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Maximum Theoretical Angular Accuracy Of
Planar and Linear Arrays Of Sensors |

1. INTRODUCTION

The objectives of this paper are:

To establish an upper bound on the theoretical accuracy in the angular
location of a radiaiing object obtainable with an array of identical sensors subject
to {nstrumental errors, in the absence of angular interference;

The determination of an optimum processing scheme, which, under cer-
tain assumptions, meets the bound;

A limited rumerical investigation of a particular array in the reasonably
realistic situation for which terrain specular reflection is present.

The question of the errors in determining the angular coordinates of an object
located in the far zone of a planar or linear array of antennas has been studied,
among other applications, for radar am:ennasl'3 and for multiple interferometers
for landing systems. g In the first area of applications mentionad, the array
(Received for publication 29 April 1976)

1. Rondinelli, L,A, (1959) Effects of random errors on the performance of
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4. Danville, A. R, and Moore, S.R. (1975) Design methnd for interferometer
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element outputs are linearly combined in the feed structure in order to provide a
small set of "'observable'' voltages (the outputs of the sum and difference ports of

a monopulse antenna system) from which the unknown target angular coordinates
are to be extracted. In the second area of application the angular position is ob-
tained by averaging phase measurements pertinent to interferometric baselines
of different lengths.

The two techniques are, of course, totally different and are applied also in
totally different circumstances. The first technique uses a ''conventional” and
hence linear antenna. The second instead embodies processing schemes which
are highly nonlinear. Also in most cases th. second technique is applied to lo-
cate only cooperative targets, (as in microwave landing systems) having a trans-
ponder on board. Thus the density of the received power incident on the array can
be orders of magnitude greater than for the radar case, thereby making considera-
tions of antenna gain totally different in the two cases. In this work the question

of the angular accuracy of a system of sensors having equal radiation patterns is

reexaminad from a different and more general viewpoint. Rather than analysing

a particular processing scheme assumed a priori, an "unstructured' approach is 3

adopted based on statistical inference considerations, D An estimation criterion
rather than a processing scheme is established a priori for the extraction of the

angular parameters from the phases of the complex voltages observed at the ele-
mer* ports (the amplitudes carrying no angular information). The processing
scheme is instead obtained from the set of equations that are the analytical ex-

pression of the criterion. The maximum likelihood criterion, with its well-known
desirable statistical properties, is the one chosen. 8 If the probability densities of
the phase errors of the element voltages are normal, the estimator, that is, the
processing scheme of the observables, consists of linearly combining the phases
of the element outputs with weights depending vpon the element coordinates, re-

| ferred to the geometrical ''center of mass'' of the array (Section 3). For normal
density of phase errors the estimator is "optimal'’, in the sense of having the
smallest possible rms estimation errors among all possible estimators that are

"unbiased", that is, without systematic errors. It is, in fact, shown that under :
the hypothesis of gaussian probability densities for uncorrelated errors in the §
measurements of element phases, the rms estimation errors meet a Cramer-Rao

bound derived in Appendix C. Thus the proposed algorithm proviles the maxi-
mum possible angular accuracy {for unbiased estimation), which cannot be im-

proved no matter how sophisticated the design of the processing scheme.

s i o i o

5. Van Trees, H,L. (1968) Detection Estimation and Linear Modulation Theory,
John Wiley and Sons, Chap. 1.

6. Van Trees, H,1., (1968) op. cit., Chap. 2.




In this paper planar and linear arrays, with elements in gineral non-equally
spaced, are considered. As a numerical application, the performance of a linear
array, having the elements spaced in geometric progression (with the minimum
distance between elements small enough to eliminate ambiguity in the phase read-
ings) with a total length of 24 wavelengths, is discussed, The accuracy found is
substantially greater than that obtained for the same geometry and phase errors
by using multiple interferometer techniques (Section 4). For the same array ver-
tically located on a reflecting terrain, the degradation of performance due to multi-
path is also examined (Section 5). For this situation the estimation procedure pro-
posed is, of course, not the theoretical optimum. In fact, not only phases but also
relative amplitudes of eleinent output voltages should be used because they also
carry angular information. Also in this case the ptase "errors' due io multipath
are highly correlated and difficult to characterize statistically. Nevertheless, for
the particular case considered, the performance of the scheme discussed here is
substantially better than that obtainable through a conventional multiple interferom-
eter technique. This lcads to the conjecture, to be verified through analvsis and/or
simulation, that the scheme is in general superior to the multiple interferometer
technique also in the realistic case of presence of reflection.

