an integrating

factor for the differential statement of the first law. A
characteristic velocity was shown to exist in the definition
of the absolute velocity. That absolute velocity is given

by a constant velocity process at which the integrating
factor is zero. The important point in the development which
provides the answer to the uniqueness of this velocity is

the proof that the integrating factor is independent of the
nature of the force. Therefore if the absolute velocity

is independent of the force it must be applicable to all

forces and hence unique.

Since by definition the absolute velocity is a
constant in one reference frame it must also be a constant
in any other reference frame moving with a constant velocity

relative to the first. Thus the absolute velocity must be

unique and a constant in all reference frames moving with

24 constant relative velocities. The experimental and
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theoretical evidence of electromagnetism requires that this
absolute velocity be £he same value in all these reference
frames. This requirement leads to the principle of Lorentz
covariance. Then all laws of nature must be Lorentz covari-
ant whether electromagnetic, gravitational or weak interactions
since the absolute velocity is unique and independent of
the force. .

b. The second question was whether all dynamics should

share time assymmetry. The question of "should" is not

answered here. The formulation has introduced a directivity

into the dynamics as evidenced by gquation (II-15) which is
the mechanical equivalent of the thermédynamic principle of
increasing entropy. This principle is the basis for the

. qualitative prediction of expanding planetary orbits in
Appendix E.

c. Another question which motivated this investigation
but was not presented in the introduction involves effective
mass as a function of velocity and/or force as a function
of velocity. Suppose that the theoxry of relativity had not
yet been proposed so that Newton's dynamical equations were
not yet required tobe Lorentz covariant. Then suppose that
an experiment were conducted which required the introduction
of a velocity dependence into Newton's second law in order
to describe the motion. What would be the difference in
assuming that the force was velocity dependent or assuming an
effective mass that was velocity dependent?" Then the question

is whether or not the proper modification of Newton's second
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law may be obtained by an approach other than by the special
theory of relativity. This question is answered in Section
V where it was shown that the integrating factor ¢ ﬁ\/l - éz/c2
yields relativistic equations.

This formulization of dynamics allows some further
conclusions to be drawn about the velocity dependence of
mass and force. The differential expression for the energy

exchange from Section V is

dQ = mqdg -\ /1 - ¢%/c* F(g)dq

while the differential expression for the entropy was

as = -2ddd - F(q) da.
3\ /l - éZ/CZ
The expression for dQ is the statement of the first law,
however the integral of this expression is dependent upon
the path. The expression for dS is a modification of the

first law whose integral is path independent. Both expressions

may be considered as representing the systems' dynamics.

If dQ is considered the "real" energy transfer then d$ might
be interpreted as the "effective" energy transfer. Following
this interpretation then m is the "real" mass and

\/l - éz/c2 F(q) 1is the "real" force while o and

1w é /c2
F(g) becomes the "effective" mass and "effective"

force respectively. In this interpretation the "real" mass
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is independent of the velocity and the "real" force is
velocity dependent. However the difficulty of working with
a path dependent integral can be avoided by using the
"affective" differential expression with "effective" mass
and force. This represents a change in viewpoint but not
necessarily a change in the mathematical expression used.
This can be seen by considering that in special relativistic
mechanics only motion for which the relativistic Hamiltonian
remains constant is considered. In the theory given here,
motion for which the entropy, whose mathematical form is

the same as the relativ;stic Hamiltonian, is a constant,
represents only a special case of all possible motion, namely
isentropic motion.

It is not possible to say that this investigation
supports the conclusion that the Laws formulated here pro-
duce equations which contain all existing dynamical theories.
One reason is that a quantum description was not even mentioned.
However, in Chapter V consistency with the special theory of
relativity was displayed in the eguations obtained for the
case of an isentropic system. Consistency with Newtonian
mechanics was shown for an isentropic system as the low
velocity limit of the relativistic equations. It is more
difficult to determine the consistency between this theory
and General Relativity theory though Appendix D gives some

indication of their relationship.
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Appendix D contains the derivation of the Minkowski
space~time arc element for a Q-conservative system. Thus
it may be concluded that relativistic dynamics does indeed
follow from the three dynamical laws when Q-conservative
systems are considered.

Further theoretical and experimental investigation is
necessary before a definite conclusion can be made about
the prediction of expanding orbits. Several questions must
be answered, such as: is it possible to find an expression
of orbital motion allocwing both a rotation of' perihelion
and a change in the semi-major Axis which would represent
an approximation to the solution of the equations of motion,
how closely does planetary motion approximate an isolated
system, is the motion really irreversible, etc.?

