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1.0 INTRODUCTION

Zienkiewicz (Ref, 1) and a number of other investigators (Refs. 2
through 5) have noted that the finite element.method (FEM) is suffi-
ciently general to be applied to a wide class of problems, including
fluid mechanics. Within recent years, the FEM has been applied to the
study of certain fluid mechanics problems. For example, Baker and
Manhardt {Ref, 2) have applied the FEM to prediction of low-speed
flows, and Chan, et al. (Ref. 5) have used the FEM in the solution of
the small disturbance equation for transonic flow.

It is the purpose of this report to present results of a study of the
application of the FEM to the compressible flow equations in the non-
conservative Eulerian form, The flow over an airfoil in the transonic
regime is a problem of current interest and was chosen to demongtrate
the power cf the method. The choice of the Eulerian equations as the
governing equations, rather than thin airfoil theory, was made to
alleviate the restriction to thin airfoils and to allow for extension to
other fluid mechanics problems. Although solution to these governing
equations requires a longer convergence time and additiconal machine
storage than does solution of the one equation of small disturbance
theory, this generality will be of future advantage, Choice of the non-
conservative form of the governing equations was made for computational
convenience as the FEM algorithm for the conservative form is more
complex and requires additional calculations,

Numerical results are presented in this study for subsonic and
transonic inviscid flow over two-dimensional nonlifting airfoils., The
results of the predictions are compared to experimental results and to
other numerical solutions,

2.0 ANALYSIS

2.1 GENERAL DISCUSSION

The Galerkin method of weighted regiduals was used with the un-~
steady Euler equations to obtain a system of ordinary differential
equations in time, The elements used in the study were parametric,
bilinear quadrilateral elements (Ref, 1}, During this study various
difficulties were encountered with the straighforward applicaticn of
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finite elements to these equations, One of the first problems encountered
was the irregular behavior of the solution near the leading and trailing
edges. This was caused by the discontinuity in the derivatives of the
boundary., The following methods of improvement were evaluated:
altering the geometry to smooth the discontinuity, enforcing stagnation
conditions at these points, splitting the discontinuous boundary condi-
tions and applying them separately to corresponding elements, and
altering the functional form of the interpolation function.

Another problem encountered was instability in the time integration,
Initially, an artificial viscosity term was used in an attempt to remove
the instability. Steady-state solutions were obtained, but a small error
was present because of the viscosity term. The next modification was
the periodic altering of the solution by use of Bernoulli's equation.
Although the true transient behavior was lost, the steady-state solution
was obtained without using artificial viscosity for subsonic cases, In
the transcnic cases, while viscosity was still required, a steady-state
soluticn could be obtained using a very small value for the viscosity.

In addition to the need for the artificial viscosity term in the transonic
calculations, a fine grid network in the region of the shock wave was
required.

2.2 BASIC EQUATIONS

The unsteady Euler equations are

% t** **. .$‘> ‘*.
pl,+pux+upx+p\y-rvp},=0

* * x W " *

* » - * ¥ -

ut +nu o+ v +Px;’p =0

* o * 3 » *

vt ;W * ' =

oV vy +Py/p 0 (1)

The variables are nondimensionalized by

* * * * *
t = t*fl:m,u = u*/uw, veviu ,p=pip P=P/P ,x=x/L,y=y/,

and
tD-D = L/uno
giving
P1+Pux+upx+va+vpy:0
P, P,
u, + udy, + v o+ =0
Y 2 p
PO-D“OO
. ' P P]‘r .
LT OBV, w4 27:0 {2)
Pace
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Using the isentropic relation in nondimensional form P = p¥, Eq, (2)
becomes

Py + PU + TP+ PV, - VP, =0

U Fouu o+ oVE 4 5 P P, =0
Poc Vo
¥ Pu
; y=fp =
vl+uxx+VvY+Pu2p Py 0

(3)

The density p is replaced as a dependent variable with T = p7 "1,
yielding

T, o+ ly - DTu, + T, + (}'-1}T\'y + va =0 (4a)-
Y P

u, 4+ oun, + vu}_+m]‘x=0 (4b)
¥ P,

ey e T (4c)

These are the equations which are used in this report., In cases
where a shock occurred an artificial viscous term was needed to obtain
gtability, The basic equations become