Finally, it is shown that the inclusion in the model of thermal noise (assumed
absent when obiaining the above results) does not affect the structure of the esti-
mator (but, of course, affects the accuracy) (Section 6).

2. STATEMENT OF THE PROPLEM AND NOTATION

The discussion is conducted inf'terms of planar arrays. The results for the
linear simpler case are then obtained from those pertinent to the planar case
through appropriate simplifications. Our main objertive is to assess the effects of
instrumentation errors, that is the errors affecting the voltages at the element ports.
‘Thus {at least in the first part of this study) thermal noise, introduced in the voltage
measurements, that is noise at the element receivers, will be considered negligible
with respect to the incoming signal. The elements of the array, or rather their
radiation patterns, are assumed identical and identically oriented. Since (atleast
for the time being) we restrict our ccnsiderations to the angular location of a single
target in the absence of angular interferences, no angular information is contained
in the amplitudes of the element output voltages. Thus only the set of the phates of
the element voltages constitutes the observables to be used for thc statistical ex-
traction of the angular coordinates.

Let X ¥y Ye the coordinates of the ith sensor in the x, y plane of ' he array,
the total number of elements being N. It proves convenient to introdu:e the coor-
dinates of the geometrical "Center of Mass'' of the antenna elements:
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;=§:€lxi' (1
N

y=§§lyi. (2)

The following geometrical quantities are also introduced for formal simplification
of our results:
4 2

M= 2;1 x - (3)

N
4 2
M = Z-l (y 'y) » 4) y
Yy g 1 ‘
N

M, = El [(xi-f) (yi-y)] . (5)

Let a, B be the unknown cosines of the direction of incidence with respect to the
x, y axis, If k= 27/} is the free-space propagation constant, the propagation vec-
tor of the incident wave is

5:k(ai+ﬂ$'+ Jl-ae-ﬂz‘i ).

where X, ¥, Z are uni: ve.tors in the directions of the rectangular axes.

The phase ""1 observed at the output of the ith element is expressed at the sum
of three terms:

pizk(axi*ﬂyi)+u+bi. (6)

The first term depends upon the element position and contains the unknown param-
eters, The second term U is a reference phase, interpreted s the phase that one
would mecsure at the output of an element assumed located at the origin of tha roor-
dinate system in the absence of measurement errors. The quantities Gi denote the
instrumental errors in the phase measurement. They may depend upon mechanical
tolerances of the elements, quantization in the phase measuring device, and so
forth, and are constant in time. The important point is that the Gi's are unknown,
except for certain statistical properties, and can be treated as random variables.

We will make several reasonable assumptions about the 8,'s. The probability
density is the same for all elements:

aa g STekod iR



pi(Bi) = p(Bi) i
that is, independent of i. The Bi's have zero mean:

E[8;] = [p(s)ds =0, @

where E[ ] represents the statistical average operator. Also errors in different
elements are statistically independent, that is, with self-explanatory notation:

Pt(Bl. 8yeee BN) = p(61) p(62) 000 p(bN) 0 (8)
so that:
E[8, 8] =0 2 (9)
ik § ik’

where oy is the rms value of the phase error and 61k is Kronecker's delta, equal to
1for i =k, equal to zero for i # k. Because of (6), Eq. (8) car be written as a con-

ditional probability density for the set of phases { wi} for given values of the param-
eters a0, 8, u:

N
Py (o ¥g oo by |0 B, ) = L p[v‘vi- M- klax + B yi)] . (10)

If the fur.ction p(+) in Eq. (8) is xnown, Eq. (10) summarizes all the statistical in-
formation available on a, B8, given the set of observables | “i‘ « In the particular
case of normally distributed phase errors,