As any newly proposed theory which is offered to answer
a particular question, this proposed formulation of dynamics
leads to numerous new questions. Some of these questions
could be: What does the principle of increasing entropy
mean? Might not the planets be in slowly increasing orbits
as a result of following irreversible trajectories? Could
this irreversibility (directivity) be the origin of the
expansion of the universe? From equation (D-10) in Appendix

D it can be seen that for a Euclidean space

ar = at\/1 - v¥/e?
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0 cdt

, is it not possible then to interpret the

where dq =
entropy as a gggsure of "time" for the system? Would this
not lead to the interpretation that the principle of increas-
ing entropy requires that a system evolve in "time" or get

"older™?
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APPENDIX A

EQUIVALENCE OF THE TRANSFORMATION STATEMENTS OF THE SECOND LAW

This appendix provides the proof of the equivalence of
the two transformation statements of the second law and the
development necessary for stating the generalized "Carnot"
theorem for mechanical systems.

The two transformation statements are restated here as:

I. There exists no dynamic transformation whose sole
effect is to extract a quantity of energy from a given
reservoir (or source) and to convert it entirely into

. work.

II. There exists no dynamic transformation whose sole
effect is to extract a quantity of energy from a
reservoir while the system is at one velocity and
deliver this energy to another reservoir while at

a higher velocity.

To show the equivalence of these two statements, first

-2

assume I is false and show II must be false, then reverse

I
B ae

the roles.

-

.
P
(. 2w g

Suppose I is false. Then eﬁergy may be extracted from a
reservoir while the system is at a velocity éI and converted
entirely into work, with no other effect. This work can
then be converted into energy and delivered to a reservoir
while the system is at éz > él with no other effect. The

net result of this two-step process is the transfer of

-
‘
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energy obtained by the system from one reservoir while at
one velocity to another reservoir while at a higher velocity
with no other effect. Hence 1I is false. ‘
Here the importance of the words "sole effect" and "no
other effect" becomes more visible. For example, an electron
cannot absorb energy from an electric field, thereby increas-
ing its‘velocity, then pass that acquired eﬁergy to another
reservoir through collision or some other means without
radiating. The radiation is then the "other effect."
To complete the proof of the equivalence to the two

statements of the second law, first define an "engine" to
be a system that can undergo a cyclic transformation in
which the system does the following things, and only the
following things:

a. absorbs an amount of enerqy Q2 > 0 while at ézs

b. rejects an amount of energy Q1 > 0 while at él' with

qy < 9y

c. performs an amount of work W > 0.
Now suppose II is false. Extract Q, at él and reject it at
éz, with éz > ql. Operate an engine between éz and él for
one cycle, and arrange the engine so that the amount of
energy extracted by the engine at éz is exactly Q2' The net
result is that an amount of energy is extracted at él and
entirely converted into work, with no other effect. Hence

I is false. Therefore the statements are eguivalent.
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With this statement of the second law a special rever-
sible process called a mechanical "Carnot" engine may be
defined. A Carnot engine is one: that makes a complete cyclic
transformation in a completely reversible way. The cyclic
process of a Carnot engine is illustrated in Figure Al
where ab is a constant velocity process at velocity éz,
during which the system absorbs energy Q2:'bc is conserva-
tive; cd is a constant velocity process at velocity &1,
with &I < éz, during which the system rejects energy Q;
and da is conservative. The work done by the system in

one cycle is, according to the first law,

W=0 -9

since AU = 0 in any cyclic transformation. The efficiency

of the engine is defined to be

Q
Ns-“’-:l-al-.
2 2

s
]

B
-
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FIGURE Al., Carnot Engine
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The conclusion can then be made that, if W > 0, then
Ql > 0 and 02 > 0. This conclusion may be reached as follows.
Ql must not be zero for if it were the system would be capa-
ble of absorbing the energy Q, and converting this energy
completely into work which is a violation of statement I.
Suppose Q1 < 0. - This means that the engine absorbs the
amount of energy Q2 at velocity éz and the amount of energy —
Ql at &l and converts the net amount of energy Q2 - Ql into
worﬁ. This amount of work, which by assumption is positive,
may be converted into energy and delivered to the reservoir
at éZ' with no other effect. The net result is the transfer
of the positive amount of energy -Ql from él to éz with no
other effect. Since éz > él by &ssumption, this is impcssible
by statement II. Therefore Ql >0, From W = 02 - Ql
and W > 0 it follows that Q, > 0.