T, + &y - l)Tux + T, 4 {y - 1}Tvy +VTY =0

i 2
p +ouu, o+ Vo + ————= T = ay’u

S I

1 !
v, + uv,_ + vv,6 + —mmm = a¥V v 5
[} X Y (:V _ ”Mi,-l-y ( )

23 FORMULATION OF THE ELEMENTS

The domain is divided into small quadrilateral elements, e.g., see
Figs, 1 and 2, Two numbering systems are used. One is a global sys- .
tem which assigns a sequential node number to each node in the domain,
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The method used to assign the global system will not affect the results
but is a significant factor in computational efficiency. The other is an
elemental system where the four nodes of each element are sequen-
tially assigned within each element, The order used by the authors
was counterclockwise starting with the lower left node. Throughout
this report the numbering system used will be evident by the presence
of an upper limit of 4 or N. Within each element, the variables are
approximated as a function of the values at the four nodes {corners)

in the following parametric form (Ref, 1):

=
It

4 .
Ell v, 0YE g

<
Ir

4 .
‘—El Vlﬂl (6!7])

-
I

4 .
igl T, Q78

b
]

4
.;1 xiﬂi (fﬂﬂ

4 .
z y. O
2 y; @1 &R (6)

~e
]

where (-1 £ §<1and -1 <n <1)and

Rl = (1 + 81 + /4
0% - (1 - 80 + /e
2% = (1 - 80 ~ p/4
% = (14 A - e (7)

The dependent variables can therefore be approximated over the entire
domain as a linear combination of values given at the nodes,

Partial derivatives within an element may be obtained from Eqs, (8)
and (7) as follows. Consider for example

u, = u{:-{"x + Up Py
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where
‘fx = :"n;-] + My = "}'f(‘]
J = X£} - X -f

giving

=
|

x T (f‘vq u,g;)/l

z Q 2 Qk Q! § ﬂk/
l.‘l ‘r 2
i=1 é k n k=1 }k E

(4 E N . & K
3 x, 0% yﬂ o 3 Xy Q
k:lké‘k k 1k?7k___1)k 5)

H

0P =

k

(8)

Thus the partial derivatives are a linear combination of the nodal
values, It is noted that while the dependent variables are continuous

between elements, the partial derivatives are discontinuous at the
boundaries.

The time derivatives are treated as follows:

=]
il
Tae
g
=2

—
[}

[ng]
—
=

i=1 (9)

2.4 GALERKIN METHOD OF WEIGHTED RESIDUALS

Substituting the approximations given by Eq, (6} into Eq, (4) for
each element in the domain gives equations of the following form:

N .
il Y
1=1

Il
*ﬂ
5

N
> e = FZ(Tj' uj, v)

i=1

N

. . n
.Elaivi FS oy Yy , i=1L23...N
1=

]
!

[=]

<
—

(10)
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where oi and Fj are implicit functions of the independent variables x
and y over the domain, The above consists of three continuum sets of
equations with a finite (three times the number of node points) number
of unknowns, Since all of the implied equations cannot be gatisfied, a
selected set of weighted integrals of these equations was chosen:

N .

fﬂ‘f’k i‘flaiTidA = fRFl(Tj, uj, vj)qf!kdﬂ. {11a})
N

fH¢k iz.,laiui dA = fR F2(Tj, uj; vl.)q’)kd}'\ {(11h)
N ]

fﬂ¢k 1§lai"’i df"\ = fﬁ F3(TJ' uj, Vj)¢k dA (IIC)

where j,k=1,2, ..., N

The ¢x's are the basis functions formed from the elemental Q's,
There is a basis function associated with each global node, such that
the function is unity at this node and zero at all other nodes., The basis
function is a composite of the elemental §2's as follows, For a point
in the domain that lies in an element containing the kth node, the value
of ¢y is defined as the value of the Q2 in that element which has a unit
value at the kth node. The term ¢k is defined as zero at all other points,