2
8.
1 i
p(Bi) s exp|{-—yg | - (11
VZ- o 206

We want to establish a statistically satisfactory estimation algorithm for the ex-
traction from the set of chaervables ¥ of the unknown parameters a, 8.
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3. MAXIMUM LIKELIHOOD ME THOD OF PHASE FRONT
SLOPE EVALUATION

e o ST TE T

3.1 Theory

Under the idealized assumption of absence of directional or diffused interfer-
ence the phase front of the wave incident on the array is planar., Since all angular .

information is contained in the slope of the phase front, an intuitively appealing
procedure for the extraction of @, 8, consists of measuring the phases of the ele-
ment voltages then combining them linearly to extract the components of the phase
slope. If the weights used in the linear combination are properly chosen, this pro-
cedure implements the Maximum Likelihood Estimation (MLE) criterion under the
assumption (11) of gaussian probability density for phase errors, Furthermore,
under the same assumption, it yields an unbiased estimator having the minimum
posegible rms errors.

We recall that the MLE consists in assuming that, for a given set of observ-
ables, the most likely values of the unknown parameters are those for which the |

probability of errors is maximum. Hence, following the standard procedure, we
take the derivatives of the logarithm of the conditional probability densities (10)

and equate them to zero.6 The estimates of a, 8, i, are those values a, B, u
for which the equation

3 log p, ¥, 02. I A

q]

(12)

holds, togethel with the two parallel equations, obtained by replacing da in (12) with
8p and 3, respectively. Assume normal densities for the 6i's. Thus from (10)
and (12) we obtain:
N
( - - _ - -~ =
;{:1 V- kix - kg y - D x =0, (13)
N

AD wi-k&xi-kﬁyi°i“yi=o’ (14)
i=1

s (vi~k&xi-kf3yi-ﬁ)=0- (15)
i=1

By eliminating in (13-15) the estimate [i of the parameter 1 (of no interest) the
explicit forms of the estimators @ and B are nbtained (Appendix A):
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. 1’;1[“1 ki“;’My“yt‘y)Mxy]
M.M_-M
xy
N
- .E[wi(yi-aMx-(xi--)Mxy]
g=4 it (17)
Kk M_M_ - M ’
xy Txy

In Appendix B it is shown that
E[a] = a, ] = 8. (18)

that is, the estimates {16-17) are unbiased. In Appendix B the quadratic errors of
estimations are shown to be:

2
2 — (19)

og
0=
& ¥ MM-M
b S 4

2 +
(4 M
b e 2
My My = My

%

In Appendix C it is shown that under the hypothesis of normal densities tor the
phase measurement errors the rms estimation errors (19-20) are the minimum
possible for unbiased estimaters. This means that the algorithm (16-17) is optimal
for yielding the maximum possible angular accuracy in the absence of systematic
errors.

The cross correlation of the estimators & and é is (Appendix B):

[+
a8 =~ — . (21)
xy

From (19-21) the joint probability density for @ and ﬁ is easily established:

£ k 2 k2 =2 2 d
pla, B) = — Mx My - Mxy exp ( - —y [Mx(a-a) + My(ﬂ -8)
20 0y 204
+ 2Mxy(a-a)(ﬂ -ﬁ)]} . (22)

By invoking the central limit theorem Eq. (22) is approximately valid even if the
p (61) are non-gaussian,

11
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3.2 Remarks

The phase reference is immaterial, provided of course it is the same for all
elements. In fact, by using the obvious identities (A4) of Appendix A it is found
that @ and ﬁ remain unchanged ifin(16-17) every lbi is replaced by:

v Tt
with lpc a constant phase (independent of the index i}, For example the phases can
be measured with respect to the output of an auxiliary sensor whose position with
respect to the array elements is immaterial and need not even be known. Alterna-
tively and more conveniently the phases can be measured with respect to a particu-
lar array element, say the one indexed as 1, This leads to an estimator whose
expression, while formally different, is completely equivalent to (16-17) because
its expression is obtained from (16-17) through analytic manipulation. In fact the
following identity holds as a consequence of (A4):