The same procedure can be used to show that if W < 0,
then Ql < 0 and Q, < 0.

Then a generalized Carnot theorem may be proven but
is stated here without proof:
Theorem: No process operating between two given velocities

is more efficient than a Carnot process.

Corollary: All Carnot processes operating between two

velocities have the same efficiency.

117




R

2,
%

A

R A R
W XF

&
¢

IR EN
o

LA
ek

p L2u ,z‘
o

APPENDIX B

CLASSICAL GEOMETRIZATION

The geometrization of classical dynamics is provided
by the principle of least action. Therefore a review of
this principle may p;ove beneficial in the geometriéation
of dynamics governed by the three dynamic laws.

The principle of least action: Of all curves C' passing
through Py and P, in the neighborhood of the trajectory C,
which are traversed at a rate such that, for each C', for
every value of t, T + V = h, that cne for which the action
A is stationary is the trajectory of the particle.

When stated in the form of the variational equation,
this principle reads

t(Pz)

§ f 2 T dt = 0, (B~1)
t(pl)

with the auxillary conditiocn

T+V-E, =0, (B=2)

where h is a constant.

It is important to recognize that in this instance the
extremals of the action integral cannot be determined by
setting the function in Euler's equations equal to 2T be-

cause of the auxillary condition. Since T is a function
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£ the velocity v, and V is a function of position x alone,
the times t(P,) - t(Pl) required to traverse the varied
paths C' will differ in general. Thus the upper limit in
the integral (B-1l) is not fixed. One approach to the
solution is to consider a change of variables. Since

the kinetic energy

P =D ax% de m (Qg 2
2 “af dt dt 2 'dt ’
m
dt T ds,

= m -
= krﬁﬂ;tfvT ds. (38-3)

Consequently the action integral can be written

2
A= 2m(E0 - V) ds, (B~4)
s
1
since along all admissable paths T = Eo - V. The integrand
in the preceding integral is clearly independent of t. The

varied paths can be parametrized so that C: x* = x%(w),

< u < u,, where P;: xa(ul) and P,: xa(uz), and write

ds ='\/§a8 x'® x'B du,

4y

where
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This permits the action integral to be written in the form

u
A= J-Z 2 - OB
= -\/ m(Ey = V) g,4 x'* x*® au, (B-5)
u
1

and since the limits of integration in (B-5) are fixed, the
determination of the trajectories is equivalent to finding
geodesics in a three-dimensional Riemannian manifold with

arc element

2

= - % gxb -
ds® = 2m(By - V) g o dx" dx® . (B-6)

The Euler equations may be formed so that

with .

G =-\/Em(Eo - V) gaB x'® x'B '

and recall that

d,3T 9T )\
() - = - 2, (o= 1,2,3).
dt ax“ ax“ ax“
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APPENDIX C

Integrating Factor for n Dimensions

. In the development of the integrating factor the dis-
cussion was limited to a one-dimensional system for simplici-
ty. It now becomes necessary to consider the extension to
systems with greater dimensionality, particularly the three-
dimensional space of classical dynamics.

In one dimension the differential of the entropy was

written as

ds = %? = £(0) dog.

Then if for each dimension the exchange of energy is denotel

to be Hbi, then

where there is no summation intended fov fidoi. Since each

dSi is a perfect differential then the total change in

rechanical entropy may be written as

However, the question which arises is whether there exists

a single integrating factor ¢ such that
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dq.
as = 9 _; 1.y £ a0,
L T

To see this consider the element of work considered

before as

i= l,...,n.

-

W=z F, aqt
i h B

Since each dUi is in itself a perfect differential then

dl = F dU., so that
i L

i
do = rau, - Eridq

2(al, - F.dqh)
i i i 1

or’
do = I dg..
. i
i
If the system is total Q-conservative in the sense that

dQ =

-
o
al

(]
o

then dQ = 0 is a Pfiffian differential equaticn. This equa-
tion is integrable and has an integrating factor ¢. The
integrability is guaranteed by the dynamical second law since
it is impossible to go from one initial state to any neigh-
boring state. Then, just as in the one-dimensional case,

the perfect differential follows
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But since

in = ¢i fi doi

then

o5 fi da,

Now following the same argument presented in Section II

concerning the composite system,

dQ = A do
where o is a function of all the N and the éi. Therefore
since
in = Ai doi
then
39,
= —
dQ i Aj{z==do + do;} .
Now
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so that

dg = ¢ do.
i 1l
or
Ado =1L A, do.
N 1 1
i
and
A{
do =12 <X dci .
i

It follows then that the Q%I = 0 and that the ratios

aq 1
Ai/x are also independent of the q%.

have the form

A, = ¢ £

H.
|

A=9 F(ol,cz, “euy cn)

and also

AL
do _ _ ‘i
T—Fdo’—iF—A—dGi
= g fi doi.
1
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The right hand side is a perfect differential and therefore

so is the left.