In actual calculations the integration represented in Eq. (11) is done
separately for each element and then assembled to form the equations.
When the integration is performed over a single element only four basis
functions will give nonzero results. Within this element these four

basis functions are identical to the four interpolation functions Ql, Qz,
93, and !.’34. The elemental systerm is therefore defined as
ey j
_(Hmﬂ if[ bi T, dA = meGI(TJ, ujy vj)ﬂ dA
4 . :
fp @ 2B dA = [ Gy(T) 0, vpalda
m - m
] : i
; = j oo
fﬂmﬂ if] b, ¥, dA = fanS(Tj' uj, vj]ﬂ dA ., j=1,238,4 (12)

where bj and Gj are implicit functions of the independent variables x
and y over the elemental domain, The above is a system of twelve

10
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equations in twelve unknown derivatives. A more detailed analysis of
Eq. (12} is shown in Appendix A, During assembly, the elemental
systems are combined to form Eq, (11), This is done by summing
together corresponding elemental equations such that the 2's in

Eq. (12) form the ¢y 's in Eq, (11), At the same time, terms that
correspond to the same unknown are combined, enforcing continuity
between elements, This assembly process converts the individual
elemental system of Eq, (12) into the global system given by Eq, (11},

2.5 BOUNDARY CONDITIONS

The examples used in this report are flow around nonlifting two-
dimensional airfoils. The boundary conditicns for these problems are
as follows. Consider Fig. 1 with the top boundary a far-removed wall
and the upstream and downstream boundaries being sufficiently re-
moved to assume free-stream conditions at thege boundaries, The
boundary conditions are

u=1T=1+v =8 at the upstream and downstream boundaries
v=10 at the upper bouadary and along the centerline
v = utan ¢ along the airfoil (13}

The boundary conditions are applied in time derivative form; that
is, Eq. (13) is differentiated with respect to time, obtaining

u= vs= T = 0 at the upstream and downstream boundaries (14z)
¥y=10 at the upper boundary aleng the centerline (14b)
v = utan8 along the airfail {14c)

If Eq. (13) is satisfied for the initial conditions, then Eqg. (14) will
enforce Eq, (13) for all time.

When Eq, (14a) is applied to a node, the corresponding equation
from Eq. (11b) is removed from the system., Likewise when Eq. (14b)
is applied at a node, a corresponding equation from Tq, (11lc) is re-
moved, In the case of Eq. (14c), the equations in Eqs. (11b) and (11c¢)
are replaced by Eq. (14c¢) and a corresponding linear combination from
Egs.{11b) and (11c), The linear combination is based on the geometry
at the point and is of the form

(Eq. 11b) + tan @ (Eq. 11c)

Il
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The points at the leading and trailing edges require special hand-
ling in order to treat the discontinuity of the slopes at these points. At
these points the boundary conditions are applied to the elemental equa-
tions that form Eq. (11) before assembling, In this manner, a different
value for the boundary condition may be applied to each side of the same
point, Because of the digcontinuity in slope, a discontinuity in u and v
also occurs at these points, ™ The assembly process is altered at these
points to enforce continuity of T and W. The above process is easily
accomplished as follows. The columns corresponding to v and v at the

singular point are combined into a single W column by

W column = cos 8 (u column) + sin @ (v column)

The rows for uand v at the singular point are combined into a single
W row by

Wrow = (urow) + tan @ (v row)

The previous operations result in a new elemental system of equa-
tions with one less equation and unknown, In order to maintain a
simple assembly process a dummy equation and urknown are added to
the element system, This transformed elemental system is then assem-
bled with the rest of the elemental systems. The regular boundary con-
ditions are then applied at the other boundary nodes. When the global
system is solved, the unknowns at the singular points correspond to T,
W, and a dummy unknown that is ignored. A value for W is given at the
starting time and W is integrated in time for the singular points, The
velocity components at the point are obtained by using the value of tan 6
corresponding to the element under consideration. The values of u and
v will be discontinuous at the singular point and along the line segment
connecting the two elements. They are continucus at the other node
common to both elements,

“The actual solution to the equations gives u=v=0 at these points
with singular derivatives., Imposing u=v=0 as boundary conditions re-
quired either a large number of extra node points in the vicinity of the
discontimiity or the inclusion of a special singular function for the fit
at these points, The method described in the text gave comparable
results with less computational effort.