N
iz=:1 2 [(x;-i) My- A -y Mx]

N N
= EZ zbi [(xi - x) My - (yi -y) Mx] -iZ;/z lbl[ ('.‘i - Xx) My - (yi -y) Mx] .
and thus (16) can be written:
N
X {'2 (wi - apl) [(xi - x)My - (yi'y) Mx]
a = — V) ? (23)
Mx My - Mxy

and a parallel expression can be established for [.3 . Since (23) is identical to (16)
all the statistical properties established for (16) evidently hold for (23) also. Of
course in this case, unlike the scheme using an additional element for phase refer-
ence, the position of the element index by 1 plays a fundamental role in the algor-
ithm (23) because it appears in the quantities (1-5).

fince the phases arc measurad modulo 2# there i~ an inherent ambiguity in the
phase measurement. This can be eliminated, however, by choosing the spacings of
some elements small enough to yield an unambiguous phase difference between con-
tiguous elements. The technique is in principle well lmown4 and a detailed study of
this point is outside the scope of this paper. However a brief discussion will be
made in Appendix D in connection with the numerical example of Section 4.

12
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It is reasonable to assume that in practical cases the array will have at least
one axis of symmetry, x or y. This assumption makes

M__ =0
Xy

(see (5)]. The two estimates a and B are statistically independent [as shown by
(22) and thus (16) takes e form:

N
2 plx, - X
11='1'pixi

- (24)
x

-~
a =

=|

A similar form holds for 8 (with y replacing x). The rms estimation error is:
2
2_9%

1
o ?-M;. (25)

with a parallel expression for ¢ 2. Expressions (24-25) are of course also those

holding for linear arrays. The one-dimentional version of the modified algorithm
(23) is

N
. Ez W = %) (x, - %)
a = E Mx . (26)

It is clear from (19-20) or (25-26) that to increase accuracy for a given number
of elements it is convenient to have the elements as sparse as possible, compatible
with the need of avoiding prase ambiguities, in order to increase the "'moments of

inertia" M. My' directly affecting the accuracy of the estimates of the angular
location,

4. LINEAR ARRAYS, COMPARISON WITH ACCURACY
OF MULTIPLE INTERFEROMETERS

The processing scheme disc:ssed in the preceding sections provides consider-
ably more accuracy, that is, smaller rms angular estimation error, than does the
"conventional" multiple interferometer tcchnique. The comparison is made Ly con-
sidering the same linear array (that is with the same element locations ard measure-

ment errors) using two different processing schemes: the one proposed here and

13
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that used in the "conventional' interferometric technique. In the latter the angular
information is extracted through the algorithm described in Ref. 4, which with our
notation takes the form:

N
2 - $)
m kN X
Z (x -x,)
=2 i 1
The estimator (27) is unbiased. Tts variance is found to be:
2

Op N(N - 1)
= — (28)

i N 12
LZiz(xi - xl)

Expression (28) is always greater than (25). The result can be established simply

[+

EN

by recalling that, for gaussian probability densities of the phase measurements,
the rms error in angular location associated with the estimator (24) or (26) is the
minimum possible for the given array geometry, because it meets the bound on rms
estimation error in Appendix C. Hrwever, it can be found more directly by using
simple arithmetic inequality.

In order to gain a better appreciation of the superiority of the estimator pro-
posed in comparison with a multiple baseline interferometer scheme, consider the
following particular case.

Example

Suppose that it is known a priori that the airection of the object is within a
3ector of £+ 15° from the plane perpendicular to the array axis. * In order to avoid
ambiguities we will chose the minimum spacing among the elements equal to 0.75 ).

The distances between first and successive elements increase in geometric
progression. In this way all the phase ambiguities are eliminated th.rough a simple
algorithm discussed in Appendix D, Thus if ¢ is the distance of the first element
from the origin of the x axis, the abscissae of the elements are:

_
In practical cases this may mean that throughk an auxiliary antenna system the sig-
nal is blanked if incident from outside the sector of interest, the angular measur-
ing system being aciivited only for targets within the sector.

14
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x1=c.