Since Ai/fi is an integrating factor and A/F is also
an integrating factor it follows that ¢(él,é2, ceny é )
is an integrating factor for the abi as well as for

dQ = £ dQ.. Therefore
i 4

dq.
SO (o R |
ds = i“’ .
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APPENDIX D

SPACE-TIME MANIFOLD

This investigation has not attempted transformations
from one coordinate system to other coordinate systems. It
is natural then to have certain reservations, or questions,
about the theory that can be removed, or answered, only by
a discussion within this theoretical framework of coordinate
transformations. If such a discussion of transformations
exposes a transformation requirement differing from the
Lorentz transformations of relativistic theory then the
validity and/or utility of the theory should be questioned
because transformation and symmetry arguments have yielded
a long list of experimentally verified theoretical predic-
tions, especially in the fields of atomic and nuclear physics.
On the other hand if Lorentz transformations are shown to be
a subset of the most general transformations allowed within
the theory then consideration must be given to the possibility
that the theory is a more general theory with special rela-
tivity representing a portion of the theory.

Though the equations of motion obtained in Section V
were shown to be consistent with the equations of the special
theory of relativity, this Appendix will attempt to provide
a more geometric point of view in order to better display

the transformation requirements.

126




Again consider the four-dimensional line element of

Section VI given by equation (VI-30) as

@as)? = By dq* daq?; i.j = 0,1,2,3. (VI-30)
f{ where dqo = %§ is the scaled entropy. The parameterization
3 0
§ may be chosen as discussed in-Section VI-A-2 so that
’
2 2.2 0,2 0. o 8.
5 (as) c™(dt)” = hy,(dg”) " + hoadq dqg* + haqu dg®;
2 xg = 1,2,3 (D-1)

when the line element is expanded in the fourth dimension.
Now since the hij are not functions of dq0 equation (D-1)
- may be used to find a solution of dqo in terms of the other

parameters. To do this consider the following definitions:

- - ho n %
,:: A = hool B = hoa dq
o 1
E D=h dq% qu ; and E = c? dtz.
AN af
i?:\“'c}
22
5@;% Then equation (D-1) may be written as
55
S
T ow
s % 0, 2 0
‘;a,i A(dg”)“ + 2B(dq") + D= E. (D-2)
5;“
b
e Dividing by A and adding (B/A)2 yields
g
ol (ag®)? + 2(8/2) (aa”) + /2% = EB + (/M2
K
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from which the solution for (dqo) may be seen to be

(ag®) = - @/m :\[ED + am? .

Squaring equation (D-3) yields

(a2 = ED) +a/m? x 20/mn\[ED + a/m?

or collecting terms

(g% = ED) + 2/ar¢ B/8) 2\ [ED) + /a7 3.

(D-4)
Substituting the expressions of the defined gquantities

into equation (D-4) gives

2 4,2
(ag")? = 28 - —“ﬂ dq® aqP
00 00
2h, dq% h, 2.2 h dq'dg® (h. dq¥)“
* "K“:i‘ (Foldq B s - Y%q P 7 b
00 Dgg 00 00 (h..)
. 00
(D-5)

Factoring a dt out of the term in the brackets and using

q = dq/dt, then equation (D-5) becomes

Y 3.0 Yy 2
0.2 _ clae? . My, hoyd /2 2 n ddq dq (o, da")
(dg™) " = 5 R b h +
00 00 o0 890
Byg 8
it dq® - —%—- dq®* aq®. (D-6)
00
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One result of the second law was that a Q-conservative
system in equilibrium was at a maximum of the entropy. This
was expressed in the variational problem of equation (II-16)

as

§¢ f '\/(dqo/d'r)z dr = 0. (D~7)