12
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2.6 CALCULATION OF TERMS IN THE ELEMENTAL SYSTEM
OF EQUATIONS

The elemental system of Eq. {(11) can be obtained in a straight-
forward but tedious mamner, For those readers not familiar with the
mechanics of the finite element method, the steps for obtaining the
elemental equations for axial momentum [Eq. (4b)] will be outlined,
The other two equation forms can be obtained in a similar manner,

The axial momentum Eq. (4b) when written in detail for an element
is

- tootuo-tvotea —KETa
. = . - ~— V. u. —_ -
i:l"ll i=1u' Flu} el D =1 Y =1 " {15)

Multiplying by qK and integratling over the element results in

4 . 4 4 .
i [ Q08 - 2 2w g ieletd
i=1

i= m i=1,=1 '}

; 4
I al de _ . 14k
viu, fn Qa0 K 1§1T' J-H QL0% dA (16)

m m

1i=1

[

I
1 pAs=
—a Mt

Note that while the right-hand side is a function of the dependent vari-
ables, the integrals are not; they can be evaluated on a one-time basis,
This is true for the last term because T is used as a dependent variable
ingtead of p. The above integrals are integrated in the parametric
coordinate system (£, n). The integrands are polynomials of degree
three or less in either £ orrn, Consider for example the first term
on the right-hand side for i=j=k=1:

I alololady - i1 a'Qpé, + Q}? 2,) ! dxdy

m m

+1 +1 ) " . l' 1
i _f] .{1 Q[(Qgy, - Q,va J1Q ) dédn
(17)
+1 41
= [ 7 [l + &1 + p/4lL + )y - {1 + f)}"é'-']
211 .

(1« &1 + p/4ldédny

“lat ¢ 920 - p? _
Ly - 0 g

13
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where

[

Yp = ¥l + &)~ yol = £} - ¥yl =€) = y 01 + &)

Ye

YL + 90 = yo( + ) = ygll = ) + 3,01 - 5) (18)

The integrals are evaluated using a two-point Gaussian quadrature in
each of the coordinates, By letting k = 1,2,3,4, Eq. (16) gives four of
the equations in the elemental system. The other eight are obtained
from Eqs. (4a) and (4c),

Artifical viscosity terms were included at times in order to main-
tain gtability in the transient solution. Since the magnitude of the terms
was kept small, the effect on the final steady-state solution is assumed
to be minor, Thus, it was assumed that an accurate evaluation of the
viscous terms was not required as long as stability was maintained,
The following describes the evaluation of the viscous terms as used
in this report. Consider the viscous term in the axial momentum equa-
tion without the constant multiplier, Using Green's theorem results in

m

s, 0*V2udxdy = - I 0F . Tudxdy + $iq 00 - vuds
m

m

The line integral was ignored giving

m

_ ko .4 ki i ok
fi, v VodA = 20T @30, + @ addxdy

n

l-_—l

3 +1 41 k 1 1

- Iuf S [@fy, - Qf sl0ky, ~ 2 yg) (19)
k i 1

+ Qg - Qéxq)m xg = Qpx i lxeyy, ~ x, v£)] dddn

Two-point Gausgian quadrature was also used to approximate this
term, The quadrature is not exact in this case because of the Jacobian
in the denominator,

2.7 INTEGRATION IN TIME

Equation (11} is algebraically linear in the time derivatives, These
derivatives were obtained by use of Cholesky factorization.

14
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Since the matrix coefficients are not functions of the dependent vari-
ables, the factorization need be performed only once, The solution of
the system of equations results in evaluation of the time derivatives
which can be used in a numerical integration technique. The method
used by the authors was fourth-order-accurate Runge-Kutta,

Initial conditions were obtained from a potential flow program,
The program solved the Cauchy-Riemann equations using a finite ele-
ment method. The elements used were the same in both programs. In
the case of the Cauchy-Riemann equations, the resulting FEM system
is a linear algebraic system which can be solved directly without iter-
ation, The solution to the Cauchy-Riemann equations gave initial con-
ditions for u and v, The initial conditions for T were obtained by using
Bernoulli's equation in the following form:

T =1~ (Z=Dawe -
(2)“( b (20)

at each node in the flow field.