X, = c+ 0.75x,

1 xg = ¢+ 152,
2 x4=c+3)\.
5 r x5=c+6)\.
x6=c+12)\.

) X, = c+ 242,

g . The abscissa of the geometric center of mass is:

.*
T =
u

[

4,|.

=c+ 6,75,

Its moment of inertia Mx with respect to the center of mass is, from (3):

Mx + 448,875 Az .

‘ Suppose that the rms error in the phase measurements at the element ports is:

0y = 0.5 radians = 28.648° .

From (25) the rms error in the object angular location is, in & units:

T

2
| g 2.8 1
i ) (2m)% O xl-; <
| (0
% i=1
! Put
a = sin 4,

with 6 the angle from the array normal. The rms error of § is maximum for

{ 6 = 15°, the edge of the sector of interest, and is in milliradians.
"o 3
= = q .
06 m 10 3.89 mrad (29)
15
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L.et us consider the rms f:rror a:, for the 1ruitiple interferometer scheme. By
applying (28) we obtain oy = 11, 3 mrad. "he rms error s substantially greater
than for the optimum scheme.

If a different element is chosen as a reference the rms error will vary, still
remaining, of course, greater than the value (29), For example, assume as a
reference element the one located at x =c +24A, In such a case the rms estima-
tion error becomes aé' = 10.6 mrad, again greater than (29), as it must be. We

recall that we have considered the ideal situation in which any angular interference
is absent.

5. SPECULAR REFLECTION EFFECTS-A NUMERICAL

EXPERIMENT

In the presence of coherent interference like specular reflection, the proces-
sing scheme here proposed, although not the theoretical optimum, on the basis of
a limited numerical study seems to exhibit comparatively good performance with
respect to a conventional multiple baseline interferometric system. A theoretical
anaiysis seems imnossible or at least exceedingly difficult, mainly because phase
"errors' induced by specular reflection are, of course, highly correlated. A
numerical experiment made for a particular case shows the superiority of the ai-
gorithm (24) or (26) proposed here with respect to the conventional multiple inter-
ferometer scheme (27).

Consider the array geometry discussed in the previous section. Suppose the
array is vertically located on a reflecting terrain. The distance of the first and
lowest element from the origin loc2ted on the ground is ¢. If 8 is the elevation

angle of the scattering object, and if R is the magnitude of the reflection coefficient,
the output voltage at the ith element is:

.2
j~- (x.4c) 8in 0
=eT . [1+Re

j'Pl-j%E (xi+ ¢) sin 6]

i (30)
where ®y is the phase of the reflection coefficient. Put
4n =
tp=w1+-r(c+x)sin9. (31)

The phases of the Vi are:

A 4 =
'\ R sin [up- (x -x)sinO]
¥, = %—'-(xi'& c)sin 6 + tg . ‘ X i : ' (32)

lltRcost-%l(xi-i')sinG]‘

Inserting (32) into (24) or (26), one obtains for the error in the estimation of sin 8

16




e

R

N
(x, -X) tg §—

A z_:l : 1+ R cos [(p-%g(xi-I) sin ]
gin § - sin 8 =— o c (33)

T My

J Retnfp-3x -Deino] ;

Assume the error is small. We obtain then:

N -3 tg" sRsin [o-%(xi-ﬂ sin 6]
2 l I*RCOS[G"%‘E(X -X) sin 4]
a0 == ™5 L . (34)
'7:'" Mx cos 8

In (33), ¥ is a phase angle depending upon the distance of the array from the re-
flecting plane, the phase of the reflection coefficient and the element spacings. In
practical cases ¥ is not known, Hence to assess the merit of the processing scheme,
it is reasonable to compute the error as a functionof 8 for different values of + and
a large R. In Figures 1 and 3 the error has been plotted for R = 0. 9 and values of
¢ equal to0 0, ¥, and + /2, Figures 2 and 4 show the error in a multiple inter-
ferometer system with the same array geomeiry and the same values of R and y.