NMow consider a system which is describable by a Euclidean
line element, equation (VI-30). For this system the hij are
constants and the hOa may be considered to be zero, since
a suitable coordinate transformation may be found for which
hoa are zero. Hénce equation (D-6) reduces to

2

(dg")? = (2= et aq® dqfl. (D-8)

- h
00 @

B
Since hOO is a constant for this system it may be factored
out of the Euler equations which yield the trajectories
satisfying the variational problem of equation (D=-7);

hence the problem is equivalent to finding geodesics in

the space whose line element is

2..2

(ds)2 = c°dt® - ha dqa dqs, (D=-9)

B

where d52 = hoo(dqc)z. When the haB are the coordinate
coefficients 908 of Euclidean space then equation (D-9) may

be written as
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which is the line element of the Minkowski space of speciél
relativity. The Lorentz-Einstein transformation equations
which leave equation (D-10) invariant are well known.

Since the Minkowski arc element ds was scaled to the
differential change of entropy dqo by ds = dqo/\[ﬁga a
question of interpretation may arise. From equation (E-10)

the proper time is seen to be
@s)? = c?(an ? = ¢(ar) 21 - v¥/c?)

a . 8
where v2 = 948 %%— g%-. The entropy may then be seen to be

associated with the proper time by

ds = ¢ dT = dqo/\/hoo

or
dq0 = cw/hoo dr = c atV1i - vz/c2 .

The Minkowski length s is a measure of the "length" of
the world line of a trajectory in Minkowski space. 1In Min-
kowski space, where there are no forces, a particle with an
initial velocity will have a world line which increases its

length indefinitely. If the entropy is proportional to the
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Minkowski length then it too must increase indefinitely.
Why should the entropy increase if there are no forces?
Consider a thermodynamic system consisting of an ideal
gas at an initial pressure. If the pressure is completely
removed the gas will expand freely and the entropy of the
gas will increase indefinitely. Comparing this thermodynamic
system to the free particle in Minkowski space it is consis-
tent to expect the entropy of the free particle to increase
with the Minkowski length.
| Thus within this theory a Q-conservative systew which is
describable by a Euclidean line element must be described
in Minkowski space when the system is in equilibrium at
maximum entropy. This is not a new result because relativistic
equations wefe arrived at in the secticn on isentropic systems
but here the relationship between Minkowski space and the
most general allowable space is more readily displayed and
the transformation requirements are more easily seen.
Note that in Minkowski space ds = 0 for a light pulse.

This corresponds to dq0

= 0. It is an isentropic process
and is consistent with the interpretation of light trans-
mission as an isentropic process whose entropy is zero as
required by the third law.

If a more general Riemannian space is considered the
metric for an isolated system is no longer a Minkowski space.
As an example consider the slightly more general space where
haeand h o are functions of the space coordinates but the

0
hOa are zero. Then equation (D-6) reduces to
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czdtz - haB

hogg  Byg

aq® dqf. (D-11)

(qu)Z =

again but now the remaining line element coefficients are
functions of the space coordinates and the similarities
between equation (D-11) and the Schwarzchild line element

of general relativity may be s:en. However, within this
tﬁeory equation (D-6) represents only a portion of the allowed
motion for though it is « general line element the variational

problem of equation (D-7) may be used only for Q-conservative

systems in equipoise. Other systems must use the line element

and equations of Section VI.

A more general case than the two preceding examples

would involve the mixed terms dt dqo . These terms are

3 non-linear in the hOa and are dependent upon the velocities
.f: dqa/dt. When one or more of the hOa are non-zero then one
b or more of these mixed terms appear in the line element for
Qf the Q-conservative system. An approximation of these terms
e L
E§*£ may be made by expanding the square root factor. Since
Bl
-t F
gﬁ;\‘; 'Y.6 'Y .Y
TR R T Boyd 2 _ By [ PBog 2 .yes
4 . R A v A 14 FAC Thygd ) -
%§'ﬁ 00 00 00 00 (hquJ
¥ (D-12)
‘?KFV ds,2 - 2 _ Yy 8
'ﬁ}‘ . (F& = =c hesa' a .
Eﬁx,p
fs: i the right hand side of equation (D-12) may be written as
fe
e
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then if —-——7——7( << 1, this may be approximated by

0y 4
h, &Y [ h hy q" Bog
0 00 ds,2 ~ ds 2
1+ ()¢ = —El—-[l + ]
Boo L (h OY'Y)2 at 00 2(h, q*’)2 &