Direct numerical integration of the system gave unstable results,
From observation of the trangient solution, it was noticed that the
dependent variable T was the first to go unstable, The integration pro-
cedure wag modified to reset the variable T after a specific number of
integration steps had been taken., The u and v variables from the last
integration step were used in Eq. (20) to obtain the T variable for a re-
start, This modification will not affect the converged results since
Eq. (20) is valid at steady state, For the subsonic cases, this procedure
resulted in a stable convergence to the steady-state solution, The best
results were obtained using about five integration steps before resetting
T,

In the cases where a shock was present, the above modifications
were not sufficient, For these cases an artificial viscosity term was
added to the momentum equation, The viscosgity term was kept as small
as possible without causing an instability, Best results were obtained
by systematically reducing the amount of viscosity as the solution
started to converge. In these cases the steady-state conditions were
recognized ag a steady cyclic pattern occurring with the resetting of
the initial conditions. This behavior is caused by the inconsistency
between the viscous term in the momentum equation and the inviscid
assumption implied in Eq, {20),

15
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Although only the banded portion of the linear system of equations
is required, the storage of these coefficients can be an obstacle for
large grid networks. The linear system was modified by using only
the center threee diagonals; the other coefficients are set equal to zero.
The resulting tridiagonal system not only required less core but
resulted in faster convergence to the steady-state sclution., This
modification, while altering the transient solution, results in the same
steady-state solution.

3.0 RESULTS AND DISCUSSION

Several selected problems have been sclved in order to verify the
numerical scheme discussed in previous sections, Subsonic and tran-
sonic flows over two-dimensional airfoils were investigated, The air-
foils chosen were (1) a 6-percent biconvex circular are, (2) an
18-percent biconvex circular arc, and (3} the NACA nonlifting four-
digit series (NACA0012 and NACAQ024) of Abbott et al, (Ref, B},

The method was implemented on an IBM 370/165 digital computer,
Storage requirements for the grid networks used in this report were
155K bytes of core. A heuristic approach was taken in determining
when convergence was obtained. Integration was continued until the Cp
along the center streamline held steady within plot accuracy (approxi-
mately +0,001 to 10, 01 depending on the case), For subsonic cases
about three minutes were required. When a shock occurred, twenty to
fifty minutes were required, depending upon the strength of the shock.
Several cases were run for additional time to confirm the authors'
judgment in determining when steady state occurs, The final value
of the artificial viscosity, «, used was the smallest value that did not
give wiggles in the region ahead of the shock.

The predicted pressure distributions for varicus free-stream
Mach numbers have been correlated with experimental data and with
available numerical solutions. Figure 3 shows the predicted pressure
distribution along the axis and over a 6-percent circular-arc airfoil
with a free-stream Mach number, M_, of 0.7, A summary of pre-
dicted pressure distributions, compared to the experimental data of
Collins and Krupp (Ref, 7) and Knechtel {Ref. 8) for three subcritical
free-stream Mach numbers (M, = 0.710, 0.809, and 0, 826) and a
slightly supercritical case (M_ = 0. 857}, is shown in Fig. 4. Further
increase in free-stream Mach number to M_ = 0. 903 produced a super-
critical case and a shock as shown in Fig, 5. For the cases where
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M, = 0,857 and 0, 903, results obtained by Murman (Refs, 9 and 10) are
also shown, For the lower Mach numbers the differences between the
predictions are too small to show in the figure. In these supercritical
cases, an artificial viscosity (o = 0, 005) is required to achieve stability,
which has an effect of smearing the discontinuity (Ref, 11). The pre-
dicted shock location being upstream of Collin's data is attributed to the
fixed wall.

Computed Mach number contours for the 6-percent circular-arc
airfoil with M, = 0, 903 are shown in Fig. 6. The rough contours are
attributed to poor plotter resolution and linear interpolation over the
gparse grid shown in Fig. 1.

The case of transonic flow over an 18-percent circular-arc airfoil
for M, = 0. 741 is shown in Fig., 7. The predicted pressure digtribution
over the airfoil is compared to the experimental data of McDevitt
(Ref, 12), A very weak shock is predicted, which requires only a very
small artificial viscosity (« = 0, 001} for stability.