It is apparent that for the scheme proposed here the maximum error is less and
decreases more rapidly with increasing elevation than for conventional multiple
interferometer systems. Although this may suggest that in general the algorithm
(24) or (26) is superior to (27) even in the presence of specular reflection, more
extensive computations are of course necessary to corroborate this contention.
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6. THERMAL NOISE

We consider again the situation of no angular interference. The presence of
thermal noise can be accounted for by assuming that the output voltage of the ith
sensor is a function of time described by:

vi(t) = [A + mi(t)] cos(wot + 'Pi) + ni(t) sin (wot + wi) 7 (35)

where W, is the center frequency and mi(t) and ni(t) are assumed to be narrowband
gaussian processes. If B is the bandwidth (assumed rectangular), (35) can be
sampled at a sampling rate of 8/B. The phase and quadrature components of the
samples are the real and imaginary parts of the complex quantities

(g [Aem @] nl (B fi[wer 3 o, d)fee

where
8
n
s -1 i (E)
vy (g~ ———- (37)
A+ my(g)

Assume that, with probability close to unity:

A>> mi(t) 0

(38)
A>> ni(t) .
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Then (36) yields
[ 1
v, (%) T Aexo 33 [+ & (%) +w°(%)]$ (39)

which will be written concisely as:

Vig = Aexp[j(¢is+f§-s)],

where the 1P 8 are the phases of (39) and are independent random variables whose
probability dens1ties are induced by those of 5 and n, (E) The former is assumed
gaussian and given by (11). The second is 31m1larly given by:

1

2 2
P (n ) = exp (- nig / 20, ) (40)

where we have concisely written:

Let M = TB be the total number of samples, T being the observation time. The

probability of the set of N x M phases Vg’ conditioned by the parameters a, 8, u,
is:

P, (“’11' G+ O1m® P21 Pame ONp e ONM la.B,u)

N TB -0

n
is
=1 " ¥ - B - kax -kBy, - (n, ) dn
ey dug | relbie i~k By, - ) plny) dny

or from (11) and (40), through some manipulation:

pt (0‘11. (ﬁlz cee ﬂlM' @21' wzzooo 02M| “N:...¢NM l a, 3. u)

2
N TB o, - u-kax -k3y,)
= ——1——- exp‘- L i i . (41D
ix1 3-1\['? . l , of ) ‘
< 2 o + n
-;2' Oy 8 :2‘

From (41) it is easily found by using the same procedure as in Section 4 that the
MLE for @ and 8 are given by (16) und (17) with ¥, replaced by:

M
a z oo .
W a1 I8

20

i

a2

o

A e LS




and the rms errors in the estimates are obtained from (19) and (20) by replacing

2
o by
2 2
2 2 n
o -0 + . (42) i
6 6 " AZrE :

i

From (42) and (19-20) is found the very satisfactory result that if 062 is negligible,
the angular accuracy is inversely proportional to the time bandwidth product and the
ratio between signal power and noise energy. Tbis result can be put in an even more
expressive form: If No is the noise power per cycle and E is the energy of the pulse
of length T, the rms error in the angular estimation can be written in the following

i

oo o g e s, e s 5

form:
o R K2
= E/N 1. .. ..2 °
o 6 No/M.M_-M
xy xy i

and thus the contribution to the rms error due to thermal noise (under the assump-
tion of high signal noise ratio) is inversely proportional to the total energy in the
pulse divided by the noise power per cycle.

g e

e

7. CONCLUDING REMARKS

it

The ultimate accuracy provided by a linear or planar array of identical sensore
in the determination of the direction of incidence of a plane wave has been studied 3
for the ideal case of the absence of angular interference. If the phase measure- 3
ments are affected by normally distributed errors, the optimum processor consists
of a linear combination of the phases at the element output ports with weights de-
pending upon the array geometry. It is shown that conventional multiple interfer-
ometer systems are substantially less accurate than the "'optimum' processors
introduced in this paper. The conclusion holds also in the presence of thermal
noise.