Substituting this approximation into equation (D-6) and

taking only the negative square root the line element becomes

2.2 2h, h h
0,2 _ cdt 0y 00 a o5 B
(ag") =SE . — { =3 dt) 2 }ataq® E—ﬁdq dq
00 00 (h Y 00
h
= L(c?at? - h _aq%aqby - —22 (ds)2 dtdq®
Boo of q")
Oy
or
aq® 1 ,ds,2 hyo (Bg.a")
EUENCIC o LA
00 (hy, ")
so that
i 2 h
(agh? 248l - N (D-13)
00 (hOYqY)

By comparing equation (D-13) with equation (D-11l) it
is possible to see how the mixed terms in the line element

(D~6) affect the isolated line element (D-11).
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This Appendix does not attempt to answer all questions
concerning transformation requirements, and is presented
with the hope that the reader may see that this theory does
not require a rework of previous accomplishments of physics,
but rather includes them while providing a framework which
may include others as well.

Recall that in Chapter V the arc¢ element was only
three-dimensional. The three~-dimensional arc element of

that chapter describes an isentropic, Q-conservative system.

The system in this Appendix in only Q-conservative and thus

is four-dimensional since the mechanical entropy is not

required to remain constant.
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APPENDIX E

EXPANSION OF PLANETARY ORBITS

There is considerable demand on any newly proposed theory
to predict some new phenomenon. This demand ﬁay stem from
the desire to create a crucial experiment to help determiﬁe
the theory's validity, or it may arise from the deéire to
demonstrate an expansion of scope, or increase of generality,
over prior theories.

During this investigation the time was primariiy spent
in the basic formulation of the dynamic laws an¢ investiga-
ting the possible consistency. However, a recent article

in Scientific A'merican7 discussed the necessity of a changing

gravitational constant to account for an observed expansion

of the moon's orbit that was not attributable to known effects.
It then became interesting to consider what, if anything,

the proposed theory would predic£ concerning changing orbit
size.

Recalling the classical problem in electrodynamics of
calculating the time it would take for an electron to spiral
down and into a proton, it is natural to assume that if
energy is radiated away from this system that the orbit size

should decrease. The electron-proton problem immediately

Van Flandern, T.C., "Is Gravity Getting Weaker?"
Scientic American, v. 234, #2, p. 44-52, February 1976.
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brings decreasing planetary orbits to mind. This notion
involves the idea of energy being radiated away. Figure El
illustrates how radiation of energy results in a decrease

of the orbit for the electron-proton problem.

) o
[ [] ﬂr

Figure E1l. The decrease in energy E, - E; results

in the decrease in radius Iy = rl.

Now a Q-conservative system does not radiate any energy
because dQ = 0. If the simplified two-body system is con-

sidered to be the entire universe it must of necessity be

Q-conservative. Recaliing that one result of the second

law, seen through Clausius' theorem, equation (II-13), was
that the entropy of an isolated system never decreases and
remains constant only for reversible processes, in particular,

recall equation (II-15)

2%2. Y, TQ = S(B) - S(a). (II-15)
I R
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Now if the motion of the system is considered to be a
reversible process then, since it is Q-conservative, it
must also be isentropic and should be describable by isen-
tropic equations. If the system is not describable by
isentropic equations but is Q-conservative then the process
must be an irreversible one and the entropy of the system
must be increasing.

In Section V the isentropic equations of motion yield

the relativistic Hamiltonian, equation (V-12) as a constant

of the motion. Then since the Hamiltonian and the entropy

are both constants of the motion for an isentropic system

they can differ by at most a constant. Then taking the
Hamiltonian and the entropy to be the same value, equation

(V-=12) b2comes

1.

Sg.* me? [ -1 + vigheted . (EeD)
\/I - vz/c2
If U(ql,qz,q3) is taken as the Newtonian gravitation potential

in spherical coordinates, equation (E-1l) becomes

$g = me? [——=t -1 + k& (E~2)

r
\/l - vz/c2

where k = -GMm. Equation (E-2) is the energy of the system

in special relativity and does not quite describe planetary
motion. Special relativity accounts for only one~sixth of

the Perihelion motion which is not already explained by
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planet perturbations. Then if the system is Q-conservative
and the isentropic equation (E-2) does not describe the
motion the process must be irreversible and the entropy must
be increasing.

If the entropy is increasing very slowly equation (E-2)
gives a close approximation to the motion. However, using
Figure E2 and equation (E-2) the situation may be seen to

be the reverse of the electron-proton problem.