Application of the scheme to two nonlifting airfoils of the NACA
four-digit series (NACAQ012 and NACA(0024, Ref, 6) is shown in
Figs. 8, 9, and 10, Predictions for the NACAQQ12 airfoil were calcu-
lated for the cases of M, = 0,72 and M_ = 0.80. Figures 8 and 9 show
the correlations of the predicted pressure distributions with the experi-
mental data of Vidal et al, (Ref, 13), Figure 2 shows the grid used for
the NACAD012 airfoil.

A low Mach number case for the NACA0024 airfoil is shown in
Fig, 10 for the comparison of predicted velocity distributions with the
theoretical calculations of Abbott (Ref, 6),

The grid network used for these problems is not ideal for blunt-
leading-edge configurations, The wiggles present in the NACA wing
sclutions are stable in time and could be improved with a more refined
grid network,

4.0 CONCLUDING REMARKS

The finite element method (FEM), based on the Galerkin weighted
residual approach, has been used tc compute flows over airfoils., This
method was found to be sufficiently accurate and reasonably fast for
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subsonic flow over circular-arc airfoils, However, difficulty was en-
countered in cbtaining stability when a shock occurred in supercritical
cases. In the present approach, the problem was solved through the
use of an artifical viscosity. An increase in computing time and the
shock-smearing effect were observed (Ref. 11}, Also, the NACA air-
foils with blunt leading edges gave difficulty and required larger con-
vergence times,

This is a preliminary effort on the application of the FEM to the
Fuler equations in the transonic flow regime, Additional effort will be
required to establish this scheme as an engineering tool for solutions
of fluid-dynamic problems of the type considered. The convergence
time must be reduced for supercritical cases which require an arti-
ficial viscosity. Also, in future work, the artificial viscous term
should be replaced with the correct viscous term and the energy equa-
tion should be added to the system,
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Figure 1. Finite element schematic for flow past a 6-percent circular arc airfoil.
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biconvex airfoil as a function of Mach number.
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APPENDIX A
FINITE ELEMENT ALGORITHM FOR THE EULERIAN EQUATIONS

Following the scheme outlined in Section 2,0, the finite element
algorithm is developed for the Eulerian equations. The Galerkin
method of weighted residuals is used to obtain a system of ordinary
differential equations in time.

Equation (6) is substituted into Eq. (5) and then weighted integrals
are formed over the domain

4 4 4 P '
i T T) - EQIT,[ EQ e) + 20w [ TQIT,
Boilica t i-1 Nix W E R i 1 x

8 4 ' 4
+ y-1 Zﬂ‘Ti(Eﬂlvi)y + Eﬂ'vi(zﬂlTi) }dexdy = 0(A-1a)
i i=1 y

4 . i
+ __}’__2( 2 QITI) ﬂk dxdy - (ZJ-J-H Vz( Zﬂlu)dxdy (A-lb)
i=1 x 1

n

1=
i ;‘ ; 4 4 o 4
Q° v, Q. iy, + X0 v.f ZDv,
OB Y ] P Y M ] P

4 s
. _Y__():gl ’Ii) ¥ dxdy - aJf, vg( s ! v)ﬂk dxdy (A-1c)
i= m 1
¥
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wherek =1, 2, 3, 4

Equation (A-1) can be rewritten as

4 . ,
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The zbove is a system of twelve equations in twelve unknown de-
rivatives; the coefficients are evaluated for each element and then

assembled to form Eq, (11),
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NOMENCLATURE

Chord Length

Pregsure coefficient

Jacocbian

yPo/((y - DP, (u2))

Reference Liength

Free-stream Mach Number
Number of node points

Unit normal vector

FPressure

Domain

Element domain

Arc length

Temperature

Time

Axial component of velocity
Time derivatives at the it node
Volume

Transverse component of velocity
}uz + 2

Axial coordinate {measured from leading edge)
Transverse coordinate
Artificial viscosity coefficient
Ratio of specific heats

Body (airfoil) angle

Parametric coordinates

Density

Basic functions
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Q Interpelation function

v Del operator

aRm Element domain boundary

SUBSCRIPTS

t Partial derivative with respect to time
x Partial derivative with respect to x

Yy Partial derivative with respect to y

n Partial derivative with respect ton

E Partial derivative with respect to £

Free-stream condition

SUPERSCRIPTS

% Dimensional parameter
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