A ik NG e

Alough the proposed scheme is not the theoretical optimum when terrain re-
flection is present, a very limited investigation has been conducted on the per-
formance of a small array of sparse elements under that condition. For the parti-
cular case studied, the maximum errors are smaller than for multiple interferom- 3
eter systems and, in most directicns of the limited angular range investigated, the

i i

errors are smaller. How the scheme compares with other techniques in the
presence of reflection and whether in this situation it is consistently superior to ;
multiple interferometers is an open area of investigation of great practical interest.
1
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Appendix A
Form of Estimator for Normal Probability Density of
Phase Errors
From (15) the estimate for p is:
u=.ﬂ2 (wi-kaxi-kﬁyi) (A1)
which, introduced into (13-14) yields, by recalling (1) and (2):
N N N N N
L yx=L x%‘E +kal (x-x)x+k[3z (v, - P x (A2)
i=1 k=1 i=1 i=1 i=1
N N N N
Z yx-ZJ yquZ, |b+kaz (x-x)yi+kﬁz (y-))yi (A3)
=1 k=1 i=1 i=1
Notice that it is evidently:
N
PN (x, -0 =2 (y,- =0, (A4)
i=1 i=1

On the basis of that we can recognize that (A2-A3) takes the form:




TP A

N

El bl =T = kA M+ kB M,
N ~

El blx =D = ka M +kp M,

from which the expressions (16-17) are immediately established.
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Appendix B

Mean Value and Variance of the Estimates

Taking the average value of (16) and recalling (6-7) one gets:

N
R z [u+kaxi+k Byi] [(xi-_)Mx-(yi-y)My]
E[a] = 1 12! ” (B1)
k M, M - M

or, through some manipulations, recalling (A4):

2
q J(I\g' M - Mxy) + B [My M - M, Mxy] —
k M M - M2

x 'y O xy

E[a] =

or

Ff a]

a. (B3)

One finds the parallel result:
E[g] =8 . (B4)

Equations (B3) and (B4) indicate that the estimates of the angular coordinates a, 8
are unbiased.
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The variances of @ and B provide the rms error in the angular estimation. By
taking into account (9) we have

Ef@- o]

N N N
T x-02M+2Z @7,-7P M2 -2M. M L (x,-%) (y, -7)
24=1 1 Y e L xy X ¥iaq 1 Vi
I k% (M_M_-M* ’
(My My, 'X}')

that is expression (19). Similarly expression (20) is obtained. The covariance of
the estimations of a¢and 8, entering in the expression of the joint density (22), is
found to be:

E[(a -a)(p - Ec)]

N N N
2 . ) =9
=X (y.-F)-M M -%)° - =
062 (M, M+ Mw)El(xl Dy -9 - M xyg'_.'l (x, - %) xlelv1xy'%'=31 (y; =¥
ST IV
Kk (Mx My Mxy)

that is expression (21),
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Appendix C

A Cramer-F.20 Bound for Unbiased Estimates of
Direction of incidence

In this appendix we address ourselves to the following question. What is the
maximum possible accuracy of target angular location that can be obtained by pro-
cessing the observables wi? We will consider only unbiased estimators, that is,
those not having systematic errors. We restrict ourselves only to the ideal case
of no angular interference (terrain reflection, and so forth) and no thermal noise.
No great diffi :ulty would be encountered however in taking into account the latter
along the lines of Section 6. No hypothesis on the form of the phase error probabil-
ity densities (8) is made. We assume, however, the phase errors to be uncorre-
lated and the probability density function to have everywhere a second derivative.

ery
To simplify notation rename the unknown parameters as follows:

¢, =a; c2=B; €z = M. (C1)

With this notation we can introduce simply the so-called Fisher information mairix
whose elements Jsk are obtained as follows. Take the opposites of the averages of

the second derivatives (with respect to the unknown parameters) of the logarithm of
the condition.l probabilities of the obser'.'ab!es:6

2
9° log pt(vl. 4’2"' ¥n | €qpe <o c3)| -

sk cscs Bck
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The averages in (C2) are taken over the observable quantities and the c; are the
"true' values of the par.meters. However, it will be apparent in the sequel that
their knowledge is iiot necessary to evaluate the quantities in (C2). According to the
Cramer-Rao bound the rms errors o5 ¢ in the unbiased estimate of the parameter ¢

satisfy the mequahty

ciz > cofactor of Jii 5 (C3)