Sy
| T2

i -z

RN

Sy [rmmeremmee-

Figure E2. The increase in entropy 32 - Sl results
in the increase in radius r, - Try.

In the low velocity iimit equation (E-2) becomes the

Newtonian energy of the system

Sg = E = % nw? + k/r (E=3)
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and an increase of entropy in the low velocity limit corres-
ponds: to an increase in system energy which implies work,

dQ # 0, has been done on the system. How can an increase

of entropy be consistent with a Q-conservative system where
dQ = 0?

Recall that, from Section V,

3 = mg®aq® -“\/l - v2/c2 P, aq®

while

dS:—_mf!—dg?—-—
Wdl - v2/c2

dQ

since d4S = = In the low velocity limit

\/l - vz/c2

ds + dg. If dS = dQ then dQ would be a perfect differential

o
Fa dg

and the integrating factor would not have been needed. It
is because of the existence of the integrating factor that
the difference between dS and dQ exists, and it is this

difference which allows a system to remain Q-conservative,

dQ = 0, while the entropy increases. The relationship between
Vv and T is governed by the conservation of angular momentum.
This relationship determines how total entropy is split
between kinetic and potential entropy, just as classically

the angulai momentum in the central force problem determines

the split between the kinetic and potential energy.
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Thus, even though this increase in orbit size must be
very slow if it is to correspond to experimental reality,
it is a reasonable gqualitative prediction of the theory

provided the orbit motion is considered to be an irreversible

process of a Q-conservative system. -
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APPENDIX F

OTHER METHODS OF DETERMINING THE COEFFICIENTS

The element on classical thermodynamics which makes the
theoretical logic consistent with experimental results is
the equation of state, while in Newtonian mechanics it is
the force law. In general in the application of this dynamic
theory, in the non-isentropic case, correspondence between
theory and reality has to be made by the choice of the metric
coefficients. Then to apply the theory to any physical
situation it is necessary to determine the applicable coeffi-
cients. But how may they be determined for the different
situations? .

In order to investigate the possibility of methods of
determining the coefficients other than the assumption of
equations involving Einstein's tensor equation, for instance

consider the four-dimensional line element given by equation

(VI-30)

(ds)? = by dq* ad ; i, = 0,1,2,3, (F-1)

where qo = S/F0 is the entropy. There is more than one

method of determining equations of motion for this system.

A. ARC LENGTH AS THE PARAMETER

Therefore suppose, as the first approach, the parameter

is chosen to be the arc length by the choice
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ds £ ¢ dt,

Then equation (F-1) may be written

(&2

(9]
i

- h0(§°)2 + 2ny (@9 g% + nq%ef

where ql = dqi/dt. Then define

mh
1 2 00,:0,2
Fmc” = ——=(q")" + mhy Q" + —3—qq

~—~
i

wvhere m is a constant. Now define

oz -3n,&N?%,
A
a - *C
<= Z Boglan)
and
S WY
K = p) han q

so that equation (F-4) may be written as

-~ ar ma .a ~
L==-md + < qg + K .

The geodesics are then given by the four equations
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] . o~ ~
SH8, L1 -8, L =05 i=0,1,2,3 (F-9)
~§ where
2; = =% .
Y 3q
s f«é The equation for i = 0 is then
9
:; —d-. - , 3 g 3 X a - . o
qEl™M 30 + 5 3R 471 - 35 L =0, (F=10)
while the three spacial equations are
‘ -
é%[aa Ll - 9, L = 0; o=1,2,3. (F-11)
}; ‘ By defining
. R 1
e Veme- -4
i
‘%;;— equation (F-8) can be rewritten as
!‘4‘;}{:_ ~ ~ ~
T L=K=-V. (F-12)
F.
Equation (F-1l) becomes
ded Kl -5 K=3[3 V] -3 V -
Jeld, K] 9, K dt[aq \'Al 9, V- (F-13)
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Note that here the metric coefficients are predetermined
by some physical law, equation of state, or empirically.
However when the hij are known then equation (F-10) may be
solved for é and equations (F-13) yield the éa.

Define the right hand side of equation (F-13) as the

force

£z A0 VI-a V. (F-14)
Note that

3,V =-2a
then
a‘-i{:-[éa V] = - 2o ;.a LI % ia %

and

2, V=md_ ¢ -%aaie k.

Substituting these expressions into the force (F-14) yields

g_.m, o 0
caoAaq

P B
£ 3 Aaq

PO ( W
a cog maaé + EaaABq

or
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~ _ ~ - E ~ .0
£ = maa¢ caoAaq

Mo agh-aaabf -
+ glaaa” - 3,A af1.  (F-15)

Define
o - - ~--]-'- ~.0 -
Ea S 8a¢ caoAaq (F-16)
and N
B=VxA, (F-17)
so that the force may be written as
+ -
fa=mEa c(vxs)a
where
- 0
va = q
or as a vectoral equation
> X m- =
f=nmE + E(V X B). (F~18}

It has been shown here that forces resulting from the
four metric coefficients hoa and h00 can be brought into the

form of a Lorentz force and that this way it is shown how, for
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electromagnetic forces, the electromagnetic forces, the
electromagnetic potentials are connected with the metric.
There are two questions which may be posed here. Suppose
the potentials defined here are the electromagnetic poten-
tials. Then the electrostatic potential would be a function
of the square of the rate of entropy change while the com-
ponents of the vector potential wauld be proportional to
the rate of entropy change. What would be the physical

significance of this relationship? If the ha are to corres-

B
pond to the isentropic metric elements there may be.a force
involved with them (see equations (B-6) and (V-27)). What
then is the physical relationship between these forces and
the Lorentz-like forces of equation (F-18)? If the Lorentz-

like forces are in fact the electromagnetic forces, what

type of force must the others be?

B. ENTROPY AS THE PARAMETER
A second approach might be t< cioase one coordinate as

the parameter, such as choosing
dq = c dr. (F-19)
For this choice of parameter the line element becomes

qla+h la qlB '

ds,2 _ 2
(a? = c” h,, + 2c h ag @

00 Oa
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where

The geodesics are then found as the solution to the

variational problem

§ [ ‘\/(ds/d'r)2 dr

or defining

and
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B R ey,

Erdd




o R
2
"‘;" 1.
¥ o.

. - Py
gt s

Wi

O

:
P B

£

¥
PR
0y XN

Lo !";.!‘1 LA
g o
L

LN TIORN

4 WPt
Y W
L/ -
’ N
S !r; R
lh(&“‘ M
.

b NS

J Aavr HEn

RIS

5 2

<

L =

Nl

(%-3)2 =K - (F-26)

e

The integrand in the variational problem, equation
(r=-20) is a function of ¢, qa and q'“, therefore there

are only three equations of motion. To obtain these equations

consider
- 'J' j= L = -
F-‘\/hijq qQ' \/j K=V,
then
-3
v p= 2L -
and

Euler's equations then become

1 -
2

dr 2,0 w o ar _ - = -
E’l?[!-'. (BGI-S aa Y)] ‘:. (aalf aa Y) 0. (F 27)

Carrying out the differentiation of one of the terms of the
product and rearranging terms leads to
d

—[5' K] - 3 K=d£-[a' Vl -3 V+ £
o ~ o ~ T O ~ s

P v Do’ (F-28)
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where
-1 ,-1 8
SR LU SR S
(F-29)
But from equations (F-23), (¥-24), and (F=25)
3-2
B V=-3%2
and
r = - m g
9, V=md 2 -3 Ag q'
so that
=0, vl == B0, a a4 aray,
where
) = 2
9r = 37 ¢
Then equation (F-28) may be written as
’ -(-i- ' - = = -_IP. ln- IB_ IB
dr[aa Xl aa 5 mau? caTéa * c[aaésq Bséaq 1.
(F-30)
;f The definitions
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(F-31)

1]
!
2
L=
|
Ql=
@
R

and

:

=vVvxZX (F-32)

nay bé made so that equation (F-30) can be expressed as

Fla Rl - o K= £ + &y (F-33)
where
T=nk+ (¥ x8), (F-34)
with
?a =q'%

These two approaches may be applied to any four-dimensional
metric, the difference being that in the first case, where
the arc length was considered as the parameter, four equat.ons
of motion were obtained which would describe the motion as
geodesics. In the second case there are only three equations
of motion from the variational principle. Given the coeffi-
cients hi* which correspond to the physical situation either

9

procedure migat be used to obtain the motion.
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The coefficients hOa and h00 are the coefficients which

describe the deviation from an isentropic system and the
potentials defined from these coefficients lead to a force
, (% or f) similar in form to the Lorentz forces in electro-
' magnetism.

This suggests. that the description of "radiation"

of entropy is provided by these coefficients.
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