Our task is thus evaluating the set of J ik given by (C1).
To begin with notice that no matter what the explicit form of p(bi) in (8), we
have, from (10):

26, 06, 4% 10g p(s,) dlog p(5) a2,

=-Z E + . (C4)
3__ F—' ‘;261 d Bi ) csa Sy
Also, since, from (6):
8 = ¥, - kl@x +By), (C5)

the second derivatives of Oi do not contain the observables v)i. Thus the second term
in (C4) is:

g 2%, | dlogpe)

g p(8.

i=1 % a5 U

g\ 82 8
Thus (C4) is simply:
rgpy)] N a5 a8
J.=E |- i E i i (C6)
sk a6 2 .~ dc_ dc "
i i=1 8 k
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values of the unknown parameter.

isotropic).

For normal error densities:

el I

31

i N
-N -k x
i=1
N N
{J }= kY x, -k22 x?2
sk 4 =1 1
N N
-k y. -kZZ X. Y.
j=1 1 j=1 7!

The Fisher information matrix is thus explicitly written

By using (C3), through some simple manipulations we obtain

o et
0 ‘E[_ a2 1og p(s) vy
| d°s M, M - M
-1
2 ]
022$E[_dlo (8) X =
8 | s M, M - M

|

d2 log p(8
d’s

g

(C7)

(C

8)

(C9)

where it is understood that the probability densities are conditioned to the true
Equations (C8) and (C9) establish the maximum
theoretically possible accuracy for an angular estimator, when the phases of the
sensor measured voltages are subject to instrumental errors bi. whose probability
density is p(bi). We recall that this result is valid for a single target (no interfer-
ence or multipath), assuming identical patterns for all elements (not necessarily

(C10)

tions, the rms error of the estimate of the angular position of the target.

By comparison of (19-20) with (C8-C9) we reach the conclusion that for normal den-
sities the phase slope reconstruction algorithm discussed in Section 3 is, in fact,

the best possible processing scheme in the sense of minimizing, under our assump-
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Appendix D

Elimination of Phase Ambiguity

In this brief discussion on the elimination of phase ambiguities we will mainly
refer to the linear array discussed in Section 4.
Let us denote by

Ay =¥ -, (=23..N (D1)

the observed phase difference between the element labled i and the first element.
Consider now the quantities:

o e
q = A wi o x—__xl A ¥iq |- (D2)

Because of the very definition of A Yo it is

E(qi] =0, (D3)

where the averages are taken with respect to the phase measurement errors. Also
it is not difficult to establish that the variances of the quantities (D3) are:

X. - X 2

2
X, - X

E[qizl ) 062 |1 . (1_x1 1 ) 5 (xi ! )

-1~ % -1 %
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For i= 2, (D1) gives:

A¢2=¢2-¢1. (D5) :
]
and we assume that th2 elements 2 and 1 are close enough to eliminate the possibil- ]
ity of ambiguity in the phase measurements, although, of course, measurement ]
| errors will be present. The value (D5) will belong to the interval -m, 7, In the J!
i array considered in Section 4: :
3
HTR_,, (D6) 4
%-17 %1

for all i's. Thus we have

L e R O T s

Once (D5) has been determined in an unambiguous way, no ambiguity is involved in
the determination of §, to be used in (26), if, among its possible values differing by
multiples of 2, we choose that for which

it il it Kl i s s rthiicatscri it B ettt e

|A¢3-2A¢2|<w. (D8)
1
Once ¥a is determined, we may determine W4 by repeating the procedure, that is, i
by requiring that for every i: j
Acyi-ZA wi-l <w. (D9) 3
‘ |
This leads in turn to the specification of the maximum phase-measurement error
permissible. To show that, consider that from (D4) and (D6) we get, for our |
geometry: {
Elq,’] = 40,°. (D10) !
Assume, that with probability close to one. the quantity q; never becomes greater
than three times its rms value: ]
1
ag, -24y , | 6o, (D11 i
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which, in conjunction with (D9), leads to the condition for a maximum allowable
phase measurement error

T Ty

op < 7 - (D12) ”i

o, 3
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